]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: MMU: drop vcpu param in gpte_access
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
1767e931
PG
32#include <linux/moduleparam.h>
33#include <linux/export.h>
448353ca 34#include <linux/swap.h>
05da4558 35#include <linux/hugetlb.h>
2f333bcb 36#include <linux/compiler.h>
bc6678a3 37#include <linux/srcu.h>
5a0e3ad6 38#include <linux/slab.h>
3f07c014 39#include <linux/sched/signal.h>
bf998156 40#include <linux/uaccess.h>
114df303 41#include <linux/hash.h>
f160c7b7 42#include <linux/kern_levels.h>
6aa8b732 43
e495606d 44#include <asm/page.h>
aa2e063a 45#include <asm/pat.h>
e495606d 46#include <asm/cmpxchg.h>
4e542370 47#include <asm/io.h>
13673a90 48#include <asm/vmx.h>
3d0c27ad 49#include <asm/kvm_page_track.h>
1261bfa3 50#include "trace.h"
6aa8b732 51
18552672
JR
52/*
53 * When setting this variable to true it enables Two-Dimensional-Paging
54 * where the hardware walks 2 page tables:
55 * 1. the guest-virtual to guest-physical
56 * 2. while doing 1. it walks guest-physical to host-physical
57 * If the hardware supports that we don't need to do shadow paging.
58 */
2f333bcb 59bool tdp_enabled = false;
18552672 60
8b1fe17c
XG
61enum {
62 AUDIT_PRE_PAGE_FAULT,
63 AUDIT_POST_PAGE_FAULT,
64 AUDIT_PRE_PTE_WRITE,
6903074c
XG
65 AUDIT_POST_PTE_WRITE,
66 AUDIT_PRE_SYNC,
67 AUDIT_POST_SYNC
8b1fe17c 68};
37a7d8b0 69
8b1fe17c 70#undef MMU_DEBUG
37a7d8b0
AK
71
72#ifdef MMU_DEBUG
fa4a2c08
PB
73static bool dbg = 0;
74module_param(dbg, bool, 0644);
37a7d8b0
AK
75
76#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 78#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 79#else
37a7d8b0
AK
80#define pgprintk(x...) do { } while (0)
81#define rmap_printk(x...) do { } while (0)
fa4a2c08 82#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 83#endif
6aa8b732 84
957ed9ef
XG
85#define PTE_PREFETCH_NUM 8
86
00763e41 87#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
88#define PT64_SECOND_AVAIL_BITS_SHIFT 52
89
6aa8b732
AK
90#define PT64_LEVEL_BITS 9
91
92#define PT64_LEVEL_SHIFT(level) \
d77c26fc 93 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 94
6aa8b732
AK
95#define PT64_INDEX(address, level)\
96 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99#define PT32_LEVEL_BITS 10
100
101#define PT32_LEVEL_SHIFT(level) \
d77c26fc 102 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 103
e04da980
JR
104#define PT32_LVL_OFFSET_MASK(level) \
105 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
106 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
107
108#define PT32_INDEX(address, level)\
109 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
d0ec49d4 112#define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
6aa8b732
AK
113#define PT64_DIR_BASE_ADDR_MASK \
114 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
115#define PT64_LVL_ADDR_MASK(level) \
116 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
117 * PT64_LEVEL_BITS))) - 1))
118#define PT64_LVL_OFFSET_MASK(level) \
119 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
121
122#define PT32_BASE_ADDR_MASK PAGE_MASK
123#define PT32_DIR_BASE_ADDR_MASK \
124 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
125#define PT32_LVL_ADDR_MASK(level) \
126 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT32_LEVEL_BITS))) - 1))
6aa8b732 128
53166229 129#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 130 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 131
fe135d2c
AK
132#define ACC_EXEC_MASK 1
133#define ACC_WRITE_MASK PT_WRITABLE_MASK
134#define ACC_USER_MASK PT_USER_MASK
135#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
136
f160c7b7
JS
137/* The mask for the R/X bits in EPT PTEs */
138#define PT64_EPT_READABLE_MASK 0x1ull
139#define PT64_EPT_EXECUTABLE_MASK 0x4ull
140
90bb6fc5
AK
141#include <trace/events/kvm.h>
142
07420171
AK
143#define CREATE_TRACE_POINTS
144#include "mmutrace.h"
145
49fde340
XG
146#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
147#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 148
135f8c2b
AK
149#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
150
220f773a
TY
151/* make pte_list_desc fit well in cache line */
152#define PTE_LIST_EXT 3
153
9b8ebbdb
PB
154/*
155 * Return values of handle_mmio_page_fault and mmu.page_fault:
156 * RET_PF_RETRY: let CPU fault again on the address.
157 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
158 *
159 * For handle_mmio_page_fault only:
160 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
161 */
162enum {
163 RET_PF_RETRY = 0,
164 RET_PF_EMULATE = 1,
165 RET_PF_INVALID = 2,
166};
167
53c07b18
XG
168struct pte_list_desc {
169 u64 *sptes[PTE_LIST_EXT];
170 struct pte_list_desc *more;
cd4a4e53
AK
171};
172
2d11123a
AK
173struct kvm_shadow_walk_iterator {
174 u64 addr;
175 hpa_t shadow_addr;
2d11123a 176 u64 *sptep;
dd3bfd59 177 int level;
2d11123a
AK
178 unsigned index;
179};
180
181#define for_each_shadow_entry(_vcpu, _addr, _walker) \
182 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
183 shadow_walk_okay(&(_walker)); \
184 shadow_walk_next(&(_walker)))
185
c2a2ac2b
XG
186#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
187 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
188 shadow_walk_okay(&(_walker)) && \
189 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
190 __shadow_walk_next(&(_walker), spte))
191
53c07b18 192static struct kmem_cache *pte_list_desc_cache;
d3d25b04 193static struct kmem_cache *mmu_page_header_cache;
45221ab6 194static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 195
7b52345e
SY
196static u64 __read_mostly shadow_nx_mask;
197static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
198static u64 __read_mostly shadow_user_mask;
199static u64 __read_mostly shadow_accessed_mask;
200static u64 __read_mostly shadow_dirty_mask;
ce88decf 201static u64 __read_mostly shadow_mmio_mask;
dcdca5fe 202static u64 __read_mostly shadow_mmio_value;
ffb128c8 203static u64 __read_mostly shadow_present_mask;
d0ec49d4 204static u64 __read_mostly shadow_me_mask;
ce88decf 205
f160c7b7 206/*
ac8d57e5
PF
207 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
208 * Non-present SPTEs with shadow_acc_track_value set are in place for access
209 * tracking.
f160c7b7
JS
210 */
211static u64 __read_mostly shadow_acc_track_mask;
212static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
213
214/*
215 * The mask/shift to use for saving the original R/X bits when marking the PTE
216 * as not-present for access tracking purposes. We do not save the W bit as the
217 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
218 * restored only when a write is attempted to the page.
219 */
220static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
221 PT64_EPT_EXECUTABLE_MASK;
222static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
223
ce88decf
XG
224static void mmu_spte_set(u64 *sptep, u64 spte);
225
dcdca5fe 226void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
ce88decf 227{
dcdca5fe
PF
228 BUG_ON((mmio_mask & mmio_value) != mmio_value);
229 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
312b616b 230 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
ce88decf
XG
231}
232EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
233
ac8d57e5
PF
234static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
235{
236 return sp->role.ad_disabled;
237}
238
239static inline bool spte_ad_enabled(u64 spte)
240{
241 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
242 return !(spte & shadow_acc_track_value);
243}
244
245static inline u64 spte_shadow_accessed_mask(u64 spte)
246{
247 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
248 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
249}
250
251static inline u64 spte_shadow_dirty_mask(u64 spte)
252{
253 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
254 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
255}
256
f160c7b7
JS
257static inline bool is_access_track_spte(u64 spte)
258{
ac8d57e5 259 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
260}
261
f2fd125d 262/*
ee3d1570
DM
263 * the low bit of the generation number is always presumed to be zero.
264 * This disables mmio caching during memslot updates. The concept is
265 * similar to a seqcount but instead of retrying the access we just punt
266 * and ignore the cache.
267 *
268 * spte bits 3-11 are used as bits 1-9 of the generation number,
269 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 270 */
ee3d1570 271#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
272#define MMIO_SPTE_GEN_HIGH_SHIFT 52
273
ee3d1570
DM
274#define MMIO_GEN_SHIFT 20
275#define MMIO_GEN_LOW_SHIFT 10
276#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 277#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
278
279static u64 generation_mmio_spte_mask(unsigned int gen)
280{
281 u64 mask;
282
842bb26a 283 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
284
285 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
286 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
287 return mask;
288}
289
290static unsigned int get_mmio_spte_generation(u64 spte)
291{
292 unsigned int gen;
293
294 spte &= ~shadow_mmio_mask;
295
296 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
297 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
298 return gen;
299}
300
54bf36aa 301static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 302{
54bf36aa 303 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
304}
305
54bf36aa 306static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 307 unsigned access)
ce88decf 308{
54bf36aa 309 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 310 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 311
ce88decf 312 access &= ACC_WRITE_MASK | ACC_USER_MASK;
dcdca5fe 313 mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
f2fd125d 314
f8f55942 315 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 316 mmu_spte_set(sptep, mask);
ce88decf
XG
317}
318
319static bool is_mmio_spte(u64 spte)
320{
dcdca5fe 321 return (spte & shadow_mmio_mask) == shadow_mmio_value;
ce88decf
XG
322}
323
324static gfn_t get_mmio_spte_gfn(u64 spte)
325{
842bb26a 326 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 327 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
328}
329
330static unsigned get_mmio_spte_access(u64 spte)
331{
842bb26a 332 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 333 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
334}
335
54bf36aa 336static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 337 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
338{
339 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 340 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
341 return true;
342 }
343
344 return false;
345}
c7addb90 346
54bf36aa 347static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 348{
089504c0
XG
349 unsigned int kvm_gen, spte_gen;
350
54bf36aa 351 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
352 spte_gen = get_mmio_spte_generation(spte);
353
354 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
355 return likely(kvm_gen == spte_gen);
f8f55942
XG
356}
357
ce00053b
PF
358/*
359 * Sets the shadow PTE masks used by the MMU.
360 *
361 * Assumptions:
362 * - Setting either @accessed_mask or @dirty_mask requires setting both
363 * - At least one of @accessed_mask or @acc_track_mask must be set
364 */
7b52345e 365void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 366 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 367 u64 acc_track_mask, u64 me_mask)
7b52345e 368{
ce00053b
PF
369 BUG_ON(!dirty_mask != !accessed_mask);
370 BUG_ON(!accessed_mask && !acc_track_mask);
ac8d57e5 371 BUG_ON(acc_track_mask & shadow_acc_track_value);
312b616b 372
7b52345e
SY
373 shadow_user_mask = user_mask;
374 shadow_accessed_mask = accessed_mask;
375 shadow_dirty_mask = dirty_mask;
376 shadow_nx_mask = nx_mask;
377 shadow_x_mask = x_mask;
ffb128c8 378 shadow_present_mask = p_mask;
f160c7b7 379 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 380 shadow_me_mask = me_mask;
7b52345e
SY
381}
382EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
383
858ac87f 384static void kvm_mmu_clear_all_pte_masks(void)
f160c7b7
JS
385{
386 shadow_user_mask = 0;
387 shadow_accessed_mask = 0;
388 shadow_dirty_mask = 0;
389 shadow_nx_mask = 0;
390 shadow_x_mask = 0;
391 shadow_mmio_mask = 0;
392 shadow_present_mask = 0;
393 shadow_acc_track_mask = 0;
394}
395
6aa8b732
AK
396static int is_cpuid_PSE36(void)
397{
398 return 1;
399}
400
73b1087e
AK
401static int is_nx(struct kvm_vcpu *vcpu)
402{
f6801dff 403 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
404}
405
c7addb90
AK
406static int is_shadow_present_pte(u64 pte)
407{
f160c7b7 408 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
409}
410
05da4558
MT
411static int is_large_pte(u64 pte)
412{
413 return pte & PT_PAGE_SIZE_MASK;
414}
415
776e6633
MT
416static int is_last_spte(u64 pte, int level)
417{
418 if (level == PT_PAGE_TABLE_LEVEL)
419 return 1;
852e3c19 420 if (is_large_pte(pte))
776e6633
MT
421 return 1;
422 return 0;
423}
424
d3e328f2
JS
425static bool is_executable_pte(u64 spte)
426{
427 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
428}
429
ba049e93 430static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 431{
35149e21 432 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
433}
434
da928521
AK
435static gfn_t pse36_gfn_delta(u32 gpte)
436{
437 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
438
439 return (gpte & PT32_DIR_PSE36_MASK) << shift;
440}
441
603e0651 442#ifdef CONFIG_X86_64
d555c333 443static void __set_spte(u64 *sptep, u64 spte)
e663ee64 444{
b19ee2ff 445 WRITE_ONCE(*sptep, spte);
e663ee64
AK
446}
447
603e0651 448static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 449{
b19ee2ff 450 WRITE_ONCE(*sptep, spte);
603e0651
XG
451}
452
453static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
454{
455 return xchg(sptep, spte);
456}
c2a2ac2b
XG
457
458static u64 __get_spte_lockless(u64 *sptep)
459{
6aa7de05 460 return READ_ONCE(*sptep);
c2a2ac2b 461}
a9221dd5 462#else
603e0651
XG
463union split_spte {
464 struct {
465 u32 spte_low;
466 u32 spte_high;
467 };
468 u64 spte;
469};
a9221dd5 470
c2a2ac2b
XG
471static void count_spte_clear(u64 *sptep, u64 spte)
472{
473 struct kvm_mmu_page *sp = page_header(__pa(sptep));
474
475 if (is_shadow_present_pte(spte))
476 return;
477
478 /* Ensure the spte is completely set before we increase the count */
479 smp_wmb();
480 sp->clear_spte_count++;
481}
482
603e0651
XG
483static void __set_spte(u64 *sptep, u64 spte)
484{
485 union split_spte *ssptep, sspte;
a9221dd5 486
603e0651
XG
487 ssptep = (union split_spte *)sptep;
488 sspte = (union split_spte)spte;
489
490 ssptep->spte_high = sspte.spte_high;
491
492 /*
493 * If we map the spte from nonpresent to present, We should store
494 * the high bits firstly, then set present bit, so cpu can not
495 * fetch this spte while we are setting the spte.
496 */
497 smp_wmb();
498
b19ee2ff 499 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
500}
501
603e0651
XG
502static void __update_clear_spte_fast(u64 *sptep, u64 spte)
503{
504 union split_spte *ssptep, sspte;
505
506 ssptep = (union split_spte *)sptep;
507 sspte = (union split_spte)spte;
508
b19ee2ff 509 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
510
511 /*
512 * If we map the spte from present to nonpresent, we should clear
513 * present bit firstly to avoid vcpu fetch the old high bits.
514 */
515 smp_wmb();
516
517 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 518 count_spte_clear(sptep, spte);
603e0651
XG
519}
520
521static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
522{
523 union split_spte *ssptep, sspte, orig;
524
525 ssptep = (union split_spte *)sptep;
526 sspte = (union split_spte)spte;
527
528 /* xchg acts as a barrier before the setting of the high bits */
529 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
530 orig.spte_high = ssptep->spte_high;
531 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 532 count_spte_clear(sptep, spte);
603e0651
XG
533
534 return orig.spte;
535}
c2a2ac2b
XG
536
537/*
538 * The idea using the light way get the spte on x86_32 guest is from
539 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
540 *
541 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
542 * coalesces them and we are running out of the MMU lock. Therefore
543 * we need to protect against in-progress updates of the spte.
544 *
545 * Reading the spte while an update is in progress may get the old value
546 * for the high part of the spte. The race is fine for a present->non-present
547 * change (because the high part of the spte is ignored for non-present spte),
548 * but for a present->present change we must reread the spte.
549 *
550 * All such changes are done in two steps (present->non-present and
551 * non-present->present), hence it is enough to count the number of
552 * present->non-present updates: if it changed while reading the spte,
553 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
554 */
555static u64 __get_spte_lockless(u64 *sptep)
556{
557 struct kvm_mmu_page *sp = page_header(__pa(sptep));
558 union split_spte spte, *orig = (union split_spte *)sptep;
559 int count;
560
561retry:
562 count = sp->clear_spte_count;
563 smp_rmb();
564
565 spte.spte_low = orig->spte_low;
566 smp_rmb();
567
568 spte.spte_high = orig->spte_high;
569 smp_rmb();
570
571 if (unlikely(spte.spte_low != orig->spte_low ||
572 count != sp->clear_spte_count))
573 goto retry;
574
575 return spte.spte;
576}
603e0651
XG
577#endif
578
ea4114bc 579static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 580{
feb3eb70
GN
581 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
582 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
583}
584
8672b721
XG
585static bool spte_has_volatile_bits(u64 spte)
586{
f160c7b7
JS
587 if (!is_shadow_present_pte(spte))
588 return false;
589
c7ba5b48 590 /*
6a6256f9 591 * Always atomically update spte if it can be updated
c7ba5b48
XG
592 * out of mmu-lock, it can ensure dirty bit is not lost,
593 * also, it can help us to get a stable is_writable_pte()
594 * to ensure tlb flush is not missed.
595 */
f160c7b7
JS
596 if (spte_can_locklessly_be_made_writable(spte) ||
597 is_access_track_spte(spte))
c7ba5b48
XG
598 return true;
599
ac8d57e5 600 if (spte_ad_enabled(spte)) {
f160c7b7
JS
601 if ((spte & shadow_accessed_mask) == 0 ||
602 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
603 return true;
604 }
8672b721 605
f160c7b7 606 return false;
8672b721
XG
607}
608
83ef6c81 609static bool is_accessed_spte(u64 spte)
4132779b 610{
ac8d57e5
PF
611 u64 accessed_mask = spte_shadow_accessed_mask(spte);
612
613 return accessed_mask ? spte & accessed_mask
614 : !is_access_track_spte(spte);
4132779b
XG
615}
616
83ef6c81 617static bool is_dirty_spte(u64 spte)
7e71a59b 618{
ac8d57e5
PF
619 u64 dirty_mask = spte_shadow_dirty_mask(spte);
620
621 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
622}
623
1df9f2dc
XG
624/* Rules for using mmu_spte_set:
625 * Set the sptep from nonpresent to present.
626 * Note: the sptep being assigned *must* be either not present
627 * or in a state where the hardware will not attempt to update
628 * the spte.
629 */
630static void mmu_spte_set(u64 *sptep, u64 new_spte)
631{
632 WARN_ON(is_shadow_present_pte(*sptep));
633 __set_spte(sptep, new_spte);
634}
635
f39a058d
JS
636/*
637 * Update the SPTE (excluding the PFN), but do not track changes in its
638 * accessed/dirty status.
1df9f2dc 639 */
f39a058d 640static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 641{
c7ba5b48 642 u64 old_spte = *sptep;
4132779b 643
afd28fe1 644 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 645
6e7d0354
XG
646 if (!is_shadow_present_pte(old_spte)) {
647 mmu_spte_set(sptep, new_spte);
f39a058d 648 return old_spte;
6e7d0354 649 }
4132779b 650
c7ba5b48 651 if (!spte_has_volatile_bits(old_spte))
603e0651 652 __update_clear_spte_fast(sptep, new_spte);
4132779b 653 else
603e0651 654 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 655
83ef6c81
JS
656 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
657
f39a058d
JS
658 return old_spte;
659}
660
661/* Rules for using mmu_spte_update:
662 * Update the state bits, it means the mapped pfn is not changed.
663 *
664 * Whenever we overwrite a writable spte with a read-only one we
665 * should flush remote TLBs. Otherwise rmap_write_protect
666 * will find a read-only spte, even though the writable spte
667 * might be cached on a CPU's TLB, the return value indicates this
668 * case.
669 *
670 * Returns true if the TLB needs to be flushed
671 */
672static bool mmu_spte_update(u64 *sptep, u64 new_spte)
673{
674 bool flush = false;
675 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
676
677 if (!is_shadow_present_pte(old_spte))
678 return false;
679
c7ba5b48
XG
680 /*
681 * For the spte updated out of mmu-lock is safe, since
6a6256f9 682 * we always atomically update it, see the comments in
c7ba5b48
XG
683 * spte_has_volatile_bits().
684 */
ea4114bc 685 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 686 !is_writable_pte(new_spte))
83ef6c81 687 flush = true;
4132779b 688
7e71a59b 689 /*
83ef6c81 690 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
691 * to guarantee consistency between TLB and page tables.
692 */
7e71a59b 693
83ef6c81
JS
694 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
695 flush = true;
4132779b 696 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
697 }
698
699 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
700 flush = true;
4132779b 701 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 702 }
6e7d0354 703
83ef6c81 704 return flush;
b79b93f9
AK
705}
706
1df9f2dc
XG
707/*
708 * Rules for using mmu_spte_clear_track_bits:
709 * It sets the sptep from present to nonpresent, and track the
710 * state bits, it is used to clear the last level sptep.
83ef6c81 711 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
712 */
713static int mmu_spte_clear_track_bits(u64 *sptep)
714{
ba049e93 715 kvm_pfn_t pfn;
1df9f2dc
XG
716 u64 old_spte = *sptep;
717
718 if (!spte_has_volatile_bits(old_spte))
603e0651 719 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 720 else
603e0651 721 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 722
afd28fe1 723 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
724 return 0;
725
726 pfn = spte_to_pfn(old_spte);
86fde74c
XG
727
728 /*
729 * KVM does not hold the refcount of the page used by
730 * kvm mmu, before reclaiming the page, we should
731 * unmap it from mmu first.
732 */
bf4bea8e 733 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 734
83ef6c81 735 if (is_accessed_spte(old_spte))
1df9f2dc 736 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
737
738 if (is_dirty_spte(old_spte))
1df9f2dc 739 kvm_set_pfn_dirty(pfn);
83ef6c81 740
1df9f2dc
XG
741 return 1;
742}
743
744/*
745 * Rules for using mmu_spte_clear_no_track:
746 * Directly clear spte without caring the state bits of sptep,
747 * it is used to set the upper level spte.
748 */
749static void mmu_spte_clear_no_track(u64 *sptep)
750{
603e0651 751 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
752}
753
c2a2ac2b
XG
754static u64 mmu_spte_get_lockless(u64 *sptep)
755{
756 return __get_spte_lockless(sptep);
757}
758
f160c7b7
JS
759static u64 mark_spte_for_access_track(u64 spte)
760{
ac8d57e5 761 if (spte_ad_enabled(spte))
f160c7b7
JS
762 return spte & ~shadow_accessed_mask;
763
ac8d57e5 764 if (is_access_track_spte(spte))
f160c7b7
JS
765 return spte;
766
767 /*
20d65236
JS
768 * Making an Access Tracking PTE will result in removal of write access
769 * from the PTE. So, verify that we will be able to restore the write
770 * access in the fast page fault path later on.
f160c7b7
JS
771 */
772 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
773 !spte_can_locklessly_be_made_writable(spte),
774 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
775
776 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
777 shadow_acc_track_saved_bits_shift),
778 "kvm: Access Tracking saved bit locations are not zero\n");
779
780 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
781 shadow_acc_track_saved_bits_shift;
782 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
783
784 return spte;
785}
786
d3e328f2
JS
787/* Restore an acc-track PTE back to a regular PTE */
788static u64 restore_acc_track_spte(u64 spte)
789{
790 u64 new_spte = spte;
791 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
792 & shadow_acc_track_saved_bits_mask;
793
ac8d57e5 794 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
795 WARN_ON_ONCE(!is_access_track_spte(spte));
796
797 new_spte &= ~shadow_acc_track_mask;
798 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
799 shadow_acc_track_saved_bits_shift);
800 new_spte |= saved_bits;
801
802 return new_spte;
803}
804
f160c7b7
JS
805/* Returns the Accessed status of the PTE and resets it at the same time. */
806static bool mmu_spte_age(u64 *sptep)
807{
808 u64 spte = mmu_spte_get_lockless(sptep);
809
810 if (!is_accessed_spte(spte))
811 return false;
812
ac8d57e5 813 if (spte_ad_enabled(spte)) {
f160c7b7
JS
814 clear_bit((ffs(shadow_accessed_mask) - 1),
815 (unsigned long *)sptep);
816 } else {
817 /*
818 * Capture the dirty status of the page, so that it doesn't get
819 * lost when the SPTE is marked for access tracking.
820 */
821 if (is_writable_pte(spte))
822 kvm_set_pfn_dirty(spte_to_pfn(spte));
823
824 spte = mark_spte_for_access_track(spte);
825 mmu_spte_update_no_track(sptep, spte);
826 }
827
828 return true;
829}
830
c2a2ac2b
XG
831static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
832{
c142786c
AK
833 /*
834 * Prevent page table teardown by making any free-er wait during
835 * kvm_flush_remote_tlbs() IPI to all active vcpus.
836 */
837 local_irq_disable();
36ca7e0a 838
c142786c
AK
839 /*
840 * Make sure a following spte read is not reordered ahead of the write
841 * to vcpu->mode.
842 */
36ca7e0a 843 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
844}
845
846static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
847{
c142786c
AK
848 /*
849 * Make sure the write to vcpu->mode is not reordered in front of
850 * reads to sptes. If it does, kvm_commit_zap_page() can see us
851 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
852 */
36ca7e0a 853 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 854 local_irq_enable();
c2a2ac2b
XG
855}
856
e2dec939 857static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 858 struct kmem_cache *base_cache, int min)
714b93da
AK
859{
860 void *obj;
861
862 if (cache->nobjs >= min)
e2dec939 863 return 0;
714b93da 864 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 865 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 866 if (!obj)
e2dec939 867 return -ENOMEM;
714b93da
AK
868 cache->objects[cache->nobjs++] = obj;
869 }
e2dec939 870 return 0;
714b93da
AK
871}
872
f759e2b4
XG
873static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
874{
875 return cache->nobjs;
876}
877
e8ad9a70
XG
878static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
879 struct kmem_cache *cache)
714b93da
AK
880{
881 while (mc->nobjs)
e8ad9a70 882 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
883}
884
c1158e63 885static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 886 int min)
c1158e63 887{
842f22ed 888 void *page;
c1158e63
AK
889
890 if (cache->nobjs >= min)
891 return 0;
892 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 893 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
894 if (!page)
895 return -ENOMEM;
842f22ed 896 cache->objects[cache->nobjs++] = page;
c1158e63
AK
897 }
898 return 0;
899}
900
901static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
902{
903 while (mc->nobjs)
c4d198d5 904 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
905}
906
2e3e5882 907static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 908{
e2dec939
AK
909 int r;
910
53c07b18 911 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 912 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
913 if (r)
914 goto out;
ad312c7c 915 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
916 if (r)
917 goto out;
ad312c7c 918 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 919 mmu_page_header_cache, 4);
e2dec939
AK
920out:
921 return r;
714b93da
AK
922}
923
924static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
925{
53c07b18
XG
926 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
927 pte_list_desc_cache);
ad312c7c 928 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
929 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
930 mmu_page_header_cache);
714b93da
AK
931}
932
80feb89a 933static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
934{
935 void *p;
936
937 BUG_ON(!mc->nobjs);
938 p = mc->objects[--mc->nobjs];
714b93da
AK
939 return p;
940}
941
53c07b18 942static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 943{
80feb89a 944 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
945}
946
53c07b18 947static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 948{
53c07b18 949 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
950}
951
2032a93d
LJ
952static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
953{
954 if (!sp->role.direct)
955 return sp->gfns[index];
956
957 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
958}
959
960static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
961{
962 if (sp->role.direct)
963 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
964 else
965 sp->gfns[index] = gfn;
966}
967
05da4558 968/*
d4dbf470
TY
969 * Return the pointer to the large page information for a given gfn,
970 * handling slots that are not large page aligned.
05da4558 971 */
d4dbf470
TY
972static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
973 struct kvm_memory_slot *slot,
974 int level)
05da4558
MT
975{
976 unsigned long idx;
977
fb03cb6f 978 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 979 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
980}
981
547ffaed
XG
982static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
983 gfn_t gfn, int count)
984{
985 struct kvm_lpage_info *linfo;
986 int i;
987
988 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
989 linfo = lpage_info_slot(gfn, slot, i);
990 linfo->disallow_lpage += count;
991 WARN_ON(linfo->disallow_lpage < 0);
992 }
993}
994
995void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
996{
997 update_gfn_disallow_lpage_count(slot, gfn, 1);
998}
999
1000void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1001{
1002 update_gfn_disallow_lpage_count(slot, gfn, -1);
1003}
1004
3ed1a478 1005static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1006{
699023e2 1007 struct kvm_memslots *slots;
d25797b2 1008 struct kvm_memory_slot *slot;
3ed1a478 1009 gfn_t gfn;
05da4558 1010
56ca57f9 1011 kvm->arch.indirect_shadow_pages++;
3ed1a478 1012 gfn = sp->gfn;
699023e2
PB
1013 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1014 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1015
1016 /* the non-leaf shadow pages are keeping readonly. */
1017 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1018 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1019 KVM_PAGE_TRACK_WRITE);
1020
547ffaed 1021 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1022}
1023
3ed1a478 1024static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1025{
699023e2 1026 struct kvm_memslots *slots;
d25797b2 1027 struct kvm_memory_slot *slot;
3ed1a478 1028 gfn_t gfn;
05da4558 1029
56ca57f9 1030 kvm->arch.indirect_shadow_pages--;
3ed1a478 1031 gfn = sp->gfn;
699023e2
PB
1032 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1033 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1034 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1035 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1036 KVM_PAGE_TRACK_WRITE);
1037
547ffaed 1038 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1039}
1040
92f94f1e
XG
1041static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1042 struct kvm_memory_slot *slot)
05da4558 1043{
d4dbf470 1044 struct kvm_lpage_info *linfo;
05da4558
MT
1045
1046 if (slot) {
d4dbf470 1047 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 1048 return !!linfo->disallow_lpage;
05da4558
MT
1049 }
1050
92f94f1e 1051 return true;
05da4558
MT
1052}
1053
92f94f1e
XG
1054static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1055 int level)
5225fdf8
TY
1056{
1057 struct kvm_memory_slot *slot;
1058
1059 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 1060 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
1061}
1062
d25797b2 1063static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 1064{
8f0b1ab6 1065 unsigned long page_size;
d25797b2 1066 int i, ret = 0;
05da4558 1067
8f0b1ab6 1068 page_size = kvm_host_page_size(kvm, gfn);
05da4558 1069
8a3d08f1 1070 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
1071 if (page_size >= KVM_HPAGE_SIZE(i))
1072 ret = i;
1073 else
1074 break;
1075 }
1076
4c2155ce 1077 return ret;
05da4558
MT
1078}
1079
d8aacf5d
TY
1080static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1081 bool no_dirty_log)
1082{
1083 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1084 return false;
1085 if (no_dirty_log && slot->dirty_bitmap)
1086 return false;
1087
1088 return true;
1089}
1090
5d163b1c
XG
1091static struct kvm_memory_slot *
1092gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1093 bool no_dirty_log)
05da4558
MT
1094{
1095 struct kvm_memory_slot *slot;
5d163b1c 1096
54bf36aa 1097 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 1098 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
1099 slot = NULL;
1100
1101 return slot;
1102}
1103
fd136902
TY
1104static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1105 bool *force_pt_level)
936a5fe6
AA
1106{
1107 int host_level, level, max_level;
d8aacf5d
TY
1108 struct kvm_memory_slot *slot;
1109
8c85ac1c
TY
1110 if (unlikely(*force_pt_level))
1111 return PT_PAGE_TABLE_LEVEL;
05da4558 1112
8c85ac1c
TY
1113 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1114 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
1115 if (unlikely(*force_pt_level))
1116 return PT_PAGE_TABLE_LEVEL;
1117
d25797b2
JR
1118 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1119
1120 if (host_level == PT_PAGE_TABLE_LEVEL)
1121 return host_level;
1122
55dd98c3 1123 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
1124
1125 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 1126 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 1127 break;
d25797b2
JR
1128
1129 return level - 1;
05da4558
MT
1130}
1131
290fc38d 1132/*
018aabb5 1133 * About rmap_head encoding:
cd4a4e53 1134 *
018aabb5
TY
1135 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1136 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1137 * pte_list_desc containing more mappings.
018aabb5
TY
1138 */
1139
1140/*
1141 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1142 */
53c07b18 1143static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1144 struct kvm_rmap_head *rmap_head)
cd4a4e53 1145{
53c07b18 1146 struct pte_list_desc *desc;
53a27b39 1147 int i, count = 0;
cd4a4e53 1148
018aabb5 1149 if (!rmap_head->val) {
53c07b18 1150 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1151 rmap_head->val = (unsigned long)spte;
1152 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1153 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1154 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1155 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1156 desc->sptes[1] = spte;
018aabb5 1157 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1158 ++count;
cd4a4e53 1159 } else {
53c07b18 1160 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1161 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1162 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1163 desc = desc->more;
53c07b18 1164 count += PTE_LIST_EXT;
53a27b39 1165 }
53c07b18
XG
1166 if (desc->sptes[PTE_LIST_EXT-1]) {
1167 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1168 desc = desc->more;
1169 }
d555c333 1170 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1171 ++count;
d555c333 1172 desc->sptes[i] = spte;
cd4a4e53 1173 }
53a27b39 1174 return count;
cd4a4e53
AK
1175}
1176
53c07b18 1177static void
018aabb5
TY
1178pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1179 struct pte_list_desc *desc, int i,
1180 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1181{
1182 int j;
1183
53c07b18 1184 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1185 ;
d555c333
AK
1186 desc->sptes[i] = desc->sptes[j];
1187 desc->sptes[j] = NULL;
cd4a4e53
AK
1188 if (j != 0)
1189 return;
1190 if (!prev_desc && !desc->more)
018aabb5 1191 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
1192 else
1193 if (prev_desc)
1194 prev_desc->more = desc->more;
1195 else
018aabb5 1196 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1197 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1198}
1199
018aabb5 1200static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1201{
53c07b18
XG
1202 struct pte_list_desc *desc;
1203 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1204 int i;
1205
018aabb5 1206 if (!rmap_head->val) {
53c07b18 1207 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 1208 BUG();
018aabb5 1209 } else if (!(rmap_head->val & 1)) {
53c07b18 1210 rmap_printk("pte_list_remove: %p 1->0\n", spte);
018aabb5 1211 if ((u64 *)rmap_head->val != spte) {
53c07b18 1212 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
1213 BUG();
1214 }
018aabb5 1215 rmap_head->val = 0;
cd4a4e53 1216 } else {
53c07b18 1217 rmap_printk("pte_list_remove: %p many->many\n", spte);
018aabb5 1218 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1219 prev_desc = NULL;
1220 while (desc) {
018aabb5 1221 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1222 if (desc->sptes[i] == spte) {
018aabb5
TY
1223 pte_list_desc_remove_entry(rmap_head,
1224 desc, i, prev_desc);
cd4a4e53
AK
1225 return;
1226 }
018aabb5 1227 }
cd4a4e53
AK
1228 prev_desc = desc;
1229 desc = desc->more;
1230 }
53c07b18 1231 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1232 BUG();
1233 }
1234}
1235
018aabb5
TY
1236static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1237 struct kvm_memory_slot *slot)
53c07b18 1238{
77d11309 1239 unsigned long idx;
53c07b18 1240
77d11309 1241 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1242 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1243}
1244
018aabb5
TY
1245static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1246 struct kvm_mmu_page *sp)
9b9b1492 1247{
699023e2 1248 struct kvm_memslots *slots;
9b9b1492
TY
1249 struct kvm_memory_slot *slot;
1250
699023e2
PB
1251 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1252 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1253 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1254}
1255
f759e2b4
XG
1256static bool rmap_can_add(struct kvm_vcpu *vcpu)
1257{
1258 struct kvm_mmu_memory_cache *cache;
1259
1260 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1261 return mmu_memory_cache_free_objects(cache);
1262}
1263
53c07b18
XG
1264static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1265{
1266 struct kvm_mmu_page *sp;
018aabb5 1267 struct kvm_rmap_head *rmap_head;
53c07b18 1268
53c07b18
XG
1269 sp = page_header(__pa(spte));
1270 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1271 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1272 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1273}
1274
53c07b18
XG
1275static void rmap_remove(struct kvm *kvm, u64 *spte)
1276{
1277 struct kvm_mmu_page *sp;
1278 gfn_t gfn;
018aabb5 1279 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1280
1281 sp = page_header(__pa(spte));
1282 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5
TY
1283 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1284 pte_list_remove(spte, rmap_head);
53c07b18
XG
1285}
1286
1e3f42f0
TY
1287/*
1288 * Used by the following functions to iterate through the sptes linked by a
1289 * rmap. All fields are private and not assumed to be used outside.
1290 */
1291struct rmap_iterator {
1292 /* private fields */
1293 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1294 int pos; /* index of the sptep */
1295};
1296
1297/*
1298 * Iteration must be started by this function. This should also be used after
1299 * removing/dropping sptes from the rmap link because in such cases the
1300 * information in the itererator may not be valid.
1301 *
1302 * Returns sptep if found, NULL otherwise.
1303 */
018aabb5
TY
1304static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1305 struct rmap_iterator *iter)
1e3f42f0 1306{
77fbbbd2
TY
1307 u64 *sptep;
1308
018aabb5 1309 if (!rmap_head->val)
1e3f42f0
TY
1310 return NULL;
1311
018aabb5 1312 if (!(rmap_head->val & 1)) {
1e3f42f0 1313 iter->desc = NULL;
77fbbbd2
TY
1314 sptep = (u64 *)rmap_head->val;
1315 goto out;
1e3f42f0
TY
1316 }
1317
018aabb5 1318 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1319 iter->pos = 0;
77fbbbd2
TY
1320 sptep = iter->desc->sptes[iter->pos];
1321out:
1322 BUG_ON(!is_shadow_present_pte(*sptep));
1323 return sptep;
1e3f42f0
TY
1324}
1325
1326/*
1327 * Must be used with a valid iterator: e.g. after rmap_get_first().
1328 *
1329 * Returns sptep if found, NULL otherwise.
1330 */
1331static u64 *rmap_get_next(struct rmap_iterator *iter)
1332{
77fbbbd2
TY
1333 u64 *sptep;
1334
1e3f42f0
TY
1335 if (iter->desc) {
1336 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1337 ++iter->pos;
1338 sptep = iter->desc->sptes[iter->pos];
1339 if (sptep)
77fbbbd2 1340 goto out;
1e3f42f0
TY
1341 }
1342
1343 iter->desc = iter->desc->more;
1344
1345 if (iter->desc) {
1346 iter->pos = 0;
1347 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1348 sptep = iter->desc->sptes[iter->pos];
1349 goto out;
1e3f42f0
TY
1350 }
1351 }
1352
1353 return NULL;
77fbbbd2
TY
1354out:
1355 BUG_ON(!is_shadow_present_pte(*sptep));
1356 return sptep;
1e3f42f0
TY
1357}
1358
018aabb5
TY
1359#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1360 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1361 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1362
c3707958 1363static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1364{
1df9f2dc 1365 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1366 rmap_remove(kvm, sptep);
be38d276
AK
1367}
1368
8e22f955
XG
1369
1370static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1371{
1372 if (is_large_pte(*sptep)) {
1373 WARN_ON(page_header(__pa(sptep))->role.level ==
1374 PT_PAGE_TABLE_LEVEL);
1375 drop_spte(kvm, sptep);
1376 --kvm->stat.lpages;
1377 return true;
1378 }
1379
1380 return false;
1381}
1382
1383static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1384{
1385 if (__drop_large_spte(vcpu->kvm, sptep))
1386 kvm_flush_remote_tlbs(vcpu->kvm);
1387}
1388
1389/*
49fde340 1390 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1391 * spte write-protection is caused by protecting shadow page table.
49fde340 1392 *
b4619660 1393 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1394 * protection:
1395 * - for dirty logging, the spte can be set to writable at anytime if
1396 * its dirty bitmap is properly set.
1397 * - for spte protection, the spte can be writable only after unsync-ing
1398 * shadow page.
8e22f955 1399 *
c126d94f 1400 * Return true if tlb need be flushed.
8e22f955 1401 */
c4f138b4 1402static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1403{
1404 u64 spte = *sptep;
1405
49fde340 1406 if (!is_writable_pte(spte) &&
ea4114bc 1407 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1408 return false;
1409
1410 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1411
49fde340
XG
1412 if (pt_protect)
1413 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1414 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1415
c126d94f 1416 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1417}
1418
018aabb5
TY
1419static bool __rmap_write_protect(struct kvm *kvm,
1420 struct kvm_rmap_head *rmap_head,
245c3912 1421 bool pt_protect)
98348e95 1422{
1e3f42f0
TY
1423 u64 *sptep;
1424 struct rmap_iterator iter;
d13bc5b5 1425 bool flush = false;
374cbac0 1426
018aabb5 1427 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1428 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1429
d13bc5b5 1430 return flush;
a0ed4607
TY
1431}
1432
c4f138b4 1433static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1434{
1435 u64 spte = *sptep;
1436
1437 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1438
1439 spte &= ~shadow_dirty_mask;
1440
1441 return mmu_spte_update(sptep, spte);
1442}
1443
ac8d57e5
PF
1444static bool wrprot_ad_disabled_spte(u64 *sptep)
1445{
1446 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1447 (unsigned long *)sptep);
1448 if (was_writable)
1449 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1450
1451 return was_writable;
1452}
1453
1454/*
1455 * Gets the GFN ready for another round of dirty logging by clearing the
1456 * - D bit on ad-enabled SPTEs, and
1457 * - W bit on ad-disabled SPTEs.
1458 * Returns true iff any D or W bits were cleared.
1459 */
018aabb5 1460static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1461{
1462 u64 *sptep;
1463 struct rmap_iterator iter;
1464 bool flush = false;
1465
018aabb5 1466 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1467 if (spte_ad_enabled(*sptep))
1468 flush |= spte_clear_dirty(sptep);
1469 else
1470 flush |= wrprot_ad_disabled_spte(sptep);
f4b4b180
KH
1471
1472 return flush;
1473}
1474
c4f138b4 1475static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1476{
1477 u64 spte = *sptep;
1478
1479 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1480
1481 spte |= shadow_dirty_mask;
1482
1483 return mmu_spte_update(sptep, spte);
1484}
1485
018aabb5 1486static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1487{
1488 u64 *sptep;
1489 struct rmap_iterator iter;
1490 bool flush = false;
1491
018aabb5 1492 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1493 if (spte_ad_enabled(*sptep))
1494 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1495
1496 return flush;
1497}
1498
5dc99b23 1499/**
3b0f1d01 1500 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1501 * @kvm: kvm instance
1502 * @slot: slot to protect
1503 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1504 * @mask: indicates which pages we should protect
1505 *
1506 * Used when we do not need to care about huge page mappings: e.g. during dirty
1507 * logging we do not have any such mappings.
1508 */
3b0f1d01 1509static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1510 struct kvm_memory_slot *slot,
1511 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1512{
018aabb5 1513 struct kvm_rmap_head *rmap_head;
a0ed4607 1514
5dc99b23 1515 while (mask) {
018aabb5
TY
1516 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1517 PT_PAGE_TABLE_LEVEL, slot);
1518 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1519
5dc99b23
TY
1520 /* clear the first set bit */
1521 mask &= mask - 1;
1522 }
374cbac0
AK
1523}
1524
f4b4b180 1525/**
ac8d57e5
PF
1526 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1527 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1528 * @kvm: kvm instance
1529 * @slot: slot to clear D-bit
1530 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1531 * @mask: indicates which pages we should clear D-bit
1532 *
1533 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1534 */
1535void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1536 struct kvm_memory_slot *slot,
1537 gfn_t gfn_offset, unsigned long mask)
1538{
018aabb5 1539 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1540
1541 while (mask) {
018aabb5
TY
1542 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1543 PT_PAGE_TABLE_LEVEL, slot);
1544 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1545
1546 /* clear the first set bit */
1547 mask &= mask - 1;
1548 }
1549}
1550EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1551
3b0f1d01
KH
1552/**
1553 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1554 * PT level pages.
1555 *
1556 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1557 * enable dirty logging for them.
1558 *
1559 * Used when we do not need to care about huge page mappings: e.g. during dirty
1560 * logging we do not have any such mappings.
1561 */
1562void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1563 struct kvm_memory_slot *slot,
1564 gfn_t gfn_offset, unsigned long mask)
1565{
88178fd4
KH
1566 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1567 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1568 mask);
1569 else
1570 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1571}
1572
bab4165e
BD
1573/**
1574 * kvm_arch_write_log_dirty - emulate dirty page logging
1575 * @vcpu: Guest mode vcpu
1576 *
1577 * Emulate arch specific page modification logging for the
1578 * nested hypervisor
1579 */
1580int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1581{
1582 if (kvm_x86_ops->write_log_dirty)
1583 return kvm_x86_ops->write_log_dirty(vcpu);
1584
1585 return 0;
1586}
1587
aeecee2e
XG
1588bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1589 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1590{
018aabb5 1591 struct kvm_rmap_head *rmap_head;
5dc99b23 1592 int i;
2f84569f 1593 bool write_protected = false;
95d4c16c 1594
8a3d08f1 1595 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1596 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1597 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1598 }
1599
1600 return write_protected;
95d4c16c
TY
1601}
1602
aeecee2e
XG
1603static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1604{
1605 struct kvm_memory_slot *slot;
1606
1607 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1608 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1609}
1610
018aabb5 1611static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1612{
1e3f42f0
TY
1613 u64 *sptep;
1614 struct rmap_iterator iter;
6a49f85c 1615 bool flush = false;
e930bffe 1616
018aabb5 1617 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1618 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1619
1620 drop_spte(kvm, sptep);
6a49f85c 1621 flush = true;
e930bffe 1622 }
1e3f42f0 1623
6a49f85c
XG
1624 return flush;
1625}
1626
018aabb5 1627static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1628 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1629 unsigned long data)
1630{
018aabb5 1631 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1632}
1633
018aabb5 1634static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1635 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1636 unsigned long data)
3da0dd43 1637{
1e3f42f0
TY
1638 u64 *sptep;
1639 struct rmap_iterator iter;
3da0dd43 1640 int need_flush = 0;
1e3f42f0 1641 u64 new_spte;
3da0dd43 1642 pte_t *ptep = (pte_t *)data;
ba049e93 1643 kvm_pfn_t new_pfn;
3da0dd43
IE
1644
1645 WARN_ON(pte_huge(*ptep));
1646 new_pfn = pte_pfn(*ptep);
1e3f42f0 1647
0d536790 1648restart:
018aabb5 1649 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1650 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1651 sptep, *sptep, gfn, level);
1e3f42f0 1652
3da0dd43 1653 need_flush = 1;
1e3f42f0 1654
3da0dd43 1655 if (pte_write(*ptep)) {
1e3f42f0 1656 drop_spte(kvm, sptep);
0d536790 1657 goto restart;
3da0dd43 1658 } else {
1e3f42f0 1659 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1660 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1661
1662 new_spte &= ~PT_WRITABLE_MASK;
1663 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1664
1665 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1666
1667 mmu_spte_clear_track_bits(sptep);
1668 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1669 }
1670 }
1e3f42f0 1671
3da0dd43
IE
1672 if (need_flush)
1673 kvm_flush_remote_tlbs(kvm);
1674
1675 return 0;
1676}
1677
6ce1f4e2
XG
1678struct slot_rmap_walk_iterator {
1679 /* input fields. */
1680 struct kvm_memory_slot *slot;
1681 gfn_t start_gfn;
1682 gfn_t end_gfn;
1683 int start_level;
1684 int end_level;
1685
1686 /* output fields. */
1687 gfn_t gfn;
018aabb5 1688 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1689 int level;
1690
1691 /* private field. */
018aabb5 1692 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1693};
1694
1695static void
1696rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1697{
1698 iterator->level = level;
1699 iterator->gfn = iterator->start_gfn;
1700 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1701 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1702 iterator->slot);
1703}
1704
1705static void
1706slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1707 struct kvm_memory_slot *slot, int start_level,
1708 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1709{
1710 iterator->slot = slot;
1711 iterator->start_level = start_level;
1712 iterator->end_level = end_level;
1713 iterator->start_gfn = start_gfn;
1714 iterator->end_gfn = end_gfn;
1715
1716 rmap_walk_init_level(iterator, iterator->start_level);
1717}
1718
1719static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1720{
1721 return !!iterator->rmap;
1722}
1723
1724static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1725{
1726 if (++iterator->rmap <= iterator->end_rmap) {
1727 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1728 return;
1729 }
1730
1731 if (++iterator->level > iterator->end_level) {
1732 iterator->rmap = NULL;
1733 return;
1734 }
1735
1736 rmap_walk_init_level(iterator, iterator->level);
1737}
1738
1739#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1740 _start_gfn, _end_gfn, _iter_) \
1741 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1742 _end_level_, _start_gfn, _end_gfn); \
1743 slot_rmap_walk_okay(_iter_); \
1744 slot_rmap_walk_next(_iter_))
1745
84504ef3
TY
1746static int kvm_handle_hva_range(struct kvm *kvm,
1747 unsigned long start,
1748 unsigned long end,
1749 unsigned long data,
1750 int (*handler)(struct kvm *kvm,
018aabb5 1751 struct kvm_rmap_head *rmap_head,
048212d0 1752 struct kvm_memory_slot *slot,
8a9522d2
ALC
1753 gfn_t gfn,
1754 int level,
84504ef3 1755 unsigned long data))
e930bffe 1756{
bc6678a3 1757 struct kvm_memslots *slots;
be6ba0f0 1758 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1759 struct slot_rmap_walk_iterator iterator;
1760 int ret = 0;
9da0e4d5 1761 int i;
bc6678a3 1762
9da0e4d5
PB
1763 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1764 slots = __kvm_memslots(kvm, i);
1765 kvm_for_each_memslot(memslot, slots) {
1766 unsigned long hva_start, hva_end;
1767 gfn_t gfn_start, gfn_end;
e930bffe 1768
9da0e4d5
PB
1769 hva_start = max(start, memslot->userspace_addr);
1770 hva_end = min(end, memslot->userspace_addr +
1771 (memslot->npages << PAGE_SHIFT));
1772 if (hva_start >= hva_end)
1773 continue;
1774 /*
1775 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1776 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1777 */
1778 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1779 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1780
1781 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1782 PT_MAX_HUGEPAGE_LEVEL,
1783 gfn_start, gfn_end - 1,
1784 &iterator)
1785 ret |= handler(kvm, iterator.rmap, memslot,
1786 iterator.gfn, iterator.level, data);
1787 }
e930bffe
AA
1788 }
1789
f395302e 1790 return ret;
e930bffe
AA
1791}
1792
84504ef3
TY
1793static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1794 unsigned long data,
018aabb5
TY
1795 int (*handler)(struct kvm *kvm,
1796 struct kvm_rmap_head *rmap_head,
048212d0 1797 struct kvm_memory_slot *slot,
8a9522d2 1798 gfn_t gfn, int level,
84504ef3
TY
1799 unsigned long data))
1800{
1801 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1802}
1803
1804int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1805{
3da0dd43
IE
1806 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1807}
1808
b3ae2096
TY
1809int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1810{
1811 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1812}
1813
3da0dd43
IE
1814void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1815{
8a8365c5 1816 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1817}
1818
018aabb5 1819static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1820 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1821 unsigned long data)
e930bffe 1822{
1e3f42f0 1823 u64 *sptep;
79f702a6 1824 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1825 int young = 0;
1826
f160c7b7
JS
1827 for_each_rmap_spte(rmap_head, &iter, sptep)
1828 young |= mmu_spte_age(sptep);
0d536790 1829
8a9522d2 1830 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1831 return young;
1832}
1833
018aabb5 1834static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1835 struct kvm_memory_slot *slot, gfn_t gfn,
1836 int level, unsigned long data)
8ee53820 1837{
1e3f42f0
TY
1838 u64 *sptep;
1839 struct rmap_iterator iter;
8ee53820 1840
83ef6c81
JS
1841 for_each_rmap_spte(rmap_head, &iter, sptep)
1842 if (is_accessed_spte(*sptep))
1843 return 1;
83ef6c81 1844 return 0;
8ee53820
AA
1845}
1846
53a27b39
MT
1847#define RMAP_RECYCLE_THRESHOLD 1000
1848
852e3c19 1849static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1850{
018aabb5 1851 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1852 struct kvm_mmu_page *sp;
1853
1854 sp = page_header(__pa(spte));
53a27b39 1855
018aabb5 1856 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1857
018aabb5 1858 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1859 kvm_flush_remote_tlbs(vcpu->kvm);
1860}
1861
57128468 1862int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1863{
57128468 1864 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1865}
1866
8ee53820
AA
1867int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1868{
1869 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1870}
1871
d6c69ee9 1872#ifdef MMU_DEBUG
47ad8e68 1873static int is_empty_shadow_page(u64 *spt)
6aa8b732 1874{
139bdb2d
AK
1875 u64 *pos;
1876 u64 *end;
1877
47ad8e68 1878 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1879 if (is_shadow_present_pte(*pos)) {
b8688d51 1880 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1881 pos, *pos);
6aa8b732 1882 return 0;
139bdb2d 1883 }
6aa8b732
AK
1884 return 1;
1885}
d6c69ee9 1886#endif
6aa8b732 1887
45221ab6
DH
1888/*
1889 * This value is the sum of all of the kvm instances's
1890 * kvm->arch.n_used_mmu_pages values. We need a global,
1891 * aggregate version in order to make the slab shrinker
1892 * faster
1893 */
1894static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1895{
1896 kvm->arch.n_used_mmu_pages += nr;
1897 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1898}
1899
834be0d8 1900static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1901{
fa4a2c08 1902 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1903 hlist_del(&sp->hash_link);
bd4c86ea
XG
1904 list_del(&sp->link);
1905 free_page((unsigned long)sp->spt);
834be0d8
GN
1906 if (!sp->role.direct)
1907 free_page((unsigned long)sp->gfns);
e8ad9a70 1908 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1909}
1910
cea0f0e7
AK
1911static unsigned kvm_page_table_hashfn(gfn_t gfn)
1912{
114df303 1913 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1914}
1915
714b93da 1916static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1917 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1918{
cea0f0e7
AK
1919 if (!parent_pte)
1920 return;
cea0f0e7 1921
67052b35 1922 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1923}
1924
4db35314 1925static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1926 u64 *parent_pte)
1927{
67052b35 1928 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1929}
1930
bcdd9a93
XG
1931static void drop_parent_pte(struct kvm_mmu_page *sp,
1932 u64 *parent_pte)
1933{
1934 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1935 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1936}
1937
47005792 1938static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1939{
67052b35 1940 struct kvm_mmu_page *sp;
7ddca7e4 1941
80feb89a
TY
1942 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1943 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1944 if (!direct)
80feb89a 1945 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1946 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1947
1948 /*
1949 * The active_mmu_pages list is the FIFO list, do not move the
1950 * page until it is zapped. kvm_zap_obsolete_pages depends on
1951 * this feature. See the comments in kvm_zap_obsolete_pages().
1952 */
67052b35 1953 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1954 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1955 return sp;
ad8cfbe3
MT
1956}
1957
67052b35 1958static void mark_unsync(u64 *spte);
1047df1f 1959static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1960{
74c4e63a
TY
1961 u64 *sptep;
1962 struct rmap_iterator iter;
1963
1964 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1965 mark_unsync(sptep);
1966 }
0074ff63
MT
1967}
1968
67052b35 1969static void mark_unsync(u64 *spte)
0074ff63 1970{
67052b35 1971 struct kvm_mmu_page *sp;
1047df1f 1972 unsigned int index;
0074ff63 1973
67052b35 1974 sp = page_header(__pa(spte));
1047df1f
XG
1975 index = spte - sp->spt;
1976 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1977 return;
1047df1f 1978 if (sp->unsync_children++)
0074ff63 1979 return;
1047df1f 1980 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1981}
1982
e8bc217a 1983static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1984 struct kvm_mmu_page *sp)
e8bc217a 1985{
1f50f1b3 1986 return 0;
e8bc217a
MT
1987}
1988
a7052897
MT
1989static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1990{
1991}
1992
0f53b5b1
XG
1993static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1994 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1995 const void *pte)
0f53b5b1
XG
1996{
1997 WARN_ON(1);
1998}
1999
60c8aec6
MT
2000#define KVM_PAGE_ARRAY_NR 16
2001
2002struct kvm_mmu_pages {
2003 struct mmu_page_and_offset {
2004 struct kvm_mmu_page *sp;
2005 unsigned int idx;
2006 } page[KVM_PAGE_ARRAY_NR];
2007 unsigned int nr;
2008};
2009
cded19f3
HE
2010static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2011 int idx)
4731d4c7 2012{
60c8aec6 2013 int i;
4731d4c7 2014
60c8aec6
MT
2015 if (sp->unsync)
2016 for (i=0; i < pvec->nr; i++)
2017 if (pvec->page[i].sp == sp)
2018 return 0;
2019
2020 pvec->page[pvec->nr].sp = sp;
2021 pvec->page[pvec->nr].idx = idx;
2022 pvec->nr++;
2023 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2024}
2025
fd951457
TY
2026static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2027{
2028 --sp->unsync_children;
2029 WARN_ON((int)sp->unsync_children < 0);
2030 __clear_bit(idx, sp->unsync_child_bitmap);
2031}
2032
60c8aec6
MT
2033static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2034 struct kvm_mmu_pages *pvec)
2035{
2036 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2037
37178b8b 2038 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2039 struct kvm_mmu_page *child;
4731d4c7
MT
2040 u64 ent = sp->spt[i];
2041
fd951457
TY
2042 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2043 clear_unsync_child_bit(sp, i);
2044 continue;
2045 }
7a8f1a74
XG
2046
2047 child = page_header(ent & PT64_BASE_ADDR_MASK);
2048
2049 if (child->unsync_children) {
2050 if (mmu_pages_add(pvec, child, i))
2051 return -ENOSPC;
2052
2053 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2054 if (!ret) {
2055 clear_unsync_child_bit(sp, i);
2056 continue;
2057 } else if (ret > 0) {
7a8f1a74 2058 nr_unsync_leaf += ret;
fd951457 2059 } else
7a8f1a74
XG
2060 return ret;
2061 } else if (child->unsync) {
2062 nr_unsync_leaf++;
2063 if (mmu_pages_add(pvec, child, i))
2064 return -ENOSPC;
2065 } else
fd951457 2066 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2067 }
2068
60c8aec6
MT
2069 return nr_unsync_leaf;
2070}
2071
e23d3fef
XG
2072#define INVALID_INDEX (-1)
2073
60c8aec6
MT
2074static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2075 struct kvm_mmu_pages *pvec)
2076{
0a47cd85 2077 pvec->nr = 0;
60c8aec6
MT
2078 if (!sp->unsync_children)
2079 return 0;
2080
e23d3fef 2081 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2082 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2083}
2084
4731d4c7
MT
2085static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2086{
2087 WARN_ON(!sp->unsync);
5e1b3ddb 2088 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2089 sp->unsync = 0;
2090 --kvm->stat.mmu_unsync;
2091}
2092
7775834a
XG
2093static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2094 struct list_head *invalid_list);
2095static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2096 struct list_head *invalid_list);
4731d4c7 2097
f34d251d
XG
2098/*
2099 * NOTE: we should pay more attention on the zapped-obsolete page
2100 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2101 * since it has been deleted from active_mmu_pages but still can be found
2102 * at hast list.
2103 *
f3414bc7 2104 * for_each_valid_sp() has skipped that kind of pages.
f34d251d 2105 */
f3414bc7 2106#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2107 hlist_for_each_entry(_sp, \
2108 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
f3414bc7
DM
2109 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2110 } else
1044b030
TY
2111
2112#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2113 for_each_valid_sp(_kvm, _sp, _gfn) \
2114 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2115
f918b443 2116/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2117static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2118 struct list_head *invalid_list)
4731d4c7 2119{
5b7e0102 2120 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 2121 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2122 return false;
4731d4c7
MT
2123 }
2124
1f50f1b3 2125 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
d98ba053 2126 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2127 return false;
4731d4c7
MT
2128 }
2129
1f50f1b3 2130 return true;
4731d4c7
MT
2131}
2132
35a70510
PB
2133static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2134 struct list_head *invalid_list,
2135 bool remote_flush, bool local_flush)
1d9dc7e0 2136{
35a70510
PB
2137 if (!list_empty(invalid_list)) {
2138 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2139 return;
2140 }
d98ba053 2141
35a70510
PB
2142 if (remote_flush)
2143 kvm_flush_remote_tlbs(vcpu->kvm);
2144 else if (local_flush)
2145 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2146}
2147
e37fa785
XG
2148#ifdef CONFIG_KVM_MMU_AUDIT
2149#include "mmu_audit.c"
2150#else
2151static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2152static void mmu_audit_disable(void) { }
2153#endif
2154
46971a2f
XG
2155static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2156{
2157 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2158}
2159
1f50f1b3 2160static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2161 struct list_head *invalid_list)
1d9dc7e0 2162{
9a43c5d9
PB
2163 kvm_unlink_unsync_page(vcpu->kvm, sp);
2164 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2165}
2166
9f1a122f 2167/* @gfn should be write-protected at the call site */
2a74003a
PB
2168static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2169 struct list_head *invalid_list)
9f1a122f 2170{
9f1a122f 2171 struct kvm_mmu_page *s;
2a74003a 2172 bool ret = false;
9f1a122f 2173
b67bfe0d 2174 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2175 if (!s->unsync)
9f1a122f
XG
2176 continue;
2177
2178 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2179 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2180 }
2181
2a74003a 2182 return ret;
9f1a122f
XG
2183}
2184
60c8aec6 2185struct mmu_page_path {
2a7266a8
YZ
2186 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2187 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
2188};
2189
60c8aec6 2190#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2191 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2192 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2193 i = mmu_pages_next(&pvec, &parents, i))
2194
cded19f3
HE
2195static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2196 struct mmu_page_path *parents,
2197 int i)
60c8aec6
MT
2198{
2199 int n;
2200
2201 for (n = i+1; n < pvec->nr; n++) {
2202 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2203 unsigned idx = pvec->page[n].idx;
2204 int level = sp->role.level;
60c8aec6 2205
0a47cd85
PB
2206 parents->idx[level-1] = idx;
2207 if (level == PT_PAGE_TABLE_LEVEL)
2208 break;
60c8aec6 2209
0a47cd85 2210 parents->parent[level-2] = sp;
60c8aec6
MT
2211 }
2212
2213 return n;
2214}
2215
0a47cd85
PB
2216static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2217 struct mmu_page_path *parents)
2218{
2219 struct kvm_mmu_page *sp;
2220 int level;
2221
2222 if (pvec->nr == 0)
2223 return 0;
2224
e23d3fef
XG
2225 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2226
0a47cd85
PB
2227 sp = pvec->page[0].sp;
2228 level = sp->role.level;
2229 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2230
2231 parents->parent[level-2] = sp;
2232
2233 /* Also set up a sentinel. Further entries in pvec are all
2234 * children of sp, so this element is never overwritten.
2235 */
2236 parents->parent[level-1] = NULL;
2237 return mmu_pages_next(pvec, parents, 0);
2238}
2239
cded19f3 2240static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2241{
60c8aec6
MT
2242 struct kvm_mmu_page *sp;
2243 unsigned int level = 0;
2244
2245 do {
2246 unsigned int idx = parents->idx[level];
60c8aec6
MT
2247 sp = parents->parent[level];
2248 if (!sp)
2249 return;
2250
e23d3fef 2251 WARN_ON(idx == INVALID_INDEX);
fd951457 2252 clear_unsync_child_bit(sp, idx);
60c8aec6 2253 level++;
0a47cd85 2254 } while (!sp->unsync_children);
60c8aec6 2255}
4731d4c7 2256
60c8aec6
MT
2257static void mmu_sync_children(struct kvm_vcpu *vcpu,
2258 struct kvm_mmu_page *parent)
2259{
2260 int i;
2261 struct kvm_mmu_page *sp;
2262 struct mmu_page_path parents;
2263 struct kvm_mmu_pages pages;
d98ba053 2264 LIST_HEAD(invalid_list);
50c9e6f3 2265 bool flush = false;
60c8aec6 2266
60c8aec6 2267 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2268 bool protected = false;
b1a36821
MT
2269
2270 for_each_sp(pages, sp, parents, i)
54bf36aa 2271 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2272
50c9e6f3 2273 if (protected) {
b1a36821 2274 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2275 flush = false;
2276 }
b1a36821 2277
60c8aec6 2278 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2279 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2280 mmu_pages_clear_parents(&parents);
2281 }
50c9e6f3
PB
2282 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2283 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2284 cond_resched_lock(&vcpu->kvm->mmu_lock);
2285 flush = false;
2286 }
60c8aec6 2287 }
50c9e6f3
PB
2288
2289 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2290}
2291
a30f47cb
XG
2292static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2293{
e5691a81 2294 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2295}
2296
2297static void clear_sp_write_flooding_count(u64 *spte)
2298{
2299 struct kvm_mmu_page *sp = page_header(__pa(spte));
2300
2301 __clear_sp_write_flooding_count(sp);
2302}
2303
cea0f0e7
AK
2304static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2305 gfn_t gfn,
2306 gva_t gaddr,
2307 unsigned level,
f6e2c02b 2308 int direct,
bb11c6c9 2309 unsigned access)
cea0f0e7
AK
2310{
2311 union kvm_mmu_page_role role;
cea0f0e7 2312 unsigned quadrant;
9f1a122f 2313 struct kvm_mmu_page *sp;
9f1a122f 2314 bool need_sync = false;
2a74003a 2315 bool flush = false;
f3414bc7 2316 int collisions = 0;
2a74003a 2317 LIST_HEAD(invalid_list);
cea0f0e7 2318
a770f6f2 2319 role = vcpu->arch.mmu.base_role;
cea0f0e7 2320 role.level = level;
f6e2c02b 2321 role.direct = direct;
84b0c8c6 2322 if (role.direct)
5b7e0102 2323 role.cr4_pae = 0;
41074d07 2324 role.access = access;
c5a78f2b
JR
2325 if (!vcpu->arch.mmu.direct_map
2326 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2327 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2328 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2329 role.quadrant = quadrant;
2330 }
f3414bc7
DM
2331 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2332 if (sp->gfn != gfn) {
2333 collisions++;
2334 continue;
2335 }
2336
7ae680eb
XG
2337 if (!need_sync && sp->unsync)
2338 need_sync = true;
4731d4c7 2339
7ae680eb
XG
2340 if (sp->role.word != role.word)
2341 continue;
4731d4c7 2342
2a74003a
PB
2343 if (sp->unsync) {
2344 /* The page is good, but __kvm_sync_page might still end
2345 * up zapping it. If so, break in order to rebuild it.
2346 */
2347 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2348 break;
2349
2350 WARN_ON(!list_empty(&invalid_list));
2351 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2352 }
e02aa901 2353
98bba238 2354 if (sp->unsync_children)
a8eeb04a 2355 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2356
a30f47cb 2357 __clear_sp_write_flooding_count(sp);
7ae680eb 2358 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2359 goto out;
7ae680eb 2360 }
47005792 2361
dfc5aa00 2362 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2363
2364 sp = kvm_mmu_alloc_page(vcpu, direct);
2365
4db35314
AK
2366 sp->gfn = gfn;
2367 sp->role = role;
7ae680eb
XG
2368 hlist_add_head(&sp->hash_link,
2369 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2370 if (!direct) {
56ca57f9
XG
2371 /*
2372 * we should do write protection before syncing pages
2373 * otherwise the content of the synced shadow page may
2374 * be inconsistent with guest page table.
2375 */
2376 account_shadowed(vcpu->kvm, sp);
2377 if (level == PT_PAGE_TABLE_LEVEL &&
2378 rmap_write_protect(vcpu, gfn))
b1a36821 2379 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f 2380
9f1a122f 2381 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2382 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2383 }
5304b8d3 2384 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2385 clear_page(sp->spt);
f691fe1d 2386 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2387
2388 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2389out:
2390 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2391 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2392 return sp;
cea0f0e7
AK
2393}
2394
2d11123a
AK
2395static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2396 struct kvm_vcpu *vcpu, u64 addr)
2397{
2398 iterator->addr = addr;
2399 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2400 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5 2401
2a7266a8
YZ
2402 if (iterator->level == PT64_ROOT_4LEVEL &&
2403 vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
81407ca5
JR
2404 !vcpu->arch.mmu.direct_map)
2405 --iterator->level;
2406
2d11123a
AK
2407 if (iterator->level == PT32E_ROOT_LEVEL) {
2408 iterator->shadow_addr
2409 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2410 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2411 --iterator->level;
2412 if (!iterator->shadow_addr)
2413 iterator->level = 0;
2414 }
2415}
2416
2417static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2418{
2419 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2420 return false;
4d88954d 2421
2d11123a
AK
2422 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2423 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2424 return true;
2425}
2426
c2a2ac2b
XG
2427static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2428 u64 spte)
2d11123a 2429{
c2a2ac2b 2430 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2431 iterator->level = 0;
2432 return;
2433 }
2434
c2a2ac2b 2435 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2436 --iterator->level;
2437}
2438
c2a2ac2b
XG
2439static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2440{
bb606a9b 2441 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2442}
2443
98bba238
TY
2444static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2445 struct kvm_mmu_page *sp)
32ef26a3
AK
2446{
2447 u64 spte;
2448
ffb128c8 2449 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2450
ffb128c8 2451 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2452 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2453
2454 if (sp_ad_disabled(sp))
2455 spte |= shadow_acc_track_value;
2456 else
2457 spte |= shadow_accessed_mask;
24db2734 2458
1df9f2dc 2459 mmu_spte_set(sptep, spte);
98bba238
TY
2460
2461 mmu_page_add_parent_pte(vcpu, sp, sptep);
2462
2463 if (sp->unsync_children || sp->unsync)
2464 mark_unsync(sptep);
32ef26a3
AK
2465}
2466
a357bd22
AK
2467static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2468 unsigned direct_access)
2469{
2470 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2471 struct kvm_mmu_page *child;
2472
2473 /*
2474 * For the direct sp, if the guest pte's dirty bit
2475 * changed form clean to dirty, it will corrupt the
2476 * sp's access: allow writable in the read-only sp,
2477 * so we should update the spte at this point to get
2478 * a new sp with the correct access.
2479 */
2480 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2481 if (child->role.access == direct_access)
2482 return;
2483
bcdd9a93 2484 drop_parent_pte(child, sptep);
a357bd22
AK
2485 kvm_flush_remote_tlbs(vcpu->kvm);
2486 }
2487}
2488
505aef8f 2489static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2490 u64 *spte)
2491{
2492 u64 pte;
2493 struct kvm_mmu_page *child;
2494
2495 pte = *spte;
2496 if (is_shadow_present_pte(pte)) {
505aef8f 2497 if (is_last_spte(pte, sp->role.level)) {
c3707958 2498 drop_spte(kvm, spte);
505aef8f
XG
2499 if (is_large_pte(pte))
2500 --kvm->stat.lpages;
2501 } else {
38e3b2b2 2502 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2503 drop_parent_pte(child, spte);
38e3b2b2 2504 }
505aef8f
XG
2505 return true;
2506 }
2507
2508 if (is_mmio_spte(pte))
ce88decf 2509 mmu_spte_clear_no_track(spte);
c3707958 2510
505aef8f 2511 return false;
38e3b2b2
XG
2512}
2513
90cb0529 2514static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2515 struct kvm_mmu_page *sp)
a436036b 2516{
697fe2e2 2517 unsigned i;
697fe2e2 2518
38e3b2b2
XG
2519 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2520 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2521}
2522
31aa2b44 2523static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2524{
1e3f42f0
TY
2525 u64 *sptep;
2526 struct rmap_iterator iter;
a436036b 2527
018aabb5 2528 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2529 drop_parent_pte(sp, sptep);
31aa2b44
AK
2530}
2531
60c8aec6 2532static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2533 struct kvm_mmu_page *parent,
2534 struct list_head *invalid_list)
4731d4c7 2535{
60c8aec6
MT
2536 int i, zapped = 0;
2537 struct mmu_page_path parents;
2538 struct kvm_mmu_pages pages;
4731d4c7 2539
60c8aec6 2540 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2541 return 0;
60c8aec6 2542
60c8aec6
MT
2543 while (mmu_unsync_walk(parent, &pages)) {
2544 struct kvm_mmu_page *sp;
2545
2546 for_each_sp(pages, sp, parents, i) {
7775834a 2547 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2548 mmu_pages_clear_parents(&parents);
77662e00 2549 zapped++;
60c8aec6 2550 }
60c8aec6
MT
2551 }
2552
2553 return zapped;
4731d4c7
MT
2554}
2555
7775834a
XG
2556static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2557 struct list_head *invalid_list)
31aa2b44 2558{
4731d4c7 2559 int ret;
f691fe1d 2560
7775834a 2561 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2562 ++kvm->stat.mmu_shadow_zapped;
7775834a 2563 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2564 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2565 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2566
f6e2c02b 2567 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2568 unaccount_shadowed(kvm, sp);
5304b8d3 2569
4731d4c7
MT
2570 if (sp->unsync)
2571 kvm_unlink_unsync_page(kvm, sp);
4db35314 2572 if (!sp->root_count) {
54a4f023
GJ
2573 /* Count self */
2574 ret++;
7775834a 2575 list_move(&sp->link, invalid_list);
aa6bd187 2576 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2577 } else {
5b5c6a5a 2578 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2579
2580 /*
2581 * The obsolete pages can not be used on any vcpus.
2582 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2583 */
2584 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2585 kvm_reload_remote_mmus(kvm);
2e53d63a 2586 }
7775834a
XG
2587
2588 sp->role.invalid = 1;
4731d4c7 2589 return ret;
a436036b
AK
2590}
2591
7775834a
XG
2592static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2593 struct list_head *invalid_list)
2594{
945315b9 2595 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2596
2597 if (list_empty(invalid_list))
2598 return;
2599
c142786c 2600 /*
9753f529
LT
2601 * We need to make sure everyone sees our modifications to
2602 * the page tables and see changes to vcpu->mode here. The barrier
2603 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2604 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2605 *
2606 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2607 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2608 */
2609 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2610
945315b9 2611 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2612 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2613 kvm_mmu_free_page(sp);
945315b9 2614 }
7775834a
XG
2615}
2616
5da59607
TY
2617static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2618 struct list_head *invalid_list)
2619{
2620 struct kvm_mmu_page *sp;
2621
2622 if (list_empty(&kvm->arch.active_mmu_pages))
2623 return false;
2624
d74c0e6b
GT
2625 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2626 struct kvm_mmu_page, link);
42bcbebf 2627 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
5da59607
TY
2628}
2629
82ce2c96
IE
2630/*
2631 * Changing the number of mmu pages allocated to the vm
49d5ca26 2632 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2633 */
49d5ca26 2634void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2635{
d98ba053 2636 LIST_HEAD(invalid_list);
82ce2c96 2637
b34cb590
TY
2638 spin_lock(&kvm->mmu_lock);
2639
49d5ca26 2640 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2641 /* Need to free some mmu pages to achieve the goal. */
2642 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2643 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2644 break;
82ce2c96 2645
aa6bd187 2646 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2647 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2648 }
82ce2c96 2649
49d5ca26 2650 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2651
2652 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2653}
2654
1cb3f3ae 2655int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2656{
4db35314 2657 struct kvm_mmu_page *sp;
d98ba053 2658 LIST_HEAD(invalid_list);
a436036b
AK
2659 int r;
2660
9ad17b10 2661 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2662 r = 0;
1cb3f3ae 2663 spin_lock(&kvm->mmu_lock);
b67bfe0d 2664 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2665 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2666 sp->role.word);
2667 r = 1;
f41d335a 2668 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2669 }
d98ba053 2670 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2671 spin_unlock(&kvm->mmu_lock);
2672
a436036b 2673 return r;
cea0f0e7 2674}
1cb3f3ae 2675EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2676
5c520e90 2677static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2678{
2679 trace_kvm_mmu_unsync_page(sp);
2680 ++vcpu->kvm->stat.mmu_unsync;
2681 sp->unsync = 1;
2682
2683 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2684}
2685
3d0c27ad
XG
2686static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2687 bool can_unsync)
4731d4c7 2688{
5c520e90 2689 struct kvm_mmu_page *sp;
4731d4c7 2690
3d0c27ad
XG
2691 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2692 return true;
9cf5cf5a 2693
5c520e90 2694 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2695 if (!can_unsync)
3d0c27ad 2696 return true;
36a2e677 2697
5c520e90
XG
2698 if (sp->unsync)
2699 continue;
9cf5cf5a 2700
5c520e90
XG
2701 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2702 kvm_unsync_page(vcpu, sp);
4731d4c7 2703 }
3d0c27ad
XG
2704
2705 return false;
4731d4c7
MT
2706}
2707
ba049e93 2708static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2709{
2710 if (pfn_valid(pfn))
aa2e063a
HZ
2711 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2712 /*
2713 * Some reserved pages, such as those from NVDIMM
2714 * DAX devices, are not for MMIO, and can be mapped
2715 * with cached memory type for better performance.
2716 * However, the above check misconceives those pages
2717 * as MMIO, and results in KVM mapping them with UC
2718 * memory type, which would hurt the performance.
2719 * Therefore, we check the host memory type in addition
2720 * and only treat UC/UC-/WC pages as MMIO.
2721 */
2722 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
d1fe9219
PB
2723
2724 return true;
2725}
2726
d555c333 2727static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2728 unsigned pte_access, int level,
ba049e93 2729 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2730 bool can_unsync, bool host_writable)
1c4f1fd6 2731{
ffb128c8 2732 u64 spte = 0;
1e73f9dd 2733 int ret = 0;
ac8d57e5 2734 struct kvm_mmu_page *sp;
64d4d521 2735
54bf36aa 2736 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2737 return 0;
2738
ac8d57e5
PF
2739 sp = page_header(__pa(sptep));
2740 if (sp_ad_disabled(sp))
2741 spte |= shadow_acc_track_value;
2742
d95c5568
BD
2743 /*
2744 * For the EPT case, shadow_present_mask is 0 if hardware
2745 * supports exec-only page table entries. In that case,
2746 * ACC_USER_MASK and shadow_user_mask are used to represent
2747 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2748 */
ffb128c8 2749 spte |= shadow_present_mask;
947da538 2750 if (!speculative)
ac8d57e5 2751 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 2752
7b52345e
SY
2753 if (pte_access & ACC_EXEC_MASK)
2754 spte |= shadow_x_mask;
2755 else
2756 spte |= shadow_nx_mask;
49fde340 2757
1c4f1fd6 2758 if (pte_access & ACC_USER_MASK)
7b52345e 2759 spte |= shadow_user_mask;
49fde340 2760
852e3c19 2761 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2762 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2763 if (tdp_enabled)
4b12f0de 2764 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2765 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2766
9bdbba13 2767 if (host_writable)
1403283a 2768 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2769 else
2770 pte_access &= ~ACC_WRITE_MASK;
1403283a 2771
daaf216c
TL
2772 if (!kvm_is_mmio_pfn(pfn))
2773 spte |= shadow_me_mask;
2774
35149e21 2775 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2776
c2288505 2777 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2778
c2193463 2779 /*
7751babd
XG
2780 * Other vcpu creates new sp in the window between
2781 * mapping_level() and acquiring mmu-lock. We can
2782 * allow guest to retry the access, the mapping can
2783 * be fixed if guest refault.
c2193463 2784 */
852e3c19 2785 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2786 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2787 goto done;
38187c83 2788
49fde340 2789 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2790
ecc5589f
MT
2791 /*
2792 * Optimization: for pte sync, if spte was writable the hash
2793 * lookup is unnecessary (and expensive). Write protection
2794 * is responsibility of mmu_get_page / kvm_sync_page.
2795 * Same reasoning can be applied to dirty page accounting.
2796 */
8dae4445 2797 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2798 goto set_pte;
2799
4731d4c7 2800 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2801 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2802 __func__, gfn);
1e73f9dd 2803 ret = 1;
1c4f1fd6 2804 pte_access &= ~ACC_WRITE_MASK;
49fde340 2805 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2806 }
2807 }
2808
9b51a630 2809 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2810 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 2811 spte |= spte_shadow_dirty_mask(spte);
9b51a630 2812 }
1c4f1fd6 2813
f160c7b7
JS
2814 if (speculative)
2815 spte = mark_spte_for_access_track(spte);
2816
38187c83 2817set_pte:
6e7d0354 2818 if (mmu_spte_update(sptep, spte))
b330aa0c 2819 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2820done:
1e73f9dd
MT
2821 return ret;
2822}
2823
9b8ebbdb
PB
2824static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2825 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2826 bool speculative, bool host_writable)
1e73f9dd
MT
2827{
2828 int was_rmapped = 0;
53a27b39 2829 int rmap_count;
9b8ebbdb 2830 int ret = RET_PF_RETRY;
1e73f9dd 2831
f7616203
XG
2832 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2833 *sptep, write_fault, gfn);
1e73f9dd 2834
afd28fe1 2835 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2836 /*
2837 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2838 * the parent of the now unreachable PTE.
2839 */
852e3c19
JR
2840 if (level > PT_PAGE_TABLE_LEVEL &&
2841 !is_large_pte(*sptep)) {
1e73f9dd 2842 struct kvm_mmu_page *child;
d555c333 2843 u64 pte = *sptep;
1e73f9dd
MT
2844
2845 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2846 drop_parent_pte(child, sptep);
3be2264b 2847 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2848 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2849 pgprintk("hfn old %llx new %llx\n",
d555c333 2850 spte_to_pfn(*sptep), pfn);
c3707958 2851 drop_spte(vcpu->kvm, sptep);
91546356 2852 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2853 } else
2854 was_rmapped = 1;
1e73f9dd 2855 }
852e3c19 2856
c2288505
XG
2857 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2858 true, host_writable)) {
1e73f9dd 2859 if (write_fault)
9b8ebbdb 2860 ret = RET_PF_EMULATE;
77c3913b 2861 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2862 }
1e73f9dd 2863
029499b4 2864 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 2865 ret = RET_PF_EMULATE;
ce88decf 2866
d555c333 2867 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2868 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2869 is_large_pte(*sptep)? "2MB" : "4kB",
f160c7b7 2870 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
a205bc19 2871 *sptep, sptep);
d555c333 2872 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2873 ++vcpu->kvm->stat.lpages;
2874
ffb61bb3 2875 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2876 if (!was_rmapped) {
2877 rmap_count = rmap_add(vcpu, sptep, gfn);
2878 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2879 rmap_recycle(vcpu, sptep, gfn);
2880 }
1c4f1fd6 2881 }
cb9aaa30 2882
f3ac1a4b 2883 kvm_release_pfn_clean(pfn);
029499b4 2884
9b8ebbdb 2885 return ret;
1c4f1fd6
AK
2886}
2887
ba049e93 2888static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2889 bool no_dirty_log)
2890{
2891 struct kvm_memory_slot *slot;
957ed9ef 2892
5d163b1c 2893 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2894 if (!slot)
6c8ee57b 2895 return KVM_PFN_ERR_FAULT;
957ed9ef 2896
037d92dc 2897 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2898}
2899
2900static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2901 struct kvm_mmu_page *sp,
2902 u64 *start, u64 *end)
2903{
2904 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2905 struct kvm_memory_slot *slot;
957ed9ef
XG
2906 unsigned access = sp->role.access;
2907 int i, ret;
2908 gfn_t gfn;
2909
2910 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2911 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2912 if (!slot)
957ed9ef
XG
2913 return -1;
2914
d9ef13c2 2915 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2916 if (ret <= 0)
2917 return -1;
2918
2919 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
2920 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2921 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
2922
2923 return 0;
2924}
2925
2926static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2927 struct kvm_mmu_page *sp, u64 *sptep)
2928{
2929 u64 *spte, *start = NULL;
2930 int i;
2931
2932 WARN_ON(!sp->role.direct);
2933
2934 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2935 spte = sp->spt + i;
2936
2937 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2938 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2939 if (!start)
2940 continue;
2941 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2942 break;
2943 start = NULL;
2944 } else if (!start)
2945 start = spte;
2946 }
2947}
2948
2949static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2950{
2951 struct kvm_mmu_page *sp;
2952
ac8d57e5
PF
2953 sp = page_header(__pa(sptep));
2954
957ed9ef 2955 /*
ac8d57e5
PF
2956 * Without accessed bits, there's no way to distinguish between
2957 * actually accessed translations and prefetched, so disable pte
2958 * prefetch if accessed bits aren't available.
957ed9ef 2959 */
ac8d57e5 2960 if (sp_ad_disabled(sp))
957ed9ef
XG
2961 return;
2962
957ed9ef
XG
2963 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2964 return;
2965
2966 __direct_pte_prefetch(vcpu, sp, sptep);
2967}
2968
7ee0e5b2 2969static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 2970 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 2971{
9f652d21 2972 struct kvm_shadow_walk_iterator iterator;
140754bc 2973 struct kvm_mmu_page *sp;
b90a0e6c 2974 int emulate = 0;
140754bc 2975 gfn_t pseudo_gfn;
6aa8b732 2976
989c6b34
MT
2977 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2978 return 0;
2979
9f652d21 2980 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2981 if (iterator.level == level) {
029499b4
TY
2982 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2983 write, level, gfn, pfn, prefault,
2984 map_writable);
957ed9ef 2985 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2986 ++vcpu->stat.pf_fixed;
2987 break;
6aa8b732
AK
2988 }
2989
404381c5 2990 drop_large_spte(vcpu, iterator.sptep);
c3707958 2991 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2992 u64 base_addr = iterator.addr;
2993
2994 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2995 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 2996 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 2997 iterator.level - 1, 1, ACC_ALL);
140754bc 2998
98bba238 2999 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
3000 }
3001 }
b90a0e6c 3002 return emulate;
6aa8b732
AK
3003}
3004
77db5cbd 3005static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 3006{
77db5cbd
HY
3007 siginfo_t info;
3008
3eb0f519 3009 clear_siginfo(&info);
77db5cbd
HY
3010 info.si_signo = SIGBUS;
3011 info.si_errno = 0;
3012 info.si_code = BUS_MCEERR_AR;
3013 info.si_addr = (void __user *)address;
3014 info.si_addr_lsb = PAGE_SHIFT;
bf998156 3015
77db5cbd 3016 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
3017}
3018
ba049e93 3019static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 3020{
4d8b81ab
XG
3021 /*
3022 * Do not cache the mmio info caused by writing the readonly gfn
3023 * into the spte otherwise read access on readonly gfn also can
3024 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
3025 */
3026 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 3027 return RET_PF_EMULATE;
4d8b81ab 3028
e6c1502b 3029 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3030 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 3031 return RET_PF_RETRY;
d7c55201 3032 }
edba23e5 3033
2c151b25 3034 return -EFAULT;
bf998156
HY
3035}
3036
936a5fe6 3037static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
3038 gfn_t *gfnp, kvm_pfn_t *pfnp,
3039 int *levelp)
936a5fe6 3040{
ba049e93 3041 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
3042 gfn_t gfn = *gfnp;
3043 int level = *levelp;
3044
3045 /*
3046 * Check if it's a transparent hugepage. If this would be an
3047 * hugetlbfs page, level wouldn't be set to
3048 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3049 * here.
3050 */
bf4bea8e 3051 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6 3052 level == PT_PAGE_TABLE_LEVEL &&
127393fb 3053 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 3054 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
3055 unsigned long mask;
3056 /*
3057 * mmu_notifier_retry was successful and we hold the
3058 * mmu_lock here, so the pmd can't become splitting
3059 * from under us, and in turn
3060 * __split_huge_page_refcount() can't run from under
3061 * us and we can safely transfer the refcount from
3062 * PG_tail to PG_head as we switch the pfn to tail to
3063 * head.
3064 */
3065 *levelp = level = PT_DIRECTORY_LEVEL;
3066 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3067 VM_BUG_ON((gfn & mask) != (pfn & mask));
3068 if (pfn & mask) {
3069 gfn &= ~mask;
3070 *gfnp = gfn;
3071 kvm_release_pfn_clean(pfn);
3072 pfn &= ~mask;
c3586667 3073 kvm_get_pfn(pfn);
936a5fe6
AA
3074 *pfnp = pfn;
3075 }
3076 }
3077}
3078
d7c55201 3079static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 3080 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 3081{
d7c55201 3082 /* The pfn is invalid, report the error! */
81c52c56 3083 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3084 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3085 return true;
d7c55201
XG
3086 }
3087
ce88decf 3088 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 3089 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 3090
798e88b3 3091 return false;
d7c55201
XG
3092}
3093
e5552fd2 3094static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3095{
1c118b82
XG
3096 /*
3097 * Do not fix the mmio spte with invalid generation number which
3098 * need to be updated by slow page fault path.
3099 */
3100 if (unlikely(error_code & PFERR_RSVD_MASK))
3101 return false;
3102
f160c7b7
JS
3103 /* See if the page fault is due to an NX violation */
3104 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3105 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3106 return false;
3107
c7ba5b48 3108 /*
f160c7b7
JS
3109 * #PF can be fast if:
3110 * 1. The shadow page table entry is not present, which could mean that
3111 * the fault is potentially caused by access tracking (if enabled).
3112 * 2. The shadow page table entry is present and the fault
3113 * is caused by write-protect, that means we just need change the W
3114 * bit of the spte which can be done out of mmu-lock.
3115 *
3116 * However, if access tracking is disabled we know that a non-present
3117 * page must be a genuine page fault where we have to create a new SPTE.
3118 * So, if access tracking is disabled, we return true only for write
3119 * accesses to a present page.
c7ba5b48 3120 */
c7ba5b48 3121
f160c7b7
JS
3122 return shadow_acc_track_mask != 0 ||
3123 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3124 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3125}
3126
97dceba2
JS
3127/*
3128 * Returns true if the SPTE was fixed successfully. Otherwise,
3129 * someone else modified the SPTE from its original value.
3130 */
c7ba5b48 3131static bool
92a476cb 3132fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3133 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3134{
c7ba5b48
XG
3135 gfn_t gfn;
3136
3137 WARN_ON(!sp->role.direct);
3138
9b51a630
KH
3139 /*
3140 * Theoretically we could also set dirty bit (and flush TLB) here in
3141 * order to eliminate unnecessary PML logging. See comments in
3142 * set_spte. But fast_page_fault is very unlikely to happen with PML
3143 * enabled, so we do not do this. This might result in the same GPA
3144 * to be logged in PML buffer again when the write really happens, and
3145 * eventually to be called by mark_page_dirty twice. But it's also no
3146 * harm. This also avoids the TLB flush needed after setting dirty bit
3147 * so non-PML cases won't be impacted.
3148 *
3149 * Compare with set_spte where instead shadow_dirty_mask is set.
3150 */
f160c7b7 3151 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3152 return false;
3153
d3e328f2 3154 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3155 /*
3156 * The gfn of direct spte is stable since it is
3157 * calculated by sp->gfn.
3158 */
3159 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3160 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3161 }
c7ba5b48
XG
3162
3163 return true;
3164}
3165
d3e328f2
JS
3166static bool is_access_allowed(u32 fault_err_code, u64 spte)
3167{
3168 if (fault_err_code & PFERR_FETCH_MASK)
3169 return is_executable_pte(spte);
3170
3171 if (fault_err_code & PFERR_WRITE_MASK)
3172 return is_writable_pte(spte);
3173
3174 /* Fault was on Read access */
3175 return spte & PT_PRESENT_MASK;
3176}
3177
c7ba5b48
XG
3178/*
3179 * Return value:
3180 * - true: let the vcpu to access on the same address again.
3181 * - false: let the real page fault path to fix it.
3182 */
3183static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3184 u32 error_code)
3185{
3186 struct kvm_shadow_walk_iterator iterator;
92a476cb 3187 struct kvm_mmu_page *sp;
97dceba2 3188 bool fault_handled = false;
c7ba5b48 3189 u64 spte = 0ull;
97dceba2 3190 uint retry_count = 0;
c7ba5b48 3191
37f6a4e2
MT
3192 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3193 return false;
3194
e5552fd2 3195 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3196 return false;
3197
3198 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3199
97dceba2 3200 do {
d3e328f2 3201 u64 new_spte;
c7ba5b48 3202
d162f30a
JS
3203 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3204 if (!is_shadow_present_pte(spte) ||
3205 iterator.level < level)
3206 break;
3207
97dceba2
JS
3208 sp = page_header(__pa(iterator.sptep));
3209 if (!is_last_spte(spte, sp->role.level))
3210 break;
c7ba5b48 3211
97dceba2 3212 /*
f160c7b7
JS
3213 * Check whether the memory access that caused the fault would
3214 * still cause it if it were to be performed right now. If not,
3215 * then this is a spurious fault caused by TLB lazily flushed,
3216 * or some other CPU has already fixed the PTE after the
3217 * current CPU took the fault.
97dceba2
JS
3218 *
3219 * Need not check the access of upper level table entries since
3220 * they are always ACC_ALL.
3221 */
d3e328f2
JS
3222 if (is_access_allowed(error_code, spte)) {
3223 fault_handled = true;
3224 break;
3225 }
f160c7b7 3226
d3e328f2
JS
3227 new_spte = spte;
3228
3229 if (is_access_track_spte(spte))
3230 new_spte = restore_acc_track_spte(new_spte);
3231
3232 /*
3233 * Currently, to simplify the code, write-protection can
3234 * be removed in the fast path only if the SPTE was
3235 * write-protected for dirty-logging or access tracking.
3236 */
3237 if ((error_code & PFERR_WRITE_MASK) &&
3238 spte_can_locklessly_be_made_writable(spte))
3239 {
3240 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3241
3242 /*
d3e328f2
JS
3243 * Do not fix write-permission on the large spte. Since
3244 * we only dirty the first page into the dirty-bitmap in
3245 * fast_pf_fix_direct_spte(), other pages are missed
3246 * if its slot has dirty logging enabled.
3247 *
3248 * Instead, we let the slow page fault path create a
3249 * normal spte to fix the access.
3250 *
3251 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3252 */
d3e328f2 3253 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3254 break;
97dceba2 3255 }
c7ba5b48 3256
f160c7b7 3257 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3258 if (new_spte == spte ||
3259 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3260 break;
3261
3262 /*
3263 * Currently, fast page fault only works for direct mapping
3264 * since the gfn is not stable for indirect shadow page. See
3265 * Documentation/virtual/kvm/locking.txt to get more detail.
3266 */
3267 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3268 iterator.sptep, spte,
d3e328f2 3269 new_spte);
97dceba2
JS
3270 if (fault_handled)
3271 break;
3272
3273 if (++retry_count > 4) {
3274 printk_once(KERN_WARNING
3275 "kvm: Fast #PF retrying more than 4 times.\n");
3276 break;
3277 }
3278
97dceba2 3279 } while (true);
c126d94f 3280
a72faf25 3281 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
97dceba2 3282 spte, fault_handled);
c7ba5b48
XG
3283 walk_shadow_page_lockless_end(vcpu);
3284
97dceba2 3285 return fault_handled;
c7ba5b48
XG
3286}
3287
78b2c54a 3288static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3289 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
26eeb53c 3290static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3291
c7ba5b48
XG
3292static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3293 gfn_t gfn, bool prefault)
10589a46
MT
3294{
3295 int r;
852e3c19 3296 int level;
fd136902 3297 bool force_pt_level = false;
ba049e93 3298 kvm_pfn_t pfn;
e930bffe 3299 unsigned long mmu_seq;
c7ba5b48 3300 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3301
fd136902 3302 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3303 if (likely(!force_pt_level)) {
936a5fe6
AA
3304 /*
3305 * This path builds a PAE pagetable - so we can map
3306 * 2mb pages at maximum. Therefore check if the level
3307 * is larger than that.
3308 */
3309 if (level > PT_DIRECTORY_LEVEL)
3310 level = PT_DIRECTORY_LEVEL;
852e3c19 3311
936a5fe6 3312 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3313 }
05da4558 3314
c7ba5b48 3315 if (fast_page_fault(vcpu, v, level, error_code))
9b8ebbdb 3316 return RET_PF_RETRY;
c7ba5b48 3317
e930bffe 3318 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3319 smp_rmb();
060c2abe 3320
78b2c54a 3321 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
9b8ebbdb 3322 return RET_PF_RETRY;
aaee2c94 3323
d7c55201
XG
3324 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3325 return r;
d196e343 3326
aaee2c94 3327 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3328 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3329 goto out_unlock;
26eeb53c
WL
3330 if (make_mmu_pages_available(vcpu) < 0)
3331 goto out_unlock;
936a5fe6
AA
3332 if (likely(!force_pt_level))
3333 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3334 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3335 spin_unlock(&vcpu->kvm->mmu_lock);
3336
10589a46 3337 return r;
e930bffe
AA
3338
3339out_unlock:
3340 spin_unlock(&vcpu->kvm->mmu_lock);
3341 kvm_release_pfn_clean(pfn);
9b8ebbdb 3342 return RET_PF_RETRY;
10589a46
MT
3343}
3344
74b566e6
JS
3345static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3346 struct list_head *invalid_list)
17ac10ad 3347{
4db35314 3348 struct kvm_mmu_page *sp;
17ac10ad 3349
74b566e6 3350 if (!VALID_PAGE(*root_hpa))
7b53aa56 3351 return;
35af577a 3352
74b566e6
JS
3353 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3354 --sp->root_count;
3355 if (!sp->root_count && sp->role.invalid)
3356 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
17ac10ad 3357
74b566e6
JS
3358 *root_hpa = INVALID_PAGE;
3359}
3360
3361void kvm_mmu_free_roots(struct kvm_vcpu *vcpu)
3362{
3363 int i;
3364 LIST_HEAD(invalid_list);
3365 struct kvm_mmu *mmu = &vcpu->arch.mmu;
3366
3367 if (!VALID_PAGE(mmu->root_hpa))
17ac10ad 3368 return;
35af577a
GN
3369
3370 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3371
74b566e6
JS
3372 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3373 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3374 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa, &invalid_list);
3375 } else {
3376 for (i = 0; i < 4; ++i)
3377 if (mmu->pae_root[i] != 0)
3378 mmu_free_root_page(vcpu->kvm, &mmu->pae_root[i],
3379 &invalid_list);
3380 mmu->root_hpa = INVALID_PAGE;
17ac10ad 3381 }
74b566e6 3382
d98ba053 3383 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3384 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad 3385}
74b566e6 3386EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3387
8986ecc0
MT
3388static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3389{
3390 int ret = 0;
3391
3392 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3393 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3394 ret = 1;
3395 }
3396
3397 return ret;
3398}
3399
651dd37a
JR
3400static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3401{
3402 struct kvm_mmu_page *sp;
7ebaf15e 3403 unsigned i;
651dd37a 3404
855feb67 3405 if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
651dd37a 3406 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3407 if(make_mmu_pages_available(vcpu) < 0) {
3408 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3409 return -ENOSPC;
26eeb53c 3410 }
855feb67
YZ
3411 sp = kvm_mmu_get_page(vcpu, 0, 0,
3412 vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
651dd37a
JR
3413 ++sp->root_count;
3414 spin_unlock(&vcpu->kvm->mmu_lock);
3415 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3416 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3417 for (i = 0; i < 4; ++i) {
3418 hpa_t root = vcpu->arch.mmu.pae_root[i];
3419
fa4a2c08 3420 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3421 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3422 if (make_mmu_pages_available(vcpu) < 0) {
3423 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3424 return -ENOSPC;
26eeb53c 3425 }
649497d1 3426 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3427 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3428 root = __pa(sp->spt);
3429 ++sp->root_count;
3430 spin_unlock(&vcpu->kvm->mmu_lock);
3431 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3432 }
6292757f 3433 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3434 } else
3435 BUG();
3436
3437 return 0;
3438}
3439
3440static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3441{
4db35314 3442 struct kvm_mmu_page *sp;
81407ca5
JR
3443 u64 pdptr, pm_mask;
3444 gfn_t root_gfn;
3445 int i;
3bb65a22 3446
5777ed34 3447 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3448
651dd37a
JR
3449 if (mmu_check_root(vcpu, root_gfn))
3450 return 1;
3451
3452 /*
3453 * Do we shadow a long mode page table? If so we need to
3454 * write-protect the guests page table root.
3455 */
855feb67 3456 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
ad312c7c 3457 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3458
fa4a2c08 3459 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3460
8facbbff 3461 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3462 if (make_mmu_pages_available(vcpu) < 0) {
3463 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3464 return -ENOSPC;
26eeb53c 3465 }
855feb67
YZ
3466 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3467 vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
4db35314
AK
3468 root = __pa(sp->spt);
3469 ++sp->root_count;
8facbbff 3470 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3471 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3472 return 0;
17ac10ad 3473 }
f87f9288 3474
651dd37a
JR
3475 /*
3476 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3477 * or a PAE 3-level page table. In either case we need to be aware that
3478 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3479 */
81407ca5 3480 pm_mask = PT_PRESENT_MASK;
2a7266a8 3481 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3482 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3483
17ac10ad 3484 for (i = 0; i < 4; ++i) {
ad312c7c 3485 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3486
fa4a2c08 3487 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3488 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3489 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
812f30b2 3490 if (!(pdptr & PT_PRESENT_MASK)) {
ad312c7c 3491 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3492 continue;
3493 }
6de4f3ad 3494 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3495 if (mmu_check_root(vcpu, root_gfn))
3496 return 1;
5a7388c2 3497 }
8facbbff 3498 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3499 if (make_mmu_pages_available(vcpu) < 0) {
3500 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3501 return -ENOSPC;
26eeb53c 3502 }
bb11c6c9
TY
3503 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3504 0, ACC_ALL);
4db35314
AK
3505 root = __pa(sp->spt);
3506 ++sp->root_count;
8facbbff
AK
3507 spin_unlock(&vcpu->kvm->mmu_lock);
3508
81407ca5 3509 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3510 }
6292757f 3511 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3512
3513 /*
3514 * If we shadow a 32 bit page table with a long mode page
3515 * table we enter this path.
3516 */
2a7266a8 3517 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
81407ca5
JR
3518 if (vcpu->arch.mmu.lm_root == NULL) {
3519 /*
3520 * The additional page necessary for this is only
3521 * allocated on demand.
3522 */
3523
3524 u64 *lm_root;
3525
3526 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3527 if (lm_root == NULL)
3528 return 1;
3529
3530 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3531
3532 vcpu->arch.mmu.lm_root = lm_root;
3533 }
3534
3535 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3536 }
3537
8986ecc0 3538 return 0;
17ac10ad
AK
3539}
3540
651dd37a
JR
3541static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3542{
3543 if (vcpu->arch.mmu.direct_map)
3544 return mmu_alloc_direct_roots(vcpu);
3545 else
3546 return mmu_alloc_shadow_roots(vcpu);
3547}
3548
0ba73cda
MT
3549static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3550{
3551 int i;
3552 struct kvm_mmu_page *sp;
3553
81407ca5
JR
3554 if (vcpu->arch.mmu.direct_map)
3555 return;
3556
0ba73cda
MT
3557 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3558 return;
6903074c 3559
56f17dd3 3560 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3561 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
855feb67 3562 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
0ba73cda
MT
3563 hpa_t root = vcpu->arch.mmu.root_hpa;
3564 sp = page_header(root);
3565 mmu_sync_children(vcpu, sp);
0375f7fa 3566 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3567 return;
3568 }
3569 for (i = 0; i < 4; ++i) {
3570 hpa_t root = vcpu->arch.mmu.pae_root[i];
3571
8986ecc0 3572 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3573 root &= PT64_BASE_ADDR_MASK;
3574 sp = page_header(root);
3575 mmu_sync_children(vcpu, sp);
3576 }
3577 }
0375f7fa 3578 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3579}
3580
3581void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3582{
3583 spin_lock(&vcpu->kvm->mmu_lock);
3584 mmu_sync_roots(vcpu);
6cffe8ca 3585 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3586}
bfd0a56b 3587EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3588
1871c602 3589static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3590 u32 access, struct x86_exception *exception)
6aa8b732 3591{
ab9ae313
AK
3592 if (exception)
3593 exception->error_code = 0;
6aa8b732
AK
3594 return vaddr;
3595}
3596
6539e738 3597static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3598 u32 access,
3599 struct x86_exception *exception)
6539e738 3600{
ab9ae313
AK
3601 if (exception)
3602 exception->error_code = 0;
54987b7a 3603 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3604}
3605
d625b155
XG
3606static bool
3607__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3608{
3609 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3610
3611 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3612 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3613}
3614
3615static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3616{
3617 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3618}
3619
3620static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3621{
3622 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3623}
3624
ded58749 3625static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3626{
9034e6e8
PB
3627 /*
3628 * A nested guest cannot use the MMIO cache if it is using nested
3629 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3630 */
3631 if (mmu_is_nested(vcpu))
3632 return false;
3633
ce88decf
XG
3634 if (direct)
3635 return vcpu_match_mmio_gpa(vcpu, addr);
3636
3637 return vcpu_match_mmio_gva(vcpu, addr);
3638}
3639
47ab8751
XG
3640/* return true if reserved bit is detected on spte. */
3641static bool
3642walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3643{
3644 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3645 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
47ab8751
XG
3646 int root, leaf;
3647 bool reserved = false;
ce88decf 3648
37f6a4e2 3649 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3650 goto exit;
37f6a4e2 3651
ce88decf 3652 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3653
29ecd660
PB
3654 for (shadow_walk_init(&iterator, vcpu, addr),
3655 leaf = root = iterator.level;
47ab8751
XG
3656 shadow_walk_okay(&iterator);
3657 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3658 spte = mmu_spte_get_lockless(iterator.sptep);
3659
3660 sptes[leaf - 1] = spte;
29ecd660 3661 leaf--;
47ab8751 3662
ce88decf
XG
3663 if (!is_shadow_present_pte(spte))
3664 break;
47ab8751
XG
3665
3666 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
58c95070 3667 iterator.level);
47ab8751
XG
3668 }
3669
ce88decf
XG
3670 walk_shadow_page_lockless_end(vcpu);
3671
47ab8751
XG
3672 if (reserved) {
3673 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3674 __func__, addr);
29ecd660 3675 while (root > leaf) {
47ab8751
XG
3676 pr_err("------ spte 0x%llx level %d.\n",
3677 sptes[root - 1], root);
3678 root--;
3679 }
3680 }
3681exit:
3682 *sptep = spte;
3683 return reserved;
ce88decf
XG
3684}
3685
e08d26f0 3686static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3687{
3688 u64 spte;
47ab8751 3689 bool reserved;
ce88decf 3690
ded58749 3691 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3692 return RET_PF_EMULATE;
ce88decf 3693
47ab8751 3694 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3695 if (WARN_ON(reserved))
9b8ebbdb 3696 return -EINVAL;
ce88decf
XG
3697
3698 if (is_mmio_spte(spte)) {
3699 gfn_t gfn = get_mmio_spte_gfn(spte);
3700 unsigned access = get_mmio_spte_access(spte);
3701
54bf36aa 3702 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3703 return RET_PF_INVALID;
f8f55942 3704
ce88decf
XG
3705 if (direct)
3706 addr = 0;
4f022648
XG
3707
3708 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3709 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3710 return RET_PF_EMULATE;
ce88decf
XG
3711 }
3712
ce88decf
XG
3713 /*
3714 * If the page table is zapped by other cpus, let CPU fault again on
3715 * the address.
3716 */
9b8ebbdb 3717 return RET_PF_RETRY;
ce88decf 3718}
ce88decf 3719
3d0c27ad
XG
3720static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3721 u32 error_code, gfn_t gfn)
3722{
3723 if (unlikely(error_code & PFERR_RSVD_MASK))
3724 return false;
3725
3726 if (!(error_code & PFERR_PRESENT_MASK) ||
3727 !(error_code & PFERR_WRITE_MASK))
3728 return false;
3729
3730 /*
3731 * guest is writing the page which is write tracked which can
3732 * not be fixed by page fault handler.
3733 */
3734 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3735 return true;
3736
3737 return false;
3738}
3739
e5691a81
XG
3740static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3741{
3742 struct kvm_shadow_walk_iterator iterator;
3743 u64 spte;
3744
3745 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3746 return;
3747
3748 walk_shadow_page_lockless_begin(vcpu);
3749 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3750 clear_sp_write_flooding_count(iterator.sptep);
3751 if (!is_shadow_present_pte(spte))
3752 break;
3753 }
3754 walk_shadow_page_lockless_end(vcpu);
3755}
3756
6aa8b732 3757static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3758 u32 error_code, bool prefault)
6aa8b732 3759{
3d0c27ad 3760 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3761 int r;
6aa8b732 3762
b8688d51 3763 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3764
3d0c27ad 3765 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3766 return RET_PF_EMULATE;
ce88decf 3767
e2dec939
AK
3768 r = mmu_topup_memory_caches(vcpu);
3769 if (r)
3770 return r;
714b93da 3771
fa4a2c08 3772 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3773
6aa8b732 3774
e833240f 3775 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3776 error_code, gfn, prefault);
6aa8b732
AK
3777}
3778
7e1fbeac 3779static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3780{
3781 struct kvm_arch_async_pf arch;
fb67e14f 3782
7c90705b 3783 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3784 arch.gfn = gfn;
c4806acd 3785 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3786 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3787
54bf36aa 3788 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3789}
3790
9bc1f09f 3791bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
af585b92 3792{
35754c98 3793 if (unlikely(!lapic_in_kernel(vcpu) ||
2a266f23
HZ
3794 kvm_event_needs_reinjection(vcpu) ||
3795 vcpu->arch.exception.pending))
af585b92
GN
3796 return false;
3797
52a5c155 3798 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
9bc1f09f
WL
3799 return false;
3800
af585b92
GN
3801 return kvm_x86_ops->interrupt_allowed(vcpu);
3802}
3803
78b2c54a 3804static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3805 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 3806{
3520469d 3807 struct kvm_memory_slot *slot;
af585b92
GN
3808 bool async;
3809
3a2936de
JM
3810 /*
3811 * Don't expose private memslots to L2.
3812 */
3813 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
3814 *pfn = KVM_PFN_NOSLOT;
3815 return false;
3816 }
3817
54bf36aa 3818 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3819 async = false;
3820 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3821 if (!async)
3822 return false; /* *pfn has correct page already */
3823
9bc1f09f 3824 if (!prefault && kvm_can_do_async_pf(vcpu)) {
c9b263d2 3825 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3826 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3827 trace_kvm_async_pf_doublefault(gva, gfn);
3828 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3829 return true;
3830 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3831 return true;
3832 }
3833
3520469d 3834 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3835 return false;
3836}
3837
1261bfa3 3838int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 3839 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
3840{
3841 int r = 1;
3842
3843 switch (vcpu->arch.apf.host_apf_reason) {
3844 default:
3845 trace_kvm_page_fault(fault_address, error_code);
3846
d0006530 3847 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
3848 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3849 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3850 insn_len);
3851 break;
3852 case KVM_PV_REASON_PAGE_NOT_PRESENT:
3853 vcpu->arch.apf.host_apf_reason = 0;
3854 local_irq_disable();
a2b7861b 3855 kvm_async_pf_task_wait(fault_address, 0);
1261bfa3
WL
3856 local_irq_enable();
3857 break;
3858 case KVM_PV_REASON_PAGE_READY:
3859 vcpu->arch.apf.host_apf_reason = 0;
3860 local_irq_disable();
3861 kvm_async_pf_task_wake(fault_address);
3862 local_irq_enable();
3863 break;
3864 }
3865 return r;
3866}
3867EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3868
6a39bbc5
XG
3869static bool
3870check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3871{
3872 int page_num = KVM_PAGES_PER_HPAGE(level);
3873
3874 gfn &= ~(page_num - 1);
3875
3876 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3877}
3878
56028d08 3879static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3880 bool prefault)
fb72d167 3881{
ba049e93 3882 kvm_pfn_t pfn;
fb72d167 3883 int r;
852e3c19 3884 int level;
cd1872f0 3885 bool force_pt_level;
05da4558 3886 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3887 unsigned long mmu_seq;
612819c3
MT
3888 int write = error_code & PFERR_WRITE_MASK;
3889 bool map_writable;
fb72d167 3890
fa4a2c08 3891 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3892
3d0c27ad 3893 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3894 return RET_PF_EMULATE;
ce88decf 3895
fb72d167
JR
3896 r = mmu_topup_memory_caches(vcpu);
3897 if (r)
3898 return r;
3899
fd136902
TY
3900 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3901 PT_DIRECTORY_LEVEL);
3902 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3903 if (likely(!force_pt_level)) {
6a39bbc5
XG
3904 if (level > PT_DIRECTORY_LEVEL &&
3905 !check_hugepage_cache_consistency(vcpu, gfn, level))
3906 level = PT_DIRECTORY_LEVEL;
936a5fe6 3907 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3908 }
852e3c19 3909
c7ba5b48 3910 if (fast_page_fault(vcpu, gpa, level, error_code))
9b8ebbdb 3911 return RET_PF_RETRY;
c7ba5b48 3912
e930bffe 3913 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3914 smp_rmb();
af585b92 3915
78b2c54a 3916 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
9b8ebbdb 3917 return RET_PF_RETRY;
af585b92 3918
d7c55201
XG
3919 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3920 return r;
3921
fb72d167 3922 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3923 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3924 goto out_unlock;
26eeb53c
WL
3925 if (make_mmu_pages_available(vcpu) < 0)
3926 goto out_unlock;
936a5fe6
AA
3927 if (likely(!force_pt_level))
3928 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3929 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 3930 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3931
3932 return r;
e930bffe
AA
3933
3934out_unlock:
3935 spin_unlock(&vcpu->kvm->mmu_lock);
3936 kvm_release_pfn_clean(pfn);
9b8ebbdb 3937 return RET_PF_RETRY;
fb72d167
JR
3938}
3939
8a3c1a33
PB
3940static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3941 struct kvm_mmu *context)
6aa8b732 3942{
6aa8b732 3943 context->page_fault = nonpaging_page_fault;
6aa8b732 3944 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3945 context->sync_page = nonpaging_sync_page;
a7052897 3946 context->invlpg = nonpaging_invlpg;
0f53b5b1 3947 context->update_pte = nonpaging_update_pte;
cea0f0e7 3948 context->root_level = 0;
6aa8b732 3949 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3950 context->root_hpa = INVALID_PAGE;
c5a78f2b 3951 context->direct_map = true;
2d48a985 3952 context->nx = false;
6aa8b732
AK
3953}
3954
d8d173da 3955void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3956{
74b566e6 3957 kvm_mmu_free_roots(vcpu);
6aa8b732
AK
3958}
3959
5777ed34
JR
3960static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3961{
9f8fe504 3962 return kvm_read_cr3(vcpu);
5777ed34
JR
3963}
3964
6389ee94
AK
3965static void inject_page_fault(struct kvm_vcpu *vcpu,
3966 struct x86_exception *fault)
6aa8b732 3967{
6389ee94 3968 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3969}
3970
54bf36aa 3971static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3972 unsigned access, int *nr_present)
ce88decf
XG
3973{
3974 if (unlikely(is_mmio_spte(*sptep))) {
3975 if (gfn != get_mmio_spte_gfn(*sptep)) {
3976 mmu_spte_clear_no_track(sptep);
3977 return true;
3978 }
3979
3980 (*nr_present)++;
54bf36aa 3981 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3982 return true;
3983 }
3984
3985 return false;
3986}
3987
6bb69c9b
PB
3988static inline bool is_last_gpte(struct kvm_mmu *mmu,
3989 unsigned level, unsigned gpte)
6fd01b71 3990{
6bb69c9b
PB
3991 /*
3992 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3993 * If it is clear, there are no large pages at this level, so clear
3994 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3995 */
3996 gpte &= level - mmu->last_nonleaf_level;
3997
829ee279
LP
3998 /*
3999 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4000 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4001 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4002 */
4003 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4004
6bb69c9b 4005 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4006}
4007
37406aaa
NHE
4008#define PTTYPE_EPT 18 /* arbitrary */
4009#define PTTYPE PTTYPE_EPT
4010#include "paging_tmpl.h"
4011#undef PTTYPE
4012
6aa8b732
AK
4013#define PTTYPE 64
4014#include "paging_tmpl.h"
4015#undef PTTYPE
4016
4017#define PTTYPE 32
4018#include "paging_tmpl.h"
4019#undef PTTYPE
4020
6dc98b86
XG
4021static void
4022__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4023 struct rsvd_bits_validate *rsvd_check,
4024 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 4025 bool pse, bool amd)
82725b20 4026{
82725b20 4027 u64 exb_bit_rsvd = 0;
5f7dde7b 4028 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4029 u64 nonleaf_bit8_rsvd = 0;
82725b20 4030
a0a64f50 4031 rsvd_check->bad_mt_xwr = 0;
25d92081 4032
6dc98b86 4033 if (!nx)
82725b20 4034 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 4035 if (!gbpages)
5f7dde7b 4036 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4037
4038 /*
4039 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4040 * leaf entries) on AMD CPUs only.
4041 */
6fec2144 4042 if (amd)
a0c0feb5
PB
4043 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4044
6dc98b86 4045 switch (level) {
82725b20
DE
4046 case PT32_ROOT_LEVEL:
4047 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4048 rsvd_check->rsvd_bits_mask[0][1] = 0;
4049 rsvd_check->rsvd_bits_mask[0][0] = 0;
4050 rsvd_check->rsvd_bits_mask[1][0] =
4051 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4052
6dc98b86 4053 if (!pse) {
a0a64f50 4054 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4055 break;
4056 }
4057
82725b20
DE
4058 if (is_cpuid_PSE36())
4059 /* 36bits PSE 4MB page */
a0a64f50 4060 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4061 else
4062 /* 32 bits PSE 4MB page */
a0a64f50 4063 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4064 break;
4065 case PT32E_ROOT_LEVEL:
a0a64f50 4066 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4067 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4068 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4069 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4070 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4071 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4072 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4073 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4074 rsvd_bits(maxphyaddr, 62) |
4075 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4076 rsvd_check->rsvd_bits_mask[1][0] =
4077 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4078 break;
855feb67
YZ
4079 case PT64_ROOT_5LEVEL:
4080 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4081 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4082 rsvd_bits(maxphyaddr, 51);
4083 rsvd_check->rsvd_bits_mask[1][4] =
4084 rsvd_check->rsvd_bits_mask[0][4];
2a7266a8 4085 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4086 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4087 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4088 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4089 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4090 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 4091 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4092 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4093 rsvd_bits(maxphyaddr, 51);
4094 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4095 rsvd_bits(maxphyaddr, 51);
4096 rsvd_check->rsvd_bits_mask[1][3] =
4097 rsvd_check->rsvd_bits_mask[0][3];
4098 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4099 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4100 rsvd_bits(13, 29);
a0a64f50 4101 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4102 rsvd_bits(maxphyaddr, 51) |
4103 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4104 rsvd_check->rsvd_bits_mask[1][0] =
4105 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4106 break;
4107 }
4108}
4109
6dc98b86
XG
4110static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4111 struct kvm_mmu *context)
4112{
4113 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4114 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4115 context->nx,
4116 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
6fec2144 4117 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
4118}
4119
81b8eebb
XG
4120static void
4121__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4122 int maxphyaddr, bool execonly)
25d92081 4123{
951f9fd7 4124 u64 bad_mt_xwr;
25d92081 4125
855feb67
YZ
4126 rsvd_check->rsvd_bits_mask[0][4] =
4127 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4128 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4129 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4130 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4131 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4132 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4133 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4134 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4135
4136 /* large page */
855feb67 4137 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4138 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4139 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4140 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4141 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4142 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4143 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4144
951f9fd7
PB
4145 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4146 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4147 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4148 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4149 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4150 if (!execonly) {
4151 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4152 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4153 }
951f9fd7 4154 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4155}
4156
81b8eebb
XG
4157static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4158 struct kvm_mmu *context, bool execonly)
4159{
4160 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4161 cpuid_maxphyaddr(vcpu), execonly);
4162}
4163
c258b62b
XG
4164/*
4165 * the page table on host is the shadow page table for the page
4166 * table in guest or amd nested guest, its mmu features completely
4167 * follow the features in guest.
4168 */
4169void
4170reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4171{
5f0b8199 4172 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
ea2800dd
BS
4173 struct rsvd_bits_validate *shadow_zero_check;
4174 int i;
5f0b8199 4175
6fec2144
PB
4176 /*
4177 * Passing "true" to the last argument is okay; it adds a check
4178 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4179 */
ea2800dd
BS
4180 shadow_zero_check = &context->shadow_zero_check;
4181 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
c258b62b 4182 boot_cpu_data.x86_phys_bits,
5f0b8199 4183 context->shadow_root_level, uses_nx,
d6321d49
RK
4184 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4185 is_pse(vcpu), true);
ea2800dd
BS
4186
4187 if (!shadow_me_mask)
4188 return;
4189
4190 for (i = context->shadow_root_level; --i >= 0;) {
4191 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4192 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4193 }
4194
c258b62b
XG
4195}
4196EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4197
6fec2144
PB
4198static inline bool boot_cpu_is_amd(void)
4199{
4200 WARN_ON_ONCE(!tdp_enabled);
4201 return shadow_x_mask == 0;
4202}
4203
c258b62b
XG
4204/*
4205 * the direct page table on host, use as much mmu features as
4206 * possible, however, kvm currently does not do execution-protection.
4207 */
4208static void
4209reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4210 struct kvm_mmu *context)
4211{
ea2800dd
BS
4212 struct rsvd_bits_validate *shadow_zero_check;
4213 int i;
4214
4215 shadow_zero_check = &context->shadow_zero_check;
4216
6fec2144 4217 if (boot_cpu_is_amd())
ea2800dd 4218 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
c258b62b
XG
4219 boot_cpu_data.x86_phys_bits,
4220 context->shadow_root_level, false,
b8291adc
BP
4221 boot_cpu_has(X86_FEATURE_GBPAGES),
4222 true, true);
c258b62b 4223 else
ea2800dd 4224 __reset_rsvds_bits_mask_ept(shadow_zero_check,
c258b62b
XG
4225 boot_cpu_data.x86_phys_bits,
4226 false);
4227
ea2800dd
BS
4228 if (!shadow_me_mask)
4229 return;
4230
4231 for (i = context->shadow_root_level; --i >= 0;) {
4232 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4233 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4234 }
c258b62b
XG
4235}
4236
4237/*
4238 * as the comments in reset_shadow_zero_bits_mask() except it
4239 * is the shadow page table for intel nested guest.
4240 */
4241static void
4242reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4243 struct kvm_mmu *context, bool execonly)
4244{
4245 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4246 boot_cpu_data.x86_phys_bits, execonly);
4247}
4248
09f037aa
PB
4249#define BYTE_MASK(access) \
4250 ((1 & (access) ? 2 : 0) | \
4251 (2 & (access) ? 4 : 0) | \
4252 (3 & (access) ? 8 : 0) | \
4253 (4 & (access) ? 16 : 0) | \
4254 (5 & (access) ? 32 : 0) | \
4255 (6 & (access) ? 64 : 0) | \
4256 (7 & (access) ? 128 : 0))
4257
4258
edc90b7d
XG
4259static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4260 struct kvm_mmu *mmu, bool ept)
97d64b78 4261{
09f037aa
PB
4262 unsigned byte;
4263
4264 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4265 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4266 const u8 u = BYTE_MASK(ACC_USER_MASK);
4267
4268 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4269 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4270 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4271
97d64b78 4272 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4273 unsigned pfec = byte << 1;
4274
97ec8c06 4275 /*
09f037aa
PB
4276 * Each "*f" variable has a 1 bit for each UWX value
4277 * that causes a fault with the given PFEC.
97ec8c06 4278 */
97d64b78 4279
09f037aa
PB
4280 /* Faults from writes to non-writable pages */
4281 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4282 /* Faults from user mode accesses to supervisor pages */
4283 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4284 /* Faults from fetches of non-executable pages*/
4285 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4286 /* Faults from kernel mode fetches of user pages */
4287 u8 smepf = 0;
4288 /* Faults from kernel mode accesses of user pages */
4289 u8 smapf = 0;
4290
4291 if (!ept) {
4292 /* Faults from kernel mode accesses to user pages */
4293 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4294
4295 /* Not really needed: !nx will cause pte.nx to fault */
4296 if (!mmu->nx)
4297 ff = 0;
4298
4299 /* Allow supervisor writes if !cr0.wp */
4300 if (!cr0_wp)
4301 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4302
4303 /* Disallow supervisor fetches of user code if cr4.smep */
4304 if (cr4_smep)
4305 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4306
4307 /*
4308 * SMAP:kernel-mode data accesses from user-mode
4309 * mappings should fault. A fault is considered
4310 * as a SMAP violation if all of the following
4311 * conditions are ture:
4312 * - X86_CR4_SMAP is set in CR4
4313 * - A user page is accessed
4314 * - The access is not a fetch
4315 * - Page fault in kernel mode
4316 * - if CPL = 3 or X86_EFLAGS_AC is clear
4317 *
4318 * Here, we cover the first three conditions.
4319 * The fourth is computed dynamically in permission_fault();
4320 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4321 * *not* subject to SMAP restrictions.
4322 */
4323 if (cr4_smap)
4324 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4325 }
09f037aa
PB
4326
4327 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4328 }
4329}
4330
2d344105
HH
4331/*
4332* PKU is an additional mechanism by which the paging controls access to
4333* user-mode addresses based on the value in the PKRU register. Protection
4334* key violations are reported through a bit in the page fault error code.
4335* Unlike other bits of the error code, the PK bit is not known at the
4336* call site of e.g. gva_to_gpa; it must be computed directly in
4337* permission_fault based on two bits of PKRU, on some machine state (CR4,
4338* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4339*
4340* In particular the following conditions come from the error code, the
4341* page tables and the machine state:
4342* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4343* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4344* - PK is always zero if U=0 in the page tables
4345* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4346*
4347* The PKRU bitmask caches the result of these four conditions. The error
4348* code (minus the P bit) and the page table's U bit form an index into the
4349* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4350* with the two bits of the PKRU register corresponding to the protection key.
4351* For the first three conditions above the bits will be 00, thus masking
4352* away both AD and WD. For all reads or if the last condition holds, WD
4353* only will be masked away.
4354*/
4355static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4356 bool ept)
4357{
4358 unsigned bit;
4359 bool wp;
4360
4361 if (ept) {
4362 mmu->pkru_mask = 0;
4363 return;
4364 }
4365
4366 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4367 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4368 mmu->pkru_mask = 0;
4369 return;
4370 }
4371
4372 wp = is_write_protection(vcpu);
4373
4374 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4375 unsigned pfec, pkey_bits;
4376 bool check_pkey, check_write, ff, uf, wf, pte_user;
4377
4378 pfec = bit << 1;
4379 ff = pfec & PFERR_FETCH_MASK;
4380 uf = pfec & PFERR_USER_MASK;
4381 wf = pfec & PFERR_WRITE_MASK;
4382
4383 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4384 pte_user = pfec & PFERR_RSVD_MASK;
4385
4386 /*
4387 * Only need to check the access which is not an
4388 * instruction fetch and is to a user page.
4389 */
4390 check_pkey = (!ff && pte_user);
4391 /*
4392 * write access is controlled by PKRU if it is a
4393 * user access or CR0.WP = 1.
4394 */
4395 check_write = check_pkey && wf && (uf || wp);
4396
4397 /* PKRU.AD stops both read and write access. */
4398 pkey_bits = !!check_pkey;
4399 /* PKRU.WD stops write access. */
4400 pkey_bits |= (!!check_write) << 1;
4401
4402 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4403 }
4404}
4405
6bb69c9b 4406static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4407{
6bb69c9b
PB
4408 unsigned root_level = mmu->root_level;
4409
4410 mmu->last_nonleaf_level = root_level;
4411 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4412 mmu->last_nonleaf_level++;
6fd01b71
AK
4413}
4414
8a3c1a33
PB
4415static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4416 struct kvm_mmu *context,
4417 int level)
6aa8b732 4418{
2d48a985 4419 context->nx = is_nx(vcpu);
4d6931c3 4420 context->root_level = level;
2d48a985 4421
4d6931c3 4422 reset_rsvds_bits_mask(vcpu, context);
25d92081 4423 update_permission_bitmask(vcpu, context, false);
2d344105 4424 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4425 update_last_nonleaf_level(vcpu, context);
6aa8b732 4426
fa4a2c08 4427 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4428 context->page_fault = paging64_page_fault;
6aa8b732 4429 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4430 context->sync_page = paging64_sync_page;
a7052897 4431 context->invlpg = paging64_invlpg;
0f53b5b1 4432 context->update_pte = paging64_update_pte;
17ac10ad 4433 context->shadow_root_level = level;
17c3ba9d 4434 context->root_hpa = INVALID_PAGE;
c5a78f2b 4435 context->direct_map = false;
6aa8b732
AK
4436}
4437
8a3c1a33
PB
4438static void paging64_init_context(struct kvm_vcpu *vcpu,
4439 struct kvm_mmu *context)
17ac10ad 4440{
855feb67
YZ
4441 int root_level = is_la57_mode(vcpu) ?
4442 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4443
4444 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4445}
4446
8a3c1a33
PB
4447static void paging32_init_context(struct kvm_vcpu *vcpu,
4448 struct kvm_mmu *context)
6aa8b732 4449{
2d48a985 4450 context->nx = false;
4d6931c3 4451 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4452
4d6931c3 4453 reset_rsvds_bits_mask(vcpu, context);
25d92081 4454 update_permission_bitmask(vcpu, context, false);
2d344105 4455 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4456 update_last_nonleaf_level(vcpu, context);
6aa8b732 4457
6aa8b732 4458 context->page_fault = paging32_page_fault;
6aa8b732 4459 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4460 context->sync_page = paging32_sync_page;
a7052897 4461 context->invlpg = paging32_invlpg;
0f53b5b1 4462 context->update_pte = paging32_update_pte;
6aa8b732 4463 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 4464 context->root_hpa = INVALID_PAGE;
c5a78f2b 4465 context->direct_map = false;
6aa8b732
AK
4466}
4467
8a3c1a33
PB
4468static void paging32E_init_context(struct kvm_vcpu *vcpu,
4469 struct kvm_mmu *context)
6aa8b732 4470{
8a3c1a33 4471 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4472}
4473
8a3c1a33 4474static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4475{
ad896af0 4476 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 4477
c445f8ef 4478 context->base_role.word = 0;
1313cc2b 4479 context->base_role.guest_mode = is_guest_mode(vcpu);
699023e2 4480 context->base_role.smm = is_smm(vcpu);
ac8d57e5 4481 context->base_role.ad_disabled = (shadow_accessed_mask == 0);
fb72d167 4482 context->page_fault = tdp_page_fault;
e8bc217a 4483 context->sync_page = nonpaging_sync_page;
a7052897 4484 context->invlpg = nonpaging_invlpg;
0f53b5b1 4485 context->update_pte = nonpaging_update_pte;
855feb67 4486 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
fb72d167 4487 context->root_hpa = INVALID_PAGE;
c5a78f2b 4488 context->direct_map = true;
1c97f0a0 4489 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4490 context->get_cr3 = get_cr3;
e4e517b4 4491 context->get_pdptr = kvm_pdptr_read;
cb659db8 4492 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4493
4494 if (!is_paging(vcpu)) {
2d48a985 4495 context->nx = false;
fb72d167
JR
4496 context->gva_to_gpa = nonpaging_gva_to_gpa;
4497 context->root_level = 0;
4498 } else if (is_long_mode(vcpu)) {
2d48a985 4499 context->nx = is_nx(vcpu);
855feb67
YZ
4500 context->root_level = is_la57_mode(vcpu) ?
4501 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4502 reset_rsvds_bits_mask(vcpu, context);
4503 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4504 } else if (is_pae(vcpu)) {
2d48a985 4505 context->nx = is_nx(vcpu);
fb72d167 4506 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4507 reset_rsvds_bits_mask(vcpu, context);
4508 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4509 } else {
2d48a985 4510 context->nx = false;
fb72d167 4511 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4512 reset_rsvds_bits_mask(vcpu, context);
4513 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4514 }
4515
25d92081 4516 update_permission_bitmask(vcpu, context, false);
2d344105 4517 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4518 update_last_nonleaf_level(vcpu, context);
c258b62b 4519 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4520}
4521
ad896af0 4522void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 4523{
411c588d 4524 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 4525 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
4526 struct kvm_mmu *context = &vcpu->arch.mmu;
4527
fa4a2c08 4528 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
4529
4530 if (!is_paging(vcpu))
8a3c1a33 4531 nonpaging_init_context(vcpu, context);
a9058ecd 4532 else if (is_long_mode(vcpu))
8a3c1a33 4533 paging64_init_context(vcpu, context);
6aa8b732 4534 else if (is_pae(vcpu))
8a3c1a33 4535 paging32E_init_context(vcpu, context);
6aa8b732 4536 else
8a3c1a33 4537 paging32_init_context(vcpu, context);
a770f6f2 4538
ad896af0
PB
4539 context->base_role.nxe = is_nx(vcpu);
4540 context->base_role.cr4_pae = !!is_pae(vcpu);
4541 context->base_role.cr0_wp = is_write_protection(vcpu);
4542 context->base_role.smep_andnot_wp
411c588d 4543 = smep && !is_write_protection(vcpu);
edc90b7d
XG
4544 context->base_role.smap_andnot_wp
4545 = smap && !is_write_protection(vcpu);
1313cc2b 4546 context->base_role.guest_mode = is_guest_mode(vcpu);
699023e2 4547 context->base_role.smm = is_smm(vcpu);
c258b62b 4548 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4549}
4550EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4551
ae1e2d10
PB
4552void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4553 bool accessed_dirty)
155a97a3 4554{
ad896af0
PB
4555 struct kvm_mmu *context = &vcpu->arch.mmu;
4556
fa4a2c08 4557 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3 4558
855feb67 4559 context->shadow_root_level = PT64_ROOT_4LEVEL;
155a97a3
NHE
4560
4561 context->nx = true;
ae1e2d10 4562 context->ept_ad = accessed_dirty;
155a97a3
NHE
4563 context->page_fault = ept_page_fault;
4564 context->gva_to_gpa = ept_gva_to_gpa;
4565 context->sync_page = ept_sync_page;
4566 context->invlpg = ept_invlpg;
4567 context->update_pte = ept_update_pte;
855feb67 4568 context->root_level = PT64_ROOT_4LEVEL;
155a97a3
NHE
4569 context->root_hpa = INVALID_PAGE;
4570 context->direct_map = false;
995f00a6 4571 context->base_role.ad_disabled = !accessed_dirty;
1313cc2b 4572 context->base_role.guest_mode = 1;
155a97a3 4573 update_permission_bitmask(vcpu, context, true);
2d344105 4574 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4575 update_last_nonleaf_level(vcpu, context);
155a97a3 4576 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4577 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4578}
4579EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4580
8a3c1a33 4581static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4582{
ad896af0
PB
4583 struct kvm_mmu *context = &vcpu->arch.mmu;
4584
4585 kvm_init_shadow_mmu(vcpu);
4586 context->set_cr3 = kvm_x86_ops->set_cr3;
4587 context->get_cr3 = get_cr3;
4588 context->get_pdptr = kvm_pdptr_read;
4589 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4590}
4591
8a3c1a33 4592static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4593{
4594 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4595
4596 g_context->get_cr3 = get_cr3;
e4e517b4 4597 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4598 g_context->inject_page_fault = kvm_inject_page_fault;
4599
4600 /*
0af2593b
DM
4601 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4602 * L1's nested page tables (e.g. EPT12). The nested translation
4603 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4604 * L2's page tables as the first level of translation and L1's
4605 * nested page tables as the second level of translation. Basically
4606 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4607 */
4608 if (!is_paging(vcpu)) {
2d48a985 4609 g_context->nx = false;
02f59dc9
JR
4610 g_context->root_level = 0;
4611 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4612 } else if (is_long_mode(vcpu)) {
2d48a985 4613 g_context->nx = is_nx(vcpu);
855feb67
YZ
4614 g_context->root_level = is_la57_mode(vcpu) ?
4615 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 4616 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4617 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4618 } else if (is_pae(vcpu)) {
2d48a985 4619 g_context->nx = is_nx(vcpu);
02f59dc9 4620 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4621 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4622 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4623 } else {
2d48a985 4624 g_context->nx = false;
02f59dc9 4625 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4626 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4627 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4628 }
4629
25d92081 4630 update_permission_bitmask(vcpu, g_context, false);
2d344105 4631 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4632 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4633}
4634
8a3c1a33 4635static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4636{
02f59dc9 4637 if (mmu_is_nested(vcpu))
e0c6db3e 4638 init_kvm_nested_mmu(vcpu);
02f59dc9 4639 else if (tdp_enabled)
e0c6db3e 4640 init_kvm_tdp_mmu(vcpu);
fb72d167 4641 else
e0c6db3e 4642 init_kvm_softmmu(vcpu);
fb72d167
JR
4643}
4644
8a3c1a33 4645void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4646{
95f93af4 4647 kvm_mmu_unload(vcpu);
8a3c1a33 4648 init_kvm_mmu(vcpu);
17c3ba9d 4649}
8668a3c4 4650EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4651
4652int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4653{
714b93da
AK
4654 int r;
4655
e2dec939 4656 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4657 if (r)
4658 goto out;
8986ecc0 4659 r = mmu_alloc_roots(vcpu);
e2858b4a 4660 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4661 if (r)
4662 goto out;
3662cb1c 4663 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4664 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4665out:
4666 return r;
6aa8b732 4667}
17c3ba9d
AK
4668EXPORT_SYMBOL_GPL(kvm_mmu_load);
4669
4670void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4671{
74b566e6 4672 kvm_mmu_free_roots(vcpu);
95f93af4 4673 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4674}
4b16184c 4675EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4676
0028425f 4677static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4678 struct kvm_mmu_page *sp, u64 *spte,
4679 const void *new)
0028425f 4680{
30945387 4681 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4682 ++vcpu->kvm->stat.mmu_pde_zapped;
4683 return;
30945387 4684 }
0028425f 4685
4cee5764 4686 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4687 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4688}
4689
79539cec
AK
4690static bool need_remote_flush(u64 old, u64 new)
4691{
4692 if (!is_shadow_present_pte(old))
4693 return false;
4694 if (!is_shadow_present_pte(new))
4695 return true;
4696 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4697 return true;
53166229
GN
4698 old ^= shadow_nx_mask;
4699 new ^= shadow_nx_mask;
79539cec
AK
4700 return (old & ~new & PT64_PERM_MASK) != 0;
4701}
4702
889e5cbc
XG
4703static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4704 const u8 *new, int *bytes)
da4a00f0 4705{
889e5cbc
XG
4706 u64 gentry;
4707 int r;
72016f3a 4708
72016f3a
AK
4709 /*
4710 * Assume that the pte write on a page table of the same type
49b26e26
XG
4711 * as the current vcpu paging mode since we update the sptes only
4712 * when they have the same mode.
72016f3a 4713 */
889e5cbc 4714 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4715 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4716 *gpa &= ~(gpa_t)7;
4717 *bytes = 8;
54bf36aa 4718 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4719 if (r)
4720 gentry = 0;
08e850c6
AK
4721 new = (const u8 *)&gentry;
4722 }
4723
889e5cbc 4724 switch (*bytes) {
08e850c6
AK
4725 case 4:
4726 gentry = *(const u32 *)new;
4727 break;
4728 case 8:
4729 gentry = *(const u64 *)new;
4730 break;
4731 default:
4732 gentry = 0;
4733 break;
72016f3a
AK
4734 }
4735
889e5cbc
XG
4736 return gentry;
4737}
4738
4739/*
4740 * If we're seeing too many writes to a page, it may no longer be a page table,
4741 * or we may be forking, in which case it is better to unmap the page.
4742 */
a138fe75 4743static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4744{
a30f47cb
XG
4745 /*
4746 * Skip write-flooding detected for the sp whose level is 1, because
4747 * it can become unsync, then the guest page is not write-protected.
4748 */
f71fa31f 4749 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4750 return false;
3246af0e 4751
e5691a81
XG
4752 atomic_inc(&sp->write_flooding_count);
4753 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4754}
4755
4756/*
4757 * Misaligned accesses are too much trouble to fix up; also, they usually
4758 * indicate a page is not used as a page table.
4759 */
4760static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4761 int bytes)
4762{
4763 unsigned offset, pte_size, misaligned;
4764
4765 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4766 gpa, bytes, sp->role.word);
4767
4768 offset = offset_in_page(gpa);
4769 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4770
4771 /*
4772 * Sometimes, the OS only writes the last one bytes to update status
4773 * bits, for example, in linux, andb instruction is used in clear_bit().
4774 */
4775 if (!(offset & (pte_size - 1)) && bytes == 1)
4776 return false;
4777
889e5cbc
XG
4778 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4779 misaligned |= bytes < 4;
4780
4781 return misaligned;
4782}
4783
4784static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4785{
4786 unsigned page_offset, quadrant;
4787 u64 *spte;
4788 int level;
4789
4790 page_offset = offset_in_page(gpa);
4791 level = sp->role.level;
4792 *nspte = 1;
4793 if (!sp->role.cr4_pae) {
4794 page_offset <<= 1; /* 32->64 */
4795 /*
4796 * A 32-bit pde maps 4MB while the shadow pdes map
4797 * only 2MB. So we need to double the offset again
4798 * and zap two pdes instead of one.
4799 */
4800 if (level == PT32_ROOT_LEVEL) {
4801 page_offset &= ~7; /* kill rounding error */
4802 page_offset <<= 1;
4803 *nspte = 2;
4804 }
4805 quadrant = page_offset >> PAGE_SHIFT;
4806 page_offset &= ~PAGE_MASK;
4807 if (quadrant != sp->role.quadrant)
4808 return NULL;
4809 }
4810
4811 spte = &sp->spt[page_offset / sizeof(*spte)];
4812 return spte;
4813}
4814
13d268ca 4815static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
4816 const u8 *new, int bytes,
4817 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
4818{
4819 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4820 struct kvm_mmu_page *sp;
889e5cbc
XG
4821 LIST_HEAD(invalid_list);
4822 u64 entry, gentry, *spte;
4823 int npte;
b8c67b7a 4824 bool remote_flush, local_flush;
4141259b
AM
4825 union kvm_mmu_page_role mask = { };
4826
4827 mask.cr0_wp = 1;
4828 mask.cr4_pae = 1;
4829 mask.nxe = 1;
4830 mask.smep_andnot_wp = 1;
4831 mask.smap_andnot_wp = 1;
699023e2 4832 mask.smm = 1;
1313cc2b 4833 mask.guest_mode = 1;
ac8d57e5 4834 mask.ad_disabled = 1;
889e5cbc
XG
4835
4836 /*
4837 * If we don't have indirect shadow pages, it means no page is
4838 * write-protected, so we can exit simply.
4839 */
6aa7de05 4840 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
4841 return;
4842
b8c67b7a 4843 remote_flush = local_flush = false;
889e5cbc
XG
4844
4845 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4846
4847 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4848
4849 /*
4850 * No need to care whether allocation memory is successful
4851 * or not since pte prefetch is skiped if it does not have
4852 * enough objects in the cache.
4853 */
4854 mmu_topup_memory_caches(vcpu);
4855
4856 spin_lock(&vcpu->kvm->mmu_lock);
4857 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4858 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4859
b67bfe0d 4860 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4861 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4862 detect_write_flooding(sp)) {
b8c67b7a 4863 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4864 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4865 continue;
4866 }
889e5cbc
XG
4867
4868 spte = get_written_sptes(sp, gpa, &npte);
4869 if (!spte)
4870 continue;
4871
0671a8e7 4872 local_flush = true;
ac1b714e 4873 while (npte--) {
79539cec 4874 entry = *spte;
38e3b2b2 4875 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4876 if (gentry &&
4877 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4878 & mask.word) && rmap_can_add(vcpu))
7c562522 4879 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4880 if (need_remote_flush(entry, *spte))
0671a8e7 4881 remote_flush = true;
ac1b714e 4882 ++spte;
9b7a0325 4883 }
9b7a0325 4884 }
b8c67b7a 4885 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 4886 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4887 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4888}
4889
a436036b
AK
4890int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4891{
10589a46
MT
4892 gpa_t gpa;
4893 int r;
a436036b 4894
c5a78f2b 4895 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4896 return 0;
4897
1871c602 4898 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4899
10589a46 4900 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4901
10589a46 4902 return r;
a436036b 4903}
577bdc49 4904EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4905
26eeb53c 4906static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4907{
d98ba053 4908 LIST_HEAD(invalid_list);
103ad25a 4909
81f4f76b 4910 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
26eeb53c 4911 return 0;
81f4f76b 4912
5da59607
TY
4913 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4914 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4915 break;
ebeace86 4916
4cee5764 4917 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4918 }
aa6bd187 4919 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
26eeb53c
WL
4920
4921 if (!kvm_mmu_available_pages(vcpu->kvm))
4922 return -ENOSPC;
4923 return 0;
ebeace86 4924}
ebeace86 4925
14727754 4926int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
dc25e89e 4927 void *insn, int insn_len)
3067714c 4928{
1cb3f3ae 4929 int r, emulation_type = EMULTYPE_RETRY;
3067714c 4930 enum emulation_result er;
9034e6e8 4931 bool direct = vcpu->arch.mmu.direct_map;
3067714c 4932
618232e2
BS
4933 /* With shadow page tables, fault_address contains a GVA or nGPA. */
4934 if (vcpu->arch.mmu.direct_map) {
4935 vcpu->arch.gpa_available = true;
4936 vcpu->arch.gpa_val = cr2;
4937 }
3067714c 4938
9b8ebbdb 4939 r = RET_PF_INVALID;
e9ee956e
TY
4940 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4941 r = handle_mmio_page_fault(vcpu, cr2, direct);
9b8ebbdb 4942 if (r == RET_PF_EMULATE) {
e9ee956e
TY
4943 emulation_type = 0;
4944 goto emulate;
4945 }
e9ee956e 4946 }
3067714c 4947
9b8ebbdb
PB
4948 if (r == RET_PF_INVALID) {
4949 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4950 false);
4951 WARN_ON(r == RET_PF_INVALID);
4952 }
4953
4954 if (r == RET_PF_RETRY)
4955 return 1;
3067714c 4956 if (r < 0)
e9ee956e 4957 return r;
3067714c 4958
14727754
TL
4959 /*
4960 * Before emulating the instruction, check if the error code
4961 * was due to a RO violation while translating the guest page.
4962 * This can occur when using nested virtualization with nested
4963 * paging in both guests. If true, we simply unprotect the page
4964 * and resume the guest.
14727754 4965 */
64531a3b 4966 if (vcpu->arch.mmu.direct_map &&
eebed243 4967 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
14727754
TL
4968 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4969 return 1;
4970 }
4971
ded58749 4972 if (mmio_info_in_cache(vcpu, cr2, direct))
1cb3f3ae 4973 emulation_type = 0;
e9ee956e 4974emulate:
00b10fe1
BS
4975 /*
4976 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
4977 * This can happen if a guest gets a page-fault on data access but the HW
4978 * table walker is not able to read the instruction page (e.g instruction
4979 * page is not present in memory). In those cases we simply restart the
4980 * guest.
4981 */
4982 if (unlikely(insn && !insn_len))
4983 return 1;
4984
1cb3f3ae 4985 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4986
4987 switch (er) {
4988 case EMULATE_DONE:
4989 return 1;
ac0a48c3 4990 case EMULATE_USER_EXIT:
3067714c 4991 ++vcpu->stat.mmio_exits;
6d77dbfc 4992 /* fall through */
3067714c 4993 case EMULATE_FAIL:
3f5d18a9 4994 return 0;
3067714c
AK
4995 default:
4996 BUG();
4997 }
3067714c
AK
4998}
4999EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5000
a7052897
MT
5001void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5002{
a7052897 5003 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 5004 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
5005 ++vcpu->stat.invlpg;
5006}
5007EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5008
18552672
JR
5009void kvm_enable_tdp(void)
5010{
5011 tdp_enabled = true;
5012}
5013EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5014
5f4cb662
JR
5015void kvm_disable_tdp(void)
5016{
5017 tdp_enabled = false;
5018}
5019EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5020
6aa8b732
AK
5021static void free_mmu_pages(struct kvm_vcpu *vcpu)
5022{
ad312c7c 5023 free_page((unsigned long)vcpu->arch.mmu.pae_root);
87ca74ad 5024 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
5025}
5026
5027static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5028{
17ac10ad 5029 struct page *page;
6aa8b732
AK
5030 int i;
5031
17ac10ad
AK
5032 /*
5033 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5034 * Therefore we need to allocate shadow page tables in the first
5035 * 4GB of memory, which happens to fit the DMA32 zone.
5036 */
5037 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5038 if (!page)
d7fa6ab2
WY
5039 return -ENOMEM;
5040
ad312c7c 5041 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 5042 for (i = 0; i < 4; ++i)
ad312c7c 5043 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 5044
6aa8b732 5045 return 0;
6aa8b732
AK
5046}
5047
8018c27b 5048int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5049{
e459e322
XG
5050 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5051 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5052 vcpu->arch.mmu.translate_gpa = translate_gpa;
5053 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 5054
8018c27b
IM
5055 return alloc_mmu_pages(vcpu);
5056}
6aa8b732 5057
8a3c1a33 5058void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 5059{
fa4a2c08 5060 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 5061
8a3c1a33 5062 init_kvm_mmu(vcpu);
6aa8b732
AK
5063}
5064
b5f5fdca 5065static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5066 struct kvm_memory_slot *slot,
5067 struct kvm_page_track_notifier_node *node)
b5f5fdca
XC
5068{
5069 kvm_mmu_invalidate_zap_all_pages(kvm);
5070}
5071
13d268ca
XG
5072void kvm_mmu_init_vm(struct kvm *kvm)
5073{
5074 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5075
5076 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5077 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca
XG
5078 kvm_page_track_register_notifier(kvm, node);
5079}
5080
5081void kvm_mmu_uninit_vm(struct kvm *kvm)
5082{
5083 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5084
5085 kvm_page_track_unregister_notifier(kvm, node);
5086}
5087
1bad2b2a 5088/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 5089typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
5090
5091/* The caller should hold mmu-lock before calling this function. */
928a4c39 5092static __always_inline bool
1bad2b2a
XG
5093slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5094 slot_level_handler fn, int start_level, int end_level,
5095 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5096{
5097 struct slot_rmap_walk_iterator iterator;
5098 bool flush = false;
5099
5100 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5101 end_gfn, &iterator) {
5102 if (iterator.rmap)
5103 flush |= fn(kvm, iterator.rmap);
5104
5105 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5106 if (flush && lock_flush_tlb) {
5107 kvm_flush_remote_tlbs(kvm);
5108 flush = false;
5109 }
5110 cond_resched_lock(&kvm->mmu_lock);
5111 }
5112 }
5113
5114 if (flush && lock_flush_tlb) {
5115 kvm_flush_remote_tlbs(kvm);
5116 flush = false;
5117 }
5118
5119 return flush;
5120}
5121
928a4c39 5122static __always_inline bool
1bad2b2a
XG
5123slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5124 slot_level_handler fn, int start_level, int end_level,
5125 bool lock_flush_tlb)
5126{
5127 return slot_handle_level_range(kvm, memslot, fn, start_level,
5128 end_level, memslot->base_gfn,
5129 memslot->base_gfn + memslot->npages - 1,
5130 lock_flush_tlb);
5131}
5132
928a4c39 5133static __always_inline bool
1bad2b2a
XG
5134slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5135 slot_level_handler fn, bool lock_flush_tlb)
5136{
5137 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5138 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5139}
5140
928a4c39 5141static __always_inline bool
1bad2b2a
XG
5142slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5143 slot_level_handler fn, bool lock_flush_tlb)
5144{
5145 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5146 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5147}
5148
928a4c39 5149static __always_inline bool
1bad2b2a
XG
5150slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5151 slot_level_handler fn, bool lock_flush_tlb)
5152{
5153 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5154 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5155}
5156
efdfe536
XG
5157void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5158{
5159 struct kvm_memslots *slots;
5160 struct kvm_memory_slot *memslot;
9da0e4d5 5161 int i;
efdfe536
XG
5162
5163 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5164 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5165 slots = __kvm_memslots(kvm, i);
5166 kvm_for_each_memslot(memslot, slots) {
5167 gfn_t start, end;
5168
5169 start = max(gfn_start, memslot->base_gfn);
5170 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5171 if (start >= end)
5172 continue;
efdfe536 5173
9da0e4d5
PB
5174 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5175 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5176 start, end - 1, true);
5177 }
efdfe536
XG
5178 }
5179
5180 spin_unlock(&kvm->mmu_lock);
5181}
5182
018aabb5
TY
5183static bool slot_rmap_write_protect(struct kvm *kvm,
5184 struct kvm_rmap_head *rmap_head)
d77aa73c 5185{
018aabb5 5186 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5187}
5188
1c91cad4
KH
5189void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5190 struct kvm_memory_slot *memslot)
6aa8b732 5191{
d77aa73c 5192 bool flush;
6aa8b732 5193
9d1beefb 5194 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5195 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5196 false);
9d1beefb 5197 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
5198
5199 /*
5200 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5201 * which do tlb flush out of mmu-lock should be serialized by
5202 * kvm->slots_lock otherwise tlb flush would be missed.
5203 */
5204 lockdep_assert_held(&kvm->slots_lock);
5205
5206 /*
5207 * We can flush all the TLBs out of the mmu lock without TLB
5208 * corruption since we just change the spte from writable to
5209 * readonly so that we only need to care the case of changing
5210 * spte from present to present (changing the spte from present
5211 * to nonpresent will flush all the TLBs immediately), in other
5212 * words, the only case we care is mmu_spte_update() where we
5213 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5214 * instead of PT_WRITABLE_MASK, that means it does not depend
5215 * on PT_WRITABLE_MASK anymore.
5216 */
d91ffee9
KH
5217 if (flush)
5218 kvm_flush_remote_tlbs(kvm);
6aa8b732 5219}
37a7d8b0 5220
3ea3b7fa 5221static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5222 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5223{
5224 u64 *sptep;
5225 struct rmap_iterator iter;
5226 int need_tlb_flush = 0;
ba049e93 5227 kvm_pfn_t pfn;
3ea3b7fa
WL
5228 struct kvm_mmu_page *sp;
5229
0d536790 5230restart:
018aabb5 5231 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
5232 sp = page_header(__pa(sptep));
5233 pfn = spte_to_pfn(*sptep);
5234
5235 /*
decf6333
XG
5236 * We cannot do huge page mapping for indirect shadow pages,
5237 * which are found on the last rmap (level = 1) when not using
5238 * tdp; such shadow pages are synced with the page table in
5239 * the guest, and the guest page table is using 4K page size
5240 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
5241 */
5242 if (sp->role.direct &&
5243 !kvm_is_reserved_pfn(pfn) &&
127393fb 5244 PageTransCompoundMap(pfn_to_page(pfn))) {
3ea3b7fa 5245 drop_spte(kvm, sptep);
3ea3b7fa 5246 need_tlb_flush = 1;
0d536790
XG
5247 goto restart;
5248 }
3ea3b7fa
WL
5249 }
5250
5251 return need_tlb_flush;
5252}
5253
5254void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5255 const struct kvm_memory_slot *memslot)
3ea3b7fa 5256{
f36f3f28 5257 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5258 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5259 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5260 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5261 spin_unlock(&kvm->mmu_lock);
5262}
5263
f4b4b180
KH
5264void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5265 struct kvm_memory_slot *memslot)
5266{
d77aa73c 5267 bool flush;
f4b4b180
KH
5268
5269 spin_lock(&kvm->mmu_lock);
d77aa73c 5270 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5271 spin_unlock(&kvm->mmu_lock);
5272
5273 lockdep_assert_held(&kvm->slots_lock);
5274
5275 /*
5276 * It's also safe to flush TLBs out of mmu lock here as currently this
5277 * function is only used for dirty logging, in which case flushing TLB
5278 * out of mmu lock also guarantees no dirty pages will be lost in
5279 * dirty_bitmap.
5280 */
5281 if (flush)
5282 kvm_flush_remote_tlbs(kvm);
5283}
5284EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5285
5286void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5287 struct kvm_memory_slot *memslot)
5288{
d77aa73c 5289 bool flush;
f4b4b180
KH
5290
5291 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5292 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5293 false);
f4b4b180
KH
5294 spin_unlock(&kvm->mmu_lock);
5295
5296 /* see kvm_mmu_slot_remove_write_access */
5297 lockdep_assert_held(&kvm->slots_lock);
5298
5299 if (flush)
5300 kvm_flush_remote_tlbs(kvm);
5301}
5302EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5303
5304void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5305 struct kvm_memory_slot *memslot)
5306{
d77aa73c 5307 bool flush;
f4b4b180
KH
5308
5309 spin_lock(&kvm->mmu_lock);
d77aa73c 5310 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
5311 spin_unlock(&kvm->mmu_lock);
5312
5313 lockdep_assert_held(&kvm->slots_lock);
5314
5315 /* see kvm_mmu_slot_leaf_clear_dirty */
5316 if (flush)
5317 kvm_flush_remote_tlbs(kvm);
5318}
5319EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5320
e7d11c7a 5321#define BATCH_ZAP_PAGES 10
5304b8d3
XG
5322static void kvm_zap_obsolete_pages(struct kvm *kvm)
5323{
5324 struct kvm_mmu_page *sp, *node;
e7d11c7a 5325 int batch = 0;
5304b8d3
XG
5326
5327restart:
5328 list_for_each_entry_safe_reverse(sp, node,
5329 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
5330 int ret;
5331
5304b8d3
XG
5332 /*
5333 * No obsolete page exists before new created page since
5334 * active_mmu_pages is the FIFO list.
5335 */
5336 if (!is_obsolete_sp(kvm, sp))
5337 break;
5338
5339 /*
5304b8d3
XG
5340 * Since we are reversely walking the list and the invalid
5341 * list will be moved to the head, skip the invalid page
5342 * can help us to avoid the infinity list walking.
5343 */
5344 if (sp->role.invalid)
5345 continue;
5346
f34d251d
XG
5347 /*
5348 * Need not flush tlb since we only zap the sp with invalid
5349 * generation number.
5350 */
e7d11c7a 5351 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 5352 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 5353 batch = 0;
5304b8d3
XG
5354 goto restart;
5355 }
5356
365c8868
XG
5357 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5358 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
5359 batch += ret;
5360
5361 if (ret)
5304b8d3
XG
5362 goto restart;
5363 }
5364
f34d251d
XG
5365 /*
5366 * Should flush tlb before free page tables since lockless-walking
5367 * may use the pages.
5368 */
365c8868 5369 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
5370}
5371
5372/*
5373 * Fast invalidate all shadow pages and use lock-break technique
5374 * to zap obsolete pages.
5375 *
5376 * It's required when memslot is being deleted or VM is being
5377 * destroyed, in these cases, we should ensure that KVM MMU does
5378 * not use any resource of the being-deleted slot or all slots
5379 * after calling the function.
5380 */
5381void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5382{
5383 spin_lock(&kvm->mmu_lock);
35006126 5384 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
5385 kvm->arch.mmu_valid_gen++;
5386
f34d251d
XG
5387 /*
5388 * Notify all vcpus to reload its shadow page table
5389 * and flush TLB. Then all vcpus will switch to new
5390 * shadow page table with the new mmu_valid_gen.
5391 *
5392 * Note: we should do this under the protection of
5393 * mmu-lock, otherwise, vcpu would purge shadow page
5394 * but miss tlb flush.
5395 */
5396 kvm_reload_remote_mmus(kvm);
5397
5304b8d3
XG
5398 kvm_zap_obsolete_pages(kvm);
5399 spin_unlock(&kvm->mmu_lock);
5400}
5401
365c8868
XG
5402static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5403{
5404 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5405}
5406
54bf36aa 5407void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
5408{
5409 /*
5410 * The very rare case: if the generation-number is round,
5411 * zap all shadow pages.
f8f55942 5412 */
54bf36aa 5413 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
ae0f5499 5414 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 5415 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 5416 }
f8f55942
XG
5417}
5418
70534a73
DC
5419static unsigned long
5420mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5421{
5422 struct kvm *kvm;
1495f230 5423 int nr_to_scan = sc->nr_to_scan;
70534a73 5424 unsigned long freed = 0;
3ee16c81 5425
2f303b74 5426 spin_lock(&kvm_lock);
3ee16c81
IE
5427
5428 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5429 int idx;
d98ba053 5430 LIST_HEAD(invalid_list);
3ee16c81 5431
35f2d16b
TY
5432 /*
5433 * Never scan more than sc->nr_to_scan VM instances.
5434 * Will not hit this condition practically since we do not try
5435 * to shrink more than one VM and it is very unlikely to see
5436 * !n_used_mmu_pages so many times.
5437 */
5438 if (!nr_to_scan--)
5439 break;
19526396
GN
5440 /*
5441 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5442 * here. We may skip a VM instance errorneosly, but we do not
5443 * want to shrink a VM that only started to populate its MMU
5444 * anyway.
5445 */
365c8868
XG
5446 if (!kvm->arch.n_used_mmu_pages &&
5447 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5448 continue;
19526396 5449
f656ce01 5450 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5451 spin_lock(&kvm->mmu_lock);
3ee16c81 5452
365c8868
XG
5453 if (kvm_has_zapped_obsolete_pages(kvm)) {
5454 kvm_mmu_commit_zap_page(kvm,
5455 &kvm->arch.zapped_obsolete_pages);
5456 goto unlock;
5457 }
5458
70534a73
DC
5459 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5460 freed++;
d98ba053 5461 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 5462
365c8868 5463unlock:
3ee16c81 5464 spin_unlock(&kvm->mmu_lock);
f656ce01 5465 srcu_read_unlock(&kvm->srcu, idx);
19526396 5466
70534a73
DC
5467 /*
5468 * unfair on small ones
5469 * per-vm shrinkers cry out
5470 * sadness comes quickly
5471 */
19526396
GN
5472 list_move_tail(&kvm->vm_list, &vm_list);
5473 break;
3ee16c81 5474 }
3ee16c81 5475
2f303b74 5476 spin_unlock(&kvm_lock);
70534a73 5477 return freed;
70534a73
DC
5478}
5479
5480static unsigned long
5481mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5482{
45221ab6 5483 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5484}
5485
5486static struct shrinker mmu_shrinker = {
70534a73
DC
5487 .count_objects = mmu_shrink_count,
5488 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5489 .seeks = DEFAULT_SEEKS * 10,
5490};
5491
2ddfd20e 5492static void mmu_destroy_caches(void)
b5a33a75 5493{
c1bd743e
TH
5494 kmem_cache_destroy(pte_list_desc_cache);
5495 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5496}
5497
5498int kvm_mmu_module_init(void)
5499{
ab271bd4
AB
5500 int ret = -ENOMEM;
5501
f160c7b7
JS
5502 kvm_mmu_clear_all_pte_masks();
5503
53c07b18
XG
5504 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5505 sizeof(struct pte_list_desc),
46bea48a 5506 0, SLAB_ACCOUNT, NULL);
53c07b18 5507 if (!pte_list_desc_cache)
ab271bd4 5508 goto out;
b5a33a75 5509
d3d25b04
AK
5510 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5511 sizeof(struct kvm_mmu_page),
46bea48a 5512 0, SLAB_ACCOUNT, NULL);
d3d25b04 5513 if (!mmu_page_header_cache)
ab271bd4 5514 goto out;
d3d25b04 5515
908c7f19 5516 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 5517 goto out;
45bf21a8 5518
ab271bd4
AB
5519 ret = register_shrinker(&mmu_shrinker);
5520 if (ret)
5521 goto out;
3ee16c81 5522
b5a33a75
AK
5523 return 0;
5524
ab271bd4 5525out:
3ee16c81 5526 mmu_destroy_caches();
ab271bd4 5527 return ret;
b5a33a75
AK
5528}
5529
3ad82a7e
ZX
5530/*
5531 * Caculate mmu pages needed for kvm.
5532 */
5533unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5534{
3ad82a7e
ZX
5535 unsigned int nr_mmu_pages;
5536 unsigned int nr_pages = 0;
bc6678a3 5537 struct kvm_memslots *slots;
be6ba0f0 5538 struct kvm_memory_slot *memslot;
9da0e4d5 5539 int i;
3ad82a7e 5540
9da0e4d5
PB
5541 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5542 slots = __kvm_memslots(kvm, i);
90d83dc3 5543
9da0e4d5
PB
5544 kvm_for_each_memslot(memslot, slots)
5545 nr_pages += memslot->npages;
5546 }
3ad82a7e
ZX
5547
5548 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5549 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 5550 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5551
5552 return nr_mmu_pages;
5553}
5554
c42fffe3
XG
5555void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5556{
95f93af4 5557 kvm_mmu_unload(vcpu);
c42fffe3
XG
5558 free_mmu_pages(vcpu);
5559 mmu_free_memory_caches(vcpu);
b034cf01
XG
5560}
5561
b034cf01
XG
5562void kvm_mmu_module_exit(void)
5563{
5564 mmu_destroy_caches();
5565 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5566 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5567 mmu_audit_disable();
5568}