]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: MMU: cleanup FNAME(invlpg)
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c
XG
62char *audit_point_name[] = {
63 "pre page fault",
64 "post page fault",
65 "pre pte write",
6903074c
XG
66 "post pte write",
67 "pre sync",
68 "post sync"
8b1fe17c 69};
37a7d8b0 70
8b1fe17c 71#undef MMU_DEBUG
37a7d8b0
AK
72
73#ifdef MMU_DEBUG
74
75#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
76#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
77
78#else
79
80#define pgprintk(x...) do { } while (0)
81#define rmap_printk(x...) do { } while (0)
82
83#endif
84
8b1fe17c 85#ifdef MMU_DEBUG
6ada8cca
AK
86static int dbg = 0;
87module_param(dbg, bool, 0644);
37a7d8b0 88#endif
6aa8b732 89
582801a9
MT
90static int oos_shadow = 1;
91module_param(oos_shadow, bool, 0644);
92
d6c69ee9
YD
93#ifndef MMU_DEBUG
94#define ASSERT(x) do { } while (0)
95#else
6aa8b732
AK
96#define ASSERT(x) \
97 if (!(x)) { \
98 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
99 __FILE__, __LINE__, #x); \
100 }
d6c69ee9 101#endif
6aa8b732 102
957ed9ef
XG
103#define PTE_PREFETCH_NUM 8
104
6aa8b732
AK
105#define PT_FIRST_AVAIL_BITS_SHIFT 9
106#define PT64_SECOND_AVAIL_BITS_SHIFT 52
107
6aa8b732
AK
108#define PT64_LEVEL_BITS 9
109
110#define PT64_LEVEL_SHIFT(level) \
d77c26fc 111 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 112
6aa8b732
AK
113#define PT64_INDEX(address, level)\
114 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
115
116
117#define PT32_LEVEL_BITS 10
118
119#define PT32_LEVEL_SHIFT(level) \
d77c26fc 120 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 121
e04da980
JR
122#define PT32_LVL_OFFSET_MASK(level) \
123 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
125
126#define PT32_INDEX(address, level)\
127 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
128
129
27aba766 130#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
131#define PT64_DIR_BASE_ADDR_MASK \
132 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
133#define PT64_LVL_ADDR_MASK(level) \
134 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
135 * PT64_LEVEL_BITS))) - 1))
136#define PT64_LVL_OFFSET_MASK(level) \
137 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
138 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
139
140#define PT32_BASE_ADDR_MASK PAGE_MASK
141#define PT32_DIR_BASE_ADDR_MASK \
142 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
143#define PT32_LVL_ADDR_MASK(level) \
144 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
145 * PT32_LEVEL_BITS))) - 1))
6aa8b732 146
79539cec
AK
147#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
148 | PT64_NX_MASK)
6aa8b732 149
53c07b18 150#define PTE_LIST_EXT 4
cd4a4e53 151
fe135d2c
AK
152#define ACC_EXEC_MASK 1
153#define ACC_WRITE_MASK PT_WRITABLE_MASK
154#define ACC_USER_MASK PT_USER_MASK
155#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
156
90bb6fc5
AK
157#include <trace/events/kvm.h>
158
07420171
AK
159#define CREATE_TRACE_POINTS
160#include "mmutrace.h"
161
1403283a
IE
162#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
163
135f8c2b
AK
164#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
165
53c07b18
XG
166struct pte_list_desc {
167 u64 *sptes[PTE_LIST_EXT];
168 struct pte_list_desc *more;
cd4a4e53
AK
169};
170
2d11123a
AK
171struct kvm_shadow_walk_iterator {
172 u64 addr;
173 hpa_t shadow_addr;
2d11123a 174 u64 *sptep;
dd3bfd59 175 int level;
2d11123a
AK
176 unsigned index;
177};
178
179#define for_each_shadow_entry(_vcpu, _addr, _walker) \
180 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
181 shadow_walk_okay(&(_walker)); \
182 shadow_walk_next(&(_walker)))
183
c2a2ac2b
XG
184#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
185 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
186 shadow_walk_okay(&(_walker)) && \
187 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
188 __shadow_walk_next(&(_walker), spte))
189
53c07b18 190static struct kmem_cache *pte_list_desc_cache;
d3d25b04 191static struct kmem_cache *mmu_page_header_cache;
45221ab6 192static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 193
7b52345e
SY
194static u64 __read_mostly shadow_nx_mask;
195static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
196static u64 __read_mostly shadow_user_mask;
197static u64 __read_mostly shadow_accessed_mask;
198static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
199static u64 __read_mostly shadow_mmio_mask;
200
201static void mmu_spte_set(u64 *sptep, u64 spte);
202
203void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
204{
205 shadow_mmio_mask = mmio_mask;
206}
207EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
208
209static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
210{
211 access &= ACC_WRITE_MASK | ACC_USER_MASK;
212
4f022648 213 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
214 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
215}
216
217static bool is_mmio_spte(u64 spte)
218{
219 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
220}
221
222static gfn_t get_mmio_spte_gfn(u64 spte)
223{
224 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
225}
226
227static unsigned get_mmio_spte_access(u64 spte)
228{
229 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
230}
231
232static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
233{
234 if (unlikely(is_noslot_pfn(pfn))) {
235 mark_mmio_spte(sptep, gfn, access);
236 return true;
237 }
238
239 return false;
240}
c7addb90 241
82725b20
DE
242static inline u64 rsvd_bits(int s, int e)
243{
244 return ((1ULL << (e - s + 1)) - 1) << s;
245}
246
7b52345e 247void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 248 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
249{
250 shadow_user_mask = user_mask;
251 shadow_accessed_mask = accessed_mask;
252 shadow_dirty_mask = dirty_mask;
253 shadow_nx_mask = nx_mask;
254 shadow_x_mask = x_mask;
255}
256EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
257
6aa8b732
AK
258static int is_cpuid_PSE36(void)
259{
260 return 1;
261}
262
73b1087e
AK
263static int is_nx(struct kvm_vcpu *vcpu)
264{
f6801dff 265 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
266}
267
c7addb90
AK
268static int is_shadow_present_pte(u64 pte)
269{
ce88decf 270 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
271}
272
05da4558
MT
273static int is_large_pte(u64 pte)
274{
275 return pte & PT_PAGE_SIZE_MASK;
276}
277
43a3795a 278static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 279{
439e218a 280 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
281}
282
43a3795a 283static int is_rmap_spte(u64 pte)
cd4a4e53 284{
4b1a80fa 285 return is_shadow_present_pte(pte);
cd4a4e53
AK
286}
287
776e6633
MT
288static int is_last_spte(u64 pte, int level)
289{
290 if (level == PT_PAGE_TABLE_LEVEL)
291 return 1;
852e3c19 292 if (is_large_pte(pte))
776e6633
MT
293 return 1;
294 return 0;
295}
296
35149e21 297static pfn_t spte_to_pfn(u64 pte)
0b49ea86 298{
35149e21 299 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
300}
301
da928521
AK
302static gfn_t pse36_gfn_delta(u32 gpte)
303{
304 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
305
306 return (gpte & PT32_DIR_PSE36_MASK) << shift;
307}
308
603e0651 309#ifdef CONFIG_X86_64
d555c333 310static void __set_spte(u64 *sptep, u64 spte)
e663ee64 311{
603e0651 312 *sptep = spte;
e663ee64
AK
313}
314
603e0651 315static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 316{
603e0651
XG
317 *sptep = spte;
318}
319
320static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
321{
322 return xchg(sptep, spte);
323}
c2a2ac2b
XG
324
325static u64 __get_spte_lockless(u64 *sptep)
326{
327 return ACCESS_ONCE(*sptep);
328}
ce88decf
XG
329
330static bool __check_direct_spte_mmio_pf(u64 spte)
331{
332 /* It is valid if the spte is zapped. */
333 return spte == 0ull;
334}
a9221dd5 335#else
603e0651
XG
336union split_spte {
337 struct {
338 u32 spte_low;
339 u32 spte_high;
340 };
341 u64 spte;
342};
a9221dd5 343
c2a2ac2b
XG
344static void count_spte_clear(u64 *sptep, u64 spte)
345{
346 struct kvm_mmu_page *sp = page_header(__pa(sptep));
347
348 if (is_shadow_present_pte(spte))
349 return;
350
351 /* Ensure the spte is completely set before we increase the count */
352 smp_wmb();
353 sp->clear_spte_count++;
354}
355
603e0651
XG
356static void __set_spte(u64 *sptep, u64 spte)
357{
358 union split_spte *ssptep, sspte;
a9221dd5 359
603e0651
XG
360 ssptep = (union split_spte *)sptep;
361 sspte = (union split_spte)spte;
362
363 ssptep->spte_high = sspte.spte_high;
364
365 /*
366 * If we map the spte from nonpresent to present, We should store
367 * the high bits firstly, then set present bit, so cpu can not
368 * fetch this spte while we are setting the spte.
369 */
370 smp_wmb();
371
372 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
373}
374
603e0651
XG
375static void __update_clear_spte_fast(u64 *sptep, u64 spte)
376{
377 union split_spte *ssptep, sspte;
378
379 ssptep = (union split_spte *)sptep;
380 sspte = (union split_spte)spte;
381
382 ssptep->spte_low = sspte.spte_low;
383
384 /*
385 * If we map the spte from present to nonpresent, we should clear
386 * present bit firstly to avoid vcpu fetch the old high bits.
387 */
388 smp_wmb();
389
390 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 391 count_spte_clear(sptep, spte);
603e0651
XG
392}
393
394static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
395{
396 union split_spte *ssptep, sspte, orig;
397
398 ssptep = (union split_spte *)sptep;
399 sspte = (union split_spte)spte;
400
401 /* xchg acts as a barrier before the setting of the high bits */
402 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
403 orig.spte_high = ssptep->spte_high;
404 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 405 count_spte_clear(sptep, spte);
603e0651
XG
406
407 return orig.spte;
408}
c2a2ac2b
XG
409
410/*
411 * The idea using the light way get the spte on x86_32 guest is from
412 * gup_get_pte(arch/x86/mm/gup.c).
413 * The difference is we can not catch the spte tlb flush if we leave
414 * guest mode, so we emulate it by increase clear_spte_count when spte
415 * is cleared.
416 */
417static u64 __get_spte_lockless(u64 *sptep)
418{
419 struct kvm_mmu_page *sp = page_header(__pa(sptep));
420 union split_spte spte, *orig = (union split_spte *)sptep;
421 int count;
422
423retry:
424 count = sp->clear_spte_count;
425 smp_rmb();
426
427 spte.spte_low = orig->spte_low;
428 smp_rmb();
429
430 spte.spte_high = orig->spte_high;
431 smp_rmb();
432
433 if (unlikely(spte.spte_low != orig->spte_low ||
434 count != sp->clear_spte_count))
435 goto retry;
436
437 return spte.spte;
438}
ce88decf
XG
439
440static bool __check_direct_spte_mmio_pf(u64 spte)
441{
442 union split_spte sspte = (union split_spte)spte;
443 u32 high_mmio_mask = shadow_mmio_mask >> 32;
444
445 /* It is valid if the spte is zapped. */
446 if (spte == 0ull)
447 return true;
448
449 /* It is valid if the spte is being zapped. */
450 if (sspte.spte_low == 0ull &&
451 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
452 return true;
453
454 return false;
455}
603e0651
XG
456#endif
457
8672b721
XG
458static bool spte_has_volatile_bits(u64 spte)
459{
460 if (!shadow_accessed_mask)
461 return false;
462
463 if (!is_shadow_present_pte(spte))
464 return false;
465
4132779b
XG
466 if ((spte & shadow_accessed_mask) &&
467 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
468 return false;
469
470 return true;
471}
472
4132779b
XG
473static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
474{
475 return (old_spte & bit_mask) && !(new_spte & bit_mask);
476}
477
1df9f2dc
XG
478/* Rules for using mmu_spte_set:
479 * Set the sptep from nonpresent to present.
480 * Note: the sptep being assigned *must* be either not present
481 * or in a state where the hardware will not attempt to update
482 * the spte.
483 */
484static void mmu_spte_set(u64 *sptep, u64 new_spte)
485{
486 WARN_ON(is_shadow_present_pte(*sptep));
487 __set_spte(sptep, new_spte);
488}
489
490/* Rules for using mmu_spte_update:
491 * Update the state bits, it means the mapped pfn is not changged.
492 */
493static void mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 494{
4132779b
XG
495 u64 mask, old_spte = *sptep;
496
497 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 498
1df9f2dc
XG
499 if (!is_shadow_present_pte(old_spte))
500 return mmu_spte_set(sptep, new_spte);
501
4132779b
XG
502 new_spte |= old_spte & shadow_dirty_mask;
503
504 mask = shadow_accessed_mask;
505 if (is_writable_pte(old_spte))
506 mask |= shadow_dirty_mask;
507
508 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
603e0651 509 __update_clear_spte_fast(sptep, new_spte);
4132779b 510 else
603e0651 511 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b
XG
512
513 if (!shadow_accessed_mask)
514 return;
515
516 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
517 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
518 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
519 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
b79b93f9
AK
520}
521
1df9f2dc
XG
522/*
523 * Rules for using mmu_spte_clear_track_bits:
524 * It sets the sptep from present to nonpresent, and track the
525 * state bits, it is used to clear the last level sptep.
526 */
527static int mmu_spte_clear_track_bits(u64 *sptep)
528{
529 pfn_t pfn;
530 u64 old_spte = *sptep;
531
532 if (!spte_has_volatile_bits(old_spte))
603e0651 533 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 534 else
603e0651 535 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
536
537 if (!is_rmap_spte(old_spte))
538 return 0;
539
540 pfn = spte_to_pfn(old_spte);
541 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
542 kvm_set_pfn_accessed(pfn);
543 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
544 kvm_set_pfn_dirty(pfn);
545 return 1;
546}
547
548/*
549 * Rules for using mmu_spte_clear_no_track:
550 * Directly clear spte without caring the state bits of sptep,
551 * it is used to set the upper level spte.
552 */
553static void mmu_spte_clear_no_track(u64 *sptep)
554{
603e0651 555 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
556}
557
c2a2ac2b
XG
558static u64 mmu_spte_get_lockless(u64 *sptep)
559{
560 return __get_spte_lockless(sptep);
561}
562
563static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
564{
565 rcu_read_lock();
566 atomic_inc(&vcpu->kvm->arch.reader_counter);
567
568 /* Increase the counter before walking shadow page table */
569 smp_mb__after_atomic_inc();
570}
571
572static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
573{
574 /* Decrease the counter after walking shadow page table finished */
575 smp_mb__before_atomic_dec();
576 atomic_dec(&vcpu->kvm->arch.reader_counter);
577 rcu_read_unlock();
578}
579
e2dec939 580static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 581 struct kmem_cache *base_cache, int min)
714b93da
AK
582{
583 void *obj;
584
585 if (cache->nobjs >= min)
e2dec939 586 return 0;
714b93da 587 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 588 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 589 if (!obj)
e2dec939 590 return -ENOMEM;
714b93da
AK
591 cache->objects[cache->nobjs++] = obj;
592 }
e2dec939 593 return 0;
714b93da
AK
594}
595
f759e2b4
XG
596static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
597{
598 return cache->nobjs;
599}
600
e8ad9a70
XG
601static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
602 struct kmem_cache *cache)
714b93da
AK
603{
604 while (mc->nobjs)
e8ad9a70 605 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
606}
607
c1158e63 608static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 609 int min)
c1158e63 610{
842f22ed 611 void *page;
c1158e63
AK
612
613 if (cache->nobjs >= min)
614 return 0;
615 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 616 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
617 if (!page)
618 return -ENOMEM;
842f22ed 619 cache->objects[cache->nobjs++] = page;
c1158e63
AK
620 }
621 return 0;
622}
623
624static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
625{
626 while (mc->nobjs)
c4d198d5 627 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
628}
629
2e3e5882 630static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 631{
e2dec939
AK
632 int r;
633
53c07b18 634 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 635 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
636 if (r)
637 goto out;
ad312c7c 638 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
639 if (r)
640 goto out;
ad312c7c 641 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 642 mmu_page_header_cache, 4);
e2dec939
AK
643out:
644 return r;
714b93da
AK
645}
646
647static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
648{
53c07b18
XG
649 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
650 pte_list_desc_cache);
ad312c7c 651 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
652 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
653 mmu_page_header_cache);
714b93da
AK
654}
655
656static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
657 size_t size)
658{
659 void *p;
660
661 BUG_ON(!mc->nobjs);
662 p = mc->objects[--mc->nobjs];
714b93da
AK
663 return p;
664}
665
53c07b18 666static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 667{
53c07b18
XG
668 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
669 sizeof(struct pte_list_desc));
714b93da
AK
670}
671
53c07b18 672static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 673{
53c07b18 674 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
675}
676
2032a93d
LJ
677static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
678{
679 if (!sp->role.direct)
680 return sp->gfns[index];
681
682 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
683}
684
685static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
686{
687 if (sp->role.direct)
688 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
689 else
690 sp->gfns[index] = gfn;
691}
692
05da4558 693/*
d4dbf470
TY
694 * Return the pointer to the large page information for a given gfn,
695 * handling slots that are not large page aligned.
05da4558 696 */
d4dbf470
TY
697static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
698 struct kvm_memory_slot *slot,
699 int level)
05da4558
MT
700{
701 unsigned long idx;
702
82855413
JR
703 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
704 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
d4dbf470 705 return &slot->lpage_info[level - 2][idx];
05da4558
MT
706}
707
708static void account_shadowed(struct kvm *kvm, gfn_t gfn)
709{
d25797b2 710 struct kvm_memory_slot *slot;
d4dbf470 711 struct kvm_lpage_info *linfo;
d25797b2 712 int i;
05da4558 713
a1f4d395 714 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
715 for (i = PT_DIRECTORY_LEVEL;
716 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
717 linfo = lpage_info_slot(gfn, slot, i);
718 linfo->write_count += 1;
d25797b2 719 }
332b207d 720 kvm->arch.indirect_shadow_pages++;
05da4558
MT
721}
722
723static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
724{
d25797b2 725 struct kvm_memory_slot *slot;
d4dbf470 726 struct kvm_lpage_info *linfo;
d25797b2 727 int i;
05da4558 728
a1f4d395 729 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
730 for (i = PT_DIRECTORY_LEVEL;
731 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
732 linfo = lpage_info_slot(gfn, slot, i);
733 linfo->write_count -= 1;
734 WARN_ON(linfo->write_count < 0);
d25797b2 735 }
332b207d 736 kvm->arch.indirect_shadow_pages--;
05da4558
MT
737}
738
d25797b2
JR
739static int has_wrprotected_page(struct kvm *kvm,
740 gfn_t gfn,
741 int level)
05da4558 742{
2843099f 743 struct kvm_memory_slot *slot;
d4dbf470 744 struct kvm_lpage_info *linfo;
05da4558 745
a1f4d395 746 slot = gfn_to_memslot(kvm, gfn);
05da4558 747 if (slot) {
d4dbf470
TY
748 linfo = lpage_info_slot(gfn, slot, level);
749 return linfo->write_count;
05da4558
MT
750 }
751
752 return 1;
753}
754
d25797b2 755static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 756{
8f0b1ab6 757 unsigned long page_size;
d25797b2 758 int i, ret = 0;
05da4558 759
8f0b1ab6 760 page_size = kvm_host_page_size(kvm, gfn);
05da4558 761
d25797b2
JR
762 for (i = PT_PAGE_TABLE_LEVEL;
763 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
764 if (page_size >= KVM_HPAGE_SIZE(i))
765 ret = i;
766 else
767 break;
768 }
769
4c2155ce 770 return ret;
05da4558
MT
771}
772
5d163b1c
XG
773static struct kvm_memory_slot *
774gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
775 bool no_dirty_log)
05da4558
MT
776{
777 struct kvm_memory_slot *slot;
5d163b1c
XG
778
779 slot = gfn_to_memslot(vcpu->kvm, gfn);
780 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
781 (no_dirty_log && slot->dirty_bitmap))
782 slot = NULL;
783
784 return slot;
785}
786
787static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
788{
a0a8eaba 789 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
790}
791
792static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
793{
794 int host_level, level, max_level;
05da4558 795
d25797b2
JR
796 host_level = host_mapping_level(vcpu->kvm, large_gfn);
797
798 if (host_level == PT_PAGE_TABLE_LEVEL)
799 return host_level;
800
878403b7
SY
801 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
802 kvm_x86_ops->get_lpage_level() : host_level;
803
804 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
805 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
806 break;
d25797b2
JR
807
808 return level - 1;
05da4558
MT
809}
810
290fc38d 811/*
53c07b18 812 * Pte mapping structures:
cd4a4e53 813 *
53c07b18 814 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 815 *
53c07b18
XG
816 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
817 * pte_list_desc containing more mappings.
53a27b39 818 *
53c07b18 819 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
820 * the spte was not added.
821 *
cd4a4e53 822 */
53c07b18
XG
823static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
824 unsigned long *pte_list)
cd4a4e53 825{
53c07b18 826 struct pte_list_desc *desc;
53a27b39 827 int i, count = 0;
cd4a4e53 828
53c07b18
XG
829 if (!*pte_list) {
830 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
831 *pte_list = (unsigned long)spte;
832 } else if (!(*pte_list & 1)) {
833 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
834 desc = mmu_alloc_pte_list_desc(vcpu);
835 desc->sptes[0] = (u64 *)*pte_list;
d555c333 836 desc->sptes[1] = spte;
53c07b18 837 *pte_list = (unsigned long)desc | 1;
cb16a7b3 838 ++count;
cd4a4e53 839 } else {
53c07b18
XG
840 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
841 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
842 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 843 desc = desc->more;
53c07b18 844 count += PTE_LIST_EXT;
53a27b39 845 }
53c07b18
XG
846 if (desc->sptes[PTE_LIST_EXT-1]) {
847 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
848 desc = desc->more;
849 }
d555c333 850 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 851 ++count;
d555c333 852 desc->sptes[i] = spte;
cd4a4e53 853 }
53a27b39 854 return count;
cd4a4e53
AK
855}
856
53c07b18
XG
857static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
858{
859 struct pte_list_desc *desc;
860 u64 *prev_spte;
861 int i;
862
863 if (!*pte_list)
864 return NULL;
865 else if (!(*pte_list & 1)) {
866 if (!spte)
867 return (u64 *)*pte_list;
868 return NULL;
869 }
870 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
871 prev_spte = NULL;
872 while (desc) {
873 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
874 if (prev_spte == spte)
875 return desc->sptes[i];
876 prev_spte = desc->sptes[i];
877 }
878 desc = desc->more;
879 }
880 return NULL;
881}
882
883static void
884pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
885 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
886{
887 int j;
888
53c07b18 889 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 890 ;
d555c333
AK
891 desc->sptes[i] = desc->sptes[j];
892 desc->sptes[j] = NULL;
cd4a4e53
AK
893 if (j != 0)
894 return;
895 if (!prev_desc && !desc->more)
53c07b18 896 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
897 else
898 if (prev_desc)
899 prev_desc->more = desc->more;
900 else
53c07b18
XG
901 *pte_list = (unsigned long)desc->more | 1;
902 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
903}
904
53c07b18 905static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 906{
53c07b18
XG
907 struct pte_list_desc *desc;
908 struct pte_list_desc *prev_desc;
cd4a4e53
AK
909 int i;
910
53c07b18
XG
911 if (!*pte_list) {
912 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 913 BUG();
53c07b18
XG
914 } else if (!(*pte_list & 1)) {
915 rmap_printk("pte_list_remove: %p 1->0\n", spte);
916 if ((u64 *)*pte_list != spte) {
917 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
918 BUG();
919 }
53c07b18 920 *pte_list = 0;
cd4a4e53 921 } else {
53c07b18
XG
922 rmap_printk("pte_list_remove: %p many->many\n", spte);
923 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
924 prev_desc = NULL;
925 while (desc) {
53c07b18 926 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 927 if (desc->sptes[i] == spte) {
53c07b18 928 pte_list_desc_remove_entry(pte_list,
714b93da 929 desc, i,
cd4a4e53
AK
930 prev_desc);
931 return;
932 }
933 prev_desc = desc;
934 desc = desc->more;
935 }
53c07b18 936 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
937 BUG();
938 }
939}
940
67052b35
XG
941typedef void (*pte_list_walk_fn) (u64 *spte);
942static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
943{
944 struct pte_list_desc *desc;
945 int i;
946
947 if (!*pte_list)
948 return;
949
950 if (!(*pte_list & 1))
951 return fn((u64 *)*pte_list);
952
953 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
954 while (desc) {
955 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
956 fn(desc->sptes[i]);
957 desc = desc->more;
958 }
959}
960
53c07b18
XG
961/*
962 * Take gfn and return the reverse mapping to it.
963 */
964static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
965{
966 struct kvm_memory_slot *slot;
967 struct kvm_lpage_info *linfo;
968
969 slot = gfn_to_memslot(kvm, gfn);
970 if (likely(level == PT_PAGE_TABLE_LEVEL))
971 return &slot->rmap[gfn - slot->base_gfn];
972
973 linfo = lpage_info_slot(gfn, slot, level);
974
975 return &linfo->rmap_pde;
976}
977
f759e2b4
XG
978static bool rmap_can_add(struct kvm_vcpu *vcpu)
979{
980 struct kvm_mmu_memory_cache *cache;
981
982 cache = &vcpu->arch.mmu_pte_list_desc_cache;
983 return mmu_memory_cache_free_objects(cache);
984}
985
53c07b18
XG
986static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
987{
988 struct kvm_mmu_page *sp;
989 unsigned long *rmapp;
990
53c07b18
XG
991 sp = page_header(__pa(spte));
992 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
993 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
994 return pte_list_add(vcpu, spte, rmapp);
995}
996
997static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
998{
999 return pte_list_next(rmapp, spte);
1000}
1001
1002static void rmap_remove(struct kvm *kvm, u64 *spte)
1003{
1004 struct kvm_mmu_page *sp;
1005 gfn_t gfn;
1006 unsigned long *rmapp;
1007
1008 sp = page_header(__pa(spte));
1009 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1010 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1011 pte_list_remove(spte, rmapp);
1012}
1013
c3707958 1014static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1015{
1df9f2dc 1016 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1017 rmap_remove(kvm, sptep);
be38d276
AK
1018}
1019
b1a36821 1020static int rmap_write_protect(struct kvm *kvm, u64 gfn)
98348e95 1021{
290fc38d 1022 unsigned long *rmapp;
374cbac0 1023 u64 *spte;
44ad9944 1024 int i, write_protected = 0;
374cbac0 1025
44ad9944 1026 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
374cbac0 1027
98348e95
IE
1028 spte = rmap_next(kvm, rmapp, NULL);
1029 while (spte) {
374cbac0 1030 BUG_ON(!spte);
374cbac0 1031 BUG_ON(!(*spte & PT_PRESENT_MASK));
374cbac0 1032 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
8dae4445 1033 if (is_writable_pte(*spte)) {
1df9f2dc 1034 mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
caa5b8a5
ED
1035 write_protected = 1;
1036 }
9647c14c 1037 spte = rmap_next(kvm, rmapp, spte);
374cbac0 1038 }
855149aa 1039
05da4558 1040 /* check for huge page mappings */
44ad9944
JR
1041 for (i = PT_DIRECTORY_LEVEL;
1042 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1043 rmapp = gfn_to_rmap(kvm, gfn, i);
1044 spte = rmap_next(kvm, rmapp, NULL);
1045 while (spte) {
1046 BUG_ON(!spte);
1047 BUG_ON(!(*spte & PT_PRESENT_MASK));
1048 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
1049 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
8dae4445 1050 if (is_writable_pte(*spte)) {
c3707958 1051 drop_spte(kvm, spte);
44ad9944 1052 --kvm->stat.lpages;
44ad9944
JR
1053 spte = NULL;
1054 write_protected = 1;
1055 }
1056 spte = rmap_next(kvm, rmapp, spte);
05da4558 1057 }
05da4558
MT
1058 }
1059
b1a36821 1060 return write_protected;
374cbac0
AK
1061}
1062
8a8365c5
FD
1063static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1064 unsigned long data)
e930bffe
AA
1065{
1066 u64 *spte;
1067 int need_tlb_flush = 0;
1068
1069 while ((spte = rmap_next(kvm, rmapp, NULL))) {
1070 BUG_ON(!(*spte & PT_PRESENT_MASK));
1071 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
c3707958 1072 drop_spte(kvm, spte);
e930bffe
AA
1073 need_tlb_flush = 1;
1074 }
1075 return need_tlb_flush;
1076}
1077
8a8365c5
FD
1078static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1079 unsigned long data)
3da0dd43
IE
1080{
1081 int need_flush = 0;
e4b502ea 1082 u64 *spte, new_spte;
3da0dd43
IE
1083 pte_t *ptep = (pte_t *)data;
1084 pfn_t new_pfn;
1085
1086 WARN_ON(pte_huge(*ptep));
1087 new_pfn = pte_pfn(*ptep);
1088 spte = rmap_next(kvm, rmapp, NULL);
1089 while (spte) {
1090 BUG_ON(!is_shadow_present_pte(*spte));
1091 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
1092 need_flush = 1;
1093 if (pte_write(*ptep)) {
c3707958 1094 drop_spte(kvm, spte);
3da0dd43
IE
1095 spte = rmap_next(kvm, rmapp, NULL);
1096 } else {
1097 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
1098 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1099
1100 new_spte &= ~PT_WRITABLE_MASK;
1101 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1102 new_spte &= ~shadow_accessed_mask;
1df9f2dc
XG
1103 mmu_spte_clear_track_bits(spte);
1104 mmu_spte_set(spte, new_spte);
3da0dd43
IE
1105 spte = rmap_next(kvm, rmapp, spte);
1106 }
1107 }
1108 if (need_flush)
1109 kvm_flush_remote_tlbs(kvm);
1110
1111 return 0;
1112}
1113
8a8365c5
FD
1114static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1115 unsigned long data,
3da0dd43 1116 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
8a8365c5 1117 unsigned long data))
e930bffe 1118{
852e3c19 1119 int i, j;
90bb6fc5 1120 int ret;
e930bffe 1121 int retval = 0;
bc6678a3
MT
1122 struct kvm_memslots *slots;
1123
90d83dc3 1124 slots = kvm_memslots(kvm);
e930bffe 1125
46a26bf5
MT
1126 for (i = 0; i < slots->nmemslots; i++) {
1127 struct kvm_memory_slot *memslot = &slots->memslots[i];
e930bffe
AA
1128 unsigned long start = memslot->userspace_addr;
1129 unsigned long end;
1130
e930bffe
AA
1131 end = start + (memslot->npages << PAGE_SHIFT);
1132 if (hva >= start && hva < end) {
1133 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
d4dbf470 1134 gfn_t gfn = memslot->base_gfn + gfn_offset;
852e3c19 1135
90bb6fc5 1136 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
852e3c19
JR
1137
1138 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
d4dbf470
TY
1139 struct kvm_lpage_info *linfo;
1140
1141 linfo = lpage_info_slot(gfn, memslot,
1142 PT_DIRECTORY_LEVEL + j);
1143 ret |= handler(kvm, &linfo->rmap_pde, data);
852e3c19 1144 }
90bb6fc5
AK
1145 trace_kvm_age_page(hva, memslot, ret);
1146 retval |= ret;
e930bffe
AA
1147 }
1148 }
1149
1150 return retval;
1151}
1152
1153int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1154{
3da0dd43
IE
1155 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1156}
1157
1158void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1159{
8a8365c5 1160 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1161}
1162
8a8365c5
FD
1163static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1164 unsigned long data)
e930bffe
AA
1165{
1166 u64 *spte;
1167 int young = 0;
1168
6316e1c8
RR
1169 /*
1170 * Emulate the accessed bit for EPT, by checking if this page has
1171 * an EPT mapping, and clearing it if it does. On the next access,
1172 * a new EPT mapping will be established.
1173 * This has some overhead, but not as much as the cost of swapping
1174 * out actively used pages or breaking up actively used hugepages.
1175 */
534e38b4 1176 if (!shadow_accessed_mask)
6316e1c8 1177 return kvm_unmap_rmapp(kvm, rmapp, data);
534e38b4 1178
e930bffe
AA
1179 spte = rmap_next(kvm, rmapp, NULL);
1180 while (spte) {
1181 int _young;
1182 u64 _spte = *spte;
1183 BUG_ON(!(_spte & PT_PRESENT_MASK));
1184 _young = _spte & PT_ACCESSED_MASK;
1185 if (_young) {
1186 young = 1;
1187 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1188 }
1189 spte = rmap_next(kvm, rmapp, spte);
1190 }
1191 return young;
1192}
1193
8ee53820
AA
1194static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1195 unsigned long data)
1196{
1197 u64 *spte;
1198 int young = 0;
1199
1200 /*
1201 * If there's no access bit in the secondary pte set by the
1202 * hardware it's up to gup-fast/gup to set the access bit in
1203 * the primary pte or in the page structure.
1204 */
1205 if (!shadow_accessed_mask)
1206 goto out;
1207
1208 spte = rmap_next(kvm, rmapp, NULL);
1209 while (spte) {
1210 u64 _spte = *spte;
1211 BUG_ON(!(_spte & PT_PRESENT_MASK));
1212 young = _spte & PT_ACCESSED_MASK;
1213 if (young) {
1214 young = 1;
1215 break;
1216 }
1217 spte = rmap_next(kvm, rmapp, spte);
1218 }
1219out:
1220 return young;
1221}
1222
53a27b39
MT
1223#define RMAP_RECYCLE_THRESHOLD 1000
1224
852e3c19 1225static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1226{
1227 unsigned long *rmapp;
852e3c19
JR
1228 struct kvm_mmu_page *sp;
1229
1230 sp = page_header(__pa(spte));
53a27b39 1231
852e3c19 1232 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1233
3da0dd43 1234 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
53a27b39
MT
1235 kvm_flush_remote_tlbs(vcpu->kvm);
1236}
1237
e930bffe
AA
1238int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1239{
3da0dd43 1240 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
e930bffe
AA
1241}
1242
8ee53820
AA
1243int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1244{
1245 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1246}
1247
d6c69ee9 1248#ifdef MMU_DEBUG
47ad8e68 1249static int is_empty_shadow_page(u64 *spt)
6aa8b732 1250{
139bdb2d
AK
1251 u64 *pos;
1252 u64 *end;
1253
47ad8e68 1254 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1255 if (is_shadow_present_pte(*pos)) {
b8688d51 1256 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1257 pos, *pos);
6aa8b732 1258 return 0;
139bdb2d 1259 }
6aa8b732
AK
1260 return 1;
1261}
d6c69ee9 1262#endif
6aa8b732 1263
45221ab6
DH
1264/*
1265 * This value is the sum of all of the kvm instances's
1266 * kvm->arch.n_used_mmu_pages values. We need a global,
1267 * aggregate version in order to make the slab shrinker
1268 * faster
1269 */
1270static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1271{
1272 kvm->arch.n_used_mmu_pages += nr;
1273 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1274}
1275
bd4c86ea
XG
1276/*
1277 * Remove the sp from shadow page cache, after call it,
1278 * we can not find this sp from the cache, and the shadow
1279 * page table is still valid.
1280 * It should be under the protection of mmu lock.
1281 */
1282static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1283{
4db35314 1284 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1285 hlist_del(&sp->hash_link);
2032a93d 1286 if (!sp->role.direct)
842f22ed 1287 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1288}
1289
1290/*
1291 * Free the shadow page table and the sp, we can do it
1292 * out of the protection of mmu lock.
1293 */
1294static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1295{
1296 list_del(&sp->link);
1297 free_page((unsigned long)sp->spt);
e8ad9a70 1298 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1299}
1300
cea0f0e7
AK
1301static unsigned kvm_page_table_hashfn(gfn_t gfn)
1302{
1ae0a13d 1303 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1304}
1305
714b93da 1306static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1307 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1308{
cea0f0e7
AK
1309 if (!parent_pte)
1310 return;
cea0f0e7 1311
67052b35 1312 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1313}
1314
4db35314 1315static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1316 u64 *parent_pte)
1317{
67052b35 1318 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1319}
1320
bcdd9a93
XG
1321static void drop_parent_pte(struct kvm_mmu_page *sp,
1322 u64 *parent_pte)
1323{
1324 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1325 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1326}
1327
67052b35
XG
1328static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1329 u64 *parent_pte, int direct)
ad8cfbe3 1330{
67052b35
XG
1331 struct kvm_mmu_page *sp;
1332 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1333 sizeof *sp);
1334 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1335 if (!direct)
1336 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1337 PAGE_SIZE);
1338 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1339 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1340 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1341 sp->parent_ptes = 0;
1342 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1343 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1344 return sp;
ad8cfbe3
MT
1345}
1346
67052b35 1347static void mark_unsync(u64 *spte);
1047df1f 1348static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1349{
67052b35 1350 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1351}
1352
67052b35 1353static void mark_unsync(u64 *spte)
0074ff63 1354{
67052b35 1355 struct kvm_mmu_page *sp;
1047df1f 1356 unsigned int index;
0074ff63 1357
67052b35 1358 sp = page_header(__pa(spte));
1047df1f
XG
1359 index = spte - sp->spt;
1360 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1361 return;
1047df1f 1362 if (sp->unsync_children++)
0074ff63 1363 return;
1047df1f 1364 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1365}
1366
e8bc217a 1367static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1368 struct kvm_mmu_page *sp)
e8bc217a
MT
1369{
1370 return 1;
1371}
1372
a7052897
MT
1373static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1374{
1375}
1376
0f53b5b1
XG
1377static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1378 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1379 const void *pte)
0f53b5b1
XG
1380{
1381 WARN_ON(1);
1382}
1383
60c8aec6
MT
1384#define KVM_PAGE_ARRAY_NR 16
1385
1386struct kvm_mmu_pages {
1387 struct mmu_page_and_offset {
1388 struct kvm_mmu_page *sp;
1389 unsigned int idx;
1390 } page[KVM_PAGE_ARRAY_NR];
1391 unsigned int nr;
1392};
1393
0074ff63
MT
1394#define for_each_unsync_children(bitmap, idx) \
1395 for (idx = find_first_bit(bitmap, 512); \
1396 idx < 512; \
1397 idx = find_next_bit(bitmap, 512, idx+1))
1398
cded19f3
HE
1399static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1400 int idx)
4731d4c7 1401{
60c8aec6 1402 int i;
4731d4c7 1403
60c8aec6
MT
1404 if (sp->unsync)
1405 for (i=0; i < pvec->nr; i++)
1406 if (pvec->page[i].sp == sp)
1407 return 0;
1408
1409 pvec->page[pvec->nr].sp = sp;
1410 pvec->page[pvec->nr].idx = idx;
1411 pvec->nr++;
1412 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1413}
1414
1415static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1416 struct kvm_mmu_pages *pvec)
1417{
1418 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1419
0074ff63 1420 for_each_unsync_children(sp->unsync_child_bitmap, i) {
7a8f1a74 1421 struct kvm_mmu_page *child;
4731d4c7
MT
1422 u64 ent = sp->spt[i];
1423
7a8f1a74
XG
1424 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1425 goto clear_child_bitmap;
1426
1427 child = page_header(ent & PT64_BASE_ADDR_MASK);
1428
1429 if (child->unsync_children) {
1430 if (mmu_pages_add(pvec, child, i))
1431 return -ENOSPC;
1432
1433 ret = __mmu_unsync_walk(child, pvec);
1434 if (!ret)
1435 goto clear_child_bitmap;
1436 else if (ret > 0)
1437 nr_unsync_leaf += ret;
1438 else
1439 return ret;
1440 } else if (child->unsync) {
1441 nr_unsync_leaf++;
1442 if (mmu_pages_add(pvec, child, i))
1443 return -ENOSPC;
1444 } else
1445 goto clear_child_bitmap;
1446
1447 continue;
1448
1449clear_child_bitmap:
1450 __clear_bit(i, sp->unsync_child_bitmap);
1451 sp->unsync_children--;
1452 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1453 }
1454
4731d4c7 1455
60c8aec6
MT
1456 return nr_unsync_leaf;
1457}
1458
1459static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1460 struct kvm_mmu_pages *pvec)
1461{
1462 if (!sp->unsync_children)
1463 return 0;
1464
1465 mmu_pages_add(pvec, sp, 0);
1466 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1467}
1468
4731d4c7
MT
1469static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1470{
1471 WARN_ON(!sp->unsync);
5e1b3ddb 1472 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1473 sp->unsync = 0;
1474 --kvm->stat.mmu_unsync;
1475}
1476
7775834a
XG
1477static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1478 struct list_head *invalid_list);
1479static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1480 struct list_head *invalid_list);
4731d4c7 1481
f41d335a
XG
1482#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1483 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1484 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1485 if ((sp)->gfn != (gfn)) {} else
1486
f41d335a
XG
1487#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1488 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1489 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1490 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1491 (sp)->role.invalid) {} else
1492
f918b443 1493/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1494static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1495 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1496{
5b7e0102 1497 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1498 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1499 return 1;
1500 }
1501
f918b443 1502 if (clear_unsync)
1d9dc7e0 1503 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1504
a4a8e6f7 1505 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1506 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1507 return 1;
1508 }
1509
1510 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1511 return 0;
1512}
1513
1d9dc7e0
XG
1514static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1515 struct kvm_mmu_page *sp)
1516{
d98ba053 1517 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1518 int ret;
1519
d98ba053 1520 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1521 if (ret)
d98ba053
XG
1522 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1523
1d9dc7e0
XG
1524 return ret;
1525}
1526
d98ba053
XG
1527static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1528 struct list_head *invalid_list)
1d9dc7e0 1529{
d98ba053 1530 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1531}
1532
9f1a122f
XG
1533/* @gfn should be write-protected at the call site */
1534static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1535{
9f1a122f 1536 struct kvm_mmu_page *s;
f41d335a 1537 struct hlist_node *node;
d98ba053 1538 LIST_HEAD(invalid_list);
9f1a122f
XG
1539 bool flush = false;
1540
f41d335a 1541 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1542 if (!s->unsync)
9f1a122f
XG
1543 continue;
1544
1545 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1546 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1547 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1548 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1549 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1550 continue;
1551 }
9f1a122f
XG
1552 flush = true;
1553 }
1554
d98ba053 1555 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1556 if (flush)
1557 kvm_mmu_flush_tlb(vcpu);
1558}
1559
60c8aec6
MT
1560struct mmu_page_path {
1561 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1562 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1563};
1564
60c8aec6
MT
1565#define for_each_sp(pvec, sp, parents, i) \
1566 for (i = mmu_pages_next(&pvec, &parents, -1), \
1567 sp = pvec.page[i].sp; \
1568 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1569 i = mmu_pages_next(&pvec, &parents, i))
1570
cded19f3
HE
1571static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1572 struct mmu_page_path *parents,
1573 int i)
60c8aec6
MT
1574{
1575 int n;
1576
1577 for (n = i+1; n < pvec->nr; n++) {
1578 struct kvm_mmu_page *sp = pvec->page[n].sp;
1579
1580 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1581 parents->idx[0] = pvec->page[n].idx;
1582 return n;
1583 }
1584
1585 parents->parent[sp->role.level-2] = sp;
1586 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1587 }
1588
1589 return n;
1590}
1591
cded19f3 1592static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1593{
60c8aec6
MT
1594 struct kvm_mmu_page *sp;
1595 unsigned int level = 0;
1596
1597 do {
1598 unsigned int idx = parents->idx[level];
4731d4c7 1599
60c8aec6
MT
1600 sp = parents->parent[level];
1601 if (!sp)
1602 return;
1603
1604 --sp->unsync_children;
1605 WARN_ON((int)sp->unsync_children < 0);
1606 __clear_bit(idx, sp->unsync_child_bitmap);
1607 level++;
1608 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1609}
1610
60c8aec6
MT
1611static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1612 struct mmu_page_path *parents,
1613 struct kvm_mmu_pages *pvec)
4731d4c7 1614{
60c8aec6
MT
1615 parents->parent[parent->role.level-1] = NULL;
1616 pvec->nr = 0;
1617}
4731d4c7 1618
60c8aec6
MT
1619static void mmu_sync_children(struct kvm_vcpu *vcpu,
1620 struct kvm_mmu_page *parent)
1621{
1622 int i;
1623 struct kvm_mmu_page *sp;
1624 struct mmu_page_path parents;
1625 struct kvm_mmu_pages pages;
d98ba053 1626 LIST_HEAD(invalid_list);
60c8aec6
MT
1627
1628 kvm_mmu_pages_init(parent, &parents, &pages);
1629 while (mmu_unsync_walk(parent, &pages)) {
b1a36821
MT
1630 int protected = 0;
1631
1632 for_each_sp(pages, sp, parents, i)
1633 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1634
1635 if (protected)
1636 kvm_flush_remote_tlbs(vcpu->kvm);
1637
60c8aec6 1638 for_each_sp(pages, sp, parents, i) {
d98ba053 1639 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1640 mmu_pages_clear_parents(&parents);
1641 }
d98ba053 1642 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1643 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1644 kvm_mmu_pages_init(parent, &parents, &pages);
1645 }
4731d4c7
MT
1646}
1647
c3707958
XG
1648static void init_shadow_page_table(struct kvm_mmu_page *sp)
1649{
1650 int i;
1651
1652 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1653 sp->spt[i] = 0ull;
1654}
1655
cea0f0e7
AK
1656static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1657 gfn_t gfn,
1658 gva_t gaddr,
1659 unsigned level,
f6e2c02b 1660 int direct,
41074d07 1661 unsigned access,
f7d9c7b7 1662 u64 *parent_pte)
cea0f0e7
AK
1663{
1664 union kvm_mmu_page_role role;
cea0f0e7 1665 unsigned quadrant;
9f1a122f 1666 struct kvm_mmu_page *sp;
f41d335a 1667 struct hlist_node *node;
9f1a122f 1668 bool need_sync = false;
cea0f0e7 1669
a770f6f2 1670 role = vcpu->arch.mmu.base_role;
cea0f0e7 1671 role.level = level;
f6e2c02b 1672 role.direct = direct;
84b0c8c6 1673 if (role.direct)
5b7e0102 1674 role.cr4_pae = 0;
41074d07 1675 role.access = access;
c5a78f2b
JR
1676 if (!vcpu->arch.mmu.direct_map
1677 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1678 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1679 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1680 role.quadrant = quadrant;
1681 }
f41d335a 1682 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1683 if (!need_sync && sp->unsync)
1684 need_sync = true;
4731d4c7 1685
7ae680eb
XG
1686 if (sp->role.word != role.word)
1687 continue;
4731d4c7 1688
7ae680eb
XG
1689 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1690 break;
e02aa901 1691
7ae680eb
XG
1692 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1693 if (sp->unsync_children) {
a8eeb04a 1694 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1695 kvm_mmu_mark_parents_unsync(sp);
1696 } else if (sp->unsync)
1697 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1698
7ae680eb
XG
1699 trace_kvm_mmu_get_page(sp, false);
1700 return sp;
1701 }
dfc5aa00 1702 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1703 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1704 if (!sp)
1705 return sp;
4db35314
AK
1706 sp->gfn = gfn;
1707 sp->role = role;
7ae680eb
XG
1708 hlist_add_head(&sp->hash_link,
1709 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1710 if (!direct) {
b1a36821
MT
1711 if (rmap_write_protect(vcpu->kvm, gfn))
1712 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1713 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1714 kvm_sync_pages(vcpu, gfn);
1715
4731d4c7
MT
1716 account_shadowed(vcpu->kvm, gfn);
1717 }
c3707958 1718 init_shadow_page_table(sp);
f691fe1d 1719 trace_kvm_mmu_get_page(sp, true);
4db35314 1720 return sp;
cea0f0e7
AK
1721}
1722
2d11123a
AK
1723static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1724 struct kvm_vcpu *vcpu, u64 addr)
1725{
1726 iterator->addr = addr;
1727 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1728 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1729
1730 if (iterator->level == PT64_ROOT_LEVEL &&
1731 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1732 !vcpu->arch.mmu.direct_map)
1733 --iterator->level;
1734
2d11123a
AK
1735 if (iterator->level == PT32E_ROOT_LEVEL) {
1736 iterator->shadow_addr
1737 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1738 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1739 --iterator->level;
1740 if (!iterator->shadow_addr)
1741 iterator->level = 0;
1742 }
1743}
1744
1745static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1746{
1747 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1748 return false;
4d88954d 1749
2d11123a
AK
1750 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1751 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1752 return true;
1753}
1754
c2a2ac2b
XG
1755static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1756 u64 spte)
2d11123a 1757{
c2a2ac2b 1758 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1759 iterator->level = 0;
1760 return;
1761 }
1762
c2a2ac2b 1763 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1764 --iterator->level;
1765}
1766
c2a2ac2b
XG
1767static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1768{
1769 return __shadow_walk_next(iterator, *iterator->sptep);
1770}
1771
32ef26a3
AK
1772static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1773{
1774 u64 spte;
1775
1776 spte = __pa(sp->spt)
1777 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1778 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1779 mmu_spte_set(sptep, spte);
32ef26a3
AK
1780}
1781
a3aa51cf
AK
1782static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1783{
1784 if (is_large_pte(*sptep)) {
c3707958 1785 drop_spte(vcpu->kvm, sptep);
a3aa51cf
AK
1786 kvm_flush_remote_tlbs(vcpu->kvm);
1787 }
1788}
1789
a357bd22
AK
1790static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1791 unsigned direct_access)
1792{
1793 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1794 struct kvm_mmu_page *child;
1795
1796 /*
1797 * For the direct sp, if the guest pte's dirty bit
1798 * changed form clean to dirty, it will corrupt the
1799 * sp's access: allow writable in the read-only sp,
1800 * so we should update the spte at this point to get
1801 * a new sp with the correct access.
1802 */
1803 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1804 if (child->role.access == direct_access)
1805 return;
1806
bcdd9a93 1807 drop_parent_pte(child, sptep);
a357bd22
AK
1808 kvm_flush_remote_tlbs(vcpu->kvm);
1809 }
1810}
1811
505aef8f 1812static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1813 u64 *spte)
1814{
1815 u64 pte;
1816 struct kvm_mmu_page *child;
1817
1818 pte = *spte;
1819 if (is_shadow_present_pte(pte)) {
505aef8f 1820 if (is_last_spte(pte, sp->role.level)) {
c3707958 1821 drop_spte(kvm, spte);
505aef8f
XG
1822 if (is_large_pte(pte))
1823 --kvm->stat.lpages;
1824 } else {
38e3b2b2 1825 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 1826 drop_parent_pte(child, spte);
38e3b2b2 1827 }
505aef8f
XG
1828 return true;
1829 }
1830
1831 if (is_mmio_spte(pte))
ce88decf 1832 mmu_spte_clear_no_track(spte);
c3707958 1833
505aef8f 1834 return false;
38e3b2b2
XG
1835}
1836
90cb0529 1837static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 1838 struct kvm_mmu_page *sp)
a436036b 1839{
697fe2e2 1840 unsigned i;
697fe2e2 1841
38e3b2b2
XG
1842 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1843 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
1844}
1845
4db35314 1846static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1847{
4db35314 1848 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
1849}
1850
12b7d28f
AK
1851static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1852{
1853 int i;
988a2cae 1854 struct kvm_vcpu *vcpu;
12b7d28f 1855
988a2cae
GN
1856 kvm_for_each_vcpu(i, vcpu, kvm)
1857 vcpu->arch.last_pte_updated = NULL;
12b7d28f
AK
1858}
1859
31aa2b44 1860static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b
AK
1861{
1862 u64 *parent_pte;
1863
bcdd9a93
XG
1864 while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1865 drop_parent_pte(sp, parent_pte);
31aa2b44
AK
1866}
1867
60c8aec6 1868static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
1869 struct kvm_mmu_page *parent,
1870 struct list_head *invalid_list)
4731d4c7 1871{
60c8aec6
MT
1872 int i, zapped = 0;
1873 struct mmu_page_path parents;
1874 struct kvm_mmu_pages pages;
4731d4c7 1875
60c8aec6 1876 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 1877 return 0;
60c8aec6
MT
1878
1879 kvm_mmu_pages_init(parent, &parents, &pages);
1880 while (mmu_unsync_walk(parent, &pages)) {
1881 struct kvm_mmu_page *sp;
1882
1883 for_each_sp(pages, sp, parents, i) {
7775834a 1884 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 1885 mmu_pages_clear_parents(&parents);
77662e00 1886 zapped++;
60c8aec6 1887 }
60c8aec6
MT
1888 kvm_mmu_pages_init(parent, &parents, &pages);
1889 }
1890
1891 return zapped;
4731d4c7
MT
1892}
1893
7775834a
XG
1894static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1895 struct list_head *invalid_list)
31aa2b44 1896{
4731d4c7 1897 int ret;
f691fe1d 1898
7775834a 1899 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 1900 ++kvm->stat.mmu_shadow_zapped;
7775834a 1901 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 1902 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 1903 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 1904 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 1905 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
1906 if (sp->unsync)
1907 kvm_unlink_unsync_page(kvm, sp);
4db35314 1908 if (!sp->root_count) {
54a4f023
GJ
1909 /* Count self */
1910 ret++;
7775834a 1911 list_move(&sp->link, invalid_list);
aa6bd187 1912 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 1913 } else {
5b5c6a5a 1914 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
1915 kvm_reload_remote_mmus(kvm);
1916 }
7775834a
XG
1917
1918 sp->role.invalid = 1;
12b7d28f 1919 kvm_mmu_reset_last_pte_updated(kvm);
4731d4c7 1920 return ret;
a436036b
AK
1921}
1922
c2a2ac2b
XG
1923static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1924{
1925 struct kvm_mmu_page *sp;
1926
1927 list_for_each_entry(sp, invalid_list, link)
1928 kvm_mmu_isolate_page(sp);
1929}
1930
1931static void free_pages_rcu(struct rcu_head *head)
1932{
1933 struct kvm_mmu_page *next, *sp;
1934
1935 sp = container_of(head, struct kvm_mmu_page, rcu);
1936 while (sp) {
1937 if (!list_empty(&sp->link))
1938 next = list_first_entry(&sp->link,
1939 struct kvm_mmu_page, link);
1940 else
1941 next = NULL;
1942 kvm_mmu_free_page(sp);
1943 sp = next;
1944 }
1945}
1946
7775834a
XG
1947static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1948 struct list_head *invalid_list)
1949{
1950 struct kvm_mmu_page *sp;
1951
1952 if (list_empty(invalid_list))
1953 return;
1954
1955 kvm_flush_remote_tlbs(kvm);
1956
c2a2ac2b
XG
1957 if (atomic_read(&kvm->arch.reader_counter)) {
1958 kvm_mmu_isolate_pages(invalid_list);
1959 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1960 list_del_init(invalid_list);
4f022648
XG
1961
1962 trace_kvm_mmu_delay_free_pages(sp);
c2a2ac2b
XG
1963 call_rcu(&sp->rcu, free_pages_rcu);
1964 return;
1965 }
1966
7775834a
XG
1967 do {
1968 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1969 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 1970 kvm_mmu_isolate_page(sp);
aa6bd187 1971 kvm_mmu_free_page(sp);
7775834a
XG
1972 } while (!list_empty(invalid_list));
1973
1974}
1975
82ce2c96
IE
1976/*
1977 * Changing the number of mmu pages allocated to the vm
49d5ca26 1978 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 1979 */
49d5ca26 1980void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 1981{
d98ba053 1982 LIST_HEAD(invalid_list);
82ce2c96
IE
1983 /*
1984 * If we set the number of mmu pages to be smaller be than the
1985 * number of actived pages , we must to free some mmu pages before we
1986 * change the value
1987 */
1988
49d5ca26
DH
1989 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1990 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 1991 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
1992 struct kvm_mmu_page *page;
1993
f05e70ac 1994 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 1995 struct kvm_mmu_page, link);
80b63faf 1996 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 1997 }
aa6bd187 1998 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 1999 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2000 }
82ce2c96 2001
49d5ca26 2002 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
2003}
2004
1cb3f3ae 2005int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2006{
4db35314 2007 struct kvm_mmu_page *sp;
f41d335a 2008 struct hlist_node *node;
d98ba053 2009 LIST_HEAD(invalid_list);
a436036b
AK
2010 int r;
2011
9ad17b10 2012 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2013 r = 0;
1cb3f3ae 2014 spin_lock(&kvm->mmu_lock);
f41d335a 2015 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2016 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2017 sp->role.word);
2018 r = 1;
f41d335a 2019 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2020 }
d98ba053 2021 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2022 spin_unlock(&kvm->mmu_lock);
2023
a436036b 2024 return r;
cea0f0e7 2025}
1cb3f3ae 2026EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2027
f67a46f4 2028static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
97a0a01e 2029{
4db35314 2030 struct kvm_mmu_page *sp;
f41d335a 2031 struct hlist_node *node;
d98ba053 2032 LIST_HEAD(invalid_list);
97a0a01e 2033
f41d335a 2034 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2035 pgprintk("%s: zap %llx %x\n",
7ae680eb 2036 __func__, gfn, sp->role.word);
f41d335a 2037 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
97a0a01e 2038 }
d98ba053 2039 kvm_mmu_commit_zap_page(kvm, &invalid_list);
97a0a01e
AK
2040}
2041
38c335f1 2042static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
6aa8b732 2043{
bc6678a3 2044 int slot = memslot_id(kvm, gfn);
4db35314 2045 struct kvm_mmu_page *sp = page_header(__pa(pte));
6aa8b732 2046
291f26bc 2047 __set_bit(slot, sp->slot_bitmap);
6aa8b732
AK
2048}
2049
74be52e3
SY
2050/*
2051 * The function is based on mtrr_type_lookup() in
2052 * arch/x86/kernel/cpu/mtrr/generic.c
2053 */
2054static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2055 u64 start, u64 end)
2056{
2057 int i;
2058 u64 base, mask;
2059 u8 prev_match, curr_match;
2060 int num_var_ranges = KVM_NR_VAR_MTRR;
2061
2062 if (!mtrr_state->enabled)
2063 return 0xFF;
2064
2065 /* Make end inclusive end, instead of exclusive */
2066 end--;
2067
2068 /* Look in fixed ranges. Just return the type as per start */
2069 if (mtrr_state->have_fixed && (start < 0x100000)) {
2070 int idx;
2071
2072 if (start < 0x80000) {
2073 idx = 0;
2074 idx += (start >> 16);
2075 return mtrr_state->fixed_ranges[idx];
2076 } else if (start < 0xC0000) {
2077 idx = 1 * 8;
2078 idx += ((start - 0x80000) >> 14);
2079 return mtrr_state->fixed_ranges[idx];
2080 } else if (start < 0x1000000) {
2081 idx = 3 * 8;
2082 idx += ((start - 0xC0000) >> 12);
2083 return mtrr_state->fixed_ranges[idx];
2084 }
2085 }
2086
2087 /*
2088 * Look in variable ranges
2089 * Look of multiple ranges matching this address and pick type
2090 * as per MTRR precedence
2091 */
2092 if (!(mtrr_state->enabled & 2))
2093 return mtrr_state->def_type;
2094
2095 prev_match = 0xFF;
2096 for (i = 0; i < num_var_ranges; ++i) {
2097 unsigned short start_state, end_state;
2098
2099 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2100 continue;
2101
2102 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2103 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2104 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2105 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2106
2107 start_state = ((start & mask) == (base & mask));
2108 end_state = ((end & mask) == (base & mask));
2109 if (start_state != end_state)
2110 return 0xFE;
2111
2112 if ((start & mask) != (base & mask))
2113 continue;
2114
2115 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2116 if (prev_match == 0xFF) {
2117 prev_match = curr_match;
2118 continue;
2119 }
2120
2121 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2122 curr_match == MTRR_TYPE_UNCACHABLE)
2123 return MTRR_TYPE_UNCACHABLE;
2124
2125 if ((prev_match == MTRR_TYPE_WRBACK &&
2126 curr_match == MTRR_TYPE_WRTHROUGH) ||
2127 (prev_match == MTRR_TYPE_WRTHROUGH &&
2128 curr_match == MTRR_TYPE_WRBACK)) {
2129 prev_match = MTRR_TYPE_WRTHROUGH;
2130 curr_match = MTRR_TYPE_WRTHROUGH;
2131 }
2132
2133 if (prev_match != curr_match)
2134 return MTRR_TYPE_UNCACHABLE;
2135 }
2136
2137 if (prev_match != 0xFF)
2138 return prev_match;
2139
2140 return mtrr_state->def_type;
2141}
2142
4b12f0de 2143u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2144{
2145 u8 mtrr;
2146
2147 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2148 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2149 if (mtrr == 0xfe || mtrr == 0xff)
2150 mtrr = MTRR_TYPE_WRBACK;
2151 return mtrr;
2152}
4b12f0de 2153EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2154
9cf5cf5a
XG
2155static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2156{
2157 trace_kvm_mmu_unsync_page(sp);
2158 ++vcpu->kvm->stat.mmu_unsync;
2159 sp->unsync = 1;
2160
2161 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2162}
2163
2164static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2165{
4731d4c7 2166 struct kvm_mmu_page *s;
f41d335a 2167 struct hlist_node *node;
9cf5cf5a 2168
f41d335a 2169 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2170 if (s->unsync)
4731d4c7 2171 continue;
9cf5cf5a
XG
2172 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2173 __kvm_unsync_page(vcpu, s);
4731d4c7 2174 }
4731d4c7
MT
2175}
2176
2177static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2178 bool can_unsync)
2179{
9cf5cf5a 2180 struct kvm_mmu_page *s;
f41d335a 2181 struct hlist_node *node;
9cf5cf5a
XG
2182 bool need_unsync = false;
2183
f41d335a 2184 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2185 if (!can_unsync)
2186 return 1;
2187
9cf5cf5a 2188 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2189 return 1;
9cf5cf5a
XG
2190
2191 if (!need_unsync && !s->unsync) {
36a2e677 2192 if (!oos_shadow)
9cf5cf5a
XG
2193 return 1;
2194 need_unsync = true;
2195 }
4731d4c7 2196 }
9cf5cf5a
XG
2197 if (need_unsync)
2198 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2199 return 0;
2200}
2201
d555c333 2202static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2203 unsigned pte_access, int user_fault,
640d9b0d 2204 int write_fault, int level,
c2d0ee46 2205 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2206 bool can_unsync, bool host_writable)
1c4f1fd6 2207{
b330aa0c 2208 u64 spte, entry = *sptep;
1e73f9dd 2209 int ret = 0;
64d4d521 2210
ce88decf
XG
2211 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2212 return 0;
2213
982c2565 2214 spte = PT_PRESENT_MASK;
947da538 2215 if (!speculative)
3201b5d9 2216 spte |= shadow_accessed_mask;
640d9b0d 2217
7b52345e
SY
2218 if (pte_access & ACC_EXEC_MASK)
2219 spte |= shadow_x_mask;
2220 else
2221 spte |= shadow_nx_mask;
1c4f1fd6 2222 if (pte_access & ACC_USER_MASK)
7b52345e 2223 spte |= shadow_user_mask;
852e3c19 2224 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2225 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2226 if (tdp_enabled)
4b12f0de
SY
2227 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2228 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2229
9bdbba13 2230 if (host_writable)
1403283a 2231 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2232 else
2233 pte_access &= ~ACC_WRITE_MASK;
1403283a 2234
35149e21 2235 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6
AK
2236
2237 if ((pte_access & ACC_WRITE_MASK)
c5a78f2b
JR
2238 || (!vcpu->arch.mmu.direct_map && write_fault
2239 && !is_write_protection(vcpu) && !user_fault)) {
1c4f1fd6 2240
852e3c19
JR
2241 if (level > PT_PAGE_TABLE_LEVEL &&
2242 has_wrprotected_page(vcpu->kvm, gfn, level)) {
38187c83 2243 ret = 1;
c3707958 2244 drop_spte(vcpu->kvm, sptep);
be38d276 2245 goto done;
38187c83
MT
2246 }
2247
1c4f1fd6 2248 spte |= PT_WRITABLE_MASK;
1c4f1fd6 2249
c5a78f2b 2250 if (!vcpu->arch.mmu.direct_map
411c588d 2251 && !(pte_access & ACC_WRITE_MASK)) {
69325a12 2252 spte &= ~PT_USER_MASK;
411c588d
AK
2253 /*
2254 * If we converted a user page to a kernel page,
2255 * so that the kernel can write to it when cr0.wp=0,
2256 * then we should prevent the kernel from executing it
2257 * if SMEP is enabled.
2258 */
2259 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2260 spte |= PT64_NX_MASK;
2261 }
69325a12 2262
ecc5589f
MT
2263 /*
2264 * Optimization: for pte sync, if spte was writable the hash
2265 * lookup is unnecessary (and expensive). Write protection
2266 * is responsibility of mmu_get_page / kvm_sync_page.
2267 * Same reasoning can be applied to dirty page accounting.
2268 */
8dae4445 2269 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2270 goto set_pte;
2271
4731d4c7 2272 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2273 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2274 __func__, gfn);
1e73f9dd 2275 ret = 1;
1c4f1fd6 2276 pte_access &= ~ACC_WRITE_MASK;
8dae4445 2277 if (is_writable_pte(spte))
1c4f1fd6 2278 spte &= ~PT_WRITABLE_MASK;
1c4f1fd6
AK
2279 }
2280 }
2281
1c4f1fd6
AK
2282 if (pte_access & ACC_WRITE_MASK)
2283 mark_page_dirty(vcpu->kvm, gfn);
2284
38187c83 2285set_pte:
1df9f2dc 2286 mmu_spte_update(sptep, spte);
b330aa0c
XG
2287 /*
2288 * If we overwrite a writable spte with a read-only one we
2289 * should flush remote TLBs. Otherwise rmap_write_protect
2290 * will find a read-only spte, even though the writable spte
2291 * might be cached on a CPU's TLB.
2292 */
2293 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2294 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2295done:
1e73f9dd
MT
2296 return ret;
2297}
2298
d555c333 2299static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2300 unsigned pt_access, unsigned pte_access,
640d9b0d 2301 int user_fault, int write_fault,
b90a0e6c 2302 int *emulate, int level, gfn_t gfn,
1403283a 2303 pfn_t pfn, bool speculative,
9bdbba13 2304 bool host_writable)
1e73f9dd
MT
2305{
2306 int was_rmapped = 0;
53a27b39 2307 int rmap_count;
1e73f9dd
MT
2308
2309 pgprintk("%s: spte %llx access %x write_fault %d"
9ad17b10 2310 " user_fault %d gfn %llx\n",
d555c333 2311 __func__, *sptep, pt_access,
1e73f9dd
MT
2312 write_fault, user_fault, gfn);
2313
d555c333 2314 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2315 /*
2316 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2317 * the parent of the now unreachable PTE.
2318 */
852e3c19
JR
2319 if (level > PT_PAGE_TABLE_LEVEL &&
2320 !is_large_pte(*sptep)) {
1e73f9dd 2321 struct kvm_mmu_page *child;
d555c333 2322 u64 pte = *sptep;
1e73f9dd
MT
2323
2324 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2325 drop_parent_pte(child, sptep);
3be2264b 2326 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2327 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2328 pgprintk("hfn old %llx new %llx\n",
d555c333 2329 spte_to_pfn(*sptep), pfn);
c3707958 2330 drop_spte(vcpu->kvm, sptep);
91546356 2331 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2332 } else
2333 was_rmapped = 1;
1e73f9dd 2334 }
852e3c19 2335
d555c333 2336 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
640d9b0d 2337 level, gfn, pfn, speculative, true,
9bdbba13 2338 host_writable)) {
1e73f9dd 2339 if (write_fault)
b90a0e6c 2340 *emulate = 1;
5304efde 2341 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2342 }
1e73f9dd 2343
ce88decf
XG
2344 if (unlikely(is_mmio_spte(*sptep) && emulate))
2345 *emulate = 1;
2346
d555c333 2347 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2348 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2349 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2350 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2351 *sptep, sptep);
d555c333 2352 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2353 ++vcpu->kvm->stat.lpages;
2354
ffb61bb3
XG
2355 if (is_shadow_present_pte(*sptep)) {
2356 page_header_update_slot(vcpu->kvm, sptep, gfn);
2357 if (!was_rmapped) {
2358 rmap_count = rmap_add(vcpu, sptep, gfn);
2359 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2360 rmap_recycle(vcpu, sptep, gfn);
2361 }
1c4f1fd6 2362 }
9ed5520d 2363 kvm_release_pfn_clean(pfn);
d01f8d5e 2364 if (speculative)
d555c333 2365 vcpu->arch.last_pte_updated = sptep;
1c4f1fd6
AK
2366}
2367
6aa8b732
AK
2368static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2369{
2370}
2371
957ed9ef
XG
2372static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2373 bool no_dirty_log)
2374{
2375 struct kvm_memory_slot *slot;
2376 unsigned long hva;
2377
5d163b1c 2378 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
957ed9ef 2379 if (!slot) {
fce92dce
XG
2380 get_page(fault_page);
2381 return page_to_pfn(fault_page);
957ed9ef
XG
2382 }
2383
2384 hva = gfn_to_hva_memslot(slot, gfn);
2385
2386 return hva_to_pfn_atomic(vcpu->kvm, hva);
2387}
2388
2389static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2390 struct kvm_mmu_page *sp,
2391 u64 *start, u64 *end)
2392{
2393 struct page *pages[PTE_PREFETCH_NUM];
2394 unsigned access = sp->role.access;
2395 int i, ret;
2396 gfn_t gfn;
2397
2398 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2399 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2400 return -1;
2401
2402 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2403 if (ret <= 0)
2404 return -1;
2405
2406 for (i = 0; i < ret; i++, gfn++, start++)
2407 mmu_set_spte(vcpu, start, ACC_ALL,
640d9b0d 2408 access, 0, 0, NULL,
957ed9ef
XG
2409 sp->role.level, gfn,
2410 page_to_pfn(pages[i]), true, true);
2411
2412 return 0;
2413}
2414
2415static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2416 struct kvm_mmu_page *sp, u64 *sptep)
2417{
2418 u64 *spte, *start = NULL;
2419 int i;
2420
2421 WARN_ON(!sp->role.direct);
2422
2423 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2424 spte = sp->spt + i;
2425
2426 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2427 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2428 if (!start)
2429 continue;
2430 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2431 break;
2432 start = NULL;
2433 } else if (!start)
2434 start = spte;
2435 }
2436}
2437
2438static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2439{
2440 struct kvm_mmu_page *sp;
2441
2442 /*
2443 * Since it's no accessed bit on EPT, it's no way to
2444 * distinguish between actually accessed translations
2445 * and prefetched, so disable pte prefetch if EPT is
2446 * enabled.
2447 */
2448 if (!shadow_accessed_mask)
2449 return;
2450
2451 sp = page_header(__pa(sptep));
2452 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2453 return;
2454
2455 __direct_pte_prefetch(vcpu, sp, sptep);
2456}
2457
9f652d21 2458static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2459 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2460 bool prefault)
140754bc 2461{
9f652d21 2462 struct kvm_shadow_walk_iterator iterator;
140754bc 2463 struct kvm_mmu_page *sp;
b90a0e6c 2464 int emulate = 0;
140754bc 2465 gfn_t pseudo_gfn;
6aa8b732 2466
9f652d21 2467 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2468 if (iterator.level == level) {
612819c3
MT
2469 unsigned pte_access = ACC_ALL;
2470
612819c3 2471 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
b90a0e6c 2472 0, write, &emulate,
2ec4739d 2473 level, gfn, pfn, prefault, map_writable);
957ed9ef 2474 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2475 ++vcpu->stat.pf_fixed;
2476 break;
6aa8b732
AK
2477 }
2478
c3707958 2479 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2480 u64 base_addr = iterator.addr;
2481
2482 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2483 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2484 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2485 iterator.level - 1,
2486 1, ACC_ALL, iterator.sptep);
2487 if (!sp) {
2488 pgprintk("nonpaging_map: ENOMEM\n");
2489 kvm_release_pfn_clean(pfn);
2490 return -ENOMEM;
2491 }
140754bc 2492
1df9f2dc
XG
2493 mmu_spte_set(iterator.sptep,
2494 __pa(sp->spt)
2495 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2496 | shadow_user_mask | shadow_x_mask
2497 | shadow_accessed_mask);
9f652d21
AK
2498 }
2499 }
b90a0e6c 2500 return emulate;
6aa8b732
AK
2501}
2502
77db5cbd 2503static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2504{
77db5cbd
HY
2505 siginfo_t info;
2506
2507 info.si_signo = SIGBUS;
2508 info.si_errno = 0;
2509 info.si_code = BUS_MCEERR_AR;
2510 info.si_addr = (void __user *)address;
2511 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2512
77db5cbd 2513 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2514}
2515
d7c55201 2516static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156
HY
2517{
2518 kvm_release_pfn_clean(pfn);
2519 if (is_hwpoison_pfn(pfn)) {
bebb106a 2520 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2521 return 0;
d7c55201 2522 }
edba23e5 2523
d7c55201 2524 return -EFAULT;
bf998156
HY
2525}
2526
936a5fe6
AA
2527static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2528 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2529{
2530 pfn_t pfn = *pfnp;
2531 gfn_t gfn = *gfnp;
2532 int level = *levelp;
2533
2534 /*
2535 * Check if it's a transparent hugepage. If this would be an
2536 * hugetlbfs page, level wouldn't be set to
2537 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2538 * here.
2539 */
2540 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2541 level == PT_PAGE_TABLE_LEVEL &&
2542 PageTransCompound(pfn_to_page(pfn)) &&
2543 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2544 unsigned long mask;
2545 /*
2546 * mmu_notifier_retry was successful and we hold the
2547 * mmu_lock here, so the pmd can't become splitting
2548 * from under us, and in turn
2549 * __split_huge_page_refcount() can't run from under
2550 * us and we can safely transfer the refcount from
2551 * PG_tail to PG_head as we switch the pfn to tail to
2552 * head.
2553 */
2554 *levelp = level = PT_DIRECTORY_LEVEL;
2555 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2556 VM_BUG_ON((gfn & mask) != (pfn & mask));
2557 if (pfn & mask) {
2558 gfn &= ~mask;
2559 *gfnp = gfn;
2560 kvm_release_pfn_clean(pfn);
2561 pfn &= ~mask;
2562 if (!get_page_unless_zero(pfn_to_page(pfn)))
2563 BUG();
2564 *pfnp = pfn;
2565 }
2566 }
2567}
2568
d7c55201
XG
2569static bool mmu_invalid_pfn(pfn_t pfn)
2570{
ce88decf 2571 return unlikely(is_invalid_pfn(pfn));
d7c55201
XG
2572}
2573
2574static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2575 pfn_t pfn, unsigned access, int *ret_val)
2576{
2577 bool ret = true;
2578
2579 /* The pfn is invalid, report the error! */
2580 if (unlikely(is_invalid_pfn(pfn))) {
2581 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2582 goto exit;
2583 }
2584
ce88decf 2585 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2586 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2587
2588 ret = false;
2589exit:
2590 return ret;
2591}
2592
78b2c54a 2593static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2594 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2595
2596static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
78b2c54a 2597 bool prefault)
10589a46
MT
2598{
2599 int r;
852e3c19 2600 int level;
936a5fe6 2601 int force_pt_level;
35149e21 2602 pfn_t pfn;
e930bffe 2603 unsigned long mmu_seq;
612819c3 2604 bool map_writable;
aaee2c94 2605
936a5fe6
AA
2606 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2607 if (likely(!force_pt_level)) {
2608 level = mapping_level(vcpu, gfn);
2609 /*
2610 * This path builds a PAE pagetable - so we can map
2611 * 2mb pages at maximum. Therefore check if the level
2612 * is larger than that.
2613 */
2614 if (level > PT_DIRECTORY_LEVEL)
2615 level = PT_DIRECTORY_LEVEL;
852e3c19 2616
936a5fe6
AA
2617 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2618 } else
2619 level = PT_PAGE_TABLE_LEVEL;
05da4558 2620
e930bffe 2621 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2622 smp_rmb();
060c2abe 2623
78b2c54a 2624 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2625 return 0;
aaee2c94 2626
d7c55201
XG
2627 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2628 return r;
d196e343 2629
aaee2c94 2630 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
2631 if (mmu_notifier_retry(vcpu, mmu_seq))
2632 goto out_unlock;
eb787d10 2633 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2634 if (likely(!force_pt_level))
2635 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2636 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2637 prefault);
aaee2c94
MT
2638 spin_unlock(&vcpu->kvm->mmu_lock);
2639
aaee2c94 2640
10589a46 2641 return r;
e930bffe
AA
2642
2643out_unlock:
2644 spin_unlock(&vcpu->kvm->mmu_lock);
2645 kvm_release_pfn_clean(pfn);
2646 return 0;
10589a46
MT
2647}
2648
2649
17ac10ad
AK
2650static void mmu_free_roots(struct kvm_vcpu *vcpu)
2651{
2652 int i;
4db35314 2653 struct kvm_mmu_page *sp;
d98ba053 2654 LIST_HEAD(invalid_list);
17ac10ad 2655
ad312c7c 2656 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2657 return;
aaee2c94 2658 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2659 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2660 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2661 vcpu->arch.mmu.direct_map)) {
ad312c7c 2662 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2663
4db35314
AK
2664 sp = page_header(root);
2665 --sp->root_count;
d98ba053
XG
2666 if (!sp->root_count && sp->role.invalid) {
2667 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2668 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2669 }
ad312c7c 2670 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2671 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2672 return;
2673 }
17ac10ad 2674 for (i = 0; i < 4; ++i) {
ad312c7c 2675 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2676
417726a3 2677 if (root) {
417726a3 2678 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2679 sp = page_header(root);
2680 --sp->root_count;
2e53d63a 2681 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2682 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2683 &invalid_list);
417726a3 2684 }
ad312c7c 2685 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2686 }
d98ba053 2687 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2688 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2689 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2690}
2691
8986ecc0
MT
2692static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2693{
2694 int ret = 0;
2695
2696 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2697 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2698 ret = 1;
2699 }
2700
2701 return ret;
2702}
2703
651dd37a
JR
2704static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2705{
2706 struct kvm_mmu_page *sp;
7ebaf15e 2707 unsigned i;
651dd37a
JR
2708
2709 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2710 spin_lock(&vcpu->kvm->mmu_lock);
2711 kvm_mmu_free_some_pages(vcpu);
2712 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2713 1, ACC_ALL, NULL);
2714 ++sp->root_count;
2715 spin_unlock(&vcpu->kvm->mmu_lock);
2716 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2717 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2718 for (i = 0; i < 4; ++i) {
2719 hpa_t root = vcpu->arch.mmu.pae_root[i];
2720
2721 ASSERT(!VALID_PAGE(root));
2722 spin_lock(&vcpu->kvm->mmu_lock);
2723 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2724 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2725 i << 30,
651dd37a
JR
2726 PT32_ROOT_LEVEL, 1, ACC_ALL,
2727 NULL);
2728 root = __pa(sp->spt);
2729 ++sp->root_count;
2730 spin_unlock(&vcpu->kvm->mmu_lock);
2731 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2732 }
6292757f 2733 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2734 } else
2735 BUG();
2736
2737 return 0;
2738}
2739
2740static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2741{
4db35314 2742 struct kvm_mmu_page *sp;
81407ca5
JR
2743 u64 pdptr, pm_mask;
2744 gfn_t root_gfn;
2745 int i;
3bb65a22 2746
5777ed34 2747 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2748
651dd37a
JR
2749 if (mmu_check_root(vcpu, root_gfn))
2750 return 1;
2751
2752 /*
2753 * Do we shadow a long mode page table? If so we need to
2754 * write-protect the guests page table root.
2755 */
2756 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2757 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2758
2759 ASSERT(!VALID_PAGE(root));
651dd37a 2760
8facbbff 2761 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2762 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2763 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2764 0, ACC_ALL, NULL);
4db35314
AK
2765 root = __pa(sp->spt);
2766 ++sp->root_count;
8facbbff 2767 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2768 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2769 return 0;
17ac10ad 2770 }
f87f9288 2771
651dd37a
JR
2772 /*
2773 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2774 * or a PAE 3-level page table. In either case we need to be aware that
2775 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2776 */
81407ca5
JR
2777 pm_mask = PT_PRESENT_MASK;
2778 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2779 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2780
17ac10ad 2781 for (i = 0; i < 4; ++i) {
ad312c7c 2782 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2783
2784 ASSERT(!VALID_PAGE(root));
ad312c7c 2785 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 2786 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 2787 if (!is_present_gpte(pdptr)) {
ad312c7c 2788 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
2789 continue;
2790 }
6de4f3ad 2791 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
2792 if (mmu_check_root(vcpu, root_gfn))
2793 return 1;
5a7388c2 2794 }
8facbbff 2795 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2796 kvm_mmu_free_some_pages(vcpu);
4db35314 2797 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 2798 PT32_ROOT_LEVEL, 0,
f7d9c7b7 2799 ACC_ALL, NULL);
4db35314
AK
2800 root = __pa(sp->spt);
2801 ++sp->root_count;
8facbbff
AK
2802 spin_unlock(&vcpu->kvm->mmu_lock);
2803
81407ca5 2804 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 2805 }
6292757f 2806 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
2807
2808 /*
2809 * If we shadow a 32 bit page table with a long mode page
2810 * table we enter this path.
2811 */
2812 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2813 if (vcpu->arch.mmu.lm_root == NULL) {
2814 /*
2815 * The additional page necessary for this is only
2816 * allocated on demand.
2817 */
2818
2819 u64 *lm_root;
2820
2821 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2822 if (lm_root == NULL)
2823 return 1;
2824
2825 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2826
2827 vcpu->arch.mmu.lm_root = lm_root;
2828 }
2829
2830 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2831 }
2832
8986ecc0 2833 return 0;
17ac10ad
AK
2834}
2835
651dd37a
JR
2836static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2837{
2838 if (vcpu->arch.mmu.direct_map)
2839 return mmu_alloc_direct_roots(vcpu);
2840 else
2841 return mmu_alloc_shadow_roots(vcpu);
2842}
2843
0ba73cda
MT
2844static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2845{
2846 int i;
2847 struct kvm_mmu_page *sp;
2848
81407ca5
JR
2849 if (vcpu->arch.mmu.direct_map)
2850 return;
2851
0ba73cda
MT
2852 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2853 return;
6903074c 2854
bebb106a 2855 vcpu_clear_mmio_info(vcpu, ~0ul);
6903074c 2856 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 2857 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
2858 hpa_t root = vcpu->arch.mmu.root_hpa;
2859 sp = page_header(root);
2860 mmu_sync_children(vcpu, sp);
5054c0de 2861 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2862 return;
2863 }
2864 for (i = 0; i < 4; ++i) {
2865 hpa_t root = vcpu->arch.mmu.pae_root[i];
2866
8986ecc0 2867 if (root && VALID_PAGE(root)) {
0ba73cda
MT
2868 root &= PT64_BASE_ADDR_MASK;
2869 sp = page_header(root);
2870 mmu_sync_children(vcpu, sp);
2871 }
2872 }
6903074c 2873 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2874}
2875
2876void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2877{
2878 spin_lock(&vcpu->kvm->mmu_lock);
2879 mmu_sync_roots(vcpu);
6cffe8ca 2880 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
2881}
2882
1871c602 2883static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 2884 u32 access, struct x86_exception *exception)
6aa8b732 2885{
ab9ae313
AK
2886 if (exception)
2887 exception->error_code = 0;
6aa8b732
AK
2888 return vaddr;
2889}
2890
6539e738 2891static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
2892 u32 access,
2893 struct x86_exception *exception)
6539e738 2894{
ab9ae313
AK
2895 if (exception)
2896 exception->error_code = 0;
6539e738
JR
2897 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2898}
2899
ce88decf
XG
2900static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2901{
2902 if (direct)
2903 return vcpu_match_mmio_gpa(vcpu, addr);
2904
2905 return vcpu_match_mmio_gva(vcpu, addr);
2906}
2907
2908
2909/*
2910 * On direct hosts, the last spte is only allows two states
2911 * for mmio page fault:
2912 * - It is the mmio spte
2913 * - It is zapped or it is being zapped.
2914 *
2915 * This function completely checks the spte when the last spte
2916 * is not the mmio spte.
2917 */
2918static bool check_direct_spte_mmio_pf(u64 spte)
2919{
2920 return __check_direct_spte_mmio_pf(spte);
2921}
2922
2923static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2924{
2925 struct kvm_shadow_walk_iterator iterator;
2926 u64 spte = 0ull;
2927
2928 walk_shadow_page_lockless_begin(vcpu);
2929 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2930 if (!is_shadow_present_pte(spte))
2931 break;
2932 walk_shadow_page_lockless_end(vcpu);
2933
2934 return spte;
2935}
2936
2937/*
2938 * If it is a real mmio page fault, return 1 and emulat the instruction
2939 * directly, return 0 to let CPU fault again on the address, -1 is
2940 * returned if bug is detected.
2941 */
2942int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2943{
2944 u64 spte;
2945
2946 if (quickly_check_mmio_pf(vcpu, addr, direct))
2947 return 1;
2948
2949 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2950
2951 if (is_mmio_spte(spte)) {
2952 gfn_t gfn = get_mmio_spte_gfn(spte);
2953 unsigned access = get_mmio_spte_access(spte);
2954
2955 if (direct)
2956 addr = 0;
4f022648
XG
2957
2958 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
2959 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2960 return 1;
2961 }
2962
2963 /*
2964 * It's ok if the gva is remapped by other cpus on shadow guest,
2965 * it's a BUG if the gfn is not a mmio page.
2966 */
2967 if (direct && !check_direct_spte_mmio_pf(spte))
2968 return -1;
2969
2970 /*
2971 * If the page table is zapped by other cpus, let CPU fault again on
2972 * the address.
2973 */
2974 return 0;
2975}
2976EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
2977
2978static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
2979 u32 error_code, bool direct)
2980{
2981 int ret;
2982
2983 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
2984 WARN_ON(ret < 0);
2985 return ret;
2986}
2987
6aa8b732 2988static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 2989 u32 error_code, bool prefault)
6aa8b732 2990{
e833240f 2991 gfn_t gfn;
e2dec939 2992 int r;
6aa8b732 2993
b8688d51 2994 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
2995
2996 if (unlikely(error_code & PFERR_RSVD_MASK))
2997 return handle_mmio_page_fault(vcpu, gva, error_code, true);
2998
e2dec939
AK
2999 r = mmu_topup_memory_caches(vcpu);
3000 if (r)
3001 return r;
714b93da 3002
6aa8b732 3003 ASSERT(vcpu);
ad312c7c 3004 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3005
e833240f 3006 gfn = gva >> PAGE_SHIFT;
6aa8b732 3007
e833240f 3008 return nonpaging_map(vcpu, gva & PAGE_MASK,
78b2c54a 3009 error_code & PFERR_WRITE_MASK, gfn, prefault);
6aa8b732
AK
3010}
3011
7e1fbeac 3012static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3013{
3014 struct kvm_arch_async_pf arch;
fb67e14f 3015
7c90705b 3016 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3017 arch.gfn = gfn;
c4806acd 3018 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3019 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3020
3021 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3022}
3023
3024static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3025{
3026 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3027 kvm_event_needs_reinjection(vcpu)))
3028 return false;
3029
3030 return kvm_x86_ops->interrupt_allowed(vcpu);
3031}
3032
78b2c54a 3033static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3034 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3035{
3036 bool async;
3037
612819c3 3038 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3039
3040 if (!async)
3041 return false; /* *pfn has correct page already */
3042
3043 put_page(pfn_to_page(*pfn));
3044
78b2c54a 3045 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3046 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3047 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3048 trace_kvm_async_pf_doublefault(gva, gfn);
3049 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3050 return true;
3051 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3052 return true;
3053 }
3054
612819c3 3055 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3056
3057 return false;
3058}
3059
56028d08 3060static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3061 bool prefault)
fb72d167 3062{
35149e21 3063 pfn_t pfn;
fb72d167 3064 int r;
852e3c19 3065 int level;
936a5fe6 3066 int force_pt_level;
05da4558 3067 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3068 unsigned long mmu_seq;
612819c3
MT
3069 int write = error_code & PFERR_WRITE_MASK;
3070 bool map_writable;
fb72d167
JR
3071
3072 ASSERT(vcpu);
3073 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3074
ce88decf
XG
3075 if (unlikely(error_code & PFERR_RSVD_MASK))
3076 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3077
fb72d167
JR
3078 r = mmu_topup_memory_caches(vcpu);
3079 if (r)
3080 return r;
3081
936a5fe6
AA
3082 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3083 if (likely(!force_pt_level)) {
3084 level = mapping_level(vcpu, gfn);
3085 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3086 } else
3087 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3088
e930bffe 3089 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3090 smp_rmb();
af585b92 3091
78b2c54a 3092 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3093 return 0;
3094
d7c55201
XG
3095 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3096 return r;
3097
fb72d167 3098 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
3099 if (mmu_notifier_retry(vcpu, mmu_seq))
3100 goto out_unlock;
fb72d167 3101 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3102 if (likely(!force_pt_level))
3103 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3104 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3105 level, gfn, pfn, prefault);
fb72d167 3106 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3107
3108 return r;
e930bffe
AA
3109
3110out_unlock:
3111 spin_unlock(&vcpu->kvm->mmu_lock);
3112 kvm_release_pfn_clean(pfn);
3113 return 0;
fb72d167
JR
3114}
3115
6aa8b732
AK
3116static void nonpaging_free(struct kvm_vcpu *vcpu)
3117{
17ac10ad 3118 mmu_free_roots(vcpu);
6aa8b732
AK
3119}
3120
52fde8df
JR
3121static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3122 struct kvm_mmu *context)
6aa8b732 3123{
6aa8b732
AK
3124 context->new_cr3 = nonpaging_new_cr3;
3125 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3126 context->gva_to_gpa = nonpaging_gva_to_gpa;
3127 context->free = nonpaging_free;
e8bc217a 3128 context->sync_page = nonpaging_sync_page;
a7052897 3129 context->invlpg = nonpaging_invlpg;
0f53b5b1 3130 context->update_pte = nonpaging_update_pte;
cea0f0e7 3131 context->root_level = 0;
6aa8b732 3132 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3133 context->root_hpa = INVALID_PAGE;
c5a78f2b 3134 context->direct_map = true;
2d48a985 3135 context->nx = false;
6aa8b732
AK
3136 return 0;
3137}
3138
d835dfec 3139void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3140{
1165f5fe 3141 ++vcpu->stat.tlb_flush;
a8eeb04a 3142 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3143}
3144
3145static void paging_new_cr3(struct kvm_vcpu *vcpu)
3146{
9f8fe504 3147 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3148 mmu_free_roots(vcpu);
6aa8b732
AK
3149}
3150
5777ed34
JR
3151static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3152{
9f8fe504 3153 return kvm_read_cr3(vcpu);
5777ed34
JR
3154}
3155
6389ee94
AK
3156static void inject_page_fault(struct kvm_vcpu *vcpu,
3157 struct x86_exception *fault)
6aa8b732 3158{
6389ee94 3159 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3160}
3161
6aa8b732
AK
3162static void paging_free(struct kvm_vcpu *vcpu)
3163{
3164 nonpaging_free(vcpu);
3165}
3166
3241f22d 3167static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
82725b20
DE
3168{
3169 int bit7;
3170
3171 bit7 = (gpte >> 7) & 1;
3241f22d 3172 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
82725b20
DE
3173}
3174
ce88decf
XG
3175static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3176 int *nr_present)
3177{
3178 if (unlikely(is_mmio_spte(*sptep))) {
3179 if (gfn != get_mmio_spte_gfn(*sptep)) {
3180 mmu_spte_clear_no_track(sptep);
3181 return true;
3182 }
3183
3184 (*nr_present)++;
3185 mark_mmio_spte(sptep, gfn, access);
3186 return true;
3187 }
3188
3189 return false;
3190}
3191
6aa8b732
AK
3192#define PTTYPE 64
3193#include "paging_tmpl.h"
3194#undef PTTYPE
3195
3196#define PTTYPE 32
3197#include "paging_tmpl.h"
3198#undef PTTYPE
3199
52fde8df
JR
3200static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3201 struct kvm_mmu *context,
3202 int level)
82725b20 3203{
82725b20
DE
3204 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3205 u64 exb_bit_rsvd = 0;
3206
2d48a985 3207 if (!context->nx)
82725b20
DE
3208 exb_bit_rsvd = rsvd_bits(63, 63);
3209 switch (level) {
3210 case PT32_ROOT_LEVEL:
3211 /* no rsvd bits for 2 level 4K page table entries */
3212 context->rsvd_bits_mask[0][1] = 0;
3213 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3214 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3215
3216 if (!is_pse(vcpu)) {
3217 context->rsvd_bits_mask[1][1] = 0;
3218 break;
3219 }
3220
82725b20
DE
3221 if (is_cpuid_PSE36())
3222 /* 36bits PSE 4MB page */
3223 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3224 else
3225 /* 32 bits PSE 4MB page */
3226 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3227 break;
3228 case PT32E_ROOT_LEVEL:
20c466b5
DE
3229 context->rsvd_bits_mask[0][2] =
3230 rsvd_bits(maxphyaddr, 63) |
3231 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3232 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3233 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3234 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3235 rsvd_bits(maxphyaddr, 62); /* PTE */
3236 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3237 rsvd_bits(maxphyaddr, 62) |
3238 rsvd_bits(13, 20); /* large page */
f815bce8 3239 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3240 break;
3241 case PT64_ROOT_LEVEL:
3242 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3243 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3244 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3245 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3246 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3247 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3248 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3249 rsvd_bits(maxphyaddr, 51);
3250 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3251 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3252 rsvd_bits(maxphyaddr, 51) |
3253 rsvd_bits(13, 29);
82725b20 3254 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3255 rsvd_bits(maxphyaddr, 51) |
3256 rsvd_bits(13, 20); /* large page */
f815bce8 3257 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3258 break;
3259 }
3260}
3261
52fde8df
JR
3262static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3263 struct kvm_mmu *context,
3264 int level)
6aa8b732 3265{
2d48a985
JR
3266 context->nx = is_nx(vcpu);
3267
52fde8df 3268 reset_rsvds_bits_mask(vcpu, context, level);
6aa8b732
AK
3269
3270 ASSERT(is_pae(vcpu));
3271 context->new_cr3 = paging_new_cr3;
3272 context->page_fault = paging64_page_fault;
6aa8b732 3273 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3274 context->sync_page = paging64_sync_page;
a7052897 3275 context->invlpg = paging64_invlpg;
0f53b5b1 3276 context->update_pte = paging64_update_pte;
6aa8b732 3277 context->free = paging_free;
17ac10ad
AK
3278 context->root_level = level;
3279 context->shadow_root_level = level;
17c3ba9d 3280 context->root_hpa = INVALID_PAGE;
c5a78f2b 3281 context->direct_map = false;
6aa8b732
AK
3282 return 0;
3283}
3284
52fde8df
JR
3285static int paging64_init_context(struct kvm_vcpu *vcpu,
3286 struct kvm_mmu *context)
17ac10ad 3287{
52fde8df 3288 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3289}
3290
52fde8df
JR
3291static int paging32_init_context(struct kvm_vcpu *vcpu,
3292 struct kvm_mmu *context)
6aa8b732 3293{
2d48a985
JR
3294 context->nx = false;
3295
52fde8df 3296 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
6aa8b732
AK
3297
3298 context->new_cr3 = paging_new_cr3;
3299 context->page_fault = paging32_page_fault;
6aa8b732
AK
3300 context->gva_to_gpa = paging32_gva_to_gpa;
3301 context->free = paging_free;
e8bc217a 3302 context->sync_page = paging32_sync_page;
a7052897 3303 context->invlpg = paging32_invlpg;
0f53b5b1 3304 context->update_pte = paging32_update_pte;
6aa8b732
AK
3305 context->root_level = PT32_ROOT_LEVEL;
3306 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3307 context->root_hpa = INVALID_PAGE;
c5a78f2b 3308 context->direct_map = false;
6aa8b732
AK
3309 return 0;
3310}
3311
52fde8df
JR
3312static int paging32E_init_context(struct kvm_vcpu *vcpu,
3313 struct kvm_mmu *context)
6aa8b732 3314{
52fde8df 3315 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3316}
3317
fb72d167
JR
3318static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3319{
14dfe855 3320 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3321
c445f8ef 3322 context->base_role.word = 0;
fb72d167
JR
3323 context->new_cr3 = nonpaging_new_cr3;
3324 context->page_fault = tdp_page_fault;
3325 context->free = nonpaging_free;
e8bc217a 3326 context->sync_page = nonpaging_sync_page;
a7052897 3327 context->invlpg = nonpaging_invlpg;
0f53b5b1 3328 context->update_pte = nonpaging_update_pte;
67253af5 3329 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3330 context->root_hpa = INVALID_PAGE;
c5a78f2b 3331 context->direct_map = true;
1c97f0a0 3332 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3333 context->get_cr3 = get_cr3;
e4e517b4 3334 context->get_pdptr = kvm_pdptr_read;
cb659db8 3335 context->inject_page_fault = kvm_inject_page_fault;
2d48a985 3336 context->nx = is_nx(vcpu);
fb72d167
JR
3337
3338 if (!is_paging(vcpu)) {
2d48a985 3339 context->nx = false;
fb72d167
JR
3340 context->gva_to_gpa = nonpaging_gva_to_gpa;
3341 context->root_level = 0;
3342 } else if (is_long_mode(vcpu)) {
2d48a985 3343 context->nx = is_nx(vcpu);
52fde8df 3344 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
fb72d167
JR
3345 context->gva_to_gpa = paging64_gva_to_gpa;
3346 context->root_level = PT64_ROOT_LEVEL;
3347 } else if (is_pae(vcpu)) {
2d48a985 3348 context->nx = is_nx(vcpu);
52fde8df 3349 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
fb72d167
JR
3350 context->gva_to_gpa = paging64_gva_to_gpa;
3351 context->root_level = PT32E_ROOT_LEVEL;
3352 } else {
2d48a985 3353 context->nx = false;
52fde8df 3354 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
fb72d167
JR
3355 context->gva_to_gpa = paging32_gva_to_gpa;
3356 context->root_level = PT32_ROOT_LEVEL;
3357 }
3358
3359 return 0;
3360}
3361
52fde8df 3362int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3363{
a770f6f2 3364 int r;
411c588d 3365 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3366 ASSERT(vcpu);
ad312c7c 3367 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3368
3369 if (!is_paging(vcpu))
52fde8df 3370 r = nonpaging_init_context(vcpu, context);
a9058ecd 3371 else if (is_long_mode(vcpu))
52fde8df 3372 r = paging64_init_context(vcpu, context);
6aa8b732 3373 else if (is_pae(vcpu))
52fde8df 3374 r = paging32E_init_context(vcpu, context);
6aa8b732 3375 else
52fde8df 3376 r = paging32_init_context(vcpu, context);
a770f6f2 3377
5b7e0102 3378 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3379 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3380 vcpu->arch.mmu.base_role.smep_andnot_wp
3381 = smep && !is_write_protection(vcpu);
52fde8df
JR
3382
3383 return r;
3384}
3385EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3386
3387static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3388{
14dfe855 3389 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3390
14dfe855
JR
3391 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3392 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3393 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3394 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3395
3396 return r;
6aa8b732
AK
3397}
3398
02f59dc9
JR
3399static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3400{
3401 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3402
3403 g_context->get_cr3 = get_cr3;
e4e517b4 3404 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3405 g_context->inject_page_fault = kvm_inject_page_fault;
3406
3407 /*
3408 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3409 * translation of l2_gpa to l1_gpa addresses is done using the
3410 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3411 * functions between mmu and nested_mmu are swapped.
3412 */
3413 if (!is_paging(vcpu)) {
2d48a985 3414 g_context->nx = false;
02f59dc9
JR
3415 g_context->root_level = 0;
3416 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3417 } else if (is_long_mode(vcpu)) {
2d48a985 3418 g_context->nx = is_nx(vcpu);
02f59dc9
JR
3419 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3420 g_context->root_level = PT64_ROOT_LEVEL;
3421 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3422 } else if (is_pae(vcpu)) {
2d48a985 3423 g_context->nx = is_nx(vcpu);
02f59dc9
JR
3424 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3425 g_context->root_level = PT32E_ROOT_LEVEL;
3426 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3427 } else {
2d48a985 3428 g_context->nx = false;
02f59dc9
JR
3429 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3430 g_context->root_level = PT32_ROOT_LEVEL;
3431 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3432 }
3433
3434 return 0;
3435}
3436
fb72d167
JR
3437static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3438{
02f59dc9
JR
3439 if (mmu_is_nested(vcpu))
3440 return init_kvm_nested_mmu(vcpu);
3441 else if (tdp_enabled)
fb72d167
JR
3442 return init_kvm_tdp_mmu(vcpu);
3443 else
3444 return init_kvm_softmmu(vcpu);
3445}
3446
6aa8b732
AK
3447static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3448{
3449 ASSERT(vcpu);
62ad0755
SY
3450 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3451 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3452 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3453}
3454
3455int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3456{
3457 destroy_kvm_mmu(vcpu);
f8f7e5ee 3458 return init_kvm_mmu(vcpu);
17c3ba9d 3459}
8668a3c4 3460EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3461
3462int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3463{
714b93da
AK
3464 int r;
3465
e2dec939 3466 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3467 if (r)
3468 goto out;
8986ecc0 3469 r = mmu_alloc_roots(vcpu);
8facbbff 3470 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3471 mmu_sync_roots(vcpu);
aaee2c94 3472 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3473 if (r)
3474 goto out;
3662cb1c 3475 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3476 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3477out:
3478 return r;
6aa8b732 3479}
17c3ba9d
AK
3480EXPORT_SYMBOL_GPL(kvm_mmu_load);
3481
3482void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3483{
3484 mmu_free_roots(vcpu);
3485}
4b16184c 3486EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3487
0028425f 3488static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3489 struct kvm_mmu_page *sp, u64 *spte,
3490 const void *new)
0028425f 3491{
30945387 3492 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3493 ++vcpu->kvm->stat.mmu_pde_zapped;
3494 return;
30945387 3495 }
0028425f 3496
4cee5764 3497 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3498 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3499}
3500
79539cec
AK
3501static bool need_remote_flush(u64 old, u64 new)
3502{
3503 if (!is_shadow_present_pte(old))
3504 return false;
3505 if (!is_shadow_present_pte(new))
3506 return true;
3507 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3508 return true;
3509 old ^= PT64_NX_MASK;
3510 new ^= PT64_NX_MASK;
3511 return (old & ~new & PT64_PERM_MASK) != 0;
3512}
3513
0671a8e7
XG
3514static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3515 bool remote_flush, bool local_flush)
79539cec 3516{
0671a8e7
XG
3517 if (zap_page)
3518 return;
3519
3520 if (remote_flush)
79539cec 3521 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3522 else if (local_flush)
79539cec
AK
3523 kvm_mmu_flush_tlb(vcpu);
3524}
3525
12b7d28f
AK
3526static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3527{
ad312c7c 3528 u64 *spte = vcpu->arch.last_pte_updated;
12b7d28f 3529
7b52345e 3530 return !!(spte && (*spte & shadow_accessed_mask));
12b7d28f
AK
3531}
3532
09072daf 3533void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
ad218f85
MT
3534 const u8 *new, int bytes,
3535 bool guest_initiated)
da4a00f0 3536{
9b7a0325 3537 gfn_t gfn = gpa >> PAGE_SHIFT;
fa1de2bf 3538 union kvm_mmu_page_role mask = { .word = 0 };
4db35314 3539 struct kvm_mmu_page *sp;
f41d335a 3540 struct hlist_node *node;
d98ba053 3541 LIST_HEAD(invalid_list);
0f53b5b1
XG
3542 u64 entry, gentry, *spte;
3543 unsigned pte_size, page_offset, misaligned, quadrant, offset;
3544 int level, npte, invlpg_counter, r, flooded = 0;
0671a8e7
XG
3545 bool remote_flush, local_flush, zap_page;
3546
332b207d
XG
3547 /*
3548 * If we don't have indirect shadow pages, it means no page is
3549 * write-protected, so we can exit simply.
3550 */
3551 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3552 return;
3553
0671a8e7 3554 zap_page = remote_flush = local_flush = false;
0f53b5b1 3555 offset = offset_in_page(gpa);
9b7a0325 3556
b8688d51 3557 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
72016f3a 3558
08e850c6 3559 invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
72016f3a
AK
3560
3561 /*
3562 * Assume that the pte write on a page table of the same type
49b26e26
XG
3563 * as the current vcpu paging mode since we update the sptes only
3564 * when they have the same mode.
72016f3a 3565 */
08e850c6 3566 if ((is_pae(vcpu) && bytes == 4) || !new) {
72016f3a 3567 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
08e850c6
AK
3568 if (is_pae(vcpu)) {
3569 gpa &= ~(gpa_t)7;
3570 bytes = 8;
3571 }
3572 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
72016f3a
AK
3573 if (r)
3574 gentry = 0;
08e850c6
AK
3575 new = (const u8 *)&gentry;
3576 }
3577
3578 switch (bytes) {
3579 case 4:
3580 gentry = *(const u32 *)new;
3581 break;
3582 case 8:
3583 gentry = *(const u64 *)new;
3584 break;
3585 default:
3586 gentry = 0;
3587 break;
72016f3a
AK
3588 }
3589
f759e2b4
XG
3590 /*
3591 * No need to care whether allocation memory is successful
3592 * or not since pte prefetch is skiped if it does not have
3593 * enough objects in the cache.
3594 */
3595 mmu_topup_memory_caches(vcpu);
aaee2c94 3596 spin_lock(&vcpu->kvm->mmu_lock);
08e850c6
AK
3597 if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3598 gentry = 0;
eb787d10 3599 kvm_mmu_free_some_pages(vcpu);
4cee5764 3600 ++vcpu->kvm->stat.mmu_pte_write;
8b1fe17c 3601 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
ad218f85
MT
3602 if (guest_initiated) {
3603 if (gfn == vcpu->arch.last_pt_write_gfn
3604 && !last_updated_pte_accessed(vcpu)) {
3605 ++vcpu->arch.last_pt_write_count;
3606 if (vcpu->arch.last_pt_write_count >= 3)
3607 flooded = 1;
3608 } else {
3609 vcpu->arch.last_pt_write_gfn = gfn;
3610 vcpu->arch.last_pt_write_count = 1;
3611 vcpu->arch.last_pte_updated = NULL;
3612 }
86a5ba02 3613 }
3246af0e 3614
fa1de2bf 3615 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3616 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
5b7e0102 3617 pte_size = sp->role.cr4_pae ? 8 : 4;
0e7bc4b9 3618 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
e925c5ba 3619 misaligned |= bytes < 4;
86a5ba02 3620 if (misaligned || flooded) {
0e7bc4b9
AK
3621 /*
3622 * Misaligned accesses are too much trouble to fix
3623 * up; also, they usually indicate a page is not used
3624 * as a page table.
86a5ba02
AK
3625 *
3626 * If we're seeing too many writes to a page,
3627 * it may no longer be a page table, or we may be
3628 * forking, in which case it is better to unmap the
3629 * page.
0e7bc4b9
AK
3630 */
3631 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4db35314 3632 gpa, bytes, sp->role.word);
0671a8e7 3633 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3634 &invalid_list);
4cee5764 3635 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3636 continue;
3637 }
9b7a0325 3638 page_offset = offset;
4db35314 3639 level = sp->role.level;
ac1b714e 3640 npte = 1;
5b7e0102 3641 if (!sp->role.cr4_pae) {
ac1b714e
AK
3642 page_offset <<= 1; /* 32->64 */
3643 /*
3644 * A 32-bit pde maps 4MB while the shadow pdes map
3645 * only 2MB. So we need to double the offset again
3646 * and zap two pdes instead of one.
3647 */
3648 if (level == PT32_ROOT_LEVEL) {
6b8d0f9b 3649 page_offset &= ~7; /* kill rounding error */
ac1b714e
AK
3650 page_offset <<= 1;
3651 npte = 2;
3652 }
fce0657f 3653 quadrant = page_offset >> PAGE_SHIFT;
9b7a0325 3654 page_offset &= ~PAGE_MASK;
4db35314 3655 if (quadrant != sp->role.quadrant)
fce0657f 3656 continue;
9b7a0325 3657 }
0671a8e7 3658 local_flush = true;
4db35314 3659 spte = &sp->spt[page_offset / sizeof(*spte)];
ac1b714e 3660 while (npte--) {
79539cec 3661 entry = *spte;
38e3b2b2 3662 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3663 if (gentry &&
3664 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3665 & mask.word) && rmap_can_add(vcpu))
7c562522 3666 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
3667 if (!remote_flush && need_remote_flush(entry, *spte))
3668 remote_flush = true;
ac1b714e 3669 ++spte;
9b7a0325 3670 }
9b7a0325 3671 }
0671a8e7 3672 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3673 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
8b1fe17c 3674 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3675 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3676}
3677
a436036b
AK
3678int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3679{
10589a46
MT
3680 gpa_t gpa;
3681 int r;
a436036b 3682
c5a78f2b 3683 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3684 return 0;
3685
1871c602 3686 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 3687
10589a46 3688 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 3689
10589a46 3690 return r;
a436036b 3691}
577bdc49 3692EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 3693
22d95b12 3694void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 3695{
d98ba053 3696 LIST_HEAD(invalid_list);
103ad25a 3697
e0df7b9f 3698 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 3699 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 3700 struct kvm_mmu_page *sp;
ebeace86 3701
f05e70ac 3702 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 3703 struct kvm_mmu_page, link);
e0df7b9f 3704 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 3705 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 3706 }
aa6bd187 3707 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 3708}
ebeace86 3709
1cb3f3ae
XG
3710static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3711{
3712 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3713 return vcpu_match_mmio_gpa(vcpu, addr);
3714
3715 return vcpu_match_mmio_gva(vcpu, addr);
3716}
3717
dc25e89e
AP
3718int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3719 void *insn, int insn_len)
3067714c 3720{
1cb3f3ae 3721 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
3722 enum emulation_result er;
3723
56028d08 3724 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
3725 if (r < 0)
3726 goto out;
3727
3728 if (!r) {
3729 r = 1;
3730 goto out;
3731 }
3732
1cb3f3ae
XG
3733 if (is_mmio_page_fault(vcpu, cr2))
3734 emulation_type = 0;
3735
3736 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
3737
3738 switch (er) {
3739 case EMULATE_DONE:
3740 return 1;
3741 case EMULATE_DO_MMIO:
3742 ++vcpu->stat.mmio_exits;
6d77dbfc 3743 /* fall through */
3067714c 3744 case EMULATE_FAIL:
3f5d18a9 3745 return 0;
3067714c
AK
3746 default:
3747 BUG();
3748 }
3749out:
3067714c
AK
3750 return r;
3751}
3752EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3753
a7052897
MT
3754void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3755{
a7052897 3756 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
3757 kvm_mmu_flush_tlb(vcpu);
3758 ++vcpu->stat.invlpg;
3759}
3760EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3761
18552672
JR
3762void kvm_enable_tdp(void)
3763{
3764 tdp_enabled = true;
3765}
3766EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3767
5f4cb662
JR
3768void kvm_disable_tdp(void)
3769{
3770 tdp_enabled = false;
3771}
3772EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3773
6aa8b732
AK
3774static void free_mmu_pages(struct kvm_vcpu *vcpu)
3775{
ad312c7c 3776 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
3777 if (vcpu->arch.mmu.lm_root != NULL)
3778 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
3779}
3780
3781static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3782{
17ac10ad 3783 struct page *page;
6aa8b732
AK
3784 int i;
3785
3786 ASSERT(vcpu);
3787
17ac10ad
AK
3788 /*
3789 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3790 * Therefore we need to allocate shadow page tables in the first
3791 * 4GB of memory, which happens to fit the DMA32 zone.
3792 */
3793 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3794 if (!page)
d7fa6ab2
WY
3795 return -ENOMEM;
3796
ad312c7c 3797 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 3798 for (i = 0; i < 4; ++i)
ad312c7c 3799 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3800
6aa8b732 3801 return 0;
6aa8b732
AK
3802}
3803
8018c27b 3804int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 3805{
6aa8b732 3806 ASSERT(vcpu);
ad312c7c 3807 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3808
8018c27b
IM
3809 return alloc_mmu_pages(vcpu);
3810}
6aa8b732 3811
8018c27b
IM
3812int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3813{
3814 ASSERT(vcpu);
ad312c7c 3815 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 3816
8018c27b 3817 return init_kvm_mmu(vcpu);
6aa8b732
AK
3818}
3819
90cb0529 3820void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 3821{
4db35314 3822 struct kvm_mmu_page *sp;
6aa8b732 3823
f05e70ac 3824 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
6aa8b732
AK
3825 int i;
3826 u64 *pt;
3827
291f26bc 3828 if (!test_bit(slot, sp->slot_bitmap))
6aa8b732
AK
3829 continue;
3830
4db35314 3831 pt = sp->spt;
8234b22e 3832 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
da8dc75f
XG
3833 if (!is_shadow_present_pte(pt[i]) ||
3834 !is_last_spte(pt[i], sp->role.level))
3835 continue;
3836
3837 if (is_large_pte(pt[i])) {
c3707958 3838 drop_spte(kvm, &pt[i]);
8234b22e 3839 --kvm->stat.lpages;
da8dc75f 3840 continue;
8234b22e 3841 }
da8dc75f 3842
6aa8b732 3843 /* avoid RMW */
01c168ac 3844 if (is_writable_pte(pt[i]))
1df9f2dc
XG
3845 mmu_spte_update(&pt[i],
3846 pt[i] & ~PT_WRITABLE_MASK);
8234b22e 3847 }
6aa8b732 3848 }
171d595d 3849 kvm_flush_remote_tlbs(kvm);
6aa8b732 3850}
37a7d8b0 3851
90cb0529 3852void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 3853{
4db35314 3854 struct kvm_mmu_page *sp, *node;
d98ba053 3855 LIST_HEAD(invalid_list);
e0fa826f 3856
aaee2c94 3857 spin_lock(&kvm->mmu_lock);
3246af0e 3858restart:
f05e70ac 3859 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 3860 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
3861 goto restart;
3862
d98ba053 3863 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 3864 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
3865}
3866
d98ba053
XG
3867static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3868 struct list_head *invalid_list)
3ee16c81
IE
3869{
3870 struct kvm_mmu_page *page;
3871
3872 page = container_of(kvm->arch.active_mmu_pages.prev,
3873 struct kvm_mmu_page, link);
d98ba053 3874 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
3875}
3876
1495f230 3877static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
3878{
3879 struct kvm *kvm;
3880 struct kvm *kvm_freed = NULL;
1495f230 3881 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
3882
3883 if (nr_to_scan == 0)
3884 goto out;
3ee16c81 3885
e935b837 3886 raw_spin_lock(&kvm_lock);
3ee16c81
IE
3887
3888 list_for_each_entry(kvm, &vm_list, vm_list) {
45221ab6 3889 int idx, freed_pages;
d98ba053 3890 LIST_HEAD(invalid_list);
3ee16c81 3891
f656ce01 3892 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 3893 spin_lock(&kvm->mmu_lock);
45221ab6
DH
3894 if (!kvm_freed && nr_to_scan > 0 &&
3895 kvm->arch.n_used_mmu_pages > 0) {
d98ba053
XG
3896 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3897 &invalid_list);
3ee16c81
IE
3898 kvm_freed = kvm;
3899 }
3900 nr_to_scan--;
3901
d98ba053 3902 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3ee16c81 3903 spin_unlock(&kvm->mmu_lock);
f656ce01 3904 srcu_read_unlock(&kvm->srcu, idx);
3ee16c81
IE
3905 }
3906 if (kvm_freed)
3907 list_move_tail(&kvm_freed->vm_list, &vm_list);
3908
e935b837 3909 raw_spin_unlock(&kvm_lock);
3ee16c81 3910
45221ab6
DH
3911out:
3912 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
3913}
3914
3915static struct shrinker mmu_shrinker = {
3916 .shrink = mmu_shrink,
3917 .seeks = DEFAULT_SEEKS * 10,
3918};
3919
2ddfd20e 3920static void mmu_destroy_caches(void)
b5a33a75 3921{
53c07b18
XG
3922 if (pte_list_desc_cache)
3923 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
3924 if (mmu_page_header_cache)
3925 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
3926}
3927
3928int kvm_mmu_module_init(void)
3929{
53c07b18
XG
3930 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3931 sizeof(struct pte_list_desc),
20c2df83 3932 0, 0, NULL);
53c07b18 3933 if (!pte_list_desc_cache)
b5a33a75
AK
3934 goto nomem;
3935
d3d25b04
AK
3936 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3937 sizeof(struct kvm_mmu_page),
20c2df83 3938 0, 0, NULL);
d3d25b04
AK
3939 if (!mmu_page_header_cache)
3940 goto nomem;
3941
45bf21a8
WY
3942 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3943 goto nomem;
3944
3ee16c81
IE
3945 register_shrinker(&mmu_shrinker);
3946
b5a33a75
AK
3947 return 0;
3948
3949nomem:
3ee16c81 3950 mmu_destroy_caches();
b5a33a75
AK
3951 return -ENOMEM;
3952}
3953
3ad82a7e
ZX
3954/*
3955 * Caculate mmu pages needed for kvm.
3956 */
3957unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3958{
3959 int i;
3960 unsigned int nr_mmu_pages;
3961 unsigned int nr_pages = 0;
bc6678a3 3962 struct kvm_memslots *slots;
3ad82a7e 3963
90d83dc3
LJ
3964 slots = kvm_memslots(kvm);
3965
bc6678a3
MT
3966 for (i = 0; i < slots->nmemslots; i++)
3967 nr_pages += slots->memslots[i].npages;
3ad82a7e
ZX
3968
3969 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3970 nr_mmu_pages = max(nr_mmu_pages,
3971 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3972
3973 return nr_mmu_pages;
3974}
3975
2f333bcb
MT
3976static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3977 unsigned len)
3978{
3979 if (len > buffer->len)
3980 return NULL;
3981 return buffer->ptr;
3982}
3983
3984static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3985 unsigned len)
3986{
3987 void *ret;
3988
3989 ret = pv_mmu_peek_buffer(buffer, len);
3990 if (!ret)
3991 return ret;
3992 buffer->ptr += len;
3993 buffer->len -= len;
3994 buffer->processed += len;
3995 return ret;
3996}
3997
3998static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3999 gpa_t addr, gpa_t value)
4000{
4001 int bytes = 8;
4002 int r;
4003
4004 if (!is_long_mode(vcpu) && !is_pae(vcpu))
4005 bytes = 4;
4006
4007 r = mmu_topup_memory_caches(vcpu);
4008 if (r)
4009 return r;
4010
3200f405 4011 if (!emulator_write_phys(vcpu, addr, &value, bytes))
2f333bcb
MT
4012 return -EFAULT;
4013
4014 return 1;
4015}
4016
4017static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
4018{
9f8fe504 4019 (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
2f333bcb
MT
4020 return 1;
4021}
4022
4023static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
4024{
4025 spin_lock(&vcpu->kvm->mmu_lock);
4026 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
4027 spin_unlock(&vcpu->kvm->mmu_lock);
4028 return 1;
4029}
4030
4031static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
4032 struct kvm_pv_mmu_op_buffer *buffer)
4033{
4034 struct kvm_mmu_op_header *header;
4035
4036 header = pv_mmu_peek_buffer(buffer, sizeof *header);
4037 if (!header)
4038 return 0;
4039 switch (header->op) {
4040 case KVM_MMU_OP_WRITE_PTE: {
4041 struct kvm_mmu_op_write_pte *wpte;
4042
4043 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
4044 if (!wpte)
4045 return 0;
4046 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
4047 wpte->pte_val);
4048 }
4049 case KVM_MMU_OP_FLUSH_TLB: {
4050 struct kvm_mmu_op_flush_tlb *ftlb;
4051
4052 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
4053 if (!ftlb)
4054 return 0;
4055 return kvm_pv_mmu_flush_tlb(vcpu);
4056 }
4057 case KVM_MMU_OP_RELEASE_PT: {
4058 struct kvm_mmu_op_release_pt *rpt;
4059
4060 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
4061 if (!rpt)
4062 return 0;
4063 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
4064 }
4065 default: return 0;
4066 }
4067}
4068
4069int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
4070 gpa_t addr, unsigned long *ret)
4071{
4072 int r;
6ad18fba 4073 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
2f333bcb 4074
6ad18fba
DH
4075 buffer->ptr = buffer->buf;
4076 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
4077 buffer->processed = 0;
2f333bcb 4078
6ad18fba 4079 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
2f333bcb
MT
4080 if (r)
4081 goto out;
4082
6ad18fba
DH
4083 while (buffer->len) {
4084 r = kvm_pv_mmu_op_one(vcpu, buffer);
2f333bcb
MT
4085 if (r < 0)
4086 goto out;
4087 if (r == 0)
4088 break;
4089 }
4090
4091 r = 1;
4092out:
6ad18fba 4093 *ret = buffer->processed;
2f333bcb
MT
4094 return r;
4095}
4096
94d8b056
MT
4097int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4098{
4099 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4100 u64 spte;
94d8b056
MT
4101 int nr_sptes = 0;
4102
c2a2ac2b
XG
4103 walk_shadow_page_lockless_begin(vcpu);
4104 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4105 sptes[iterator.level-1] = spte;
94d8b056 4106 nr_sptes++;
c2a2ac2b 4107 if (!is_shadow_present_pte(spte))
94d8b056
MT
4108 break;
4109 }
c2a2ac2b 4110 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4111
4112 return nr_sptes;
4113}
4114EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4115
c42fffe3
XG
4116void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4117{
4118 ASSERT(vcpu);
4119
4120 destroy_kvm_mmu(vcpu);
4121 free_mmu_pages(vcpu);
4122 mmu_free_memory_caches(vcpu);
b034cf01
XG
4123}
4124
4125#ifdef CONFIG_KVM_MMU_AUDIT
4126#include "mmu_audit.c"
4127#else
4128static void mmu_audit_disable(void) { }
4129#endif
4130
4131void kvm_mmu_module_exit(void)
4132{
4133 mmu_destroy_caches();
4134 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4135 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4136 mmu_audit_disable();
4137}