]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: VMX: export PFEC.P bit on ept
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
1403283a
IE
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149
135f8c2b
AK
150#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
151
220f773a
TY
152/* make pte_list_desc fit well in cache line */
153#define PTE_LIST_EXT 3
154
53c07b18
XG
155struct pte_list_desc {
156 u64 *sptes[PTE_LIST_EXT];
157 struct pte_list_desc *more;
cd4a4e53
AK
158};
159
2d11123a
AK
160struct kvm_shadow_walk_iterator {
161 u64 addr;
162 hpa_t shadow_addr;
2d11123a 163 u64 *sptep;
dd3bfd59 164 int level;
2d11123a
AK
165 unsigned index;
166};
167
168#define for_each_shadow_entry(_vcpu, _addr, _walker) \
169 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
170 shadow_walk_okay(&(_walker)); \
171 shadow_walk_next(&(_walker)))
172
c2a2ac2b
XG
173#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
175 shadow_walk_okay(&(_walker)) && \
176 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
177 __shadow_walk_next(&(_walker), spte))
178
53c07b18 179static struct kmem_cache *pte_list_desc_cache;
d3d25b04 180static struct kmem_cache *mmu_page_header_cache;
45221ab6 181static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 182
7b52345e
SY
183static u64 __read_mostly shadow_nx_mask;
184static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
185static u64 __read_mostly shadow_user_mask;
186static u64 __read_mostly shadow_accessed_mask;
187static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
188static u64 __read_mostly shadow_mmio_mask;
189
190static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 191static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
192
193void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
194{
195 shadow_mmio_mask = mmio_mask;
196}
197EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
198
199static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
200{
201 access &= ACC_WRITE_MASK | ACC_USER_MASK;
202
4f022648 203 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
204 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
205}
206
207static bool is_mmio_spte(u64 spte)
208{
209 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
210}
211
212static gfn_t get_mmio_spte_gfn(u64 spte)
213{
214 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
215}
216
217static unsigned get_mmio_spte_access(u64 spte)
218{
219 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
220}
221
222static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
223{
224 if (unlikely(is_noslot_pfn(pfn))) {
225 mark_mmio_spte(sptep, gfn, access);
226 return true;
227 }
228
229 return false;
230}
c7addb90 231
82725b20
DE
232static inline u64 rsvd_bits(int s, int e)
233{
234 return ((1ULL << (e - s + 1)) - 1) << s;
235}
236
7b52345e 237void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 238 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
239{
240 shadow_user_mask = user_mask;
241 shadow_accessed_mask = accessed_mask;
242 shadow_dirty_mask = dirty_mask;
243 shadow_nx_mask = nx_mask;
244 shadow_x_mask = x_mask;
245}
246EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
247
6aa8b732
AK
248static int is_cpuid_PSE36(void)
249{
250 return 1;
251}
252
73b1087e
AK
253static int is_nx(struct kvm_vcpu *vcpu)
254{
f6801dff 255 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
256}
257
c7addb90
AK
258static int is_shadow_present_pte(u64 pte)
259{
ce88decf 260 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
261}
262
05da4558
MT
263static int is_large_pte(u64 pte)
264{
265 return pte & PT_PAGE_SIZE_MASK;
266}
267
43a3795a 268static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 269{
439e218a 270 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
271}
272
43a3795a 273static int is_rmap_spte(u64 pte)
cd4a4e53 274{
4b1a80fa 275 return is_shadow_present_pte(pte);
cd4a4e53
AK
276}
277
776e6633
MT
278static int is_last_spte(u64 pte, int level)
279{
280 if (level == PT_PAGE_TABLE_LEVEL)
281 return 1;
852e3c19 282 if (is_large_pte(pte))
776e6633
MT
283 return 1;
284 return 0;
285}
286
35149e21 287static pfn_t spte_to_pfn(u64 pte)
0b49ea86 288{
35149e21 289 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
290}
291
da928521
AK
292static gfn_t pse36_gfn_delta(u32 gpte)
293{
294 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
295
296 return (gpte & PT32_DIR_PSE36_MASK) << shift;
297}
298
603e0651 299#ifdef CONFIG_X86_64
d555c333 300static void __set_spte(u64 *sptep, u64 spte)
e663ee64 301{
603e0651 302 *sptep = spte;
e663ee64
AK
303}
304
603e0651 305static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 306{
603e0651
XG
307 *sptep = spte;
308}
309
310static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
311{
312 return xchg(sptep, spte);
313}
c2a2ac2b
XG
314
315static u64 __get_spte_lockless(u64 *sptep)
316{
317 return ACCESS_ONCE(*sptep);
318}
ce88decf
XG
319
320static bool __check_direct_spte_mmio_pf(u64 spte)
321{
322 /* It is valid if the spte is zapped. */
323 return spte == 0ull;
324}
a9221dd5 325#else
603e0651
XG
326union split_spte {
327 struct {
328 u32 spte_low;
329 u32 spte_high;
330 };
331 u64 spte;
332};
a9221dd5 333
c2a2ac2b
XG
334static void count_spte_clear(u64 *sptep, u64 spte)
335{
336 struct kvm_mmu_page *sp = page_header(__pa(sptep));
337
338 if (is_shadow_present_pte(spte))
339 return;
340
341 /* Ensure the spte is completely set before we increase the count */
342 smp_wmb();
343 sp->clear_spte_count++;
344}
345
603e0651
XG
346static void __set_spte(u64 *sptep, u64 spte)
347{
348 union split_spte *ssptep, sspte;
a9221dd5 349
603e0651
XG
350 ssptep = (union split_spte *)sptep;
351 sspte = (union split_spte)spte;
352
353 ssptep->spte_high = sspte.spte_high;
354
355 /*
356 * If we map the spte from nonpresent to present, We should store
357 * the high bits firstly, then set present bit, so cpu can not
358 * fetch this spte while we are setting the spte.
359 */
360 smp_wmb();
361
362 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
363}
364
603e0651
XG
365static void __update_clear_spte_fast(u64 *sptep, u64 spte)
366{
367 union split_spte *ssptep, sspte;
368
369 ssptep = (union split_spte *)sptep;
370 sspte = (union split_spte)spte;
371
372 ssptep->spte_low = sspte.spte_low;
373
374 /*
375 * If we map the spte from present to nonpresent, we should clear
376 * present bit firstly to avoid vcpu fetch the old high bits.
377 */
378 smp_wmb();
379
380 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 381 count_spte_clear(sptep, spte);
603e0651
XG
382}
383
384static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
385{
386 union split_spte *ssptep, sspte, orig;
387
388 ssptep = (union split_spte *)sptep;
389 sspte = (union split_spte)spte;
390
391 /* xchg acts as a barrier before the setting of the high bits */
392 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
393 orig.spte_high = ssptep->spte_high;
394 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 395 count_spte_clear(sptep, spte);
603e0651
XG
396
397 return orig.spte;
398}
c2a2ac2b
XG
399
400/*
401 * The idea using the light way get the spte on x86_32 guest is from
402 * gup_get_pte(arch/x86/mm/gup.c).
403 * The difference is we can not catch the spte tlb flush if we leave
404 * guest mode, so we emulate it by increase clear_spte_count when spte
405 * is cleared.
406 */
407static u64 __get_spte_lockless(u64 *sptep)
408{
409 struct kvm_mmu_page *sp = page_header(__pa(sptep));
410 union split_spte spte, *orig = (union split_spte *)sptep;
411 int count;
412
413retry:
414 count = sp->clear_spte_count;
415 smp_rmb();
416
417 spte.spte_low = orig->spte_low;
418 smp_rmb();
419
420 spte.spte_high = orig->spte_high;
421 smp_rmb();
422
423 if (unlikely(spte.spte_low != orig->spte_low ||
424 count != sp->clear_spte_count))
425 goto retry;
426
427 return spte.spte;
428}
ce88decf
XG
429
430static bool __check_direct_spte_mmio_pf(u64 spte)
431{
432 union split_spte sspte = (union split_spte)spte;
433 u32 high_mmio_mask = shadow_mmio_mask >> 32;
434
435 /* It is valid if the spte is zapped. */
436 if (spte == 0ull)
437 return true;
438
439 /* It is valid if the spte is being zapped. */
440 if (sspte.spte_low == 0ull &&
441 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
442 return true;
443
444 return false;
445}
603e0651
XG
446#endif
447
8672b721
XG
448static bool spte_has_volatile_bits(u64 spte)
449{
450 if (!shadow_accessed_mask)
451 return false;
452
453 if (!is_shadow_present_pte(spte))
454 return false;
455
4132779b
XG
456 if ((spte & shadow_accessed_mask) &&
457 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
458 return false;
459
460 return true;
461}
462
4132779b
XG
463static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
464{
465 return (old_spte & bit_mask) && !(new_spte & bit_mask);
466}
467
1df9f2dc
XG
468/* Rules for using mmu_spte_set:
469 * Set the sptep from nonpresent to present.
470 * Note: the sptep being assigned *must* be either not present
471 * or in a state where the hardware will not attempt to update
472 * the spte.
473 */
474static void mmu_spte_set(u64 *sptep, u64 new_spte)
475{
476 WARN_ON(is_shadow_present_pte(*sptep));
477 __set_spte(sptep, new_spte);
478}
479
480/* Rules for using mmu_spte_update:
481 * Update the state bits, it means the mapped pfn is not changged.
482 */
483static void mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 484{
4132779b
XG
485 u64 mask, old_spte = *sptep;
486
487 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 488
1df9f2dc
XG
489 if (!is_shadow_present_pte(old_spte))
490 return mmu_spte_set(sptep, new_spte);
491
4132779b
XG
492 new_spte |= old_spte & shadow_dirty_mask;
493
494 mask = shadow_accessed_mask;
495 if (is_writable_pte(old_spte))
496 mask |= shadow_dirty_mask;
497
498 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
603e0651 499 __update_clear_spte_fast(sptep, new_spte);
4132779b 500 else
603e0651 501 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b
XG
502
503 if (!shadow_accessed_mask)
504 return;
505
506 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
507 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
508 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
509 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
b79b93f9
AK
510}
511
1df9f2dc
XG
512/*
513 * Rules for using mmu_spte_clear_track_bits:
514 * It sets the sptep from present to nonpresent, and track the
515 * state bits, it is used to clear the last level sptep.
516 */
517static int mmu_spte_clear_track_bits(u64 *sptep)
518{
519 pfn_t pfn;
520 u64 old_spte = *sptep;
521
522 if (!spte_has_volatile_bits(old_spte))
603e0651 523 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 524 else
603e0651 525 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
526
527 if (!is_rmap_spte(old_spte))
528 return 0;
529
530 pfn = spte_to_pfn(old_spte);
531 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
532 kvm_set_pfn_accessed(pfn);
533 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
534 kvm_set_pfn_dirty(pfn);
535 return 1;
536}
537
538/*
539 * Rules for using mmu_spte_clear_no_track:
540 * Directly clear spte without caring the state bits of sptep,
541 * it is used to set the upper level spte.
542 */
543static void mmu_spte_clear_no_track(u64 *sptep)
544{
603e0651 545 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
546}
547
c2a2ac2b
XG
548static u64 mmu_spte_get_lockless(u64 *sptep)
549{
550 return __get_spte_lockless(sptep);
551}
552
553static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
554{
c142786c
AK
555 /*
556 * Prevent page table teardown by making any free-er wait during
557 * kvm_flush_remote_tlbs() IPI to all active vcpus.
558 */
559 local_irq_disable();
560 vcpu->mode = READING_SHADOW_PAGE_TABLES;
561 /*
562 * Make sure a following spte read is not reordered ahead of the write
563 * to vcpu->mode.
564 */
565 smp_mb();
c2a2ac2b
XG
566}
567
568static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
569{
c142786c
AK
570 /*
571 * Make sure the write to vcpu->mode is not reordered in front of
572 * reads to sptes. If it does, kvm_commit_zap_page() can see us
573 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
574 */
575 smp_mb();
576 vcpu->mode = OUTSIDE_GUEST_MODE;
577 local_irq_enable();
c2a2ac2b
XG
578}
579
e2dec939 580static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 581 struct kmem_cache *base_cache, int min)
714b93da
AK
582{
583 void *obj;
584
585 if (cache->nobjs >= min)
e2dec939 586 return 0;
714b93da 587 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 588 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 589 if (!obj)
e2dec939 590 return -ENOMEM;
714b93da
AK
591 cache->objects[cache->nobjs++] = obj;
592 }
e2dec939 593 return 0;
714b93da
AK
594}
595
f759e2b4
XG
596static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
597{
598 return cache->nobjs;
599}
600
e8ad9a70
XG
601static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
602 struct kmem_cache *cache)
714b93da
AK
603{
604 while (mc->nobjs)
e8ad9a70 605 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
606}
607
c1158e63 608static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 609 int min)
c1158e63 610{
842f22ed 611 void *page;
c1158e63
AK
612
613 if (cache->nobjs >= min)
614 return 0;
615 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 616 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
617 if (!page)
618 return -ENOMEM;
842f22ed 619 cache->objects[cache->nobjs++] = page;
c1158e63
AK
620 }
621 return 0;
622}
623
624static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
625{
626 while (mc->nobjs)
c4d198d5 627 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
628}
629
2e3e5882 630static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 631{
e2dec939
AK
632 int r;
633
53c07b18 634 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 635 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
636 if (r)
637 goto out;
ad312c7c 638 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
639 if (r)
640 goto out;
ad312c7c 641 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 642 mmu_page_header_cache, 4);
e2dec939
AK
643out:
644 return r;
714b93da
AK
645}
646
647static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
648{
53c07b18
XG
649 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
650 pte_list_desc_cache);
ad312c7c 651 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
652 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
653 mmu_page_header_cache);
714b93da
AK
654}
655
80feb89a 656static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
657{
658 void *p;
659
660 BUG_ON(!mc->nobjs);
661 p = mc->objects[--mc->nobjs];
714b93da
AK
662 return p;
663}
664
53c07b18 665static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 666{
80feb89a 667 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
668}
669
53c07b18 670static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 671{
53c07b18 672 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
673}
674
2032a93d
LJ
675static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
676{
677 if (!sp->role.direct)
678 return sp->gfns[index];
679
680 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
681}
682
683static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
684{
685 if (sp->role.direct)
686 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
687 else
688 sp->gfns[index] = gfn;
689}
690
05da4558 691/*
d4dbf470
TY
692 * Return the pointer to the large page information for a given gfn,
693 * handling slots that are not large page aligned.
05da4558 694 */
d4dbf470
TY
695static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
696 struct kvm_memory_slot *slot,
697 int level)
05da4558
MT
698{
699 unsigned long idx;
700
fb03cb6f 701 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 702 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
703}
704
705static void account_shadowed(struct kvm *kvm, gfn_t gfn)
706{
d25797b2 707 struct kvm_memory_slot *slot;
d4dbf470 708 struct kvm_lpage_info *linfo;
d25797b2 709 int i;
05da4558 710
a1f4d395 711 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
712 for (i = PT_DIRECTORY_LEVEL;
713 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
714 linfo = lpage_info_slot(gfn, slot, i);
715 linfo->write_count += 1;
d25797b2 716 }
332b207d 717 kvm->arch.indirect_shadow_pages++;
05da4558
MT
718}
719
720static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
721{
d25797b2 722 struct kvm_memory_slot *slot;
d4dbf470 723 struct kvm_lpage_info *linfo;
d25797b2 724 int i;
05da4558 725
a1f4d395 726 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
727 for (i = PT_DIRECTORY_LEVEL;
728 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
729 linfo = lpage_info_slot(gfn, slot, i);
730 linfo->write_count -= 1;
731 WARN_ON(linfo->write_count < 0);
d25797b2 732 }
332b207d 733 kvm->arch.indirect_shadow_pages--;
05da4558
MT
734}
735
d25797b2
JR
736static int has_wrprotected_page(struct kvm *kvm,
737 gfn_t gfn,
738 int level)
05da4558 739{
2843099f 740 struct kvm_memory_slot *slot;
d4dbf470 741 struct kvm_lpage_info *linfo;
05da4558 742
a1f4d395 743 slot = gfn_to_memslot(kvm, gfn);
05da4558 744 if (slot) {
d4dbf470
TY
745 linfo = lpage_info_slot(gfn, slot, level);
746 return linfo->write_count;
05da4558
MT
747 }
748
749 return 1;
750}
751
d25797b2 752static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 753{
8f0b1ab6 754 unsigned long page_size;
d25797b2 755 int i, ret = 0;
05da4558 756
8f0b1ab6 757 page_size = kvm_host_page_size(kvm, gfn);
05da4558 758
d25797b2
JR
759 for (i = PT_PAGE_TABLE_LEVEL;
760 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
761 if (page_size >= KVM_HPAGE_SIZE(i))
762 ret = i;
763 else
764 break;
765 }
766
4c2155ce 767 return ret;
05da4558
MT
768}
769
5d163b1c
XG
770static struct kvm_memory_slot *
771gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
772 bool no_dirty_log)
05da4558
MT
773{
774 struct kvm_memory_slot *slot;
5d163b1c
XG
775
776 slot = gfn_to_memslot(vcpu->kvm, gfn);
777 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
778 (no_dirty_log && slot->dirty_bitmap))
779 slot = NULL;
780
781 return slot;
782}
783
784static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
785{
a0a8eaba 786 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
787}
788
789static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
790{
791 int host_level, level, max_level;
05da4558 792
d25797b2
JR
793 host_level = host_mapping_level(vcpu->kvm, large_gfn);
794
795 if (host_level == PT_PAGE_TABLE_LEVEL)
796 return host_level;
797
878403b7
SY
798 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
799 kvm_x86_ops->get_lpage_level() : host_level;
800
801 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
802 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
803 break;
d25797b2
JR
804
805 return level - 1;
05da4558
MT
806}
807
290fc38d 808/*
53c07b18 809 * Pte mapping structures:
cd4a4e53 810 *
53c07b18 811 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 812 *
53c07b18
XG
813 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
814 * pte_list_desc containing more mappings.
53a27b39 815 *
53c07b18 816 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
817 * the spte was not added.
818 *
cd4a4e53 819 */
53c07b18
XG
820static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
821 unsigned long *pte_list)
cd4a4e53 822{
53c07b18 823 struct pte_list_desc *desc;
53a27b39 824 int i, count = 0;
cd4a4e53 825
53c07b18
XG
826 if (!*pte_list) {
827 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
828 *pte_list = (unsigned long)spte;
829 } else if (!(*pte_list & 1)) {
830 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
831 desc = mmu_alloc_pte_list_desc(vcpu);
832 desc->sptes[0] = (u64 *)*pte_list;
d555c333 833 desc->sptes[1] = spte;
53c07b18 834 *pte_list = (unsigned long)desc | 1;
cb16a7b3 835 ++count;
cd4a4e53 836 } else {
53c07b18
XG
837 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
838 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
839 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 840 desc = desc->more;
53c07b18 841 count += PTE_LIST_EXT;
53a27b39 842 }
53c07b18
XG
843 if (desc->sptes[PTE_LIST_EXT-1]) {
844 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
845 desc = desc->more;
846 }
d555c333 847 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 848 ++count;
d555c333 849 desc->sptes[i] = spte;
cd4a4e53 850 }
53a27b39 851 return count;
cd4a4e53
AK
852}
853
53c07b18
XG
854static void
855pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
856 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
857{
858 int j;
859
53c07b18 860 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 861 ;
d555c333
AK
862 desc->sptes[i] = desc->sptes[j];
863 desc->sptes[j] = NULL;
cd4a4e53
AK
864 if (j != 0)
865 return;
866 if (!prev_desc && !desc->more)
53c07b18 867 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
868 else
869 if (prev_desc)
870 prev_desc->more = desc->more;
871 else
53c07b18
XG
872 *pte_list = (unsigned long)desc->more | 1;
873 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
874}
875
53c07b18 876static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 877{
53c07b18
XG
878 struct pte_list_desc *desc;
879 struct pte_list_desc *prev_desc;
cd4a4e53
AK
880 int i;
881
53c07b18
XG
882 if (!*pte_list) {
883 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 884 BUG();
53c07b18
XG
885 } else if (!(*pte_list & 1)) {
886 rmap_printk("pte_list_remove: %p 1->0\n", spte);
887 if ((u64 *)*pte_list != spte) {
888 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
889 BUG();
890 }
53c07b18 891 *pte_list = 0;
cd4a4e53 892 } else {
53c07b18
XG
893 rmap_printk("pte_list_remove: %p many->many\n", spte);
894 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
895 prev_desc = NULL;
896 while (desc) {
53c07b18 897 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 898 if (desc->sptes[i] == spte) {
53c07b18 899 pte_list_desc_remove_entry(pte_list,
714b93da 900 desc, i,
cd4a4e53
AK
901 prev_desc);
902 return;
903 }
904 prev_desc = desc;
905 desc = desc->more;
906 }
53c07b18 907 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
908 BUG();
909 }
910}
911
67052b35
XG
912typedef void (*pte_list_walk_fn) (u64 *spte);
913static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
914{
915 struct pte_list_desc *desc;
916 int i;
917
918 if (!*pte_list)
919 return;
920
921 if (!(*pte_list & 1))
922 return fn((u64 *)*pte_list);
923
924 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
925 while (desc) {
926 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
927 fn(desc->sptes[i]);
928 desc = desc->more;
929 }
930}
931
9373e2c0 932static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 933 struct kvm_memory_slot *slot)
53c07b18 934{
53c07b18
XG
935 struct kvm_lpage_info *linfo;
936
53c07b18
XG
937 if (likely(level == PT_PAGE_TABLE_LEVEL))
938 return &slot->rmap[gfn - slot->base_gfn];
939
940 linfo = lpage_info_slot(gfn, slot, level);
53c07b18
XG
941 return &linfo->rmap_pde;
942}
943
9b9b1492
TY
944/*
945 * Take gfn and return the reverse mapping to it.
946 */
947static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
948{
949 struct kvm_memory_slot *slot;
950
951 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 952 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
953}
954
f759e2b4
XG
955static bool rmap_can_add(struct kvm_vcpu *vcpu)
956{
957 struct kvm_mmu_memory_cache *cache;
958
959 cache = &vcpu->arch.mmu_pte_list_desc_cache;
960 return mmu_memory_cache_free_objects(cache);
961}
962
53c07b18
XG
963static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
964{
965 struct kvm_mmu_page *sp;
966 unsigned long *rmapp;
967
53c07b18
XG
968 sp = page_header(__pa(spte));
969 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
970 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
971 return pte_list_add(vcpu, spte, rmapp);
972}
973
53c07b18
XG
974static void rmap_remove(struct kvm *kvm, u64 *spte)
975{
976 struct kvm_mmu_page *sp;
977 gfn_t gfn;
978 unsigned long *rmapp;
979
980 sp = page_header(__pa(spte));
981 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
982 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
983 pte_list_remove(spte, rmapp);
984}
985
1e3f42f0
TY
986/*
987 * Used by the following functions to iterate through the sptes linked by a
988 * rmap. All fields are private and not assumed to be used outside.
989 */
990struct rmap_iterator {
991 /* private fields */
992 struct pte_list_desc *desc; /* holds the sptep if not NULL */
993 int pos; /* index of the sptep */
994};
995
996/*
997 * Iteration must be started by this function. This should also be used after
998 * removing/dropping sptes from the rmap link because in such cases the
999 * information in the itererator may not be valid.
1000 *
1001 * Returns sptep if found, NULL otherwise.
1002 */
1003static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1004{
1005 if (!rmap)
1006 return NULL;
1007
1008 if (!(rmap & 1)) {
1009 iter->desc = NULL;
1010 return (u64 *)rmap;
1011 }
1012
1013 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1014 iter->pos = 0;
1015 return iter->desc->sptes[iter->pos];
1016}
1017
1018/*
1019 * Must be used with a valid iterator: e.g. after rmap_get_first().
1020 *
1021 * Returns sptep if found, NULL otherwise.
1022 */
1023static u64 *rmap_get_next(struct rmap_iterator *iter)
1024{
1025 if (iter->desc) {
1026 if (iter->pos < PTE_LIST_EXT - 1) {
1027 u64 *sptep;
1028
1029 ++iter->pos;
1030 sptep = iter->desc->sptes[iter->pos];
1031 if (sptep)
1032 return sptep;
1033 }
1034
1035 iter->desc = iter->desc->more;
1036
1037 if (iter->desc) {
1038 iter->pos = 0;
1039 /* desc->sptes[0] cannot be NULL */
1040 return iter->desc->sptes[iter->pos];
1041 }
1042 }
1043
1044 return NULL;
1045}
1046
c3707958 1047static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1048{
1df9f2dc 1049 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1050 rmap_remove(kvm, sptep);
be38d276
AK
1051}
1052
8e22f955
XG
1053
1054static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1055{
1056 if (is_large_pte(*sptep)) {
1057 WARN_ON(page_header(__pa(sptep))->role.level ==
1058 PT_PAGE_TABLE_LEVEL);
1059 drop_spte(kvm, sptep);
1060 --kvm->stat.lpages;
1061 return true;
1062 }
1063
1064 return false;
1065}
1066
1067static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1068{
1069 if (__drop_large_spte(vcpu->kvm, sptep))
1070 kvm_flush_remote_tlbs(vcpu->kvm);
1071}
1072
1073/*
1074 * Write-protect on the specified @sptep due to dirty page logging or
1075 * protecting shadow page table. @flush indicates whether tlb need be
1076 * flushed.
1077 *
1078 * Return true if the spte is dropped.
1079 */
d13bc5b5
XG
1080static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush)
1081{
1082 u64 spte = *sptep;
1083
1084 if (!is_writable_pte(spte))
1085 return false;
1086
1087 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1088
1089 *flush |= true;
8e22f955
XG
1090
1091 if (__drop_large_spte(kvm, sptep))
d13bc5b5 1092 return true;
d13bc5b5
XG
1093
1094 spte = spte & ~PT_WRITABLE_MASK;
1095 mmu_spte_update(sptep, spte);
1096 return false;
1097}
1098
2f84569f
XG
1099static bool
1100__rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, int level)
98348e95 1101{
1e3f42f0
TY
1102 u64 *sptep;
1103 struct rmap_iterator iter;
d13bc5b5 1104 bool flush = false;
374cbac0 1105
1e3f42f0
TY
1106 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1107 BUG_ON(!(*sptep & PT_PRESENT_MASK));
d13bc5b5 1108 if (spte_write_protect(kvm, sptep, &flush)) {
1e3f42f0 1109 sptep = rmap_get_first(*rmapp, &iter);
d13bc5b5 1110 continue;
caa5b8a5 1111 }
a0ed4607 1112
d13bc5b5 1113 sptep = rmap_get_next(&iter);
374cbac0 1114 }
855149aa 1115
d13bc5b5 1116 return flush;
a0ed4607
TY
1117}
1118
5dc99b23
TY
1119/**
1120 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1121 * @kvm: kvm instance
1122 * @slot: slot to protect
1123 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1124 * @mask: indicates which pages we should protect
1125 *
1126 * Used when we do not need to care about huge page mappings: e.g. during dirty
1127 * logging we do not have any such mappings.
1128 */
1129void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1130 struct kvm_memory_slot *slot,
1131 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1132{
1133 unsigned long *rmapp;
a0ed4607 1134
5dc99b23
TY
1135 while (mask) {
1136 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
1137 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL);
05da4558 1138
5dc99b23
TY
1139 /* clear the first set bit */
1140 mask &= mask - 1;
1141 }
374cbac0
AK
1142}
1143
2f84569f 1144static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1145{
1146 struct kvm_memory_slot *slot;
5dc99b23
TY
1147 unsigned long *rmapp;
1148 int i;
2f84569f 1149 bool write_protected = false;
95d4c16c
TY
1150
1151 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1152
1153 for (i = PT_PAGE_TABLE_LEVEL;
1154 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1155 rmapp = __gfn_to_rmap(gfn, i, slot);
1156 write_protected |= __rmap_write_protect(kvm, rmapp, i);
1157 }
1158
1159 return write_protected;
95d4c16c
TY
1160}
1161
8a8365c5
FD
1162static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1163 unsigned long data)
e930bffe 1164{
1e3f42f0
TY
1165 u64 *sptep;
1166 struct rmap_iterator iter;
e930bffe
AA
1167 int need_tlb_flush = 0;
1168
1e3f42f0
TY
1169 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1170 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1171 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1172
1173 drop_spte(kvm, sptep);
e930bffe
AA
1174 need_tlb_flush = 1;
1175 }
1e3f42f0 1176
e930bffe
AA
1177 return need_tlb_flush;
1178}
1179
8a8365c5
FD
1180static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1181 unsigned long data)
3da0dd43 1182{
1e3f42f0
TY
1183 u64 *sptep;
1184 struct rmap_iterator iter;
3da0dd43 1185 int need_flush = 0;
1e3f42f0 1186 u64 new_spte;
3da0dd43
IE
1187 pte_t *ptep = (pte_t *)data;
1188 pfn_t new_pfn;
1189
1190 WARN_ON(pte_huge(*ptep));
1191 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1192
1193 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1194 BUG_ON(!is_shadow_present_pte(*sptep));
1195 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1196
3da0dd43 1197 need_flush = 1;
1e3f42f0 1198
3da0dd43 1199 if (pte_write(*ptep)) {
1e3f42f0
TY
1200 drop_spte(kvm, sptep);
1201 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1202 } else {
1e3f42f0 1203 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1204 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1205
1206 new_spte &= ~PT_WRITABLE_MASK;
1207 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1208 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1209
1210 mmu_spte_clear_track_bits(sptep);
1211 mmu_spte_set(sptep, new_spte);
1212 sptep = rmap_get_next(&iter);
3da0dd43
IE
1213 }
1214 }
1e3f42f0 1215
3da0dd43
IE
1216 if (need_flush)
1217 kvm_flush_remote_tlbs(kvm);
1218
1219 return 0;
1220}
1221
8a8365c5
FD
1222static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1223 unsigned long data,
3da0dd43 1224 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
8a8365c5 1225 unsigned long data))
e930bffe 1226{
be6ba0f0 1227 int j;
90bb6fc5 1228 int ret;
e930bffe 1229 int retval = 0;
bc6678a3 1230 struct kvm_memslots *slots;
be6ba0f0 1231 struct kvm_memory_slot *memslot;
bc6678a3 1232
90d83dc3 1233 slots = kvm_memslots(kvm);
e930bffe 1234
be6ba0f0 1235 kvm_for_each_memslot(memslot, slots) {
e930bffe
AA
1236 unsigned long start = memslot->userspace_addr;
1237 unsigned long end;
1238
e930bffe
AA
1239 end = start + (memslot->npages << PAGE_SHIFT);
1240 if (hva >= start && hva < end) {
1241 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
d4dbf470 1242 gfn_t gfn = memslot->base_gfn + gfn_offset;
852e3c19 1243
90bb6fc5 1244 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
852e3c19
JR
1245
1246 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
d4dbf470
TY
1247 struct kvm_lpage_info *linfo;
1248
1249 linfo = lpage_info_slot(gfn, memslot,
1250 PT_DIRECTORY_LEVEL + j);
1251 ret |= handler(kvm, &linfo->rmap_pde, data);
852e3c19 1252 }
90bb6fc5
AK
1253 trace_kvm_age_page(hva, memslot, ret);
1254 retval |= ret;
e930bffe
AA
1255 }
1256 }
1257
1258 return retval;
1259}
1260
1261int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1262{
3da0dd43
IE
1263 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1264}
1265
1266void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1267{
8a8365c5 1268 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1269}
1270
8a8365c5
FD
1271static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1272 unsigned long data)
e930bffe 1273{
1e3f42f0 1274 u64 *sptep;
79f702a6 1275 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1276 int young = 0;
1277
6316e1c8 1278 /*
3f6d8c8a
XH
1279 * In case of absence of EPT Access and Dirty Bits supports,
1280 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1281 * an EPT mapping, and clearing it if it does. On the next access,
1282 * a new EPT mapping will be established.
1283 * This has some overhead, but not as much as the cost of swapping
1284 * out actively used pages or breaking up actively used hugepages.
1285 */
534e38b4 1286 if (!shadow_accessed_mask)
6316e1c8 1287 return kvm_unmap_rmapp(kvm, rmapp, data);
534e38b4 1288
1e3f42f0
TY
1289 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1290 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1291 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1292
3f6d8c8a 1293 if (*sptep & shadow_accessed_mask) {
e930bffe 1294 young = 1;
3f6d8c8a
XH
1295 clear_bit((ffs(shadow_accessed_mask) - 1),
1296 (unsigned long *)sptep);
e930bffe 1297 }
e930bffe 1298 }
1e3f42f0 1299
e930bffe
AA
1300 return young;
1301}
1302
8ee53820
AA
1303static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1304 unsigned long data)
1305{
1e3f42f0
TY
1306 u64 *sptep;
1307 struct rmap_iterator iter;
8ee53820
AA
1308 int young = 0;
1309
1310 /*
1311 * If there's no access bit in the secondary pte set by the
1312 * hardware it's up to gup-fast/gup to set the access bit in
1313 * the primary pte or in the page structure.
1314 */
1315 if (!shadow_accessed_mask)
1316 goto out;
1317
1e3f42f0
TY
1318 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1319 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1320 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1321
3f6d8c8a 1322 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1323 young = 1;
1324 break;
1325 }
8ee53820
AA
1326 }
1327out:
1328 return young;
1329}
1330
53a27b39
MT
1331#define RMAP_RECYCLE_THRESHOLD 1000
1332
852e3c19 1333static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1334{
1335 unsigned long *rmapp;
852e3c19
JR
1336 struct kvm_mmu_page *sp;
1337
1338 sp = page_header(__pa(spte));
53a27b39 1339
852e3c19 1340 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1341
3da0dd43 1342 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
53a27b39
MT
1343 kvm_flush_remote_tlbs(vcpu->kvm);
1344}
1345
e930bffe
AA
1346int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1347{
3da0dd43 1348 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
e930bffe
AA
1349}
1350
8ee53820
AA
1351int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1352{
1353 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1354}
1355
d6c69ee9 1356#ifdef MMU_DEBUG
47ad8e68 1357static int is_empty_shadow_page(u64 *spt)
6aa8b732 1358{
139bdb2d
AK
1359 u64 *pos;
1360 u64 *end;
1361
47ad8e68 1362 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1363 if (is_shadow_present_pte(*pos)) {
b8688d51 1364 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1365 pos, *pos);
6aa8b732 1366 return 0;
139bdb2d 1367 }
6aa8b732
AK
1368 return 1;
1369}
d6c69ee9 1370#endif
6aa8b732 1371
45221ab6
DH
1372/*
1373 * This value is the sum of all of the kvm instances's
1374 * kvm->arch.n_used_mmu_pages values. We need a global,
1375 * aggregate version in order to make the slab shrinker
1376 * faster
1377 */
1378static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1379{
1380 kvm->arch.n_used_mmu_pages += nr;
1381 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1382}
1383
bd4c86ea
XG
1384/*
1385 * Remove the sp from shadow page cache, after call it,
1386 * we can not find this sp from the cache, and the shadow
1387 * page table is still valid.
1388 * It should be under the protection of mmu lock.
1389 */
1390static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1391{
4db35314 1392 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1393 hlist_del(&sp->hash_link);
2032a93d 1394 if (!sp->role.direct)
842f22ed 1395 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1396}
1397
1398/*
1399 * Free the shadow page table and the sp, we can do it
1400 * out of the protection of mmu lock.
1401 */
1402static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1403{
1404 list_del(&sp->link);
1405 free_page((unsigned long)sp->spt);
e8ad9a70 1406 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1407}
1408
cea0f0e7
AK
1409static unsigned kvm_page_table_hashfn(gfn_t gfn)
1410{
1ae0a13d 1411 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1412}
1413
714b93da 1414static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1415 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1416{
cea0f0e7
AK
1417 if (!parent_pte)
1418 return;
cea0f0e7 1419
67052b35 1420 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1421}
1422
4db35314 1423static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1424 u64 *parent_pte)
1425{
67052b35 1426 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1427}
1428
bcdd9a93
XG
1429static void drop_parent_pte(struct kvm_mmu_page *sp,
1430 u64 *parent_pte)
1431{
1432 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1433 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1434}
1435
67052b35
XG
1436static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1437 u64 *parent_pte, int direct)
ad8cfbe3 1438{
67052b35 1439 struct kvm_mmu_page *sp;
80feb89a
TY
1440 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1441 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1442 if (!direct)
80feb89a 1443 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
1444 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1445 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
93a5cef0 1446 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
67052b35
XG
1447 sp->parent_ptes = 0;
1448 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1449 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1450 return sp;
ad8cfbe3
MT
1451}
1452
67052b35 1453static void mark_unsync(u64 *spte);
1047df1f 1454static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1455{
67052b35 1456 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1457}
1458
67052b35 1459static void mark_unsync(u64 *spte)
0074ff63 1460{
67052b35 1461 struct kvm_mmu_page *sp;
1047df1f 1462 unsigned int index;
0074ff63 1463
67052b35 1464 sp = page_header(__pa(spte));
1047df1f
XG
1465 index = spte - sp->spt;
1466 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1467 return;
1047df1f 1468 if (sp->unsync_children++)
0074ff63 1469 return;
1047df1f 1470 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1471}
1472
e8bc217a 1473static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1474 struct kvm_mmu_page *sp)
e8bc217a
MT
1475{
1476 return 1;
1477}
1478
a7052897
MT
1479static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1480{
1481}
1482
0f53b5b1
XG
1483static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1484 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1485 const void *pte)
0f53b5b1
XG
1486{
1487 WARN_ON(1);
1488}
1489
60c8aec6
MT
1490#define KVM_PAGE_ARRAY_NR 16
1491
1492struct kvm_mmu_pages {
1493 struct mmu_page_and_offset {
1494 struct kvm_mmu_page *sp;
1495 unsigned int idx;
1496 } page[KVM_PAGE_ARRAY_NR];
1497 unsigned int nr;
1498};
1499
cded19f3
HE
1500static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1501 int idx)
4731d4c7 1502{
60c8aec6 1503 int i;
4731d4c7 1504
60c8aec6
MT
1505 if (sp->unsync)
1506 for (i=0; i < pvec->nr; i++)
1507 if (pvec->page[i].sp == sp)
1508 return 0;
1509
1510 pvec->page[pvec->nr].sp = sp;
1511 pvec->page[pvec->nr].idx = idx;
1512 pvec->nr++;
1513 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1514}
1515
1516static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1517 struct kvm_mmu_pages *pvec)
1518{
1519 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1520
37178b8b 1521 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1522 struct kvm_mmu_page *child;
4731d4c7
MT
1523 u64 ent = sp->spt[i];
1524
7a8f1a74
XG
1525 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1526 goto clear_child_bitmap;
1527
1528 child = page_header(ent & PT64_BASE_ADDR_MASK);
1529
1530 if (child->unsync_children) {
1531 if (mmu_pages_add(pvec, child, i))
1532 return -ENOSPC;
1533
1534 ret = __mmu_unsync_walk(child, pvec);
1535 if (!ret)
1536 goto clear_child_bitmap;
1537 else if (ret > 0)
1538 nr_unsync_leaf += ret;
1539 else
1540 return ret;
1541 } else if (child->unsync) {
1542 nr_unsync_leaf++;
1543 if (mmu_pages_add(pvec, child, i))
1544 return -ENOSPC;
1545 } else
1546 goto clear_child_bitmap;
1547
1548 continue;
1549
1550clear_child_bitmap:
1551 __clear_bit(i, sp->unsync_child_bitmap);
1552 sp->unsync_children--;
1553 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1554 }
1555
4731d4c7 1556
60c8aec6
MT
1557 return nr_unsync_leaf;
1558}
1559
1560static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1561 struct kvm_mmu_pages *pvec)
1562{
1563 if (!sp->unsync_children)
1564 return 0;
1565
1566 mmu_pages_add(pvec, sp, 0);
1567 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1568}
1569
4731d4c7
MT
1570static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1571{
1572 WARN_ON(!sp->unsync);
5e1b3ddb 1573 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1574 sp->unsync = 0;
1575 --kvm->stat.mmu_unsync;
1576}
1577
7775834a
XG
1578static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1579 struct list_head *invalid_list);
1580static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1581 struct list_head *invalid_list);
4731d4c7 1582
f41d335a
XG
1583#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1584 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1585 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1586 if ((sp)->gfn != (gfn)) {} else
1587
f41d335a
XG
1588#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1589 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1590 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1591 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1592 (sp)->role.invalid) {} else
1593
f918b443 1594/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1595static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1596 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1597{
5b7e0102 1598 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1599 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1600 return 1;
1601 }
1602
f918b443 1603 if (clear_unsync)
1d9dc7e0 1604 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1605
a4a8e6f7 1606 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1607 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1608 return 1;
1609 }
1610
1611 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1612 return 0;
1613}
1614
1d9dc7e0
XG
1615static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1616 struct kvm_mmu_page *sp)
1617{
d98ba053 1618 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1619 int ret;
1620
d98ba053 1621 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1622 if (ret)
d98ba053
XG
1623 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1624
1d9dc7e0
XG
1625 return ret;
1626}
1627
e37fa785
XG
1628#ifdef CONFIG_KVM_MMU_AUDIT
1629#include "mmu_audit.c"
1630#else
1631static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1632static void mmu_audit_disable(void) { }
1633#endif
1634
d98ba053
XG
1635static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1636 struct list_head *invalid_list)
1d9dc7e0 1637{
d98ba053 1638 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1639}
1640
9f1a122f
XG
1641/* @gfn should be write-protected at the call site */
1642static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1643{
9f1a122f 1644 struct kvm_mmu_page *s;
f41d335a 1645 struct hlist_node *node;
d98ba053 1646 LIST_HEAD(invalid_list);
9f1a122f
XG
1647 bool flush = false;
1648
f41d335a 1649 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1650 if (!s->unsync)
9f1a122f
XG
1651 continue;
1652
1653 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1654 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1655 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1656 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1657 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1658 continue;
1659 }
9f1a122f
XG
1660 flush = true;
1661 }
1662
d98ba053 1663 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1664 if (flush)
1665 kvm_mmu_flush_tlb(vcpu);
1666}
1667
60c8aec6
MT
1668struct mmu_page_path {
1669 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1670 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1671};
1672
60c8aec6
MT
1673#define for_each_sp(pvec, sp, parents, i) \
1674 for (i = mmu_pages_next(&pvec, &parents, -1), \
1675 sp = pvec.page[i].sp; \
1676 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1677 i = mmu_pages_next(&pvec, &parents, i))
1678
cded19f3
HE
1679static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1680 struct mmu_page_path *parents,
1681 int i)
60c8aec6
MT
1682{
1683 int n;
1684
1685 for (n = i+1; n < pvec->nr; n++) {
1686 struct kvm_mmu_page *sp = pvec->page[n].sp;
1687
1688 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1689 parents->idx[0] = pvec->page[n].idx;
1690 return n;
1691 }
1692
1693 parents->parent[sp->role.level-2] = sp;
1694 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1695 }
1696
1697 return n;
1698}
1699
cded19f3 1700static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1701{
60c8aec6
MT
1702 struct kvm_mmu_page *sp;
1703 unsigned int level = 0;
1704
1705 do {
1706 unsigned int idx = parents->idx[level];
4731d4c7 1707
60c8aec6
MT
1708 sp = parents->parent[level];
1709 if (!sp)
1710 return;
1711
1712 --sp->unsync_children;
1713 WARN_ON((int)sp->unsync_children < 0);
1714 __clear_bit(idx, sp->unsync_child_bitmap);
1715 level++;
1716 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1717}
1718
60c8aec6
MT
1719static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1720 struct mmu_page_path *parents,
1721 struct kvm_mmu_pages *pvec)
4731d4c7 1722{
60c8aec6
MT
1723 parents->parent[parent->role.level-1] = NULL;
1724 pvec->nr = 0;
1725}
4731d4c7 1726
60c8aec6
MT
1727static void mmu_sync_children(struct kvm_vcpu *vcpu,
1728 struct kvm_mmu_page *parent)
1729{
1730 int i;
1731 struct kvm_mmu_page *sp;
1732 struct mmu_page_path parents;
1733 struct kvm_mmu_pages pages;
d98ba053 1734 LIST_HEAD(invalid_list);
60c8aec6
MT
1735
1736 kvm_mmu_pages_init(parent, &parents, &pages);
1737 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1738 bool protected = false;
b1a36821
MT
1739
1740 for_each_sp(pages, sp, parents, i)
1741 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1742
1743 if (protected)
1744 kvm_flush_remote_tlbs(vcpu->kvm);
1745
60c8aec6 1746 for_each_sp(pages, sp, parents, i) {
d98ba053 1747 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1748 mmu_pages_clear_parents(&parents);
1749 }
d98ba053 1750 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1751 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1752 kvm_mmu_pages_init(parent, &parents, &pages);
1753 }
4731d4c7
MT
1754}
1755
c3707958
XG
1756static void init_shadow_page_table(struct kvm_mmu_page *sp)
1757{
1758 int i;
1759
1760 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1761 sp->spt[i] = 0ull;
1762}
1763
a30f47cb
XG
1764static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1765{
1766 sp->write_flooding_count = 0;
1767}
1768
1769static void clear_sp_write_flooding_count(u64 *spte)
1770{
1771 struct kvm_mmu_page *sp = page_header(__pa(spte));
1772
1773 __clear_sp_write_flooding_count(sp);
1774}
1775
cea0f0e7
AK
1776static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1777 gfn_t gfn,
1778 gva_t gaddr,
1779 unsigned level,
f6e2c02b 1780 int direct,
41074d07 1781 unsigned access,
f7d9c7b7 1782 u64 *parent_pte)
cea0f0e7
AK
1783{
1784 union kvm_mmu_page_role role;
cea0f0e7 1785 unsigned quadrant;
9f1a122f 1786 struct kvm_mmu_page *sp;
f41d335a 1787 struct hlist_node *node;
9f1a122f 1788 bool need_sync = false;
cea0f0e7 1789
a770f6f2 1790 role = vcpu->arch.mmu.base_role;
cea0f0e7 1791 role.level = level;
f6e2c02b 1792 role.direct = direct;
84b0c8c6 1793 if (role.direct)
5b7e0102 1794 role.cr4_pae = 0;
41074d07 1795 role.access = access;
c5a78f2b
JR
1796 if (!vcpu->arch.mmu.direct_map
1797 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1798 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1799 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1800 role.quadrant = quadrant;
1801 }
f41d335a 1802 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1803 if (!need_sync && sp->unsync)
1804 need_sync = true;
4731d4c7 1805
7ae680eb
XG
1806 if (sp->role.word != role.word)
1807 continue;
4731d4c7 1808
7ae680eb
XG
1809 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1810 break;
e02aa901 1811
7ae680eb
XG
1812 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1813 if (sp->unsync_children) {
a8eeb04a 1814 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1815 kvm_mmu_mark_parents_unsync(sp);
1816 } else if (sp->unsync)
1817 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1818
a30f47cb 1819 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1820 trace_kvm_mmu_get_page(sp, false);
1821 return sp;
1822 }
dfc5aa00 1823 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1824 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1825 if (!sp)
1826 return sp;
4db35314
AK
1827 sp->gfn = gfn;
1828 sp->role = role;
7ae680eb
XG
1829 hlist_add_head(&sp->hash_link,
1830 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1831 if (!direct) {
b1a36821
MT
1832 if (rmap_write_protect(vcpu->kvm, gfn))
1833 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1834 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1835 kvm_sync_pages(vcpu, gfn);
1836
4731d4c7
MT
1837 account_shadowed(vcpu->kvm, gfn);
1838 }
c3707958 1839 init_shadow_page_table(sp);
f691fe1d 1840 trace_kvm_mmu_get_page(sp, true);
4db35314 1841 return sp;
cea0f0e7
AK
1842}
1843
2d11123a
AK
1844static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1845 struct kvm_vcpu *vcpu, u64 addr)
1846{
1847 iterator->addr = addr;
1848 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1849 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1850
1851 if (iterator->level == PT64_ROOT_LEVEL &&
1852 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1853 !vcpu->arch.mmu.direct_map)
1854 --iterator->level;
1855
2d11123a
AK
1856 if (iterator->level == PT32E_ROOT_LEVEL) {
1857 iterator->shadow_addr
1858 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1859 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1860 --iterator->level;
1861 if (!iterator->shadow_addr)
1862 iterator->level = 0;
1863 }
1864}
1865
1866static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1867{
1868 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1869 return false;
4d88954d 1870
2d11123a
AK
1871 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1872 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1873 return true;
1874}
1875
c2a2ac2b
XG
1876static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1877 u64 spte)
2d11123a 1878{
c2a2ac2b 1879 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1880 iterator->level = 0;
1881 return;
1882 }
1883
c2a2ac2b 1884 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1885 --iterator->level;
1886}
1887
c2a2ac2b
XG
1888static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1889{
1890 return __shadow_walk_next(iterator, *iterator->sptep);
1891}
1892
32ef26a3
AK
1893static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1894{
1895 u64 spte;
1896
1897 spte = __pa(sp->spt)
1898 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1899 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1900 mmu_spte_set(sptep, spte);
32ef26a3
AK
1901}
1902
a357bd22
AK
1903static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1904 unsigned direct_access)
1905{
1906 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1907 struct kvm_mmu_page *child;
1908
1909 /*
1910 * For the direct sp, if the guest pte's dirty bit
1911 * changed form clean to dirty, it will corrupt the
1912 * sp's access: allow writable in the read-only sp,
1913 * so we should update the spte at this point to get
1914 * a new sp with the correct access.
1915 */
1916 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1917 if (child->role.access == direct_access)
1918 return;
1919
bcdd9a93 1920 drop_parent_pte(child, sptep);
a357bd22
AK
1921 kvm_flush_remote_tlbs(vcpu->kvm);
1922 }
1923}
1924
505aef8f 1925static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1926 u64 *spte)
1927{
1928 u64 pte;
1929 struct kvm_mmu_page *child;
1930
1931 pte = *spte;
1932 if (is_shadow_present_pte(pte)) {
505aef8f 1933 if (is_last_spte(pte, sp->role.level)) {
c3707958 1934 drop_spte(kvm, spte);
505aef8f
XG
1935 if (is_large_pte(pte))
1936 --kvm->stat.lpages;
1937 } else {
38e3b2b2 1938 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 1939 drop_parent_pte(child, spte);
38e3b2b2 1940 }
505aef8f
XG
1941 return true;
1942 }
1943
1944 if (is_mmio_spte(pte))
ce88decf 1945 mmu_spte_clear_no_track(spte);
c3707958 1946
505aef8f 1947 return false;
38e3b2b2
XG
1948}
1949
90cb0529 1950static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 1951 struct kvm_mmu_page *sp)
a436036b 1952{
697fe2e2 1953 unsigned i;
697fe2e2 1954
38e3b2b2
XG
1955 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1956 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
1957}
1958
4db35314 1959static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1960{
4db35314 1961 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
1962}
1963
31aa2b44 1964static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 1965{
1e3f42f0
TY
1966 u64 *sptep;
1967 struct rmap_iterator iter;
a436036b 1968
1e3f42f0
TY
1969 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
1970 drop_parent_pte(sp, sptep);
31aa2b44
AK
1971}
1972
60c8aec6 1973static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
1974 struct kvm_mmu_page *parent,
1975 struct list_head *invalid_list)
4731d4c7 1976{
60c8aec6
MT
1977 int i, zapped = 0;
1978 struct mmu_page_path parents;
1979 struct kvm_mmu_pages pages;
4731d4c7 1980
60c8aec6 1981 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 1982 return 0;
60c8aec6
MT
1983
1984 kvm_mmu_pages_init(parent, &parents, &pages);
1985 while (mmu_unsync_walk(parent, &pages)) {
1986 struct kvm_mmu_page *sp;
1987
1988 for_each_sp(pages, sp, parents, i) {
7775834a 1989 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 1990 mmu_pages_clear_parents(&parents);
77662e00 1991 zapped++;
60c8aec6 1992 }
60c8aec6
MT
1993 kvm_mmu_pages_init(parent, &parents, &pages);
1994 }
1995
1996 return zapped;
4731d4c7
MT
1997}
1998
7775834a
XG
1999static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2000 struct list_head *invalid_list)
31aa2b44 2001{
4731d4c7 2002 int ret;
f691fe1d 2003
7775834a 2004 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2005 ++kvm->stat.mmu_shadow_zapped;
7775834a 2006 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2007 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2008 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 2009 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2010 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
2011 if (sp->unsync)
2012 kvm_unlink_unsync_page(kvm, sp);
4db35314 2013 if (!sp->root_count) {
54a4f023
GJ
2014 /* Count self */
2015 ret++;
7775834a 2016 list_move(&sp->link, invalid_list);
aa6bd187 2017 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2018 } else {
5b5c6a5a 2019 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
2020 kvm_reload_remote_mmus(kvm);
2021 }
7775834a
XG
2022
2023 sp->role.invalid = 1;
4731d4c7 2024 return ret;
a436036b
AK
2025}
2026
7775834a
XG
2027static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2028 struct list_head *invalid_list)
2029{
2030 struct kvm_mmu_page *sp;
2031
2032 if (list_empty(invalid_list))
2033 return;
2034
c142786c
AK
2035 /*
2036 * wmb: make sure everyone sees our modifications to the page tables
2037 * rmb: make sure we see changes to vcpu->mode
2038 */
2039 smp_mb();
4f022648 2040
c142786c
AK
2041 /*
2042 * Wait for all vcpus to exit guest mode and/or lockless shadow
2043 * page table walks.
2044 */
2045 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2046
7775834a
XG
2047 do {
2048 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2049 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 2050 kvm_mmu_isolate_page(sp);
aa6bd187 2051 kvm_mmu_free_page(sp);
7775834a 2052 } while (!list_empty(invalid_list));
7775834a
XG
2053}
2054
82ce2c96
IE
2055/*
2056 * Changing the number of mmu pages allocated to the vm
49d5ca26 2057 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2058 */
49d5ca26 2059void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2060{
d98ba053 2061 LIST_HEAD(invalid_list);
82ce2c96
IE
2062 /*
2063 * If we set the number of mmu pages to be smaller be than the
2064 * number of actived pages , we must to free some mmu pages before we
2065 * change the value
2066 */
2067
49d5ca26
DH
2068 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2069 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 2070 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
2071 struct kvm_mmu_page *page;
2072
f05e70ac 2073 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2074 struct kvm_mmu_page, link);
80b63faf 2075 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2076 }
aa6bd187 2077 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2078 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2079 }
82ce2c96 2080
49d5ca26 2081 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
2082}
2083
1cb3f3ae 2084int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2085{
4db35314 2086 struct kvm_mmu_page *sp;
f41d335a 2087 struct hlist_node *node;
d98ba053 2088 LIST_HEAD(invalid_list);
a436036b
AK
2089 int r;
2090
9ad17b10 2091 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2092 r = 0;
1cb3f3ae 2093 spin_lock(&kvm->mmu_lock);
f41d335a 2094 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2095 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2096 sp->role.word);
2097 r = 1;
f41d335a 2098 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2099 }
d98ba053 2100 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2101 spin_unlock(&kvm->mmu_lock);
2102
a436036b 2103 return r;
cea0f0e7 2104}
1cb3f3ae 2105EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2106
38c335f1 2107static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
6aa8b732 2108{
bc6678a3 2109 int slot = memslot_id(kvm, gfn);
4db35314 2110 struct kvm_mmu_page *sp = page_header(__pa(pte));
6aa8b732 2111
291f26bc 2112 __set_bit(slot, sp->slot_bitmap);
6aa8b732
AK
2113}
2114
74be52e3
SY
2115/*
2116 * The function is based on mtrr_type_lookup() in
2117 * arch/x86/kernel/cpu/mtrr/generic.c
2118 */
2119static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2120 u64 start, u64 end)
2121{
2122 int i;
2123 u64 base, mask;
2124 u8 prev_match, curr_match;
2125 int num_var_ranges = KVM_NR_VAR_MTRR;
2126
2127 if (!mtrr_state->enabled)
2128 return 0xFF;
2129
2130 /* Make end inclusive end, instead of exclusive */
2131 end--;
2132
2133 /* Look in fixed ranges. Just return the type as per start */
2134 if (mtrr_state->have_fixed && (start < 0x100000)) {
2135 int idx;
2136
2137 if (start < 0x80000) {
2138 idx = 0;
2139 idx += (start >> 16);
2140 return mtrr_state->fixed_ranges[idx];
2141 } else if (start < 0xC0000) {
2142 idx = 1 * 8;
2143 idx += ((start - 0x80000) >> 14);
2144 return mtrr_state->fixed_ranges[idx];
2145 } else if (start < 0x1000000) {
2146 idx = 3 * 8;
2147 idx += ((start - 0xC0000) >> 12);
2148 return mtrr_state->fixed_ranges[idx];
2149 }
2150 }
2151
2152 /*
2153 * Look in variable ranges
2154 * Look of multiple ranges matching this address and pick type
2155 * as per MTRR precedence
2156 */
2157 if (!(mtrr_state->enabled & 2))
2158 return mtrr_state->def_type;
2159
2160 prev_match = 0xFF;
2161 for (i = 0; i < num_var_ranges; ++i) {
2162 unsigned short start_state, end_state;
2163
2164 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2165 continue;
2166
2167 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2168 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2169 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2170 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2171
2172 start_state = ((start & mask) == (base & mask));
2173 end_state = ((end & mask) == (base & mask));
2174 if (start_state != end_state)
2175 return 0xFE;
2176
2177 if ((start & mask) != (base & mask))
2178 continue;
2179
2180 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2181 if (prev_match == 0xFF) {
2182 prev_match = curr_match;
2183 continue;
2184 }
2185
2186 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2187 curr_match == MTRR_TYPE_UNCACHABLE)
2188 return MTRR_TYPE_UNCACHABLE;
2189
2190 if ((prev_match == MTRR_TYPE_WRBACK &&
2191 curr_match == MTRR_TYPE_WRTHROUGH) ||
2192 (prev_match == MTRR_TYPE_WRTHROUGH &&
2193 curr_match == MTRR_TYPE_WRBACK)) {
2194 prev_match = MTRR_TYPE_WRTHROUGH;
2195 curr_match = MTRR_TYPE_WRTHROUGH;
2196 }
2197
2198 if (prev_match != curr_match)
2199 return MTRR_TYPE_UNCACHABLE;
2200 }
2201
2202 if (prev_match != 0xFF)
2203 return prev_match;
2204
2205 return mtrr_state->def_type;
2206}
2207
4b12f0de 2208u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2209{
2210 u8 mtrr;
2211
2212 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2213 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2214 if (mtrr == 0xfe || mtrr == 0xff)
2215 mtrr = MTRR_TYPE_WRBACK;
2216 return mtrr;
2217}
4b12f0de 2218EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2219
9cf5cf5a
XG
2220static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2221{
2222 trace_kvm_mmu_unsync_page(sp);
2223 ++vcpu->kvm->stat.mmu_unsync;
2224 sp->unsync = 1;
2225
2226 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2227}
2228
2229static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2230{
4731d4c7 2231 struct kvm_mmu_page *s;
f41d335a 2232 struct hlist_node *node;
9cf5cf5a 2233
f41d335a 2234 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2235 if (s->unsync)
4731d4c7 2236 continue;
9cf5cf5a
XG
2237 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2238 __kvm_unsync_page(vcpu, s);
4731d4c7 2239 }
4731d4c7
MT
2240}
2241
2242static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2243 bool can_unsync)
2244{
9cf5cf5a 2245 struct kvm_mmu_page *s;
f41d335a 2246 struct hlist_node *node;
9cf5cf5a
XG
2247 bool need_unsync = false;
2248
f41d335a 2249 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2250 if (!can_unsync)
2251 return 1;
2252
9cf5cf5a 2253 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2254 return 1;
9cf5cf5a
XG
2255
2256 if (!need_unsync && !s->unsync) {
9cf5cf5a
XG
2257 need_unsync = true;
2258 }
4731d4c7 2259 }
9cf5cf5a
XG
2260 if (need_unsync)
2261 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2262 return 0;
2263}
2264
d555c333 2265static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2266 unsigned pte_access, int user_fault,
640d9b0d 2267 int write_fault, int level,
c2d0ee46 2268 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2269 bool can_unsync, bool host_writable)
1c4f1fd6 2270{
b330aa0c 2271 u64 spte, entry = *sptep;
1e73f9dd 2272 int ret = 0;
64d4d521 2273
ce88decf
XG
2274 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2275 return 0;
2276
982c2565 2277 spte = PT_PRESENT_MASK;
947da538 2278 if (!speculative)
3201b5d9 2279 spte |= shadow_accessed_mask;
640d9b0d 2280
7b52345e
SY
2281 if (pte_access & ACC_EXEC_MASK)
2282 spte |= shadow_x_mask;
2283 else
2284 spte |= shadow_nx_mask;
1c4f1fd6 2285 if (pte_access & ACC_USER_MASK)
7b52345e 2286 spte |= shadow_user_mask;
852e3c19 2287 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2288 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2289 if (tdp_enabled)
4b12f0de
SY
2290 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2291 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2292
9bdbba13 2293 if (host_writable)
1403283a 2294 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2295 else
2296 pte_access &= ~ACC_WRITE_MASK;
1403283a 2297
35149e21 2298 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6
AK
2299
2300 if ((pte_access & ACC_WRITE_MASK)
c5a78f2b
JR
2301 || (!vcpu->arch.mmu.direct_map && write_fault
2302 && !is_write_protection(vcpu) && !user_fault)) {
1c4f1fd6 2303
852e3c19
JR
2304 if (level > PT_PAGE_TABLE_LEVEL &&
2305 has_wrprotected_page(vcpu->kvm, gfn, level)) {
38187c83 2306 ret = 1;
c3707958 2307 drop_spte(vcpu->kvm, sptep);
be38d276 2308 goto done;
38187c83
MT
2309 }
2310
1c4f1fd6 2311 spte |= PT_WRITABLE_MASK;
1c4f1fd6 2312
c5a78f2b 2313 if (!vcpu->arch.mmu.direct_map
411c588d 2314 && !(pte_access & ACC_WRITE_MASK)) {
69325a12 2315 spte &= ~PT_USER_MASK;
411c588d
AK
2316 /*
2317 * If we converted a user page to a kernel page,
2318 * so that the kernel can write to it when cr0.wp=0,
2319 * then we should prevent the kernel from executing it
2320 * if SMEP is enabled.
2321 */
2322 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2323 spte |= PT64_NX_MASK;
2324 }
69325a12 2325
ecc5589f
MT
2326 /*
2327 * Optimization: for pte sync, if spte was writable the hash
2328 * lookup is unnecessary (and expensive). Write protection
2329 * is responsibility of mmu_get_page / kvm_sync_page.
2330 * Same reasoning can be applied to dirty page accounting.
2331 */
8dae4445 2332 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2333 goto set_pte;
2334
4731d4c7 2335 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2336 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2337 __func__, gfn);
1e73f9dd 2338 ret = 1;
1c4f1fd6 2339 pte_access &= ~ACC_WRITE_MASK;
8dae4445 2340 if (is_writable_pte(spte))
1c4f1fd6 2341 spte &= ~PT_WRITABLE_MASK;
1c4f1fd6
AK
2342 }
2343 }
2344
1c4f1fd6
AK
2345 if (pte_access & ACC_WRITE_MASK)
2346 mark_page_dirty(vcpu->kvm, gfn);
2347
38187c83 2348set_pte:
1df9f2dc 2349 mmu_spte_update(sptep, spte);
b330aa0c
XG
2350 /*
2351 * If we overwrite a writable spte with a read-only one we
2352 * should flush remote TLBs. Otherwise rmap_write_protect
2353 * will find a read-only spte, even though the writable spte
2354 * might be cached on a CPU's TLB.
2355 */
2356 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2357 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2358done:
1e73f9dd
MT
2359 return ret;
2360}
2361
d555c333 2362static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2363 unsigned pt_access, unsigned pte_access,
640d9b0d 2364 int user_fault, int write_fault,
b90a0e6c 2365 int *emulate, int level, gfn_t gfn,
1403283a 2366 pfn_t pfn, bool speculative,
9bdbba13 2367 bool host_writable)
1e73f9dd
MT
2368{
2369 int was_rmapped = 0;
53a27b39 2370 int rmap_count;
1e73f9dd
MT
2371
2372 pgprintk("%s: spte %llx access %x write_fault %d"
9ad17b10 2373 " user_fault %d gfn %llx\n",
d555c333 2374 __func__, *sptep, pt_access,
1e73f9dd
MT
2375 write_fault, user_fault, gfn);
2376
d555c333 2377 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2378 /*
2379 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2380 * the parent of the now unreachable PTE.
2381 */
852e3c19
JR
2382 if (level > PT_PAGE_TABLE_LEVEL &&
2383 !is_large_pte(*sptep)) {
1e73f9dd 2384 struct kvm_mmu_page *child;
d555c333 2385 u64 pte = *sptep;
1e73f9dd
MT
2386
2387 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2388 drop_parent_pte(child, sptep);
3be2264b 2389 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2390 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2391 pgprintk("hfn old %llx new %llx\n",
d555c333 2392 spte_to_pfn(*sptep), pfn);
c3707958 2393 drop_spte(vcpu->kvm, sptep);
91546356 2394 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2395 } else
2396 was_rmapped = 1;
1e73f9dd 2397 }
852e3c19 2398
d555c333 2399 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
640d9b0d 2400 level, gfn, pfn, speculative, true,
9bdbba13 2401 host_writable)) {
1e73f9dd 2402 if (write_fault)
b90a0e6c 2403 *emulate = 1;
5304efde 2404 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2405 }
1e73f9dd 2406
ce88decf
XG
2407 if (unlikely(is_mmio_spte(*sptep) && emulate))
2408 *emulate = 1;
2409
d555c333 2410 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2411 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2412 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2413 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2414 *sptep, sptep);
d555c333 2415 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2416 ++vcpu->kvm->stat.lpages;
2417
ffb61bb3
XG
2418 if (is_shadow_present_pte(*sptep)) {
2419 page_header_update_slot(vcpu->kvm, sptep, gfn);
2420 if (!was_rmapped) {
2421 rmap_count = rmap_add(vcpu, sptep, gfn);
2422 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2423 rmap_recycle(vcpu, sptep, gfn);
2424 }
1c4f1fd6 2425 }
9ed5520d 2426 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2427}
2428
6aa8b732
AK
2429static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2430{
e676505a 2431 mmu_free_roots(vcpu);
6aa8b732
AK
2432}
2433
957ed9ef
XG
2434static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2435 bool no_dirty_log)
2436{
2437 struct kvm_memory_slot *slot;
2438 unsigned long hva;
2439
5d163b1c 2440 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
957ed9ef 2441 if (!slot) {
fce92dce
XG
2442 get_page(fault_page);
2443 return page_to_pfn(fault_page);
957ed9ef
XG
2444 }
2445
2446 hva = gfn_to_hva_memslot(slot, gfn);
2447
2448 return hva_to_pfn_atomic(vcpu->kvm, hva);
2449}
2450
2451static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2452 struct kvm_mmu_page *sp,
2453 u64 *start, u64 *end)
2454{
2455 struct page *pages[PTE_PREFETCH_NUM];
2456 unsigned access = sp->role.access;
2457 int i, ret;
2458 gfn_t gfn;
2459
2460 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2461 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2462 return -1;
2463
2464 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2465 if (ret <= 0)
2466 return -1;
2467
2468 for (i = 0; i < ret; i++, gfn++, start++)
2469 mmu_set_spte(vcpu, start, ACC_ALL,
640d9b0d 2470 access, 0, 0, NULL,
957ed9ef
XG
2471 sp->role.level, gfn,
2472 page_to_pfn(pages[i]), true, true);
2473
2474 return 0;
2475}
2476
2477static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2478 struct kvm_mmu_page *sp, u64 *sptep)
2479{
2480 u64 *spte, *start = NULL;
2481 int i;
2482
2483 WARN_ON(!sp->role.direct);
2484
2485 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2486 spte = sp->spt + i;
2487
2488 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2489 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2490 if (!start)
2491 continue;
2492 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2493 break;
2494 start = NULL;
2495 } else if (!start)
2496 start = spte;
2497 }
2498}
2499
2500static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2501{
2502 struct kvm_mmu_page *sp;
2503
2504 /*
2505 * Since it's no accessed bit on EPT, it's no way to
2506 * distinguish between actually accessed translations
2507 * and prefetched, so disable pte prefetch if EPT is
2508 * enabled.
2509 */
2510 if (!shadow_accessed_mask)
2511 return;
2512
2513 sp = page_header(__pa(sptep));
2514 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2515 return;
2516
2517 __direct_pte_prefetch(vcpu, sp, sptep);
2518}
2519
9f652d21 2520static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2521 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2522 bool prefault)
140754bc 2523{
9f652d21 2524 struct kvm_shadow_walk_iterator iterator;
140754bc 2525 struct kvm_mmu_page *sp;
b90a0e6c 2526 int emulate = 0;
140754bc 2527 gfn_t pseudo_gfn;
6aa8b732 2528
9f652d21 2529 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2530 if (iterator.level == level) {
612819c3
MT
2531 unsigned pte_access = ACC_ALL;
2532
612819c3 2533 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
b90a0e6c 2534 0, write, &emulate,
2ec4739d 2535 level, gfn, pfn, prefault, map_writable);
957ed9ef 2536 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2537 ++vcpu->stat.pf_fixed;
2538 break;
6aa8b732
AK
2539 }
2540
c3707958 2541 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2542 u64 base_addr = iterator.addr;
2543
2544 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2545 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2546 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2547 iterator.level - 1,
2548 1, ACC_ALL, iterator.sptep);
2549 if (!sp) {
2550 pgprintk("nonpaging_map: ENOMEM\n");
2551 kvm_release_pfn_clean(pfn);
2552 return -ENOMEM;
2553 }
140754bc 2554
1df9f2dc
XG
2555 mmu_spte_set(iterator.sptep,
2556 __pa(sp->spt)
2557 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2558 | shadow_user_mask | shadow_x_mask
2559 | shadow_accessed_mask);
9f652d21
AK
2560 }
2561 }
b90a0e6c 2562 return emulate;
6aa8b732
AK
2563}
2564
77db5cbd 2565static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2566{
77db5cbd
HY
2567 siginfo_t info;
2568
2569 info.si_signo = SIGBUS;
2570 info.si_errno = 0;
2571 info.si_code = BUS_MCEERR_AR;
2572 info.si_addr = (void __user *)address;
2573 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2574
77db5cbd 2575 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2576}
2577
d7c55201 2578static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156
HY
2579{
2580 kvm_release_pfn_clean(pfn);
2581 if (is_hwpoison_pfn(pfn)) {
bebb106a 2582 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2583 return 0;
d7c55201 2584 }
edba23e5 2585
d7c55201 2586 return -EFAULT;
bf998156
HY
2587}
2588
936a5fe6
AA
2589static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2590 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2591{
2592 pfn_t pfn = *pfnp;
2593 gfn_t gfn = *gfnp;
2594 int level = *levelp;
2595
2596 /*
2597 * Check if it's a transparent hugepage. If this would be an
2598 * hugetlbfs page, level wouldn't be set to
2599 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2600 * here.
2601 */
2602 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2603 level == PT_PAGE_TABLE_LEVEL &&
2604 PageTransCompound(pfn_to_page(pfn)) &&
2605 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2606 unsigned long mask;
2607 /*
2608 * mmu_notifier_retry was successful and we hold the
2609 * mmu_lock here, so the pmd can't become splitting
2610 * from under us, and in turn
2611 * __split_huge_page_refcount() can't run from under
2612 * us and we can safely transfer the refcount from
2613 * PG_tail to PG_head as we switch the pfn to tail to
2614 * head.
2615 */
2616 *levelp = level = PT_DIRECTORY_LEVEL;
2617 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2618 VM_BUG_ON((gfn & mask) != (pfn & mask));
2619 if (pfn & mask) {
2620 gfn &= ~mask;
2621 *gfnp = gfn;
2622 kvm_release_pfn_clean(pfn);
2623 pfn &= ~mask;
c3586667 2624 kvm_get_pfn(pfn);
936a5fe6
AA
2625 *pfnp = pfn;
2626 }
2627 }
2628}
2629
d7c55201
XG
2630static bool mmu_invalid_pfn(pfn_t pfn)
2631{
ce88decf 2632 return unlikely(is_invalid_pfn(pfn));
d7c55201
XG
2633}
2634
2635static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2636 pfn_t pfn, unsigned access, int *ret_val)
2637{
2638 bool ret = true;
2639
2640 /* The pfn is invalid, report the error! */
2641 if (unlikely(is_invalid_pfn(pfn))) {
2642 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2643 goto exit;
2644 }
2645
ce88decf 2646 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2647 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2648
2649 ret = false;
2650exit:
2651 return ret;
2652}
2653
78b2c54a 2654static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2655 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2656
2657static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
78b2c54a 2658 bool prefault)
10589a46
MT
2659{
2660 int r;
852e3c19 2661 int level;
936a5fe6 2662 int force_pt_level;
35149e21 2663 pfn_t pfn;
e930bffe 2664 unsigned long mmu_seq;
612819c3 2665 bool map_writable;
aaee2c94 2666
936a5fe6
AA
2667 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2668 if (likely(!force_pt_level)) {
2669 level = mapping_level(vcpu, gfn);
2670 /*
2671 * This path builds a PAE pagetable - so we can map
2672 * 2mb pages at maximum. Therefore check if the level
2673 * is larger than that.
2674 */
2675 if (level > PT_DIRECTORY_LEVEL)
2676 level = PT_DIRECTORY_LEVEL;
852e3c19 2677
936a5fe6
AA
2678 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2679 } else
2680 level = PT_PAGE_TABLE_LEVEL;
05da4558 2681
e930bffe 2682 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2683 smp_rmb();
060c2abe 2684
78b2c54a 2685 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2686 return 0;
aaee2c94 2687
d7c55201
XG
2688 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2689 return r;
d196e343 2690
aaee2c94 2691 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
2692 if (mmu_notifier_retry(vcpu, mmu_seq))
2693 goto out_unlock;
eb787d10 2694 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2695 if (likely(!force_pt_level))
2696 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2697 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2698 prefault);
aaee2c94
MT
2699 spin_unlock(&vcpu->kvm->mmu_lock);
2700
aaee2c94 2701
10589a46 2702 return r;
e930bffe
AA
2703
2704out_unlock:
2705 spin_unlock(&vcpu->kvm->mmu_lock);
2706 kvm_release_pfn_clean(pfn);
2707 return 0;
10589a46
MT
2708}
2709
2710
17ac10ad
AK
2711static void mmu_free_roots(struct kvm_vcpu *vcpu)
2712{
2713 int i;
4db35314 2714 struct kvm_mmu_page *sp;
d98ba053 2715 LIST_HEAD(invalid_list);
17ac10ad 2716
ad312c7c 2717 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2718 return;
aaee2c94 2719 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2720 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2721 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2722 vcpu->arch.mmu.direct_map)) {
ad312c7c 2723 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2724
4db35314
AK
2725 sp = page_header(root);
2726 --sp->root_count;
d98ba053
XG
2727 if (!sp->root_count && sp->role.invalid) {
2728 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2729 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2730 }
ad312c7c 2731 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2732 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2733 return;
2734 }
17ac10ad 2735 for (i = 0; i < 4; ++i) {
ad312c7c 2736 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2737
417726a3 2738 if (root) {
417726a3 2739 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2740 sp = page_header(root);
2741 --sp->root_count;
2e53d63a 2742 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2743 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2744 &invalid_list);
417726a3 2745 }
ad312c7c 2746 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2747 }
d98ba053 2748 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2749 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2750 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2751}
2752
8986ecc0
MT
2753static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2754{
2755 int ret = 0;
2756
2757 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2758 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2759 ret = 1;
2760 }
2761
2762 return ret;
2763}
2764
651dd37a
JR
2765static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2766{
2767 struct kvm_mmu_page *sp;
7ebaf15e 2768 unsigned i;
651dd37a
JR
2769
2770 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2771 spin_lock(&vcpu->kvm->mmu_lock);
2772 kvm_mmu_free_some_pages(vcpu);
2773 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2774 1, ACC_ALL, NULL);
2775 ++sp->root_count;
2776 spin_unlock(&vcpu->kvm->mmu_lock);
2777 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2778 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2779 for (i = 0; i < 4; ++i) {
2780 hpa_t root = vcpu->arch.mmu.pae_root[i];
2781
2782 ASSERT(!VALID_PAGE(root));
2783 spin_lock(&vcpu->kvm->mmu_lock);
2784 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2785 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2786 i << 30,
651dd37a
JR
2787 PT32_ROOT_LEVEL, 1, ACC_ALL,
2788 NULL);
2789 root = __pa(sp->spt);
2790 ++sp->root_count;
2791 spin_unlock(&vcpu->kvm->mmu_lock);
2792 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2793 }
6292757f 2794 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2795 } else
2796 BUG();
2797
2798 return 0;
2799}
2800
2801static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2802{
4db35314 2803 struct kvm_mmu_page *sp;
81407ca5
JR
2804 u64 pdptr, pm_mask;
2805 gfn_t root_gfn;
2806 int i;
3bb65a22 2807
5777ed34 2808 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2809
651dd37a
JR
2810 if (mmu_check_root(vcpu, root_gfn))
2811 return 1;
2812
2813 /*
2814 * Do we shadow a long mode page table? If so we need to
2815 * write-protect the guests page table root.
2816 */
2817 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2818 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2819
2820 ASSERT(!VALID_PAGE(root));
651dd37a 2821
8facbbff 2822 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2823 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2824 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2825 0, ACC_ALL, NULL);
4db35314
AK
2826 root = __pa(sp->spt);
2827 ++sp->root_count;
8facbbff 2828 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2829 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2830 return 0;
17ac10ad 2831 }
f87f9288 2832
651dd37a
JR
2833 /*
2834 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2835 * or a PAE 3-level page table. In either case we need to be aware that
2836 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2837 */
81407ca5
JR
2838 pm_mask = PT_PRESENT_MASK;
2839 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2840 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2841
17ac10ad 2842 for (i = 0; i < 4; ++i) {
ad312c7c 2843 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2844
2845 ASSERT(!VALID_PAGE(root));
ad312c7c 2846 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 2847 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 2848 if (!is_present_gpte(pdptr)) {
ad312c7c 2849 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
2850 continue;
2851 }
6de4f3ad 2852 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
2853 if (mmu_check_root(vcpu, root_gfn))
2854 return 1;
5a7388c2 2855 }
8facbbff 2856 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2857 kvm_mmu_free_some_pages(vcpu);
4db35314 2858 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 2859 PT32_ROOT_LEVEL, 0,
f7d9c7b7 2860 ACC_ALL, NULL);
4db35314
AK
2861 root = __pa(sp->spt);
2862 ++sp->root_count;
8facbbff
AK
2863 spin_unlock(&vcpu->kvm->mmu_lock);
2864
81407ca5 2865 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 2866 }
6292757f 2867 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
2868
2869 /*
2870 * If we shadow a 32 bit page table with a long mode page
2871 * table we enter this path.
2872 */
2873 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2874 if (vcpu->arch.mmu.lm_root == NULL) {
2875 /*
2876 * The additional page necessary for this is only
2877 * allocated on demand.
2878 */
2879
2880 u64 *lm_root;
2881
2882 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2883 if (lm_root == NULL)
2884 return 1;
2885
2886 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2887
2888 vcpu->arch.mmu.lm_root = lm_root;
2889 }
2890
2891 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2892 }
2893
8986ecc0 2894 return 0;
17ac10ad
AK
2895}
2896
651dd37a
JR
2897static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2898{
2899 if (vcpu->arch.mmu.direct_map)
2900 return mmu_alloc_direct_roots(vcpu);
2901 else
2902 return mmu_alloc_shadow_roots(vcpu);
2903}
2904
0ba73cda
MT
2905static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2906{
2907 int i;
2908 struct kvm_mmu_page *sp;
2909
81407ca5
JR
2910 if (vcpu->arch.mmu.direct_map)
2911 return;
2912
0ba73cda
MT
2913 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2914 return;
6903074c 2915
bebb106a 2916 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 2917 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 2918 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
2919 hpa_t root = vcpu->arch.mmu.root_hpa;
2920 sp = page_header(root);
2921 mmu_sync_children(vcpu, sp);
0375f7fa 2922 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2923 return;
2924 }
2925 for (i = 0; i < 4; ++i) {
2926 hpa_t root = vcpu->arch.mmu.pae_root[i];
2927
8986ecc0 2928 if (root && VALID_PAGE(root)) {
0ba73cda
MT
2929 root &= PT64_BASE_ADDR_MASK;
2930 sp = page_header(root);
2931 mmu_sync_children(vcpu, sp);
2932 }
2933 }
0375f7fa 2934 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2935}
2936
2937void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2938{
2939 spin_lock(&vcpu->kvm->mmu_lock);
2940 mmu_sync_roots(vcpu);
6cffe8ca 2941 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
2942}
2943
1871c602 2944static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 2945 u32 access, struct x86_exception *exception)
6aa8b732 2946{
ab9ae313
AK
2947 if (exception)
2948 exception->error_code = 0;
6aa8b732
AK
2949 return vaddr;
2950}
2951
6539e738 2952static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
2953 u32 access,
2954 struct x86_exception *exception)
6539e738 2955{
ab9ae313
AK
2956 if (exception)
2957 exception->error_code = 0;
6539e738
JR
2958 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2959}
2960
ce88decf
XG
2961static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2962{
2963 if (direct)
2964 return vcpu_match_mmio_gpa(vcpu, addr);
2965
2966 return vcpu_match_mmio_gva(vcpu, addr);
2967}
2968
2969
2970/*
2971 * On direct hosts, the last spte is only allows two states
2972 * for mmio page fault:
2973 * - It is the mmio spte
2974 * - It is zapped or it is being zapped.
2975 *
2976 * This function completely checks the spte when the last spte
2977 * is not the mmio spte.
2978 */
2979static bool check_direct_spte_mmio_pf(u64 spte)
2980{
2981 return __check_direct_spte_mmio_pf(spte);
2982}
2983
2984static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2985{
2986 struct kvm_shadow_walk_iterator iterator;
2987 u64 spte = 0ull;
2988
2989 walk_shadow_page_lockless_begin(vcpu);
2990 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2991 if (!is_shadow_present_pte(spte))
2992 break;
2993 walk_shadow_page_lockless_end(vcpu);
2994
2995 return spte;
2996}
2997
2998/*
2999 * If it is a real mmio page fault, return 1 and emulat the instruction
3000 * directly, return 0 to let CPU fault again on the address, -1 is
3001 * returned if bug is detected.
3002 */
3003int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3004{
3005 u64 spte;
3006
3007 if (quickly_check_mmio_pf(vcpu, addr, direct))
3008 return 1;
3009
3010 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3011
3012 if (is_mmio_spte(spte)) {
3013 gfn_t gfn = get_mmio_spte_gfn(spte);
3014 unsigned access = get_mmio_spte_access(spte);
3015
3016 if (direct)
3017 addr = 0;
4f022648
XG
3018
3019 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3020 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3021 return 1;
3022 }
3023
3024 /*
3025 * It's ok if the gva is remapped by other cpus on shadow guest,
3026 * it's a BUG if the gfn is not a mmio page.
3027 */
3028 if (direct && !check_direct_spte_mmio_pf(spte))
3029 return -1;
3030
3031 /*
3032 * If the page table is zapped by other cpus, let CPU fault again on
3033 * the address.
3034 */
3035 return 0;
3036}
3037EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3038
3039static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3040 u32 error_code, bool direct)
3041{
3042 int ret;
3043
3044 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3045 WARN_ON(ret < 0);
3046 return ret;
3047}
3048
6aa8b732 3049static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3050 u32 error_code, bool prefault)
6aa8b732 3051{
e833240f 3052 gfn_t gfn;
e2dec939 3053 int r;
6aa8b732 3054
b8688d51 3055 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3056
3057 if (unlikely(error_code & PFERR_RSVD_MASK))
3058 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3059
e2dec939
AK
3060 r = mmu_topup_memory_caches(vcpu);
3061 if (r)
3062 return r;
714b93da 3063
6aa8b732 3064 ASSERT(vcpu);
ad312c7c 3065 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3066
e833240f 3067 gfn = gva >> PAGE_SHIFT;
6aa8b732 3068
e833240f 3069 return nonpaging_map(vcpu, gva & PAGE_MASK,
78b2c54a 3070 error_code & PFERR_WRITE_MASK, gfn, prefault);
6aa8b732
AK
3071}
3072
7e1fbeac 3073static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3074{
3075 struct kvm_arch_async_pf arch;
fb67e14f 3076
7c90705b 3077 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3078 arch.gfn = gfn;
c4806acd 3079 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3080 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3081
3082 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3083}
3084
3085static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3086{
3087 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3088 kvm_event_needs_reinjection(vcpu)))
3089 return false;
3090
3091 return kvm_x86_ops->interrupt_allowed(vcpu);
3092}
3093
78b2c54a 3094static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3095 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3096{
3097 bool async;
3098
612819c3 3099 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3100
3101 if (!async)
3102 return false; /* *pfn has correct page already */
3103
3104 put_page(pfn_to_page(*pfn));
3105
78b2c54a 3106 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3107 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3108 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3109 trace_kvm_async_pf_doublefault(gva, gfn);
3110 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3111 return true;
3112 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3113 return true;
3114 }
3115
612819c3 3116 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3117
3118 return false;
3119}
3120
56028d08 3121static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3122 bool prefault)
fb72d167 3123{
35149e21 3124 pfn_t pfn;
fb72d167 3125 int r;
852e3c19 3126 int level;
936a5fe6 3127 int force_pt_level;
05da4558 3128 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3129 unsigned long mmu_seq;
612819c3
MT
3130 int write = error_code & PFERR_WRITE_MASK;
3131 bool map_writable;
fb72d167
JR
3132
3133 ASSERT(vcpu);
3134 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3135
ce88decf
XG
3136 if (unlikely(error_code & PFERR_RSVD_MASK))
3137 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3138
fb72d167
JR
3139 r = mmu_topup_memory_caches(vcpu);
3140 if (r)
3141 return r;
3142
936a5fe6
AA
3143 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3144 if (likely(!force_pt_level)) {
3145 level = mapping_level(vcpu, gfn);
3146 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3147 } else
3148 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3149
e930bffe 3150 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3151 smp_rmb();
af585b92 3152
78b2c54a 3153 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3154 return 0;
3155
d7c55201
XG
3156 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3157 return r;
3158
fb72d167 3159 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
3160 if (mmu_notifier_retry(vcpu, mmu_seq))
3161 goto out_unlock;
fb72d167 3162 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3163 if (likely(!force_pt_level))
3164 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3165 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3166 level, gfn, pfn, prefault);
fb72d167 3167 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3168
3169 return r;
e930bffe
AA
3170
3171out_unlock:
3172 spin_unlock(&vcpu->kvm->mmu_lock);
3173 kvm_release_pfn_clean(pfn);
3174 return 0;
fb72d167
JR
3175}
3176
6aa8b732
AK
3177static void nonpaging_free(struct kvm_vcpu *vcpu)
3178{
17ac10ad 3179 mmu_free_roots(vcpu);
6aa8b732
AK
3180}
3181
52fde8df
JR
3182static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3183 struct kvm_mmu *context)
6aa8b732 3184{
6aa8b732
AK
3185 context->new_cr3 = nonpaging_new_cr3;
3186 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3187 context->gva_to_gpa = nonpaging_gva_to_gpa;
3188 context->free = nonpaging_free;
e8bc217a 3189 context->sync_page = nonpaging_sync_page;
a7052897 3190 context->invlpg = nonpaging_invlpg;
0f53b5b1 3191 context->update_pte = nonpaging_update_pte;
cea0f0e7 3192 context->root_level = 0;
6aa8b732 3193 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3194 context->root_hpa = INVALID_PAGE;
c5a78f2b 3195 context->direct_map = true;
2d48a985 3196 context->nx = false;
6aa8b732
AK
3197 return 0;
3198}
3199
d835dfec 3200void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3201{
1165f5fe 3202 ++vcpu->stat.tlb_flush;
a8eeb04a 3203 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3204}
3205
3206static void paging_new_cr3(struct kvm_vcpu *vcpu)
3207{
9f8fe504 3208 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3209 mmu_free_roots(vcpu);
6aa8b732
AK
3210}
3211
5777ed34
JR
3212static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3213{
9f8fe504 3214 return kvm_read_cr3(vcpu);
5777ed34
JR
3215}
3216
6389ee94
AK
3217static void inject_page_fault(struct kvm_vcpu *vcpu,
3218 struct x86_exception *fault)
6aa8b732 3219{
6389ee94 3220 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3221}
3222
6aa8b732
AK
3223static void paging_free(struct kvm_vcpu *vcpu)
3224{
3225 nonpaging_free(vcpu);
3226}
3227
3241f22d 3228static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
82725b20
DE
3229{
3230 int bit7;
3231
3232 bit7 = (gpte >> 7) & 1;
3241f22d 3233 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
82725b20
DE
3234}
3235
ce88decf
XG
3236static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3237 int *nr_present)
3238{
3239 if (unlikely(is_mmio_spte(*sptep))) {
3240 if (gfn != get_mmio_spte_gfn(*sptep)) {
3241 mmu_spte_clear_no_track(sptep);
3242 return true;
3243 }
3244
3245 (*nr_present)++;
3246 mark_mmio_spte(sptep, gfn, access);
3247 return true;
3248 }
3249
3250 return false;
3251}
3252
6aa8b732
AK
3253#define PTTYPE 64
3254#include "paging_tmpl.h"
3255#undef PTTYPE
3256
3257#define PTTYPE 32
3258#include "paging_tmpl.h"
3259#undef PTTYPE
3260
52fde8df 3261static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3262 struct kvm_mmu *context)
82725b20 3263{
82725b20
DE
3264 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3265 u64 exb_bit_rsvd = 0;
3266
2d48a985 3267 if (!context->nx)
82725b20 3268 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3269 switch (context->root_level) {
82725b20
DE
3270 case PT32_ROOT_LEVEL:
3271 /* no rsvd bits for 2 level 4K page table entries */
3272 context->rsvd_bits_mask[0][1] = 0;
3273 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3274 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3275
3276 if (!is_pse(vcpu)) {
3277 context->rsvd_bits_mask[1][1] = 0;
3278 break;
3279 }
3280
82725b20
DE
3281 if (is_cpuid_PSE36())
3282 /* 36bits PSE 4MB page */
3283 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3284 else
3285 /* 32 bits PSE 4MB page */
3286 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3287 break;
3288 case PT32E_ROOT_LEVEL:
20c466b5
DE
3289 context->rsvd_bits_mask[0][2] =
3290 rsvd_bits(maxphyaddr, 63) |
3291 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3292 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3293 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3294 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3295 rsvd_bits(maxphyaddr, 62); /* PTE */
3296 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3297 rsvd_bits(maxphyaddr, 62) |
3298 rsvd_bits(13, 20); /* large page */
f815bce8 3299 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3300 break;
3301 case PT64_ROOT_LEVEL:
3302 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3303 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3304 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3305 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3306 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3307 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3308 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3309 rsvd_bits(maxphyaddr, 51);
3310 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3311 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3312 rsvd_bits(maxphyaddr, 51) |
3313 rsvd_bits(13, 29);
82725b20 3314 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3315 rsvd_bits(maxphyaddr, 51) |
3316 rsvd_bits(13, 20); /* large page */
f815bce8 3317 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3318 break;
3319 }
3320}
3321
52fde8df
JR
3322static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3323 struct kvm_mmu *context,
3324 int level)
6aa8b732 3325{
2d48a985 3326 context->nx = is_nx(vcpu);
4d6931c3 3327 context->root_level = level;
2d48a985 3328
4d6931c3 3329 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3330
3331 ASSERT(is_pae(vcpu));
3332 context->new_cr3 = paging_new_cr3;
3333 context->page_fault = paging64_page_fault;
6aa8b732 3334 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3335 context->sync_page = paging64_sync_page;
a7052897 3336 context->invlpg = paging64_invlpg;
0f53b5b1 3337 context->update_pte = paging64_update_pte;
6aa8b732 3338 context->free = paging_free;
17ac10ad 3339 context->shadow_root_level = level;
17c3ba9d 3340 context->root_hpa = INVALID_PAGE;
c5a78f2b 3341 context->direct_map = false;
6aa8b732
AK
3342 return 0;
3343}
3344
52fde8df
JR
3345static int paging64_init_context(struct kvm_vcpu *vcpu,
3346 struct kvm_mmu *context)
17ac10ad 3347{
52fde8df 3348 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3349}
3350
52fde8df
JR
3351static int paging32_init_context(struct kvm_vcpu *vcpu,
3352 struct kvm_mmu *context)
6aa8b732 3353{
2d48a985 3354 context->nx = false;
4d6931c3 3355 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3356
4d6931c3 3357 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3358
3359 context->new_cr3 = paging_new_cr3;
3360 context->page_fault = paging32_page_fault;
6aa8b732
AK
3361 context->gva_to_gpa = paging32_gva_to_gpa;
3362 context->free = paging_free;
e8bc217a 3363 context->sync_page = paging32_sync_page;
a7052897 3364 context->invlpg = paging32_invlpg;
0f53b5b1 3365 context->update_pte = paging32_update_pte;
6aa8b732 3366 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3367 context->root_hpa = INVALID_PAGE;
c5a78f2b 3368 context->direct_map = false;
6aa8b732
AK
3369 return 0;
3370}
3371
52fde8df
JR
3372static int paging32E_init_context(struct kvm_vcpu *vcpu,
3373 struct kvm_mmu *context)
6aa8b732 3374{
52fde8df 3375 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3376}
3377
fb72d167
JR
3378static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3379{
14dfe855 3380 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3381
c445f8ef 3382 context->base_role.word = 0;
fb72d167
JR
3383 context->new_cr3 = nonpaging_new_cr3;
3384 context->page_fault = tdp_page_fault;
3385 context->free = nonpaging_free;
e8bc217a 3386 context->sync_page = nonpaging_sync_page;
a7052897 3387 context->invlpg = nonpaging_invlpg;
0f53b5b1 3388 context->update_pte = nonpaging_update_pte;
67253af5 3389 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3390 context->root_hpa = INVALID_PAGE;
c5a78f2b 3391 context->direct_map = true;
1c97f0a0 3392 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3393 context->get_cr3 = get_cr3;
e4e517b4 3394 context->get_pdptr = kvm_pdptr_read;
cb659db8 3395 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3396
3397 if (!is_paging(vcpu)) {
2d48a985 3398 context->nx = false;
fb72d167
JR
3399 context->gva_to_gpa = nonpaging_gva_to_gpa;
3400 context->root_level = 0;
3401 } else if (is_long_mode(vcpu)) {
2d48a985 3402 context->nx = is_nx(vcpu);
fb72d167 3403 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3404 reset_rsvds_bits_mask(vcpu, context);
3405 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3406 } else if (is_pae(vcpu)) {
2d48a985 3407 context->nx = is_nx(vcpu);
fb72d167 3408 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3409 reset_rsvds_bits_mask(vcpu, context);
3410 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3411 } else {
2d48a985 3412 context->nx = false;
fb72d167 3413 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3414 reset_rsvds_bits_mask(vcpu, context);
3415 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3416 }
3417
3418 return 0;
3419}
3420
52fde8df 3421int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3422{
a770f6f2 3423 int r;
411c588d 3424 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3425 ASSERT(vcpu);
ad312c7c 3426 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3427
3428 if (!is_paging(vcpu))
52fde8df 3429 r = nonpaging_init_context(vcpu, context);
a9058ecd 3430 else if (is_long_mode(vcpu))
52fde8df 3431 r = paging64_init_context(vcpu, context);
6aa8b732 3432 else if (is_pae(vcpu))
52fde8df 3433 r = paging32E_init_context(vcpu, context);
6aa8b732 3434 else
52fde8df 3435 r = paging32_init_context(vcpu, context);
a770f6f2 3436
5b7e0102 3437 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3438 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3439 vcpu->arch.mmu.base_role.smep_andnot_wp
3440 = smep && !is_write_protection(vcpu);
52fde8df
JR
3441
3442 return r;
3443}
3444EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3445
3446static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3447{
14dfe855 3448 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3449
14dfe855
JR
3450 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3451 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3452 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3453 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3454
3455 return r;
6aa8b732
AK
3456}
3457
02f59dc9
JR
3458static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3459{
3460 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3461
3462 g_context->get_cr3 = get_cr3;
e4e517b4 3463 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3464 g_context->inject_page_fault = kvm_inject_page_fault;
3465
3466 /*
3467 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3468 * translation of l2_gpa to l1_gpa addresses is done using the
3469 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3470 * functions between mmu and nested_mmu are swapped.
3471 */
3472 if (!is_paging(vcpu)) {
2d48a985 3473 g_context->nx = false;
02f59dc9
JR
3474 g_context->root_level = 0;
3475 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3476 } else if (is_long_mode(vcpu)) {
2d48a985 3477 g_context->nx = is_nx(vcpu);
02f59dc9 3478 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3479 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3480 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3481 } else if (is_pae(vcpu)) {
2d48a985 3482 g_context->nx = is_nx(vcpu);
02f59dc9 3483 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3484 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3485 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3486 } else {
2d48a985 3487 g_context->nx = false;
02f59dc9 3488 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3489 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3490 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3491 }
3492
3493 return 0;
3494}
3495
fb72d167
JR
3496static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3497{
02f59dc9
JR
3498 if (mmu_is_nested(vcpu))
3499 return init_kvm_nested_mmu(vcpu);
3500 else if (tdp_enabled)
fb72d167
JR
3501 return init_kvm_tdp_mmu(vcpu);
3502 else
3503 return init_kvm_softmmu(vcpu);
3504}
3505
6aa8b732
AK
3506static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3507{
3508 ASSERT(vcpu);
62ad0755
SY
3509 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3510 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3511 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3512}
3513
3514int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3515{
3516 destroy_kvm_mmu(vcpu);
f8f7e5ee 3517 return init_kvm_mmu(vcpu);
17c3ba9d 3518}
8668a3c4 3519EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3520
3521int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3522{
714b93da
AK
3523 int r;
3524
e2dec939 3525 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3526 if (r)
3527 goto out;
8986ecc0 3528 r = mmu_alloc_roots(vcpu);
8facbbff 3529 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3530 mmu_sync_roots(vcpu);
aaee2c94 3531 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3532 if (r)
3533 goto out;
3662cb1c 3534 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3535 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3536out:
3537 return r;
6aa8b732 3538}
17c3ba9d
AK
3539EXPORT_SYMBOL_GPL(kvm_mmu_load);
3540
3541void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3542{
3543 mmu_free_roots(vcpu);
3544}
4b16184c 3545EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3546
0028425f 3547static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3548 struct kvm_mmu_page *sp, u64 *spte,
3549 const void *new)
0028425f 3550{
30945387 3551 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3552 ++vcpu->kvm->stat.mmu_pde_zapped;
3553 return;
30945387 3554 }
0028425f 3555
4cee5764 3556 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3557 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3558}
3559
79539cec
AK
3560static bool need_remote_flush(u64 old, u64 new)
3561{
3562 if (!is_shadow_present_pte(old))
3563 return false;
3564 if (!is_shadow_present_pte(new))
3565 return true;
3566 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3567 return true;
3568 old ^= PT64_NX_MASK;
3569 new ^= PT64_NX_MASK;
3570 return (old & ~new & PT64_PERM_MASK) != 0;
3571}
3572
0671a8e7
XG
3573static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3574 bool remote_flush, bool local_flush)
79539cec 3575{
0671a8e7
XG
3576 if (zap_page)
3577 return;
3578
3579 if (remote_flush)
79539cec 3580 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3581 else if (local_flush)
79539cec
AK
3582 kvm_mmu_flush_tlb(vcpu);
3583}
3584
889e5cbc
XG
3585static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3586 const u8 *new, int *bytes)
da4a00f0 3587{
889e5cbc
XG
3588 u64 gentry;
3589 int r;
72016f3a 3590
72016f3a
AK
3591 /*
3592 * Assume that the pte write on a page table of the same type
49b26e26
XG
3593 * as the current vcpu paging mode since we update the sptes only
3594 * when they have the same mode.
72016f3a 3595 */
889e5cbc 3596 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3597 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3598 *gpa &= ~(gpa_t)7;
3599 *bytes = 8;
3600 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
72016f3a
AK
3601 if (r)
3602 gentry = 0;
08e850c6
AK
3603 new = (const u8 *)&gentry;
3604 }
3605
889e5cbc 3606 switch (*bytes) {
08e850c6
AK
3607 case 4:
3608 gentry = *(const u32 *)new;
3609 break;
3610 case 8:
3611 gentry = *(const u64 *)new;
3612 break;
3613 default:
3614 gentry = 0;
3615 break;
72016f3a
AK
3616 }
3617
889e5cbc
XG
3618 return gentry;
3619}
3620
3621/*
3622 * If we're seeing too many writes to a page, it may no longer be a page table,
3623 * or we may be forking, in which case it is better to unmap the page.
3624 */
a138fe75 3625static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3626{
a30f47cb
XG
3627 /*
3628 * Skip write-flooding detected for the sp whose level is 1, because
3629 * it can become unsync, then the guest page is not write-protected.
3630 */
f71fa31f 3631 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3632 return false;
3246af0e 3633
a30f47cb 3634 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3635}
3636
3637/*
3638 * Misaligned accesses are too much trouble to fix up; also, they usually
3639 * indicate a page is not used as a page table.
3640 */
3641static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3642 int bytes)
3643{
3644 unsigned offset, pte_size, misaligned;
3645
3646 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3647 gpa, bytes, sp->role.word);
3648
3649 offset = offset_in_page(gpa);
3650 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3651
3652 /*
3653 * Sometimes, the OS only writes the last one bytes to update status
3654 * bits, for example, in linux, andb instruction is used in clear_bit().
3655 */
3656 if (!(offset & (pte_size - 1)) && bytes == 1)
3657 return false;
3658
889e5cbc
XG
3659 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3660 misaligned |= bytes < 4;
3661
3662 return misaligned;
3663}
3664
3665static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3666{
3667 unsigned page_offset, quadrant;
3668 u64 *spte;
3669 int level;
3670
3671 page_offset = offset_in_page(gpa);
3672 level = sp->role.level;
3673 *nspte = 1;
3674 if (!sp->role.cr4_pae) {
3675 page_offset <<= 1; /* 32->64 */
3676 /*
3677 * A 32-bit pde maps 4MB while the shadow pdes map
3678 * only 2MB. So we need to double the offset again
3679 * and zap two pdes instead of one.
3680 */
3681 if (level == PT32_ROOT_LEVEL) {
3682 page_offset &= ~7; /* kill rounding error */
3683 page_offset <<= 1;
3684 *nspte = 2;
3685 }
3686 quadrant = page_offset >> PAGE_SHIFT;
3687 page_offset &= ~PAGE_MASK;
3688 if (quadrant != sp->role.quadrant)
3689 return NULL;
3690 }
3691
3692 spte = &sp->spt[page_offset / sizeof(*spte)];
3693 return spte;
3694}
3695
3696void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3697 const u8 *new, int bytes)
3698{
3699 gfn_t gfn = gpa >> PAGE_SHIFT;
3700 union kvm_mmu_page_role mask = { .word = 0 };
3701 struct kvm_mmu_page *sp;
3702 struct hlist_node *node;
3703 LIST_HEAD(invalid_list);
3704 u64 entry, gentry, *spte;
3705 int npte;
a30f47cb 3706 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3707
3708 /*
3709 * If we don't have indirect shadow pages, it means no page is
3710 * write-protected, so we can exit simply.
3711 */
3712 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3713 return;
3714
3715 zap_page = remote_flush = local_flush = false;
3716
3717 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3718
3719 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3720
3721 /*
3722 * No need to care whether allocation memory is successful
3723 * or not since pte prefetch is skiped if it does not have
3724 * enough objects in the cache.
3725 */
3726 mmu_topup_memory_caches(vcpu);
3727
3728 spin_lock(&vcpu->kvm->mmu_lock);
3729 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3730 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3731
fa1de2bf 3732 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3733 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3734 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3735 detect_write_flooding(sp)) {
0671a8e7 3736 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3737 &invalid_list);
4cee5764 3738 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3739 continue;
3740 }
889e5cbc
XG
3741
3742 spte = get_written_sptes(sp, gpa, &npte);
3743 if (!spte)
3744 continue;
3745
0671a8e7 3746 local_flush = true;
ac1b714e 3747 while (npte--) {
79539cec 3748 entry = *spte;
38e3b2b2 3749 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3750 if (gentry &&
3751 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3752 & mask.word) && rmap_can_add(vcpu))
7c562522 3753 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
3754 if (!remote_flush && need_remote_flush(entry, *spte))
3755 remote_flush = true;
ac1b714e 3756 ++spte;
9b7a0325 3757 }
9b7a0325 3758 }
0671a8e7 3759 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3760 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3761 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3762 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3763}
3764
a436036b
AK
3765int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3766{
10589a46
MT
3767 gpa_t gpa;
3768 int r;
a436036b 3769
c5a78f2b 3770 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3771 return 0;
3772
1871c602 3773 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 3774
10589a46 3775 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 3776
10589a46 3777 return r;
a436036b 3778}
577bdc49 3779EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 3780
22d95b12 3781void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 3782{
d98ba053 3783 LIST_HEAD(invalid_list);
103ad25a 3784
e0df7b9f 3785 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 3786 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 3787 struct kvm_mmu_page *sp;
ebeace86 3788
f05e70ac 3789 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 3790 struct kvm_mmu_page, link);
e0df7b9f 3791 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 3792 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 3793 }
aa6bd187 3794 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 3795}
ebeace86 3796
1cb3f3ae
XG
3797static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3798{
3799 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3800 return vcpu_match_mmio_gpa(vcpu, addr);
3801
3802 return vcpu_match_mmio_gva(vcpu, addr);
3803}
3804
dc25e89e
AP
3805int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3806 void *insn, int insn_len)
3067714c 3807{
1cb3f3ae 3808 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
3809 enum emulation_result er;
3810
56028d08 3811 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
3812 if (r < 0)
3813 goto out;
3814
3815 if (!r) {
3816 r = 1;
3817 goto out;
3818 }
3819
1cb3f3ae
XG
3820 if (is_mmio_page_fault(vcpu, cr2))
3821 emulation_type = 0;
3822
3823 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
3824
3825 switch (er) {
3826 case EMULATE_DONE:
3827 return 1;
3828 case EMULATE_DO_MMIO:
3829 ++vcpu->stat.mmio_exits;
6d77dbfc 3830 /* fall through */
3067714c 3831 case EMULATE_FAIL:
3f5d18a9 3832 return 0;
3067714c
AK
3833 default:
3834 BUG();
3835 }
3836out:
3067714c
AK
3837 return r;
3838}
3839EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3840
a7052897
MT
3841void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3842{
a7052897 3843 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
3844 kvm_mmu_flush_tlb(vcpu);
3845 ++vcpu->stat.invlpg;
3846}
3847EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3848
18552672
JR
3849void kvm_enable_tdp(void)
3850{
3851 tdp_enabled = true;
3852}
3853EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3854
5f4cb662
JR
3855void kvm_disable_tdp(void)
3856{
3857 tdp_enabled = false;
3858}
3859EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3860
6aa8b732
AK
3861static void free_mmu_pages(struct kvm_vcpu *vcpu)
3862{
ad312c7c 3863 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
3864 if (vcpu->arch.mmu.lm_root != NULL)
3865 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
3866}
3867
3868static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3869{
17ac10ad 3870 struct page *page;
6aa8b732
AK
3871 int i;
3872
3873 ASSERT(vcpu);
3874
17ac10ad
AK
3875 /*
3876 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3877 * Therefore we need to allocate shadow page tables in the first
3878 * 4GB of memory, which happens to fit the DMA32 zone.
3879 */
3880 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3881 if (!page)
d7fa6ab2
WY
3882 return -ENOMEM;
3883
ad312c7c 3884 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 3885 for (i = 0; i < 4; ++i)
ad312c7c 3886 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3887
6aa8b732 3888 return 0;
6aa8b732
AK
3889}
3890
8018c27b 3891int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 3892{
6aa8b732 3893 ASSERT(vcpu);
e459e322
XG
3894
3895 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3896 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3897 vcpu->arch.mmu.translate_gpa = translate_gpa;
3898 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 3899
8018c27b
IM
3900 return alloc_mmu_pages(vcpu);
3901}
6aa8b732 3902
8018c27b
IM
3903int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3904{
3905 ASSERT(vcpu);
ad312c7c 3906 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 3907
8018c27b 3908 return init_kvm_mmu(vcpu);
6aa8b732
AK
3909}
3910
90cb0529 3911void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 3912{
4db35314 3913 struct kvm_mmu_page *sp;
d13bc5b5 3914 bool flush = false;
6aa8b732 3915
f05e70ac 3916 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
6aa8b732
AK
3917 int i;
3918 u64 *pt;
3919
291f26bc 3920 if (!test_bit(slot, sp->slot_bitmap))
6aa8b732
AK
3921 continue;
3922
4db35314 3923 pt = sp->spt;
8234b22e 3924 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
da8dc75f
XG
3925 if (!is_shadow_present_pte(pt[i]) ||
3926 !is_last_spte(pt[i], sp->role.level))
3927 continue;
3928
d13bc5b5 3929 spte_write_protect(kvm, &pt[i], &flush);
8234b22e 3930 }
6aa8b732 3931 }
171d595d 3932 kvm_flush_remote_tlbs(kvm);
6aa8b732 3933}
37a7d8b0 3934
90cb0529 3935void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 3936{
4db35314 3937 struct kvm_mmu_page *sp, *node;
d98ba053 3938 LIST_HEAD(invalid_list);
e0fa826f 3939
aaee2c94 3940 spin_lock(&kvm->mmu_lock);
3246af0e 3941restart:
f05e70ac 3942 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 3943 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
3944 goto restart;
3945
d98ba053 3946 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 3947 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
3948}
3949
3d56cbdf
JK
3950static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3951 struct list_head *invalid_list)
3ee16c81
IE
3952{
3953 struct kvm_mmu_page *page;
3954
3955 page = container_of(kvm->arch.active_mmu_pages.prev,
3956 struct kvm_mmu_page, link);
3d56cbdf 3957 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
3958}
3959
1495f230 3960static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
3961{
3962 struct kvm *kvm;
1495f230 3963 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
3964
3965 if (nr_to_scan == 0)
3966 goto out;
3ee16c81 3967
e935b837 3968 raw_spin_lock(&kvm_lock);
3ee16c81
IE
3969
3970 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 3971 int idx;
d98ba053 3972 LIST_HEAD(invalid_list);
3ee16c81 3973
19526396
GN
3974 /*
3975 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
3976 * here. We may skip a VM instance errorneosly, but we do not
3977 * want to shrink a VM that only started to populate its MMU
3978 * anyway.
3979 */
3980 if (kvm->arch.n_used_mmu_pages > 0) {
3981 if (!nr_to_scan--)
3982 break;
3983 continue;
3984 }
3985
f656ce01 3986 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 3987 spin_lock(&kvm->mmu_lock);
3ee16c81 3988
19526396 3989 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
d98ba053 3990 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 3991
3ee16c81 3992 spin_unlock(&kvm->mmu_lock);
f656ce01 3993 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
3994
3995 list_move_tail(&kvm->vm_list, &vm_list);
3996 break;
3ee16c81 3997 }
3ee16c81 3998
e935b837 3999 raw_spin_unlock(&kvm_lock);
3ee16c81 4000
45221ab6
DH
4001out:
4002 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4003}
4004
4005static struct shrinker mmu_shrinker = {
4006 .shrink = mmu_shrink,
4007 .seeks = DEFAULT_SEEKS * 10,
4008};
4009
2ddfd20e 4010static void mmu_destroy_caches(void)
b5a33a75 4011{
53c07b18
XG
4012 if (pte_list_desc_cache)
4013 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4014 if (mmu_page_header_cache)
4015 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4016}
4017
4018int kvm_mmu_module_init(void)
4019{
53c07b18
XG
4020 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4021 sizeof(struct pte_list_desc),
20c2df83 4022 0, 0, NULL);
53c07b18 4023 if (!pte_list_desc_cache)
b5a33a75
AK
4024 goto nomem;
4025
d3d25b04
AK
4026 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4027 sizeof(struct kvm_mmu_page),
20c2df83 4028 0, 0, NULL);
d3d25b04
AK
4029 if (!mmu_page_header_cache)
4030 goto nomem;
4031
45bf21a8
WY
4032 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4033 goto nomem;
4034
3ee16c81
IE
4035 register_shrinker(&mmu_shrinker);
4036
b5a33a75
AK
4037 return 0;
4038
4039nomem:
3ee16c81 4040 mmu_destroy_caches();
b5a33a75
AK
4041 return -ENOMEM;
4042}
4043
3ad82a7e
ZX
4044/*
4045 * Caculate mmu pages needed for kvm.
4046 */
4047unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4048{
3ad82a7e
ZX
4049 unsigned int nr_mmu_pages;
4050 unsigned int nr_pages = 0;
bc6678a3 4051 struct kvm_memslots *slots;
be6ba0f0 4052 struct kvm_memory_slot *memslot;
3ad82a7e 4053
90d83dc3
LJ
4054 slots = kvm_memslots(kvm);
4055
be6ba0f0
XG
4056 kvm_for_each_memslot(memslot, slots)
4057 nr_pages += memslot->npages;
3ad82a7e
ZX
4058
4059 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4060 nr_mmu_pages = max(nr_mmu_pages,
4061 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4062
4063 return nr_mmu_pages;
4064}
4065
94d8b056
MT
4066int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4067{
4068 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4069 u64 spte;
94d8b056
MT
4070 int nr_sptes = 0;
4071
c2a2ac2b
XG
4072 walk_shadow_page_lockless_begin(vcpu);
4073 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4074 sptes[iterator.level-1] = spte;
94d8b056 4075 nr_sptes++;
c2a2ac2b 4076 if (!is_shadow_present_pte(spte))
94d8b056
MT
4077 break;
4078 }
c2a2ac2b 4079 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4080
4081 return nr_sptes;
4082}
4083EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4084
c42fffe3
XG
4085void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4086{
4087 ASSERT(vcpu);
4088
4089 destroy_kvm_mmu(vcpu);
4090 free_mmu_pages(vcpu);
4091 mmu_free_memory_caches(vcpu);
b034cf01
XG
4092}
4093
b034cf01
XG
4094void kvm_mmu_module_exit(void)
4095{
4096 mmu_destroy_caches();
4097 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4098 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4099 mmu_audit_disable();
4100}