]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: MMU: Move kvm_mmu_free_some_pages() into kvm_mmu_alloc_page()
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201{
95b0430d
TY
202 struct kvm_mmu_page *sp = page_header(__pa(sptep));
203
ce88decf
XG
204 access &= ACC_WRITE_MASK | ACC_USER_MASK;
205
95b0430d 206 sp->mmio_cached = true;
4f022648 207 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
208 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
209}
210
211static bool is_mmio_spte(u64 spte)
212{
213 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
214}
215
216static gfn_t get_mmio_spte_gfn(u64 spte)
217{
218 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
219}
220
221static unsigned get_mmio_spte_access(u64 spte)
222{
223 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
224}
225
226static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
227{
228 if (unlikely(is_noslot_pfn(pfn))) {
229 mark_mmio_spte(sptep, gfn, access);
230 return true;
231 }
232
233 return false;
234}
c7addb90 235
82725b20
DE
236static inline u64 rsvd_bits(int s, int e)
237{
238 return ((1ULL << (e - s + 1)) - 1) << s;
239}
240
7b52345e 241void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 242 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
243{
244 shadow_user_mask = user_mask;
245 shadow_accessed_mask = accessed_mask;
246 shadow_dirty_mask = dirty_mask;
247 shadow_nx_mask = nx_mask;
248 shadow_x_mask = x_mask;
249}
250EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
251
6aa8b732
AK
252static int is_cpuid_PSE36(void)
253{
254 return 1;
255}
256
73b1087e
AK
257static int is_nx(struct kvm_vcpu *vcpu)
258{
f6801dff 259 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
260}
261
c7addb90
AK
262static int is_shadow_present_pte(u64 pte)
263{
ce88decf 264 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
265}
266
05da4558
MT
267static int is_large_pte(u64 pte)
268{
269 return pte & PT_PAGE_SIZE_MASK;
270}
271
43a3795a 272static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 273{
439e218a 274 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
275}
276
43a3795a 277static int is_rmap_spte(u64 pte)
cd4a4e53 278{
4b1a80fa 279 return is_shadow_present_pte(pte);
cd4a4e53
AK
280}
281
776e6633
MT
282static int is_last_spte(u64 pte, int level)
283{
284 if (level == PT_PAGE_TABLE_LEVEL)
285 return 1;
852e3c19 286 if (is_large_pte(pte))
776e6633
MT
287 return 1;
288 return 0;
289}
290
35149e21 291static pfn_t spte_to_pfn(u64 pte)
0b49ea86 292{
35149e21 293 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
294}
295
da928521
AK
296static gfn_t pse36_gfn_delta(u32 gpte)
297{
298 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
299
300 return (gpte & PT32_DIR_PSE36_MASK) << shift;
301}
302
603e0651 303#ifdef CONFIG_X86_64
d555c333 304static void __set_spte(u64 *sptep, u64 spte)
e663ee64 305{
603e0651 306 *sptep = spte;
e663ee64
AK
307}
308
603e0651 309static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 310{
603e0651
XG
311 *sptep = spte;
312}
313
314static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
315{
316 return xchg(sptep, spte);
317}
c2a2ac2b
XG
318
319static u64 __get_spte_lockless(u64 *sptep)
320{
321 return ACCESS_ONCE(*sptep);
322}
ce88decf
XG
323
324static bool __check_direct_spte_mmio_pf(u64 spte)
325{
326 /* It is valid if the spte is zapped. */
327 return spte == 0ull;
328}
a9221dd5 329#else
603e0651
XG
330union split_spte {
331 struct {
332 u32 spte_low;
333 u32 spte_high;
334 };
335 u64 spte;
336};
a9221dd5 337
c2a2ac2b
XG
338static void count_spte_clear(u64 *sptep, u64 spte)
339{
340 struct kvm_mmu_page *sp = page_header(__pa(sptep));
341
342 if (is_shadow_present_pte(spte))
343 return;
344
345 /* Ensure the spte is completely set before we increase the count */
346 smp_wmb();
347 sp->clear_spte_count++;
348}
349
603e0651
XG
350static void __set_spte(u64 *sptep, u64 spte)
351{
352 union split_spte *ssptep, sspte;
a9221dd5 353
603e0651
XG
354 ssptep = (union split_spte *)sptep;
355 sspte = (union split_spte)spte;
356
357 ssptep->spte_high = sspte.spte_high;
358
359 /*
360 * If we map the spte from nonpresent to present, We should store
361 * the high bits firstly, then set present bit, so cpu can not
362 * fetch this spte while we are setting the spte.
363 */
364 smp_wmb();
365
366 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
367}
368
603e0651
XG
369static void __update_clear_spte_fast(u64 *sptep, u64 spte)
370{
371 union split_spte *ssptep, sspte;
372
373 ssptep = (union split_spte *)sptep;
374 sspte = (union split_spte)spte;
375
376 ssptep->spte_low = sspte.spte_low;
377
378 /*
379 * If we map the spte from present to nonpresent, we should clear
380 * present bit firstly to avoid vcpu fetch the old high bits.
381 */
382 smp_wmb();
383
384 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 385 count_spte_clear(sptep, spte);
603e0651
XG
386}
387
388static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
389{
390 union split_spte *ssptep, sspte, orig;
391
392 ssptep = (union split_spte *)sptep;
393 sspte = (union split_spte)spte;
394
395 /* xchg acts as a barrier before the setting of the high bits */
396 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
397 orig.spte_high = ssptep->spte_high;
398 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 399 count_spte_clear(sptep, spte);
603e0651
XG
400
401 return orig.spte;
402}
c2a2ac2b
XG
403
404/*
405 * The idea using the light way get the spte on x86_32 guest is from
406 * gup_get_pte(arch/x86/mm/gup.c).
407 * The difference is we can not catch the spte tlb flush if we leave
408 * guest mode, so we emulate it by increase clear_spte_count when spte
409 * is cleared.
410 */
411static u64 __get_spte_lockless(u64 *sptep)
412{
413 struct kvm_mmu_page *sp = page_header(__pa(sptep));
414 union split_spte spte, *orig = (union split_spte *)sptep;
415 int count;
416
417retry:
418 count = sp->clear_spte_count;
419 smp_rmb();
420
421 spte.spte_low = orig->spte_low;
422 smp_rmb();
423
424 spte.spte_high = orig->spte_high;
425 smp_rmb();
426
427 if (unlikely(spte.spte_low != orig->spte_low ||
428 count != sp->clear_spte_count))
429 goto retry;
430
431 return spte.spte;
432}
ce88decf
XG
433
434static bool __check_direct_spte_mmio_pf(u64 spte)
435{
436 union split_spte sspte = (union split_spte)spte;
437 u32 high_mmio_mask = shadow_mmio_mask >> 32;
438
439 /* It is valid if the spte is zapped. */
440 if (spte == 0ull)
441 return true;
442
443 /* It is valid if the spte is being zapped. */
444 if (sspte.spte_low == 0ull &&
445 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
446 return true;
447
448 return false;
449}
603e0651
XG
450#endif
451
c7ba5b48
XG
452static bool spte_is_locklessly_modifiable(u64 spte)
453{
feb3eb70
GN
454 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
455 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
456}
457
8672b721
XG
458static bool spte_has_volatile_bits(u64 spte)
459{
c7ba5b48
XG
460 /*
461 * Always atomicly update spte if it can be updated
462 * out of mmu-lock, it can ensure dirty bit is not lost,
463 * also, it can help us to get a stable is_writable_pte()
464 * to ensure tlb flush is not missed.
465 */
466 if (spte_is_locklessly_modifiable(spte))
467 return true;
468
8672b721
XG
469 if (!shadow_accessed_mask)
470 return false;
471
472 if (!is_shadow_present_pte(spte))
473 return false;
474
4132779b
XG
475 if ((spte & shadow_accessed_mask) &&
476 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
477 return false;
478
479 return true;
480}
481
4132779b
XG
482static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
483{
484 return (old_spte & bit_mask) && !(new_spte & bit_mask);
485}
486
1df9f2dc
XG
487/* Rules for using mmu_spte_set:
488 * Set the sptep from nonpresent to present.
489 * Note: the sptep being assigned *must* be either not present
490 * or in a state where the hardware will not attempt to update
491 * the spte.
492 */
493static void mmu_spte_set(u64 *sptep, u64 new_spte)
494{
495 WARN_ON(is_shadow_present_pte(*sptep));
496 __set_spte(sptep, new_spte);
497}
498
499/* Rules for using mmu_spte_update:
500 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
501 *
502 * Whenever we overwrite a writable spte with a read-only one we
503 * should flush remote TLBs. Otherwise rmap_write_protect
504 * will find a read-only spte, even though the writable spte
505 * might be cached on a CPU's TLB, the return value indicates this
506 * case.
1df9f2dc 507 */
6e7d0354 508static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 509{
c7ba5b48 510 u64 old_spte = *sptep;
6e7d0354 511 bool ret = false;
4132779b
XG
512
513 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 514
6e7d0354
XG
515 if (!is_shadow_present_pte(old_spte)) {
516 mmu_spte_set(sptep, new_spte);
517 return ret;
518 }
4132779b 519
c7ba5b48 520 if (!spte_has_volatile_bits(old_spte))
603e0651 521 __update_clear_spte_fast(sptep, new_spte);
4132779b 522 else
603e0651 523 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 524
c7ba5b48
XG
525 /*
526 * For the spte updated out of mmu-lock is safe, since
527 * we always atomicly update it, see the comments in
528 * spte_has_volatile_bits().
529 */
6e7d0354
XG
530 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
531 ret = true;
532
4132779b 533 if (!shadow_accessed_mask)
6e7d0354 534 return ret;
4132779b
XG
535
536 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
537 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
538 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
539 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
540
541 return ret;
b79b93f9
AK
542}
543
1df9f2dc
XG
544/*
545 * Rules for using mmu_spte_clear_track_bits:
546 * It sets the sptep from present to nonpresent, and track the
547 * state bits, it is used to clear the last level sptep.
548 */
549static int mmu_spte_clear_track_bits(u64 *sptep)
550{
551 pfn_t pfn;
552 u64 old_spte = *sptep;
553
554 if (!spte_has_volatile_bits(old_spte))
603e0651 555 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 556 else
603e0651 557 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
558
559 if (!is_rmap_spte(old_spte))
560 return 0;
561
562 pfn = spte_to_pfn(old_spte);
86fde74c
XG
563
564 /*
565 * KVM does not hold the refcount of the page used by
566 * kvm mmu, before reclaiming the page, we should
567 * unmap it from mmu first.
568 */
569 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
570
1df9f2dc
XG
571 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
572 kvm_set_pfn_accessed(pfn);
573 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
574 kvm_set_pfn_dirty(pfn);
575 return 1;
576}
577
578/*
579 * Rules for using mmu_spte_clear_no_track:
580 * Directly clear spte without caring the state bits of sptep,
581 * it is used to set the upper level spte.
582 */
583static void mmu_spte_clear_no_track(u64 *sptep)
584{
603e0651 585 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
586}
587
c2a2ac2b
XG
588static u64 mmu_spte_get_lockless(u64 *sptep)
589{
590 return __get_spte_lockless(sptep);
591}
592
593static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
594{
c142786c
AK
595 /*
596 * Prevent page table teardown by making any free-er wait during
597 * kvm_flush_remote_tlbs() IPI to all active vcpus.
598 */
599 local_irq_disable();
600 vcpu->mode = READING_SHADOW_PAGE_TABLES;
601 /*
602 * Make sure a following spte read is not reordered ahead of the write
603 * to vcpu->mode.
604 */
605 smp_mb();
c2a2ac2b
XG
606}
607
608static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
609{
c142786c
AK
610 /*
611 * Make sure the write to vcpu->mode is not reordered in front of
612 * reads to sptes. If it does, kvm_commit_zap_page() can see us
613 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
614 */
615 smp_mb();
616 vcpu->mode = OUTSIDE_GUEST_MODE;
617 local_irq_enable();
c2a2ac2b
XG
618}
619
e2dec939 620static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 621 struct kmem_cache *base_cache, int min)
714b93da
AK
622{
623 void *obj;
624
625 if (cache->nobjs >= min)
e2dec939 626 return 0;
714b93da 627 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 628 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 629 if (!obj)
e2dec939 630 return -ENOMEM;
714b93da
AK
631 cache->objects[cache->nobjs++] = obj;
632 }
e2dec939 633 return 0;
714b93da
AK
634}
635
f759e2b4
XG
636static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
637{
638 return cache->nobjs;
639}
640
e8ad9a70
XG
641static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
642 struct kmem_cache *cache)
714b93da
AK
643{
644 while (mc->nobjs)
e8ad9a70 645 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
646}
647
c1158e63 648static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 649 int min)
c1158e63 650{
842f22ed 651 void *page;
c1158e63
AK
652
653 if (cache->nobjs >= min)
654 return 0;
655 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 656 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
657 if (!page)
658 return -ENOMEM;
842f22ed 659 cache->objects[cache->nobjs++] = page;
c1158e63
AK
660 }
661 return 0;
662}
663
664static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
665{
666 while (mc->nobjs)
c4d198d5 667 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
668}
669
2e3e5882 670static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 671{
e2dec939
AK
672 int r;
673
53c07b18 674 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 675 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
676 if (r)
677 goto out;
ad312c7c 678 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
679 if (r)
680 goto out;
ad312c7c 681 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 682 mmu_page_header_cache, 4);
e2dec939
AK
683out:
684 return r;
714b93da
AK
685}
686
687static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
688{
53c07b18
XG
689 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
690 pte_list_desc_cache);
ad312c7c 691 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
692 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
693 mmu_page_header_cache);
714b93da
AK
694}
695
80feb89a 696static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
697{
698 void *p;
699
700 BUG_ON(!mc->nobjs);
701 p = mc->objects[--mc->nobjs];
714b93da
AK
702 return p;
703}
704
53c07b18 705static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 706{
80feb89a 707 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
708}
709
53c07b18 710static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 711{
53c07b18 712 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
713}
714
2032a93d
LJ
715static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
716{
717 if (!sp->role.direct)
718 return sp->gfns[index];
719
720 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
721}
722
723static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
724{
725 if (sp->role.direct)
726 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
727 else
728 sp->gfns[index] = gfn;
729}
730
05da4558 731/*
d4dbf470
TY
732 * Return the pointer to the large page information for a given gfn,
733 * handling slots that are not large page aligned.
05da4558 734 */
d4dbf470
TY
735static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
736 struct kvm_memory_slot *slot,
737 int level)
05da4558
MT
738{
739 unsigned long idx;
740
fb03cb6f 741 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 742 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
743}
744
745static void account_shadowed(struct kvm *kvm, gfn_t gfn)
746{
d25797b2 747 struct kvm_memory_slot *slot;
d4dbf470 748 struct kvm_lpage_info *linfo;
d25797b2 749 int i;
05da4558 750
a1f4d395 751 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
752 for (i = PT_DIRECTORY_LEVEL;
753 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
754 linfo = lpage_info_slot(gfn, slot, i);
755 linfo->write_count += 1;
d25797b2 756 }
332b207d 757 kvm->arch.indirect_shadow_pages++;
05da4558
MT
758}
759
760static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
761{
d25797b2 762 struct kvm_memory_slot *slot;
d4dbf470 763 struct kvm_lpage_info *linfo;
d25797b2 764 int i;
05da4558 765
a1f4d395 766 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
767 for (i = PT_DIRECTORY_LEVEL;
768 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
769 linfo = lpage_info_slot(gfn, slot, i);
770 linfo->write_count -= 1;
771 WARN_ON(linfo->write_count < 0);
d25797b2 772 }
332b207d 773 kvm->arch.indirect_shadow_pages--;
05da4558
MT
774}
775
d25797b2
JR
776static int has_wrprotected_page(struct kvm *kvm,
777 gfn_t gfn,
778 int level)
05da4558 779{
2843099f 780 struct kvm_memory_slot *slot;
d4dbf470 781 struct kvm_lpage_info *linfo;
05da4558 782
a1f4d395 783 slot = gfn_to_memslot(kvm, gfn);
05da4558 784 if (slot) {
d4dbf470
TY
785 linfo = lpage_info_slot(gfn, slot, level);
786 return linfo->write_count;
05da4558
MT
787 }
788
789 return 1;
790}
791
d25797b2 792static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 793{
8f0b1ab6 794 unsigned long page_size;
d25797b2 795 int i, ret = 0;
05da4558 796
8f0b1ab6 797 page_size = kvm_host_page_size(kvm, gfn);
05da4558 798
d25797b2
JR
799 for (i = PT_PAGE_TABLE_LEVEL;
800 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
801 if (page_size >= KVM_HPAGE_SIZE(i))
802 ret = i;
803 else
804 break;
805 }
806
4c2155ce 807 return ret;
05da4558
MT
808}
809
5d163b1c
XG
810static struct kvm_memory_slot *
811gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
812 bool no_dirty_log)
05da4558
MT
813{
814 struct kvm_memory_slot *slot;
5d163b1c
XG
815
816 slot = gfn_to_memslot(vcpu->kvm, gfn);
817 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
818 (no_dirty_log && slot->dirty_bitmap))
819 slot = NULL;
820
821 return slot;
822}
823
824static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
825{
a0a8eaba 826 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
827}
828
829static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
830{
831 int host_level, level, max_level;
05da4558 832
d25797b2
JR
833 host_level = host_mapping_level(vcpu->kvm, large_gfn);
834
835 if (host_level == PT_PAGE_TABLE_LEVEL)
836 return host_level;
837
55dd98c3 838 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
839
840 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
841 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
842 break;
d25797b2
JR
843
844 return level - 1;
05da4558
MT
845}
846
290fc38d 847/*
53c07b18 848 * Pte mapping structures:
cd4a4e53 849 *
53c07b18 850 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 851 *
53c07b18
XG
852 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
853 * pte_list_desc containing more mappings.
53a27b39 854 *
53c07b18 855 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
856 * the spte was not added.
857 *
cd4a4e53 858 */
53c07b18
XG
859static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
860 unsigned long *pte_list)
cd4a4e53 861{
53c07b18 862 struct pte_list_desc *desc;
53a27b39 863 int i, count = 0;
cd4a4e53 864
53c07b18
XG
865 if (!*pte_list) {
866 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
867 *pte_list = (unsigned long)spte;
868 } else if (!(*pte_list & 1)) {
869 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
870 desc = mmu_alloc_pte_list_desc(vcpu);
871 desc->sptes[0] = (u64 *)*pte_list;
d555c333 872 desc->sptes[1] = spte;
53c07b18 873 *pte_list = (unsigned long)desc | 1;
cb16a7b3 874 ++count;
cd4a4e53 875 } else {
53c07b18
XG
876 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
877 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
878 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 879 desc = desc->more;
53c07b18 880 count += PTE_LIST_EXT;
53a27b39 881 }
53c07b18
XG
882 if (desc->sptes[PTE_LIST_EXT-1]) {
883 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
884 desc = desc->more;
885 }
d555c333 886 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 887 ++count;
d555c333 888 desc->sptes[i] = spte;
cd4a4e53 889 }
53a27b39 890 return count;
cd4a4e53
AK
891}
892
53c07b18
XG
893static void
894pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
895 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
896{
897 int j;
898
53c07b18 899 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 900 ;
d555c333
AK
901 desc->sptes[i] = desc->sptes[j];
902 desc->sptes[j] = NULL;
cd4a4e53
AK
903 if (j != 0)
904 return;
905 if (!prev_desc && !desc->more)
53c07b18 906 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
907 else
908 if (prev_desc)
909 prev_desc->more = desc->more;
910 else
53c07b18
XG
911 *pte_list = (unsigned long)desc->more | 1;
912 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
913}
914
53c07b18 915static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 916{
53c07b18
XG
917 struct pte_list_desc *desc;
918 struct pte_list_desc *prev_desc;
cd4a4e53
AK
919 int i;
920
53c07b18
XG
921 if (!*pte_list) {
922 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 923 BUG();
53c07b18
XG
924 } else if (!(*pte_list & 1)) {
925 rmap_printk("pte_list_remove: %p 1->0\n", spte);
926 if ((u64 *)*pte_list != spte) {
927 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
928 BUG();
929 }
53c07b18 930 *pte_list = 0;
cd4a4e53 931 } else {
53c07b18
XG
932 rmap_printk("pte_list_remove: %p many->many\n", spte);
933 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
934 prev_desc = NULL;
935 while (desc) {
53c07b18 936 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 937 if (desc->sptes[i] == spte) {
53c07b18 938 pte_list_desc_remove_entry(pte_list,
714b93da 939 desc, i,
cd4a4e53
AK
940 prev_desc);
941 return;
942 }
943 prev_desc = desc;
944 desc = desc->more;
945 }
53c07b18 946 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
947 BUG();
948 }
949}
950
67052b35
XG
951typedef void (*pte_list_walk_fn) (u64 *spte);
952static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
953{
954 struct pte_list_desc *desc;
955 int i;
956
957 if (!*pte_list)
958 return;
959
960 if (!(*pte_list & 1))
961 return fn((u64 *)*pte_list);
962
963 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
964 while (desc) {
965 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
966 fn(desc->sptes[i]);
967 desc = desc->more;
968 }
969}
970
9373e2c0 971static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 972 struct kvm_memory_slot *slot)
53c07b18 973{
77d11309 974 unsigned long idx;
53c07b18 975
77d11309 976 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 977 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
978}
979
9b9b1492
TY
980/*
981 * Take gfn and return the reverse mapping to it.
982 */
983static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
984{
985 struct kvm_memory_slot *slot;
986
987 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 988 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
989}
990
f759e2b4
XG
991static bool rmap_can_add(struct kvm_vcpu *vcpu)
992{
993 struct kvm_mmu_memory_cache *cache;
994
995 cache = &vcpu->arch.mmu_pte_list_desc_cache;
996 return mmu_memory_cache_free_objects(cache);
997}
998
53c07b18
XG
999static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1000{
1001 struct kvm_mmu_page *sp;
1002 unsigned long *rmapp;
1003
53c07b18
XG
1004 sp = page_header(__pa(spte));
1005 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1006 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1007 return pte_list_add(vcpu, spte, rmapp);
1008}
1009
53c07b18
XG
1010static void rmap_remove(struct kvm *kvm, u64 *spte)
1011{
1012 struct kvm_mmu_page *sp;
1013 gfn_t gfn;
1014 unsigned long *rmapp;
1015
1016 sp = page_header(__pa(spte));
1017 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1018 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1019 pte_list_remove(spte, rmapp);
1020}
1021
1e3f42f0
TY
1022/*
1023 * Used by the following functions to iterate through the sptes linked by a
1024 * rmap. All fields are private and not assumed to be used outside.
1025 */
1026struct rmap_iterator {
1027 /* private fields */
1028 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1029 int pos; /* index of the sptep */
1030};
1031
1032/*
1033 * Iteration must be started by this function. This should also be used after
1034 * removing/dropping sptes from the rmap link because in such cases the
1035 * information in the itererator may not be valid.
1036 *
1037 * Returns sptep if found, NULL otherwise.
1038 */
1039static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1040{
1041 if (!rmap)
1042 return NULL;
1043
1044 if (!(rmap & 1)) {
1045 iter->desc = NULL;
1046 return (u64 *)rmap;
1047 }
1048
1049 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1050 iter->pos = 0;
1051 return iter->desc->sptes[iter->pos];
1052}
1053
1054/*
1055 * Must be used with a valid iterator: e.g. after rmap_get_first().
1056 *
1057 * Returns sptep if found, NULL otherwise.
1058 */
1059static u64 *rmap_get_next(struct rmap_iterator *iter)
1060{
1061 if (iter->desc) {
1062 if (iter->pos < PTE_LIST_EXT - 1) {
1063 u64 *sptep;
1064
1065 ++iter->pos;
1066 sptep = iter->desc->sptes[iter->pos];
1067 if (sptep)
1068 return sptep;
1069 }
1070
1071 iter->desc = iter->desc->more;
1072
1073 if (iter->desc) {
1074 iter->pos = 0;
1075 /* desc->sptes[0] cannot be NULL */
1076 return iter->desc->sptes[iter->pos];
1077 }
1078 }
1079
1080 return NULL;
1081}
1082
c3707958 1083static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1084{
1df9f2dc 1085 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1086 rmap_remove(kvm, sptep);
be38d276
AK
1087}
1088
8e22f955
XG
1089
1090static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1091{
1092 if (is_large_pte(*sptep)) {
1093 WARN_ON(page_header(__pa(sptep))->role.level ==
1094 PT_PAGE_TABLE_LEVEL);
1095 drop_spte(kvm, sptep);
1096 --kvm->stat.lpages;
1097 return true;
1098 }
1099
1100 return false;
1101}
1102
1103static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1104{
1105 if (__drop_large_spte(vcpu->kvm, sptep))
1106 kvm_flush_remote_tlbs(vcpu->kvm);
1107}
1108
1109/*
49fde340 1110 * Write-protect on the specified @sptep, @pt_protect indicates whether
6b73a960
MT
1111 * spte writ-protection is caused by protecting shadow page table.
1112 * @flush indicates whether tlb need be flushed.
49fde340
XG
1113 *
1114 * Note: write protection is difference between drity logging and spte
1115 * protection:
1116 * - for dirty logging, the spte can be set to writable at anytime if
1117 * its dirty bitmap is properly set.
1118 * - for spte protection, the spte can be writable only after unsync-ing
1119 * shadow page.
8e22f955 1120 *
6b73a960 1121 * Return true if the spte is dropped.
8e22f955 1122 */
6b73a960
MT
1123static bool
1124spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
d13bc5b5
XG
1125{
1126 u64 spte = *sptep;
1127
49fde340
XG
1128 if (!is_writable_pte(spte) &&
1129 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1130 return false;
1131
1132 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1133
6b73a960
MT
1134 if (__drop_large_spte(kvm, sptep)) {
1135 *flush |= true;
1136 return true;
1137 }
1138
49fde340
XG
1139 if (pt_protect)
1140 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1141 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1142
6b73a960
MT
1143 *flush |= mmu_spte_update(sptep, spte);
1144 return false;
d13bc5b5
XG
1145}
1146
49fde340 1147static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1148 bool pt_protect)
98348e95 1149{
1e3f42f0
TY
1150 u64 *sptep;
1151 struct rmap_iterator iter;
d13bc5b5 1152 bool flush = false;
374cbac0 1153
1e3f42f0
TY
1154 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1155 BUG_ON(!(*sptep & PT_PRESENT_MASK));
6b73a960
MT
1156 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1157 sptep = rmap_get_first(*rmapp, &iter);
1158 continue;
1159 }
a0ed4607 1160
d13bc5b5 1161 sptep = rmap_get_next(&iter);
374cbac0 1162 }
855149aa 1163
d13bc5b5 1164 return flush;
a0ed4607
TY
1165}
1166
5dc99b23
TY
1167/**
1168 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1169 * @kvm: kvm instance
1170 * @slot: slot to protect
1171 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1172 * @mask: indicates which pages we should protect
1173 *
1174 * Used when we do not need to care about huge page mappings: e.g. during dirty
1175 * logging we do not have any such mappings.
1176 */
1177void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1178 struct kvm_memory_slot *slot,
1179 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1180{
1181 unsigned long *rmapp;
a0ed4607 1182
5dc99b23 1183 while (mask) {
65fbe37c
TY
1184 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1185 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1186 __rmap_write_protect(kvm, rmapp, false);
05da4558 1187
5dc99b23
TY
1188 /* clear the first set bit */
1189 mask &= mask - 1;
1190 }
374cbac0
AK
1191}
1192
2f84569f 1193static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1194{
1195 struct kvm_memory_slot *slot;
5dc99b23
TY
1196 unsigned long *rmapp;
1197 int i;
2f84569f 1198 bool write_protected = false;
95d4c16c
TY
1199
1200 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1201
1202 for (i = PT_PAGE_TABLE_LEVEL;
1203 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1204 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1205 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1206 }
1207
1208 return write_protected;
95d4c16c
TY
1209}
1210
8a8365c5 1211static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1212 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1213{
1e3f42f0
TY
1214 u64 *sptep;
1215 struct rmap_iterator iter;
e930bffe
AA
1216 int need_tlb_flush = 0;
1217
1e3f42f0
TY
1218 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1219 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1220 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1221
1222 drop_spte(kvm, sptep);
e930bffe
AA
1223 need_tlb_flush = 1;
1224 }
1e3f42f0 1225
e930bffe
AA
1226 return need_tlb_flush;
1227}
1228
8a8365c5 1229static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1230 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1231{
1e3f42f0
TY
1232 u64 *sptep;
1233 struct rmap_iterator iter;
3da0dd43 1234 int need_flush = 0;
1e3f42f0 1235 u64 new_spte;
3da0dd43
IE
1236 pte_t *ptep = (pte_t *)data;
1237 pfn_t new_pfn;
1238
1239 WARN_ON(pte_huge(*ptep));
1240 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1241
1242 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1243 BUG_ON(!is_shadow_present_pte(*sptep));
1244 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1245
3da0dd43 1246 need_flush = 1;
1e3f42f0 1247
3da0dd43 1248 if (pte_write(*ptep)) {
1e3f42f0
TY
1249 drop_spte(kvm, sptep);
1250 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1251 } else {
1e3f42f0 1252 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1253 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1254
1255 new_spte &= ~PT_WRITABLE_MASK;
1256 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1257 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1258
1259 mmu_spte_clear_track_bits(sptep);
1260 mmu_spte_set(sptep, new_spte);
1261 sptep = rmap_get_next(&iter);
3da0dd43
IE
1262 }
1263 }
1e3f42f0 1264
3da0dd43
IE
1265 if (need_flush)
1266 kvm_flush_remote_tlbs(kvm);
1267
1268 return 0;
1269}
1270
84504ef3
TY
1271static int kvm_handle_hva_range(struct kvm *kvm,
1272 unsigned long start,
1273 unsigned long end,
1274 unsigned long data,
1275 int (*handler)(struct kvm *kvm,
1276 unsigned long *rmapp,
048212d0 1277 struct kvm_memory_slot *slot,
84504ef3 1278 unsigned long data))
e930bffe 1279{
be6ba0f0 1280 int j;
f395302e 1281 int ret = 0;
bc6678a3 1282 struct kvm_memslots *slots;
be6ba0f0 1283 struct kvm_memory_slot *memslot;
bc6678a3 1284
90d83dc3 1285 slots = kvm_memslots(kvm);
e930bffe 1286
be6ba0f0 1287 kvm_for_each_memslot(memslot, slots) {
84504ef3 1288 unsigned long hva_start, hva_end;
bcd3ef58 1289 gfn_t gfn_start, gfn_end;
e930bffe 1290
84504ef3
TY
1291 hva_start = max(start, memslot->userspace_addr);
1292 hva_end = min(end, memslot->userspace_addr +
1293 (memslot->npages << PAGE_SHIFT));
1294 if (hva_start >= hva_end)
1295 continue;
1296 /*
1297 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1298 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1299 */
bcd3ef58 1300 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1301 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1302
bcd3ef58
TY
1303 for (j = PT_PAGE_TABLE_LEVEL;
1304 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1305 unsigned long idx, idx_end;
1306 unsigned long *rmapp;
d4dbf470 1307
bcd3ef58
TY
1308 /*
1309 * {idx(page_j) | page_j intersects with
1310 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1311 */
1312 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1313 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1314
bcd3ef58 1315 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1316
bcd3ef58
TY
1317 for (; idx <= idx_end; ++idx)
1318 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1319 }
1320 }
1321
f395302e 1322 return ret;
e930bffe
AA
1323}
1324
84504ef3
TY
1325static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1326 unsigned long data,
1327 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1328 struct kvm_memory_slot *slot,
84504ef3
TY
1329 unsigned long data))
1330{
1331 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1332}
1333
1334int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1335{
3da0dd43
IE
1336 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1337}
1338
b3ae2096
TY
1339int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1340{
1341 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1342}
1343
3da0dd43
IE
1344void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1345{
8a8365c5 1346 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1347}
1348
8a8365c5 1349static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1350 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1351{
1e3f42f0 1352 u64 *sptep;
79f702a6 1353 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1354 int young = 0;
1355
6316e1c8 1356 /*
3f6d8c8a
XH
1357 * In case of absence of EPT Access and Dirty Bits supports,
1358 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1359 * an EPT mapping, and clearing it if it does. On the next access,
1360 * a new EPT mapping will be established.
1361 * This has some overhead, but not as much as the cost of swapping
1362 * out actively used pages or breaking up actively used hugepages.
1363 */
f395302e
TY
1364 if (!shadow_accessed_mask) {
1365 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1366 goto out;
1367 }
534e38b4 1368
1e3f42f0
TY
1369 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1370 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1371 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1372
3f6d8c8a 1373 if (*sptep & shadow_accessed_mask) {
e930bffe 1374 young = 1;
3f6d8c8a
XH
1375 clear_bit((ffs(shadow_accessed_mask) - 1),
1376 (unsigned long *)sptep);
e930bffe 1377 }
e930bffe 1378 }
f395302e
TY
1379out:
1380 /* @data has hva passed to kvm_age_hva(). */
1381 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1382 return young;
1383}
1384
8ee53820 1385static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1386 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1387{
1e3f42f0
TY
1388 u64 *sptep;
1389 struct rmap_iterator iter;
8ee53820
AA
1390 int young = 0;
1391
1392 /*
1393 * If there's no access bit in the secondary pte set by the
1394 * hardware it's up to gup-fast/gup to set the access bit in
1395 * the primary pte or in the page structure.
1396 */
1397 if (!shadow_accessed_mask)
1398 goto out;
1399
1e3f42f0
TY
1400 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1401 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1402 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1403
3f6d8c8a 1404 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1405 young = 1;
1406 break;
1407 }
8ee53820
AA
1408 }
1409out:
1410 return young;
1411}
1412
53a27b39
MT
1413#define RMAP_RECYCLE_THRESHOLD 1000
1414
852e3c19 1415static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1416{
1417 unsigned long *rmapp;
852e3c19
JR
1418 struct kvm_mmu_page *sp;
1419
1420 sp = page_header(__pa(spte));
53a27b39 1421
852e3c19 1422 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1423
048212d0 1424 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1425 kvm_flush_remote_tlbs(vcpu->kvm);
1426}
1427
e930bffe
AA
1428int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1429{
f395302e 1430 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1431}
1432
8ee53820
AA
1433int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1434{
1435 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1436}
1437
d6c69ee9 1438#ifdef MMU_DEBUG
47ad8e68 1439static int is_empty_shadow_page(u64 *spt)
6aa8b732 1440{
139bdb2d
AK
1441 u64 *pos;
1442 u64 *end;
1443
47ad8e68 1444 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1445 if (is_shadow_present_pte(*pos)) {
b8688d51 1446 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1447 pos, *pos);
6aa8b732 1448 return 0;
139bdb2d 1449 }
6aa8b732
AK
1450 return 1;
1451}
d6c69ee9 1452#endif
6aa8b732 1453
45221ab6
DH
1454/*
1455 * This value is the sum of all of the kvm instances's
1456 * kvm->arch.n_used_mmu_pages values. We need a global,
1457 * aggregate version in order to make the slab shrinker
1458 * faster
1459 */
1460static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1461{
1462 kvm->arch.n_used_mmu_pages += nr;
1463 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1464}
1465
834be0d8 1466static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1467{
4db35314 1468 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1469 hlist_del(&sp->hash_link);
bd4c86ea
XG
1470 list_del(&sp->link);
1471 free_page((unsigned long)sp->spt);
834be0d8
GN
1472 if (!sp->role.direct)
1473 free_page((unsigned long)sp->gfns);
e8ad9a70 1474 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1475}
1476
cea0f0e7
AK
1477static unsigned kvm_page_table_hashfn(gfn_t gfn)
1478{
1ae0a13d 1479 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1480}
1481
714b93da 1482static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1483 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1484{
cea0f0e7
AK
1485 if (!parent_pte)
1486 return;
cea0f0e7 1487
67052b35 1488 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1489}
1490
4db35314 1491static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1492 u64 *parent_pte)
1493{
67052b35 1494 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1495}
1496
bcdd9a93
XG
1497static void drop_parent_pte(struct kvm_mmu_page *sp,
1498 u64 *parent_pte)
1499{
1500 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1501 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1502}
1503
67052b35
XG
1504static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1505 u64 *parent_pte, int direct)
ad8cfbe3 1506{
67052b35 1507 struct kvm_mmu_page *sp;
7ddca7e4
TY
1508
1509 kvm_mmu_free_some_pages(vcpu);
1510
80feb89a
TY
1511 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1512 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1513 if (!direct)
80feb89a 1514 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
1515 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1516 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1517 sp->parent_ptes = 0;
1518 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1519 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1520 return sp;
ad8cfbe3
MT
1521}
1522
67052b35 1523static void mark_unsync(u64 *spte);
1047df1f 1524static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1525{
67052b35 1526 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1527}
1528
67052b35 1529static void mark_unsync(u64 *spte)
0074ff63 1530{
67052b35 1531 struct kvm_mmu_page *sp;
1047df1f 1532 unsigned int index;
0074ff63 1533
67052b35 1534 sp = page_header(__pa(spte));
1047df1f
XG
1535 index = spte - sp->spt;
1536 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1537 return;
1047df1f 1538 if (sp->unsync_children++)
0074ff63 1539 return;
1047df1f 1540 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1541}
1542
e8bc217a 1543static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1544 struct kvm_mmu_page *sp)
e8bc217a
MT
1545{
1546 return 1;
1547}
1548
a7052897
MT
1549static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1550{
1551}
1552
0f53b5b1
XG
1553static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1554 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1555 const void *pte)
0f53b5b1
XG
1556{
1557 WARN_ON(1);
1558}
1559
60c8aec6
MT
1560#define KVM_PAGE_ARRAY_NR 16
1561
1562struct kvm_mmu_pages {
1563 struct mmu_page_and_offset {
1564 struct kvm_mmu_page *sp;
1565 unsigned int idx;
1566 } page[KVM_PAGE_ARRAY_NR];
1567 unsigned int nr;
1568};
1569
cded19f3
HE
1570static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1571 int idx)
4731d4c7 1572{
60c8aec6 1573 int i;
4731d4c7 1574
60c8aec6
MT
1575 if (sp->unsync)
1576 for (i=0; i < pvec->nr; i++)
1577 if (pvec->page[i].sp == sp)
1578 return 0;
1579
1580 pvec->page[pvec->nr].sp = sp;
1581 pvec->page[pvec->nr].idx = idx;
1582 pvec->nr++;
1583 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1584}
1585
1586static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1587 struct kvm_mmu_pages *pvec)
1588{
1589 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1590
37178b8b 1591 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1592 struct kvm_mmu_page *child;
4731d4c7
MT
1593 u64 ent = sp->spt[i];
1594
7a8f1a74
XG
1595 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1596 goto clear_child_bitmap;
1597
1598 child = page_header(ent & PT64_BASE_ADDR_MASK);
1599
1600 if (child->unsync_children) {
1601 if (mmu_pages_add(pvec, child, i))
1602 return -ENOSPC;
1603
1604 ret = __mmu_unsync_walk(child, pvec);
1605 if (!ret)
1606 goto clear_child_bitmap;
1607 else if (ret > 0)
1608 nr_unsync_leaf += ret;
1609 else
1610 return ret;
1611 } else if (child->unsync) {
1612 nr_unsync_leaf++;
1613 if (mmu_pages_add(pvec, child, i))
1614 return -ENOSPC;
1615 } else
1616 goto clear_child_bitmap;
1617
1618 continue;
1619
1620clear_child_bitmap:
1621 __clear_bit(i, sp->unsync_child_bitmap);
1622 sp->unsync_children--;
1623 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1624 }
1625
4731d4c7 1626
60c8aec6
MT
1627 return nr_unsync_leaf;
1628}
1629
1630static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1631 struct kvm_mmu_pages *pvec)
1632{
1633 if (!sp->unsync_children)
1634 return 0;
1635
1636 mmu_pages_add(pvec, sp, 0);
1637 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1638}
1639
4731d4c7
MT
1640static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1641{
1642 WARN_ON(!sp->unsync);
5e1b3ddb 1643 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1644 sp->unsync = 0;
1645 --kvm->stat.mmu_unsync;
1646}
1647
7775834a
XG
1648static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1649 struct list_head *invalid_list);
1650static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1651 struct list_head *invalid_list);
4731d4c7 1652
1044b030
TY
1653#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1654 hlist_for_each_entry(_sp, \
1655 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1656 if ((_sp)->gfn != (_gfn)) {} else
1657
1658#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1659 for_each_gfn_sp(_kvm, _sp, _gfn) \
1660 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1661
f918b443 1662/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1663static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1664 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1665{
5b7e0102 1666 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1667 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1668 return 1;
1669 }
1670
f918b443 1671 if (clear_unsync)
1d9dc7e0 1672 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1673
a4a8e6f7 1674 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1675 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1676 return 1;
1677 }
1678
1679 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1680 return 0;
1681}
1682
1d9dc7e0
XG
1683static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1684 struct kvm_mmu_page *sp)
1685{
d98ba053 1686 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1687 int ret;
1688
d98ba053 1689 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1690 if (ret)
d98ba053
XG
1691 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1692
1d9dc7e0
XG
1693 return ret;
1694}
1695
e37fa785
XG
1696#ifdef CONFIG_KVM_MMU_AUDIT
1697#include "mmu_audit.c"
1698#else
1699static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1700static void mmu_audit_disable(void) { }
1701#endif
1702
d98ba053
XG
1703static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1704 struct list_head *invalid_list)
1d9dc7e0 1705{
d98ba053 1706 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1707}
1708
9f1a122f
XG
1709/* @gfn should be write-protected at the call site */
1710static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1711{
9f1a122f 1712 struct kvm_mmu_page *s;
d98ba053 1713 LIST_HEAD(invalid_list);
9f1a122f
XG
1714 bool flush = false;
1715
b67bfe0d 1716 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1717 if (!s->unsync)
9f1a122f
XG
1718 continue;
1719
1720 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1721 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1722 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1723 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1724 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1725 continue;
1726 }
9f1a122f
XG
1727 flush = true;
1728 }
1729
d98ba053 1730 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1731 if (flush)
1732 kvm_mmu_flush_tlb(vcpu);
1733}
1734
60c8aec6
MT
1735struct mmu_page_path {
1736 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1737 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1738};
1739
60c8aec6
MT
1740#define for_each_sp(pvec, sp, parents, i) \
1741 for (i = mmu_pages_next(&pvec, &parents, -1), \
1742 sp = pvec.page[i].sp; \
1743 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1744 i = mmu_pages_next(&pvec, &parents, i))
1745
cded19f3
HE
1746static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1747 struct mmu_page_path *parents,
1748 int i)
60c8aec6
MT
1749{
1750 int n;
1751
1752 for (n = i+1; n < pvec->nr; n++) {
1753 struct kvm_mmu_page *sp = pvec->page[n].sp;
1754
1755 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1756 parents->idx[0] = pvec->page[n].idx;
1757 return n;
1758 }
1759
1760 parents->parent[sp->role.level-2] = sp;
1761 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1762 }
1763
1764 return n;
1765}
1766
cded19f3 1767static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1768{
60c8aec6
MT
1769 struct kvm_mmu_page *sp;
1770 unsigned int level = 0;
1771
1772 do {
1773 unsigned int idx = parents->idx[level];
4731d4c7 1774
60c8aec6
MT
1775 sp = parents->parent[level];
1776 if (!sp)
1777 return;
1778
1779 --sp->unsync_children;
1780 WARN_ON((int)sp->unsync_children < 0);
1781 __clear_bit(idx, sp->unsync_child_bitmap);
1782 level++;
1783 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1784}
1785
60c8aec6
MT
1786static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1787 struct mmu_page_path *parents,
1788 struct kvm_mmu_pages *pvec)
4731d4c7 1789{
60c8aec6
MT
1790 parents->parent[parent->role.level-1] = NULL;
1791 pvec->nr = 0;
1792}
4731d4c7 1793
60c8aec6
MT
1794static void mmu_sync_children(struct kvm_vcpu *vcpu,
1795 struct kvm_mmu_page *parent)
1796{
1797 int i;
1798 struct kvm_mmu_page *sp;
1799 struct mmu_page_path parents;
1800 struct kvm_mmu_pages pages;
d98ba053 1801 LIST_HEAD(invalid_list);
60c8aec6
MT
1802
1803 kvm_mmu_pages_init(parent, &parents, &pages);
1804 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1805 bool protected = false;
b1a36821
MT
1806
1807 for_each_sp(pages, sp, parents, i)
1808 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1809
1810 if (protected)
1811 kvm_flush_remote_tlbs(vcpu->kvm);
1812
60c8aec6 1813 for_each_sp(pages, sp, parents, i) {
d98ba053 1814 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1815 mmu_pages_clear_parents(&parents);
1816 }
d98ba053 1817 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1818 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1819 kvm_mmu_pages_init(parent, &parents, &pages);
1820 }
4731d4c7
MT
1821}
1822
c3707958
XG
1823static void init_shadow_page_table(struct kvm_mmu_page *sp)
1824{
1825 int i;
1826
1827 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1828 sp->spt[i] = 0ull;
1829}
1830
a30f47cb
XG
1831static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1832{
1833 sp->write_flooding_count = 0;
1834}
1835
1836static void clear_sp_write_flooding_count(u64 *spte)
1837{
1838 struct kvm_mmu_page *sp = page_header(__pa(spte));
1839
1840 __clear_sp_write_flooding_count(sp);
1841}
1842
cea0f0e7
AK
1843static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1844 gfn_t gfn,
1845 gva_t gaddr,
1846 unsigned level,
f6e2c02b 1847 int direct,
41074d07 1848 unsigned access,
f7d9c7b7 1849 u64 *parent_pte)
cea0f0e7
AK
1850{
1851 union kvm_mmu_page_role role;
cea0f0e7 1852 unsigned quadrant;
9f1a122f 1853 struct kvm_mmu_page *sp;
9f1a122f 1854 bool need_sync = false;
cea0f0e7 1855
a770f6f2 1856 role = vcpu->arch.mmu.base_role;
cea0f0e7 1857 role.level = level;
f6e2c02b 1858 role.direct = direct;
84b0c8c6 1859 if (role.direct)
5b7e0102 1860 role.cr4_pae = 0;
41074d07 1861 role.access = access;
c5a78f2b
JR
1862 if (!vcpu->arch.mmu.direct_map
1863 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1864 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1865 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1866 role.quadrant = quadrant;
1867 }
b67bfe0d 1868 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7ae680eb
XG
1869 if (!need_sync && sp->unsync)
1870 need_sync = true;
4731d4c7 1871
7ae680eb
XG
1872 if (sp->role.word != role.word)
1873 continue;
4731d4c7 1874
7ae680eb
XG
1875 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1876 break;
e02aa901 1877
7ae680eb
XG
1878 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1879 if (sp->unsync_children) {
a8eeb04a 1880 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1881 kvm_mmu_mark_parents_unsync(sp);
1882 } else if (sp->unsync)
1883 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1884
a30f47cb 1885 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1886 trace_kvm_mmu_get_page(sp, false);
1887 return sp;
1888 }
dfc5aa00 1889 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1890 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1891 if (!sp)
1892 return sp;
4db35314
AK
1893 sp->gfn = gfn;
1894 sp->role = role;
7ae680eb
XG
1895 hlist_add_head(&sp->hash_link,
1896 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1897 if (!direct) {
b1a36821
MT
1898 if (rmap_write_protect(vcpu->kvm, gfn))
1899 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1900 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1901 kvm_sync_pages(vcpu, gfn);
1902
4731d4c7
MT
1903 account_shadowed(vcpu->kvm, gfn);
1904 }
c3707958 1905 init_shadow_page_table(sp);
f691fe1d 1906 trace_kvm_mmu_get_page(sp, true);
4db35314 1907 return sp;
cea0f0e7
AK
1908}
1909
2d11123a
AK
1910static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1911 struct kvm_vcpu *vcpu, u64 addr)
1912{
1913 iterator->addr = addr;
1914 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1915 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1916
1917 if (iterator->level == PT64_ROOT_LEVEL &&
1918 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1919 !vcpu->arch.mmu.direct_map)
1920 --iterator->level;
1921
2d11123a
AK
1922 if (iterator->level == PT32E_ROOT_LEVEL) {
1923 iterator->shadow_addr
1924 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1925 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1926 --iterator->level;
1927 if (!iterator->shadow_addr)
1928 iterator->level = 0;
1929 }
1930}
1931
1932static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1933{
1934 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1935 return false;
4d88954d 1936
2d11123a
AK
1937 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1938 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1939 return true;
1940}
1941
c2a2ac2b
XG
1942static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1943 u64 spte)
2d11123a 1944{
c2a2ac2b 1945 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1946 iterator->level = 0;
1947 return;
1948 }
1949
c2a2ac2b 1950 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1951 --iterator->level;
1952}
1953
c2a2ac2b
XG
1954static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1955{
1956 return __shadow_walk_next(iterator, *iterator->sptep);
1957}
1958
32ef26a3
AK
1959static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1960{
1961 u64 spte;
1962
24db2734
XG
1963 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
1964 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
1965
1df9f2dc 1966 mmu_spte_set(sptep, spte);
32ef26a3
AK
1967}
1968
a357bd22
AK
1969static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1970 unsigned direct_access)
1971{
1972 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1973 struct kvm_mmu_page *child;
1974
1975 /*
1976 * For the direct sp, if the guest pte's dirty bit
1977 * changed form clean to dirty, it will corrupt the
1978 * sp's access: allow writable in the read-only sp,
1979 * so we should update the spte at this point to get
1980 * a new sp with the correct access.
1981 */
1982 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1983 if (child->role.access == direct_access)
1984 return;
1985
bcdd9a93 1986 drop_parent_pte(child, sptep);
a357bd22
AK
1987 kvm_flush_remote_tlbs(vcpu->kvm);
1988 }
1989}
1990
505aef8f 1991static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1992 u64 *spte)
1993{
1994 u64 pte;
1995 struct kvm_mmu_page *child;
1996
1997 pte = *spte;
1998 if (is_shadow_present_pte(pte)) {
505aef8f 1999 if (is_last_spte(pte, sp->role.level)) {
c3707958 2000 drop_spte(kvm, spte);
505aef8f
XG
2001 if (is_large_pte(pte))
2002 --kvm->stat.lpages;
2003 } else {
38e3b2b2 2004 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2005 drop_parent_pte(child, spte);
38e3b2b2 2006 }
505aef8f
XG
2007 return true;
2008 }
2009
2010 if (is_mmio_spte(pte))
ce88decf 2011 mmu_spte_clear_no_track(spte);
c3707958 2012
505aef8f 2013 return false;
38e3b2b2
XG
2014}
2015
90cb0529 2016static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2017 struct kvm_mmu_page *sp)
a436036b 2018{
697fe2e2 2019 unsigned i;
697fe2e2 2020
38e3b2b2
XG
2021 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2022 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2023}
2024
4db35314 2025static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2026{
4db35314 2027 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2028}
2029
31aa2b44 2030static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2031{
1e3f42f0
TY
2032 u64 *sptep;
2033 struct rmap_iterator iter;
a436036b 2034
1e3f42f0
TY
2035 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2036 drop_parent_pte(sp, sptep);
31aa2b44
AK
2037}
2038
60c8aec6 2039static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2040 struct kvm_mmu_page *parent,
2041 struct list_head *invalid_list)
4731d4c7 2042{
60c8aec6
MT
2043 int i, zapped = 0;
2044 struct mmu_page_path parents;
2045 struct kvm_mmu_pages pages;
4731d4c7 2046
60c8aec6 2047 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2048 return 0;
60c8aec6
MT
2049
2050 kvm_mmu_pages_init(parent, &parents, &pages);
2051 while (mmu_unsync_walk(parent, &pages)) {
2052 struct kvm_mmu_page *sp;
2053
2054 for_each_sp(pages, sp, parents, i) {
7775834a 2055 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2056 mmu_pages_clear_parents(&parents);
77662e00 2057 zapped++;
60c8aec6 2058 }
60c8aec6
MT
2059 kvm_mmu_pages_init(parent, &parents, &pages);
2060 }
2061
2062 return zapped;
4731d4c7
MT
2063}
2064
7775834a
XG
2065static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2066 struct list_head *invalid_list)
31aa2b44 2067{
4731d4c7 2068 int ret;
f691fe1d 2069
7775834a 2070 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2071 ++kvm->stat.mmu_shadow_zapped;
7775834a 2072 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2073 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2074 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 2075 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2076 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
2077 if (sp->unsync)
2078 kvm_unlink_unsync_page(kvm, sp);
4db35314 2079 if (!sp->root_count) {
54a4f023
GJ
2080 /* Count self */
2081 ret++;
7775834a 2082 list_move(&sp->link, invalid_list);
aa6bd187 2083 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2084 } else {
5b5c6a5a 2085 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
2086 kvm_reload_remote_mmus(kvm);
2087 }
7775834a
XG
2088
2089 sp->role.invalid = 1;
4731d4c7 2090 return ret;
a436036b
AK
2091}
2092
7775834a
XG
2093static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2094 struct list_head *invalid_list)
2095{
945315b9 2096 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2097
2098 if (list_empty(invalid_list))
2099 return;
2100
c142786c
AK
2101 /*
2102 * wmb: make sure everyone sees our modifications to the page tables
2103 * rmb: make sure we see changes to vcpu->mode
2104 */
2105 smp_mb();
4f022648 2106
c142786c
AK
2107 /*
2108 * Wait for all vcpus to exit guest mode and/or lockless shadow
2109 * page table walks.
2110 */
2111 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2112
945315b9 2113 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2114 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2115 kvm_mmu_free_page(sp);
945315b9 2116 }
7775834a
XG
2117}
2118
5da59607
TY
2119static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2120 struct list_head *invalid_list)
2121{
2122 struct kvm_mmu_page *sp;
2123
2124 if (list_empty(&kvm->arch.active_mmu_pages))
2125 return false;
2126
2127 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2128 struct kvm_mmu_page, link);
2129 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2130
2131 return true;
2132}
2133
82ce2c96
IE
2134/*
2135 * Changing the number of mmu pages allocated to the vm
49d5ca26 2136 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2137 */
49d5ca26 2138void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2139{
d98ba053 2140 LIST_HEAD(invalid_list);
82ce2c96 2141
b34cb590
TY
2142 spin_lock(&kvm->mmu_lock);
2143
49d5ca26 2144 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2145 /* Need to free some mmu pages to achieve the goal. */
2146 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2147 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2148 break;
82ce2c96 2149
aa6bd187 2150 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2151 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2152 }
82ce2c96 2153
49d5ca26 2154 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2155
2156 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2157}
2158
1cb3f3ae 2159int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2160{
4db35314 2161 struct kvm_mmu_page *sp;
d98ba053 2162 LIST_HEAD(invalid_list);
a436036b
AK
2163 int r;
2164
9ad17b10 2165 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2166 r = 0;
1cb3f3ae 2167 spin_lock(&kvm->mmu_lock);
b67bfe0d 2168 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2169 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2170 sp->role.word);
2171 r = 1;
f41d335a 2172 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2173 }
d98ba053 2174 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2175 spin_unlock(&kvm->mmu_lock);
2176
a436036b 2177 return r;
cea0f0e7 2178}
1cb3f3ae 2179EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2180
74be52e3
SY
2181/*
2182 * The function is based on mtrr_type_lookup() in
2183 * arch/x86/kernel/cpu/mtrr/generic.c
2184 */
2185static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2186 u64 start, u64 end)
2187{
2188 int i;
2189 u64 base, mask;
2190 u8 prev_match, curr_match;
2191 int num_var_ranges = KVM_NR_VAR_MTRR;
2192
2193 if (!mtrr_state->enabled)
2194 return 0xFF;
2195
2196 /* Make end inclusive end, instead of exclusive */
2197 end--;
2198
2199 /* Look in fixed ranges. Just return the type as per start */
2200 if (mtrr_state->have_fixed && (start < 0x100000)) {
2201 int idx;
2202
2203 if (start < 0x80000) {
2204 idx = 0;
2205 idx += (start >> 16);
2206 return mtrr_state->fixed_ranges[idx];
2207 } else if (start < 0xC0000) {
2208 idx = 1 * 8;
2209 idx += ((start - 0x80000) >> 14);
2210 return mtrr_state->fixed_ranges[idx];
2211 } else if (start < 0x1000000) {
2212 idx = 3 * 8;
2213 idx += ((start - 0xC0000) >> 12);
2214 return mtrr_state->fixed_ranges[idx];
2215 }
2216 }
2217
2218 /*
2219 * Look in variable ranges
2220 * Look of multiple ranges matching this address and pick type
2221 * as per MTRR precedence
2222 */
2223 if (!(mtrr_state->enabled & 2))
2224 return mtrr_state->def_type;
2225
2226 prev_match = 0xFF;
2227 for (i = 0; i < num_var_ranges; ++i) {
2228 unsigned short start_state, end_state;
2229
2230 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2231 continue;
2232
2233 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2234 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2235 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2236 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2237
2238 start_state = ((start & mask) == (base & mask));
2239 end_state = ((end & mask) == (base & mask));
2240 if (start_state != end_state)
2241 return 0xFE;
2242
2243 if ((start & mask) != (base & mask))
2244 continue;
2245
2246 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2247 if (prev_match == 0xFF) {
2248 prev_match = curr_match;
2249 continue;
2250 }
2251
2252 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2253 curr_match == MTRR_TYPE_UNCACHABLE)
2254 return MTRR_TYPE_UNCACHABLE;
2255
2256 if ((prev_match == MTRR_TYPE_WRBACK &&
2257 curr_match == MTRR_TYPE_WRTHROUGH) ||
2258 (prev_match == MTRR_TYPE_WRTHROUGH &&
2259 curr_match == MTRR_TYPE_WRBACK)) {
2260 prev_match = MTRR_TYPE_WRTHROUGH;
2261 curr_match = MTRR_TYPE_WRTHROUGH;
2262 }
2263
2264 if (prev_match != curr_match)
2265 return MTRR_TYPE_UNCACHABLE;
2266 }
2267
2268 if (prev_match != 0xFF)
2269 return prev_match;
2270
2271 return mtrr_state->def_type;
2272}
2273
4b12f0de 2274u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2275{
2276 u8 mtrr;
2277
2278 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2279 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2280 if (mtrr == 0xfe || mtrr == 0xff)
2281 mtrr = MTRR_TYPE_WRBACK;
2282 return mtrr;
2283}
4b12f0de 2284EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2285
9cf5cf5a
XG
2286static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2287{
2288 trace_kvm_mmu_unsync_page(sp);
2289 ++vcpu->kvm->stat.mmu_unsync;
2290 sp->unsync = 1;
2291
2292 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2293}
2294
2295static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2296{
4731d4c7 2297 struct kvm_mmu_page *s;
9cf5cf5a 2298
b67bfe0d 2299 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2300 if (s->unsync)
4731d4c7 2301 continue;
9cf5cf5a
XG
2302 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2303 __kvm_unsync_page(vcpu, s);
4731d4c7 2304 }
4731d4c7
MT
2305}
2306
2307static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2308 bool can_unsync)
2309{
9cf5cf5a 2310 struct kvm_mmu_page *s;
9cf5cf5a
XG
2311 bool need_unsync = false;
2312
b67bfe0d 2313 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2314 if (!can_unsync)
2315 return 1;
2316
9cf5cf5a 2317 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2318 return 1;
9cf5cf5a 2319
9bb4f6b1 2320 if (!s->unsync)
9cf5cf5a 2321 need_unsync = true;
4731d4c7 2322 }
9cf5cf5a
XG
2323 if (need_unsync)
2324 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2325 return 0;
2326}
2327
d555c333 2328static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2329 unsigned pte_access, int level,
c2d0ee46 2330 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2331 bool can_unsync, bool host_writable)
1c4f1fd6 2332{
6e7d0354 2333 u64 spte;
1e73f9dd 2334 int ret = 0;
64d4d521 2335
ce88decf
XG
2336 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2337 return 0;
2338
982c2565 2339 spte = PT_PRESENT_MASK;
947da538 2340 if (!speculative)
3201b5d9 2341 spte |= shadow_accessed_mask;
640d9b0d 2342
7b52345e
SY
2343 if (pte_access & ACC_EXEC_MASK)
2344 spte |= shadow_x_mask;
2345 else
2346 spte |= shadow_nx_mask;
49fde340 2347
1c4f1fd6 2348 if (pte_access & ACC_USER_MASK)
7b52345e 2349 spte |= shadow_user_mask;
49fde340 2350
852e3c19 2351 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2352 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2353 if (tdp_enabled)
4b12f0de
SY
2354 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2355 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2356
9bdbba13 2357 if (host_writable)
1403283a 2358 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2359 else
2360 pte_access &= ~ACC_WRITE_MASK;
1403283a 2361
35149e21 2362 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2363
c2288505 2364 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2365
c2193463 2366 /*
7751babd
XG
2367 * Other vcpu creates new sp in the window between
2368 * mapping_level() and acquiring mmu-lock. We can
2369 * allow guest to retry the access, the mapping can
2370 * be fixed if guest refault.
c2193463 2371 */
852e3c19 2372 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2373 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2374 goto done;
38187c83 2375
49fde340 2376 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2377
ecc5589f
MT
2378 /*
2379 * Optimization: for pte sync, if spte was writable the hash
2380 * lookup is unnecessary (and expensive). Write protection
2381 * is responsibility of mmu_get_page / kvm_sync_page.
2382 * Same reasoning can be applied to dirty page accounting.
2383 */
8dae4445 2384 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2385 goto set_pte;
2386
4731d4c7 2387 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2388 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2389 __func__, gfn);
1e73f9dd 2390 ret = 1;
1c4f1fd6 2391 pte_access &= ~ACC_WRITE_MASK;
49fde340 2392 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2393 }
2394 }
2395
1c4f1fd6
AK
2396 if (pte_access & ACC_WRITE_MASK)
2397 mark_page_dirty(vcpu->kvm, gfn);
2398
38187c83 2399set_pte:
6e7d0354 2400 if (mmu_spte_update(sptep, spte))
b330aa0c 2401 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2402done:
1e73f9dd
MT
2403 return ret;
2404}
2405
d555c333 2406static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2407 unsigned pte_access, int write_fault, int *emulate,
2408 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2409 bool host_writable)
1e73f9dd
MT
2410{
2411 int was_rmapped = 0;
53a27b39 2412 int rmap_count;
1e73f9dd 2413
f7616203
XG
2414 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2415 *sptep, write_fault, gfn);
1e73f9dd 2416
d555c333 2417 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2418 /*
2419 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2420 * the parent of the now unreachable PTE.
2421 */
852e3c19
JR
2422 if (level > PT_PAGE_TABLE_LEVEL &&
2423 !is_large_pte(*sptep)) {
1e73f9dd 2424 struct kvm_mmu_page *child;
d555c333 2425 u64 pte = *sptep;
1e73f9dd
MT
2426
2427 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2428 drop_parent_pte(child, sptep);
3be2264b 2429 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2430 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2431 pgprintk("hfn old %llx new %llx\n",
d555c333 2432 spte_to_pfn(*sptep), pfn);
c3707958 2433 drop_spte(vcpu->kvm, sptep);
91546356 2434 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2435 } else
2436 was_rmapped = 1;
1e73f9dd 2437 }
852e3c19 2438
c2288505
XG
2439 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2440 true, host_writable)) {
1e73f9dd 2441 if (write_fault)
b90a0e6c 2442 *emulate = 1;
5304efde 2443 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2444 }
1e73f9dd 2445
ce88decf
XG
2446 if (unlikely(is_mmio_spte(*sptep) && emulate))
2447 *emulate = 1;
2448
d555c333 2449 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2450 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2451 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2452 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2453 *sptep, sptep);
d555c333 2454 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2455 ++vcpu->kvm->stat.lpages;
2456
ffb61bb3 2457 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2458 if (!was_rmapped) {
2459 rmap_count = rmap_add(vcpu, sptep, gfn);
2460 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2461 rmap_recycle(vcpu, sptep, gfn);
2462 }
1c4f1fd6 2463 }
cb9aaa30 2464
f3ac1a4b 2465 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2466}
2467
6aa8b732
AK
2468static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2469{
e676505a 2470 mmu_free_roots(vcpu);
6aa8b732
AK
2471}
2472
a052b42b
XG
2473static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2474{
2475 int bit7;
2476
2477 bit7 = (gpte >> 7) & 1;
2478 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2479}
2480
957ed9ef
XG
2481static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2482 bool no_dirty_log)
2483{
2484 struct kvm_memory_slot *slot;
957ed9ef 2485
5d163b1c 2486 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2487 if (!slot)
6c8ee57b 2488 return KVM_PFN_ERR_FAULT;
957ed9ef 2489
037d92dc 2490 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2491}
2492
a052b42b
XG
2493static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2494 struct kvm_mmu_page *sp, u64 *spte,
2495 u64 gpte)
2496{
2497 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2498 goto no_present;
2499
2500 if (!is_present_gpte(gpte))
2501 goto no_present;
2502
2503 if (!(gpte & PT_ACCESSED_MASK))
2504 goto no_present;
2505
2506 return false;
2507
2508no_present:
2509 drop_spte(vcpu->kvm, spte);
2510 return true;
2511}
2512
957ed9ef
XG
2513static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2514 struct kvm_mmu_page *sp,
2515 u64 *start, u64 *end)
2516{
2517 struct page *pages[PTE_PREFETCH_NUM];
2518 unsigned access = sp->role.access;
2519 int i, ret;
2520 gfn_t gfn;
2521
2522 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2523 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2524 return -1;
2525
2526 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2527 if (ret <= 0)
2528 return -1;
2529
2530 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2531 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2532 sp->role.level, gfn, page_to_pfn(pages[i]),
2533 true, true);
957ed9ef
XG
2534
2535 return 0;
2536}
2537
2538static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2539 struct kvm_mmu_page *sp, u64 *sptep)
2540{
2541 u64 *spte, *start = NULL;
2542 int i;
2543
2544 WARN_ON(!sp->role.direct);
2545
2546 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2547 spte = sp->spt + i;
2548
2549 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2550 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2551 if (!start)
2552 continue;
2553 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2554 break;
2555 start = NULL;
2556 } else if (!start)
2557 start = spte;
2558 }
2559}
2560
2561static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2562{
2563 struct kvm_mmu_page *sp;
2564
2565 /*
2566 * Since it's no accessed bit on EPT, it's no way to
2567 * distinguish between actually accessed translations
2568 * and prefetched, so disable pte prefetch if EPT is
2569 * enabled.
2570 */
2571 if (!shadow_accessed_mask)
2572 return;
2573
2574 sp = page_header(__pa(sptep));
2575 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2576 return;
2577
2578 __direct_pte_prefetch(vcpu, sp, sptep);
2579}
2580
9f652d21 2581static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2582 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2583 bool prefault)
140754bc 2584{
9f652d21 2585 struct kvm_shadow_walk_iterator iterator;
140754bc 2586 struct kvm_mmu_page *sp;
b90a0e6c 2587 int emulate = 0;
140754bc 2588 gfn_t pseudo_gfn;
6aa8b732 2589
9f652d21 2590 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2591 if (iterator.level == level) {
f7616203 2592 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2593 write, &emulate, level, gfn, pfn,
2594 prefault, map_writable);
957ed9ef 2595 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2596 ++vcpu->stat.pf_fixed;
2597 break;
6aa8b732
AK
2598 }
2599
c3707958 2600 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2601 u64 base_addr = iterator.addr;
2602
2603 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2604 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2605 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2606 iterator.level - 1,
2607 1, ACC_ALL, iterator.sptep);
140754bc 2608
24db2734 2609 link_shadow_page(iterator.sptep, sp);
9f652d21
AK
2610 }
2611 }
b90a0e6c 2612 return emulate;
6aa8b732
AK
2613}
2614
77db5cbd 2615static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2616{
77db5cbd
HY
2617 siginfo_t info;
2618
2619 info.si_signo = SIGBUS;
2620 info.si_errno = 0;
2621 info.si_code = BUS_MCEERR_AR;
2622 info.si_addr = (void __user *)address;
2623 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2624
77db5cbd 2625 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2626}
2627
d7c55201 2628static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2629{
4d8b81ab
XG
2630 /*
2631 * Do not cache the mmio info caused by writing the readonly gfn
2632 * into the spte otherwise read access on readonly gfn also can
2633 * caused mmio page fault and treat it as mmio access.
2634 * Return 1 to tell kvm to emulate it.
2635 */
2636 if (pfn == KVM_PFN_ERR_RO_FAULT)
2637 return 1;
2638
e6c1502b 2639 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2640 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2641 return 0;
d7c55201 2642 }
edba23e5 2643
d7c55201 2644 return -EFAULT;
bf998156
HY
2645}
2646
936a5fe6
AA
2647static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2648 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2649{
2650 pfn_t pfn = *pfnp;
2651 gfn_t gfn = *gfnp;
2652 int level = *levelp;
2653
2654 /*
2655 * Check if it's a transparent hugepage. If this would be an
2656 * hugetlbfs page, level wouldn't be set to
2657 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2658 * here.
2659 */
81c52c56 2660 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
936a5fe6
AA
2661 level == PT_PAGE_TABLE_LEVEL &&
2662 PageTransCompound(pfn_to_page(pfn)) &&
2663 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2664 unsigned long mask;
2665 /*
2666 * mmu_notifier_retry was successful and we hold the
2667 * mmu_lock here, so the pmd can't become splitting
2668 * from under us, and in turn
2669 * __split_huge_page_refcount() can't run from under
2670 * us and we can safely transfer the refcount from
2671 * PG_tail to PG_head as we switch the pfn to tail to
2672 * head.
2673 */
2674 *levelp = level = PT_DIRECTORY_LEVEL;
2675 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2676 VM_BUG_ON((gfn & mask) != (pfn & mask));
2677 if (pfn & mask) {
2678 gfn &= ~mask;
2679 *gfnp = gfn;
2680 kvm_release_pfn_clean(pfn);
2681 pfn &= ~mask;
c3586667 2682 kvm_get_pfn(pfn);
936a5fe6
AA
2683 *pfnp = pfn;
2684 }
2685 }
2686}
2687
d7c55201
XG
2688static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2689 pfn_t pfn, unsigned access, int *ret_val)
2690{
2691 bool ret = true;
2692
2693 /* The pfn is invalid, report the error! */
81c52c56 2694 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2695 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2696 goto exit;
2697 }
2698
ce88decf 2699 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2700 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2701
2702 ret = false;
2703exit:
2704 return ret;
2705}
2706
c7ba5b48
XG
2707static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2708{
2709 /*
2710 * #PF can be fast only if the shadow page table is present and it
2711 * is caused by write-protect, that means we just need change the
2712 * W bit of the spte which can be done out of mmu-lock.
2713 */
2714 if (!(error_code & PFERR_PRESENT_MASK) ||
2715 !(error_code & PFERR_WRITE_MASK))
2716 return false;
2717
2718 return true;
2719}
2720
2721static bool
2722fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2723{
2724 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2725 gfn_t gfn;
2726
2727 WARN_ON(!sp->role.direct);
2728
2729 /*
2730 * The gfn of direct spte is stable since it is calculated
2731 * by sp->gfn.
2732 */
2733 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2734
2735 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2736 mark_page_dirty(vcpu->kvm, gfn);
2737
2738 return true;
2739}
2740
2741/*
2742 * Return value:
2743 * - true: let the vcpu to access on the same address again.
2744 * - false: let the real page fault path to fix it.
2745 */
2746static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2747 u32 error_code)
2748{
2749 struct kvm_shadow_walk_iterator iterator;
2750 bool ret = false;
2751 u64 spte = 0ull;
2752
2753 if (!page_fault_can_be_fast(vcpu, error_code))
2754 return false;
2755
2756 walk_shadow_page_lockless_begin(vcpu);
2757 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2758 if (!is_shadow_present_pte(spte) || iterator.level < level)
2759 break;
2760
2761 /*
2762 * If the mapping has been changed, let the vcpu fault on the
2763 * same address again.
2764 */
2765 if (!is_rmap_spte(spte)) {
2766 ret = true;
2767 goto exit;
2768 }
2769
2770 if (!is_last_spte(spte, level))
2771 goto exit;
2772
2773 /*
2774 * Check if it is a spurious fault caused by TLB lazily flushed.
2775 *
2776 * Need not check the access of upper level table entries since
2777 * they are always ACC_ALL.
2778 */
2779 if (is_writable_pte(spte)) {
2780 ret = true;
2781 goto exit;
2782 }
2783
2784 /*
2785 * Currently, to simplify the code, only the spte write-protected
2786 * by dirty-log can be fast fixed.
2787 */
2788 if (!spte_is_locklessly_modifiable(spte))
2789 goto exit;
2790
2791 /*
2792 * Currently, fast page fault only works for direct mapping since
2793 * the gfn is not stable for indirect shadow page.
2794 * See Documentation/virtual/kvm/locking.txt to get more detail.
2795 */
2796 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2797exit:
a72faf25
XG
2798 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2799 spte, ret);
c7ba5b48
XG
2800 walk_shadow_page_lockless_end(vcpu);
2801
2802 return ret;
2803}
2804
78b2c54a 2805static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2806 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2807
c7ba5b48
XG
2808static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2809 gfn_t gfn, bool prefault)
10589a46
MT
2810{
2811 int r;
852e3c19 2812 int level;
936a5fe6 2813 int force_pt_level;
35149e21 2814 pfn_t pfn;
e930bffe 2815 unsigned long mmu_seq;
c7ba5b48 2816 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2817
936a5fe6
AA
2818 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2819 if (likely(!force_pt_level)) {
2820 level = mapping_level(vcpu, gfn);
2821 /*
2822 * This path builds a PAE pagetable - so we can map
2823 * 2mb pages at maximum. Therefore check if the level
2824 * is larger than that.
2825 */
2826 if (level > PT_DIRECTORY_LEVEL)
2827 level = PT_DIRECTORY_LEVEL;
852e3c19 2828
936a5fe6
AA
2829 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2830 } else
2831 level = PT_PAGE_TABLE_LEVEL;
05da4558 2832
c7ba5b48
XG
2833 if (fast_page_fault(vcpu, v, level, error_code))
2834 return 0;
2835
e930bffe 2836 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2837 smp_rmb();
060c2abe 2838
78b2c54a 2839 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2840 return 0;
aaee2c94 2841
d7c55201
XG
2842 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2843 return r;
d196e343 2844
aaee2c94 2845 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2846 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2847 goto out_unlock;
936a5fe6
AA
2848 if (likely(!force_pt_level))
2849 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2850 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2851 prefault);
aaee2c94
MT
2852 spin_unlock(&vcpu->kvm->mmu_lock);
2853
aaee2c94 2854
10589a46 2855 return r;
e930bffe
AA
2856
2857out_unlock:
2858 spin_unlock(&vcpu->kvm->mmu_lock);
2859 kvm_release_pfn_clean(pfn);
2860 return 0;
10589a46
MT
2861}
2862
2863
17ac10ad
AK
2864static void mmu_free_roots(struct kvm_vcpu *vcpu)
2865{
2866 int i;
4db35314 2867 struct kvm_mmu_page *sp;
d98ba053 2868 LIST_HEAD(invalid_list);
17ac10ad 2869
ad312c7c 2870 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2871 return;
aaee2c94 2872 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2873 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2874 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2875 vcpu->arch.mmu.direct_map)) {
ad312c7c 2876 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2877
4db35314
AK
2878 sp = page_header(root);
2879 --sp->root_count;
d98ba053
XG
2880 if (!sp->root_count && sp->role.invalid) {
2881 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2882 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2883 }
ad312c7c 2884 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2885 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2886 return;
2887 }
17ac10ad 2888 for (i = 0; i < 4; ++i) {
ad312c7c 2889 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2890
417726a3 2891 if (root) {
417726a3 2892 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2893 sp = page_header(root);
2894 --sp->root_count;
2e53d63a 2895 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2896 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2897 &invalid_list);
417726a3 2898 }
ad312c7c 2899 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2900 }
d98ba053 2901 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2902 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2903 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2904}
2905
8986ecc0
MT
2906static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2907{
2908 int ret = 0;
2909
2910 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2911 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2912 ret = 1;
2913 }
2914
2915 return ret;
2916}
2917
651dd37a
JR
2918static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2919{
2920 struct kvm_mmu_page *sp;
7ebaf15e 2921 unsigned i;
651dd37a
JR
2922
2923 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2924 spin_lock(&vcpu->kvm->mmu_lock);
651dd37a
JR
2925 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2926 1, ACC_ALL, NULL);
2927 ++sp->root_count;
2928 spin_unlock(&vcpu->kvm->mmu_lock);
2929 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2930 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2931 for (i = 0; i < 4; ++i) {
2932 hpa_t root = vcpu->arch.mmu.pae_root[i];
2933
2934 ASSERT(!VALID_PAGE(root));
2935 spin_lock(&vcpu->kvm->mmu_lock);
649497d1
AK
2936 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2937 i << 30,
651dd37a
JR
2938 PT32_ROOT_LEVEL, 1, ACC_ALL,
2939 NULL);
2940 root = __pa(sp->spt);
2941 ++sp->root_count;
2942 spin_unlock(&vcpu->kvm->mmu_lock);
2943 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2944 }
6292757f 2945 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2946 } else
2947 BUG();
2948
2949 return 0;
2950}
2951
2952static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2953{
4db35314 2954 struct kvm_mmu_page *sp;
81407ca5
JR
2955 u64 pdptr, pm_mask;
2956 gfn_t root_gfn;
2957 int i;
3bb65a22 2958
5777ed34 2959 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2960
651dd37a
JR
2961 if (mmu_check_root(vcpu, root_gfn))
2962 return 1;
2963
2964 /*
2965 * Do we shadow a long mode page table? If so we need to
2966 * write-protect the guests page table root.
2967 */
2968 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2969 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2970
2971 ASSERT(!VALID_PAGE(root));
651dd37a 2972
8facbbff 2973 spin_lock(&vcpu->kvm->mmu_lock);
651dd37a
JR
2974 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2975 0, ACC_ALL, NULL);
4db35314
AK
2976 root = __pa(sp->spt);
2977 ++sp->root_count;
8facbbff 2978 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2979 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2980 return 0;
17ac10ad 2981 }
f87f9288 2982
651dd37a
JR
2983 /*
2984 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2985 * or a PAE 3-level page table. In either case we need to be aware that
2986 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2987 */
81407ca5
JR
2988 pm_mask = PT_PRESENT_MASK;
2989 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2990 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2991
17ac10ad 2992 for (i = 0; i < 4; ++i) {
ad312c7c 2993 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2994
2995 ASSERT(!VALID_PAGE(root));
ad312c7c 2996 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 2997 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 2998 if (!is_present_gpte(pdptr)) {
ad312c7c 2999 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3000 continue;
3001 }
6de4f3ad 3002 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3003 if (mmu_check_root(vcpu, root_gfn))
3004 return 1;
5a7388c2 3005 }
8facbbff 3006 spin_lock(&vcpu->kvm->mmu_lock);
4db35314 3007 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3008 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3009 ACC_ALL, NULL);
4db35314
AK
3010 root = __pa(sp->spt);
3011 ++sp->root_count;
8facbbff
AK
3012 spin_unlock(&vcpu->kvm->mmu_lock);
3013
81407ca5 3014 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3015 }
6292757f 3016 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3017
3018 /*
3019 * If we shadow a 32 bit page table with a long mode page
3020 * table we enter this path.
3021 */
3022 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3023 if (vcpu->arch.mmu.lm_root == NULL) {
3024 /*
3025 * The additional page necessary for this is only
3026 * allocated on demand.
3027 */
3028
3029 u64 *lm_root;
3030
3031 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3032 if (lm_root == NULL)
3033 return 1;
3034
3035 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3036
3037 vcpu->arch.mmu.lm_root = lm_root;
3038 }
3039
3040 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3041 }
3042
8986ecc0 3043 return 0;
17ac10ad
AK
3044}
3045
651dd37a
JR
3046static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3047{
3048 if (vcpu->arch.mmu.direct_map)
3049 return mmu_alloc_direct_roots(vcpu);
3050 else
3051 return mmu_alloc_shadow_roots(vcpu);
3052}
3053
0ba73cda
MT
3054static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3055{
3056 int i;
3057 struct kvm_mmu_page *sp;
3058
81407ca5
JR
3059 if (vcpu->arch.mmu.direct_map)
3060 return;
3061
0ba73cda
MT
3062 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3063 return;
6903074c 3064
bebb106a 3065 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3066 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3067 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3068 hpa_t root = vcpu->arch.mmu.root_hpa;
3069 sp = page_header(root);
3070 mmu_sync_children(vcpu, sp);
0375f7fa 3071 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3072 return;
3073 }
3074 for (i = 0; i < 4; ++i) {
3075 hpa_t root = vcpu->arch.mmu.pae_root[i];
3076
8986ecc0 3077 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3078 root &= PT64_BASE_ADDR_MASK;
3079 sp = page_header(root);
3080 mmu_sync_children(vcpu, sp);
3081 }
3082 }
0375f7fa 3083 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3084}
3085
3086void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3087{
3088 spin_lock(&vcpu->kvm->mmu_lock);
3089 mmu_sync_roots(vcpu);
6cffe8ca 3090 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3091}
3092
1871c602 3093static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3094 u32 access, struct x86_exception *exception)
6aa8b732 3095{
ab9ae313
AK
3096 if (exception)
3097 exception->error_code = 0;
6aa8b732
AK
3098 return vaddr;
3099}
3100
6539e738 3101static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3102 u32 access,
3103 struct x86_exception *exception)
6539e738 3104{
ab9ae313
AK
3105 if (exception)
3106 exception->error_code = 0;
6539e738
JR
3107 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3108}
3109
ce88decf
XG
3110static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3111{
3112 if (direct)
3113 return vcpu_match_mmio_gpa(vcpu, addr);
3114
3115 return vcpu_match_mmio_gva(vcpu, addr);
3116}
3117
3118
3119/*
3120 * On direct hosts, the last spte is only allows two states
3121 * for mmio page fault:
3122 * - It is the mmio spte
3123 * - It is zapped or it is being zapped.
3124 *
3125 * This function completely checks the spte when the last spte
3126 * is not the mmio spte.
3127 */
3128static bool check_direct_spte_mmio_pf(u64 spte)
3129{
3130 return __check_direct_spte_mmio_pf(spte);
3131}
3132
3133static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3134{
3135 struct kvm_shadow_walk_iterator iterator;
3136 u64 spte = 0ull;
3137
3138 walk_shadow_page_lockless_begin(vcpu);
3139 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3140 if (!is_shadow_present_pte(spte))
3141 break;
3142 walk_shadow_page_lockless_end(vcpu);
3143
3144 return spte;
3145}
3146
3147/*
3148 * If it is a real mmio page fault, return 1 and emulat the instruction
3149 * directly, return 0 to let CPU fault again on the address, -1 is
3150 * returned if bug is detected.
3151 */
3152int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3153{
3154 u64 spte;
3155
3156 if (quickly_check_mmio_pf(vcpu, addr, direct))
3157 return 1;
3158
3159 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3160
3161 if (is_mmio_spte(spte)) {
3162 gfn_t gfn = get_mmio_spte_gfn(spte);
3163 unsigned access = get_mmio_spte_access(spte);
3164
3165 if (direct)
3166 addr = 0;
4f022648
XG
3167
3168 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3169 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3170 return 1;
3171 }
3172
3173 /*
3174 * It's ok if the gva is remapped by other cpus on shadow guest,
3175 * it's a BUG if the gfn is not a mmio page.
3176 */
3177 if (direct && !check_direct_spte_mmio_pf(spte))
3178 return -1;
3179
3180 /*
3181 * If the page table is zapped by other cpus, let CPU fault again on
3182 * the address.
3183 */
3184 return 0;
3185}
3186EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3187
3188static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3189 u32 error_code, bool direct)
3190{
3191 int ret;
3192
3193 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3194 WARN_ON(ret < 0);
3195 return ret;
3196}
3197
6aa8b732 3198static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3199 u32 error_code, bool prefault)
6aa8b732 3200{
e833240f 3201 gfn_t gfn;
e2dec939 3202 int r;
6aa8b732 3203
b8688d51 3204 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3205
3206 if (unlikely(error_code & PFERR_RSVD_MASK))
3207 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3208
e2dec939
AK
3209 r = mmu_topup_memory_caches(vcpu);
3210 if (r)
3211 return r;
714b93da 3212
6aa8b732 3213 ASSERT(vcpu);
ad312c7c 3214 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3215
e833240f 3216 gfn = gva >> PAGE_SHIFT;
6aa8b732 3217
e833240f 3218 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3219 error_code, gfn, prefault);
6aa8b732
AK
3220}
3221
7e1fbeac 3222static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3223{
3224 struct kvm_arch_async_pf arch;
fb67e14f 3225
7c90705b 3226 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3227 arch.gfn = gfn;
c4806acd 3228 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3229 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3230
3231 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3232}
3233
3234static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3235{
3236 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3237 kvm_event_needs_reinjection(vcpu)))
3238 return false;
3239
3240 return kvm_x86_ops->interrupt_allowed(vcpu);
3241}
3242
78b2c54a 3243static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3244 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3245{
3246 bool async;
3247
612819c3 3248 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3249
3250 if (!async)
3251 return false; /* *pfn has correct page already */
3252
78b2c54a 3253 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3254 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3255 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3256 trace_kvm_async_pf_doublefault(gva, gfn);
3257 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3258 return true;
3259 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3260 return true;
3261 }
3262
612819c3 3263 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3264
3265 return false;
3266}
3267
56028d08 3268static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3269 bool prefault)
fb72d167 3270{
35149e21 3271 pfn_t pfn;
fb72d167 3272 int r;
852e3c19 3273 int level;
936a5fe6 3274 int force_pt_level;
05da4558 3275 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3276 unsigned long mmu_seq;
612819c3
MT
3277 int write = error_code & PFERR_WRITE_MASK;
3278 bool map_writable;
fb72d167
JR
3279
3280 ASSERT(vcpu);
3281 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3282
ce88decf
XG
3283 if (unlikely(error_code & PFERR_RSVD_MASK))
3284 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3285
fb72d167
JR
3286 r = mmu_topup_memory_caches(vcpu);
3287 if (r)
3288 return r;
3289
936a5fe6
AA
3290 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3291 if (likely(!force_pt_level)) {
3292 level = mapping_level(vcpu, gfn);
3293 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3294 } else
3295 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3296
c7ba5b48
XG
3297 if (fast_page_fault(vcpu, gpa, level, error_code))
3298 return 0;
3299
e930bffe 3300 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3301 smp_rmb();
af585b92 3302
78b2c54a 3303 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3304 return 0;
3305
d7c55201
XG
3306 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3307 return r;
3308
fb72d167 3309 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3310 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3311 goto out_unlock;
936a5fe6
AA
3312 if (likely(!force_pt_level))
3313 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3314 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3315 level, gfn, pfn, prefault);
fb72d167 3316 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3317
3318 return r;
e930bffe
AA
3319
3320out_unlock:
3321 spin_unlock(&vcpu->kvm->mmu_lock);
3322 kvm_release_pfn_clean(pfn);
3323 return 0;
fb72d167
JR
3324}
3325
6aa8b732
AK
3326static void nonpaging_free(struct kvm_vcpu *vcpu)
3327{
17ac10ad 3328 mmu_free_roots(vcpu);
6aa8b732
AK
3329}
3330
52fde8df
JR
3331static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3332 struct kvm_mmu *context)
6aa8b732 3333{
6aa8b732
AK
3334 context->new_cr3 = nonpaging_new_cr3;
3335 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3336 context->gva_to_gpa = nonpaging_gva_to_gpa;
3337 context->free = nonpaging_free;
e8bc217a 3338 context->sync_page = nonpaging_sync_page;
a7052897 3339 context->invlpg = nonpaging_invlpg;
0f53b5b1 3340 context->update_pte = nonpaging_update_pte;
cea0f0e7 3341 context->root_level = 0;
6aa8b732 3342 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3343 context->root_hpa = INVALID_PAGE;
c5a78f2b 3344 context->direct_map = true;
2d48a985 3345 context->nx = false;
6aa8b732
AK
3346 return 0;
3347}
3348
d835dfec 3349void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3350{
1165f5fe 3351 ++vcpu->stat.tlb_flush;
a8eeb04a 3352 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3353}
3354
3355static void paging_new_cr3(struct kvm_vcpu *vcpu)
3356{
9f8fe504 3357 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3358 mmu_free_roots(vcpu);
6aa8b732
AK
3359}
3360
5777ed34
JR
3361static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3362{
9f8fe504 3363 return kvm_read_cr3(vcpu);
5777ed34
JR
3364}
3365
6389ee94
AK
3366static void inject_page_fault(struct kvm_vcpu *vcpu,
3367 struct x86_exception *fault)
6aa8b732 3368{
6389ee94 3369 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3370}
3371
6aa8b732
AK
3372static void paging_free(struct kvm_vcpu *vcpu)
3373{
3374 nonpaging_free(vcpu);
3375}
3376
8ea667f2
AK
3377static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3378{
3379 unsigned mask;
3380
3381 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3382
3383 mask = (unsigned)~ACC_WRITE_MASK;
3384 /* Allow write access to dirty gptes */
3385 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3386 *access &= mask;
3387}
3388
ce88decf
XG
3389static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3390 int *nr_present)
3391{
3392 if (unlikely(is_mmio_spte(*sptep))) {
3393 if (gfn != get_mmio_spte_gfn(*sptep)) {
3394 mmu_spte_clear_no_track(sptep);
3395 return true;
3396 }
3397
3398 (*nr_present)++;
3399 mark_mmio_spte(sptep, gfn, access);
3400 return true;
3401 }
3402
3403 return false;
3404}
3405
3d34adec
AK
3406static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3407{
3408 unsigned access;
3409
3410 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3411 access &= ~(gpte >> PT64_NX_SHIFT);
3412
3413 return access;
3414}
3415
6fd01b71
AK
3416static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3417{
3418 unsigned index;
3419
3420 index = level - 1;
3421 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3422 return mmu->last_pte_bitmap & (1 << index);
3423}
3424
6aa8b732
AK
3425#define PTTYPE 64
3426#include "paging_tmpl.h"
3427#undef PTTYPE
3428
3429#define PTTYPE 32
3430#include "paging_tmpl.h"
3431#undef PTTYPE
3432
52fde8df 3433static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3434 struct kvm_mmu *context)
82725b20 3435{
82725b20
DE
3436 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3437 u64 exb_bit_rsvd = 0;
3438
2d48a985 3439 if (!context->nx)
82725b20 3440 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3441 switch (context->root_level) {
82725b20
DE
3442 case PT32_ROOT_LEVEL:
3443 /* no rsvd bits for 2 level 4K page table entries */
3444 context->rsvd_bits_mask[0][1] = 0;
3445 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3446 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3447
3448 if (!is_pse(vcpu)) {
3449 context->rsvd_bits_mask[1][1] = 0;
3450 break;
3451 }
3452
82725b20
DE
3453 if (is_cpuid_PSE36())
3454 /* 36bits PSE 4MB page */
3455 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3456 else
3457 /* 32 bits PSE 4MB page */
3458 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3459 break;
3460 case PT32E_ROOT_LEVEL:
20c466b5
DE
3461 context->rsvd_bits_mask[0][2] =
3462 rsvd_bits(maxphyaddr, 63) |
3463 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3464 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3465 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3466 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3467 rsvd_bits(maxphyaddr, 62); /* PTE */
3468 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3469 rsvd_bits(maxphyaddr, 62) |
3470 rsvd_bits(13, 20); /* large page */
f815bce8 3471 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3472 break;
3473 case PT64_ROOT_LEVEL:
3474 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3475 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3476 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3477 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3478 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3479 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3480 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3481 rsvd_bits(maxphyaddr, 51);
3482 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3483 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3484 rsvd_bits(maxphyaddr, 51) |
3485 rsvd_bits(13, 29);
82725b20 3486 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3487 rsvd_bits(maxphyaddr, 51) |
3488 rsvd_bits(13, 20); /* large page */
f815bce8 3489 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3490 break;
3491 }
3492}
3493
97d64b78
AK
3494static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3495{
3496 unsigned bit, byte, pfec;
3497 u8 map;
3498 bool fault, x, w, u, wf, uf, ff, smep;
3499
3500 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3501 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3502 pfec = byte << 1;
3503 map = 0;
3504 wf = pfec & PFERR_WRITE_MASK;
3505 uf = pfec & PFERR_USER_MASK;
3506 ff = pfec & PFERR_FETCH_MASK;
3507 for (bit = 0; bit < 8; ++bit) {
3508 x = bit & ACC_EXEC_MASK;
3509 w = bit & ACC_WRITE_MASK;
3510 u = bit & ACC_USER_MASK;
3511
3512 /* Not really needed: !nx will cause pte.nx to fault */
3513 x |= !mmu->nx;
3514 /* Allow supervisor writes if !cr0.wp */
3515 w |= !is_write_protection(vcpu) && !uf;
3516 /* Disallow supervisor fetches of user code if cr4.smep */
3517 x &= !(smep && u && !uf);
3518
3519 fault = (ff && !x) || (uf && !u) || (wf && !w);
3520 map |= fault << bit;
3521 }
3522 mmu->permissions[byte] = map;
3523 }
3524}
3525
6fd01b71
AK
3526static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3527{
3528 u8 map;
3529 unsigned level, root_level = mmu->root_level;
3530 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3531
3532 if (root_level == PT32E_ROOT_LEVEL)
3533 --root_level;
3534 /* PT_PAGE_TABLE_LEVEL always terminates */
3535 map = 1 | (1 << ps_set_index);
3536 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3537 if (level <= PT_PDPE_LEVEL
3538 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3539 map |= 1 << (ps_set_index | (level - 1));
3540 }
3541 mmu->last_pte_bitmap = map;
3542}
3543
52fde8df
JR
3544static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3545 struct kvm_mmu *context,
3546 int level)
6aa8b732 3547{
2d48a985 3548 context->nx = is_nx(vcpu);
4d6931c3 3549 context->root_level = level;
2d48a985 3550
4d6931c3 3551 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3552 update_permission_bitmask(vcpu, context);
6fd01b71 3553 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3554
3555 ASSERT(is_pae(vcpu));
3556 context->new_cr3 = paging_new_cr3;
3557 context->page_fault = paging64_page_fault;
6aa8b732 3558 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3559 context->sync_page = paging64_sync_page;
a7052897 3560 context->invlpg = paging64_invlpg;
0f53b5b1 3561 context->update_pte = paging64_update_pte;
6aa8b732 3562 context->free = paging_free;
17ac10ad 3563 context->shadow_root_level = level;
17c3ba9d 3564 context->root_hpa = INVALID_PAGE;
c5a78f2b 3565 context->direct_map = false;
6aa8b732
AK
3566 return 0;
3567}
3568
52fde8df
JR
3569static int paging64_init_context(struct kvm_vcpu *vcpu,
3570 struct kvm_mmu *context)
17ac10ad 3571{
52fde8df 3572 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3573}
3574
52fde8df
JR
3575static int paging32_init_context(struct kvm_vcpu *vcpu,
3576 struct kvm_mmu *context)
6aa8b732 3577{
2d48a985 3578 context->nx = false;
4d6931c3 3579 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3580
4d6931c3 3581 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3582 update_permission_bitmask(vcpu, context);
6fd01b71 3583 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3584
3585 context->new_cr3 = paging_new_cr3;
3586 context->page_fault = paging32_page_fault;
6aa8b732
AK
3587 context->gva_to_gpa = paging32_gva_to_gpa;
3588 context->free = paging_free;
e8bc217a 3589 context->sync_page = paging32_sync_page;
a7052897 3590 context->invlpg = paging32_invlpg;
0f53b5b1 3591 context->update_pte = paging32_update_pte;
6aa8b732 3592 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3593 context->root_hpa = INVALID_PAGE;
c5a78f2b 3594 context->direct_map = false;
6aa8b732
AK
3595 return 0;
3596}
3597
52fde8df
JR
3598static int paging32E_init_context(struct kvm_vcpu *vcpu,
3599 struct kvm_mmu *context)
6aa8b732 3600{
52fde8df 3601 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3602}
3603
fb72d167
JR
3604static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3605{
14dfe855 3606 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3607
c445f8ef 3608 context->base_role.word = 0;
fb72d167
JR
3609 context->new_cr3 = nonpaging_new_cr3;
3610 context->page_fault = tdp_page_fault;
3611 context->free = nonpaging_free;
e8bc217a 3612 context->sync_page = nonpaging_sync_page;
a7052897 3613 context->invlpg = nonpaging_invlpg;
0f53b5b1 3614 context->update_pte = nonpaging_update_pte;
67253af5 3615 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3616 context->root_hpa = INVALID_PAGE;
c5a78f2b 3617 context->direct_map = true;
1c97f0a0 3618 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3619 context->get_cr3 = get_cr3;
e4e517b4 3620 context->get_pdptr = kvm_pdptr_read;
cb659db8 3621 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3622
3623 if (!is_paging(vcpu)) {
2d48a985 3624 context->nx = false;
fb72d167
JR
3625 context->gva_to_gpa = nonpaging_gva_to_gpa;
3626 context->root_level = 0;
3627 } else if (is_long_mode(vcpu)) {
2d48a985 3628 context->nx = is_nx(vcpu);
fb72d167 3629 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3630 reset_rsvds_bits_mask(vcpu, context);
3631 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3632 } else if (is_pae(vcpu)) {
2d48a985 3633 context->nx = is_nx(vcpu);
fb72d167 3634 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3635 reset_rsvds_bits_mask(vcpu, context);
3636 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3637 } else {
2d48a985 3638 context->nx = false;
fb72d167 3639 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3640 reset_rsvds_bits_mask(vcpu, context);
3641 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3642 }
3643
97d64b78 3644 update_permission_bitmask(vcpu, context);
6fd01b71 3645 update_last_pte_bitmap(vcpu, context);
97d64b78 3646
fb72d167
JR
3647 return 0;
3648}
3649
52fde8df 3650int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3651{
a770f6f2 3652 int r;
411c588d 3653 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3654 ASSERT(vcpu);
ad312c7c 3655 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3656
3657 if (!is_paging(vcpu))
52fde8df 3658 r = nonpaging_init_context(vcpu, context);
a9058ecd 3659 else if (is_long_mode(vcpu))
52fde8df 3660 r = paging64_init_context(vcpu, context);
6aa8b732 3661 else if (is_pae(vcpu))
52fde8df 3662 r = paging32E_init_context(vcpu, context);
6aa8b732 3663 else
52fde8df 3664 r = paging32_init_context(vcpu, context);
a770f6f2 3665
2c9afa52 3666 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
5b7e0102 3667 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3668 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3669 vcpu->arch.mmu.base_role.smep_andnot_wp
3670 = smep && !is_write_protection(vcpu);
52fde8df
JR
3671
3672 return r;
3673}
3674EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3675
3676static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3677{
14dfe855 3678 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3679
14dfe855
JR
3680 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3681 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3682 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3683 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3684
3685 return r;
6aa8b732
AK
3686}
3687
02f59dc9
JR
3688static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3689{
3690 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3691
3692 g_context->get_cr3 = get_cr3;
e4e517b4 3693 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3694 g_context->inject_page_fault = kvm_inject_page_fault;
3695
3696 /*
3697 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3698 * translation of l2_gpa to l1_gpa addresses is done using the
3699 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3700 * functions between mmu and nested_mmu are swapped.
3701 */
3702 if (!is_paging(vcpu)) {
2d48a985 3703 g_context->nx = false;
02f59dc9
JR
3704 g_context->root_level = 0;
3705 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3706 } else if (is_long_mode(vcpu)) {
2d48a985 3707 g_context->nx = is_nx(vcpu);
02f59dc9 3708 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3709 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3710 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3711 } else if (is_pae(vcpu)) {
2d48a985 3712 g_context->nx = is_nx(vcpu);
02f59dc9 3713 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3714 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3715 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3716 } else {
2d48a985 3717 g_context->nx = false;
02f59dc9 3718 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3719 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3720 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3721 }
3722
97d64b78 3723 update_permission_bitmask(vcpu, g_context);
6fd01b71 3724 update_last_pte_bitmap(vcpu, g_context);
97d64b78 3725
02f59dc9
JR
3726 return 0;
3727}
3728
fb72d167
JR
3729static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3730{
02f59dc9
JR
3731 if (mmu_is_nested(vcpu))
3732 return init_kvm_nested_mmu(vcpu);
3733 else if (tdp_enabled)
fb72d167
JR
3734 return init_kvm_tdp_mmu(vcpu);
3735 else
3736 return init_kvm_softmmu(vcpu);
3737}
3738
6aa8b732
AK
3739static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3740{
3741 ASSERT(vcpu);
62ad0755
SY
3742 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3743 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3744 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3745}
3746
3747int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3748{
3749 destroy_kvm_mmu(vcpu);
f8f7e5ee 3750 return init_kvm_mmu(vcpu);
17c3ba9d 3751}
8668a3c4 3752EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3753
3754int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3755{
714b93da
AK
3756 int r;
3757
e2dec939 3758 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3759 if (r)
3760 goto out;
8986ecc0 3761 r = mmu_alloc_roots(vcpu);
8facbbff 3762 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3763 mmu_sync_roots(vcpu);
aaee2c94 3764 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3765 if (r)
3766 goto out;
3662cb1c 3767 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3768 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3769out:
3770 return r;
6aa8b732 3771}
17c3ba9d
AK
3772EXPORT_SYMBOL_GPL(kvm_mmu_load);
3773
3774void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3775{
3776 mmu_free_roots(vcpu);
3777}
4b16184c 3778EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3779
0028425f 3780static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3781 struct kvm_mmu_page *sp, u64 *spte,
3782 const void *new)
0028425f 3783{
30945387 3784 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3785 ++vcpu->kvm->stat.mmu_pde_zapped;
3786 return;
30945387 3787 }
0028425f 3788
4cee5764 3789 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3790 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3791}
3792
79539cec
AK
3793static bool need_remote_flush(u64 old, u64 new)
3794{
3795 if (!is_shadow_present_pte(old))
3796 return false;
3797 if (!is_shadow_present_pte(new))
3798 return true;
3799 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3800 return true;
3801 old ^= PT64_NX_MASK;
3802 new ^= PT64_NX_MASK;
3803 return (old & ~new & PT64_PERM_MASK) != 0;
3804}
3805
0671a8e7
XG
3806static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3807 bool remote_flush, bool local_flush)
79539cec 3808{
0671a8e7
XG
3809 if (zap_page)
3810 return;
3811
3812 if (remote_flush)
79539cec 3813 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3814 else if (local_flush)
79539cec
AK
3815 kvm_mmu_flush_tlb(vcpu);
3816}
3817
889e5cbc
XG
3818static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3819 const u8 *new, int *bytes)
da4a00f0 3820{
889e5cbc
XG
3821 u64 gentry;
3822 int r;
72016f3a 3823
72016f3a
AK
3824 /*
3825 * Assume that the pte write on a page table of the same type
49b26e26
XG
3826 * as the current vcpu paging mode since we update the sptes only
3827 * when they have the same mode.
72016f3a 3828 */
889e5cbc 3829 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3830 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3831 *gpa &= ~(gpa_t)7;
3832 *bytes = 8;
116eb3d3 3833 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
3834 if (r)
3835 gentry = 0;
08e850c6
AK
3836 new = (const u8 *)&gentry;
3837 }
3838
889e5cbc 3839 switch (*bytes) {
08e850c6
AK
3840 case 4:
3841 gentry = *(const u32 *)new;
3842 break;
3843 case 8:
3844 gentry = *(const u64 *)new;
3845 break;
3846 default:
3847 gentry = 0;
3848 break;
72016f3a
AK
3849 }
3850
889e5cbc
XG
3851 return gentry;
3852}
3853
3854/*
3855 * If we're seeing too many writes to a page, it may no longer be a page table,
3856 * or we may be forking, in which case it is better to unmap the page.
3857 */
a138fe75 3858static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3859{
a30f47cb
XG
3860 /*
3861 * Skip write-flooding detected for the sp whose level is 1, because
3862 * it can become unsync, then the guest page is not write-protected.
3863 */
f71fa31f 3864 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3865 return false;
3246af0e 3866
a30f47cb 3867 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3868}
3869
3870/*
3871 * Misaligned accesses are too much trouble to fix up; also, they usually
3872 * indicate a page is not used as a page table.
3873 */
3874static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3875 int bytes)
3876{
3877 unsigned offset, pte_size, misaligned;
3878
3879 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3880 gpa, bytes, sp->role.word);
3881
3882 offset = offset_in_page(gpa);
3883 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3884
3885 /*
3886 * Sometimes, the OS only writes the last one bytes to update status
3887 * bits, for example, in linux, andb instruction is used in clear_bit().
3888 */
3889 if (!(offset & (pte_size - 1)) && bytes == 1)
3890 return false;
3891
889e5cbc
XG
3892 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3893 misaligned |= bytes < 4;
3894
3895 return misaligned;
3896}
3897
3898static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3899{
3900 unsigned page_offset, quadrant;
3901 u64 *spte;
3902 int level;
3903
3904 page_offset = offset_in_page(gpa);
3905 level = sp->role.level;
3906 *nspte = 1;
3907 if (!sp->role.cr4_pae) {
3908 page_offset <<= 1; /* 32->64 */
3909 /*
3910 * A 32-bit pde maps 4MB while the shadow pdes map
3911 * only 2MB. So we need to double the offset again
3912 * and zap two pdes instead of one.
3913 */
3914 if (level == PT32_ROOT_LEVEL) {
3915 page_offset &= ~7; /* kill rounding error */
3916 page_offset <<= 1;
3917 *nspte = 2;
3918 }
3919 quadrant = page_offset >> PAGE_SHIFT;
3920 page_offset &= ~PAGE_MASK;
3921 if (quadrant != sp->role.quadrant)
3922 return NULL;
3923 }
3924
3925 spte = &sp->spt[page_offset / sizeof(*spte)];
3926 return spte;
3927}
3928
3929void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3930 const u8 *new, int bytes)
3931{
3932 gfn_t gfn = gpa >> PAGE_SHIFT;
3933 union kvm_mmu_page_role mask = { .word = 0 };
3934 struct kvm_mmu_page *sp;
889e5cbc
XG
3935 LIST_HEAD(invalid_list);
3936 u64 entry, gentry, *spte;
3937 int npte;
a30f47cb 3938 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3939
3940 /*
3941 * If we don't have indirect shadow pages, it means no page is
3942 * write-protected, so we can exit simply.
3943 */
3944 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3945 return;
3946
3947 zap_page = remote_flush = local_flush = false;
3948
3949 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3950
3951 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3952
3953 /*
3954 * No need to care whether allocation memory is successful
3955 * or not since pte prefetch is skiped if it does not have
3956 * enough objects in the cache.
3957 */
3958 mmu_topup_memory_caches(vcpu);
3959
3960 spin_lock(&vcpu->kvm->mmu_lock);
3961 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3962 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3963
fa1de2bf 3964 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
b67bfe0d 3965 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 3966 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3967 detect_write_flooding(sp)) {
0671a8e7 3968 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3969 &invalid_list);
4cee5764 3970 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3971 continue;
3972 }
889e5cbc
XG
3973
3974 spte = get_written_sptes(sp, gpa, &npte);
3975 if (!spte)
3976 continue;
3977
0671a8e7 3978 local_flush = true;
ac1b714e 3979 while (npte--) {
79539cec 3980 entry = *spte;
38e3b2b2 3981 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3982 if (gentry &&
3983 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3984 & mask.word) && rmap_can_add(vcpu))
7c562522 3985 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 3986 if (need_remote_flush(entry, *spte))
0671a8e7 3987 remote_flush = true;
ac1b714e 3988 ++spte;
9b7a0325 3989 }
9b7a0325 3990 }
0671a8e7 3991 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3992 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3993 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3994 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3995}
3996
a436036b
AK
3997int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3998{
10589a46
MT
3999 gpa_t gpa;
4000 int r;
a436036b 4001
c5a78f2b 4002 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4003 return 0;
4004
1871c602 4005 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4006
10589a46 4007 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4008
10589a46 4009 return r;
a436036b 4010}
577bdc49 4011EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4012
22d95b12 4013void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 4014{
d98ba053 4015 LIST_HEAD(invalid_list);
103ad25a 4016
5da59607
TY
4017 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4018 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4019 break;
ebeace86 4020
4cee5764 4021 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4022 }
aa6bd187 4023 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4024}
ebeace86 4025
1cb3f3ae
XG
4026static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4027{
4028 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4029 return vcpu_match_mmio_gpa(vcpu, addr);
4030
4031 return vcpu_match_mmio_gva(vcpu, addr);
4032}
4033
dc25e89e
AP
4034int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4035 void *insn, int insn_len)
3067714c 4036{
1cb3f3ae 4037 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4038 enum emulation_result er;
4039
56028d08 4040 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4041 if (r < 0)
4042 goto out;
4043
4044 if (!r) {
4045 r = 1;
4046 goto out;
4047 }
4048
1cb3f3ae
XG
4049 if (is_mmio_page_fault(vcpu, cr2))
4050 emulation_type = 0;
4051
4052 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4053
4054 switch (er) {
4055 case EMULATE_DONE:
4056 return 1;
4057 case EMULATE_DO_MMIO:
4058 ++vcpu->stat.mmio_exits;
6d77dbfc 4059 /* fall through */
3067714c 4060 case EMULATE_FAIL:
3f5d18a9 4061 return 0;
3067714c
AK
4062 default:
4063 BUG();
4064 }
4065out:
3067714c
AK
4066 return r;
4067}
4068EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4069
a7052897
MT
4070void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4071{
a7052897 4072 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4073 kvm_mmu_flush_tlb(vcpu);
4074 ++vcpu->stat.invlpg;
4075}
4076EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4077
18552672
JR
4078void kvm_enable_tdp(void)
4079{
4080 tdp_enabled = true;
4081}
4082EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4083
5f4cb662
JR
4084void kvm_disable_tdp(void)
4085{
4086 tdp_enabled = false;
4087}
4088EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4089
6aa8b732
AK
4090static void free_mmu_pages(struct kvm_vcpu *vcpu)
4091{
ad312c7c 4092 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4093 if (vcpu->arch.mmu.lm_root != NULL)
4094 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4095}
4096
4097static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4098{
17ac10ad 4099 struct page *page;
6aa8b732
AK
4100 int i;
4101
4102 ASSERT(vcpu);
4103
17ac10ad
AK
4104 /*
4105 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4106 * Therefore we need to allocate shadow page tables in the first
4107 * 4GB of memory, which happens to fit the DMA32 zone.
4108 */
4109 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4110 if (!page)
d7fa6ab2
WY
4111 return -ENOMEM;
4112
ad312c7c 4113 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4114 for (i = 0; i < 4; ++i)
ad312c7c 4115 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4116
6aa8b732 4117 return 0;
6aa8b732
AK
4118}
4119
8018c27b 4120int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4121{
6aa8b732 4122 ASSERT(vcpu);
e459e322
XG
4123
4124 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4125 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4126 vcpu->arch.mmu.translate_gpa = translate_gpa;
4127 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4128
8018c27b
IM
4129 return alloc_mmu_pages(vcpu);
4130}
6aa8b732 4131
8018c27b
IM
4132int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4133{
4134 ASSERT(vcpu);
ad312c7c 4135 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4136
8018c27b 4137 return init_kvm_mmu(vcpu);
6aa8b732
AK
4138}
4139
90cb0529 4140void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4141{
b99db1d3
TY
4142 struct kvm_memory_slot *memslot;
4143 gfn_t last_gfn;
4144 int i;
6aa8b732 4145
b99db1d3
TY
4146 memslot = id_to_memslot(kvm->memslots, slot);
4147 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4148
9d1beefb
TY
4149 spin_lock(&kvm->mmu_lock);
4150
b99db1d3
TY
4151 for (i = PT_PAGE_TABLE_LEVEL;
4152 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4153 unsigned long *rmapp;
4154 unsigned long last_index, index;
6aa8b732 4155
b99db1d3
TY
4156 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4157 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4158
b99db1d3
TY
4159 for (index = 0; index <= last_index; ++index, ++rmapp) {
4160 if (*rmapp)
4161 __rmap_write_protect(kvm, rmapp, false);
6b81b05e
TY
4162
4163 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4164 kvm_flush_remote_tlbs(kvm);
4165 cond_resched_lock(&kvm->mmu_lock);
4166 }
8234b22e 4167 }
6aa8b732 4168 }
b99db1d3 4169
171d595d 4170 kvm_flush_remote_tlbs(kvm);
9d1beefb 4171 spin_unlock(&kvm->mmu_lock);
6aa8b732 4172}
37a7d8b0 4173
90cb0529 4174void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 4175{
4db35314 4176 struct kvm_mmu_page *sp, *node;
d98ba053 4177 LIST_HEAD(invalid_list);
e0fa826f 4178
aaee2c94 4179 spin_lock(&kvm->mmu_lock);
3246af0e 4180restart:
f05e70ac 4181 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 4182 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
4183 goto restart;
4184
d98ba053 4185 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 4186 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
4187}
4188
982b3394
TY
4189void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
4190{
4191 struct kvm_mmu_page *sp, *node;
4192 LIST_HEAD(invalid_list);
4193
4194 spin_lock(&kvm->mmu_lock);
4195restart:
4196 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
4197 if (!sp->mmio_cached)
4198 continue;
4199 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4200 goto restart;
4201 }
4202
4203 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4204 spin_unlock(&kvm->mmu_lock);
4205}
4206
1495f230 4207static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4208{
4209 struct kvm *kvm;
1495f230 4210 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
4211
4212 if (nr_to_scan == 0)
4213 goto out;
3ee16c81 4214
e935b837 4215 raw_spin_lock(&kvm_lock);
3ee16c81
IE
4216
4217 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4218 int idx;
d98ba053 4219 LIST_HEAD(invalid_list);
3ee16c81 4220
35f2d16b
TY
4221 /*
4222 * Never scan more than sc->nr_to_scan VM instances.
4223 * Will not hit this condition practically since we do not try
4224 * to shrink more than one VM and it is very unlikely to see
4225 * !n_used_mmu_pages so many times.
4226 */
4227 if (!nr_to_scan--)
4228 break;
19526396
GN
4229 /*
4230 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4231 * here. We may skip a VM instance errorneosly, but we do not
4232 * want to shrink a VM that only started to populate its MMU
4233 * anyway.
4234 */
35f2d16b 4235 if (!kvm->arch.n_used_mmu_pages)
19526396 4236 continue;
19526396 4237
f656ce01 4238 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4239 spin_lock(&kvm->mmu_lock);
3ee16c81 4240
5da59607 4241 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
d98ba053 4242 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4243
3ee16c81 4244 spin_unlock(&kvm->mmu_lock);
f656ce01 4245 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
4246
4247 list_move_tail(&kvm->vm_list, &vm_list);
4248 break;
3ee16c81 4249 }
3ee16c81 4250
e935b837 4251 raw_spin_unlock(&kvm_lock);
3ee16c81 4252
45221ab6
DH
4253out:
4254 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4255}
4256
4257static struct shrinker mmu_shrinker = {
4258 .shrink = mmu_shrink,
4259 .seeks = DEFAULT_SEEKS * 10,
4260};
4261
2ddfd20e 4262static void mmu_destroy_caches(void)
b5a33a75 4263{
53c07b18
XG
4264 if (pte_list_desc_cache)
4265 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4266 if (mmu_page_header_cache)
4267 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4268}
4269
4270int kvm_mmu_module_init(void)
4271{
53c07b18
XG
4272 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4273 sizeof(struct pte_list_desc),
20c2df83 4274 0, 0, NULL);
53c07b18 4275 if (!pte_list_desc_cache)
b5a33a75
AK
4276 goto nomem;
4277
d3d25b04
AK
4278 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4279 sizeof(struct kvm_mmu_page),
20c2df83 4280 0, 0, NULL);
d3d25b04
AK
4281 if (!mmu_page_header_cache)
4282 goto nomem;
4283
45bf21a8
WY
4284 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4285 goto nomem;
4286
3ee16c81
IE
4287 register_shrinker(&mmu_shrinker);
4288
b5a33a75
AK
4289 return 0;
4290
4291nomem:
3ee16c81 4292 mmu_destroy_caches();
b5a33a75
AK
4293 return -ENOMEM;
4294}
4295
3ad82a7e
ZX
4296/*
4297 * Caculate mmu pages needed for kvm.
4298 */
4299unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4300{
3ad82a7e
ZX
4301 unsigned int nr_mmu_pages;
4302 unsigned int nr_pages = 0;
bc6678a3 4303 struct kvm_memslots *slots;
be6ba0f0 4304 struct kvm_memory_slot *memslot;
3ad82a7e 4305
90d83dc3
LJ
4306 slots = kvm_memslots(kvm);
4307
be6ba0f0
XG
4308 kvm_for_each_memslot(memslot, slots)
4309 nr_pages += memslot->npages;
3ad82a7e
ZX
4310
4311 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4312 nr_mmu_pages = max(nr_mmu_pages,
4313 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4314
4315 return nr_mmu_pages;
4316}
4317
94d8b056
MT
4318int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4319{
4320 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4321 u64 spte;
94d8b056
MT
4322 int nr_sptes = 0;
4323
c2a2ac2b
XG
4324 walk_shadow_page_lockless_begin(vcpu);
4325 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4326 sptes[iterator.level-1] = spte;
94d8b056 4327 nr_sptes++;
c2a2ac2b 4328 if (!is_shadow_present_pte(spte))
94d8b056
MT
4329 break;
4330 }
c2a2ac2b 4331 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4332
4333 return nr_sptes;
4334}
4335EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4336
c42fffe3
XG
4337void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4338{
4339 ASSERT(vcpu);
4340
4341 destroy_kvm_mmu(vcpu);
4342 free_mmu_pages(vcpu);
4343 mmu_free_memory_caches(vcpu);
b034cf01
XG
4344}
4345
b034cf01
XG
4346void kvm_mmu_module_exit(void)
4347{
4348 mmu_destroy_caches();
4349 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4350 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4351 mmu_audit_disable();
4352}