]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: PPC: Book3S: Fix typo in top comment about locking
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
6aa8b732 44
18552672
JR
45/*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
2f333bcb 52bool tdp_enabled = false;
18552672 53
8b1fe17c
XG
54enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
6903074c
XG
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
8b1fe17c 61};
37a7d8b0 62
8b1fe17c 63#undef MMU_DEBUG
37a7d8b0
AK
64
65#ifdef MMU_DEBUG
fa4a2c08
PB
66static bool dbg = 0;
67module_param(dbg, bool, 0644);
37a7d8b0
AK
68
69#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 71#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 72#else
37a7d8b0
AK
73#define pgprintk(x...) do { } while (0)
74#define rmap_printk(x...) do { } while (0)
fa4a2c08 75#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 76#endif
6aa8b732 77
957ed9ef
XG
78#define PTE_PREFETCH_NUM 8
79
00763e41 80#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
81#define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
6aa8b732
AK
83#define PT64_LEVEL_BITS 9
84
85#define PT64_LEVEL_SHIFT(level) \
d77c26fc 86 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 87
6aa8b732
AK
88#define PT64_INDEX(address, level)\
89 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92#define PT32_LEVEL_BITS 10
93
94#define PT32_LEVEL_SHIFT(level) \
d77c26fc 95 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 96
e04da980
JR
97#define PT32_LVL_OFFSET_MASK(level) \
98 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
100
101#define PT32_INDEX(address, level)\
102 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
27aba766 105#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
106#define PT64_DIR_BASE_ADDR_MASK \
107 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
108#define PT64_LVL_ADDR_MASK(level) \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 * PT64_LEVEL_BITS))) - 1))
111#define PT64_LVL_OFFSET_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
114
115#define PT32_BASE_ADDR_MASK PAGE_MASK
116#define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
118#define PT32_LVL_ADDR_MASK(level) \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT32_LEVEL_BITS))) - 1))
6aa8b732 121
53166229
GN
122#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 | shadow_x_mask | shadow_nx_mask)
6aa8b732 124
fe135d2c
AK
125#define ACC_EXEC_MASK 1
126#define ACC_WRITE_MASK PT_WRITABLE_MASK
127#define ACC_USER_MASK PT_USER_MASK
128#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
90bb6fc5
AK
130#include <trace/events/kvm.h>
131
07420171
AK
132#define CREATE_TRACE_POINTS
133#include "mmutrace.h"
134
49fde340
XG
135#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 137
135f8c2b
AK
138#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
220f773a
TY
140/* make pte_list_desc fit well in cache line */
141#define PTE_LIST_EXT 3
142
53c07b18
XG
143struct pte_list_desc {
144 u64 *sptes[PTE_LIST_EXT];
145 struct pte_list_desc *more;
cd4a4e53
AK
146};
147
2d11123a
AK
148struct kvm_shadow_walk_iterator {
149 u64 addr;
150 hpa_t shadow_addr;
2d11123a 151 u64 *sptep;
dd3bfd59 152 int level;
2d11123a
AK
153 unsigned index;
154};
155
156#define for_each_shadow_entry(_vcpu, _addr, _walker) \
157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
160
c2a2ac2b
XG
161#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)) && \
164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
165 __shadow_walk_next(&(_walker), spte))
166
53c07b18 167static struct kmem_cache *pte_list_desc_cache;
d3d25b04 168static struct kmem_cache *mmu_page_header_cache;
45221ab6 169static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 170
7b52345e
SY
171static u64 __read_mostly shadow_nx_mask;
172static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173static u64 __read_mostly shadow_user_mask;
174static u64 __read_mostly shadow_accessed_mask;
175static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
176static u64 __read_mostly shadow_mmio_mask;
177
178static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 179static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
180
181void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182{
183 shadow_mmio_mask = mmio_mask;
184}
185EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
f2fd125d 187/*
ee3d1570
DM
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates. The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
192 *
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 195 */
ee3d1570 196#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
197#define MMIO_SPTE_GEN_HIGH_SHIFT 52
198
ee3d1570
DM
199#define MMIO_GEN_SHIFT 20
200#define MMIO_GEN_LOW_SHIFT 10
201#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 202#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
203
204static u64 generation_mmio_spte_mask(unsigned int gen)
205{
206 u64 mask;
207
842bb26a 208 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
209
210 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212 return mask;
213}
214
215static unsigned int get_mmio_spte_generation(u64 spte)
216{
217 unsigned int gen;
218
219 spte &= ~shadow_mmio_mask;
220
221 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223 return gen;
224}
225
54bf36aa 226static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 227{
54bf36aa 228 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
229}
230
54bf36aa 231static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 232 unsigned access)
ce88decf 233{
54bf36aa 234 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 235 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 236
ce88decf 237 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 238 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 239
f8f55942 240 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 241 mmu_spte_set(sptep, mask);
ce88decf
XG
242}
243
244static bool is_mmio_spte(u64 spte)
245{
246 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247}
248
249static gfn_t get_mmio_spte_gfn(u64 spte)
250{
842bb26a 251 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 252 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
253}
254
255static unsigned get_mmio_spte_access(u64 spte)
256{
842bb26a 257 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 258 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
259}
260
54bf36aa 261static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 262 pfn_t pfn, unsigned access)
ce88decf
XG
263{
264 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 265 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
266 return true;
267 }
268
269 return false;
270}
c7addb90 271
54bf36aa 272static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 273{
089504c0
XG
274 unsigned int kvm_gen, spte_gen;
275
54bf36aa 276 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
277 spte_gen = get_mmio_spte_generation(spte);
278
279 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280 return likely(kvm_gen == spte_gen);
f8f55942
XG
281}
282
7b52345e 283void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 284 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
285{
286 shadow_user_mask = user_mask;
287 shadow_accessed_mask = accessed_mask;
288 shadow_dirty_mask = dirty_mask;
289 shadow_nx_mask = nx_mask;
290 shadow_x_mask = x_mask;
291}
292EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
6aa8b732
AK
294static int is_cpuid_PSE36(void)
295{
296 return 1;
297}
298
73b1087e
AK
299static int is_nx(struct kvm_vcpu *vcpu)
300{
f6801dff 301 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
302}
303
c7addb90
AK
304static int is_shadow_present_pte(u64 pte)
305{
ce88decf 306 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
307}
308
05da4558
MT
309static int is_large_pte(u64 pte)
310{
311 return pte & PT_PAGE_SIZE_MASK;
312}
313
43a3795a 314static int is_rmap_spte(u64 pte)
cd4a4e53 315{
4b1a80fa 316 return is_shadow_present_pte(pte);
cd4a4e53
AK
317}
318
776e6633
MT
319static int is_last_spte(u64 pte, int level)
320{
321 if (level == PT_PAGE_TABLE_LEVEL)
322 return 1;
852e3c19 323 if (is_large_pte(pte))
776e6633
MT
324 return 1;
325 return 0;
326}
327
35149e21 328static pfn_t spte_to_pfn(u64 pte)
0b49ea86 329{
35149e21 330 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
331}
332
da928521
AK
333static gfn_t pse36_gfn_delta(u32 gpte)
334{
335 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337 return (gpte & PT32_DIR_PSE36_MASK) << shift;
338}
339
603e0651 340#ifdef CONFIG_X86_64
d555c333 341static void __set_spte(u64 *sptep, u64 spte)
e663ee64 342{
603e0651 343 *sptep = spte;
e663ee64
AK
344}
345
603e0651 346static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 347{
603e0651
XG
348 *sptep = spte;
349}
350
351static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352{
353 return xchg(sptep, spte);
354}
c2a2ac2b
XG
355
356static u64 __get_spte_lockless(u64 *sptep)
357{
358 return ACCESS_ONCE(*sptep);
359}
a9221dd5 360#else
603e0651
XG
361union split_spte {
362 struct {
363 u32 spte_low;
364 u32 spte_high;
365 };
366 u64 spte;
367};
a9221dd5 368
c2a2ac2b
XG
369static void count_spte_clear(u64 *sptep, u64 spte)
370{
371 struct kvm_mmu_page *sp = page_header(__pa(sptep));
372
373 if (is_shadow_present_pte(spte))
374 return;
375
376 /* Ensure the spte is completely set before we increase the count */
377 smp_wmb();
378 sp->clear_spte_count++;
379}
380
603e0651
XG
381static void __set_spte(u64 *sptep, u64 spte)
382{
383 union split_spte *ssptep, sspte;
a9221dd5 384
603e0651
XG
385 ssptep = (union split_spte *)sptep;
386 sspte = (union split_spte)spte;
387
388 ssptep->spte_high = sspte.spte_high;
389
390 /*
391 * If we map the spte from nonpresent to present, We should store
392 * the high bits firstly, then set present bit, so cpu can not
393 * fetch this spte while we are setting the spte.
394 */
395 smp_wmb();
396
397 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
398}
399
603e0651
XG
400static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401{
402 union split_spte *ssptep, sspte;
403
404 ssptep = (union split_spte *)sptep;
405 sspte = (union split_spte)spte;
406
407 ssptep->spte_low = sspte.spte_low;
408
409 /*
410 * If we map the spte from present to nonpresent, we should clear
411 * present bit firstly to avoid vcpu fetch the old high bits.
412 */
413 smp_wmb();
414
415 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 416 count_spte_clear(sptep, spte);
603e0651
XG
417}
418
419static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
420{
421 union split_spte *ssptep, sspte, orig;
422
423 ssptep = (union split_spte *)sptep;
424 sspte = (union split_spte)spte;
425
426 /* xchg acts as a barrier before the setting of the high bits */
427 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
428 orig.spte_high = ssptep->spte_high;
429 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 430 count_spte_clear(sptep, spte);
603e0651
XG
431
432 return orig.spte;
433}
c2a2ac2b
XG
434
435/*
436 * The idea using the light way get the spte on x86_32 guest is from
437 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
438 *
439 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
440 * coalesces them and we are running out of the MMU lock. Therefore
441 * we need to protect against in-progress updates of the spte.
442 *
443 * Reading the spte while an update is in progress may get the old value
444 * for the high part of the spte. The race is fine for a present->non-present
445 * change (because the high part of the spte is ignored for non-present spte),
446 * but for a present->present change we must reread the spte.
447 *
448 * All such changes are done in two steps (present->non-present and
449 * non-present->present), hence it is enough to count the number of
450 * present->non-present updates: if it changed while reading the spte,
451 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
452 */
453static u64 __get_spte_lockless(u64 *sptep)
454{
455 struct kvm_mmu_page *sp = page_header(__pa(sptep));
456 union split_spte spte, *orig = (union split_spte *)sptep;
457 int count;
458
459retry:
460 count = sp->clear_spte_count;
461 smp_rmb();
462
463 spte.spte_low = orig->spte_low;
464 smp_rmb();
465
466 spte.spte_high = orig->spte_high;
467 smp_rmb();
468
469 if (unlikely(spte.spte_low != orig->spte_low ||
470 count != sp->clear_spte_count))
471 goto retry;
472
473 return spte.spte;
474}
603e0651
XG
475#endif
476
c7ba5b48
XG
477static bool spte_is_locklessly_modifiable(u64 spte)
478{
feb3eb70
GN
479 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
480 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
481}
482
8672b721
XG
483static bool spte_has_volatile_bits(u64 spte)
484{
c7ba5b48
XG
485 /*
486 * Always atomicly update spte if it can be updated
487 * out of mmu-lock, it can ensure dirty bit is not lost,
488 * also, it can help us to get a stable is_writable_pte()
489 * to ensure tlb flush is not missed.
490 */
491 if (spte_is_locklessly_modifiable(spte))
492 return true;
493
8672b721
XG
494 if (!shadow_accessed_mask)
495 return false;
496
497 if (!is_shadow_present_pte(spte))
498 return false;
499
4132779b
XG
500 if ((spte & shadow_accessed_mask) &&
501 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
502 return false;
503
504 return true;
505}
506
4132779b
XG
507static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
508{
509 return (old_spte & bit_mask) && !(new_spte & bit_mask);
510}
511
7e71a59b
KH
512static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
513{
514 return (old_spte & bit_mask) != (new_spte & bit_mask);
515}
516
1df9f2dc
XG
517/* Rules for using mmu_spte_set:
518 * Set the sptep from nonpresent to present.
519 * Note: the sptep being assigned *must* be either not present
520 * or in a state where the hardware will not attempt to update
521 * the spte.
522 */
523static void mmu_spte_set(u64 *sptep, u64 new_spte)
524{
525 WARN_ON(is_shadow_present_pte(*sptep));
526 __set_spte(sptep, new_spte);
527}
528
529/* Rules for using mmu_spte_update:
530 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
531 *
532 * Whenever we overwrite a writable spte with a read-only one we
533 * should flush remote TLBs. Otherwise rmap_write_protect
534 * will find a read-only spte, even though the writable spte
535 * might be cached on a CPU's TLB, the return value indicates this
536 * case.
1df9f2dc 537 */
6e7d0354 538static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 539{
c7ba5b48 540 u64 old_spte = *sptep;
6e7d0354 541 bool ret = false;
4132779b
XG
542
543 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 544
6e7d0354
XG
545 if (!is_shadow_present_pte(old_spte)) {
546 mmu_spte_set(sptep, new_spte);
547 return ret;
548 }
4132779b 549
c7ba5b48 550 if (!spte_has_volatile_bits(old_spte))
603e0651 551 __update_clear_spte_fast(sptep, new_spte);
4132779b 552 else
603e0651 553 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 554
c7ba5b48
XG
555 /*
556 * For the spte updated out of mmu-lock is safe, since
557 * we always atomicly update it, see the comments in
558 * spte_has_volatile_bits().
559 */
7f31c959
XG
560 if (spte_is_locklessly_modifiable(old_spte) &&
561 !is_writable_pte(new_spte))
6e7d0354
XG
562 ret = true;
563
4132779b 564 if (!shadow_accessed_mask)
6e7d0354 565 return ret;
4132779b 566
7e71a59b
KH
567 /*
568 * Flush TLB when accessed/dirty bits are changed in the page tables,
569 * to guarantee consistency between TLB and page tables.
570 */
571 if (spte_is_bit_changed(old_spte, new_spte,
572 shadow_accessed_mask | shadow_dirty_mask))
573 ret = true;
574
4132779b
XG
575 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
576 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
577 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
578 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
579
580 return ret;
b79b93f9
AK
581}
582
1df9f2dc
XG
583/*
584 * Rules for using mmu_spte_clear_track_bits:
585 * It sets the sptep from present to nonpresent, and track the
586 * state bits, it is used to clear the last level sptep.
587 */
588static int mmu_spte_clear_track_bits(u64 *sptep)
589{
590 pfn_t pfn;
591 u64 old_spte = *sptep;
592
593 if (!spte_has_volatile_bits(old_spte))
603e0651 594 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 595 else
603e0651 596 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
597
598 if (!is_rmap_spte(old_spte))
599 return 0;
600
601 pfn = spte_to_pfn(old_spte);
86fde74c
XG
602
603 /*
604 * KVM does not hold the refcount of the page used by
605 * kvm mmu, before reclaiming the page, we should
606 * unmap it from mmu first.
607 */
bf4bea8e 608 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 609
1df9f2dc
XG
610 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
611 kvm_set_pfn_accessed(pfn);
612 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
613 kvm_set_pfn_dirty(pfn);
614 return 1;
615}
616
617/*
618 * Rules for using mmu_spte_clear_no_track:
619 * Directly clear spte without caring the state bits of sptep,
620 * it is used to set the upper level spte.
621 */
622static void mmu_spte_clear_no_track(u64 *sptep)
623{
603e0651 624 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
625}
626
c2a2ac2b
XG
627static u64 mmu_spte_get_lockless(u64 *sptep)
628{
629 return __get_spte_lockless(sptep);
630}
631
632static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
633{
c142786c
AK
634 /*
635 * Prevent page table teardown by making any free-er wait during
636 * kvm_flush_remote_tlbs() IPI to all active vcpus.
637 */
638 local_irq_disable();
639 vcpu->mode = READING_SHADOW_PAGE_TABLES;
640 /*
641 * Make sure a following spte read is not reordered ahead of the write
642 * to vcpu->mode.
643 */
644 smp_mb();
c2a2ac2b
XG
645}
646
647static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
648{
c142786c
AK
649 /*
650 * Make sure the write to vcpu->mode is not reordered in front of
651 * reads to sptes. If it does, kvm_commit_zap_page() can see us
652 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
653 */
654 smp_mb();
655 vcpu->mode = OUTSIDE_GUEST_MODE;
656 local_irq_enable();
c2a2ac2b
XG
657}
658
e2dec939 659static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 660 struct kmem_cache *base_cache, int min)
714b93da
AK
661{
662 void *obj;
663
664 if (cache->nobjs >= min)
e2dec939 665 return 0;
714b93da 666 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 667 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 668 if (!obj)
e2dec939 669 return -ENOMEM;
714b93da
AK
670 cache->objects[cache->nobjs++] = obj;
671 }
e2dec939 672 return 0;
714b93da
AK
673}
674
f759e2b4
XG
675static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
676{
677 return cache->nobjs;
678}
679
e8ad9a70
XG
680static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
681 struct kmem_cache *cache)
714b93da
AK
682{
683 while (mc->nobjs)
e8ad9a70 684 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
685}
686
c1158e63 687static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 688 int min)
c1158e63 689{
842f22ed 690 void *page;
c1158e63
AK
691
692 if (cache->nobjs >= min)
693 return 0;
694 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 695 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
696 if (!page)
697 return -ENOMEM;
842f22ed 698 cache->objects[cache->nobjs++] = page;
c1158e63
AK
699 }
700 return 0;
701}
702
703static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
704{
705 while (mc->nobjs)
c4d198d5 706 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
707}
708
2e3e5882 709static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 710{
e2dec939
AK
711 int r;
712
53c07b18 713 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 714 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
715 if (r)
716 goto out;
ad312c7c 717 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
718 if (r)
719 goto out;
ad312c7c 720 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 721 mmu_page_header_cache, 4);
e2dec939
AK
722out:
723 return r;
714b93da
AK
724}
725
726static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
727{
53c07b18
XG
728 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
729 pte_list_desc_cache);
ad312c7c 730 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
731 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
732 mmu_page_header_cache);
714b93da
AK
733}
734
80feb89a 735static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
736{
737 void *p;
738
739 BUG_ON(!mc->nobjs);
740 p = mc->objects[--mc->nobjs];
714b93da
AK
741 return p;
742}
743
53c07b18 744static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 745{
80feb89a 746 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
747}
748
53c07b18 749static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 750{
53c07b18 751 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
752}
753
2032a93d
LJ
754static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
755{
756 if (!sp->role.direct)
757 return sp->gfns[index];
758
759 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
760}
761
762static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
763{
764 if (sp->role.direct)
765 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
766 else
767 sp->gfns[index] = gfn;
768}
769
05da4558 770/*
d4dbf470
TY
771 * Return the pointer to the large page information for a given gfn,
772 * handling slots that are not large page aligned.
05da4558 773 */
d4dbf470
TY
774static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
775 struct kvm_memory_slot *slot,
776 int level)
05da4558
MT
777{
778 unsigned long idx;
779
fb03cb6f 780 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 781 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
782}
783
3ed1a478 784static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 785{
699023e2 786 struct kvm_memslots *slots;
d25797b2 787 struct kvm_memory_slot *slot;
d4dbf470 788 struct kvm_lpage_info *linfo;
3ed1a478 789 gfn_t gfn;
d25797b2 790 int i;
05da4558 791
3ed1a478 792 gfn = sp->gfn;
699023e2
PB
793 slots = kvm_memslots_for_spte_role(kvm, sp->role);
794 slot = __gfn_to_memslot(slots, gfn);
8a3d08f1 795 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d4dbf470
TY
796 linfo = lpage_info_slot(gfn, slot, i);
797 linfo->write_count += 1;
d25797b2 798 }
332b207d 799 kvm->arch.indirect_shadow_pages++;
05da4558
MT
800}
801
3ed1a478 802static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 803{
699023e2 804 struct kvm_memslots *slots;
d25797b2 805 struct kvm_memory_slot *slot;
d4dbf470 806 struct kvm_lpage_info *linfo;
3ed1a478 807 gfn_t gfn;
d25797b2 808 int i;
05da4558 809
3ed1a478 810 gfn = sp->gfn;
699023e2
PB
811 slots = kvm_memslots_for_spte_role(kvm, sp->role);
812 slot = __gfn_to_memslot(slots, gfn);
8a3d08f1 813 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d4dbf470
TY
814 linfo = lpage_info_slot(gfn, slot, i);
815 linfo->write_count -= 1;
816 WARN_ON(linfo->write_count < 0);
d25797b2 817 }
332b207d 818 kvm->arch.indirect_shadow_pages--;
05da4558
MT
819}
820
54bf36aa 821static int has_wrprotected_page(struct kvm_vcpu *vcpu,
d25797b2
JR
822 gfn_t gfn,
823 int level)
05da4558 824{
2843099f 825 struct kvm_memory_slot *slot;
d4dbf470 826 struct kvm_lpage_info *linfo;
05da4558 827
54bf36aa 828 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
05da4558 829 if (slot) {
d4dbf470
TY
830 linfo = lpage_info_slot(gfn, slot, level);
831 return linfo->write_count;
05da4558
MT
832 }
833
834 return 1;
835}
836
d25797b2 837static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 838{
8f0b1ab6 839 unsigned long page_size;
d25797b2 840 int i, ret = 0;
05da4558 841
8f0b1ab6 842 page_size = kvm_host_page_size(kvm, gfn);
05da4558 843
8a3d08f1 844 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
845 if (page_size >= KVM_HPAGE_SIZE(i))
846 ret = i;
847 else
848 break;
849 }
850
4c2155ce 851 return ret;
05da4558
MT
852}
853
5d163b1c
XG
854static struct kvm_memory_slot *
855gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
856 bool no_dirty_log)
05da4558
MT
857{
858 struct kvm_memory_slot *slot;
5d163b1c 859
54bf36aa 860 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
5d163b1c
XG
861 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
862 (no_dirty_log && slot->dirty_bitmap))
863 slot = NULL;
864
865 return slot;
866}
867
868static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
869{
a0a8eaba 870 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
871}
872
873static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
874{
875 int host_level, level, max_level;
05da4558 876
d25797b2
JR
877 host_level = host_mapping_level(vcpu->kvm, large_gfn);
878
879 if (host_level == PT_PAGE_TABLE_LEVEL)
880 return host_level;
881
55dd98c3 882 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
883
884 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
54bf36aa 885 if (has_wrprotected_page(vcpu, large_gfn, level))
d25797b2 886 break;
d25797b2
JR
887
888 return level - 1;
05da4558
MT
889}
890
290fc38d 891/*
53c07b18 892 * Pte mapping structures:
cd4a4e53 893 *
53c07b18 894 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 895 *
53c07b18
XG
896 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
897 * pte_list_desc containing more mappings.
53a27b39 898 *
53c07b18 899 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
900 * the spte was not added.
901 *
cd4a4e53 902 */
53c07b18
XG
903static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
904 unsigned long *pte_list)
cd4a4e53 905{
53c07b18 906 struct pte_list_desc *desc;
53a27b39 907 int i, count = 0;
cd4a4e53 908
53c07b18
XG
909 if (!*pte_list) {
910 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
911 *pte_list = (unsigned long)spte;
912 } else if (!(*pte_list & 1)) {
913 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
914 desc = mmu_alloc_pte_list_desc(vcpu);
915 desc->sptes[0] = (u64 *)*pte_list;
d555c333 916 desc->sptes[1] = spte;
53c07b18 917 *pte_list = (unsigned long)desc | 1;
cb16a7b3 918 ++count;
cd4a4e53 919 } else {
53c07b18
XG
920 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
921 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
922 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 923 desc = desc->more;
53c07b18 924 count += PTE_LIST_EXT;
53a27b39 925 }
53c07b18
XG
926 if (desc->sptes[PTE_LIST_EXT-1]) {
927 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
928 desc = desc->more;
929 }
d555c333 930 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 931 ++count;
d555c333 932 desc->sptes[i] = spte;
cd4a4e53 933 }
53a27b39 934 return count;
cd4a4e53
AK
935}
936
53c07b18
XG
937static void
938pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
939 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
940{
941 int j;
942
53c07b18 943 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 944 ;
d555c333
AK
945 desc->sptes[i] = desc->sptes[j];
946 desc->sptes[j] = NULL;
cd4a4e53
AK
947 if (j != 0)
948 return;
949 if (!prev_desc && !desc->more)
53c07b18 950 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
951 else
952 if (prev_desc)
953 prev_desc->more = desc->more;
954 else
53c07b18
XG
955 *pte_list = (unsigned long)desc->more | 1;
956 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
957}
958
53c07b18 959static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 960{
53c07b18
XG
961 struct pte_list_desc *desc;
962 struct pte_list_desc *prev_desc;
cd4a4e53
AK
963 int i;
964
53c07b18
XG
965 if (!*pte_list) {
966 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 967 BUG();
53c07b18
XG
968 } else if (!(*pte_list & 1)) {
969 rmap_printk("pte_list_remove: %p 1->0\n", spte);
970 if ((u64 *)*pte_list != spte) {
971 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
972 BUG();
973 }
53c07b18 974 *pte_list = 0;
cd4a4e53 975 } else {
53c07b18
XG
976 rmap_printk("pte_list_remove: %p many->many\n", spte);
977 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
978 prev_desc = NULL;
979 while (desc) {
53c07b18 980 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 981 if (desc->sptes[i] == spte) {
53c07b18 982 pte_list_desc_remove_entry(pte_list,
714b93da 983 desc, i,
cd4a4e53
AK
984 prev_desc);
985 return;
986 }
987 prev_desc = desc;
988 desc = desc->more;
989 }
53c07b18 990 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
991 BUG();
992 }
993}
994
67052b35
XG
995typedef void (*pte_list_walk_fn) (u64 *spte);
996static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
997{
998 struct pte_list_desc *desc;
999 int i;
1000
1001 if (!*pte_list)
1002 return;
1003
1004 if (!(*pte_list & 1))
1005 return fn((u64 *)*pte_list);
1006
1007 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1008 while (desc) {
1009 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1010 fn(desc->sptes[i]);
1011 desc = desc->more;
1012 }
1013}
1014
9373e2c0 1015static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 1016 struct kvm_memory_slot *slot)
53c07b18 1017{
77d11309 1018 unsigned long idx;
53c07b18 1019
77d11309 1020 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1021 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1022}
1023
9b9b1492
TY
1024/*
1025 * Take gfn and return the reverse mapping to it.
1026 */
e4cd1da9 1027static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
9b9b1492 1028{
699023e2 1029 struct kvm_memslots *slots;
9b9b1492
TY
1030 struct kvm_memory_slot *slot;
1031
699023e2
PB
1032 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1033 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1034 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1035}
1036
f759e2b4
XG
1037static bool rmap_can_add(struct kvm_vcpu *vcpu)
1038{
1039 struct kvm_mmu_memory_cache *cache;
1040
1041 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1042 return mmu_memory_cache_free_objects(cache);
1043}
1044
53c07b18
XG
1045static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1046{
1047 struct kvm_mmu_page *sp;
1048 unsigned long *rmapp;
1049
53c07b18
XG
1050 sp = page_header(__pa(spte));
1051 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
e4cd1da9 1052 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
53c07b18
XG
1053 return pte_list_add(vcpu, spte, rmapp);
1054}
1055
53c07b18
XG
1056static void rmap_remove(struct kvm *kvm, u64 *spte)
1057{
1058 struct kvm_mmu_page *sp;
1059 gfn_t gfn;
1060 unsigned long *rmapp;
1061
1062 sp = page_header(__pa(spte));
1063 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
e4cd1da9 1064 rmapp = gfn_to_rmap(kvm, gfn, sp);
53c07b18
XG
1065 pte_list_remove(spte, rmapp);
1066}
1067
1e3f42f0
TY
1068/*
1069 * Used by the following functions to iterate through the sptes linked by a
1070 * rmap. All fields are private and not assumed to be used outside.
1071 */
1072struct rmap_iterator {
1073 /* private fields */
1074 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1075 int pos; /* index of the sptep */
1076};
1077
1078/*
1079 * Iteration must be started by this function. This should also be used after
1080 * removing/dropping sptes from the rmap link because in such cases the
1081 * information in the itererator may not be valid.
1082 *
1083 * Returns sptep if found, NULL otherwise.
1084 */
1085static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1086{
1087 if (!rmap)
1088 return NULL;
1089
1090 if (!(rmap & 1)) {
1091 iter->desc = NULL;
1092 return (u64 *)rmap;
1093 }
1094
1095 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1096 iter->pos = 0;
1097 return iter->desc->sptes[iter->pos];
1098}
1099
1100/*
1101 * Must be used with a valid iterator: e.g. after rmap_get_first().
1102 *
1103 * Returns sptep if found, NULL otherwise.
1104 */
1105static u64 *rmap_get_next(struct rmap_iterator *iter)
1106{
1107 if (iter->desc) {
1108 if (iter->pos < PTE_LIST_EXT - 1) {
1109 u64 *sptep;
1110
1111 ++iter->pos;
1112 sptep = iter->desc->sptes[iter->pos];
1113 if (sptep)
1114 return sptep;
1115 }
1116
1117 iter->desc = iter->desc->more;
1118
1119 if (iter->desc) {
1120 iter->pos = 0;
1121 /* desc->sptes[0] cannot be NULL */
1122 return iter->desc->sptes[iter->pos];
1123 }
1124 }
1125
1126 return NULL;
1127}
1128
0d536790
XG
1129#define for_each_rmap_spte(_rmap_, _iter_, _spte_) \
1130 for (_spte_ = rmap_get_first(*_rmap_, _iter_); \
1131 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;}); \
1132 _spte_ = rmap_get_next(_iter_))
1133
c3707958 1134static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1135{
1df9f2dc 1136 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1137 rmap_remove(kvm, sptep);
be38d276
AK
1138}
1139
8e22f955
XG
1140
1141static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1142{
1143 if (is_large_pte(*sptep)) {
1144 WARN_ON(page_header(__pa(sptep))->role.level ==
1145 PT_PAGE_TABLE_LEVEL);
1146 drop_spte(kvm, sptep);
1147 --kvm->stat.lpages;
1148 return true;
1149 }
1150
1151 return false;
1152}
1153
1154static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1155{
1156 if (__drop_large_spte(vcpu->kvm, sptep))
1157 kvm_flush_remote_tlbs(vcpu->kvm);
1158}
1159
1160/*
49fde340 1161 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1162 * spte write-protection is caused by protecting shadow page table.
49fde340 1163 *
b4619660 1164 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1165 * protection:
1166 * - for dirty logging, the spte can be set to writable at anytime if
1167 * its dirty bitmap is properly set.
1168 * - for spte protection, the spte can be writable only after unsync-ing
1169 * shadow page.
8e22f955 1170 *
c126d94f 1171 * Return true if tlb need be flushed.
8e22f955 1172 */
c126d94f 1173static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1174{
1175 u64 spte = *sptep;
1176
49fde340
XG
1177 if (!is_writable_pte(spte) &&
1178 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1179 return false;
1180
1181 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1182
49fde340
XG
1183 if (pt_protect)
1184 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1185 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1186
c126d94f 1187 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1188}
1189
49fde340 1190static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1191 bool pt_protect)
98348e95 1192{
1e3f42f0
TY
1193 u64 *sptep;
1194 struct rmap_iterator iter;
d13bc5b5 1195 bool flush = false;
374cbac0 1196
0d536790 1197 for_each_rmap_spte(rmapp, &iter, sptep)
c126d94f 1198 flush |= spte_write_protect(kvm, sptep, pt_protect);
855149aa 1199
d13bc5b5 1200 return flush;
a0ed4607
TY
1201}
1202
f4b4b180
KH
1203static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1204{
1205 u64 spte = *sptep;
1206
1207 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1208
1209 spte &= ~shadow_dirty_mask;
1210
1211 return mmu_spte_update(sptep, spte);
1212}
1213
1214static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1215{
1216 u64 *sptep;
1217 struct rmap_iterator iter;
1218 bool flush = false;
1219
0d536790 1220 for_each_rmap_spte(rmapp, &iter, sptep)
f4b4b180 1221 flush |= spte_clear_dirty(kvm, sptep);
f4b4b180
KH
1222
1223 return flush;
1224}
1225
1226static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1227{
1228 u64 spte = *sptep;
1229
1230 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1231
1232 spte |= shadow_dirty_mask;
1233
1234 return mmu_spte_update(sptep, spte);
1235}
1236
1237static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1238{
1239 u64 *sptep;
1240 struct rmap_iterator iter;
1241 bool flush = false;
1242
0d536790 1243 for_each_rmap_spte(rmapp, &iter, sptep)
f4b4b180 1244 flush |= spte_set_dirty(kvm, sptep);
f4b4b180
KH
1245
1246 return flush;
1247}
1248
5dc99b23 1249/**
3b0f1d01 1250 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1251 * @kvm: kvm instance
1252 * @slot: slot to protect
1253 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1254 * @mask: indicates which pages we should protect
1255 *
1256 * Used when we do not need to care about huge page mappings: e.g. during dirty
1257 * logging we do not have any such mappings.
1258 */
3b0f1d01 1259static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1260 struct kvm_memory_slot *slot,
1261 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1262{
1263 unsigned long *rmapp;
a0ed4607 1264
5dc99b23 1265 while (mask) {
65fbe37c
TY
1266 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1267 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1268 __rmap_write_protect(kvm, rmapp, false);
05da4558 1269
5dc99b23
TY
1270 /* clear the first set bit */
1271 mask &= mask - 1;
1272 }
374cbac0
AK
1273}
1274
f4b4b180
KH
1275/**
1276 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1277 * @kvm: kvm instance
1278 * @slot: slot to clear D-bit
1279 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1280 * @mask: indicates which pages we should clear D-bit
1281 *
1282 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1283 */
1284void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1285 struct kvm_memory_slot *slot,
1286 gfn_t gfn_offset, unsigned long mask)
1287{
1288 unsigned long *rmapp;
1289
1290 while (mask) {
1291 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1292 PT_PAGE_TABLE_LEVEL, slot);
1293 __rmap_clear_dirty(kvm, rmapp);
1294
1295 /* clear the first set bit */
1296 mask &= mask - 1;
1297 }
1298}
1299EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1300
3b0f1d01
KH
1301/**
1302 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1303 * PT level pages.
1304 *
1305 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1306 * enable dirty logging for them.
1307 *
1308 * Used when we do not need to care about huge page mappings: e.g. during dirty
1309 * logging we do not have any such mappings.
1310 */
1311void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1312 struct kvm_memory_slot *slot,
1313 gfn_t gfn_offset, unsigned long mask)
1314{
88178fd4
KH
1315 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1316 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1317 mask);
1318 else
1319 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1320}
1321
54bf36aa 1322static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
95d4c16c
TY
1323{
1324 struct kvm_memory_slot *slot;
5dc99b23
TY
1325 unsigned long *rmapp;
1326 int i;
2f84569f 1327 bool write_protected = false;
95d4c16c 1328
54bf36aa 1329 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
5dc99b23 1330
8a3d08f1 1331 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
5dc99b23 1332 rmapp = __gfn_to_rmap(gfn, i, slot);
54bf36aa 1333 write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
5dc99b23
TY
1334 }
1335
1336 return write_protected;
95d4c16c
TY
1337}
1338
6a49f85c 1339static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
e930bffe 1340{
1e3f42f0
TY
1341 u64 *sptep;
1342 struct rmap_iterator iter;
6a49f85c 1343 bool flush = false;
e930bffe 1344
1e3f42f0
TY
1345 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1346 BUG_ON(!(*sptep & PT_PRESENT_MASK));
6a49f85c 1347 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1348
1349 drop_spte(kvm, sptep);
6a49f85c 1350 flush = true;
e930bffe 1351 }
1e3f42f0 1352
6a49f85c
XG
1353 return flush;
1354}
1355
1356static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1357 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1358 unsigned long data)
1359{
1360 return kvm_zap_rmapp(kvm, rmapp);
e930bffe
AA
1361}
1362
8a8365c5 1363static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1364 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1365 unsigned long data)
3da0dd43 1366{
1e3f42f0
TY
1367 u64 *sptep;
1368 struct rmap_iterator iter;
3da0dd43 1369 int need_flush = 0;
1e3f42f0 1370 u64 new_spte;
3da0dd43
IE
1371 pte_t *ptep = (pte_t *)data;
1372 pfn_t new_pfn;
1373
1374 WARN_ON(pte_huge(*ptep));
1375 new_pfn = pte_pfn(*ptep);
1e3f42f0 1376
0d536790
XG
1377restart:
1378 for_each_rmap_spte(rmapp, &iter, sptep) {
8a9522d2
ALC
1379 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1380 sptep, *sptep, gfn, level);
1e3f42f0 1381
3da0dd43 1382 need_flush = 1;
1e3f42f0 1383
3da0dd43 1384 if (pte_write(*ptep)) {
1e3f42f0 1385 drop_spte(kvm, sptep);
0d536790 1386 goto restart;
3da0dd43 1387 } else {
1e3f42f0 1388 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1389 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1390
1391 new_spte &= ~PT_WRITABLE_MASK;
1392 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1393 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1394
1395 mmu_spte_clear_track_bits(sptep);
1396 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1397 }
1398 }
1e3f42f0 1399
3da0dd43
IE
1400 if (need_flush)
1401 kvm_flush_remote_tlbs(kvm);
1402
1403 return 0;
1404}
1405
6ce1f4e2
XG
1406struct slot_rmap_walk_iterator {
1407 /* input fields. */
1408 struct kvm_memory_slot *slot;
1409 gfn_t start_gfn;
1410 gfn_t end_gfn;
1411 int start_level;
1412 int end_level;
1413
1414 /* output fields. */
1415 gfn_t gfn;
1416 unsigned long *rmap;
1417 int level;
1418
1419 /* private field. */
1420 unsigned long *end_rmap;
1421};
1422
1423static void
1424rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1425{
1426 iterator->level = level;
1427 iterator->gfn = iterator->start_gfn;
1428 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1429 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1430 iterator->slot);
1431}
1432
1433static void
1434slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1435 struct kvm_memory_slot *slot, int start_level,
1436 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1437{
1438 iterator->slot = slot;
1439 iterator->start_level = start_level;
1440 iterator->end_level = end_level;
1441 iterator->start_gfn = start_gfn;
1442 iterator->end_gfn = end_gfn;
1443
1444 rmap_walk_init_level(iterator, iterator->start_level);
1445}
1446
1447static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1448{
1449 return !!iterator->rmap;
1450}
1451
1452static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1453{
1454 if (++iterator->rmap <= iterator->end_rmap) {
1455 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1456 return;
1457 }
1458
1459 if (++iterator->level > iterator->end_level) {
1460 iterator->rmap = NULL;
1461 return;
1462 }
1463
1464 rmap_walk_init_level(iterator, iterator->level);
1465}
1466
1467#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1468 _start_gfn, _end_gfn, _iter_) \
1469 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1470 _end_level_, _start_gfn, _end_gfn); \
1471 slot_rmap_walk_okay(_iter_); \
1472 slot_rmap_walk_next(_iter_))
1473
84504ef3
TY
1474static int kvm_handle_hva_range(struct kvm *kvm,
1475 unsigned long start,
1476 unsigned long end,
1477 unsigned long data,
1478 int (*handler)(struct kvm *kvm,
1479 unsigned long *rmapp,
048212d0 1480 struct kvm_memory_slot *slot,
8a9522d2
ALC
1481 gfn_t gfn,
1482 int level,
84504ef3 1483 unsigned long data))
e930bffe 1484{
bc6678a3 1485 struct kvm_memslots *slots;
be6ba0f0 1486 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1487 struct slot_rmap_walk_iterator iterator;
1488 int ret = 0;
9da0e4d5 1489 int i;
bc6678a3 1490
9da0e4d5
PB
1491 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1492 slots = __kvm_memslots(kvm, i);
1493 kvm_for_each_memslot(memslot, slots) {
1494 unsigned long hva_start, hva_end;
1495 gfn_t gfn_start, gfn_end;
e930bffe 1496
9da0e4d5
PB
1497 hva_start = max(start, memslot->userspace_addr);
1498 hva_end = min(end, memslot->userspace_addr +
1499 (memslot->npages << PAGE_SHIFT));
1500 if (hva_start >= hva_end)
1501 continue;
1502 /*
1503 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1504 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1505 */
1506 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1507 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1508
1509 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1510 PT_MAX_HUGEPAGE_LEVEL,
1511 gfn_start, gfn_end - 1,
1512 &iterator)
1513 ret |= handler(kvm, iterator.rmap, memslot,
1514 iterator.gfn, iterator.level, data);
1515 }
e930bffe
AA
1516 }
1517
f395302e 1518 return ret;
e930bffe
AA
1519}
1520
84504ef3
TY
1521static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1522 unsigned long data,
1523 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1524 struct kvm_memory_slot *slot,
8a9522d2 1525 gfn_t gfn, int level,
84504ef3
TY
1526 unsigned long data))
1527{
1528 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1529}
1530
1531int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1532{
3da0dd43
IE
1533 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1534}
1535
b3ae2096
TY
1536int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1537{
1538 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1539}
1540
3da0dd43
IE
1541void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1542{
8a8365c5 1543 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1544}
1545
8a8365c5 1546static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1547 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1548 unsigned long data)
e930bffe 1549{
1e3f42f0 1550 u64 *sptep;
79f702a6 1551 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1552 int young = 0;
1553
57128468 1554 BUG_ON(!shadow_accessed_mask);
534e38b4 1555
0d536790 1556 for_each_rmap_spte(rmapp, &iter, sptep)
3f6d8c8a 1557 if (*sptep & shadow_accessed_mask) {
e930bffe 1558 young = 1;
3f6d8c8a
XH
1559 clear_bit((ffs(shadow_accessed_mask) - 1),
1560 (unsigned long *)sptep);
e930bffe 1561 }
0d536790 1562
8a9522d2 1563 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1564 return young;
1565}
1566
8ee53820 1567static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1568 struct kvm_memory_slot *slot, gfn_t gfn,
1569 int level, unsigned long data)
8ee53820 1570{
1e3f42f0
TY
1571 u64 *sptep;
1572 struct rmap_iterator iter;
8ee53820
AA
1573 int young = 0;
1574
1575 /*
1576 * If there's no access bit in the secondary pte set by the
1577 * hardware it's up to gup-fast/gup to set the access bit in
1578 * the primary pte or in the page structure.
1579 */
1580 if (!shadow_accessed_mask)
1581 goto out;
1582
0d536790 1583 for_each_rmap_spte(rmapp, &iter, sptep)
3f6d8c8a 1584 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1585 young = 1;
1586 break;
1587 }
8ee53820
AA
1588out:
1589 return young;
1590}
1591
53a27b39
MT
1592#define RMAP_RECYCLE_THRESHOLD 1000
1593
852e3c19 1594static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1595{
1596 unsigned long *rmapp;
852e3c19
JR
1597 struct kvm_mmu_page *sp;
1598
1599 sp = page_header(__pa(spte));
53a27b39 1600
e4cd1da9 1601 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1602
8a9522d2 1603 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1604 kvm_flush_remote_tlbs(vcpu->kvm);
1605}
1606
57128468 1607int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1608{
57128468
ALC
1609 /*
1610 * In case of absence of EPT Access and Dirty Bits supports,
1611 * emulate the accessed bit for EPT, by checking if this page has
1612 * an EPT mapping, and clearing it if it does. On the next access,
1613 * a new EPT mapping will be established.
1614 * This has some overhead, but not as much as the cost of swapping
1615 * out actively used pages or breaking up actively used hugepages.
1616 */
1617 if (!shadow_accessed_mask) {
1618 /*
1619 * We are holding the kvm->mmu_lock, and we are blowing up
1620 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1621 * This is correct as long as we don't decouple the mmu_lock
1622 * protected regions (like invalidate_range_start|end does).
1623 */
1624 kvm->mmu_notifier_seq++;
1625 return kvm_handle_hva_range(kvm, start, end, 0,
1626 kvm_unmap_rmapp);
1627 }
1628
1629 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1630}
1631
8ee53820
AA
1632int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1633{
1634 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1635}
1636
d6c69ee9 1637#ifdef MMU_DEBUG
47ad8e68 1638static int is_empty_shadow_page(u64 *spt)
6aa8b732 1639{
139bdb2d
AK
1640 u64 *pos;
1641 u64 *end;
1642
47ad8e68 1643 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1644 if (is_shadow_present_pte(*pos)) {
b8688d51 1645 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1646 pos, *pos);
6aa8b732 1647 return 0;
139bdb2d 1648 }
6aa8b732
AK
1649 return 1;
1650}
d6c69ee9 1651#endif
6aa8b732 1652
45221ab6
DH
1653/*
1654 * This value is the sum of all of the kvm instances's
1655 * kvm->arch.n_used_mmu_pages values. We need a global,
1656 * aggregate version in order to make the slab shrinker
1657 * faster
1658 */
1659static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1660{
1661 kvm->arch.n_used_mmu_pages += nr;
1662 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1663}
1664
834be0d8 1665static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1666{
fa4a2c08 1667 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1668 hlist_del(&sp->hash_link);
bd4c86ea
XG
1669 list_del(&sp->link);
1670 free_page((unsigned long)sp->spt);
834be0d8
GN
1671 if (!sp->role.direct)
1672 free_page((unsigned long)sp->gfns);
e8ad9a70 1673 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1674}
1675
cea0f0e7
AK
1676static unsigned kvm_page_table_hashfn(gfn_t gfn)
1677{
1ae0a13d 1678 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1679}
1680
714b93da 1681static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1682 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1683{
cea0f0e7
AK
1684 if (!parent_pte)
1685 return;
cea0f0e7 1686
67052b35 1687 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1688}
1689
4db35314 1690static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1691 u64 *parent_pte)
1692{
67052b35 1693 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1694}
1695
bcdd9a93
XG
1696static void drop_parent_pte(struct kvm_mmu_page *sp,
1697 u64 *parent_pte)
1698{
1699 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1700 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1701}
1702
67052b35
XG
1703static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1704 u64 *parent_pte, int direct)
ad8cfbe3 1705{
67052b35 1706 struct kvm_mmu_page *sp;
7ddca7e4 1707
80feb89a
TY
1708 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1709 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1710 if (!direct)
80feb89a 1711 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1712 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1713
1714 /*
1715 * The active_mmu_pages list is the FIFO list, do not move the
1716 * page until it is zapped. kvm_zap_obsolete_pages depends on
1717 * this feature. See the comments in kvm_zap_obsolete_pages().
1718 */
67052b35 1719 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1720 sp->parent_ptes = 0;
1721 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1722 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1723 return sp;
ad8cfbe3
MT
1724}
1725
67052b35 1726static void mark_unsync(u64 *spte);
1047df1f 1727static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1728{
67052b35 1729 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1730}
1731
67052b35 1732static void mark_unsync(u64 *spte)
0074ff63 1733{
67052b35 1734 struct kvm_mmu_page *sp;
1047df1f 1735 unsigned int index;
0074ff63 1736
67052b35 1737 sp = page_header(__pa(spte));
1047df1f
XG
1738 index = spte - sp->spt;
1739 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1740 return;
1047df1f 1741 if (sp->unsync_children++)
0074ff63 1742 return;
1047df1f 1743 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1744}
1745
e8bc217a 1746static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1747 struct kvm_mmu_page *sp)
e8bc217a
MT
1748{
1749 return 1;
1750}
1751
a7052897
MT
1752static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1753{
1754}
1755
0f53b5b1
XG
1756static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1757 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1758 const void *pte)
0f53b5b1
XG
1759{
1760 WARN_ON(1);
1761}
1762
60c8aec6
MT
1763#define KVM_PAGE_ARRAY_NR 16
1764
1765struct kvm_mmu_pages {
1766 struct mmu_page_and_offset {
1767 struct kvm_mmu_page *sp;
1768 unsigned int idx;
1769 } page[KVM_PAGE_ARRAY_NR];
1770 unsigned int nr;
1771};
1772
cded19f3
HE
1773static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1774 int idx)
4731d4c7 1775{
60c8aec6 1776 int i;
4731d4c7 1777
60c8aec6
MT
1778 if (sp->unsync)
1779 for (i=0; i < pvec->nr; i++)
1780 if (pvec->page[i].sp == sp)
1781 return 0;
1782
1783 pvec->page[pvec->nr].sp = sp;
1784 pvec->page[pvec->nr].idx = idx;
1785 pvec->nr++;
1786 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1787}
1788
1789static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1790 struct kvm_mmu_pages *pvec)
1791{
1792 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1793
37178b8b 1794 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1795 struct kvm_mmu_page *child;
4731d4c7
MT
1796 u64 ent = sp->spt[i];
1797
7a8f1a74
XG
1798 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1799 goto clear_child_bitmap;
1800
1801 child = page_header(ent & PT64_BASE_ADDR_MASK);
1802
1803 if (child->unsync_children) {
1804 if (mmu_pages_add(pvec, child, i))
1805 return -ENOSPC;
1806
1807 ret = __mmu_unsync_walk(child, pvec);
1808 if (!ret)
1809 goto clear_child_bitmap;
1810 else if (ret > 0)
1811 nr_unsync_leaf += ret;
1812 else
1813 return ret;
1814 } else if (child->unsync) {
1815 nr_unsync_leaf++;
1816 if (mmu_pages_add(pvec, child, i))
1817 return -ENOSPC;
1818 } else
1819 goto clear_child_bitmap;
1820
1821 continue;
1822
1823clear_child_bitmap:
1824 __clear_bit(i, sp->unsync_child_bitmap);
1825 sp->unsync_children--;
1826 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1827 }
1828
4731d4c7 1829
60c8aec6
MT
1830 return nr_unsync_leaf;
1831}
1832
1833static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1834 struct kvm_mmu_pages *pvec)
1835{
1836 if (!sp->unsync_children)
1837 return 0;
1838
1839 mmu_pages_add(pvec, sp, 0);
1840 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1841}
1842
4731d4c7
MT
1843static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1844{
1845 WARN_ON(!sp->unsync);
5e1b3ddb 1846 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1847 sp->unsync = 0;
1848 --kvm->stat.mmu_unsync;
1849}
1850
7775834a
XG
1851static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1852 struct list_head *invalid_list);
1853static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1854 struct list_head *invalid_list);
4731d4c7 1855
f34d251d
XG
1856/*
1857 * NOTE: we should pay more attention on the zapped-obsolete page
1858 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1859 * since it has been deleted from active_mmu_pages but still can be found
1860 * at hast list.
1861 *
1862 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1863 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1864 * all the obsolete pages.
1865 */
1044b030
TY
1866#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1867 hlist_for_each_entry(_sp, \
1868 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1869 if ((_sp)->gfn != (_gfn)) {} else
1870
1871#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1872 for_each_gfn_sp(_kvm, _sp, _gfn) \
1873 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1874
f918b443 1875/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1876static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1877 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1878{
5b7e0102 1879 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1880 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1881 return 1;
1882 }
1883
f918b443 1884 if (clear_unsync)
1d9dc7e0 1885 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1886
a4a8e6f7 1887 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1888 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1889 return 1;
1890 }
1891
77c3913b 1892 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4731d4c7
MT
1893 return 0;
1894}
1895
1d9dc7e0
XG
1896static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1897 struct kvm_mmu_page *sp)
1898{
d98ba053 1899 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1900 int ret;
1901
d98ba053 1902 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1903 if (ret)
d98ba053
XG
1904 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1905
1d9dc7e0
XG
1906 return ret;
1907}
1908
e37fa785
XG
1909#ifdef CONFIG_KVM_MMU_AUDIT
1910#include "mmu_audit.c"
1911#else
1912static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1913static void mmu_audit_disable(void) { }
1914#endif
1915
d98ba053
XG
1916static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1917 struct list_head *invalid_list)
1d9dc7e0 1918{
d98ba053 1919 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1920}
1921
9f1a122f
XG
1922/* @gfn should be write-protected at the call site */
1923static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1924{
9f1a122f 1925 struct kvm_mmu_page *s;
d98ba053 1926 LIST_HEAD(invalid_list);
9f1a122f
XG
1927 bool flush = false;
1928
b67bfe0d 1929 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1930 if (!s->unsync)
9f1a122f
XG
1931 continue;
1932
1933 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1934 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1935 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1936 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1937 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1938 continue;
1939 }
9f1a122f
XG
1940 flush = true;
1941 }
1942
d98ba053 1943 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f 1944 if (flush)
77c3913b 1945 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
9f1a122f
XG
1946}
1947
60c8aec6
MT
1948struct mmu_page_path {
1949 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1950 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1951};
1952
60c8aec6
MT
1953#define for_each_sp(pvec, sp, parents, i) \
1954 for (i = mmu_pages_next(&pvec, &parents, -1), \
1955 sp = pvec.page[i].sp; \
1956 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1957 i = mmu_pages_next(&pvec, &parents, i))
1958
cded19f3
HE
1959static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1960 struct mmu_page_path *parents,
1961 int i)
60c8aec6
MT
1962{
1963 int n;
1964
1965 for (n = i+1; n < pvec->nr; n++) {
1966 struct kvm_mmu_page *sp = pvec->page[n].sp;
1967
1968 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1969 parents->idx[0] = pvec->page[n].idx;
1970 return n;
1971 }
1972
1973 parents->parent[sp->role.level-2] = sp;
1974 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1975 }
1976
1977 return n;
1978}
1979
cded19f3 1980static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1981{
60c8aec6
MT
1982 struct kvm_mmu_page *sp;
1983 unsigned int level = 0;
1984
1985 do {
1986 unsigned int idx = parents->idx[level];
4731d4c7 1987
60c8aec6
MT
1988 sp = parents->parent[level];
1989 if (!sp)
1990 return;
1991
1992 --sp->unsync_children;
1993 WARN_ON((int)sp->unsync_children < 0);
1994 __clear_bit(idx, sp->unsync_child_bitmap);
1995 level++;
1996 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1997}
1998
60c8aec6
MT
1999static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2000 struct mmu_page_path *parents,
2001 struct kvm_mmu_pages *pvec)
4731d4c7 2002{
60c8aec6
MT
2003 parents->parent[parent->role.level-1] = NULL;
2004 pvec->nr = 0;
2005}
4731d4c7 2006
60c8aec6
MT
2007static void mmu_sync_children(struct kvm_vcpu *vcpu,
2008 struct kvm_mmu_page *parent)
2009{
2010 int i;
2011 struct kvm_mmu_page *sp;
2012 struct mmu_page_path parents;
2013 struct kvm_mmu_pages pages;
d98ba053 2014 LIST_HEAD(invalid_list);
60c8aec6
MT
2015
2016 kvm_mmu_pages_init(parent, &parents, &pages);
2017 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2018 bool protected = false;
b1a36821
MT
2019
2020 for_each_sp(pages, sp, parents, i)
54bf36aa 2021 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821
MT
2022
2023 if (protected)
2024 kvm_flush_remote_tlbs(vcpu->kvm);
2025
60c8aec6 2026 for_each_sp(pages, sp, parents, i) {
d98ba053 2027 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2028 mmu_pages_clear_parents(&parents);
2029 }
d98ba053 2030 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 2031 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
2032 kvm_mmu_pages_init(parent, &parents, &pages);
2033 }
4731d4c7
MT
2034}
2035
c3707958
XG
2036static void init_shadow_page_table(struct kvm_mmu_page *sp)
2037{
2038 int i;
2039
2040 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2041 sp->spt[i] = 0ull;
2042}
2043
a30f47cb
XG
2044static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2045{
2046 sp->write_flooding_count = 0;
2047}
2048
2049static void clear_sp_write_flooding_count(u64 *spte)
2050{
2051 struct kvm_mmu_page *sp = page_header(__pa(spte));
2052
2053 __clear_sp_write_flooding_count(sp);
2054}
2055
5304b8d3
XG
2056static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2057{
2058 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2059}
2060
cea0f0e7
AK
2061static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2062 gfn_t gfn,
2063 gva_t gaddr,
2064 unsigned level,
f6e2c02b 2065 int direct,
41074d07 2066 unsigned access,
f7d9c7b7 2067 u64 *parent_pte)
cea0f0e7
AK
2068{
2069 union kvm_mmu_page_role role;
cea0f0e7 2070 unsigned quadrant;
9f1a122f 2071 struct kvm_mmu_page *sp;
9f1a122f 2072 bool need_sync = false;
cea0f0e7 2073
a770f6f2 2074 role = vcpu->arch.mmu.base_role;
cea0f0e7 2075 role.level = level;
f6e2c02b 2076 role.direct = direct;
84b0c8c6 2077 if (role.direct)
5b7e0102 2078 role.cr4_pae = 0;
41074d07 2079 role.access = access;
c5a78f2b
JR
2080 if (!vcpu->arch.mmu.direct_map
2081 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2082 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2083 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2084 role.quadrant = quadrant;
2085 }
b67bfe0d 2086 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
2087 if (is_obsolete_sp(vcpu->kvm, sp))
2088 continue;
2089
7ae680eb
XG
2090 if (!need_sync && sp->unsync)
2091 need_sync = true;
4731d4c7 2092
7ae680eb
XG
2093 if (sp->role.word != role.word)
2094 continue;
4731d4c7 2095
7ae680eb
XG
2096 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2097 break;
e02aa901 2098
7ae680eb
XG
2099 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2100 if (sp->unsync_children) {
a8eeb04a 2101 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
2102 kvm_mmu_mark_parents_unsync(sp);
2103 } else if (sp->unsync)
2104 kvm_mmu_mark_parents_unsync(sp);
e02aa901 2105
a30f47cb 2106 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
2107 trace_kvm_mmu_get_page(sp, false);
2108 return sp;
2109 }
dfc5aa00 2110 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 2111 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
2112 if (!sp)
2113 return sp;
4db35314
AK
2114 sp->gfn = gfn;
2115 sp->role = role;
7ae680eb
XG
2116 hlist_add_head(&sp->hash_link,
2117 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2118 if (!direct) {
54bf36aa 2119 if (rmap_write_protect(vcpu, gfn))
b1a36821 2120 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
2121 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2122 kvm_sync_pages(vcpu, gfn);
2123
3ed1a478 2124 account_shadowed(vcpu->kvm, sp);
4731d4c7 2125 }
5304b8d3 2126 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
c3707958 2127 init_shadow_page_table(sp);
f691fe1d 2128 trace_kvm_mmu_get_page(sp, true);
4db35314 2129 return sp;
cea0f0e7
AK
2130}
2131
2d11123a
AK
2132static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2133 struct kvm_vcpu *vcpu, u64 addr)
2134{
2135 iterator->addr = addr;
2136 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2137 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2138
2139 if (iterator->level == PT64_ROOT_LEVEL &&
2140 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2141 !vcpu->arch.mmu.direct_map)
2142 --iterator->level;
2143
2d11123a
AK
2144 if (iterator->level == PT32E_ROOT_LEVEL) {
2145 iterator->shadow_addr
2146 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2147 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2148 --iterator->level;
2149 if (!iterator->shadow_addr)
2150 iterator->level = 0;
2151 }
2152}
2153
2154static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2155{
2156 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2157 return false;
4d88954d 2158
2d11123a
AK
2159 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2160 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2161 return true;
2162}
2163
c2a2ac2b
XG
2164static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2165 u64 spte)
2d11123a 2166{
c2a2ac2b 2167 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2168 iterator->level = 0;
2169 return;
2170 }
2171
c2a2ac2b 2172 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2173 --iterator->level;
2174}
2175
c2a2ac2b
XG
2176static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2177{
2178 return __shadow_walk_next(iterator, *iterator->sptep);
2179}
2180
7a1638ce 2181static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
32ef26a3
AK
2182{
2183 u64 spte;
2184
7a1638ce
YZ
2185 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2186 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2187
24db2734 2188 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
7a1638ce
YZ
2189 shadow_user_mask | shadow_x_mask;
2190
2191 if (accessed)
2192 spte |= shadow_accessed_mask;
24db2734 2193
1df9f2dc 2194 mmu_spte_set(sptep, spte);
32ef26a3
AK
2195}
2196
a357bd22
AK
2197static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2198 unsigned direct_access)
2199{
2200 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2201 struct kvm_mmu_page *child;
2202
2203 /*
2204 * For the direct sp, if the guest pte's dirty bit
2205 * changed form clean to dirty, it will corrupt the
2206 * sp's access: allow writable in the read-only sp,
2207 * so we should update the spte at this point to get
2208 * a new sp with the correct access.
2209 */
2210 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2211 if (child->role.access == direct_access)
2212 return;
2213
bcdd9a93 2214 drop_parent_pte(child, sptep);
a357bd22
AK
2215 kvm_flush_remote_tlbs(vcpu->kvm);
2216 }
2217}
2218
505aef8f 2219static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2220 u64 *spte)
2221{
2222 u64 pte;
2223 struct kvm_mmu_page *child;
2224
2225 pte = *spte;
2226 if (is_shadow_present_pte(pte)) {
505aef8f 2227 if (is_last_spte(pte, sp->role.level)) {
c3707958 2228 drop_spte(kvm, spte);
505aef8f
XG
2229 if (is_large_pte(pte))
2230 --kvm->stat.lpages;
2231 } else {
38e3b2b2 2232 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2233 drop_parent_pte(child, spte);
38e3b2b2 2234 }
505aef8f
XG
2235 return true;
2236 }
2237
2238 if (is_mmio_spte(pte))
ce88decf 2239 mmu_spte_clear_no_track(spte);
c3707958 2240
505aef8f 2241 return false;
38e3b2b2
XG
2242}
2243
90cb0529 2244static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2245 struct kvm_mmu_page *sp)
a436036b 2246{
697fe2e2 2247 unsigned i;
697fe2e2 2248
38e3b2b2
XG
2249 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2250 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2251}
2252
4db35314 2253static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2254{
4db35314 2255 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2256}
2257
31aa2b44 2258static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2259{
1e3f42f0
TY
2260 u64 *sptep;
2261 struct rmap_iterator iter;
a436036b 2262
1e3f42f0
TY
2263 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2264 drop_parent_pte(sp, sptep);
31aa2b44
AK
2265}
2266
60c8aec6 2267static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2268 struct kvm_mmu_page *parent,
2269 struct list_head *invalid_list)
4731d4c7 2270{
60c8aec6
MT
2271 int i, zapped = 0;
2272 struct mmu_page_path parents;
2273 struct kvm_mmu_pages pages;
4731d4c7 2274
60c8aec6 2275 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2276 return 0;
60c8aec6
MT
2277
2278 kvm_mmu_pages_init(parent, &parents, &pages);
2279 while (mmu_unsync_walk(parent, &pages)) {
2280 struct kvm_mmu_page *sp;
2281
2282 for_each_sp(pages, sp, parents, i) {
7775834a 2283 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2284 mmu_pages_clear_parents(&parents);
77662e00 2285 zapped++;
60c8aec6 2286 }
60c8aec6
MT
2287 kvm_mmu_pages_init(parent, &parents, &pages);
2288 }
2289
2290 return zapped;
4731d4c7
MT
2291}
2292
7775834a
XG
2293static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2294 struct list_head *invalid_list)
31aa2b44 2295{
4731d4c7 2296 int ret;
f691fe1d 2297
7775834a 2298 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2299 ++kvm->stat.mmu_shadow_zapped;
7775834a 2300 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2301 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2302 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2303
f6e2c02b 2304 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2305 unaccount_shadowed(kvm, sp);
5304b8d3 2306
4731d4c7
MT
2307 if (sp->unsync)
2308 kvm_unlink_unsync_page(kvm, sp);
4db35314 2309 if (!sp->root_count) {
54a4f023
GJ
2310 /* Count self */
2311 ret++;
7775834a 2312 list_move(&sp->link, invalid_list);
aa6bd187 2313 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2314 } else {
5b5c6a5a 2315 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2316
2317 /*
2318 * The obsolete pages can not be used on any vcpus.
2319 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2320 */
2321 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2322 kvm_reload_remote_mmus(kvm);
2e53d63a 2323 }
7775834a
XG
2324
2325 sp->role.invalid = 1;
4731d4c7 2326 return ret;
a436036b
AK
2327}
2328
7775834a
XG
2329static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2330 struct list_head *invalid_list)
2331{
945315b9 2332 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2333
2334 if (list_empty(invalid_list))
2335 return;
2336
c142786c
AK
2337 /*
2338 * wmb: make sure everyone sees our modifications to the page tables
2339 * rmb: make sure we see changes to vcpu->mode
2340 */
2341 smp_mb();
4f022648 2342
c142786c
AK
2343 /*
2344 * Wait for all vcpus to exit guest mode and/or lockless shadow
2345 * page table walks.
2346 */
2347 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2348
945315b9 2349 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2350 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2351 kvm_mmu_free_page(sp);
945315b9 2352 }
7775834a
XG
2353}
2354
5da59607
TY
2355static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2356 struct list_head *invalid_list)
2357{
2358 struct kvm_mmu_page *sp;
2359
2360 if (list_empty(&kvm->arch.active_mmu_pages))
2361 return false;
2362
2363 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2364 struct kvm_mmu_page, link);
2365 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2366
2367 return true;
2368}
2369
82ce2c96
IE
2370/*
2371 * Changing the number of mmu pages allocated to the vm
49d5ca26 2372 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2373 */
49d5ca26 2374void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2375{
d98ba053 2376 LIST_HEAD(invalid_list);
82ce2c96 2377
b34cb590
TY
2378 spin_lock(&kvm->mmu_lock);
2379
49d5ca26 2380 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2381 /* Need to free some mmu pages to achieve the goal. */
2382 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2383 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2384 break;
82ce2c96 2385
aa6bd187 2386 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2387 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2388 }
82ce2c96 2389
49d5ca26 2390 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2391
2392 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2393}
2394
1cb3f3ae 2395int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2396{
4db35314 2397 struct kvm_mmu_page *sp;
d98ba053 2398 LIST_HEAD(invalid_list);
a436036b
AK
2399 int r;
2400
9ad17b10 2401 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2402 r = 0;
1cb3f3ae 2403 spin_lock(&kvm->mmu_lock);
b67bfe0d 2404 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2405 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2406 sp->role.word);
2407 r = 1;
f41d335a 2408 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2409 }
d98ba053 2410 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2411 spin_unlock(&kvm->mmu_lock);
2412
a436036b 2413 return r;
cea0f0e7 2414}
1cb3f3ae 2415EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2416
9cf5cf5a
XG
2417static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2418{
2419 trace_kvm_mmu_unsync_page(sp);
2420 ++vcpu->kvm->stat.mmu_unsync;
2421 sp->unsync = 1;
2422
2423 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2424}
2425
2426static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2427{
4731d4c7 2428 struct kvm_mmu_page *s;
9cf5cf5a 2429
b67bfe0d 2430 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2431 if (s->unsync)
4731d4c7 2432 continue;
9cf5cf5a
XG
2433 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2434 __kvm_unsync_page(vcpu, s);
4731d4c7 2435 }
4731d4c7
MT
2436}
2437
2438static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2439 bool can_unsync)
2440{
9cf5cf5a 2441 struct kvm_mmu_page *s;
9cf5cf5a
XG
2442 bool need_unsync = false;
2443
b67bfe0d 2444 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2445 if (!can_unsync)
2446 return 1;
2447
9cf5cf5a 2448 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2449 return 1;
9cf5cf5a 2450
9bb4f6b1 2451 if (!s->unsync)
9cf5cf5a 2452 need_unsync = true;
4731d4c7 2453 }
9cf5cf5a
XG
2454 if (need_unsync)
2455 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2456 return 0;
2457}
2458
d1fe9219
PB
2459static bool kvm_is_mmio_pfn(pfn_t pfn)
2460{
2461 if (pfn_valid(pfn))
2462 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2463
2464 return true;
2465}
2466
d555c333 2467static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2468 unsigned pte_access, int level,
c2d0ee46 2469 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2470 bool can_unsync, bool host_writable)
1c4f1fd6 2471{
6e7d0354 2472 u64 spte;
1e73f9dd 2473 int ret = 0;
64d4d521 2474
54bf36aa 2475 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2476 return 0;
2477
982c2565 2478 spte = PT_PRESENT_MASK;
947da538 2479 if (!speculative)
3201b5d9 2480 spte |= shadow_accessed_mask;
640d9b0d 2481
7b52345e
SY
2482 if (pte_access & ACC_EXEC_MASK)
2483 spte |= shadow_x_mask;
2484 else
2485 spte |= shadow_nx_mask;
49fde340 2486
1c4f1fd6 2487 if (pte_access & ACC_USER_MASK)
7b52345e 2488 spte |= shadow_user_mask;
49fde340 2489
852e3c19 2490 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2491 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2492 if (tdp_enabled)
4b12f0de 2493 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2494 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2495
9bdbba13 2496 if (host_writable)
1403283a 2497 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2498 else
2499 pte_access &= ~ACC_WRITE_MASK;
1403283a 2500
35149e21 2501 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2502
c2288505 2503 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2504
c2193463 2505 /*
7751babd
XG
2506 * Other vcpu creates new sp in the window between
2507 * mapping_level() and acquiring mmu-lock. We can
2508 * allow guest to retry the access, the mapping can
2509 * be fixed if guest refault.
c2193463 2510 */
852e3c19 2511 if (level > PT_PAGE_TABLE_LEVEL &&
54bf36aa 2512 has_wrprotected_page(vcpu, gfn, level))
be38d276 2513 goto done;
38187c83 2514
49fde340 2515 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2516
ecc5589f
MT
2517 /*
2518 * Optimization: for pte sync, if spte was writable the hash
2519 * lookup is unnecessary (and expensive). Write protection
2520 * is responsibility of mmu_get_page / kvm_sync_page.
2521 * Same reasoning can be applied to dirty page accounting.
2522 */
8dae4445 2523 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2524 goto set_pte;
2525
4731d4c7 2526 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2527 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2528 __func__, gfn);
1e73f9dd 2529 ret = 1;
1c4f1fd6 2530 pte_access &= ~ACC_WRITE_MASK;
49fde340 2531 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2532 }
2533 }
2534
9b51a630 2535 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2536 kvm_vcpu_mark_page_dirty(vcpu, gfn);
9b51a630
KH
2537 spte |= shadow_dirty_mask;
2538 }
1c4f1fd6 2539
38187c83 2540set_pte:
6e7d0354 2541 if (mmu_spte_update(sptep, spte))
b330aa0c 2542 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2543done:
1e73f9dd
MT
2544 return ret;
2545}
2546
d555c333 2547static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2548 unsigned pte_access, int write_fault, int *emulate,
2549 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2550 bool host_writable)
1e73f9dd
MT
2551{
2552 int was_rmapped = 0;
53a27b39 2553 int rmap_count;
1e73f9dd 2554
f7616203
XG
2555 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2556 *sptep, write_fault, gfn);
1e73f9dd 2557
d555c333 2558 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2559 /*
2560 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2561 * the parent of the now unreachable PTE.
2562 */
852e3c19
JR
2563 if (level > PT_PAGE_TABLE_LEVEL &&
2564 !is_large_pte(*sptep)) {
1e73f9dd 2565 struct kvm_mmu_page *child;
d555c333 2566 u64 pte = *sptep;
1e73f9dd
MT
2567
2568 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2569 drop_parent_pte(child, sptep);
3be2264b 2570 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2571 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2572 pgprintk("hfn old %llx new %llx\n",
d555c333 2573 spte_to_pfn(*sptep), pfn);
c3707958 2574 drop_spte(vcpu->kvm, sptep);
91546356 2575 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2576 } else
2577 was_rmapped = 1;
1e73f9dd 2578 }
852e3c19 2579
c2288505
XG
2580 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2581 true, host_writable)) {
1e73f9dd 2582 if (write_fault)
b90a0e6c 2583 *emulate = 1;
77c3913b 2584 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2585 }
1e73f9dd 2586
ce88decf
XG
2587 if (unlikely(is_mmio_spte(*sptep) && emulate))
2588 *emulate = 1;
2589
d555c333 2590 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2591 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2592 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2593 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2594 *sptep, sptep);
d555c333 2595 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2596 ++vcpu->kvm->stat.lpages;
2597
ffb61bb3 2598 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2599 if (!was_rmapped) {
2600 rmap_count = rmap_add(vcpu, sptep, gfn);
2601 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2602 rmap_recycle(vcpu, sptep, gfn);
2603 }
1c4f1fd6 2604 }
cb9aaa30 2605
f3ac1a4b 2606 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2607}
2608
957ed9ef
XG
2609static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2610 bool no_dirty_log)
2611{
2612 struct kvm_memory_slot *slot;
957ed9ef 2613
5d163b1c 2614 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2615 if (!slot)
6c8ee57b 2616 return KVM_PFN_ERR_FAULT;
957ed9ef 2617
037d92dc 2618 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2619}
2620
2621static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2622 struct kvm_mmu_page *sp,
2623 u64 *start, u64 *end)
2624{
2625 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2626 struct kvm_memory_slot *slot;
957ed9ef
XG
2627 unsigned access = sp->role.access;
2628 int i, ret;
2629 gfn_t gfn;
2630
2631 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2632 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2633 if (!slot)
957ed9ef
XG
2634 return -1;
2635
d9ef13c2 2636 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2637 if (ret <= 0)
2638 return -1;
2639
2640 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2641 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2642 sp->role.level, gfn, page_to_pfn(pages[i]),
2643 true, true);
957ed9ef
XG
2644
2645 return 0;
2646}
2647
2648static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2649 struct kvm_mmu_page *sp, u64 *sptep)
2650{
2651 u64 *spte, *start = NULL;
2652 int i;
2653
2654 WARN_ON(!sp->role.direct);
2655
2656 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2657 spte = sp->spt + i;
2658
2659 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2660 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2661 if (!start)
2662 continue;
2663 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2664 break;
2665 start = NULL;
2666 } else if (!start)
2667 start = spte;
2668 }
2669}
2670
2671static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2672{
2673 struct kvm_mmu_page *sp;
2674
2675 /*
2676 * Since it's no accessed bit on EPT, it's no way to
2677 * distinguish between actually accessed translations
2678 * and prefetched, so disable pte prefetch if EPT is
2679 * enabled.
2680 */
2681 if (!shadow_accessed_mask)
2682 return;
2683
2684 sp = page_header(__pa(sptep));
2685 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2686 return;
2687
2688 __direct_pte_prefetch(vcpu, sp, sptep);
2689}
2690
9f652d21 2691static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2692 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2693 bool prefault)
140754bc 2694{
9f652d21 2695 struct kvm_shadow_walk_iterator iterator;
140754bc 2696 struct kvm_mmu_page *sp;
b90a0e6c 2697 int emulate = 0;
140754bc 2698 gfn_t pseudo_gfn;
6aa8b732 2699
989c6b34
MT
2700 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2701 return 0;
2702
9f652d21 2703 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2704 if (iterator.level == level) {
f7616203 2705 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2706 write, &emulate, level, gfn, pfn,
2707 prefault, map_writable);
957ed9ef 2708 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2709 ++vcpu->stat.pf_fixed;
2710 break;
6aa8b732
AK
2711 }
2712
404381c5 2713 drop_large_spte(vcpu, iterator.sptep);
c3707958 2714 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2715 u64 base_addr = iterator.addr;
2716
2717 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2718 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2719 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2720 iterator.level - 1,
2721 1, ACC_ALL, iterator.sptep);
140754bc 2722
7a1638ce 2723 link_shadow_page(iterator.sptep, sp, true);
9f652d21
AK
2724 }
2725 }
b90a0e6c 2726 return emulate;
6aa8b732
AK
2727}
2728
77db5cbd 2729static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2730{
77db5cbd
HY
2731 siginfo_t info;
2732
2733 info.si_signo = SIGBUS;
2734 info.si_errno = 0;
2735 info.si_code = BUS_MCEERR_AR;
2736 info.si_addr = (void __user *)address;
2737 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2738
77db5cbd 2739 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2740}
2741
d7c55201 2742static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2743{
4d8b81ab
XG
2744 /*
2745 * Do not cache the mmio info caused by writing the readonly gfn
2746 * into the spte otherwise read access on readonly gfn also can
2747 * caused mmio page fault and treat it as mmio access.
2748 * Return 1 to tell kvm to emulate it.
2749 */
2750 if (pfn == KVM_PFN_ERR_RO_FAULT)
2751 return 1;
2752
e6c1502b 2753 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2754 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
bf998156 2755 return 0;
d7c55201 2756 }
edba23e5 2757
d7c55201 2758 return -EFAULT;
bf998156
HY
2759}
2760
936a5fe6
AA
2761static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2762 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2763{
2764 pfn_t pfn = *pfnp;
2765 gfn_t gfn = *gfnp;
2766 int level = *levelp;
2767
2768 /*
2769 * Check if it's a transparent hugepage. If this would be an
2770 * hugetlbfs page, level wouldn't be set to
2771 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2772 * here.
2773 */
bf4bea8e 2774 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6
AA
2775 level == PT_PAGE_TABLE_LEVEL &&
2776 PageTransCompound(pfn_to_page(pfn)) &&
54bf36aa 2777 !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
2778 unsigned long mask;
2779 /*
2780 * mmu_notifier_retry was successful and we hold the
2781 * mmu_lock here, so the pmd can't become splitting
2782 * from under us, and in turn
2783 * __split_huge_page_refcount() can't run from under
2784 * us and we can safely transfer the refcount from
2785 * PG_tail to PG_head as we switch the pfn to tail to
2786 * head.
2787 */
2788 *levelp = level = PT_DIRECTORY_LEVEL;
2789 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2790 VM_BUG_ON((gfn & mask) != (pfn & mask));
2791 if (pfn & mask) {
2792 gfn &= ~mask;
2793 *gfnp = gfn;
2794 kvm_release_pfn_clean(pfn);
2795 pfn &= ~mask;
c3586667 2796 kvm_get_pfn(pfn);
936a5fe6
AA
2797 *pfnp = pfn;
2798 }
2799 }
2800}
2801
d7c55201
XG
2802static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2803 pfn_t pfn, unsigned access, int *ret_val)
2804{
2805 bool ret = true;
2806
2807 /* The pfn is invalid, report the error! */
81c52c56 2808 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2809 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2810 goto exit;
2811 }
2812
ce88decf 2813 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2814 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2815
2816 ret = false;
2817exit:
2818 return ret;
2819}
2820
e5552fd2 2821static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2822{
1c118b82
XG
2823 /*
2824 * Do not fix the mmio spte with invalid generation number which
2825 * need to be updated by slow page fault path.
2826 */
2827 if (unlikely(error_code & PFERR_RSVD_MASK))
2828 return false;
2829
c7ba5b48
XG
2830 /*
2831 * #PF can be fast only if the shadow page table is present and it
2832 * is caused by write-protect, that means we just need change the
2833 * W bit of the spte which can be done out of mmu-lock.
2834 */
2835 if (!(error_code & PFERR_PRESENT_MASK) ||
2836 !(error_code & PFERR_WRITE_MASK))
2837 return false;
2838
2839 return true;
2840}
2841
2842static bool
92a476cb
XG
2843fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2844 u64 *sptep, u64 spte)
c7ba5b48 2845{
c7ba5b48
XG
2846 gfn_t gfn;
2847
2848 WARN_ON(!sp->role.direct);
2849
2850 /*
2851 * The gfn of direct spte is stable since it is calculated
2852 * by sp->gfn.
2853 */
2854 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2855
9b51a630
KH
2856 /*
2857 * Theoretically we could also set dirty bit (and flush TLB) here in
2858 * order to eliminate unnecessary PML logging. See comments in
2859 * set_spte. But fast_page_fault is very unlikely to happen with PML
2860 * enabled, so we do not do this. This might result in the same GPA
2861 * to be logged in PML buffer again when the write really happens, and
2862 * eventually to be called by mark_page_dirty twice. But it's also no
2863 * harm. This also avoids the TLB flush needed after setting dirty bit
2864 * so non-PML cases won't be impacted.
2865 *
2866 * Compare with set_spte where instead shadow_dirty_mask is set.
2867 */
c7ba5b48 2868 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
54bf36aa 2869 kvm_vcpu_mark_page_dirty(vcpu, gfn);
c7ba5b48
XG
2870
2871 return true;
2872}
2873
2874/*
2875 * Return value:
2876 * - true: let the vcpu to access on the same address again.
2877 * - false: let the real page fault path to fix it.
2878 */
2879static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2880 u32 error_code)
2881{
2882 struct kvm_shadow_walk_iterator iterator;
92a476cb 2883 struct kvm_mmu_page *sp;
c7ba5b48
XG
2884 bool ret = false;
2885 u64 spte = 0ull;
2886
37f6a4e2
MT
2887 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2888 return false;
2889
e5552fd2 2890 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2891 return false;
2892
2893 walk_shadow_page_lockless_begin(vcpu);
2894 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2895 if (!is_shadow_present_pte(spte) || iterator.level < level)
2896 break;
2897
2898 /*
2899 * If the mapping has been changed, let the vcpu fault on the
2900 * same address again.
2901 */
2902 if (!is_rmap_spte(spte)) {
2903 ret = true;
2904 goto exit;
2905 }
2906
92a476cb
XG
2907 sp = page_header(__pa(iterator.sptep));
2908 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2909 goto exit;
2910
2911 /*
2912 * Check if it is a spurious fault caused by TLB lazily flushed.
2913 *
2914 * Need not check the access of upper level table entries since
2915 * they are always ACC_ALL.
2916 */
2917 if (is_writable_pte(spte)) {
2918 ret = true;
2919 goto exit;
2920 }
2921
2922 /*
2923 * Currently, to simplify the code, only the spte write-protected
2924 * by dirty-log can be fast fixed.
2925 */
2926 if (!spte_is_locklessly_modifiable(spte))
2927 goto exit;
2928
c126d94f
XG
2929 /*
2930 * Do not fix write-permission on the large spte since we only dirty
2931 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2932 * that means other pages are missed if its slot is dirty-logged.
2933 *
2934 * Instead, we let the slow page fault path create a normal spte to
2935 * fix the access.
2936 *
2937 * See the comments in kvm_arch_commit_memory_region().
2938 */
2939 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2940 goto exit;
2941
c7ba5b48
XG
2942 /*
2943 * Currently, fast page fault only works for direct mapping since
2944 * the gfn is not stable for indirect shadow page.
2945 * See Documentation/virtual/kvm/locking.txt to get more detail.
2946 */
92a476cb 2947 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 2948exit:
a72faf25
XG
2949 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2950 spte, ret);
c7ba5b48
XG
2951 walk_shadow_page_lockless_end(vcpu);
2952
2953 return ret;
2954}
2955
78b2c54a 2956static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 2957 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 2958static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2959
c7ba5b48
XG
2960static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2961 gfn_t gfn, bool prefault)
10589a46
MT
2962{
2963 int r;
852e3c19 2964 int level;
936a5fe6 2965 int force_pt_level;
35149e21 2966 pfn_t pfn;
e930bffe 2967 unsigned long mmu_seq;
c7ba5b48 2968 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2969
936a5fe6
AA
2970 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2971 if (likely(!force_pt_level)) {
2972 level = mapping_level(vcpu, gfn);
2973 /*
2974 * This path builds a PAE pagetable - so we can map
2975 * 2mb pages at maximum. Therefore check if the level
2976 * is larger than that.
2977 */
2978 if (level > PT_DIRECTORY_LEVEL)
2979 level = PT_DIRECTORY_LEVEL;
852e3c19 2980
936a5fe6
AA
2981 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2982 } else
2983 level = PT_PAGE_TABLE_LEVEL;
05da4558 2984
c7ba5b48
XG
2985 if (fast_page_fault(vcpu, v, level, error_code))
2986 return 0;
2987
e930bffe 2988 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2989 smp_rmb();
060c2abe 2990
78b2c54a 2991 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2992 return 0;
aaee2c94 2993
d7c55201
XG
2994 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2995 return r;
d196e343 2996
aaee2c94 2997 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2998 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2999 goto out_unlock;
450e0b41 3000 make_mmu_pages_available(vcpu);
936a5fe6
AA
3001 if (likely(!force_pt_level))
3002 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
3003 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3004 prefault);
aaee2c94
MT
3005 spin_unlock(&vcpu->kvm->mmu_lock);
3006
aaee2c94 3007
10589a46 3008 return r;
e930bffe
AA
3009
3010out_unlock:
3011 spin_unlock(&vcpu->kvm->mmu_lock);
3012 kvm_release_pfn_clean(pfn);
3013 return 0;
10589a46
MT
3014}
3015
3016
17ac10ad
AK
3017static void mmu_free_roots(struct kvm_vcpu *vcpu)
3018{
3019 int i;
4db35314 3020 struct kvm_mmu_page *sp;
d98ba053 3021 LIST_HEAD(invalid_list);
17ac10ad 3022
ad312c7c 3023 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3024 return;
35af577a 3025
81407ca5
JR
3026 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3027 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3028 vcpu->arch.mmu.direct_map)) {
ad312c7c 3029 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3030
35af577a 3031 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3032 sp = page_header(root);
3033 --sp->root_count;
d98ba053
XG
3034 if (!sp->root_count && sp->role.invalid) {
3035 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3036 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3037 }
aaee2c94 3038 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3039 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3040 return;
3041 }
35af577a
GN
3042
3043 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3044 for (i = 0; i < 4; ++i) {
ad312c7c 3045 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3046
417726a3 3047 if (root) {
417726a3 3048 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3049 sp = page_header(root);
3050 --sp->root_count;
2e53d63a 3051 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3052 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3053 &invalid_list);
417726a3 3054 }
ad312c7c 3055 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3056 }
d98ba053 3057 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3058 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3059 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3060}
3061
8986ecc0
MT
3062static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3063{
3064 int ret = 0;
3065
3066 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3067 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3068 ret = 1;
3069 }
3070
3071 return ret;
3072}
3073
651dd37a
JR
3074static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3075{
3076 struct kvm_mmu_page *sp;
7ebaf15e 3077 unsigned i;
651dd37a
JR
3078
3079 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3080 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3081 make_mmu_pages_available(vcpu);
651dd37a
JR
3082 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3083 1, ACC_ALL, NULL);
3084 ++sp->root_count;
3085 spin_unlock(&vcpu->kvm->mmu_lock);
3086 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3087 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3088 for (i = 0; i < 4; ++i) {
3089 hpa_t root = vcpu->arch.mmu.pae_root[i];
3090
fa4a2c08 3091 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3092 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3093 make_mmu_pages_available(vcpu);
649497d1
AK
3094 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3095 i << 30,
651dd37a
JR
3096 PT32_ROOT_LEVEL, 1, ACC_ALL,
3097 NULL);
3098 root = __pa(sp->spt);
3099 ++sp->root_count;
3100 spin_unlock(&vcpu->kvm->mmu_lock);
3101 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3102 }
6292757f 3103 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3104 } else
3105 BUG();
3106
3107 return 0;
3108}
3109
3110static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3111{
4db35314 3112 struct kvm_mmu_page *sp;
81407ca5
JR
3113 u64 pdptr, pm_mask;
3114 gfn_t root_gfn;
3115 int i;
3bb65a22 3116
5777ed34 3117 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3118
651dd37a
JR
3119 if (mmu_check_root(vcpu, root_gfn))
3120 return 1;
3121
3122 /*
3123 * Do we shadow a long mode page table? If so we need to
3124 * write-protect the guests page table root.
3125 */
3126 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3127 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3128
fa4a2c08 3129 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3130
8facbbff 3131 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3132 make_mmu_pages_available(vcpu);
651dd37a
JR
3133 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3134 0, ACC_ALL, NULL);
4db35314
AK
3135 root = __pa(sp->spt);
3136 ++sp->root_count;
8facbbff 3137 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3138 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3139 return 0;
17ac10ad 3140 }
f87f9288 3141
651dd37a
JR
3142 /*
3143 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3144 * or a PAE 3-level page table. In either case we need to be aware that
3145 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3146 */
81407ca5
JR
3147 pm_mask = PT_PRESENT_MASK;
3148 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3149 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3150
17ac10ad 3151 for (i = 0; i < 4; ++i) {
ad312c7c 3152 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3153
fa4a2c08 3154 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3155 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3156 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3157 if (!is_present_gpte(pdptr)) {
ad312c7c 3158 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3159 continue;
3160 }
6de4f3ad 3161 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3162 if (mmu_check_root(vcpu, root_gfn))
3163 return 1;
5a7388c2 3164 }
8facbbff 3165 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3166 make_mmu_pages_available(vcpu);
4db35314 3167 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3168 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3169 ACC_ALL, NULL);
4db35314
AK
3170 root = __pa(sp->spt);
3171 ++sp->root_count;
8facbbff
AK
3172 spin_unlock(&vcpu->kvm->mmu_lock);
3173
81407ca5 3174 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3175 }
6292757f 3176 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3177
3178 /*
3179 * If we shadow a 32 bit page table with a long mode page
3180 * table we enter this path.
3181 */
3182 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3183 if (vcpu->arch.mmu.lm_root == NULL) {
3184 /*
3185 * The additional page necessary for this is only
3186 * allocated on demand.
3187 */
3188
3189 u64 *lm_root;
3190
3191 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3192 if (lm_root == NULL)
3193 return 1;
3194
3195 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3196
3197 vcpu->arch.mmu.lm_root = lm_root;
3198 }
3199
3200 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3201 }
3202
8986ecc0 3203 return 0;
17ac10ad
AK
3204}
3205
651dd37a
JR
3206static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3207{
3208 if (vcpu->arch.mmu.direct_map)
3209 return mmu_alloc_direct_roots(vcpu);
3210 else
3211 return mmu_alloc_shadow_roots(vcpu);
3212}
3213
0ba73cda
MT
3214static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3215{
3216 int i;
3217 struct kvm_mmu_page *sp;
3218
81407ca5
JR
3219 if (vcpu->arch.mmu.direct_map)
3220 return;
3221
0ba73cda
MT
3222 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3223 return;
6903074c 3224
56f17dd3 3225 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3226 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3227 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3228 hpa_t root = vcpu->arch.mmu.root_hpa;
3229 sp = page_header(root);
3230 mmu_sync_children(vcpu, sp);
0375f7fa 3231 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3232 return;
3233 }
3234 for (i = 0; i < 4; ++i) {
3235 hpa_t root = vcpu->arch.mmu.pae_root[i];
3236
8986ecc0 3237 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3238 root &= PT64_BASE_ADDR_MASK;
3239 sp = page_header(root);
3240 mmu_sync_children(vcpu, sp);
3241 }
3242 }
0375f7fa 3243 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3244}
3245
3246void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3247{
3248 spin_lock(&vcpu->kvm->mmu_lock);
3249 mmu_sync_roots(vcpu);
6cffe8ca 3250 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3251}
bfd0a56b 3252EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3253
1871c602 3254static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3255 u32 access, struct x86_exception *exception)
6aa8b732 3256{
ab9ae313
AK
3257 if (exception)
3258 exception->error_code = 0;
6aa8b732
AK
3259 return vaddr;
3260}
3261
6539e738 3262static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3263 u32 access,
3264 struct x86_exception *exception)
6539e738 3265{
ab9ae313
AK
3266 if (exception)
3267 exception->error_code = 0;
54987b7a 3268 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3269}
3270
d625b155
XG
3271static bool
3272__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3273{
3274 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3275
3276 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3277 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3278}
3279
3280static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3281{
3282 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3283}
3284
3285static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3286{
3287 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3288}
3289
ce88decf
XG
3290static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3291{
3292 if (direct)
3293 return vcpu_match_mmio_gpa(vcpu, addr);
3294
3295 return vcpu_match_mmio_gva(vcpu, addr);
3296}
3297
47ab8751
XG
3298/* return true if reserved bit is detected on spte. */
3299static bool
3300walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3301{
3302 struct kvm_shadow_walk_iterator iterator;
47ab8751
XG
3303 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3304 int root, leaf;
3305 bool reserved = false;
ce88decf 3306
37f6a4e2 3307 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3308 goto exit;
37f6a4e2 3309
ce88decf 3310 walk_shadow_page_lockless_begin(vcpu);
47ab8751
XG
3311
3312 for (shadow_walk_init(&iterator, vcpu, addr), root = iterator.level;
3313 shadow_walk_okay(&iterator);
3314 __shadow_walk_next(&iterator, spte)) {
3315 leaf = iterator.level;
3316 spte = mmu_spte_get_lockless(iterator.sptep);
3317
3318 sptes[leaf - 1] = spte;
3319
ce88decf
XG
3320 if (!is_shadow_present_pte(spte))
3321 break;
47ab8751
XG
3322
3323 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3324 leaf);
3325 }
3326
ce88decf
XG
3327 walk_shadow_page_lockless_end(vcpu);
3328
47ab8751
XG
3329 if (reserved) {
3330 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3331 __func__, addr);
3332 while (root >= leaf) {
3333 pr_err("------ spte 0x%llx level %d.\n",
3334 sptes[root - 1], root);
3335 root--;
3336 }
3337 }
3338exit:
3339 *sptep = spte;
3340 return reserved;
ce88decf
XG
3341}
3342
ce88decf
XG
3343int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3344{
3345 u64 spte;
47ab8751 3346 bool reserved;
ce88decf
XG
3347
3348 if (quickly_check_mmio_pf(vcpu, addr, direct))
b37fbea6 3349 return RET_MMIO_PF_EMULATE;
ce88decf 3350
47ab8751
XG
3351 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3352 if (unlikely(reserved))
3353 return RET_MMIO_PF_BUG;
ce88decf
XG
3354
3355 if (is_mmio_spte(spte)) {
3356 gfn_t gfn = get_mmio_spte_gfn(spte);
3357 unsigned access = get_mmio_spte_access(spte);
3358
54bf36aa 3359 if (!check_mmio_spte(vcpu, spte))
f8f55942
XG
3360 return RET_MMIO_PF_INVALID;
3361
ce88decf
XG
3362 if (direct)
3363 addr = 0;
4f022648
XG
3364
3365 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3366 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3367 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3368 }
3369
ce88decf
XG
3370 /*
3371 * If the page table is zapped by other cpus, let CPU fault again on
3372 * the address.
3373 */
b37fbea6 3374 return RET_MMIO_PF_RETRY;
ce88decf
XG
3375}
3376EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3377
3378static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3379 u32 error_code, bool direct)
3380{
3381 int ret;
3382
3383 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
b37fbea6 3384 WARN_ON(ret == RET_MMIO_PF_BUG);
ce88decf
XG
3385 return ret;
3386}
3387
6aa8b732 3388static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3389 u32 error_code, bool prefault)
6aa8b732 3390{
e833240f 3391 gfn_t gfn;
e2dec939 3392 int r;
6aa8b732 3393
b8688d51 3394 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3395
f8f55942
XG
3396 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3397 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3398
3399 if (likely(r != RET_MMIO_PF_INVALID))
3400 return r;
3401 }
ce88decf 3402
e2dec939
AK
3403 r = mmu_topup_memory_caches(vcpu);
3404 if (r)
3405 return r;
714b93da 3406
fa4a2c08 3407 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3408
e833240f 3409 gfn = gva >> PAGE_SHIFT;
6aa8b732 3410
e833240f 3411 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3412 error_code, gfn, prefault);
6aa8b732
AK
3413}
3414
7e1fbeac 3415static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3416{
3417 struct kvm_arch_async_pf arch;
fb67e14f 3418
7c90705b 3419 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3420 arch.gfn = gfn;
c4806acd 3421 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3422 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3423
54bf36aa 3424 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3425}
3426
3427static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3428{
3429 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3430 kvm_event_needs_reinjection(vcpu)))
3431 return false;
3432
3433 return kvm_x86_ops->interrupt_allowed(vcpu);
3434}
3435
78b2c54a 3436static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3437 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92 3438{
3520469d 3439 struct kvm_memory_slot *slot;
af585b92
GN
3440 bool async;
3441
54bf36aa 3442 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3443 async = false;
3444 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3445 if (!async)
3446 return false; /* *pfn has correct page already */
3447
78b2c54a 3448 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3449 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3450 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3451 trace_kvm_async_pf_doublefault(gva, gfn);
3452 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3453 return true;
3454 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3455 return true;
3456 }
3457
3520469d 3458 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3459 return false;
3460}
3461
6a39bbc5
XG
3462static bool
3463check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3464{
3465 int page_num = KVM_PAGES_PER_HPAGE(level);
3466
3467 gfn &= ~(page_num - 1);
3468
3469 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3470}
3471
56028d08 3472static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3473 bool prefault)
fb72d167 3474{
35149e21 3475 pfn_t pfn;
fb72d167 3476 int r;
852e3c19 3477 int level;
936a5fe6 3478 int force_pt_level;
05da4558 3479 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3480 unsigned long mmu_seq;
612819c3
MT
3481 int write = error_code & PFERR_WRITE_MASK;
3482 bool map_writable;
fb72d167 3483
fa4a2c08 3484 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3485
f8f55942
XG
3486 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3487 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3488
3489 if (likely(r != RET_MMIO_PF_INVALID))
3490 return r;
3491 }
ce88decf 3492
fb72d167
JR
3493 r = mmu_topup_memory_caches(vcpu);
3494 if (r)
3495 return r;
3496
6a39bbc5
XG
3497 if (mapping_level_dirty_bitmap(vcpu, gfn) ||
3498 !check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL))
3499 force_pt_level = 1;
3500 else
3501 force_pt_level = 0;
3502
936a5fe6
AA
3503 if (likely(!force_pt_level)) {
3504 level = mapping_level(vcpu, gfn);
6a39bbc5
XG
3505 if (level > PT_DIRECTORY_LEVEL &&
3506 !check_hugepage_cache_consistency(vcpu, gfn, level))
3507 level = PT_DIRECTORY_LEVEL;
936a5fe6
AA
3508 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3509 } else
3510 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3511
c7ba5b48
XG
3512 if (fast_page_fault(vcpu, gpa, level, error_code))
3513 return 0;
3514
e930bffe 3515 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3516 smp_rmb();
af585b92 3517
78b2c54a 3518 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3519 return 0;
3520
d7c55201
XG
3521 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3522 return r;
3523
fb72d167 3524 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3525 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3526 goto out_unlock;
450e0b41 3527 make_mmu_pages_available(vcpu);
936a5fe6
AA
3528 if (likely(!force_pt_level))
3529 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3530 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3531 level, gfn, pfn, prefault);
fb72d167 3532 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3533
3534 return r;
e930bffe
AA
3535
3536out_unlock:
3537 spin_unlock(&vcpu->kvm->mmu_lock);
3538 kvm_release_pfn_clean(pfn);
3539 return 0;
fb72d167
JR
3540}
3541
8a3c1a33
PB
3542static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3543 struct kvm_mmu *context)
6aa8b732 3544{
6aa8b732 3545 context->page_fault = nonpaging_page_fault;
6aa8b732 3546 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3547 context->sync_page = nonpaging_sync_page;
a7052897 3548 context->invlpg = nonpaging_invlpg;
0f53b5b1 3549 context->update_pte = nonpaging_update_pte;
cea0f0e7 3550 context->root_level = 0;
6aa8b732 3551 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3552 context->root_hpa = INVALID_PAGE;
c5a78f2b 3553 context->direct_map = true;
2d48a985 3554 context->nx = false;
6aa8b732
AK
3555}
3556
d8d173da 3557void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3558{
cea0f0e7 3559 mmu_free_roots(vcpu);
6aa8b732
AK
3560}
3561
5777ed34
JR
3562static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3563{
9f8fe504 3564 return kvm_read_cr3(vcpu);
5777ed34
JR
3565}
3566
6389ee94
AK
3567static void inject_page_fault(struct kvm_vcpu *vcpu,
3568 struct x86_exception *fault)
6aa8b732 3569{
6389ee94 3570 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3571}
3572
54bf36aa 3573static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3574 unsigned access, int *nr_present)
ce88decf
XG
3575{
3576 if (unlikely(is_mmio_spte(*sptep))) {
3577 if (gfn != get_mmio_spte_gfn(*sptep)) {
3578 mmu_spte_clear_no_track(sptep);
3579 return true;
3580 }
3581
3582 (*nr_present)++;
54bf36aa 3583 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3584 return true;
3585 }
3586
3587 return false;
3588}
3589
6fd01b71
AK
3590static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3591{
3592 unsigned index;
3593
3594 index = level - 1;
3595 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3596 return mmu->last_pte_bitmap & (1 << index);
3597}
3598
37406aaa
NHE
3599#define PTTYPE_EPT 18 /* arbitrary */
3600#define PTTYPE PTTYPE_EPT
3601#include "paging_tmpl.h"
3602#undef PTTYPE
3603
6aa8b732
AK
3604#define PTTYPE 64
3605#include "paging_tmpl.h"
3606#undef PTTYPE
3607
3608#define PTTYPE 32
3609#include "paging_tmpl.h"
3610#undef PTTYPE
3611
6dc98b86
XG
3612static void
3613__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3614 struct rsvd_bits_validate *rsvd_check,
3615 int maxphyaddr, int level, bool nx, bool gbpages,
3616 bool pse)
82725b20 3617{
82725b20 3618 u64 exb_bit_rsvd = 0;
5f7dde7b 3619 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3620 u64 nonleaf_bit8_rsvd = 0;
82725b20 3621
a0a64f50 3622 rsvd_check->bad_mt_xwr = 0;
25d92081 3623
6dc98b86 3624 if (!nx)
82725b20 3625 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3626 if (!gbpages)
5f7dde7b 3627 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3628
3629 /*
3630 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3631 * leaf entries) on AMD CPUs only.
3632 */
3633 if (guest_cpuid_is_amd(vcpu))
3634 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3635
6dc98b86 3636 switch (level) {
82725b20
DE
3637 case PT32_ROOT_LEVEL:
3638 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3639 rsvd_check->rsvd_bits_mask[0][1] = 0;
3640 rsvd_check->rsvd_bits_mask[0][0] = 0;
3641 rsvd_check->rsvd_bits_mask[1][0] =
3642 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 3643
6dc98b86 3644 if (!pse) {
a0a64f50 3645 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
3646 break;
3647 }
3648
82725b20
DE
3649 if (is_cpuid_PSE36())
3650 /* 36bits PSE 4MB page */
a0a64f50 3651 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
3652 else
3653 /* 32 bits PSE 4MB page */
a0a64f50 3654 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3655 break;
3656 case PT32E_ROOT_LEVEL:
a0a64f50 3657 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 3658 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3659 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 3660 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3661 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 3662 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 3663 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 3664 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
3665 rsvd_bits(maxphyaddr, 62) |
3666 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3667 rsvd_check->rsvd_bits_mask[1][0] =
3668 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3669 break;
3670 case PT64_ROOT_LEVEL:
a0a64f50
XG
3671 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3672 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 3673 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3674 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3675 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 3676 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3677 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3678 rsvd_bits(maxphyaddr, 51);
3679 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3680 rsvd_bits(maxphyaddr, 51);
3681 rsvd_check->rsvd_bits_mask[1][3] =
3682 rsvd_check->rsvd_bits_mask[0][3];
3683 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3684 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3685 rsvd_bits(13, 29);
a0a64f50 3686 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3687 rsvd_bits(maxphyaddr, 51) |
3688 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3689 rsvd_check->rsvd_bits_mask[1][0] =
3690 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3691 break;
3692 }
3693}
3694
6dc98b86
XG
3695static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3696 struct kvm_mmu *context)
3697{
3698 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3699 cpuid_maxphyaddr(vcpu), context->root_level,
3700 context->nx, guest_cpuid_has_gbpages(vcpu),
3701 is_pse(vcpu));
3702}
3703
81b8eebb
XG
3704static void
3705__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3706 int maxphyaddr, bool execonly)
25d92081 3707{
25d92081
YZ
3708 int pte;
3709
a0a64f50 3710 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 3711 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 3712 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 3713 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3714 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 3715 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3716 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
3717
3718 /* large page */
a0a64f50
XG
3719 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3720 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 3721 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 3722 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 3723 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 3724 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081
YZ
3725
3726 for (pte = 0; pte < 64; pte++) {
3727 int rwx_bits = pte & 7;
3728 int mt = pte >> 3;
3729 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3730 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3731 (rwx_bits == 0x4 && !execonly))
a0a64f50 3732 rsvd_check->bad_mt_xwr |= (1ull << pte);
25d92081
YZ
3733 }
3734}
3735
81b8eebb
XG
3736static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3737 struct kvm_mmu *context, bool execonly)
3738{
3739 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3740 cpuid_maxphyaddr(vcpu), execonly);
3741}
3742
c258b62b
XG
3743/*
3744 * the page table on host is the shadow page table for the page
3745 * table in guest or amd nested guest, its mmu features completely
3746 * follow the features in guest.
3747 */
3748void
3749reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3750{
3751 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3752 boot_cpu_data.x86_phys_bits,
3753 context->shadow_root_level, context->nx,
3754 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu));
3755}
3756EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3757
3758/*
3759 * the direct page table on host, use as much mmu features as
3760 * possible, however, kvm currently does not do execution-protection.
3761 */
3762static void
3763reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3764 struct kvm_mmu *context)
3765{
3766 if (guest_cpuid_is_amd(vcpu))
3767 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3768 boot_cpu_data.x86_phys_bits,
3769 context->shadow_root_level, false,
3770 cpu_has_gbpages, true);
3771 else
3772 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3773 boot_cpu_data.x86_phys_bits,
3774 false);
3775
3776}
3777
3778/*
3779 * as the comments in reset_shadow_zero_bits_mask() except it
3780 * is the shadow page table for intel nested guest.
3781 */
3782static void
3783reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3784 struct kvm_mmu *context, bool execonly)
3785{
3786 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3787 boot_cpu_data.x86_phys_bits, execonly);
3788}
3789
edc90b7d
XG
3790static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3791 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3792{
3793 unsigned bit, byte, pfec;
3794 u8 map;
66386ade 3795 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3796
66386ade 3797 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3798 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3799 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3800 pfec = byte << 1;
3801 map = 0;
3802 wf = pfec & PFERR_WRITE_MASK;
3803 uf = pfec & PFERR_USER_MASK;
3804 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3805 /*
3806 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3807 * subject to SMAP restrictions, and cleared otherwise. The
3808 * bit is only meaningful if the SMAP bit is set in CR4.
3809 */
3810 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3811 for (bit = 0; bit < 8; ++bit) {
3812 x = bit & ACC_EXEC_MASK;
3813 w = bit & ACC_WRITE_MASK;
3814 u = bit & ACC_USER_MASK;
3815
25d92081
YZ
3816 if (!ept) {
3817 /* Not really needed: !nx will cause pte.nx to fault */
3818 x |= !mmu->nx;
3819 /* Allow supervisor writes if !cr0.wp */
3820 w |= !is_write_protection(vcpu) && !uf;
3821 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3822 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3823
3824 /*
3825 * SMAP:kernel-mode data accesses from user-mode
3826 * mappings should fault. A fault is considered
3827 * as a SMAP violation if all of the following
3828 * conditions are ture:
3829 * - X86_CR4_SMAP is set in CR4
3830 * - An user page is accessed
3831 * - Page fault in kernel mode
3832 * - if CPL = 3 or X86_EFLAGS_AC is clear
3833 *
3834 * Here, we cover the first three conditions.
3835 * The fourth is computed dynamically in
3836 * permission_fault() and is in smapf.
3837 *
3838 * Also, SMAP does not affect instruction
3839 * fetches, add the !ff check here to make it
3840 * clearer.
3841 */
3842 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3843 } else
3844 /* Not really needed: no U/S accesses on ept */
3845 u = 1;
97d64b78 3846
97ec8c06
FW
3847 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3848 (smapf && smap);
97d64b78
AK
3849 map |= fault << bit;
3850 }
3851 mmu->permissions[byte] = map;
3852 }
3853}
3854
6fd01b71
AK
3855static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3856{
3857 u8 map;
3858 unsigned level, root_level = mmu->root_level;
3859 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3860
3861 if (root_level == PT32E_ROOT_LEVEL)
3862 --root_level;
3863 /* PT_PAGE_TABLE_LEVEL always terminates */
3864 map = 1 | (1 << ps_set_index);
3865 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3866 if (level <= PT_PDPE_LEVEL
3867 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3868 map |= 1 << (ps_set_index | (level - 1));
3869 }
3870 mmu->last_pte_bitmap = map;
3871}
3872
8a3c1a33
PB
3873static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3874 struct kvm_mmu *context,
3875 int level)
6aa8b732 3876{
2d48a985 3877 context->nx = is_nx(vcpu);
4d6931c3 3878 context->root_level = level;
2d48a985 3879
4d6931c3 3880 reset_rsvds_bits_mask(vcpu, context);
25d92081 3881 update_permission_bitmask(vcpu, context, false);
6fd01b71 3882 update_last_pte_bitmap(vcpu, context);
6aa8b732 3883
fa4a2c08 3884 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 3885 context->page_fault = paging64_page_fault;
6aa8b732 3886 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3887 context->sync_page = paging64_sync_page;
a7052897 3888 context->invlpg = paging64_invlpg;
0f53b5b1 3889 context->update_pte = paging64_update_pte;
17ac10ad 3890 context->shadow_root_level = level;
17c3ba9d 3891 context->root_hpa = INVALID_PAGE;
c5a78f2b 3892 context->direct_map = false;
6aa8b732
AK
3893}
3894
8a3c1a33
PB
3895static void paging64_init_context(struct kvm_vcpu *vcpu,
3896 struct kvm_mmu *context)
17ac10ad 3897{
8a3c1a33 3898 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3899}
3900
8a3c1a33
PB
3901static void paging32_init_context(struct kvm_vcpu *vcpu,
3902 struct kvm_mmu *context)
6aa8b732 3903{
2d48a985 3904 context->nx = false;
4d6931c3 3905 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3906
4d6931c3 3907 reset_rsvds_bits_mask(vcpu, context);
25d92081 3908 update_permission_bitmask(vcpu, context, false);
6fd01b71 3909 update_last_pte_bitmap(vcpu, context);
6aa8b732 3910
6aa8b732 3911 context->page_fault = paging32_page_fault;
6aa8b732 3912 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3913 context->sync_page = paging32_sync_page;
a7052897 3914 context->invlpg = paging32_invlpg;
0f53b5b1 3915 context->update_pte = paging32_update_pte;
6aa8b732 3916 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3917 context->root_hpa = INVALID_PAGE;
c5a78f2b 3918 context->direct_map = false;
6aa8b732
AK
3919}
3920
8a3c1a33
PB
3921static void paging32E_init_context(struct kvm_vcpu *vcpu,
3922 struct kvm_mmu *context)
6aa8b732 3923{
8a3c1a33 3924 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3925}
3926
8a3c1a33 3927static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3928{
ad896af0 3929 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 3930
c445f8ef 3931 context->base_role.word = 0;
699023e2 3932 context->base_role.smm = is_smm(vcpu);
fb72d167 3933 context->page_fault = tdp_page_fault;
e8bc217a 3934 context->sync_page = nonpaging_sync_page;
a7052897 3935 context->invlpg = nonpaging_invlpg;
0f53b5b1 3936 context->update_pte = nonpaging_update_pte;
67253af5 3937 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3938 context->root_hpa = INVALID_PAGE;
c5a78f2b 3939 context->direct_map = true;
1c97f0a0 3940 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3941 context->get_cr3 = get_cr3;
e4e517b4 3942 context->get_pdptr = kvm_pdptr_read;
cb659db8 3943 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3944
3945 if (!is_paging(vcpu)) {
2d48a985 3946 context->nx = false;
fb72d167
JR
3947 context->gva_to_gpa = nonpaging_gva_to_gpa;
3948 context->root_level = 0;
3949 } else if (is_long_mode(vcpu)) {
2d48a985 3950 context->nx = is_nx(vcpu);
fb72d167 3951 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3952 reset_rsvds_bits_mask(vcpu, context);
3953 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3954 } else if (is_pae(vcpu)) {
2d48a985 3955 context->nx = is_nx(vcpu);
fb72d167 3956 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3957 reset_rsvds_bits_mask(vcpu, context);
3958 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3959 } else {
2d48a985 3960 context->nx = false;
fb72d167 3961 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3962 reset_rsvds_bits_mask(vcpu, context);
3963 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3964 }
3965
25d92081 3966 update_permission_bitmask(vcpu, context, false);
6fd01b71 3967 update_last_pte_bitmap(vcpu, context);
c258b62b 3968 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
3969}
3970
ad896af0 3971void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 3972{
411c588d 3973 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 3974 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
3975 struct kvm_mmu *context = &vcpu->arch.mmu;
3976
fa4a2c08 3977 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
3978
3979 if (!is_paging(vcpu))
8a3c1a33 3980 nonpaging_init_context(vcpu, context);
a9058ecd 3981 else if (is_long_mode(vcpu))
8a3c1a33 3982 paging64_init_context(vcpu, context);
6aa8b732 3983 else if (is_pae(vcpu))
8a3c1a33 3984 paging32E_init_context(vcpu, context);
6aa8b732 3985 else
8a3c1a33 3986 paging32_init_context(vcpu, context);
a770f6f2 3987
ad896af0
PB
3988 context->base_role.nxe = is_nx(vcpu);
3989 context->base_role.cr4_pae = !!is_pae(vcpu);
3990 context->base_role.cr0_wp = is_write_protection(vcpu);
3991 context->base_role.smep_andnot_wp
411c588d 3992 = smep && !is_write_protection(vcpu);
edc90b7d
XG
3993 context->base_role.smap_andnot_wp
3994 = smap && !is_write_protection(vcpu);
699023e2 3995 context->base_role.smm = is_smm(vcpu);
c258b62b 3996 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
3997}
3998EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3999
ad896af0 4000void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 4001{
ad896af0
PB
4002 struct kvm_mmu *context = &vcpu->arch.mmu;
4003
fa4a2c08 4004 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
4005
4006 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4007
4008 context->nx = true;
155a97a3
NHE
4009 context->page_fault = ept_page_fault;
4010 context->gva_to_gpa = ept_gva_to_gpa;
4011 context->sync_page = ept_sync_page;
4012 context->invlpg = ept_invlpg;
4013 context->update_pte = ept_update_pte;
155a97a3
NHE
4014 context->root_level = context->shadow_root_level;
4015 context->root_hpa = INVALID_PAGE;
4016 context->direct_map = false;
4017
4018 update_permission_bitmask(vcpu, context, true);
4019 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4020 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4021}
4022EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4023
8a3c1a33 4024static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4025{
ad896af0
PB
4026 struct kvm_mmu *context = &vcpu->arch.mmu;
4027
4028 kvm_init_shadow_mmu(vcpu);
4029 context->set_cr3 = kvm_x86_ops->set_cr3;
4030 context->get_cr3 = get_cr3;
4031 context->get_pdptr = kvm_pdptr_read;
4032 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4033}
4034
8a3c1a33 4035static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4036{
4037 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4038
4039 g_context->get_cr3 = get_cr3;
e4e517b4 4040 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4041 g_context->inject_page_fault = kvm_inject_page_fault;
4042
4043 /*
4044 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
4045 * translation of l2_gpa to l1_gpa addresses is done using the
4046 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
4047 * functions between mmu and nested_mmu are swapped.
4048 */
4049 if (!is_paging(vcpu)) {
2d48a985 4050 g_context->nx = false;
02f59dc9
JR
4051 g_context->root_level = 0;
4052 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4053 } else if (is_long_mode(vcpu)) {
2d48a985 4054 g_context->nx = is_nx(vcpu);
02f59dc9 4055 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4056 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4057 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4058 } else if (is_pae(vcpu)) {
2d48a985 4059 g_context->nx = is_nx(vcpu);
02f59dc9 4060 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4061 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4062 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4063 } else {
2d48a985 4064 g_context->nx = false;
02f59dc9 4065 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4066 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4067 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4068 }
4069
25d92081 4070 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 4071 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
4072}
4073
8a3c1a33 4074static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4075{
02f59dc9 4076 if (mmu_is_nested(vcpu))
e0c6db3e 4077 init_kvm_nested_mmu(vcpu);
02f59dc9 4078 else if (tdp_enabled)
e0c6db3e 4079 init_kvm_tdp_mmu(vcpu);
fb72d167 4080 else
e0c6db3e 4081 init_kvm_softmmu(vcpu);
fb72d167
JR
4082}
4083
8a3c1a33 4084void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4085{
95f93af4 4086 kvm_mmu_unload(vcpu);
8a3c1a33 4087 init_kvm_mmu(vcpu);
17c3ba9d 4088}
8668a3c4 4089EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4090
4091int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4092{
714b93da
AK
4093 int r;
4094
e2dec939 4095 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4096 if (r)
4097 goto out;
8986ecc0 4098 r = mmu_alloc_roots(vcpu);
e2858b4a 4099 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4100 if (r)
4101 goto out;
3662cb1c 4102 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4103 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4104out:
4105 return r;
6aa8b732 4106}
17c3ba9d
AK
4107EXPORT_SYMBOL_GPL(kvm_mmu_load);
4108
4109void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4110{
4111 mmu_free_roots(vcpu);
95f93af4 4112 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4113}
4b16184c 4114EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4115
0028425f 4116static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4117 struct kvm_mmu_page *sp, u64 *spte,
4118 const void *new)
0028425f 4119{
30945387 4120 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4121 ++vcpu->kvm->stat.mmu_pde_zapped;
4122 return;
30945387 4123 }
0028425f 4124
4cee5764 4125 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4126 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4127}
4128
79539cec
AK
4129static bool need_remote_flush(u64 old, u64 new)
4130{
4131 if (!is_shadow_present_pte(old))
4132 return false;
4133 if (!is_shadow_present_pte(new))
4134 return true;
4135 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4136 return true;
53166229
GN
4137 old ^= shadow_nx_mask;
4138 new ^= shadow_nx_mask;
79539cec
AK
4139 return (old & ~new & PT64_PERM_MASK) != 0;
4140}
4141
0671a8e7
XG
4142static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4143 bool remote_flush, bool local_flush)
79539cec 4144{
0671a8e7
XG
4145 if (zap_page)
4146 return;
4147
4148 if (remote_flush)
79539cec 4149 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 4150 else if (local_flush)
77c3913b 4151 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
79539cec
AK
4152}
4153
889e5cbc
XG
4154static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4155 const u8 *new, int *bytes)
da4a00f0 4156{
889e5cbc
XG
4157 u64 gentry;
4158 int r;
72016f3a 4159
72016f3a
AK
4160 /*
4161 * Assume that the pte write on a page table of the same type
49b26e26
XG
4162 * as the current vcpu paging mode since we update the sptes only
4163 * when they have the same mode.
72016f3a 4164 */
889e5cbc 4165 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4166 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4167 *gpa &= ~(gpa_t)7;
4168 *bytes = 8;
54bf36aa 4169 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4170 if (r)
4171 gentry = 0;
08e850c6
AK
4172 new = (const u8 *)&gentry;
4173 }
4174
889e5cbc 4175 switch (*bytes) {
08e850c6
AK
4176 case 4:
4177 gentry = *(const u32 *)new;
4178 break;
4179 case 8:
4180 gentry = *(const u64 *)new;
4181 break;
4182 default:
4183 gentry = 0;
4184 break;
72016f3a
AK
4185 }
4186
889e5cbc
XG
4187 return gentry;
4188}
4189
4190/*
4191 * If we're seeing too many writes to a page, it may no longer be a page table,
4192 * or we may be forking, in which case it is better to unmap the page.
4193 */
a138fe75 4194static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4195{
a30f47cb
XG
4196 /*
4197 * Skip write-flooding detected for the sp whose level is 1, because
4198 * it can become unsync, then the guest page is not write-protected.
4199 */
f71fa31f 4200 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4201 return false;
3246af0e 4202
a30f47cb 4203 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
4204}
4205
4206/*
4207 * Misaligned accesses are too much trouble to fix up; also, they usually
4208 * indicate a page is not used as a page table.
4209 */
4210static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4211 int bytes)
4212{
4213 unsigned offset, pte_size, misaligned;
4214
4215 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4216 gpa, bytes, sp->role.word);
4217
4218 offset = offset_in_page(gpa);
4219 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4220
4221 /*
4222 * Sometimes, the OS only writes the last one bytes to update status
4223 * bits, for example, in linux, andb instruction is used in clear_bit().
4224 */
4225 if (!(offset & (pte_size - 1)) && bytes == 1)
4226 return false;
4227
889e5cbc
XG
4228 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4229 misaligned |= bytes < 4;
4230
4231 return misaligned;
4232}
4233
4234static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4235{
4236 unsigned page_offset, quadrant;
4237 u64 *spte;
4238 int level;
4239
4240 page_offset = offset_in_page(gpa);
4241 level = sp->role.level;
4242 *nspte = 1;
4243 if (!sp->role.cr4_pae) {
4244 page_offset <<= 1; /* 32->64 */
4245 /*
4246 * A 32-bit pde maps 4MB while the shadow pdes map
4247 * only 2MB. So we need to double the offset again
4248 * and zap two pdes instead of one.
4249 */
4250 if (level == PT32_ROOT_LEVEL) {
4251 page_offset &= ~7; /* kill rounding error */
4252 page_offset <<= 1;
4253 *nspte = 2;
4254 }
4255 quadrant = page_offset >> PAGE_SHIFT;
4256 page_offset &= ~PAGE_MASK;
4257 if (quadrant != sp->role.quadrant)
4258 return NULL;
4259 }
4260
4261 spte = &sp->spt[page_offset / sizeof(*spte)];
4262 return spte;
4263}
4264
4265void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4266 const u8 *new, int bytes)
4267{
4268 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4269 struct kvm_mmu_page *sp;
889e5cbc
XG
4270 LIST_HEAD(invalid_list);
4271 u64 entry, gentry, *spte;
4272 int npte;
a30f47cb 4273 bool remote_flush, local_flush, zap_page;
4141259b
AM
4274 union kvm_mmu_page_role mask = { };
4275
4276 mask.cr0_wp = 1;
4277 mask.cr4_pae = 1;
4278 mask.nxe = 1;
4279 mask.smep_andnot_wp = 1;
4280 mask.smap_andnot_wp = 1;
699023e2 4281 mask.smm = 1;
889e5cbc
XG
4282
4283 /*
4284 * If we don't have indirect shadow pages, it means no page is
4285 * write-protected, so we can exit simply.
4286 */
4287 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4288 return;
4289
4290 zap_page = remote_flush = local_flush = false;
4291
4292 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4293
4294 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4295
4296 /*
4297 * No need to care whether allocation memory is successful
4298 * or not since pte prefetch is skiped if it does not have
4299 * enough objects in the cache.
4300 */
4301 mmu_topup_memory_caches(vcpu);
4302
4303 spin_lock(&vcpu->kvm->mmu_lock);
4304 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4305 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4306
b67bfe0d 4307 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4308 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4309 detect_write_flooding(sp)) {
0671a8e7 4310 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4311 &invalid_list);
4cee5764 4312 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4313 continue;
4314 }
889e5cbc
XG
4315
4316 spte = get_written_sptes(sp, gpa, &npte);
4317 if (!spte)
4318 continue;
4319
0671a8e7 4320 local_flush = true;
ac1b714e 4321 while (npte--) {
79539cec 4322 entry = *spte;
38e3b2b2 4323 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4324 if (gentry &&
4325 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4326 & mask.word) && rmap_can_add(vcpu))
7c562522 4327 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4328 if (need_remote_flush(entry, *spte))
0671a8e7 4329 remote_flush = true;
ac1b714e 4330 ++spte;
9b7a0325 4331 }
9b7a0325 4332 }
0671a8e7 4333 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4334 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4335 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4336 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4337}
4338
a436036b
AK
4339int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4340{
10589a46
MT
4341 gpa_t gpa;
4342 int r;
a436036b 4343
c5a78f2b 4344 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4345 return 0;
4346
1871c602 4347 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4348
10589a46 4349 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4350
10589a46 4351 return r;
a436036b 4352}
577bdc49 4353EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4354
81f4f76b 4355static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4356{
d98ba053 4357 LIST_HEAD(invalid_list);
103ad25a 4358
81f4f76b
TY
4359 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4360 return;
4361
5da59607
TY
4362 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4363 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4364 break;
ebeace86 4365
4cee5764 4366 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4367 }
aa6bd187 4368 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4369}
ebeace86 4370
1cb3f3ae
XG
4371static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4372{
4373 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4374 return vcpu_match_mmio_gpa(vcpu, addr);
4375
4376 return vcpu_match_mmio_gva(vcpu, addr);
4377}
4378
dc25e89e
AP
4379int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4380 void *insn, int insn_len)
3067714c 4381{
1cb3f3ae 4382 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4383 enum emulation_result er;
4384
56028d08 4385 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4386 if (r < 0)
4387 goto out;
4388
4389 if (!r) {
4390 r = 1;
4391 goto out;
4392 }
4393
1cb3f3ae
XG
4394 if (is_mmio_page_fault(vcpu, cr2))
4395 emulation_type = 0;
4396
4397 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4398
4399 switch (er) {
4400 case EMULATE_DONE:
4401 return 1;
ac0a48c3 4402 case EMULATE_USER_EXIT:
3067714c 4403 ++vcpu->stat.mmio_exits;
6d77dbfc 4404 /* fall through */
3067714c 4405 case EMULATE_FAIL:
3f5d18a9 4406 return 0;
3067714c
AK
4407 default:
4408 BUG();
4409 }
4410out:
3067714c
AK
4411 return r;
4412}
4413EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4414
a7052897
MT
4415void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4416{
a7052897 4417 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4418 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4419 ++vcpu->stat.invlpg;
4420}
4421EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4422
18552672
JR
4423void kvm_enable_tdp(void)
4424{
4425 tdp_enabled = true;
4426}
4427EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4428
5f4cb662
JR
4429void kvm_disable_tdp(void)
4430{
4431 tdp_enabled = false;
4432}
4433EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4434
6aa8b732
AK
4435static void free_mmu_pages(struct kvm_vcpu *vcpu)
4436{
ad312c7c 4437 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4438 if (vcpu->arch.mmu.lm_root != NULL)
4439 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4440}
4441
4442static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4443{
17ac10ad 4444 struct page *page;
6aa8b732
AK
4445 int i;
4446
17ac10ad
AK
4447 /*
4448 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4449 * Therefore we need to allocate shadow page tables in the first
4450 * 4GB of memory, which happens to fit the DMA32 zone.
4451 */
4452 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4453 if (!page)
d7fa6ab2
WY
4454 return -ENOMEM;
4455
ad312c7c 4456 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4457 for (i = 0; i < 4; ++i)
ad312c7c 4458 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4459
6aa8b732 4460 return 0;
6aa8b732
AK
4461}
4462
8018c27b 4463int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4464{
e459e322
XG
4465 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4466 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4467 vcpu->arch.mmu.translate_gpa = translate_gpa;
4468 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4469
8018c27b
IM
4470 return alloc_mmu_pages(vcpu);
4471}
6aa8b732 4472
8a3c1a33 4473void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4474{
fa4a2c08 4475 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4476
8a3c1a33 4477 init_kvm_mmu(vcpu);
6aa8b732
AK
4478}
4479
1bad2b2a
XG
4480/* The return value indicates if tlb flush on all vcpus is needed. */
4481typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
4482
4483/* The caller should hold mmu-lock before calling this function. */
4484static bool
4485slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4486 slot_level_handler fn, int start_level, int end_level,
4487 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4488{
4489 struct slot_rmap_walk_iterator iterator;
4490 bool flush = false;
4491
4492 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4493 end_gfn, &iterator) {
4494 if (iterator.rmap)
4495 flush |= fn(kvm, iterator.rmap);
4496
4497 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4498 if (flush && lock_flush_tlb) {
4499 kvm_flush_remote_tlbs(kvm);
4500 flush = false;
4501 }
4502 cond_resched_lock(&kvm->mmu_lock);
4503 }
4504 }
4505
4506 if (flush && lock_flush_tlb) {
4507 kvm_flush_remote_tlbs(kvm);
4508 flush = false;
4509 }
4510
4511 return flush;
4512}
4513
4514static bool
4515slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4516 slot_level_handler fn, int start_level, int end_level,
4517 bool lock_flush_tlb)
4518{
4519 return slot_handle_level_range(kvm, memslot, fn, start_level,
4520 end_level, memslot->base_gfn,
4521 memslot->base_gfn + memslot->npages - 1,
4522 lock_flush_tlb);
4523}
4524
4525static bool
4526slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4527 slot_level_handler fn, bool lock_flush_tlb)
4528{
4529 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4530 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4531}
4532
4533static bool
4534slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4535 slot_level_handler fn, bool lock_flush_tlb)
4536{
4537 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4538 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4539}
4540
4541static bool
4542slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4543 slot_level_handler fn, bool lock_flush_tlb)
4544{
4545 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4546 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4547}
4548
efdfe536
XG
4549void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4550{
4551 struct kvm_memslots *slots;
4552 struct kvm_memory_slot *memslot;
9da0e4d5 4553 int i;
efdfe536
XG
4554
4555 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
4556 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4557 slots = __kvm_memslots(kvm, i);
4558 kvm_for_each_memslot(memslot, slots) {
4559 gfn_t start, end;
4560
4561 start = max(gfn_start, memslot->base_gfn);
4562 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4563 if (start >= end)
4564 continue;
efdfe536 4565
9da0e4d5
PB
4566 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4567 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4568 start, end - 1, true);
4569 }
efdfe536
XG
4570 }
4571
4572 spin_unlock(&kvm->mmu_lock);
4573}
4574
d77aa73c
XG
4575static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
4576{
4577 return __rmap_write_protect(kvm, rmapp, false);
4578}
4579
1c91cad4
KH
4580void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4581 struct kvm_memory_slot *memslot)
6aa8b732 4582{
d77aa73c 4583 bool flush;
6aa8b732 4584
9d1beefb 4585 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4586 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4587 false);
9d1beefb 4588 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4589
4590 /*
4591 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4592 * which do tlb flush out of mmu-lock should be serialized by
4593 * kvm->slots_lock otherwise tlb flush would be missed.
4594 */
4595 lockdep_assert_held(&kvm->slots_lock);
4596
4597 /*
4598 * We can flush all the TLBs out of the mmu lock without TLB
4599 * corruption since we just change the spte from writable to
4600 * readonly so that we only need to care the case of changing
4601 * spte from present to present (changing the spte from present
4602 * to nonpresent will flush all the TLBs immediately), in other
4603 * words, the only case we care is mmu_spte_update() where we
4604 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4605 * instead of PT_WRITABLE_MASK, that means it does not depend
4606 * on PT_WRITABLE_MASK anymore.
4607 */
d91ffee9
KH
4608 if (flush)
4609 kvm_flush_remote_tlbs(kvm);
6aa8b732 4610}
37a7d8b0 4611
3ea3b7fa
WL
4612static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4613 unsigned long *rmapp)
4614{
4615 u64 *sptep;
4616 struct rmap_iterator iter;
4617 int need_tlb_flush = 0;
4618 pfn_t pfn;
4619 struct kvm_mmu_page *sp;
4620
0d536790
XG
4621restart:
4622 for_each_rmap_spte(rmapp, &iter, sptep) {
3ea3b7fa
WL
4623 sp = page_header(__pa(sptep));
4624 pfn = spte_to_pfn(*sptep);
4625
4626 /*
decf6333
XG
4627 * We cannot do huge page mapping for indirect shadow pages,
4628 * which are found on the last rmap (level = 1) when not using
4629 * tdp; such shadow pages are synced with the page table in
4630 * the guest, and the guest page table is using 4K page size
4631 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
4632 */
4633 if (sp->role.direct &&
4634 !kvm_is_reserved_pfn(pfn) &&
4635 PageTransCompound(pfn_to_page(pfn))) {
4636 drop_spte(kvm, sptep);
3ea3b7fa 4637 need_tlb_flush = 1;
0d536790
XG
4638 goto restart;
4639 }
3ea3b7fa
WL
4640 }
4641
4642 return need_tlb_flush;
4643}
4644
4645void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 4646 const struct kvm_memory_slot *memslot)
3ea3b7fa 4647{
f36f3f28 4648 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 4649 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
4650 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4651 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
4652 spin_unlock(&kvm->mmu_lock);
4653}
4654
f4b4b180
KH
4655void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4656 struct kvm_memory_slot *memslot)
4657{
d77aa73c 4658 bool flush;
f4b4b180
KH
4659
4660 spin_lock(&kvm->mmu_lock);
d77aa73c 4661 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
4662 spin_unlock(&kvm->mmu_lock);
4663
4664 lockdep_assert_held(&kvm->slots_lock);
4665
4666 /*
4667 * It's also safe to flush TLBs out of mmu lock here as currently this
4668 * function is only used for dirty logging, in which case flushing TLB
4669 * out of mmu lock also guarantees no dirty pages will be lost in
4670 * dirty_bitmap.
4671 */
4672 if (flush)
4673 kvm_flush_remote_tlbs(kvm);
4674}
4675EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4676
4677void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4678 struct kvm_memory_slot *memslot)
4679{
d77aa73c 4680 bool flush;
f4b4b180
KH
4681
4682 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4683 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4684 false);
f4b4b180
KH
4685 spin_unlock(&kvm->mmu_lock);
4686
4687 /* see kvm_mmu_slot_remove_write_access */
4688 lockdep_assert_held(&kvm->slots_lock);
4689
4690 if (flush)
4691 kvm_flush_remote_tlbs(kvm);
4692}
4693EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4694
4695void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4696 struct kvm_memory_slot *memslot)
4697{
d77aa73c 4698 bool flush;
f4b4b180
KH
4699
4700 spin_lock(&kvm->mmu_lock);
d77aa73c 4701 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
4702 spin_unlock(&kvm->mmu_lock);
4703
4704 lockdep_assert_held(&kvm->slots_lock);
4705
4706 /* see kvm_mmu_slot_leaf_clear_dirty */
4707 if (flush)
4708 kvm_flush_remote_tlbs(kvm);
4709}
4710EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4711
e7d11c7a 4712#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4713static void kvm_zap_obsolete_pages(struct kvm *kvm)
4714{
4715 struct kvm_mmu_page *sp, *node;
e7d11c7a 4716 int batch = 0;
5304b8d3
XG
4717
4718restart:
4719 list_for_each_entry_safe_reverse(sp, node,
4720 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4721 int ret;
4722
5304b8d3
XG
4723 /*
4724 * No obsolete page exists before new created page since
4725 * active_mmu_pages is the FIFO list.
4726 */
4727 if (!is_obsolete_sp(kvm, sp))
4728 break;
4729
4730 /*
5304b8d3
XG
4731 * Since we are reversely walking the list and the invalid
4732 * list will be moved to the head, skip the invalid page
4733 * can help us to avoid the infinity list walking.
4734 */
4735 if (sp->role.invalid)
4736 continue;
4737
f34d251d
XG
4738 /*
4739 * Need not flush tlb since we only zap the sp with invalid
4740 * generation number.
4741 */
e7d11c7a 4742 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4743 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4744 batch = 0;
5304b8d3
XG
4745 goto restart;
4746 }
4747
365c8868
XG
4748 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4749 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4750 batch += ret;
4751
4752 if (ret)
5304b8d3
XG
4753 goto restart;
4754 }
4755
f34d251d
XG
4756 /*
4757 * Should flush tlb before free page tables since lockless-walking
4758 * may use the pages.
4759 */
365c8868 4760 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4761}
4762
4763/*
4764 * Fast invalidate all shadow pages and use lock-break technique
4765 * to zap obsolete pages.
4766 *
4767 * It's required when memslot is being deleted or VM is being
4768 * destroyed, in these cases, we should ensure that KVM MMU does
4769 * not use any resource of the being-deleted slot or all slots
4770 * after calling the function.
4771 */
4772void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4773{
4774 spin_lock(&kvm->mmu_lock);
35006126 4775 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4776 kvm->arch.mmu_valid_gen++;
4777
f34d251d
XG
4778 /*
4779 * Notify all vcpus to reload its shadow page table
4780 * and flush TLB. Then all vcpus will switch to new
4781 * shadow page table with the new mmu_valid_gen.
4782 *
4783 * Note: we should do this under the protection of
4784 * mmu-lock, otherwise, vcpu would purge shadow page
4785 * but miss tlb flush.
4786 */
4787 kvm_reload_remote_mmus(kvm);
4788
5304b8d3
XG
4789 kvm_zap_obsolete_pages(kvm);
4790 spin_unlock(&kvm->mmu_lock);
4791}
4792
365c8868
XG
4793static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4794{
4795 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4796}
4797
54bf36aa 4798void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
4799{
4800 /*
4801 * The very rare case: if the generation-number is round,
4802 * zap all shadow pages.
f8f55942 4803 */
54bf36aa 4804 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
a629df7e 4805 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4806 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4807 }
f8f55942
XG
4808}
4809
70534a73
DC
4810static unsigned long
4811mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4812{
4813 struct kvm *kvm;
1495f230 4814 int nr_to_scan = sc->nr_to_scan;
70534a73 4815 unsigned long freed = 0;
3ee16c81 4816
2f303b74 4817 spin_lock(&kvm_lock);
3ee16c81
IE
4818
4819 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4820 int idx;
d98ba053 4821 LIST_HEAD(invalid_list);
3ee16c81 4822
35f2d16b
TY
4823 /*
4824 * Never scan more than sc->nr_to_scan VM instances.
4825 * Will not hit this condition practically since we do not try
4826 * to shrink more than one VM and it is very unlikely to see
4827 * !n_used_mmu_pages so many times.
4828 */
4829 if (!nr_to_scan--)
4830 break;
19526396
GN
4831 /*
4832 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4833 * here. We may skip a VM instance errorneosly, but we do not
4834 * want to shrink a VM that only started to populate its MMU
4835 * anyway.
4836 */
365c8868
XG
4837 if (!kvm->arch.n_used_mmu_pages &&
4838 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4839 continue;
19526396 4840
f656ce01 4841 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4842 spin_lock(&kvm->mmu_lock);
3ee16c81 4843
365c8868
XG
4844 if (kvm_has_zapped_obsolete_pages(kvm)) {
4845 kvm_mmu_commit_zap_page(kvm,
4846 &kvm->arch.zapped_obsolete_pages);
4847 goto unlock;
4848 }
4849
70534a73
DC
4850 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4851 freed++;
d98ba053 4852 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4853
365c8868 4854unlock:
3ee16c81 4855 spin_unlock(&kvm->mmu_lock);
f656ce01 4856 srcu_read_unlock(&kvm->srcu, idx);
19526396 4857
70534a73
DC
4858 /*
4859 * unfair on small ones
4860 * per-vm shrinkers cry out
4861 * sadness comes quickly
4862 */
19526396
GN
4863 list_move_tail(&kvm->vm_list, &vm_list);
4864 break;
3ee16c81 4865 }
3ee16c81 4866
2f303b74 4867 spin_unlock(&kvm_lock);
70534a73 4868 return freed;
70534a73
DC
4869}
4870
4871static unsigned long
4872mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4873{
45221ab6 4874 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4875}
4876
4877static struct shrinker mmu_shrinker = {
70534a73
DC
4878 .count_objects = mmu_shrink_count,
4879 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4880 .seeks = DEFAULT_SEEKS * 10,
4881};
4882
2ddfd20e 4883static void mmu_destroy_caches(void)
b5a33a75 4884{
53c07b18
XG
4885 if (pte_list_desc_cache)
4886 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4887 if (mmu_page_header_cache)
4888 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4889}
4890
4891int kvm_mmu_module_init(void)
4892{
53c07b18
XG
4893 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4894 sizeof(struct pte_list_desc),
20c2df83 4895 0, 0, NULL);
53c07b18 4896 if (!pte_list_desc_cache)
b5a33a75
AK
4897 goto nomem;
4898
d3d25b04
AK
4899 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4900 sizeof(struct kvm_mmu_page),
20c2df83 4901 0, 0, NULL);
d3d25b04
AK
4902 if (!mmu_page_header_cache)
4903 goto nomem;
4904
908c7f19 4905 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
4906 goto nomem;
4907
3ee16c81
IE
4908 register_shrinker(&mmu_shrinker);
4909
b5a33a75
AK
4910 return 0;
4911
4912nomem:
3ee16c81 4913 mmu_destroy_caches();
b5a33a75
AK
4914 return -ENOMEM;
4915}
4916
3ad82a7e
ZX
4917/*
4918 * Caculate mmu pages needed for kvm.
4919 */
4920unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4921{
3ad82a7e
ZX
4922 unsigned int nr_mmu_pages;
4923 unsigned int nr_pages = 0;
bc6678a3 4924 struct kvm_memslots *slots;
be6ba0f0 4925 struct kvm_memory_slot *memslot;
9da0e4d5 4926 int i;
3ad82a7e 4927
9da0e4d5
PB
4928 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4929 slots = __kvm_memslots(kvm, i);
90d83dc3 4930
9da0e4d5
PB
4931 kvm_for_each_memslot(memslot, slots)
4932 nr_pages += memslot->npages;
4933 }
3ad82a7e
ZX
4934
4935 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4936 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 4937 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
4938
4939 return nr_mmu_pages;
4940}
4941
c42fffe3
XG
4942void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4943{
95f93af4 4944 kvm_mmu_unload(vcpu);
c42fffe3
XG
4945 free_mmu_pages(vcpu);
4946 mmu_free_memory_caches(vcpu);
b034cf01
XG
4947}
4948
b034cf01
XG
4949void kvm_mmu_module_exit(void)
4950{
4951 mmu_destroy_caches();
4952 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4953 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4954 mmu_audit_disable();
4955}