]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: MMU: cleanup mapping-level
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201{
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
4f022648 204 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206}
207
208static bool is_mmio_spte(u64 spte)
209{
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211}
212
213static gfn_t get_mmio_spte_gfn(u64 spte)
214{
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216}
217
218static unsigned get_mmio_spte_access(u64 spte)
219{
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221}
222
223static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224{
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231}
c7addb90 232
82725b20
DE
233static inline u64 rsvd_bits(int s, int e)
234{
235 return ((1ULL << (e - s + 1)) - 1) << s;
236}
237
7b52345e 238void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
240{
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246}
247EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
6aa8b732
AK
249static int is_cpuid_PSE36(void)
250{
251 return 1;
252}
253
73b1087e
AK
254static int is_nx(struct kvm_vcpu *vcpu)
255{
f6801dff 256 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
257}
258
c7addb90
AK
259static int is_shadow_present_pte(u64 pte)
260{
ce88decf 261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
262}
263
05da4558
MT
264static int is_large_pte(u64 pte)
265{
266 return pte & PT_PAGE_SIZE_MASK;
267}
268
43a3795a 269static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 270{
439e218a 271 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
272}
273
43a3795a 274static int is_rmap_spte(u64 pte)
cd4a4e53 275{
4b1a80fa 276 return is_shadow_present_pte(pte);
cd4a4e53
AK
277}
278
776e6633
MT
279static int is_last_spte(u64 pte, int level)
280{
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
852e3c19 283 if (is_large_pte(pte))
776e6633
MT
284 return 1;
285 return 0;
286}
287
35149e21 288static pfn_t spte_to_pfn(u64 pte)
0b49ea86 289{
35149e21 290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
291}
292
da928521
AK
293static gfn_t pse36_gfn_delta(u32 gpte)
294{
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298}
299
603e0651 300#ifdef CONFIG_X86_64
d555c333 301static void __set_spte(u64 *sptep, u64 spte)
e663ee64 302{
603e0651 303 *sptep = spte;
e663ee64
AK
304}
305
603e0651 306static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 307{
603e0651
XG
308 *sptep = spte;
309}
310
311static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312{
313 return xchg(sptep, spte);
314}
c2a2ac2b
XG
315
316static u64 __get_spte_lockless(u64 *sptep)
317{
318 return ACCESS_ONCE(*sptep);
319}
ce88decf
XG
320
321static bool __check_direct_spte_mmio_pf(u64 spte)
322{
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325}
a9221dd5 326#else
603e0651
XG
327union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333};
a9221dd5 334
c2a2ac2b
XG
335static void count_spte_clear(u64 *sptep, u64 spte)
336{
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345}
346
603e0651
XG
347static void __set_spte(u64 *sptep, u64 spte)
348{
349 union split_spte *ssptep, sspte;
a9221dd5 350
603e0651
XG
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
364}
365
603e0651
XG
366static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367{
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 382 count_spte_clear(sptep, spte);
603e0651
XG
383}
384
385static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386{
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 396 count_spte_clear(sptep, spte);
603e0651
XG
397
398 return orig.spte;
399}
c2a2ac2b
XG
400
401/*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408static u64 __get_spte_lockless(u64 *sptep)
409{
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429}
ce88decf
XG
430
431static bool __check_direct_spte_mmio_pf(u64 spte)
432{
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446}
603e0651
XG
447#endif
448
c7ba5b48
XG
449static bool spte_is_locklessly_modifiable(u64 spte)
450{
feb3eb70
GN
451 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
452 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
453}
454
8672b721
XG
455static bool spte_has_volatile_bits(u64 spte)
456{
c7ba5b48
XG
457 /*
458 * Always atomicly update spte if it can be updated
459 * out of mmu-lock, it can ensure dirty bit is not lost,
460 * also, it can help us to get a stable is_writable_pte()
461 * to ensure tlb flush is not missed.
462 */
463 if (spte_is_locklessly_modifiable(spte))
464 return true;
465
8672b721
XG
466 if (!shadow_accessed_mask)
467 return false;
468
469 if (!is_shadow_present_pte(spte))
470 return false;
471
4132779b
XG
472 if ((spte & shadow_accessed_mask) &&
473 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
474 return false;
475
476 return true;
477}
478
4132779b
XG
479static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
480{
481 return (old_spte & bit_mask) && !(new_spte & bit_mask);
482}
483
1df9f2dc
XG
484/* Rules for using mmu_spte_set:
485 * Set the sptep from nonpresent to present.
486 * Note: the sptep being assigned *must* be either not present
487 * or in a state where the hardware will not attempt to update
488 * the spte.
489 */
490static void mmu_spte_set(u64 *sptep, u64 new_spte)
491{
492 WARN_ON(is_shadow_present_pte(*sptep));
493 __set_spte(sptep, new_spte);
494}
495
496/* Rules for using mmu_spte_update:
497 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
498 *
499 * Whenever we overwrite a writable spte with a read-only one we
500 * should flush remote TLBs. Otherwise rmap_write_protect
501 * will find a read-only spte, even though the writable spte
502 * might be cached on a CPU's TLB, the return value indicates this
503 * case.
1df9f2dc 504 */
6e7d0354 505static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 506{
c7ba5b48 507 u64 old_spte = *sptep;
6e7d0354 508 bool ret = false;
4132779b
XG
509
510 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 511
6e7d0354
XG
512 if (!is_shadow_present_pte(old_spte)) {
513 mmu_spte_set(sptep, new_spte);
514 return ret;
515 }
4132779b 516
c7ba5b48 517 if (!spte_has_volatile_bits(old_spte))
603e0651 518 __update_clear_spte_fast(sptep, new_spte);
4132779b 519 else
603e0651 520 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 521
c7ba5b48
XG
522 /*
523 * For the spte updated out of mmu-lock is safe, since
524 * we always atomicly update it, see the comments in
525 * spte_has_volatile_bits().
526 */
6e7d0354
XG
527 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
528 ret = true;
529
4132779b 530 if (!shadow_accessed_mask)
6e7d0354 531 return ret;
4132779b
XG
532
533 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
534 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
535 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
536 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
537
538 return ret;
b79b93f9
AK
539}
540
1df9f2dc
XG
541/*
542 * Rules for using mmu_spte_clear_track_bits:
543 * It sets the sptep from present to nonpresent, and track the
544 * state bits, it is used to clear the last level sptep.
545 */
546static int mmu_spte_clear_track_bits(u64 *sptep)
547{
548 pfn_t pfn;
549 u64 old_spte = *sptep;
550
551 if (!spte_has_volatile_bits(old_spte))
603e0651 552 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 553 else
603e0651 554 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
555
556 if (!is_rmap_spte(old_spte))
557 return 0;
558
559 pfn = spte_to_pfn(old_spte);
86fde74c
XG
560
561 /*
562 * KVM does not hold the refcount of the page used by
563 * kvm mmu, before reclaiming the page, we should
564 * unmap it from mmu first.
565 */
566 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
567
1df9f2dc
XG
568 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
569 kvm_set_pfn_accessed(pfn);
570 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
571 kvm_set_pfn_dirty(pfn);
572 return 1;
573}
574
575/*
576 * Rules for using mmu_spte_clear_no_track:
577 * Directly clear spte without caring the state bits of sptep,
578 * it is used to set the upper level spte.
579 */
580static void mmu_spte_clear_no_track(u64 *sptep)
581{
603e0651 582 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
583}
584
c2a2ac2b
XG
585static u64 mmu_spte_get_lockless(u64 *sptep)
586{
587 return __get_spte_lockless(sptep);
588}
589
590static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
591{
c142786c
AK
592 /*
593 * Prevent page table teardown by making any free-er wait during
594 * kvm_flush_remote_tlbs() IPI to all active vcpus.
595 */
596 local_irq_disable();
597 vcpu->mode = READING_SHADOW_PAGE_TABLES;
598 /*
599 * Make sure a following spte read is not reordered ahead of the write
600 * to vcpu->mode.
601 */
602 smp_mb();
c2a2ac2b
XG
603}
604
605static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
606{
c142786c
AK
607 /*
608 * Make sure the write to vcpu->mode is not reordered in front of
609 * reads to sptes. If it does, kvm_commit_zap_page() can see us
610 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
611 */
612 smp_mb();
613 vcpu->mode = OUTSIDE_GUEST_MODE;
614 local_irq_enable();
c2a2ac2b
XG
615}
616
e2dec939 617static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 618 struct kmem_cache *base_cache, int min)
714b93da
AK
619{
620 void *obj;
621
622 if (cache->nobjs >= min)
e2dec939 623 return 0;
714b93da 624 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 625 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 626 if (!obj)
e2dec939 627 return -ENOMEM;
714b93da
AK
628 cache->objects[cache->nobjs++] = obj;
629 }
e2dec939 630 return 0;
714b93da
AK
631}
632
f759e2b4
XG
633static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
634{
635 return cache->nobjs;
636}
637
e8ad9a70
XG
638static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
639 struct kmem_cache *cache)
714b93da
AK
640{
641 while (mc->nobjs)
e8ad9a70 642 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
643}
644
c1158e63 645static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 646 int min)
c1158e63 647{
842f22ed 648 void *page;
c1158e63
AK
649
650 if (cache->nobjs >= min)
651 return 0;
652 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 653 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
654 if (!page)
655 return -ENOMEM;
842f22ed 656 cache->objects[cache->nobjs++] = page;
c1158e63
AK
657 }
658 return 0;
659}
660
661static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
662{
663 while (mc->nobjs)
c4d198d5 664 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
665}
666
2e3e5882 667static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 668{
e2dec939
AK
669 int r;
670
53c07b18 671 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 672 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
673 if (r)
674 goto out;
ad312c7c 675 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
676 if (r)
677 goto out;
ad312c7c 678 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 679 mmu_page_header_cache, 4);
e2dec939
AK
680out:
681 return r;
714b93da
AK
682}
683
684static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
685{
53c07b18
XG
686 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
687 pte_list_desc_cache);
ad312c7c 688 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
689 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
690 mmu_page_header_cache);
714b93da
AK
691}
692
80feb89a 693static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
694{
695 void *p;
696
697 BUG_ON(!mc->nobjs);
698 p = mc->objects[--mc->nobjs];
714b93da
AK
699 return p;
700}
701
53c07b18 702static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 703{
80feb89a 704 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
705}
706
53c07b18 707static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 708{
53c07b18 709 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
710}
711
2032a93d
LJ
712static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
713{
714 if (!sp->role.direct)
715 return sp->gfns[index];
716
717 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
718}
719
720static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
721{
722 if (sp->role.direct)
723 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
724 else
725 sp->gfns[index] = gfn;
726}
727
05da4558 728/*
d4dbf470
TY
729 * Return the pointer to the large page information for a given gfn,
730 * handling slots that are not large page aligned.
05da4558 731 */
d4dbf470
TY
732static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
733 struct kvm_memory_slot *slot,
734 int level)
05da4558
MT
735{
736 unsigned long idx;
737
fb03cb6f 738 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 739 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
740}
741
742static void account_shadowed(struct kvm *kvm, gfn_t gfn)
743{
d25797b2 744 struct kvm_memory_slot *slot;
d4dbf470 745 struct kvm_lpage_info *linfo;
d25797b2 746 int i;
05da4558 747
a1f4d395 748 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
749 for (i = PT_DIRECTORY_LEVEL;
750 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
751 linfo = lpage_info_slot(gfn, slot, i);
752 linfo->write_count += 1;
d25797b2 753 }
332b207d 754 kvm->arch.indirect_shadow_pages++;
05da4558
MT
755}
756
757static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
758{
d25797b2 759 struct kvm_memory_slot *slot;
d4dbf470 760 struct kvm_lpage_info *linfo;
d25797b2 761 int i;
05da4558 762
a1f4d395 763 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
764 for (i = PT_DIRECTORY_LEVEL;
765 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
766 linfo = lpage_info_slot(gfn, slot, i);
767 linfo->write_count -= 1;
768 WARN_ON(linfo->write_count < 0);
d25797b2 769 }
332b207d 770 kvm->arch.indirect_shadow_pages--;
05da4558
MT
771}
772
d25797b2
JR
773static int has_wrprotected_page(struct kvm *kvm,
774 gfn_t gfn,
775 int level)
05da4558 776{
2843099f 777 struct kvm_memory_slot *slot;
d4dbf470 778 struct kvm_lpage_info *linfo;
05da4558 779
a1f4d395 780 slot = gfn_to_memslot(kvm, gfn);
05da4558 781 if (slot) {
d4dbf470
TY
782 linfo = lpage_info_slot(gfn, slot, level);
783 return linfo->write_count;
05da4558
MT
784 }
785
786 return 1;
787}
788
d25797b2 789static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 790{
8f0b1ab6 791 unsigned long page_size;
d25797b2 792 int i, ret = 0;
05da4558 793
8f0b1ab6 794 page_size = kvm_host_page_size(kvm, gfn);
05da4558 795
d25797b2
JR
796 for (i = PT_PAGE_TABLE_LEVEL;
797 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
798 if (page_size >= KVM_HPAGE_SIZE(i))
799 ret = i;
800 else
801 break;
802 }
803
4c2155ce 804 return ret;
05da4558
MT
805}
806
5d163b1c
XG
807static struct kvm_memory_slot *
808gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
809 bool no_dirty_log)
05da4558
MT
810{
811 struct kvm_memory_slot *slot;
5d163b1c
XG
812
813 slot = gfn_to_memslot(vcpu->kvm, gfn);
814 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
815 (no_dirty_log && slot->dirty_bitmap))
816 slot = NULL;
817
818 return slot;
819}
820
821static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
822{
a0a8eaba 823 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
824}
825
826static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
827{
828 int host_level, level, max_level;
05da4558 829
d25797b2
JR
830 host_level = host_mapping_level(vcpu->kvm, large_gfn);
831
832 if (host_level == PT_PAGE_TABLE_LEVEL)
833 return host_level;
834
55dd98c3 835 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
836
837 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
838 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
839 break;
d25797b2
JR
840
841 return level - 1;
05da4558
MT
842}
843
290fc38d 844/*
53c07b18 845 * Pte mapping structures:
cd4a4e53 846 *
53c07b18 847 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 848 *
53c07b18
XG
849 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
850 * pte_list_desc containing more mappings.
53a27b39 851 *
53c07b18 852 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
853 * the spte was not added.
854 *
cd4a4e53 855 */
53c07b18
XG
856static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
857 unsigned long *pte_list)
cd4a4e53 858{
53c07b18 859 struct pte_list_desc *desc;
53a27b39 860 int i, count = 0;
cd4a4e53 861
53c07b18
XG
862 if (!*pte_list) {
863 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
864 *pte_list = (unsigned long)spte;
865 } else if (!(*pte_list & 1)) {
866 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
867 desc = mmu_alloc_pte_list_desc(vcpu);
868 desc->sptes[0] = (u64 *)*pte_list;
d555c333 869 desc->sptes[1] = spte;
53c07b18 870 *pte_list = (unsigned long)desc | 1;
cb16a7b3 871 ++count;
cd4a4e53 872 } else {
53c07b18
XG
873 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
874 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
875 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 876 desc = desc->more;
53c07b18 877 count += PTE_LIST_EXT;
53a27b39 878 }
53c07b18
XG
879 if (desc->sptes[PTE_LIST_EXT-1]) {
880 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
881 desc = desc->more;
882 }
d555c333 883 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 884 ++count;
d555c333 885 desc->sptes[i] = spte;
cd4a4e53 886 }
53a27b39 887 return count;
cd4a4e53
AK
888}
889
53c07b18
XG
890static void
891pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
892 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
893{
894 int j;
895
53c07b18 896 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 897 ;
d555c333
AK
898 desc->sptes[i] = desc->sptes[j];
899 desc->sptes[j] = NULL;
cd4a4e53
AK
900 if (j != 0)
901 return;
902 if (!prev_desc && !desc->more)
53c07b18 903 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
904 else
905 if (prev_desc)
906 prev_desc->more = desc->more;
907 else
53c07b18
XG
908 *pte_list = (unsigned long)desc->more | 1;
909 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
910}
911
53c07b18 912static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 913{
53c07b18
XG
914 struct pte_list_desc *desc;
915 struct pte_list_desc *prev_desc;
cd4a4e53
AK
916 int i;
917
53c07b18
XG
918 if (!*pte_list) {
919 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 920 BUG();
53c07b18
XG
921 } else if (!(*pte_list & 1)) {
922 rmap_printk("pte_list_remove: %p 1->0\n", spte);
923 if ((u64 *)*pte_list != spte) {
924 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
925 BUG();
926 }
53c07b18 927 *pte_list = 0;
cd4a4e53 928 } else {
53c07b18
XG
929 rmap_printk("pte_list_remove: %p many->many\n", spte);
930 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
931 prev_desc = NULL;
932 while (desc) {
53c07b18 933 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 934 if (desc->sptes[i] == spte) {
53c07b18 935 pte_list_desc_remove_entry(pte_list,
714b93da 936 desc, i,
cd4a4e53
AK
937 prev_desc);
938 return;
939 }
940 prev_desc = desc;
941 desc = desc->more;
942 }
53c07b18 943 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
944 BUG();
945 }
946}
947
67052b35
XG
948typedef void (*pte_list_walk_fn) (u64 *spte);
949static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
950{
951 struct pte_list_desc *desc;
952 int i;
953
954 if (!*pte_list)
955 return;
956
957 if (!(*pte_list & 1))
958 return fn((u64 *)*pte_list);
959
960 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
961 while (desc) {
962 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
963 fn(desc->sptes[i]);
964 desc = desc->more;
965 }
966}
967
9373e2c0 968static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 969 struct kvm_memory_slot *slot)
53c07b18 970{
77d11309 971 unsigned long idx;
53c07b18 972
77d11309 973 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 974 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
975}
976
9b9b1492
TY
977/*
978 * Take gfn and return the reverse mapping to it.
979 */
980static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
981{
982 struct kvm_memory_slot *slot;
983
984 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 985 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
986}
987
f759e2b4
XG
988static bool rmap_can_add(struct kvm_vcpu *vcpu)
989{
990 struct kvm_mmu_memory_cache *cache;
991
992 cache = &vcpu->arch.mmu_pte_list_desc_cache;
993 return mmu_memory_cache_free_objects(cache);
994}
995
53c07b18
XG
996static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
997{
998 struct kvm_mmu_page *sp;
999 unsigned long *rmapp;
1000
53c07b18
XG
1001 sp = page_header(__pa(spte));
1002 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1003 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1004 return pte_list_add(vcpu, spte, rmapp);
1005}
1006
53c07b18
XG
1007static void rmap_remove(struct kvm *kvm, u64 *spte)
1008{
1009 struct kvm_mmu_page *sp;
1010 gfn_t gfn;
1011 unsigned long *rmapp;
1012
1013 sp = page_header(__pa(spte));
1014 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1015 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1016 pte_list_remove(spte, rmapp);
1017}
1018
1e3f42f0
TY
1019/*
1020 * Used by the following functions to iterate through the sptes linked by a
1021 * rmap. All fields are private and not assumed to be used outside.
1022 */
1023struct rmap_iterator {
1024 /* private fields */
1025 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1026 int pos; /* index of the sptep */
1027};
1028
1029/*
1030 * Iteration must be started by this function. This should also be used after
1031 * removing/dropping sptes from the rmap link because in such cases the
1032 * information in the itererator may not be valid.
1033 *
1034 * Returns sptep if found, NULL otherwise.
1035 */
1036static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1037{
1038 if (!rmap)
1039 return NULL;
1040
1041 if (!(rmap & 1)) {
1042 iter->desc = NULL;
1043 return (u64 *)rmap;
1044 }
1045
1046 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1047 iter->pos = 0;
1048 return iter->desc->sptes[iter->pos];
1049}
1050
1051/*
1052 * Must be used with a valid iterator: e.g. after rmap_get_first().
1053 *
1054 * Returns sptep if found, NULL otherwise.
1055 */
1056static u64 *rmap_get_next(struct rmap_iterator *iter)
1057{
1058 if (iter->desc) {
1059 if (iter->pos < PTE_LIST_EXT - 1) {
1060 u64 *sptep;
1061
1062 ++iter->pos;
1063 sptep = iter->desc->sptes[iter->pos];
1064 if (sptep)
1065 return sptep;
1066 }
1067
1068 iter->desc = iter->desc->more;
1069
1070 if (iter->desc) {
1071 iter->pos = 0;
1072 /* desc->sptes[0] cannot be NULL */
1073 return iter->desc->sptes[iter->pos];
1074 }
1075 }
1076
1077 return NULL;
1078}
1079
c3707958 1080static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1081{
1df9f2dc 1082 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1083 rmap_remove(kvm, sptep);
be38d276
AK
1084}
1085
8e22f955
XG
1086
1087static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1088{
1089 if (is_large_pte(*sptep)) {
1090 WARN_ON(page_header(__pa(sptep))->role.level ==
1091 PT_PAGE_TABLE_LEVEL);
1092 drop_spte(kvm, sptep);
1093 --kvm->stat.lpages;
1094 return true;
1095 }
1096
1097 return false;
1098}
1099
1100static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1101{
1102 if (__drop_large_spte(vcpu->kvm, sptep))
1103 kvm_flush_remote_tlbs(vcpu->kvm);
1104}
1105
1106/*
49fde340 1107 * Write-protect on the specified @sptep, @pt_protect indicates whether
caf6900f 1108 * spte write-protection is caused by protecting shadow page table.
49fde340
XG
1109 *
1110 * Note: write protection is difference between drity logging and spte
1111 * protection:
1112 * - for dirty logging, the spte can be set to writable at anytime if
1113 * its dirty bitmap is properly set.
1114 * - for spte protection, the spte can be writable only after unsync-ing
1115 * shadow page.
8e22f955 1116 *
caf6900f 1117 * Return true if tlb need be flushed.
8e22f955 1118 */
caf6900f 1119static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1120{
1121 u64 spte = *sptep;
1122
49fde340
XG
1123 if (!is_writable_pte(spte) &&
1124 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1125 return false;
1126
1127 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1128
49fde340
XG
1129 if (pt_protect)
1130 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1131 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1132
caf6900f 1133 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1134}
1135
49fde340 1136static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1137 bool pt_protect)
98348e95 1138{
1e3f42f0
TY
1139 u64 *sptep;
1140 struct rmap_iterator iter;
d13bc5b5 1141 bool flush = false;
374cbac0 1142
1e3f42f0
TY
1143 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1144 BUG_ON(!(*sptep & PT_PRESENT_MASK));
a0ed4607 1145
caf6900f 1146 flush |= spte_write_protect(kvm, sptep, pt_protect);
d13bc5b5 1147 sptep = rmap_get_next(&iter);
374cbac0 1148 }
855149aa 1149
d13bc5b5 1150 return flush;
a0ed4607
TY
1151}
1152
5dc99b23
TY
1153/**
1154 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1155 * @kvm: kvm instance
1156 * @slot: slot to protect
1157 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1158 * @mask: indicates which pages we should protect
1159 *
1160 * Used when we do not need to care about huge page mappings: e.g. during dirty
1161 * logging we do not have any such mappings.
1162 */
1163void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1164 struct kvm_memory_slot *slot,
1165 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1166{
1167 unsigned long *rmapp;
a0ed4607 1168
5dc99b23 1169 while (mask) {
65fbe37c
TY
1170 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1171 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1172 __rmap_write_protect(kvm, rmapp, false);
05da4558 1173
5dc99b23
TY
1174 /* clear the first set bit */
1175 mask &= mask - 1;
1176 }
374cbac0
AK
1177}
1178
2f84569f 1179static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1180{
1181 struct kvm_memory_slot *slot;
5dc99b23
TY
1182 unsigned long *rmapp;
1183 int i;
2f84569f 1184 bool write_protected = false;
95d4c16c
TY
1185
1186 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1187
1188 for (i = PT_PAGE_TABLE_LEVEL;
1189 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1190 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1191 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1192 }
1193
1194 return write_protected;
95d4c16c
TY
1195}
1196
8a8365c5 1197static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1198 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1199{
1e3f42f0
TY
1200 u64 *sptep;
1201 struct rmap_iterator iter;
e930bffe
AA
1202 int need_tlb_flush = 0;
1203
1e3f42f0
TY
1204 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1205 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1206 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1207
1208 drop_spte(kvm, sptep);
e930bffe
AA
1209 need_tlb_flush = 1;
1210 }
1e3f42f0 1211
e930bffe
AA
1212 return need_tlb_flush;
1213}
1214
8a8365c5 1215static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1216 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1217{
1e3f42f0
TY
1218 u64 *sptep;
1219 struct rmap_iterator iter;
3da0dd43 1220 int need_flush = 0;
1e3f42f0 1221 u64 new_spte;
3da0dd43
IE
1222 pte_t *ptep = (pte_t *)data;
1223 pfn_t new_pfn;
1224
1225 WARN_ON(pte_huge(*ptep));
1226 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1227
1228 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1229 BUG_ON(!is_shadow_present_pte(*sptep));
1230 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1231
3da0dd43 1232 need_flush = 1;
1e3f42f0 1233
3da0dd43 1234 if (pte_write(*ptep)) {
1e3f42f0
TY
1235 drop_spte(kvm, sptep);
1236 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1237 } else {
1e3f42f0 1238 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1239 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1240
1241 new_spte &= ~PT_WRITABLE_MASK;
1242 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1243 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1244
1245 mmu_spte_clear_track_bits(sptep);
1246 mmu_spte_set(sptep, new_spte);
1247 sptep = rmap_get_next(&iter);
3da0dd43
IE
1248 }
1249 }
1e3f42f0 1250
3da0dd43
IE
1251 if (need_flush)
1252 kvm_flush_remote_tlbs(kvm);
1253
1254 return 0;
1255}
1256
84504ef3
TY
1257static int kvm_handle_hva_range(struct kvm *kvm,
1258 unsigned long start,
1259 unsigned long end,
1260 unsigned long data,
1261 int (*handler)(struct kvm *kvm,
1262 unsigned long *rmapp,
048212d0 1263 struct kvm_memory_slot *slot,
84504ef3 1264 unsigned long data))
e930bffe 1265{
be6ba0f0 1266 int j;
f395302e 1267 int ret = 0;
bc6678a3 1268 struct kvm_memslots *slots;
be6ba0f0 1269 struct kvm_memory_slot *memslot;
bc6678a3 1270
90d83dc3 1271 slots = kvm_memslots(kvm);
e930bffe 1272
be6ba0f0 1273 kvm_for_each_memslot(memslot, slots) {
84504ef3 1274 unsigned long hva_start, hva_end;
bcd3ef58 1275 gfn_t gfn_start, gfn_end;
e930bffe 1276
84504ef3
TY
1277 hva_start = max(start, memslot->userspace_addr);
1278 hva_end = min(end, memslot->userspace_addr +
1279 (memslot->npages << PAGE_SHIFT));
1280 if (hva_start >= hva_end)
1281 continue;
1282 /*
1283 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1284 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1285 */
bcd3ef58 1286 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1287 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1288
bcd3ef58
TY
1289 for (j = PT_PAGE_TABLE_LEVEL;
1290 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1291 unsigned long idx, idx_end;
1292 unsigned long *rmapp;
d4dbf470 1293
bcd3ef58
TY
1294 /*
1295 * {idx(page_j) | page_j intersects with
1296 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1297 */
1298 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1299 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1300
bcd3ef58 1301 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1302
bcd3ef58
TY
1303 for (; idx <= idx_end; ++idx)
1304 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1305 }
1306 }
1307
f395302e 1308 return ret;
e930bffe
AA
1309}
1310
84504ef3
TY
1311static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1312 unsigned long data,
1313 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1314 struct kvm_memory_slot *slot,
84504ef3
TY
1315 unsigned long data))
1316{
1317 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1318}
1319
1320int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1321{
3da0dd43
IE
1322 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1323}
1324
b3ae2096
TY
1325int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1326{
1327 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1328}
1329
3da0dd43
IE
1330void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1331{
8a8365c5 1332 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1333}
1334
8a8365c5 1335static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1336 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1337{
1e3f42f0 1338 u64 *sptep;
79f702a6 1339 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1340 int young = 0;
1341
6316e1c8 1342 /*
3f6d8c8a
XH
1343 * In case of absence of EPT Access and Dirty Bits supports,
1344 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1345 * an EPT mapping, and clearing it if it does. On the next access,
1346 * a new EPT mapping will be established.
1347 * This has some overhead, but not as much as the cost of swapping
1348 * out actively used pages or breaking up actively used hugepages.
1349 */
f395302e
TY
1350 if (!shadow_accessed_mask) {
1351 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1352 goto out;
1353 }
534e38b4 1354
1e3f42f0
TY
1355 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1356 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1357 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1358
3f6d8c8a 1359 if (*sptep & shadow_accessed_mask) {
e930bffe 1360 young = 1;
3f6d8c8a
XH
1361 clear_bit((ffs(shadow_accessed_mask) - 1),
1362 (unsigned long *)sptep);
e930bffe 1363 }
e930bffe 1364 }
f395302e
TY
1365out:
1366 /* @data has hva passed to kvm_age_hva(). */
1367 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1368 return young;
1369}
1370
8ee53820 1371static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1372 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1373{
1e3f42f0
TY
1374 u64 *sptep;
1375 struct rmap_iterator iter;
8ee53820
AA
1376 int young = 0;
1377
1378 /*
1379 * If there's no access bit in the secondary pte set by the
1380 * hardware it's up to gup-fast/gup to set the access bit in
1381 * the primary pte or in the page structure.
1382 */
1383 if (!shadow_accessed_mask)
1384 goto out;
1385
1e3f42f0
TY
1386 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1387 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1388 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1389
3f6d8c8a 1390 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1391 young = 1;
1392 break;
1393 }
8ee53820
AA
1394 }
1395out:
1396 return young;
1397}
1398
53a27b39
MT
1399#define RMAP_RECYCLE_THRESHOLD 1000
1400
852e3c19 1401static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1402{
1403 unsigned long *rmapp;
852e3c19
JR
1404 struct kvm_mmu_page *sp;
1405
1406 sp = page_header(__pa(spte));
53a27b39 1407
852e3c19 1408 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1409
048212d0 1410 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1411 kvm_flush_remote_tlbs(vcpu->kvm);
1412}
1413
e930bffe
AA
1414int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1415{
f395302e 1416 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1417}
1418
8ee53820
AA
1419int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1420{
1421 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1422}
1423
d6c69ee9 1424#ifdef MMU_DEBUG
47ad8e68 1425static int is_empty_shadow_page(u64 *spt)
6aa8b732 1426{
139bdb2d
AK
1427 u64 *pos;
1428 u64 *end;
1429
47ad8e68 1430 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1431 if (is_shadow_present_pte(*pos)) {
b8688d51 1432 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1433 pos, *pos);
6aa8b732 1434 return 0;
139bdb2d 1435 }
6aa8b732
AK
1436 return 1;
1437}
d6c69ee9 1438#endif
6aa8b732 1439
45221ab6
DH
1440/*
1441 * This value is the sum of all of the kvm instances's
1442 * kvm->arch.n_used_mmu_pages values. We need a global,
1443 * aggregate version in order to make the slab shrinker
1444 * faster
1445 */
1446static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1447{
1448 kvm->arch.n_used_mmu_pages += nr;
1449 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1450}
1451
834be0d8 1452static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1453{
4db35314 1454 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1455 hlist_del(&sp->hash_link);
bd4c86ea
XG
1456 list_del(&sp->link);
1457 free_page((unsigned long)sp->spt);
834be0d8
GN
1458 if (!sp->role.direct)
1459 free_page((unsigned long)sp->gfns);
e8ad9a70 1460 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1461}
1462
cea0f0e7
AK
1463static unsigned kvm_page_table_hashfn(gfn_t gfn)
1464{
1ae0a13d 1465 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1466}
1467
714b93da 1468static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1469 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1470{
cea0f0e7
AK
1471 if (!parent_pte)
1472 return;
cea0f0e7 1473
67052b35 1474 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1475}
1476
4db35314 1477static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1478 u64 *parent_pte)
1479{
67052b35 1480 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1481}
1482
bcdd9a93
XG
1483static void drop_parent_pte(struct kvm_mmu_page *sp,
1484 u64 *parent_pte)
1485{
1486 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1487 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1488}
1489
67052b35
XG
1490static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1491 u64 *parent_pte, int direct)
ad8cfbe3 1492{
67052b35 1493 struct kvm_mmu_page *sp;
80feb89a
TY
1494 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1495 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1496 if (!direct)
80feb89a 1497 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
1498 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1499 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1500 sp->parent_ptes = 0;
1501 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1502 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1503 return sp;
ad8cfbe3
MT
1504}
1505
67052b35 1506static void mark_unsync(u64 *spte);
1047df1f 1507static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1508{
67052b35 1509 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1510}
1511
67052b35 1512static void mark_unsync(u64 *spte)
0074ff63 1513{
67052b35 1514 struct kvm_mmu_page *sp;
1047df1f 1515 unsigned int index;
0074ff63 1516
67052b35 1517 sp = page_header(__pa(spte));
1047df1f
XG
1518 index = spte - sp->spt;
1519 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1520 return;
1047df1f 1521 if (sp->unsync_children++)
0074ff63 1522 return;
1047df1f 1523 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1524}
1525
e8bc217a 1526static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1527 struct kvm_mmu_page *sp)
e8bc217a
MT
1528{
1529 return 1;
1530}
1531
a7052897
MT
1532static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1533{
1534}
1535
0f53b5b1
XG
1536static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1537 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1538 const void *pte)
0f53b5b1
XG
1539{
1540 WARN_ON(1);
1541}
1542
60c8aec6
MT
1543#define KVM_PAGE_ARRAY_NR 16
1544
1545struct kvm_mmu_pages {
1546 struct mmu_page_and_offset {
1547 struct kvm_mmu_page *sp;
1548 unsigned int idx;
1549 } page[KVM_PAGE_ARRAY_NR];
1550 unsigned int nr;
1551};
1552
cded19f3
HE
1553static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1554 int idx)
4731d4c7 1555{
60c8aec6 1556 int i;
4731d4c7 1557
60c8aec6
MT
1558 if (sp->unsync)
1559 for (i=0; i < pvec->nr; i++)
1560 if (pvec->page[i].sp == sp)
1561 return 0;
1562
1563 pvec->page[pvec->nr].sp = sp;
1564 pvec->page[pvec->nr].idx = idx;
1565 pvec->nr++;
1566 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1567}
1568
1569static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1570 struct kvm_mmu_pages *pvec)
1571{
1572 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1573
37178b8b 1574 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1575 struct kvm_mmu_page *child;
4731d4c7
MT
1576 u64 ent = sp->spt[i];
1577
7a8f1a74
XG
1578 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1579 goto clear_child_bitmap;
1580
1581 child = page_header(ent & PT64_BASE_ADDR_MASK);
1582
1583 if (child->unsync_children) {
1584 if (mmu_pages_add(pvec, child, i))
1585 return -ENOSPC;
1586
1587 ret = __mmu_unsync_walk(child, pvec);
1588 if (!ret)
1589 goto clear_child_bitmap;
1590 else if (ret > 0)
1591 nr_unsync_leaf += ret;
1592 else
1593 return ret;
1594 } else if (child->unsync) {
1595 nr_unsync_leaf++;
1596 if (mmu_pages_add(pvec, child, i))
1597 return -ENOSPC;
1598 } else
1599 goto clear_child_bitmap;
1600
1601 continue;
1602
1603clear_child_bitmap:
1604 __clear_bit(i, sp->unsync_child_bitmap);
1605 sp->unsync_children--;
1606 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1607 }
1608
4731d4c7 1609
60c8aec6
MT
1610 return nr_unsync_leaf;
1611}
1612
1613static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1614 struct kvm_mmu_pages *pvec)
1615{
1616 if (!sp->unsync_children)
1617 return 0;
1618
1619 mmu_pages_add(pvec, sp, 0);
1620 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1621}
1622
4731d4c7
MT
1623static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1624{
1625 WARN_ON(!sp->unsync);
5e1b3ddb 1626 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1627 sp->unsync = 0;
1628 --kvm->stat.mmu_unsync;
1629}
1630
7775834a
XG
1631static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1632 struct list_head *invalid_list);
1633static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1634 struct list_head *invalid_list);
4731d4c7 1635
f41d335a
XG
1636#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1637 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1638 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1639 if ((sp)->gfn != (gfn)) {} else
1640
f41d335a
XG
1641#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1642 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1643 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1644 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1645 (sp)->role.invalid) {} else
1646
f918b443 1647/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1648static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1649 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1650{
5b7e0102 1651 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1652 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1653 return 1;
1654 }
1655
f918b443 1656 if (clear_unsync)
1d9dc7e0 1657 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1658
a4a8e6f7 1659 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1660 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1661 return 1;
1662 }
1663
1664 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1665 return 0;
1666}
1667
1d9dc7e0
XG
1668static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1669 struct kvm_mmu_page *sp)
1670{
d98ba053 1671 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1672 int ret;
1673
d98ba053 1674 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1675 if (ret)
d98ba053
XG
1676 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1677
1d9dc7e0
XG
1678 return ret;
1679}
1680
e37fa785
XG
1681#ifdef CONFIG_KVM_MMU_AUDIT
1682#include "mmu_audit.c"
1683#else
1684static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1685static void mmu_audit_disable(void) { }
1686#endif
1687
d98ba053
XG
1688static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1689 struct list_head *invalid_list)
1d9dc7e0 1690{
d98ba053 1691 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1692}
1693
9f1a122f
XG
1694/* @gfn should be write-protected at the call site */
1695static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1696{
9f1a122f 1697 struct kvm_mmu_page *s;
f41d335a 1698 struct hlist_node *node;
d98ba053 1699 LIST_HEAD(invalid_list);
9f1a122f
XG
1700 bool flush = false;
1701
f41d335a 1702 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1703 if (!s->unsync)
9f1a122f
XG
1704 continue;
1705
1706 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1707 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1708 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1709 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1710 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1711 continue;
1712 }
9f1a122f
XG
1713 flush = true;
1714 }
1715
d98ba053 1716 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1717 if (flush)
1718 kvm_mmu_flush_tlb(vcpu);
1719}
1720
60c8aec6
MT
1721struct mmu_page_path {
1722 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1723 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1724};
1725
60c8aec6
MT
1726#define for_each_sp(pvec, sp, parents, i) \
1727 for (i = mmu_pages_next(&pvec, &parents, -1), \
1728 sp = pvec.page[i].sp; \
1729 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1730 i = mmu_pages_next(&pvec, &parents, i))
1731
cded19f3
HE
1732static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1733 struct mmu_page_path *parents,
1734 int i)
60c8aec6
MT
1735{
1736 int n;
1737
1738 for (n = i+1; n < pvec->nr; n++) {
1739 struct kvm_mmu_page *sp = pvec->page[n].sp;
1740
1741 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1742 parents->idx[0] = pvec->page[n].idx;
1743 return n;
1744 }
1745
1746 parents->parent[sp->role.level-2] = sp;
1747 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1748 }
1749
1750 return n;
1751}
1752
cded19f3 1753static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1754{
60c8aec6
MT
1755 struct kvm_mmu_page *sp;
1756 unsigned int level = 0;
1757
1758 do {
1759 unsigned int idx = parents->idx[level];
4731d4c7 1760
60c8aec6
MT
1761 sp = parents->parent[level];
1762 if (!sp)
1763 return;
1764
1765 --sp->unsync_children;
1766 WARN_ON((int)sp->unsync_children < 0);
1767 __clear_bit(idx, sp->unsync_child_bitmap);
1768 level++;
1769 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1770}
1771
60c8aec6
MT
1772static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1773 struct mmu_page_path *parents,
1774 struct kvm_mmu_pages *pvec)
4731d4c7 1775{
60c8aec6
MT
1776 parents->parent[parent->role.level-1] = NULL;
1777 pvec->nr = 0;
1778}
4731d4c7 1779
60c8aec6
MT
1780static void mmu_sync_children(struct kvm_vcpu *vcpu,
1781 struct kvm_mmu_page *parent)
1782{
1783 int i;
1784 struct kvm_mmu_page *sp;
1785 struct mmu_page_path parents;
1786 struct kvm_mmu_pages pages;
d98ba053 1787 LIST_HEAD(invalid_list);
60c8aec6
MT
1788
1789 kvm_mmu_pages_init(parent, &parents, &pages);
1790 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1791 bool protected = false;
b1a36821
MT
1792
1793 for_each_sp(pages, sp, parents, i)
1794 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1795
1796 if (protected)
1797 kvm_flush_remote_tlbs(vcpu->kvm);
1798
60c8aec6 1799 for_each_sp(pages, sp, parents, i) {
d98ba053 1800 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1801 mmu_pages_clear_parents(&parents);
1802 }
d98ba053 1803 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1804 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1805 kvm_mmu_pages_init(parent, &parents, &pages);
1806 }
4731d4c7
MT
1807}
1808
c3707958
XG
1809static void init_shadow_page_table(struct kvm_mmu_page *sp)
1810{
1811 int i;
1812
1813 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1814 sp->spt[i] = 0ull;
1815}
1816
a30f47cb
XG
1817static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1818{
1819 sp->write_flooding_count = 0;
1820}
1821
1822static void clear_sp_write_flooding_count(u64 *spte)
1823{
1824 struct kvm_mmu_page *sp = page_header(__pa(spte));
1825
1826 __clear_sp_write_flooding_count(sp);
1827}
1828
cea0f0e7
AK
1829static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1830 gfn_t gfn,
1831 gva_t gaddr,
1832 unsigned level,
f6e2c02b 1833 int direct,
41074d07 1834 unsigned access,
f7d9c7b7 1835 u64 *parent_pte)
cea0f0e7
AK
1836{
1837 union kvm_mmu_page_role role;
cea0f0e7 1838 unsigned quadrant;
9f1a122f 1839 struct kvm_mmu_page *sp;
f41d335a 1840 struct hlist_node *node;
9f1a122f 1841 bool need_sync = false;
cea0f0e7 1842
a770f6f2 1843 role = vcpu->arch.mmu.base_role;
cea0f0e7 1844 role.level = level;
f6e2c02b 1845 role.direct = direct;
84b0c8c6 1846 if (role.direct)
5b7e0102 1847 role.cr4_pae = 0;
41074d07 1848 role.access = access;
c5a78f2b
JR
1849 if (!vcpu->arch.mmu.direct_map
1850 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1851 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1852 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1853 role.quadrant = quadrant;
1854 }
f41d335a 1855 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1856 if (!need_sync && sp->unsync)
1857 need_sync = true;
4731d4c7 1858
7ae680eb
XG
1859 if (sp->role.word != role.word)
1860 continue;
4731d4c7 1861
7ae680eb
XG
1862 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1863 break;
e02aa901 1864
7ae680eb
XG
1865 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1866 if (sp->unsync_children) {
a8eeb04a 1867 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1868 kvm_mmu_mark_parents_unsync(sp);
1869 } else if (sp->unsync)
1870 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1871
a30f47cb 1872 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1873 trace_kvm_mmu_get_page(sp, false);
1874 return sp;
1875 }
dfc5aa00 1876 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1877 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1878 if (!sp)
1879 return sp;
4db35314
AK
1880 sp->gfn = gfn;
1881 sp->role = role;
7ae680eb
XG
1882 hlist_add_head(&sp->hash_link,
1883 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1884 if (!direct) {
b1a36821
MT
1885 if (rmap_write_protect(vcpu->kvm, gfn))
1886 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1887 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1888 kvm_sync_pages(vcpu, gfn);
1889
4731d4c7
MT
1890 account_shadowed(vcpu->kvm, gfn);
1891 }
c3707958 1892 init_shadow_page_table(sp);
f691fe1d 1893 trace_kvm_mmu_get_page(sp, true);
4db35314 1894 return sp;
cea0f0e7
AK
1895}
1896
2d11123a
AK
1897static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1898 struct kvm_vcpu *vcpu, u64 addr)
1899{
1900 iterator->addr = addr;
1901 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1902 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1903
1904 if (iterator->level == PT64_ROOT_LEVEL &&
1905 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1906 !vcpu->arch.mmu.direct_map)
1907 --iterator->level;
1908
2d11123a
AK
1909 if (iterator->level == PT32E_ROOT_LEVEL) {
1910 iterator->shadow_addr
1911 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1912 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1913 --iterator->level;
1914 if (!iterator->shadow_addr)
1915 iterator->level = 0;
1916 }
1917}
1918
1919static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1920{
1921 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1922 return false;
4d88954d 1923
2d11123a
AK
1924 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1925 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1926 return true;
1927}
1928
c2a2ac2b
XG
1929static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1930 u64 spte)
2d11123a 1931{
c2a2ac2b 1932 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1933 iterator->level = 0;
1934 return;
1935 }
1936
c2a2ac2b 1937 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1938 --iterator->level;
1939}
1940
c2a2ac2b
XG
1941static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1942{
1943 return __shadow_walk_next(iterator, *iterator->sptep);
1944}
1945
32ef26a3
AK
1946static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1947{
1948 u64 spte;
1949
1950 spte = __pa(sp->spt)
1951 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1952 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1953 mmu_spte_set(sptep, spte);
32ef26a3
AK
1954}
1955
a357bd22
AK
1956static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1957 unsigned direct_access)
1958{
1959 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1960 struct kvm_mmu_page *child;
1961
1962 /*
1963 * For the direct sp, if the guest pte's dirty bit
1964 * changed form clean to dirty, it will corrupt the
1965 * sp's access: allow writable in the read-only sp,
1966 * so we should update the spte at this point to get
1967 * a new sp with the correct access.
1968 */
1969 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1970 if (child->role.access == direct_access)
1971 return;
1972
bcdd9a93 1973 drop_parent_pte(child, sptep);
a357bd22
AK
1974 kvm_flush_remote_tlbs(vcpu->kvm);
1975 }
1976}
1977
505aef8f 1978static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1979 u64 *spte)
1980{
1981 u64 pte;
1982 struct kvm_mmu_page *child;
1983
1984 pte = *spte;
1985 if (is_shadow_present_pte(pte)) {
505aef8f 1986 if (is_last_spte(pte, sp->role.level)) {
c3707958 1987 drop_spte(kvm, spte);
505aef8f
XG
1988 if (is_large_pte(pte))
1989 --kvm->stat.lpages;
1990 } else {
38e3b2b2 1991 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 1992 drop_parent_pte(child, spte);
38e3b2b2 1993 }
505aef8f
XG
1994 return true;
1995 }
1996
1997 if (is_mmio_spte(pte))
ce88decf 1998 mmu_spte_clear_no_track(spte);
c3707958 1999
505aef8f 2000 return false;
38e3b2b2
XG
2001}
2002
90cb0529 2003static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2004 struct kvm_mmu_page *sp)
a436036b 2005{
697fe2e2 2006 unsigned i;
697fe2e2 2007
38e3b2b2
XG
2008 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2009 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2010}
2011
4db35314 2012static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2013{
4db35314 2014 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2015}
2016
31aa2b44 2017static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2018{
1e3f42f0
TY
2019 u64 *sptep;
2020 struct rmap_iterator iter;
a436036b 2021
1e3f42f0
TY
2022 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2023 drop_parent_pte(sp, sptep);
31aa2b44
AK
2024}
2025
60c8aec6 2026static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2027 struct kvm_mmu_page *parent,
2028 struct list_head *invalid_list)
4731d4c7 2029{
60c8aec6
MT
2030 int i, zapped = 0;
2031 struct mmu_page_path parents;
2032 struct kvm_mmu_pages pages;
4731d4c7 2033
60c8aec6 2034 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2035 return 0;
60c8aec6
MT
2036
2037 kvm_mmu_pages_init(parent, &parents, &pages);
2038 while (mmu_unsync_walk(parent, &pages)) {
2039 struct kvm_mmu_page *sp;
2040
2041 for_each_sp(pages, sp, parents, i) {
7775834a 2042 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2043 mmu_pages_clear_parents(&parents);
77662e00 2044 zapped++;
60c8aec6 2045 }
60c8aec6
MT
2046 kvm_mmu_pages_init(parent, &parents, &pages);
2047 }
2048
2049 return zapped;
4731d4c7
MT
2050}
2051
7775834a
XG
2052static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2053 struct list_head *invalid_list)
31aa2b44 2054{
4731d4c7 2055 int ret;
f691fe1d 2056
7775834a 2057 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2058 ++kvm->stat.mmu_shadow_zapped;
7775834a 2059 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2060 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2061 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 2062 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2063 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
2064 if (sp->unsync)
2065 kvm_unlink_unsync_page(kvm, sp);
4db35314 2066 if (!sp->root_count) {
54a4f023
GJ
2067 /* Count self */
2068 ret++;
7775834a 2069 list_move(&sp->link, invalid_list);
aa6bd187 2070 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2071 } else {
5b5c6a5a 2072 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
2073 kvm_reload_remote_mmus(kvm);
2074 }
7775834a
XG
2075
2076 sp->role.invalid = 1;
4731d4c7 2077 return ret;
a436036b
AK
2078}
2079
7775834a
XG
2080static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2081 struct list_head *invalid_list)
2082{
2083 struct kvm_mmu_page *sp;
2084
2085 if (list_empty(invalid_list))
2086 return;
2087
c142786c
AK
2088 /*
2089 * wmb: make sure everyone sees our modifications to the page tables
2090 * rmb: make sure we see changes to vcpu->mode
2091 */
2092 smp_mb();
4f022648 2093
c142786c
AK
2094 /*
2095 * Wait for all vcpus to exit guest mode and/or lockless shadow
2096 * page table walks.
2097 */
2098 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2099
7775834a
XG
2100 do {
2101 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2102 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2103 kvm_mmu_free_page(sp);
7775834a 2104 } while (!list_empty(invalid_list));
7775834a
XG
2105}
2106
82ce2c96
IE
2107/*
2108 * Changing the number of mmu pages allocated to the vm
49d5ca26 2109 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2110 */
49d5ca26 2111void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2112{
d98ba053 2113 LIST_HEAD(invalid_list);
82ce2c96
IE
2114 /*
2115 * If we set the number of mmu pages to be smaller be than the
2116 * number of actived pages , we must to free some mmu pages before we
2117 * change the value
2118 */
2119
b34cb590
TY
2120 spin_lock(&kvm->mmu_lock);
2121
49d5ca26
DH
2122 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2123 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 2124 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
2125 struct kvm_mmu_page *page;
2126
f05e70ac 2127 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2128 struct kvm_mmu_page, link);
80b63faf 2129 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2130 }
aa6bd187 2131 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2132 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2133 }
82ce2c96 2134
49d5ca26 2135 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2136
2137 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2138}
2139
1cb3f3ae 2140int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2141{
4db35314 2142 struct kvm_mmu_page *sp;
f41d335a 2143 struct hlist_node *node;
d98ba053 2144 LIST_HEAD(invalid_list);
a436036b
AK
2145 int r;
2146
9ad17b10 2147 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2148 r = 0;
1cb3f3ae 2149 spin_lock(&kvm->mmu_lock);
f41d335a 2150 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2151 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2152 sp->role.word);
2153 r = 1;
f41d335a 2154 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2155 }
d98ba053 2156 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2157 spin_unlock(&kvm->mmu_lock);
2158
a436036b 2159 return r;
cea0f0e7 2160}
1cb3f3ae 2161EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2162
74be52e3
SY
2163/*
2164 * The function is based on mtrr_type_lookup() in
2165 * arch/x86/kernel/cpu/mtrr/generic.c
2166 */
2167static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2168 u64 start, u64 end)
2169{
2170 int i;
2171 u64 base, mask;
2172 u8 prev_match, curr_match;
2173 int num_var_ranges = KVM_NR_VAR_MTRR;
2174
2175 if (!mtrr_state->enabled)
2176 return 0xFF;
2177
2178 /* Make end inclusive end, instead of exclusive */
2179 end--;
2180
2181 /* Look in fixed ranges. Just return the type as per start */
2182 if (mtrr_state->have_fixed && (start < 0x100000)) {
2183 int idx;
2184
2185 if (start < 0x80000) {
2186 idx = 0;
2187 idx += (start >> 16);
2188 return mtrr_state->fixed_ranges[idx];
2189 } else if (start < 0xC0000) {
2190 idx = 1 * 8;
2191 idx += ((start - 0x80000) >> 14);
2192 return mtrr_state->fixed_ranges[idx];
2193 } else if (start < 0x1000000) {
2194 idx = 3 * 8;
2195 idx += ((start - 0xC0000) >> 12);
2196 return mtrr_state->fixed_ranges[idx];
2197 }
2198 }
2199
2200 /*
2201 * Look in variable ranges
2202 * Look of multiple ranges matching this address and pick type
2203 * as per MTRR precedence
2204 */
2205 if (!(mtrr_state->enabled & 2))
2206 return mtrr_state->def_type;
2207
2208 prev_match = 0xFF;
2209 for (i = 0; i < num_var_ranges; ++i) {
2210 unsigned short start_state, end_state;
2211
2212 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2213 continue;
2214
2215 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2216 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2217 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2218 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2219
2220 start_state = ((start & mask) == (base & mask));
2221 end_state = ((end & mask) == (base & mask));
2222 if (start_state != end_state)
2223 return 0xFE;
2224
2225 if ((start & mask) != (base & mask))
2226 continue;
2227
2228 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2229 if (prev_match == 0xFF) {
2230 prev_match = curr_match;
2231 continue;
2232 }
2233
2234 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2235 curr_match == MTRR_TYPE_UNCACHABLE)
2236 return MTRR_TYPE_UNCACHABLE;
2237
2238 if ((prev_match == MTRR_TYPE_WRBACK &&
2239 curr_match == MTRR_TYPE_WRTHROUGH) ||
2240 (prev_match == MTRR_TYPE_WRTHROUGH &&
2241 curr_match == MTRR_TYPE_WRBACK)) {
2242 prev_match = MTRR_TYPE_WRTHROUGH;
2243 curr_match = MTRR_TYPE_WRTHROUGH;
2244 }
2245
2246 if (prev_match != curr_match)
2247 return MTRR_TYPE_UNCACHABLE;
2248 }
2249
2250 if (prev_match != 0xFF)
2251 return prev_match;
2252
2253 return mtrr_state->def_type;
2254}
2255
4b12f0de 2256u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2257{
2258 u8 mtrr;
2259
2260 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2261 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2262 if (mtrr == 0xfe || mtrr == 0xff)
2263 mtrr = MTRR_TYPE_WRBACK;
2264 return mtrr;
2265}
4b12f0de 2266EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2267
9cf5cf5a
XG
2268static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2269{
2270 trace_kvm_mmu_unsync_page(sp);
2271 ++vcpu->kvm->stat.mmu_unsync;
2272 sp->unsync = 1;
2273
2274 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2275}
2276
2277static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2278{
4731d4c7 2279 struct kvm_mmu_page *s;
f41d335a 2280 struct hlist_node *node;
9cf5cf5a 2281
f41d335a 2282 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2283 if (s->unsync)
4731d4c7 2284 continue;
9cf5cf5a
XG
2285 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2286 __kvm_unsync_page(vcpu, s);
4731d4c7 2287 }
4731d4c7
MT
2288}
2289
2290static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2291 bool can_unsync)
2292{
9cf5cf5a 2293 struct kvm_mmu_page *s;
f41d335a 2294 struct hlist_node *node;
9cf5cf5a
XG
2295 bool need_unsync = false;
2296
f41d335a 2297 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2298 if (!can_unsync)
2299 return 1;
2300
9cf5cf5a 2301 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2302 return 1;
9cf5cf5a 2303
9bb4f6b1 2304 if (!s->unsync)
9cf5cf5a 2305 need_unsync = true;
4731d4c7 2306 }
9cf5cf5a
XG
2307 if (need_unsync)
2308 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2309 return 0;
2310}
2311
d555c333 2312static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2313 unsigned pte_access, int level,
c2d0ee46 2314 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2315 bool can_unsync, bool host_writable)
1c4f1fd6 2316{
6e7d0354 2317 u64 spte;
1e73f9dd 2318 int ret = 0;
64d4d521 2319
ce88decf
XG
2320 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2321 return 0;
2322
982c2565 2323 spte = PT_PRESENT_MASK;
947da538 2324 if (!speculative)
3201b5d9 2325 spte |= shadow_accessed_mask;
640d9b0d 2326
7b52345e
SY
2327 if (pte_access & ACC_EXEC_MASK)
2328 spte |= shadow_x_mask;
2329 else
2330 spte |= shadow_nx_mask;
49fde340 2331
1c4f1fd6 2332 if (pte_access & ACC_USER_MASK)
7b52345e 2333 spte |= shadow_user_mask;
49fde340 2334
852e3c19 2335 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2336 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2337 if (tdp_enabled)
4b12f0de
SY
2338 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2339 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2340
9bdbba13 2341 if (host_writable)
1403283a 2342 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2343 else
2344 pte_access &= ~ACC_WRITE_MASK;
1403283a 2345
35149e21 2346 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2347
c2288505 2348 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2349
c2193463 2350 /*
7751babd
XG
2351 * Other vcpu creates new sp in the window between
2352 * mapping_level() and acquiring mmu-lock. We can
2353 * allow guest to retry the access, the mapping can
2354 * be fixed if guest refault.
c2193463 2355 */
852e3c19 2356 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2357 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2358 goto done;
38187c83 2359
49fde340 2360 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2361
ecc5589f
MT
2362 /*
2363 * Optimization: for pte sync, if spte was writable the hash
2364 * lookup is unnecessary (and expensive). Write protection
2365 * is responsibility of mmu_get_page / kvm_sync_page.
2366 * Same reasoning can be applied to dirty page accounting.
2367 */
8dae4445 2368 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2369 goto set_pte;
2370
4731d4c7 2371 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2372 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2373 __func__, gfn);
1e73f9dd 2374 ret = 1;
1c4f1fd6 2375 pte_access &= ~ACC_WRITE_MASK;
49fde340 2376 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2377 }
2378 }
2379
1c4f1fd6
AK
2380 if (pte_access & ACC_WRITE_MASK)
2381 mark_page_dirty(vcpu->kvm, gfn);
2382
38187c83 2383set_pte:
6e7d0354 2384 if (mmu_spte_update(sptep, spte))
b330aa0c 2385 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2386done:
1e73f9dd
MT
2387 return ret;
2388}
2389
d555c333 2390static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2391 unsigned pt_access, unsigned pte_access,
c2288505
XG
2392 int write_fault, int *emulate, int level, gfn_t gfn,
2393 pfn_t pfn, bool speculative, bool host_writable)
1e73f9dd
MT
2394{
2395 int was_rmapped = 0;
53a27b39 2396 int rmap_count;
1e73f9dd 2397
c2288505 2398 pgprintk("%s: spte %llx access %x write_fault %d gfn %llx\n",
d555c333 2399 __func__, *sptep, pt_access,
c2288505 2400 write_fault, gfn);
1e73f9dd 2401
d555c333 2402 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2403 /*
2404 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2405 * the parent of the now unreachable PTE.
2406 */
852e3c19
JR
2407 if (level > PT_PAGE_TABLE_LEVEL &&
2408 !is_large_pte(*sptep)) {
1e73f9dd 2409 struct kvm_mmu_page *child;
d555c333 2410 u64 pte = *sptep;
1e73f9dd
MT
2411
2412 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2413 drop_parent_pte(child, sptep);
3be2264b 2414 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2415 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2416 pgprintk("hfn old %llx new %llx\n",
d555c333 2417 spte_to_pfn(*sptep), pfn);
c3707958 2418 drop_spte(vcpu->kvm, sptep);
91546356 2419 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2420 } else
2421 was_rmapped = 1;
1e73f9dd 2422 }
852e3c19 2423
c2288505
XG
2424 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2425 true, host_writable)) {
1e73f9dd 2426 if (write_fault)
b90a0e6c 2427 *emulate = 1;
5304efde 2428 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2429 }
1e73f9dd 2430
ce88decf
XG
2431 if (unlikely(is_mmio_spte(*sptep) && emulate))
2432 *emulate = 1;
2433
d555c333 2434 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2435 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2436 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2437 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2438 *sptep, sptep);
d555c333 2439 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2440 ++vcpu->kvm->stat.lpages;
2441
ffb61bb3 2442 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2443 if (!was_rmapped) {
2444 rmap_count = rmap_add(vcpu, sptep, gfn);
2445 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2446 rmap_recycle(vcpu, sptep, gfn);
2447 }
1c4f1fd6 2448 }
cb9aaa30 2449
f3ac1a4b 2450 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2451}
2452
6aa8b732
AK
2453static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2454{
e676505a 2455 mmu_free_roots(vcpu);
6aa8b732
AK
2456}
2457
a052b42b
XG
2458static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2459{
2460 int bit7;
2461
2462 bit7 = (gpte >> 7) & 1;
2463 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2464}
2465
957ed9ef
XG
2466static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2467 bool no_dirty_log)
2468{
2469 struct kvm_memory_slot *slot;
957ed9ef 2470
5d163b1c 2471 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2472 if (!slot)
6c8ee57b 2473 return KVM_PFN_ERR_FAULT;
957ed9ef 2474
037d92dc 2475 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2476}
2477
a052b42b
XG
2478static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2479 struct kvm_mmu_page *sp, u64 *spte,
2480 u64 gpte)
2481{
2482 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2483 goto no_present;
2484
2485 if (!is_present_gpte(gpte))
2486 goto no_present;
2487
2488 if (!(gpte & PT_ACCESSED_MASK))
2489 goto no_present;
2490
2491 return false;
2492
2493no_present:
2494 drop_spte(vcpu->kvm, spte);
2495 return true;
2496}
2497
957ed9ef
XG
2498static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2499 struct kvm_mmu_page *sp,
2500 u64 *start, u64 *end)
2501{
2502 struct page *pages[PTE_PREFETCH_NUM];
2503 unsigned access = sp->role.access;
2504 int i, ret;
2505 gfn_t gfn;
2506
2507 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2508 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2509 return -1;
2510
2511 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2512 if (ret <= 0)
2513 return -1;
2514
2515 for (i = 0; i < ret; i++, gfn++, start++)
c2288505
XG
2516 mmu_set_spte(vcpu, start, ACC_ALL, access, 0, NULL,
2517 sp->role.level, gfn, page_to_pfn(pages[i]),
2518 true, true);
957ed9ef
XG
2519
2520 return 0;
2521}
2522
2523static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2524 struct kvm_mmu_page *sp, u64 *sptep)
2525{
2526 u64 *spte, *start = NULL;
2527 int i;
2528
2529 WARN_ON(!sp->role.direct);
2530
2531 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2532 spte = sp->spt + i;
2533
2534 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2535 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2536 if (!start)
2537 continue;
2538 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2539 break;
2540 start = NULL;
2541 } else if (!start)
2542 start = spte;
2543 }
2544}
2545
2546static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2547{
2548 struct kvm_mmu_page *sp;
2549
2550 /*
2551 * Since it's no accessed bit on EPT, it's no way to
2552 * distinguish between actually accessed translations
2553 * and prefetched, so disable pte prefetch if EPT is
2554 * enabled.
2555 */
2556 if (!shadow_accessed_mask)
2557 return;
2558
2559 sp = page_header(__pa(sptep));
2560 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2561 return;
2562
2563 __direct_pte_prefetch(vcpu, sp, sptep);
2564}
2565
9f652d21 2566static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2567 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2568 bool prefault)
140754bc 2569{
9f652d21 2570 struct kvm_shadow_walk_iterator iterator;
140754bc 2571 struct kvm_mmu_page *sp;
b90a0e6c 2572 int emulate = 0;
140754bc 2573 gfn_t pseudo_gfn;
6aa8b732 2574
9f652d21 2575 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2576 if (iterator.level == level) {
612819c3
MT
2577 unsigned pte_access = ACC_ALL;
2578
612819c3 2579 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
c2288505
XG
2580 write, &emulate, level, gfn, pfn,
2581 prefault, map_writable);
957ed9ef 2582 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2583 ++vcpu->stat.pf_fixed;
2584 break;
6aa8b732
AK
2585 }
2586
caf6900f
XG
2587 drop_large_spte(vcpu, iterator.sptep);
2588
c3707958 2589 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2590 u64 base_addr = iterator.addr;
2591
2592 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2593 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2594 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2595 iterator.level - 1,
2596 1, ACC_ALL, iterator.sptep);
140754bc 2597
1df9f2dc
XG
2598 mmu_spte_set(iterator.sptep,
2599 __pa(sp->spt)
2600 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2601 | shadow_user_mask | shadow_x_mask
2602 | shadow_accessed_mask);
9f652d21
AK
2603 }
2604 }
b90a0e6c 2605 return emulate;
6aa8b732
AK
2606}
2607
77db5cbd 2608static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2609{
77db5cbd
HY
2610 siginfo_t info;
2611
2612 info.si_signo = SIGBUS;
2613 info.si_errno = 0;
2614 info.si_code = BUS_MCEERR_AR;
2615 info.si_addr = (void __user *)address;
2616 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2617
77db5cbd 2618 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2619}
2620
d7c55201 2621static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2622{
4d8b81ab
XG
2623 /*
2624 * Do not cache the mmio info caused by writing the readonly gfn
2625 * into the spte otherwise read access on readonly gfn also can
2626 * caused mmio page fault and treat it as mmio access.
2627 * Return 1 to tell kvm to emulate it.
2628 */
2629 if (pfn == KVM_PFN_ERR_RO_FAULT)
2630 return 1;
2631
e6c1502b 2632 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2633 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2634 return 0;
d7c55201 2635 }
edba23e5 2636
d7c55201 2637 return -EFAULT;
bf998156
HY
2638}
2639
936a5fe6
AA
2640static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2641 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2642{
2643 pfn_t pfn = *pfnp;
2644 gfn_t gfn = *gfnp;
2645 int level = *levelp;
2646
2647 /*
2648 * Check if it's a transparent hugepage. If this would be an
2649 * hugetlbfs page, level wouldn't be set to
2650 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2651 * here.
2652 */
81c52c56 2653 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
936a5fe6
AA
2654 level == PT_PAGE_TABLE_LEVEL &&
2655 PageTransCompound(pfn_to_page(pfn)) &&
2656 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2657 unsigned long mask;
2658 /*
2659 * mmu_notifier_retry was successful and we hold the
2660 * mmu_lock here, so the pmd can't become splitting
2661 * from under us, and in turn
2662 * __split_huge_page_refcount() can't run from under
2663 * us and we can safely transfer the refcount from
2664 * PG_tail to PG_head as we switch the pfn to tail to
2665 * head.
2666 */
2667 *levelp = level = PT_DIRECTORY_LEVEL;
2668 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2669 VM_BUG_ON((gfn & mask) != (pfn & mask));
2670 if (pfn & mask) {
2671 gfn &= ~mask;
2672 *gfnp = gfn;
2673 kvm_release_pfn_clean(pfn);
2674 pfn &= ~mask;
c3586667 2675 kvm_get_pfn(pfn);
936a5fe6
AA
2676 *pfnp = pfn;
2677 }
2678 }
2679}
2680
d7c55201
XG
2681static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2682 pfn_t pfn, unsigned access, int *ret_val)
2683{
2684 bool ret = true;
2685
2686 /* The pfn is invalid, report the error! */
81c52c56 2687 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2688 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2689 goto exit;
2690 }
2691
ce88decf 2692 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2693 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2694
2695 ret = false;
2696exit:
2697 return ret;
2698}
2699
c7ba5b48
XG
2700static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2701{
2702 /*
2703 * #PF can be fast only if the shadow page table is present and it
2704 * is caused by write-protect, that means we just need change the
2705 * W bit of the spte which can be done out of mmu-lock.
2706 */
2707 if (!(error_code & PFERR_PRESENT_MASK) ||
2708 !(error_code & PFERR_WRITE_MASK))
2709 return false;
2710
2711 return true;
2712}
2713
2714static bool
2715fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2716{
2717 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2718 gfn_t gfn;
2719
2720 WARN_ON(!sp->role.direct);
2721
2722 /*
2723 * The gfn of direct spte is stable since it is calculated
2724 * by sp->gfn.
2725 */
2726 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2727
2728 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2729 mark_page_dirty(vcpu->kvm, gfn);
2730
2731 return true;
2732}
2733
2734/*
2735 * Return value:
2736 * - true: let the vcpu to access on the same address again.
2737 * - false: let the real page fault path to fix it.
2738 */
2739static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2740 u32 error_code)
2741{
2742 struct kvm_shadow_walk_iterator iterator;
2743 bool ret = false;
2744 u64 spte = 0ull;
2745
2746 if (!page_fault_can_be_fast(vcpu, error_code))
2747 return false;
2748
2749 walk_shadow_page_lockless_begin(vcpu);
2750 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2751 if (!is_shadow_present_pte(spte) || iterator.level < level)
2752 break;
2753
2754 /*
2755 * If the mapping has been changed, let the vcpu fault on the
2756 * same address again.
2757 */
2758 if (!is_rmap_spte(spte)) {
2759 ret = true;
2760 goto exit;
2761 }
2762
2763 if (!is_last_spte(spte, level))
2764 goto exit;
2765
2766 /*
2767 * Check if it is a spurious fault caused by TLB lazily flushed.
2768 *
2769 * Need not check the access of upper level table entries since
2770 * they are always ACC_ALL.
2771 */
2772 if (is_writable_pte(spte)) {
2773 ret = true;
2774 goto exit;
2775 }
2776
2777 /*
2778 * Currently, to simplify the code, only the spte write-protected
2779 * by dirty-log can be fast fixed.
2780 */
2781 if (!spte_is_locklessly_modifiable(spte))
2782 goto exit;
2783
2784 /*
2785 * Currently, fast page fault only works for direct mapping since
2786 * the gfn is not stable for indirect shadow page.
2787 * See Documentation/virtual/kvm/locking.txt to get more detail.
2788 */
2789 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2790exit:
a72faf25
XG
2791 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2792 spte, ret);
c7ba5b48
XG
2793 walk_shadow_page_lockless_end(vcpu);
2794
2795 return ret;
2796}
2797
78b2c54a 2798static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2799 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2800
c7ba5b48
XG
2801static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2802 gfn_t gfn, bool prefault)
10589a46
MT
2803{
2804 int r;
852e3c19 2805 int level;
936a5fe6 2806 int force_pt_level;
35149e21 2807 pfn_t pfn;
e930bffe 2808 unsigned long mmu_seq;
c7ba5b48 2809 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2810
936a5fe6
AA
2811 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2812 if (likely(!force_pt_level)) {
2813 level = mapping_level(vcpu, gfn);
2814 /*
2815 * This path builds a PAE pagetable - so we can map
2816 * 2mb pages at maximum. Therefore check if the level
2817 * is larger than that.
2818 */
2819 if (level > PT_DIRECTORY_LEVEL)
2820 level = PT_DIRECTORY_LEVEL;
852e3c19 2821
936a5fe6
AA
2822 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2823 } else
2824 level = PT_PAGE_TABLE_LEVEL;
05da4558 2825
c7ba5b48
XG
2826 if (fast_page_fault(vcpu, v, level, error_code))
2827 return 0;
2828
e930bffe 2829 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2830 smp_rmb();
060c2abe 2831
78b2c54a 2832 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2833 return 0;
aaee2c94 2834
d7c55201
XG
2835 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2836 return r;
d196e343 2837
aaee2c94 2838 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2839 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2840 goto out_unlock;
eb787d10 2841 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2842 if (likely(!force_pt_level))
2843 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2844 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2845 prefault);
aaee2c94
MT
2846 spin_unlock(&vcpu->kvm->mmu_lock);
2847
aaee2c94 2848
10589a46 2849 return r;
e930bffe
AA
2850
2851out_unlock:
2852 spin_unlock(&vcpu->kvm->mmu_lock);
2853 kvm_release_pfn_clean(pfn);
2854 return 0;
10589a46
MT
2855}
2856
2857
17ac10ad
AK
2858static void mmu_free_roots(struct kvm_vcpu *vcpu)
2859{
2860 int i;
4db35314 2861 struct kvm_mmu_page *sp;
d98ba053 2862 LIST_HEAD(invalid_list);
17ac10ad 2863
ad312c7c 2864 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2865 return;
aaee2c94 2866 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2867 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2868 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2869 vcpu->arch.mmu.direct_map)) {
ad312c7c 2870 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2871
4db35314
AK
2872 sp = page_header(root);
2873 --sp->root_count;
d98ba053
XG
2874 if (!sp->root_count && sp->role.invalid) {
2875 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2876 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2877 }
ad312c7c 2878 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2879 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2880 return;
2881 }
17ac10ad 2882 for (i = 0; i < 4; ++i) {
ad312c7c 2883 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2884
417726a3 2885 if (root) {
417726a3 2886 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2887 sp = page_header(root);
2888 --sp->root_count;
2e53d63a 2889 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2890 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2891 &invalid_list);
417726a3 2892 }
ad312c7c 2893 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2894 }
d98ba053 2895 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2896 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2897 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2898}
2899
8986ecc0
MT
2900static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2901{
2902 int ret = 0;
2903
2904 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2905 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2906 ret = 1;
2907 }
2908
2909 return ret;
2910}
2911
651dd37a
JR
2912static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2913{
2914 struct kvm_mmu_page *sp;
7ebaf15e 2915 unsigned i;
651dd37a
JR
2916
2917 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2918 spin_lock(&vcpu->kvm->mmu_lock);
2919 kvm_mmu_free_some_pages(vcpu);
2920 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2921 1, ACC_ALL, NULL);
2922 ++sp->root_count;
2923 spin_unlock(&vcpu->kvm->mmu_lock);
2924 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2925 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2926 for (i = 0; i < 4; ++i) {
2927 hpa_t root = vcpu->arch.mmu.pae_root[i];
2928
2929 ASSERT(!VALID_PAGE(root));
2930 spin_lock(&vcpu->kvm->mmu_lock);
2931 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2932 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2933 i << 30,
651dd37a
JR
2934 PT32_ROOT_LEVEL, 1, ACC_ALL,
2935 NULL);
2936 root = __pa(sp->spt);
2937 ++sp->root_count;
2938 spin_unlock(&vcpu->kvm->mmu_lock);
2939 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2940 }
6292757f 2941 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2942 } else
2943 BUG();
2944
2945 return 0;
2946}
2947
2948static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2949{
4db35314 2950 struct kvm_mmu_page *sp;
81407ca5
JR
2951 u64 pdptr, pm_mask;
2952 gfn_t root_gfn;
2953 int i;
3bb65a22 2954
5777ed34 2955 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2956
651dd37a
JR
2957 if (mmu_check_root(vcpu, root_gfn))
2958 return 1;
2959
2960 /*
2961 * Do we shadow a long mode page table? If so we need to
2962 * write-protect the guests page table root.
2963 */
2964 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2965 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2966
2967 ASSERT(!VALID_PAGE(root));
651dd37a 2968
8facbbff 2969 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2970 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2971 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2972 0, ACC_ALL, NULL);
4db35314
AK
2973 root = __pa(sp->spt);
2974 ++sp->root_count;
8facbbff 2975 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2976 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2977 return 0;
17ac10ad 2978 }
f87f9288 2979
651dd37a
JR
2980 /*
2981 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2982 * or a PAE 3-level page table. In either case we need to be aware that
2983 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2984 */
81407ca5
JR
2985 pm_mask = PT_PRESENT_MASK;
2986 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2987 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2988
17ac10ad 2989 for (i = 0; i < 4; ++i) {
ad312c7c 2990 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2991
2992 ASSERT(!VALID_PAGE(root));
ad312c7c 2993 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 2994 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 2995 if (!is_present_gpte(pdptr)) {
ad312c7c 2996 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
2997 continue;
2998 }
6de4f3ad 2999 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3000 if (mmu_check_root(vcpu, root_gfn))
3001 return 1;
5a7388c2 3002 }
8facbbff 3003 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 3004 kvm_mmu_free_some_pages(vcpu);
4db35314 3005 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3006 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3007 ACC_ALL, NULL);
4db35314
AK
3008 root = __pa(sp->spt);
3009 ++sp->root_count;
8facbbff
AK
3010 spin_unlock(&vcpu->kvm->mmu_lock);
3011
81407ca5 3012 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3013 }
6292757f 3014 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3015
3016 /*
3017 * If we shadow a 32 bit page table with a long mode page
3018 * table we enter this path.
3019 */
3020 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3021 if (vcpu->arch.mmu.lm_root == NULL) {
3022 /*
3023 * The additional page necessary for this is only
3024 * allocated on demand.
3025 */
3026
3027 u64 *lm_root;
3028
3029 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3030 if (lm_root == NULL)
3031 return 1;
3032
3033 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3034
3035 vcpu->arch.mmu.lm_root = lm_root;
3036 }
3037
3038 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3039 }
3040
8986ecc0 3041 return 0;
17ac10ad
AK
3042}
3043
651dd37a
JR
3044static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3045{
3046 if (vcpu->arch.mmu.direct_map)
3047 return mmu_alloc_direct_roots(vcpu);
3048 else
3049 return mmu_alloc_shadow_roots(vcpu);
3050}
3051
0ba73cda
MT
3052static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3053{
3054 int i;
3055 struct kvm_mmu_page *sp;
3056
81407ca5
JR
3057 if (vcpu->arch.mmu.direct_map)
3058 return;
3059
0ba73cda
MT
3060 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3061 return;
6903074c 3062
bebb106a 3063 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3064 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3065 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3066 hpa_t root = vcpu->arch.mmu.root_hpa;
3067 sp = page_header(root);
3068 mmu_sync_children(vcpu, sp);
0375f7fa 3069 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3070 return;
3071 }
3072 for (i = 0; i < 4; ++i) {
3073 hpa_t root = vcpu->arch.mmu.pae_root[i];
3074
8986ecc0 3075 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3076 root &= PT64_BASE_ADDR_MASK;
3077 sp = page_header(root);
3078 mmu_sync_children(vcpu, sp);
3079 }
3080 }
0375f7fa 3081 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3082}
3083
3084void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3085{
3086 spin_lock(&vcpu->kvm->mmu_lock);
3087 mmu_sync_roots(vcpu);
6cffe8ca 3088 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3089}
3090
1871c602 3091static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3092 u32 access, struct x86_exception *exception)
6aa8b732 3093{
ab9ae313
AK
3094 if (exception)
3095 exception->error_code = 0;
6aa8b732
AK
3096 return vaddr;
3097}
3098
6539e738 3099static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3100 u32 access,
3101 struct x86_exception *exception)
6539e738 3102{
ab9ae313
AK
3103 if (exception)
3104 exception->error_code = 0;
6539e738
JR
3105 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3106}
3107
ce88decf
XG
3108static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3109{
3110 if (direct)
3111 return vcpu_match_mmio_gpa(vcpu, addr);
3112
3113 return vcpu_match_mmio_gva(vcpu, addr);
3114}
3115
3116
3117/*
3118 * On direct hosts, the last spte is only allows two states
3119 * for mmio page fault:
3120 * - It is the mmio spte
3121 * - It is zapped or it is being zapped.
3122 *
3123 * This function completely checks the spte when the last spte
3124 * is not the mmio spte.
3125 */
3126static bool check_direct_spte_mmio_pf(u64 spte)
3127{
3128 return __check_direct_spte_mmio_pf(spte);
3129}
3130
3131static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3132{
3133 struct kvm_shadow_walk_iterator iterator;
3134 u64 spte = 0ull;
3135
3136 walk_shadow_page_lockless_begin(vcpu);
3137 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3138 if (!is_shadow_present_pte(spte))
3139 break;
3140 walk_shadow_page_lockless_end(vcpu);
3141
3142 return spte;
3143}
3144
3145/*
3146 * If it is a real mmio page fault, return 1 and emulat the instruction
3147 * directly, return 0 to let CPU fault again on the address, -1 is
3148 * returned if bug is detected.
3149 */
3150int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3151{
3152 u64 spte;
3153
3154 if (quickly_check_mmio_pf(vcpu, addr, direct))
3155 return 1;
3156
3157 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3158
3159 if (is_mmio_spte(spte)) {
3160 gfn_t gfn = get_mmio_spte_gfn(spte);
3161 unsigned access = get_mmio_spte_access(spte);
3162
3163 if (direct)
3164 addr = 0;
4f022648
XG
3165
3166 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3167 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3168 return 1;
3169 }
3170
3171 /*
3172 * It's ok if the gva is remapped by other cpus on shadow guest,
3173 * it's a BUG if the gfn is not a mmio page.
3174 */
3175 if (direct && !check_direct_spte_mmio_pf(spte))
3176 return -1;
3177
3178 /*
3179 * If the page table is zapped by other cpus, let CPU fault again on
3180 * the address.
3181 */
3182 return 0;
3183}
3184EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3185
3186static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3187 u32 error_code, bool direct)
3188{
3189 int ret;
3190
3191 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3192 WARN_ON(ret < 0);
3193 return ret;
3194}
3195
6aa8b732 3196static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3197 u32 error_code, bool prefault)
6aa8b732 3198{
e833240f 3199 gfn_t gfn;
e2dec939 3200 int r;
6aa8b732 3201
b8688d51 3202 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3203
3204 if (unlikely(error_code & PFERR_RSVD_MASK))
3205 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3206
e2dec939
AK
3207 r = mmu_topup_memory_caches(vcpu);
3208 if (r)
3209 return r;
714b93da 3210
6aa8b732 3211 ASSERT(vcpu);
ad312c7c 3212 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3213
e833240f 3214 gfn = gva >> PAGE_SHIFT;
6aa8b732 3215
e833240f 3216 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3217 error_code, gfn, prefault);
6aa8b732
AK
3218}
3219
7e1fbeac 3220static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3221{
3222 struct kvm_arch_async_pf arch;
fb67e14f 3223
7c90705b 3224 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3225 arch.gfn = gfn;
c4806acd 3226 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3227 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3228
3229 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3230}
3231
3232static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3233{
3234 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3235 kvm_event_needs_reinjection(vcpu)))
3236 return false;
3237
3238 return kvm_x86_ops->interrupt_allowed(vcpu);
3239}
3240
78b2c54a 3241static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3242 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3243{
3244 bool async;
3245
612819c3 3246 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3247
3248 if (!async)
3249 return false; /* *pfn has correct page already */
3250
78b2c54a 3251 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3252 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3253 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3254 trace_kvm_async_pf_doublefault(gva, gfn);
3255 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3256 return true;
3257 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3258 return true;
3259 }
3260
612819c3 3261 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3262
3263 return false;
3264}
3265
56028d08 3266static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3267 bool prefault)
fb72d167 3268{
35149e21 3269 pfn_t pfn;
fb72d167 3270 int r;
852e3c19 3271 int level;
936a5fe6 3272 int force_pt_level;
05da4558 3273 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3274 unsigned long mmu_seq;
612819c3
MT
3275 int write = error_code & PFERR_WRITE_MASK;
3276 bool map_writable;
fb72d167
JR
3277
3278 ASSERT(vcpu);
3279 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3280
ce88decf
XG
3281 if (unlikely(error_code & PFERR_RSVD_MASK))
3282 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3283
fb72d167
JR
3284 r = mmu_topup_memory_caches(vcpu);
3285 if (r)
3286 return r;
3287
936a5fe6
AA
3288 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3289 if (likely(!force_pt_level)) {
3290 level = mapping_level(vcpu, gfn);
3291 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3292 } else
3293 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3294
c7ba5b48
XG
3295 if (fast_page_fault(vcpu, gpa, level, error_code))
3296 return 0;
3297
e930bffe 3298 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3299 smp_rmb();
af585b92 3300
78b2c54a 3301 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3302 return 0;
3303
d7c55201
XG
3304 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3305 return r;
3306
fb72d167 3307 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3308 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3309 goto out_unlock;
fb72d167 3310 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3311 if (likely(!force_pt_level))
3312 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3313 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3314 level, gfn, pfn, prefault);
fb72d167 3315 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3316
3317 return r;
e930bffe
AA
3318
3319out_unlock:
3320 spin_unlock(&vcpu->kvm->mmu_lock);
3321 kvm_release_pfn_clean(pfn);
3322 return 0;
fb72d167
JR
3323}
3324
6aa8b732
AK
3325static void nonpaging_free(struct kvm_vcpu *vcpu)
3326{
17ac10ad 3327 mmu_free_roots(vcpu);
6aa8b732
AK
3328}
3329
52fde8df
JR
3330static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3331 struct kvm_mmu *context)
6aa8b732 3332{
6aa8b732
AK
3333 context->new_cr3 = nonpaging_new_cr3;
3334 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3335 context->gva_to_gpa = nonpaging_gva_to_gpa;
3336 context->free = nonpaging_free;
e8bc217a 3337 context->sync_page = nonpaging_sync_page;
a7052897 3338 context->invlpg = nonpaging_invlpg;
0f53b5b1 3339 context->update_pte = nonpaging_update_pte;
cea0f0e7 3340 context->root_level = 0;
6aa8b732 3341 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3342 context->root_hpa = INVALID_PAGE;
c5a78f2b 3343 context->direct_map = true;
2d48a985 3344 context->nx = false;
6aa8b732
AK
3345 return 0;
3346}
3347
d835dfec 3348void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3349{
1165f5fe 3350 ++vcpu->stat.tlb_flush;
a8eeb04a 3351 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3352}
3353
3354static void paging_new_cr3(struct kvm_vcpu *vcpu)
3355{
9f8fe504 3356 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3357 mmu_free_roots(vcpu);
6aa8b732
AK
3358}
3359
5777ed34
JR
3360static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3361{
9f8fe504 3362 return kvm_read_cr3(vcpu);
5777ed34
JR
3363}
3364
6389ee94
AK
3365static void inject_page_fault(struct kvm_vcpu *vcpu,
3366 struct x86_exception *fault)
6aa8b732 3367{
6389ee94 3368 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3369}
3370
6aa8b732
AK
3371static void paging_free(struct kvm_vcpu *vcpu)
3372{
3373 nonpaging_free(vcpu);
3374}
3375
8ea667f2
AK
3376static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3377{
3378 unsigned mask;
3379
3380 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3381
3382 mask = (unsigned)~ACC_WRITE_MASK;
3383 /* Allow write access to dirty gptes */
3384 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3385 *access &= mask;
3386}
3387
ce88decf
XG
3388static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3389 int *nr_present)
3390{
3391 if (unlikely(is_mmio_spte(*sptep))) {
3392 if (gfn != get_mmio_spte_gfn(*sptep)) {
3393 mmu_spte_clear_no_track(sptep);
3394 return true;
3395 }
3396
3397 (*nr_present)++;
3398 mark_mmio_spte(sptep, gfn, access);
3399 return true;
3400 }
3401
3402 return false;
3403}
3404
3d34adec
AK
3405static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3406{
3407 unsigned access;
3408
3409 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3410 access &= ~(gpte >> PT64_NX_SHIFT);
3411
3412 return access;
3413}
3414
6fd01b71
AK
3415static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3416{
3417 unsigned index;
3418
3419 index = level - 1;
3420 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3421 return mmu->last_pte_bitmap & (1 << index);
3422}
3423
6aa8b732
AK
3424#define PTTYPE 64
3425#include "paging_tmpl.h"
3426#undef PTTYPE
3427
3428#define PTTYPE 32
3429#include "paging_tmpl.h"
3430#undef PTTYPE
3431
52fde8df 3432static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3433 struct kvm_mmu *context)
82725b20 3434{
82725b20
DE
3435 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3436 u64 exb_bit_rsvd = 0;
3437
2d48a985 3438 if (!context->nx)
82725b20 3439 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3440 switch (context->root_level) {
82725b20
DE
3441 case PT32_ROOT_LEVEL:
3442 /* no rsvd bits for 2 level 4K page table entries */
3443 context->rsvd_bits_mask[0][1] = 0;
3444 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3445 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3446
3447 if (!is_pse(vcpu)) {
3448 context->rsvd_bits_mask[1][1] = 0;
3449 break;
3450 }
3451
82725b20
DE
3452 if (is_cpuid_PSE36())
3453 /* 36bits PSE 4MB page */
3454 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3455 else
3456 /* 32 bits PSE 4MB page */
3457 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3458 break;
3459 case PT32E_ROOT_LEVEL:
20c466b5
DE
3460 context->rsvd_bits_mask[0][2] =
3461 rsvd_bits(maxphyaddr, 63) |
3462 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3463 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3464 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3465 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3466 rsvd_bits(maxphyaddr, 62); /* PTE */
3467 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3468 rsvd_bits(maxphyaddr, 62) |
3469 rsvd_bits(13, 20); /* large page */
f815bce8 3470 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3471 break;
3472 case PT64_ROOT_LEVEL:
3473 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3474 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3475 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3476 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3477 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3478 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3479 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3480 rsvd_bits(maxphyaddr, 51);
3481 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3482 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3483 rsvd_bits(maxphyaddr, 51) |
3484 rsvd_bits(13, 29);
82725b20 3485 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3486 rsvd_bits(maxphyaddr, 51) |
3487 rsvd_bits(13, 20); /* large page */
f815bce8 3488 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3489 break;
3490 }
3491}
3492
97d64b78
AK
3493static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3494{
3495 unsigned bit, byte, pfec;
3496 u8 map;
3497 bool fault, x, w, u, wf, uf, ff, smep;
3498
3499 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3500 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3501 pfec = byte << 1;
3502 map = 0;
3503 wf = pfec & PFERR_WRITE_MASK;
3504 uf = pfec & PFERR_USER_MASK;
3505 ff = pfec & PFERR_FETCH_MASK;
3506 for (bit = 0; bit < 8; ++bit) {
3507 x = bit & ACC_EXEC_MASK;
3508 w = bit & ACC_WRITE_MASK;
3509 u = bit & ACC_USER_MASK;
3510
3511 /* Not really needed: !nx will cause pte.nx to fault */
3512 x |= !mmu->nx;
3513 /* Allow supervisor writes if !cr0.wp */
3514 w |= !is_write_protection(vcpu) && !uf;
3515 /* Disallow supervisor fetches of user code if cr4.smep */
3516 x &= !(smep && u && !uf);
3517
3518 fault = (ff && !x) || (uf && !u) || (wf && !w);
3519 map |= fault << bit;
3520 }
3521 mmu->permissions[byte] = map;
3522 }
3523}
3524
6fd01b71
AK
3525static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3526{
3527 u8 map;
3528 unsigned level, root_level = mmu->root_level;
3529 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3530
3531 if (root_level == PT32E_ROOT_LEVEL)
3532 --root_level;
3533 /* PT_PAGE_TABLE_LEVEL always terminates */
3534 map = 1 | (1 << ps_set_index);
3535 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3536 if (level <= PT_PDPE_LEVEL
3537 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3538 map |= 1 << (ps_set_index | (level - 1));
3539 }
3540 mmu->last_pte_bitmap = map;
3541}
3542
52fde8df
JR
3543static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3544 struct kvm_mmu *context,
3545 int level)
6aa8b732 3546{
2d48a985 3547 context->nx = is_nx(vcpu);
4d6931c3 3548 context->root_level = level;
2d48a985 3549
4d6931c3 3550 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3551 update_permission_bitmask(vcpu, context);
6fd01b71 3552 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3553
3554 ASSERT(is_pae(vcpu));
3555 context->new_cr3 = paging_new_cr3;
3556 context->page_fault = paging64_page_fault;
6aa8b732 3557 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3558 context->sync_page = paging64_sync_page;
a7052897 3559 context->invlpg = paging64_invlpg;
0f53b5b1 3560 context->update_pte = paging64_update_pte;
6aa8b732 3561 context->free = paging_free;
17ac10ad 3562 context->shadow_root_level = level;
17c3ba9d 3563 context->root_hpa = INVALID_PAGE;
c5a78f2b 3564 context->direct_map = false;
6aa8b732
AK
3565 return 0;
3566}
3567
52fde8df
JR
3568static int paging64_init_context(struct kvm_vcpu *vcpu,
3569 struct kvm_mmu *context)
17ac10ad 3570{
52fde8df 3571 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3572}
3573
52fde8df
JR
3574static int paging32_init_context(struct kvm_vcpu *vcpu,
3575 struct kvm_mmu *context)
6aa8b732 3576{
2d48a985 3577 context->nx = false;
4d6931c3 3578 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3579
4d6931c3 3580 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3581 update_permission_bitmask(vcpu, context);
6fd01b71 3582 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3583
3584 context->new_cr3 = paging_new_cr3;
3585 context->page_fault = paging32_page_fault;
6aa8b732
AK
3586 context->gva_to_gpa = paging32_gva_to_gpa;
3587 context->free = paging_free;
e8bc217a 3588 context->sync_page = paging32_sync_page;
a7052897 3589 context->invlpg = paging32_invlpg;
0f53b5b1 3590 context->update_pte = paging32_update_pte;
6aa8b732 3591 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3592 context->root_hpa = INVALID_PAGE;
c5a78f2b 3593 context->direct_map = false;
6aa8b732
AK
3594 return 0;
3595}
3596
52fde8df
JR
3597static int paging32E_init_context(struct kvm_vcpu *vcpu,
3598 struct kvm_mmu *context)
6aa8b732 3599{
52fde8df 3600 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3601}
3602
fb72d167
JR
3603static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3604{
14dfe855 3605 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3606
c445f8ef 3607 context->base_role.word = 0;
fb72d167
JR
3608 context->new_cr3 = nonpaging_new_cr3;
3609 context->page_fault = tdp_page_fault;
3610 context->free = nonpaging_free;
e8bc217a 3611 context->sync_page = nonpaging_sync_page;
a7052897 3612 context->invlpg = nonpaging_invlpg;
0f53b5b1 3613 context->update_pte = nonpaging_update_pte;
67253af5 3614 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3615 context->root_hpa = INVALID_PAGE;
c5a78f2b 3616 context->direct_map = true;
1c97f0a0 3617 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3618 context->get_cr3 = get_cr3;
e4e517b4 3619 context->get_pdptr = kvm_pdptr_read;
cb659db8 3620 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3621
3622 if (!is_paging(vcpu)) {
2d48a985 3623 context->nx = false;
fb72d167
JR
3624 context->gva_to_gpa = nonpaging_gva_to_gpa;
3625 context->root_level = 0;
3626 } else if (is_long_mode(vcpu)) {
2d48a985 3627 context->nx = is_nx(vcpu);
fb72d167 3628 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3629 reset_rsvds_bits_mask(vcpu, context);
3630 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3631 } else if (is_pae(vcpu)) {
2d48a985 3632 context->nx = is_nx(vcpu);
fb72d167 3633 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3634 reset_rsvds_bits_mask(vcpu, context);
3635 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3636 } else {
2d48a985 3637 context->nx = false;
fb72d167 3638 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3639 reset_rsvds_bits_mask(vcpu, context);
3640 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3641 }
3642
97d64b78 3643 update_permission_bitmask(vcpu, context);
6fd01b71 3644 update_last_pte_bitmap(vcpu, context);
97d64b78 3645
fb72d167
JR
3646 return 0;
3647}
3648
52fde8df 3649int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3650{
a770f6f2 3651 int r;
411c588d 3652 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3653 ASSERT(vcpu);
ad312c7c 3654 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3655
3656 if (!is_paging(vcpu))
52fde8df 3657 r = nonpaging_init_context(vcpu, context);
a9058ecd 3658 else if (is_long_mode(vcpu))
52fde8df 3659 r = paging64_init_context(vcpu, context);
6aa8b732 3660 else if (is_pae(vcpu))
52fde8df 3661 r = paging32E_init_context(vcpu, context);
6aa8b732 3662 else
52fde8df 3663 r = paging32_init_context(vcpu, context);
a770f6f2 3664
2c9afa52 3665 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
5b7e0102 3666 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3667 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3668 vcpu->arch.mmu.base_role.smep_andnot_wp
3669 = smep && !is_write_protection(vcpu);
52fde8df
JR
3670
3671 return r;
3672}
3673EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3674
3675static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3676{
14dfe855 3677 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3678
14dfe855
JR
3679 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3680 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3681 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3682 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3683
3684 return r;
6aa8b732
AK
3685}
3686
02f59dc9
JR
3687static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3688{
3689 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3690
3691 g_context->get_cr3 = get_cr3;
e4e517b4 3692 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3693 g_context->inject_page_fault = kvm_inject_page_fault;
3694
3695 /*
3696 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3697 * translation of l2_gpa to l1_gpa addresses is done using the
3698 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3699 * functions between mmu and nested_mmu are swapped.
3700 */
3701 if (!is_paging(vcpu)) {
2d48a985 3702 g_context->nx = false;
02f59dc9
JR
3703 g_context->root_level = 0;
3704 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3705 } else if (is_long_mode(vcpu)) {
2d48a985 3706 g_context->nx = is_nx(vcpu);
02f59dc9 3707 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3708 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3709 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3710 } else if (is_pae(vcpu)) {
2d48a985 3711 g_context->nx = is_nx(vcpu);
02f59dc9 3712 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3713 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3714 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3715 } else {
2d48a985 3716 g_context->nx = false;
02f59dc9 3717 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3718 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3719 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3720 }
3721
97d64b78 3722 update_permission_bitmask(vcpu, g_context);
6fd01b71 3723 update_last_pte_bitmap(vcpu, g_context);
97d64b78 3724
02f59dc9
JR
3725 return 0;
3726}
3727
fb72d167
JR
3728static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3729{
02f59dc9
JR
3730 if (mmu_is_nested(vcpu))
3731 return init_kvm_nested_mmu(vcpu);
3732 else if (tdp_enabled)
fb72d167
JR
3733 return init_kvm_tdp_mmu(vcpu);
3734 else
3735 return init_kvm_softmmu(vcpu);
3736}
3737
6aa8b732
AK
3738static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3739{
3740 ASSERT(vcpu);
62ad0755
SY
3741 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3742 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3743 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3744}
3745
3746int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3747{
3748 destroy_kvm_mmu(vcpu);
f8f7e5ee 3749 return init_kvm_mmu(vcpu);
17c3ba9d 3750}
8668a3c4 3751EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3752
3753int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3754{
714b93da
AK
3755 int r;
3756
e2dec939 3757 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3758 if (r)
3759 goto out;
8986ecc0 3760 r = mmu_alloc_roots(vcpu);
8facbbff 3761 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3762 mmu_sync_roots(vcpu);
aaee2c94 3763 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3764 if (r)
3765 goto out;
3662cb1c 3766 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3767 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3768out:
3769 return r;
6aa8b732 3770}
17c3ba9d
AK
3771EXPORT_SYMBOL_GPL(kvm_mmu_load);
3772
3773void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3774{
3775 mmu_free_roots(vcpu);
3776}
4b16184c 3777EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3778
0028425f 3779static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3780 struct kvm_mmu_page *sp, u64 *spte,
3781 const void *new)
0028425f 3782{
30945387 3783 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3784 ++vcpu->kvm->stat.mmu_pde_zapped;
3785 return;
30945387 3786 }
0028425f 3787
4cee5764 3788 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3789 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3790}
3791
79539cec
AK
3792static bool need_remote_flush(u64 old, u64 new)
3793{
3794 if (!is_shadow_present_pte(old))
3795 return false;
3796 if (!is_shadow_present_pte(new))
3797 return true;
3798 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3799 return true;
3800 old ^= PT64_NX_MASK;
3801 new ^= PT64_NX_MASK;
3802 return (old & ~new & PT64_PERM_MASK) != 0;
3803}
3804
0671a8e7
XG
3805static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3806 bool remote_flush, bool local_flush)
79539cec 3807{
0671a8e7
XG
3808 if (zap_page)
3809 return;
3810
3811 if (remote_flush)
79539cec 3812 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3813 else if (local_flush)
79539cec
AK
3814 kvm_mmu_flush_tlb(vcpu);
3815}
3816
889e5cbc
XG
3817static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3818 const u8 *new, int *bytes)
da4a00f0 3819{
889e5cbc
XG
3820 u64 gentry;
3821 int r;
72016f3a 3822
72016f3a
AK
3823 /*
3824 * Assume that the pte write on a page table of the same type
49b26e26
XG
3825 * as the current vcpu paging mode since we update the sptes only
3826 * when they have the same mode.
72016f3a 3827 */
889e5cbc 3828 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3829 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3830 *gpa &= ~(gpa_t)7;
3831 *bytes = 8;
116eb3d3 3832 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
3833 if (r)
3834 gentry = 0;
08e850c6
AK
3835 new = (const u8 *)&gentry;
3836 }
3837
889e5cbc 3838 switch (*bytes) {
08e850c6
AK
3839 case 4:
3840 gentry = *(const u32 *)new;
3841 break;
3842 case 8:
3843 gentry = *(const u64 *)new;
3844 break;
3845 default:
3846 gentry = 0;
3847 break;
72016f3a
AK
3848 }
3849
889e5cbc
XG
3850 return gentry;
3851}
3852
3853/*
3854 * If we're seeing too many writes to a page, it may no longer be a page table,
3855 * or we may be forking, in which case it is better to unmap the page.
3856 */
a138fe75 3857static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3858{
a30f47cb
XG
3859 /*
3860 * Skip write-flooding detected for the sp whose level is 1, because
3861 * it can become unsync, then the guest page is not write-protected.
3862 */
f71fa31f 3863 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3864 return false;
3246af0e 3865
a30f47cb 3866 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3867}
3868
3869/*
3870 * Misaligned accesses are too much trouble to fix up; also, they usually
3871 * indicate a page is not used as a page table.
3872 */
3873static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3874 int bytes)
3875{
3876 unsigned offset, pte_size, misaligned;
3877
3878 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3879 gpa, bytes, sp->role.word);
3880
3881 offset = offset_in_page(gpa);
3882 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3883
3884 /*
3885 * Sometimes, the OS only writes the last one bytes to update status
3886 * bits, for example, in linux, andb instruction is used in clear_bit().
3887 */
3888 if (!(offset & (pte_size - 1)) && bytes == 1)
3889 return false;
3890
889e5cbc
XG
3891 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3892 misaligned |= bytes < 4;
3893
3894 return misaligned;
3895}
3896
3897static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3898{
3899 unsigned page_offset, quadrant;
3900 u64 *spte;
3901 int level;
3902
3903 page_offset = offset_in_page(gpa);
3904 level = sp->role.level;
3905 *nspte = 1;
3906 if (!sp->role.cr4_pae) {
3907 page_offset <<= 1; /* 32->64 */
3908 /*
3909 * A 32-bit pde maps 4MB while the shadow pdes map
3910 * only 2MB. So we need to double the offset again
3911 * and zap two pdes instead of one.
3912 */
3913 if (level == PT32_ROOT_LEVEL) {
3914 page_offset &= ~7; /* kill rounding error */
3915 page_offset <<= 1;
3916 *nspte = 2;
3917 }
3918 quadrant = page_offset >> PAGE_SHIFT;
3919 page_offset &= ~PAGE_MASK;
3920 if (quadrant != sp->role.quadrant)
3921 return NULL;
3922 }
3923
3924 spte = &sp->spt[page_offset / sizeof(*spte)];
3925 return spte;
3926}
3927
3928void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3929 const u8 *new, int bytes)
3930{
3931 gfn_t gfn = gpa >> PAGE_SHIFT;
3932 union kvm_mmu_page_role mask = { .word = 0 };
3933 struct kvm_mmu_page *sp;
3934 struct hlist_node *node;
3935 LIST_HEAD(invalid_list);
3936 u64 entry, gentry, *spte;
3937 int npte;
a30f47cb 3938 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3939
3940 /*
3941 * If we don't have indirect shadow pages, it means no page is
3942 * write-protected, so we can exit simply.
3943 */
3944 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3945 return;
3946
3947 zap_page = remote_flush = local_flush = false;
3948
3949 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3950
3951 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3952
3953 /*
3954 * No need to care whether allocation memory is successful
3955 * or not since pte prefetch is skiped if it does not have
3956 * enough objects in the cache.
3957 */
3958 mmu_topup_memory_caches(vcpu);
3959
3960 spin_lock(&vcpu->kvm->mmu_lock);
3961 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3962 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3963
fa1de2bf 3964 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3965 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3966 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3967 detect_write_flooding(sp)) {
0671a8e7 3968 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3969 &invalid_list);
4cee5764 3970 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3971 continue;
3972 }
889e5cbc
XG
3973
3974 spte = get_written_sptes(sp, gpa, &npte);
3975 if (!spte)
3976 continue;
3977
0671a8e7 3978 local_flush = true;
ac1b714e 3979 while (npte--) {
79539cec 3980 entry = *spte;
38e3b2b2 3981 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3982 if (gentry &&
3983 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3984 & mask.word) && rmap_can_add(vcpu))
7c562522 3985 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 3986 if (need_remote_flush(entry, *spte))
0671a8e7 3987 remote_flush = true;
ac1b714e 3988 ++spte;
9b7a0325 3989 }
9b7a0325 3990 }
0671a8e7 3991 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3992 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3993 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3994 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3995}
3996
a436036b
AK
3997int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3998{
10589a46
MT
3999 gpa_t gpa;
4000 int r;
a436036b 4001
c5a78f2b 4002 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4003 return 0;
4004
1871c602 4005 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4006
10589a46 4007 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4008
10589a46 4009 return r;
a436036b 4010}
577bdc49 4011EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4012
22d95b12 4013void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 4014{
d98ba053 4015 LIST_HEAD(invalid_list);
103ad25a 4016
e0df7b9f 4017 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 4018 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 4019 struct kvm_mmu_page *sp;
ebeace86 4020
f05e70ac 4021 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 4022 struct kvm_mmu_page, link);
e0df7b9f 4023 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4024 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4025 }
aa6bd187 4026 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4027}
ebeace86 4028
1cb3f3ae
XG
4029static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4030{
4031 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4032 return vcpu_match_mmio_gpa(vcpu, addr);
4033
4034 return vcpu_match_mmio_gva(vcpu, addr);
4035}
4036
dc25e89e
AP
4037int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4038 void *insn, int insn_len)
3067714c 4039{
1cb3f3ae 4040 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4041 enum emulation_result er;
4042
56028d08 4043 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4044 if (r < 0)
4045 goto out;
4046
4047 if (!r) {
4048 r = 1;
4049 goto out;
4050 }
4051
1cb3f3ae
XG
4052 if (is_mmio_page_fault(vcpu, cr2))
4053 emulation_type = 0;
4054
4055 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4056
4057 switch (er) {
4058 case EMULATE_DONE:
4059 return 1;
4060 case EMULATE_DO_MMIO:
4061 ++vcpu->stat.mmio_exits;
6d77dbfc 4062 /* fall through */
3067714c 4063 case EMULATE_FAIL:
3f5d18a9 4064 return 0;
3067714c
AK
4065 default:
4066 BUG();
4067 }
4068out:
3067714c
AK
4069 return r;
4070}
4071EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4072
a7052897
MT
4073void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4074{
a7052897 4075 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4076 kvm_mmu_flush_tlb(vcpu);
4077 ++vcpu->stat.invlpg;
4078}
4079EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4080
18552672
JR
4081void kvm_enable_tdp(void)
4082{
4083 tdp_enabled = true;
4084}
4085EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4086
5f4cb662
JR
4087void kvm_disable_tdp(void)
4088{
4089 tdp_enabled = false;
4090}
4091EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4092
6aa8b732
AK
4093static void free_mmu_pages(struct kvm_vcpu *vcpu)
4094{
ad312c7c 4095 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4096 if (vcpu->arch.mmu.lm_root != NULL)
4097 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4098}
4099
4100static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4101{
17ac10ad 4102 struct page *page;
6aa8b732
AK
4103 int i;
4104
4105 ASSERT(vcpu);
4106
17ac10ad
AK
4107 /*
4108 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4109 * Therefore we need to allocate shadow page tables in the first
4110 * 4GB of memory, which happens to fit the DMA32 zone.
4111 */
4112 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4113 if (!page)
d7fa6ab2
WY
4114 return -ENOMEM;
4115
ad312c7c 4116 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4117 for (i = 0; i < 4; ++i)
ad312c7c 4118 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4119
6aa8b732 4120 return 0;
6aa8b732
AK
4121}
4122
8018c27b 4123int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4124{
6aa8b732 4125 ASSERT(vcpu);
e459e322
XG
4126
4127 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4128 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4129 vcpu->arch.mmu.translate_gpa = translate_gpa;
4130 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4131
8018c27b
IM
4132 return alloc_mmu_pages(vcpu);
4133}
6aa8b732 4134
8018c27b
IM
4135int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4136{
4137 ASSERT(vcpu);
ad312c7c 4138 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4139
8018c27b 4140 return init_kvm_mmu(vcpu);
6aa8b732
AK
4141}
4142
90cb0529 4143void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4144{
b99db1d3
TY
4145 struct kvm_memory_slot *memslot;
4146 gfn_t last_gfn;
4147 int i;
6aa8b732 4148
b99db1d3
TY
4149 memslot = id_to_memslot(kvm->memslots, slot);
4150 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4151
9d1beefb
TY
4152 spin_lock(&kvm->mmu_lock);
4153
b99db1d3
TY
4154 for (i = PT_PAGE_TABLE_LEVEL;
4155 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4156 unsigned long *rmapp;
4157 unsigned long last_index, index;
6aa8b732 4158
b99db1d3
TY
4159 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4160 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4161
b99db1d3
TY
4162 for (index = 0; index <= last_index; ++index, ++rmapp) {
4163 if (*rmapp)
4164 __rmap_write_protect(kvm, rmapp, false);
6b81b05e
TY
4165
4166 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4167 kvm_flush_remote_tlbs(kvm);
4168 cond_resched_lock(&kvm->mmu_lock);
4169 }
8234b22e 4170 }
6aa8b732 4171 }
b99db1d3 4172
171d595d 4173 kvm_flush_remote_tlbs(kvm);
9d1beefb 4174 spin_unlock(&kvm->mmu_lock);
6aa8b732 4175}
37a7d8b0 4176
90cb0529 4177void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 4178{
4db35314 4179 struct kvm_mmu_page *sp, *node;
d98ba053 4180 LIST_HEAD(invalid_list);
e0fa826f 4181
aaee2c94 4182 spin_lock(&kvm->mmu_lock);
3246af0e 4183restart:
f05e70ac 4184 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 4185 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
4186 goto restart;
4187
d98ba053 4188 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 4189 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
4190}
4191
3d56cbdf
JK
4192static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4193 struct list_head *invalid_list)
3ee16c81
IE
4194{
4195 struct kvm_mmu_page *page;
4196
85b70591
XG
4197 if (list_empty(&kvm->arch.active_mmu_pages))
4198 return;
4199
3ee16c81
IE
4200 page = container_of(kvm->arch.active_mmu_pages.prev,
4201 struct kvm_mmu_page, link);
3d56cbdf 4202 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
4203}
4204
1495f230 4205static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4206{
4207 struct kvm *kvm;
1495f230 4208 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
4209
4210 if (nr_to_scan == 0)
4211 goto out;
3ee16c81 4212
e935b837 4213 raw_spin_lock(&kvm_lock);
3ee16c81
IE
4214
4215 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4216 int idx;
d98ba053 4217 LIST_HEAD(invalid_list);
3ee16c81 4218
35f2d16b
TY
4219 /*
4220 * Never scan more than sc->nr_to_scan VM instances.
4221 * Will not hit this condition practically since we do not try
4222 * to shrink more than one VM and it is very unlikely to see
4223 * !n_used_mmu_pages so many times.
4224 */
4225 if (!nr_to_scan--)
4226 break;
19526396
GN
4227 /*
4228 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4229 * here. We may skip a VM instance errorneosly, but we do not
4230 * want to shrink a VM that only started to populate its MMU
4231 * anyway.
4232 */
35f2d16b 4233 if (!kvm->arch.n_used_mmu_pages)
19526396 4234 continue;
19526396 4235
f656ce01 4236 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4237 spin_lock(&kvm->mmu_lock);
3ee16c81 4238
19526396 4239 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
d98ba053 4240 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4241
3ee16c81 4242 spin_unlock(&kvm->mmu_lock);
f656ce01 4243 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
4244
4245 list_move_tail(&kvm->vm_list, &vm_list);
4246 break;
3ee16c81 4247 }
3ee16c81 4248
e935b837 4249 raw_spin_unlock(&kvm_lock);
3ee16c81 4250
45221ab6
DH
4251out:
4252 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4253}
4254
4255static struct shrinker mmu_shrinker = {
4256 .shrink = mmu_shrink,
4257 .seeks = DEFAULT_SEEKS * 10,
4258};
4259
2ddfd20e 4260static void mmu_destroy_caches(void)
b5a33a75 4261{
53c07b18
XG
4262 if (pte_list_desc_cache)
4263 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4264 if (mmu_page_header_cache)
4265 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4266}
4267
4268int kvm_mmu_module_init(void)
4269{
53c07b18
XG
4270 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4271 sizeof(struct pte_list_desc),
20c2df83 4272 0, 0, NULL);
53c07b18 4273 if (!pte_list_desc_cache)
b5a33a75
AK
4274 goto nomem;
4275
d3d25b04
AK
4276 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4277 sizeof(struct kvm_mmu_page),
20c2df83 4278 0, 0, NULL);
d3d25b04
AK
4279 if (!mmu_page_header_cache)
4280 goto nomem;
4281
45bf21a8
WY
4282 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4283 goto nomem;
4284
3ee16c81
IE
4285 register_shrinker(&mmu_shrinker);
4286
b5a33a75
AK
4287 return 0;
4288
4289nomem:
3ee16c81 4290 mmu_destroy_caches();
b5a33a75
AK
4291 return -ENOMEM;
4292}
4293
3ad82a7e
ZX
4294/*
4295 * Caculate mmu pages needed for kvm.
4296 */
4297unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4298{
3ad82a7e
ZX
4299 unsigned int nr_mmu_pages;
4300 unsigned int nr_pages = 0;
bc6678a3 4301 struct kvm_memslots *slots;
be6ba0f0 4302 struct kvm_memory_slot *memslot;
3ad82a7e 4303
90d83dc3
LJ
4304 slots = kvm_memslots(kvm);
4305
be6ba0f0
XG
4306 kvm_for_each_memslot(memslot, slots)
4307 nr_pages += memslot->npages;
3ad82a7e
ZX
4308
4309 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4310 nr_mmu_pages = max(nr_mmu_pages,
4311 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4312
4313 return nr_mmu_pages;
4314}
4315
94d8b056
MT
4316int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4317{
4318 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4319 u64 spte;
94d8b056
MT
4320 int nr_sptes = 0;
4321
c2a2ac2b
XG
4322 walk_shadow_page_lockless_begin(vcpu);
4323 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4324 sptes[iterator.level-1] = spte;
94d8b056 4325 nr_sptes++;
c2a2ac2b 4326 if (!is_shadow_present_pte(spte))
94d8b056
MT
4327 break;
4328 }
c2a2ac2b 4329 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4330
4331 return nr_sptes;
4332}
4333EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4334
c42fffe3
XG
4335void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4336{
4337 ASSERT(vcpu);
4338
4339 destroy_kvm_mmu(vcpu);
4340 free_mmu_pages(vcpu);
4341 mmu_free_memory_caches(vcpu);
b034cf01
XG
4342}
4343
b034cf01
XG
4344void kvm_mmu_module_exit(void)
4345{
4346 mmu_destroy_caches();
4347 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4348 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4349 mmu_audit_disable();
4350}