]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
Merge tag 'char-misc-4.15-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
1767e931
PG
32#include <linux/moduleparam.h>
33#include <linux/export.h>
448353ca 34#include <linux/swap.h>
05da4558 35#include <linux/hugetlb.h>
2f333bcb 36#include <linux/compiler.h>
bc6678a3 37#include <linux/srcu.h>
5a0e3ad6 38#include <linux/slab.h>
3f07c014 39#include <linux/sched/signal.h>
bf998156 40#include <linux/uaccess.h>
114df303 41#include <linux/hash.h>
f160c7b7 42#include <linux/kern_levels.h>
6aa8b732 43
e495606d
AK
44#include <asm/page.h>
45#include <asm/cmpxchg.h>
4e542370 46#include <asm/io.h>
13673a90 47#include <asm/vmx.h>
3d0c27ad 48#include <asm/kvm_page_track.h>
1261bfa3 49#include "trace.h"
6aa8b732 50
18552672
JR
51/*
52 * When setting this variable to true it enables Two-Dimensional-Paging
53 * where the hardware walks 2 page tables:
54 * 1. the guest-virtual to guest-physical
55 * 2. while doing 1. it walks guest-physical to host-physical
56 * If the hardware supports that we don't need to do shadow paging.
57 */
2f333bcb 58bool tdp_enabled = false;
18552672 59
8b1fe17c
XG
60enum {
61 AUDIT_PRE_PAGE_FAULT,
62 AUDIT_POST_PAGE_FAULT,
63 AUDIT_PRE_PTE_WRITE,
6903074c
XG
64 AUDIT_POST_PTE_WRITE,
65 AUDIT_PRE_SYNC,
66 AUDIT_POST_SYNC
8b1fe17c 67};
37a7d8b0 68
8b1fe17c 69#undef MMU_DEBUG
37a7d8b0
AK
70
71#ifdef MMU_DEBUG
fa4a2c08
PB
72static bool dbg = 0;
73module_param(dbg, bool, 0644);
37a7d8b0
AK
74
75#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
76#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 77#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 78#else
37a7d8b0
AK
79#define pgprintk(x...) do { } while (0)
80#define rmap_printk(x...) do { } while (0)
fa4a2c08 81#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 82#endif
6aa8b732 83
957ed9ef
XG
84#define PTE_PREFETCH_NUM 8
85
00763e41 86#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
87#define PT64_SECOND_AVAIL_BITS_SHIFT 52
88
6aa8b732
AK
89#define PT64_LEVEL_BITS 9
90
91#define PT64_LEVEL_SHIFT(level) \
d77c26fc 92 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 93
6aa8b732
AK
94#define PT64_INDEX(address, level)\
95 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
96
97
98#define PT32_LEVEL_BITS 10
99
100#define PT32_LEVEL_SHIFT(level) \
d77c26fc 101 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 102
e04da980
JR
103#define PT32_LVL_OFFSET_MASK(level) \
104 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
105 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
106
107#define PT32_INDEX(address, level)\
108 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
109
110
d0ec49d4 111#define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
6aa8b732
AK
112#define PT64_DIR_BASE_ADDR_MASK \
113 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
114#define PT64_LVL_ADDR_MASK(level) \
115 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
116 * PT64_LEVEL_BITS))) - 1))
117#define PT64_LVL_OFFSET_MASK(level) \
118 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
119 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
120
121#define PT32_BASE_ADDR_MASK PAGE_MASK
122#define PT32_DIR_BASE_ADDR_MASK \
123 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
124#define PT32_LVL_ADDR_MASK(level) \
125 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT32_LEVEL_BITS))) - 1))
6aa8b732 127
53166229 128#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 129 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 130
fe135d2c
AK
131#define ACC_EXEC_MASK 1
132#define ACC_WRITE_MASK PT_WRITABLE_MASK
133#define ACC_USER_MASK PT_USER_MASK
134#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
135
f160c7b7
JS
136/* The mask for the R/X bits in EPT PTEs */
137#define PT64_EPT_READABLE_MASK 0x1ull
138#define PT64_EPT_EXECUTABLE_MASK 0x4ull
139
90bb6fc5
AK
140#include <trace/events/kvm.h>
141
07420171
AK
142#define CREATE_TRACE_POINTS
143#include "mmutrace.h"
144
49fde340
XG
145#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
146#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 147
135f8c2b
AK
148#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
149
220f773a
TY
150/* make pte_list_desc fit well in cache line */
151#define PTE_LIST_EXT 3
152
9b8ebbdb
PB
153/*
154 * Return values of handle_mmio_page_fault and mmu.page_fault:
155 * RET_PF_RETRY: let CPU fault again on the address.
156 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
157 *
158 * For handle_mmio_page_fault only:
159 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
160 */
161enum {
162 RET_PF_RETRY = 0,
163 RET_PF_EMULATE = 1,
164 RET_PF_INVALID = 2,
165};
166
53c07b18
XG
167struct pte_list_desc {
168 u64 *sptes[PTE_LIST_EXT];
169 struct pte_list_desc *more;
cd4a4e53
AK
170};
171
2d11123a
AK
172struct kvm_shadow_walk_iterator {
173 u64 addr;
174 hpa_t shadow_addr;
2d11123a 175 u64 *sptep;
dd3bfd59 176 int level;
2d11123a
AK
177 unsigned index;
178};
179
180#define for_each_shadow_entry(_vcpu, _addr, _walker) \
181 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
182 shadow_walk_okay(&(_walker)); \
183 shadow_walk_next(&(_walker)))
184
c2a2ac2b
XG
185#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
186 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
187 shadow_walk_okay(&(_walker)) && \
188 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
189 __shadow_walk_next(&(_walker), spte))
190
53c07b18 191static struct kmem_cache *pte_list_desc_cache;
d3d25b04 192static struct kmem_cache *mmu_page_header_cache;
45221ab6 193static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 194
7b52345e
SY
195static u64 __read_mostly shadow_nx_mask;
196static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
197static u64 __read_mostly shadow_user_mask;
198static u64 __read_mostly shadow_accessed_mask;
199static u64 __read_mostly shadow_dirty_mask;
ce88decf 200static u64 __read_mostly shadow_mmio_mask;
dcdca5fe 201static u64 __read_mostly shadow_mmio_value;
ffb128c8 202static u64 __read_mostly shadow_present_mask;
d0ec49d4 203static u64 __read_mostly shadow_me_mask;
ce88decf 204
f160c7b7 205/*
ac8d57e5
PF
206 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
207 * Non-present SPTEs with shadow_acc_track_value set are in place for access
208 * tracking.
f160c7b7
JS
209 */
210static u64 __read_mostly shadow_acc_track_mask;
211static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
212
213/*
214 * The mask/shift to use for saving the original R/X bits when marking the PTE
215 * as not-present for access tracking purposes. We do not save the W bit as the
216 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
217 * restored only when a write is attempted to the page.
218 */
219static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
220 PT64_EPT_EXECUTABLE_MASK;
221static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
222
ce88decf 223static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 224static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf 225
dcdca5fe 226void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
ce88decf 227{
dcdca5fe
PF
228 BUG_ON((mmio_mask & mmio_value) != mmio_value);
229 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
312b616b 230 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
ce88decf
XG
231}
232EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
233
ac8d57e5
PF
234static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
235{
236 return sp->role.ad_disabled;
237}
238
239static inline bool spte_ad_enabled(u64 spte)
240{
241 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
242 return !(spte & shadow_acc_track_value);
243}
244
245static inline u64 spte_shadow_accessed_mask(u64 spte)
246{
247 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
248 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
249}
250
251static inline u64 spte_shadow_dirty_mask(u64 spte)
252{
253 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
254 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
255}
256
f160c7b7
JS
257static inline bool is_access_track_spte(u64 spte)
258{
ac8d57e5 259 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
260}
261
f2fd125d 262/*
ee3d1570
DM
263 * the low bit of the generation number is always presumed to be zero.
264 * This disables mmio caching during memslot updates. The concept is
265 * similar to a seqcount but instead of retrying the access we just punt
266 * and ignore the cache.
267 *
268 * spte bits 3-11 are used as bits 1-9 of the generation number,
269 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 270 */
ee3d1570 271#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
272#define MMIO_SPTE_GEN_HIGH_SHIFT 52
273
ee3d1570
DM
274#define MMIO_GEN_SHIFT 20
275#define MMIO_GEN_LOW_SHIFT 10
276#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 277#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
278
279static u64 generation_mmio_spte_mask(unsigned int gen)
280{
281 u64 mask;
282
842bb26a 283 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
284
285 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
286 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
287 return mask;
288}
289
290static unsigned int get_mmio_spte_generation(u64 spte)
291{
292 unsigned int gen;
293
294 spte &= ~shadow_mmio_mask;
295
296 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
297 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
298 return gen;
299}
300
54bf36aa 301static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 302{
54bf36aa 303 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
304}
305
54bf36aa 306static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 307 unsigned access)
ce88decf 308{
54bf36aa 309 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 310 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 311
ce88decf 312 access &= ACC_WRITE_MASK | ACC_USER_MASK;
dcdca5fe 313 mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
f2fd125d 314
f8f55942 315 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 316 mmu_spte_set(sptep, mask);
ce88decf
XG
317}
318
319static bool is_mmio_spte(u64 spte)
320{
dcdca5fe 321 return (spte & shadow_mmio_mask) == shadow_mmio_value;
ce88decf
XG
322}
323
324static gfn_t get_mmio_spte_gfn(u64 spte)
325{
842bb26a 326 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 327 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
328}
329
330static unsigned get_mmio_spte_access(u64 spte)
331{
842bb26a 332 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 333 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
334}
335
54bf36aa 336static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 337 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
338{
339 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 340 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
341 return true;
342 }
343
344 return false;
345}
c7addb90 346
54bf36aa 347static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 348{
089504c0
XG
349 unsigned int kvm_gen, spte_gen;
350
54bf36aa 351 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
352 spte_gen = get_mmio_spte_generation(spte);
353
354 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
355 return likely(kvm_gen == spte_gen);
f8f55942
XG
356}
357
ce00053b
PF
358/*
359 * Sets the shadow PTE masks used by the MMU.
360 *
361 * Assumptions:
362 * - Setting either @accessed_mask or @dirty_mask requires setting both
363 * - At least one of @accessed_mask or @acc_track_mask must be set
364 */
7b52345e 365void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 366 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 367 u64 acc_track_mask, u64 me_mask)
7b52345e 368{
ce00053b
PF
369 BUG_ON(!dirty_mask != !accessed_mask);
370 BUG_ON(!accessed_mask && !acc_track_mask);
ac8d57e5 371 BUG_ON(acc_track_mask & shadow_acc_track_value);
312b616b 372
7b52345e
SY
373 shadow_user_mask = user_mask;
374 shadow_accessed_mask = accessed_mask;
375 shadow_dirty_mask = dirty_mask;
376 shadow_nx_mask = nx_mask;
377 shadow_x_mask = x_mask;
ffb128c8 378 shadow_present_mask = p_mask;
f160c7b7 379 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 380 shadow_me_mask = me_mask;
7b52345e
SY
381}
382EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
383
f160c7b7
JS
384void kvm_mmu_clear_all_pte_masks(void)
385{
386 shadow_user_mask = 0;
387 shadow_accessed_mask = 0;
388 shadow_dirty_mask = 0;
389 shadow_nx_mask = 0;
390 shadow_x_mask = 0;
391 shadow_mmio_mask = 0;
392 shadow_present_mask = 0;
393 shadow_acc_track_mask = 0;
394}
395
6aa8b732
AK
396static int is_cpuid_PSE36(void)
397{
398 return 1;
399}
400
73b1087e
AK
401static int is_nx(struct kvm_vcpu *vcpu)
402{
f6801dff 403 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
404}
405
c7addb90
AK
406static int is_shadow_present_pte(u64 pte)
407{
f160c7b7 408 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
409}
410
05da4558
MT
411static int is_large_pte(u64 pte)
412{
413 return pte & PT_PAGE_SIZE_MASK;
414}
415
776e6633
MT
416static int is_last_spte(u64 pte, int level)
417{
418 if (level == PT_PAGE_TABLE_LEVEL)
419 return 1;
852e3c19 420 if (is_large_pte(pte))
776e6633
MT
421 return 1;
422 return 0;
423}
424
d3e328f2
JS
425static bool is_executable_pte(u64 spte)
426{
427 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
428}
429
ba049e93 430static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 431{
35149e21 432 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
433}
434
da928521
AK
435static gfn_t pse36_gfn_delta(u32 gpte)
436{
437 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
438
439 return (gpte & PT32_DIR_PSE36_MASK) << shift;
440}
441
603e0651 442#ifdef CONFIG_X86_64
d555c333 443static void __set_spte(u64 *sptep, u64 spte)
e663ee64 444{
b19ee2ff 445 WRITE_ONCE(*sptep, spte);
e663ee64
AK
446}
447
603e0651 448static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 449{
b19ee2ff 450 WRITE_ONCE(*sptep, spte);
603e0651
XG
451}
452
453static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
454{
455 return xchg(sptep, spte);
456}
c2a2ac2b
XG
457
458static u64 __get_spte_lockless(u64 *sptep)
459{
6aa7de05 460 return READ_ONCE(*sptep);
c2a2ac2b 461}
a9221dd5 462#else
603e0651
XG
463union split_spte {
464 struct {
465 u32 spte_low;
466 u32 spte_high;
467 };
468 u64 spte;
469};
a9221dd5 470
c2a2ac2b
XG
471static void count_spte_clear(u64 *sptep, u64 spte)
472{
473 struct kvm_mmu_page *sp = page_header(__pa(sptep));
474
475 if (is_shadow_present_pte(spte))
476 return;
477
478 /* Ensure the spte is completely set before we increase the count */
479 smp_wmb();
480 sp->clear_spte_count++;
481}
482
603e0651
XG
483static void __set_spte(u64 *sptep, u64 spte)
484{
485 union split_spte *ssptep, sspte;
a9221dd5 486
603e0651
XG
487 ssptep = (union split_spte *)sptep;
488 sspte = (union split_spte)spte;
489
490 ssptep->spte_high = sspte.spte_high;
491
492 /*
493 * If we map the spte from nonpresent to present, We should store
494 * the high bits firstly, then set present bit, so cpu can not
495 * fetch this spte while we are setting the spte.
496 */
497 smp_wmb();
498
b19ee2ff 499 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
500}
501
603e0651
XG
502static void __update_clear_spte_fast(u64 *sptep, u64 spte)
503{
504 union split_spte *ssptep, sspte;
505
506 ssptep = (union split_spte *)sptep;
507 sspte = (union split_spte)spte;
508
b19ee2ff 509 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
510
511 /*
512 * If we map the spte from present to nonpresent, we should clear
513 * present bit firstly to avoid vcpu fetch the old high bits.
514 */
515 smp_wmb();
516
517 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 518 count_spte_clear(sptep, spte);
603e0651
XG
519}
520
521static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
522{
523 union split_spte *ssptep, sspte, orig;
524
525 ssptep = (union split_spte *)sptep;
526 sspte = (union split_spte)spte;
527
528 /* xchg acts as a barrier before the setting of the high bits */
529 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
530 orig.spte_high = ssptep->spte_high;
531 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 532 count_spte_clear(sptep, spte);
603e0651
XG
533
534 return orig.spte;
535}
c2a2ac2b
XG
536
537/*
538 * The idea using the light way get the spte on x86_32 guest is from
539 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
540 *
541 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
542 * coalesces them and we are running out of the MMU lock. Therefore
543 * we need to protect against in-progress updates of the spte.
544 *
545 * Reading the spte while an update is in progress may get the old value
546 * for the high part of the spte. The race is fine for a present->non-present
547 * change (because the high part of the spte is ignored for non-present spte),
548 * but for a present->present change we must reread the spte.
549 *
550 * All such changes are done in two steps (present->non-present and
551 * non-present->present), hence it is enough to count the number of
552 * present->non-present updates: if it changed while reading the spte,
553 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
554 */
555static u64 __get_spte_lockless(u64 *sptep)
556{
557 struct kvm_mmu_page *sp = page_header(__pa(sptep));
558 union split_spte spte, *orig = (union split_spte *)sptep;
559 int count;
560
561retry:
562 count = sp->clear_spte_count;
563 smp_rmb();
564
565 spte.spte_low = orig->spte_low;
566 smp_rmb();
567
568 spte.spte_high = orig->spte_high;
569 smp_rmb();
570
571 if (unlikely(spte.spte_low != orig->spte_low ||
572 count != sp->clear_spte_count))
573 goto retry;
574
575 return spte.spte;
576}
603e0651
XG
577#endif
578
ea4114bc 579static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 580{
feb3eb70
GN
581 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
582 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
583}
584
8672b721
XG
585static bool spte_has_volatile_bits(u64 spte)
586{
f160c7b7
JS
587 if (!is_shadow_present_pte(spte))
588 return false;
589
c7ba5b48 590 /*
6a6256f9 591 * Always atomically update spte if it can be updated
c7ba5b48
XG
592 * out of mmu-lock, it can ensure dirty bit is not lost,
593 * also, it can help us to get a stable is_writable_pte()
594 * to ensure tlb flush is not missed.
595 */
f160c7b7
JS
596 if (spte_can_locklessly_be_made_writable(spte) ||
597 is_access_track_spte(spte))
c7ba5b48
XG
598 return true;
599
ac8d57e5 600 if (spte_ad_enabled(spte)) {
f160c7b7
JS
601 if ((spte & shadow_accessed_mask) == 0 ||
602 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
603 return true;
604 }
8672b721 605
f160c7b7 606 return false;
8672b721
XG
607}
608
83ef6c81 609static bool is_accessed_spte(u64 spte)
4132779b 610{
ac8d57e5
PF
611 u64 accessed_mask = spte_shadow_accessed_mask(spte);
612
613 return accessed_mask ? spte & accessed_mask
614 : !is_access_track_spte(spte);
4132779b
XG
615}
616
83ef6c81 617static bool is_dirty_spte(u64 spte)
7e71a59b 618{
ac8d57e5
PF
619 u64 dirty_mask = spte_shadow_dirty_mask(spte);
620
621 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
622}
623
1df9f2dc
XG
624/* Rules for using mmu_spte_set:
625 * Set the sptep from nonpresent to present.
626 * Note: the sptep being assigned *must* be either not present
627 * or in a state where the hardware will not attempt to update
628 * the spte.
629 */
630static void mmu_spte_set(u64 *sptep, u64 new_spte)
631{
632 WARN_ON(is_shadow_present_pte(*sptep));
633 __set_spte(sptep, new_spte);
634}
635
f39a058d
JS
636/*
637 * Update the SPTE (excluding the PFN), but do not track changes in its
638 * accessed/dirty status.
1df9f2dc 639 */
f39a058d 640static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 641{
c7ba5b48 642 u64 old_spte = *sptep;
4132779b 643
afd28fe1 644 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 645
6e7d0354
XG
646 if (!is_shadow_present_pte(old_spte)) {
647 mmu_spte_set(sptep, new_spte);
f39a058d 648 return old_spte;
6e7d0354 649 }
4132779b 650
c7ba5b48 651 if (!spte_has_volatile_bits(old_spte))
603e0651 652 __update_clear_spte_fast(sptep, new_spte);
4132779b 653 else
603e0651 654 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 655
83ef6c81
JS
656 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
657
f39a058d
JS
658 return old_spte;
659}
660
661/* Rules for using mmu_spte_update:
662 * Update the state bits, it means the mapped pfn is not changed.
663 *
664 * Whenever we overwrite a writable spte with a read-only one we
665 * should flush remote TLBs. Otherwise rmap_write_protect
666 * will find a read-only spte, even though the writable spte
667 * might be cached on a CPU's TLB, the return value indicates this
668 * case.
669 *
670 * Returns true if the TLB needs to be flushed
671 */
672static bool mmu_spte_update(u64 *sptep, u64 new_spte)
673{
674 bool flush = false;
675 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
676
677 if (!is_shadow_present_pte(old_spte))
678 return false;
679
c7ba5b48
XG
680 /*
681 * For the spte updated out of mmu-lock is safe, since
6a6256f9 682 * we always atomically update it, see the comments in
c7ba5b48
XG
683 * spte_has_volatile_bits().
684 */
ea4114bc 685 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 686 !is_writable_pte(new_spte))
83ef6c81 687 flush = true;
4132779b 688
7e71a59b 689 /*
83ef6c81 690 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
691 * to guarantee consistency between TLB and page tables.
692 */
7e71a59b 693
83ef6c81
JS
694 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
695 flush = true;
4132779b 696 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
697 }
698
699 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
700 flush = true;
4132779b 701 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 702 }
6e7d0354 703
83ef6c81 704 return flush;
b79b93f9
AK
705}
706
1df9f2dc
XG
707/*
708 * Rules for using mmu_spte_clear_track_bits:
709 * It sets the sptep from present to nonpresent, and track the
710 * state bits, it is used to clear the last level sptep.
83ef6c81 711 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
712 */
713static int mmu_spte_clear_track_bits(u64 *sptep)
714{
ba049e93 715 kvm_pfn_t pfn;
1df9f2dc
XG
716 u64 old_spte = *sptep;
717
718 if (!spte_has_volatile_bits(old_spte))
603e0651 719 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 720 else
603e0651 721 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 722
afd28fe1 723 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
724 return 0;
725
726 pfn = spte_to_pfn(old_spte);
86fde74c
XG
727
728 /*
729 * KVM does not hold the refcount of the page used by
730 * kvm mmu, before reclaiming the page, we should
731 * unmap it from mmu first.
732 */
bf4bea8e 733 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 734
83ef6c81 735 if (is_accessed_spte(old_spte))
1df9f2dc 736 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
737
738 if (is_dirty_spte(old_spte))
1df9f2dc 739 kvm_set_pfn_dirty(pfn);
83ef6c81 740
1df9f2dc
XG
741 return 1;
742}
743
744/*
745 * Rules for using mmu_spte_clear_no_track:
746 * Directly clear spte without caring the state bits of sptep,
747 * it is used to set the upper level spte.
748 */
749static void mmu_spte_clear_no_track(u64 *sptep)
750{
603e0651 751 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
752}
753
c2a2ac2b
XG
754static u64 mmu_spte_get_lockless(u64 *sptep)
755{
756 return __get_spte_lockless(sptep);
757}
758
f160c7b7
JS
759static u64 mark_spte_for_access_track(u64 spte)
760{
ac8d57e5 761 if (spte_ad_enabled(spte))
f160c7b7
JS
762 return spte & ~shadow_accessed_mask;
763
ac8d57e5 764 if (is_access_track_spte(spte))
f160c7b7
JS
765 return spte;
766
767 /*
20d65236
JS
768 * Making an Access Tracking PTE will result in removal of write access
769 * from the PTE. So, verify that we will be able to restore the write
770 * access in the fast page fault path later on.
f160c7b7
JS
771 */
772 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
773 !spte_can_locklessly_be_made_writable(spte),
774 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
775
776 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
777 shadow_acc_track_saved_bits_shift),
778 "kvm: Access Tracking saved bit locations are not zero\n");
779
780 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
781 shadow_acc_track_saved_bits_shift;
782 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
783
784 return spte;
785}
786
d3e328f2
JS
787/* Restore an acc-track PTE back to a regular PTE */
788static u64 restore_acc_track_spte(u64 spte)
789{
790 u64 new_spte = spte;
791 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
792 & shadow_acc_track_saved_bits_mask;
793
ac8d57e5 794 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
795 WARN_ON_ONCE(!is_access_track_spte(spte));
796
797 new_spte &= ~shadow_acc_track_mask;
798 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
799 shadow_acc_track_saved_bits_shift);
800 new_spte |= saved_bits;
801
802 return new_spte;
803}
804
f160c7b7
JS
805/* Returns the Accessed status of the PTE and resets it at the same time. */
806static bool mmu_spte_age(u64 *sptep)
807{
808 u64 spte = mmu_spte_get_lockless(sptep);
809
810 if (!is_accessed_spte(spte))
811 return false;
812
ac8d57e5 813 if (spte_ad_enabled(spte)) {
f160c7b7
JS
814 clear_bit((ffs(shadow_accessed_mask) - 1),
815 (unsigned long *)sptep);
816 } else {
817 /*
818 * Capture the dirty status of the page, so that it doesn't get
819 * lost when the SPTE is marked for access tracking.
820 */
821 if (is_writable_pte(spte))
822 kvm_set_pfn_dirty(spte_to_pfn(spte));
823
824 spte = mark_spte_for_access_track(spte);
825 mmu_spte_update_no_track(sptep, spte);
826 }
827
828 return true;
829}
830
c2a2ac2b
XG
831static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
832{
c142786c
AK
833 /*
834 * Prevent page table teardown by making any free-er wait during
835 * kvm_flush_remote_tlbs() IPI to all active vcpus.
836 */
837 local_irq_disable();
36ca7e0a 838
c142786c
AK
839 /*
840 * Make sure a following spte read is not reordered ahead of the write
841 * to vcpu->mode.
842 */
36ca7e0a 843 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
844}
845
846static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
847{
c142786c
AK
848 /*
849 * Make sure the write to vcpu->mode is not reordered in front of
850 * reads to sptes. If it does, kvm_commit_zap_page() can see us
851 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
852 */
36ca7e0a 853 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 854 local_irq_enable();
c2a2ac2b
XG
855}
856
e2dec939 857static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 858 struct kmem_cache *base_cache, int min)
714b93da
AK
859{
860 void *obj;
861
862 if (cache->nobjs >= min)
e2dec939 863 return 0;
714b93da 864 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 865 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 866 if (!obj)
e2dec939 867 return -ENOMEM;
714b93da
AK
868 cache->objects[cache->nobjs++] = obj;
869 }
e2dec939 870 return 0;
714b93da
AK
871}
872
f759e2b4
XG
873static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
874{
875 return cache->nobjs;
876}
877
e8ad9a70
XG
878static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
879 struct kmem_cache *cache)
714b93da
AK
880{
881 while (mc->nobjs)
e8ad9a70 882 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
883}
884
c1158e63 885static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 886 int min)
c1158e63 887{
842f22ed 888 void *page;
c1158e63
AK
889
890 if (cache->nobjs >= min)
891 return 0;
892 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 893 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
894 if (!page)
895 return -ENOMEM;
842f22ed 896 cache->objects[cache->nobjs++] = page;
c1158e63
AK
897 }
898 return 0;
899}
900
901static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
902{
903 while (mc->nobjs)
c4d198d5 904 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
905}
906
2e3e5882 907static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 908{
e2dec939
AK
909 int r;
910
53c07b18 911 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 912 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
913 if (r)
914 goto out;
ad312c7c 915 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
916 if (r)
917 goto out;
ad312c7c 918 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 919 mmu_page_header_cache, 4);
e2dec939
AK
920out:
921 return r;
714b93da
AK
922}
923
924static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
925{
53c07b18
XG
926 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
927 pte_list_desc_cache);
ad312c7c 928 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
929 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
930 mmu_page_header_cache);
714b93da
AK
931}
932
80feb89a 933static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
934{
935 void *p;
936
937 BUG_ON(!mc->nobjs);
938 p = mc->objects[--mc->nobjs];
714b93da
AK
939 return p;
940}
941
53c07b18 942static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 943{
80feb89a 944 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
945}
946
53c07b18 947static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 948{
53c07b18 949 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
950}
951
2032a93d
LJ
952static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
953{
954 if (!sp->role.direct)
955 return sp->gfns[index];
956
957 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
958}
959
960static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
961{
962 if (sp->role.direct)
963 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
964 else
965 sp->gfns[index] = gfn;
966}
967
05da4558 968/*
d4dbf470
TY
969 * Return the pointer to the large page information for a given gfn,
970 * handling slots that are not large page aligned.
05da4558 971 */
d4dbf470
TY
972static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
973 struct kvm_memory_slot *slot,
974 int level)
05da4558
MT
975{
976 unsigned long idx;
977
fb03cb6f 978 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 979 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
980}
981
547ffaed
XG
982static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
983 gfn_t gfn, int count)
984{
985 struct kvm_lpage_info *linfo;
986 int i;
987
988 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
989 linfo = lpage_info_slot(gfn, slot, i);
990 linfo->disallow_lpage += count;
991 WARN_ON(linfo->disallow_lpage < 0);
992 }
993}
994
995void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
996{
997 update_gfn_disallow_lpage_count(slot, gfn, 1);
998}
999
1000void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1001{
1002 update_gfn_disallow_lpage_count(slot, gfn, -1);
1003}
1004
3ed1a478 1005static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1006{
699023e2 1007 struct kvm_memslots *slots;
d25797b2 1008 struct kvm_memory_slot *slot;
3ed1a478 1009 gfn_t gfn;
05da4558 1010
56ca57f9 1011 kvm->arch.indirect_shadow_pages++;
3ed1a478 1012 gfn = sp->gfn;
699023e2
PB
1013 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1014 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1015
1016 /* the non-leaf shadow pages are keeping readonly. */
1017 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1018 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1019 KVM_PAGE_TRACK_WRITE);
1020
547ffaed 1021 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1022}
1023
3ed1a478 1024static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1025{
699023e2 1026 struct kvm_memslots *slots;
d25797b2 1027 struct kvm_memory_slot *slot;
3ed1a478 1028 gfn_t gfn;
05da4558 1029
56ca57f9 1030 kvm->arch.indirect_shadow_pages--;
3ed1a478 1031 gfn = sp->gfn;
699023e2
PB
1032 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1033 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1034 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1035 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1036 KVM_PAGE_TRACK_WRITE);
1037
547ffaed 1038 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1039}
1040
92f94f1e
XG
1041static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1042 struct kvm_memory_slot *slot)
05da4558 1043{
d4dbf470 1044 struct kvm_lpage_info *linfo;
05da4558
MT
1045
1046 if (slot) {
d4dbf470 1047 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 1048 return !!linfo->disallow_lpage;
05da4558
MT
1049 }
1050
92f94f1e 1051 return true;
05da4558
MT
1052}
1053
92f94f1e
XG
1054static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1055 int level)
5225fdf8
TY
1056{
1057 struct kvm_memory_slot *slot;
1058
1059 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 1060 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
1061}
1062
d25797b2 1063static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 1064{
8f0b1ab6 1065 unsigned long page_size;
d25797b2 1066 int i, ret = 0;
05da4558 1067
8f0b1ab6 1068 page_size = kvm_host_page_size(kvm, gfn);
05da4558 1069
8a3d08f1 1070 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
1071 if (page_size >= KVM_HPAGE_SIZE(i))
1072 ret = i;
1073 else
1074 break;
1075 }
1076
4c2155ce 1077 return ret;
05da4558
MT
1078}
1079
d8aacf5d
TY
1080static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1081 bool no_dirty_log)
1082{
1083 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1084 return false;
1085 if (no_dirty_log && slot->dirty_bitmap)
1086 return false;
1087
1088 return true;
1089}
1090
5d163b1c
XG
1091static struct kvm_memory_slot *
1092gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1093 bool no_dirty_log)
05da4558
MT
1094{
1095 struct kvm_memory_slot *slot;
5d163b1c 1096
54bf36aa 1097 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 1098 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
1099 slot = NULL;
1100
1101 return slot;
1102}
1103
fd136902
TY
1104static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1105 bool *force_pt_level)
936a5fe6
AA
1106{
1107 int host_level, level, max_level;
d8aacf5d
TY
1108 struct kvm_memory_slot *slot;
1109
8c85ac1c
TY
1110 if (unlikely(*force_pt_level))
1111 return PT_PAGE_TABLE_LEVEL;
05da4558 1112
8c85ac1c
TY
1113 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1114 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
1115 if (unlikely(*force_pt_level))
1116 return PT_PAGE_TABLE_LEVEL;
1117
d25797b2
JR
1118 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1119
1120 if (host_level == PT_PAGE_TABLE_LEVEL)
1121 return host_level;
1122
55dd98c3 1123 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
1124
1125 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 1126 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 1127 break;
d25797b2
JR
1128
1129 return level - 1;
05da4558
MT
1130}
1131
290fc38d 1132/*
018aabb5 1133 * About rmap_head encoding:
cd4a4e53 1134 *
018aabb5
TY
1135 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1136 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1137 * pte_list_desc containing more mappings.
018aabb5
TY
1138 */
1139
1140/*
1141 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1142 */
53c07b18 1143static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1144 struct kvm_rmap_head *rmap_head)
cd4a4e53 1145{
53c07b18 1146 struct pte_list_desc *desc;
53a27b39 1147 int i, count = 0;
cd4a4e53 1148
018aabb5 1149 if (!rmap_head->val) {
53c07b18 1150 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1151 rmap_head->val = (unsigned long)spte;
1152 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1153 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1154 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1155 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1156 desc->sptes[1] = spte;
018aabb5 1157 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1158 ++count;
cd4a4e53 1159 } else {
53c07b18 1160 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1161 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1162 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1163 desc = desc->more;
53c07b18 1164 count += PTE_LIST_EXT;
53a27b39 1165 }
53c07b18
XG
1166 if (desc->sptes[PTE_LIST_EXT-1]) {
1167 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1168 desc = desc->more;
1169 }
d555c333 1170 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1171 ++count;
d555c333 1172 desc->sptes[i] = spte;
cd4a4e53 1173 }
53a27b39 1174 return count;
cd4a4e53
AK
1175}
1176
53c07b18 1177static void
018aabb5
TY
1178pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1179 struct pte_list_desc *desc, int i,
1180 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1181{
1182 int j;
1183
53c07b18 1184 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1185 ;
d555c333
AK
1186 desc->sptes[i] = desc->sptes[j];
1187 desc->sptes[j] = NULL;
cd4a4e53
AK
1188 if (j != 0)
1189 return;
1190 if (!prev_desc && !desc->more)
018aabb5 1191 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
1192 else
1193 if (prev_desc)
1194 prev_desc->more = desc->more;
1195 else
018aabb5 1196 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1197 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1198}
1199
018aabb5 1200static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1201{
53c07b18
XG
1202 struct pte_list_desc *desc;
1203 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1204 int i;
1205
018aabb5 1206 if (!rmap_head->val) {
53c07b18 1207 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 1208 BUG();
018aabb5 1209 } else if (!(rmap_head->val & 1)) {
53c07b18 1210 rmap_printk("pte_list_remove: %p 1->0\n", spte);
018aabb5 1211 if ((u64 *)rmap_head->val != spte) {
53c07b18 1212 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
1213 BUG();
1214 }
018aabb5 1215 rmap_head->val = 0;
cd4a4e53 1216 } else {
53c07b18 1217 rmap_printk("pte_list_remove: %p many->many\n", spte);
018aabb5 1218 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1219 prev_desc = NULL;
1220 while (desc) {
018aabb5 1221 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1222 if (desc->sptes[i] == spte) {
018aabb5
TY
1223 pte_list_desc_remove_entry(rmap_head,
1224 desc, i, prev_desc);
cd4a4e53
AK
1225 return;
1226 }
018aabb5 1227 }
cd4a4e53
AK
1228 prev_desc = desc;
1229 desc = desc->more;
1230 }
53c07b18 1231 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1232 BUG();
1233 }
1234}
1235
018aabb5
TY
1236static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1237 struct kvm_memory_slot *slot)
53c07b18 1238{
77d11309 1239 unsigned long idx;
53c07b18 1240
77d11309 1241 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1242 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1243}
1244
018aabb5
TY
1245static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1246 struct kvm_mmu_page *sp)
9b9b1492 1247{
699023e2 1248 struct kvm_memslots *slots;
9b9b1492
TY
1249 struct kvm_memory_slot *slot;
1250
699023e2
PB
1251 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1252 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1253 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1254}
1255
f759e2b4
XG
1256static bool rmap_can_add(struct kvm_vcpu *vcpu)
1257{
1258 struct kvm_mmu_memory_cache *cache;
1259
1260 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1261 return mmu_memory_cache_free_objects(cache);
1262}
1263
53c07b18
XG
1264static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1265{
1266 struct kvm_mmu_page *sp;
018aabb5 1267 struct kvm_rmap_head *rmap_head;
53c07b18 1268
53c07b18
XG
1269 sp = page_header(__pa(spte));
1270 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1271 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1272 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1273}
1274
53c07b18
XG
1275static void rmap_remove(struct kvm *kvm, u64 *spte)
1276{
1277 struct kvm_mmu_page *sp;
1278 gfn_t gfn;
018aabb5 1279 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1280
1281 sp = page_header(__pa(spte));
1282 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5
TY
1283 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1284 pte_list_remove(spte, rmap_head);
53c07b18
XG
1285}
1286
1e3f42f0
TY
1287/*
1288 * Used by the following functions to iterate through the sptes linked by a
1289 * rmap. All fields are private and not assumed to be used outside.
1290 */
1291struct rmap_iterator {
1292 /* private fields */
1293 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1294 int pos; /* index of the sptep */
1295};
1296
1297/*
1298 * Iteration must be started by this function. This should also be used after
1299 * removing/dropping sptes from the rmap link because in such cases the
1300 * information in the itererator may not be valid.
1301 *
1302 * Returns sptep if found, NULL otherwise.
1303 */
018aabb5
TY
1304static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1305 struct rmap_iterator *iter)
1e3f42f0 1306{
77fbbbd2
TY
1307 u64 *sptep;
1308
018aabb5 1309 if (!rmap_head->val)
1e3f42f0
TY
1310 return NULL;
1311
018aabb5 1312 if (!(rmap_head->val & 1)) {
1e3f42f0 1313 iter->desc = NULL;
77fbbbd2
TY
1314 sptep = (u64 *)rmap_head->val;
1315 goto out;
1e3f42f0
TY
1316 }
1317
018aabb5 1318 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1319 iter->pos = 0;
77fbbbd2
TY
1320 sptep = iter->desc->sptes[iter->pos];
1321out:
1322 BUG_ON(!is_shadow_present_pte(*sptep));
1323 return sptep;
1e3f42f0
TY
1324}
1325
1326/*
1327 * Must be used with a valid iterator: e.g. after rmap_get_first().
1328 *
1329 * Returns sptep if found, NULL otherwise.
1330 */
1331static u64 *rmap_get_next(struct rmap_iterator *iter)
1332{
77fbbbd2
TY
1333 u64 *sptep;
1334
1e3f42f0
TY
1335 if (iter->desc) {
1336 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1337 ++iter->pos;
1338 sptep = iter->desc->sptes[iter->pos];
1339 if (sptep)
77fbbbd2 1340 goto out;
1e3f42f0
TY
1341 }
1342
1343 iter->desc = iter->desc->more;
1344
1345 if (iter->desc) {
1346 iter->pos = 0;
1347 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1348 sptep = iter->desc->sptes[iter->pos];
1349 goto out;
1e3f42f0
TY
1350 }
1351 }
1352
1353 return NULL;
77fbbbd2
TY
1354out:
1355 BUG_ON(!is_shadow_present_pte(*sptep));
1356 return sptep;
1e3f42f0
TY
1357}
1358
018aabb5
TY
1359#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1360 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1361 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1362
c3707958 1363static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1364{
1df9f2dc 1365 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1366 rmap_remove(kvm, sptep);
be38d276
AK
1367}
1368
8e22f955
XG
1369
1370static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1371{
1372 if (is_large_pte(*sptep)) {
1373 WARN_ON(page_header(__pa(sptep))->role.level ==
1374 PT_PAGE_TABLE_LEVEL);
1375 drop_spte(kvm, sptep);
1376 --kvm->stat.lpages;
1377 return true;
1378 }
1379
1380 return false;
1381}
1382
1383static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1384{
1385 if (__drop_large_spte(vcpu->kvm, sptep))
1386 kvm_flush_remote_tlbs(vcpu->kvm);
1387}
1388
1389/*
49fde340 1390 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1391 * spte write-protection is caused by protecting shadow page table.
49fde340 1392 *
b4619660 1393 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1394 * protection:
1395 * - for dirty logging, the spte can be set to writable at anytime if
1396 * its dirty bitmap is properly set.
1397 * - for spte protection, the spte can be writable only after unsync-ing
1398 * shadow page.
8e22f955 1399 *
c126d94f 1400 * Return true if tlb need be flushed.
8e22f955 1401 */
c4f138b4 1402static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1403{
1404 u64 spte = *sptep;
1405
49fde340 1406 if (!is_writable_pte(spte) &&
ea4114bc 1407 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1408 return false;
1409
1410 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1411
49fde340
XG
1412 if (pt_protect)
1413 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1414 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1415
c126d94f 1416 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1417}
1418
018aabb5
TY
1419static bool __rmap_write_protect(struct kvm *kvm,
1420 struct kvm_rmap_head *rmap_head,
245c3912 1421 bool pt_protect)
98348e95 1422{
1e3f42f0
TY
1423 u64 *sptep;
1424 struct rmap_iterator iter;
d13bc5b5 1425 bool flush = false;
374cbac0 1426
018aabb5 1427 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1428 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1429
d13bc5b5 1430 return flush;
a0ed4607
TY
1431}
1432
c4f138b4 1433static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1434{
1435 u64 spte = *sptep;
1436
1437 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1438
1439 spte &= ~shadow_dirty_mask;
1440
1441 return mmu_spte_update(sptep, spte);
1442}
1443
ac8d57e5
PF
1444static bool wrprot_ad_disabled_spte(u64 *sptep)
1445{
1446 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1447 (unsigned long *)sptep);
1448 if (was_writable)
1449 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1450
1451 return was_writable;
1452}
1453
1454/*
1455 * Gets the GFN ready for another round of dirty logging by clearing the
1456 * - D bit on ad-enabled SPTEs, and
1457 * - W bit on ad-disabled SPTEs.
1458 * Returns true iff any D or W bits were cleared.
1459 */
018aabb5 1460static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1461{
1462 u64 *sptep;
1463 struct rmap_iterator iter;
1464 bool flush = false;
1465
018aabb5 1466 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1467 if (spte_ad_enabled(*sptep))
1468 flush |= spte_clear_dirty(sptep);
1469 else
1470 flush |= wrprot_ad_disabled_spte(sptep);
f4b4b180
KH
1471
1472 return flush;
1473}
1474
c4f138b4 1475static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1476{
1477 u64 spte = *sptep;
1478
1479 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1480
1481 spte |= shadow_dirty_mask;
1482
1483 return mmu_spte_update(sptep, spte);
1484}
1485
018aabb5 1486static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1487{
1488 u64 *sptep;
1489 struct rmap_iterator iter;
1490 bool flush = false;
1491
018aabb5 1492 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1493 if (spte_ad_enabled(*sptep))
1494 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1495
1496 return flush;
1497}
1498
5dc99b23 1499/**
3b0f1d01 1500 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1501 * @kvm: kvm instance
1502 * @slot: slot to protect
1503 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1504 * @mask: indicates which pages we should protect
1505 *
1506 * Used when we do not need to care about huge page mappings: e.g. during dirty
1507 * logging we do not have any such mappings.
1508 */
3b0f1d01 1509static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1510 struct kvm_memory_slot *slot,
1511 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1512{
018aabb5 1513 struct kvm_rmap_head *rmap_head;
a0ed4607 1514
5dc99b23 1515 while (mask) {
018aabb5
TY
1516 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1517 PT_PAGE_TABLE_LEVEL, slot);
1518 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1519
5dc99b23
TY
1520 /* clear the first set bit */
1521 mask &= mask - 1;
1522 }
374cbac0
AK
1523}
1524
f4b4b180 1525/**
ac8d57e5
PF
1526 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1527 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1528 * @kvm: kvm instance
1529 * @slot: slot to clear D-bit
1530 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1531 * @mask: indicates which pages we should clear D-bit
1532 *
1533 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1534 */
1535void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1536 struct kvm_memory_slot *slot,
1537 gfn_t gfn_offset, unsigned long mask)
1538{
018aabb5 1539 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1540
1541 while (mask) {
018aabb5
TY
1542 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1543 PT_PAGE_TABLE_LEVEL, slot);
1544 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1545
1546 /* clear the first set bit */
1547 mask &= mask - 1;
1548 }
1549}
1550EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1551
3b0f1d01
KH
1552/**
1553 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1554 * PT level pages.
1555 *
1556 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1557 * enable dirty logging for them.
1558 *
1559 * Used when we do not need to care about huge page mappings: e.g. during dirty
1560 * logging we do not have any such mappings.
1561 */
1562void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1563 struct kvm_memory_slot *slot,
1564 gfn_t gfn_offset, unsigned long mask)
1565{
88178fd4
KH
1566 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1567 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1568 mask);
1569 else
1570 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1571}
1572
bab4165e
BD
1573/**
1574 * kvm_arch_write_log_dirty - emulate dirty page logging
1575 * @vcpu: Guest mode vcpu
1576 *
1577 * Emulate arch specific page modification logging for the
1578 * nested hypervisor
1579 */
1580int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1581{
1582 if (kvm_x86_ops->write_log_dirty)
1583 return kvm_x86_ops->write_log_dirty(vcpu);
1584
1585 return 0;
1586}
1587
aeecee2e
XG
1588bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1589 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1590{
018aabb5 1591 struct kvm_rmap_head *rmap_head;
5dc99b23 1592 int i;
2f84569f 1593 bool write_protected = false;
95d4c16c 1594
8a3d08f1 1595 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1596 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1597 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1598 }
1599
1600 return write_protected;
95d4c16c
TY
1601}
1602
aeecee2e
XG
1603static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1604{
1605 struct kvm_memory_slot *slot;
1606
1607 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1608 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1609}
1610
018aabb5 1611static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1612{
1e3f42f0
TY
1613 u64 *sptep;
1614 struct rmap_iterator iter;
6a49f85c 1615 bool flush = false;
e930bffe 1616
018aabb5 1617 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1618 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1619
1620 drop_spte(kvm, sptep);
6a49f85c 1621 flush = true;
e930bffe 1622 }
1e3f42f0 1623
6a49f85c
XG
1624 return flush;
1625}
1626
018aabb5 1627static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1628 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1629 unsigned long data)
1630{
018aabb5 1631 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1632}
1633
018aabb5 1634static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1635 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1636 unsigned long data)
3da0dd43 1637{
1e3f42f0
TY
1638 u64 *sptep;
1639 struct rmap_iterator iter;
3da0dd43 1640 int need_flush = 0;
1e3f42f0 1641 u64 new_spte;
3da0dd43 1642 pte_t *ptep = (pte_t *)data;
ba049e93 1643 kvm_pfn_t new_pfn;
3da0dd43
IE
1644
1645 WARN_ON(pte_huge(*ptep));
1646 new_pfn = pte_pfn(*ptep);
1e3f42f0 1647
0d536790 1648restart:
018aabb5 1649 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1650 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1651 sptep, *sptep, gfn, level);
1e3f42f0 1652
3da0dd43 1653 need_flush = 1;
1e3f42f0 1654
3da0dd43 1655 if (pte_write(*ptep)) {
1e3f42f0 1656 drop_spte(kvm, sptep);
0d536790 1657 goto restart;
3da0dd43 1658 } else {
1e3f42f0 1659 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1660 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1661
1662 new_spte &= ~PT_WRITABLE_MASK;
1663 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1664
1665 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1666
1667 mmu_spte_clear_track_bits(sptep);
1668 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1669 }
1670 }
1e3f42f0 1671
3da0dd43
IE
1672 if (need_flush)
1673 kvm_flush_remote_tlbs(kvm);
1674
1675 return 0;
1676}
1677
6ce1f4e2
XG
1678struct slot_rmap_walk_iterator {
1679 /* input fields. */
1680 struct kvm_memory_slot *slot;
1681 gfn_t start_gfn;
1682 gfn_t end_gfn;
1683 int start_level;
1684 int end_level;
1685
1686 /* output fields. */
1687 gfn_t gfn;
018aabb5 1688 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1689 int level;
1690
1691 /* private field. */
018aabb5 1692 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1693};
1694
1695static void
1696rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1697{
1698 iterator->level = level;
1699 iterator->gfn = iterator->start_gfn;
1700 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1701 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1702 iterator->slot);
1703}
1704
1705static void
1706slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1707 struct kvm_memory_slot *slot, int start_level,
1708 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1709{
1710 iterator->slot = slot;
1711 iterator->start_level = start_level;
1712 iterator->end_level = end_level;
1713 iterator->start_gfn = start_gfn;
1714 iterator->end_gfn = end_gfn;
1715
1716 rmap_walk_init_level(iterator, iterator->start_level);
1717}
1718
1719static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1720{
1721 return !!iterator->rmap;
1722}
1723
1724static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1725{
1726 if (++iterator->rmap <= iterator->end_rmap) {
1727 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1728 return;
1729 }
1730
1731 if (++iterator->level > iterator->end_level) {
1732 iterator->rmap = NULL;
1733 return;
1734 }
1735
1736 rmap_walk_init_level(iterator, iterator->level);
1737}
1738
1739#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1740 _start_gfn, _end_gfn, _iter_) \
1741 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1742 _end_level_, _start_gfn, _end_gfn); \
1743 slot_rmap_walk_okay(_iter_); \
1744 slot_rmap_walk_next(_iter_))
1745
84504ef3
TY
1746static int kvm_handle_hva_range(struct kvm *kvm,
1747 unsigned long start,
1748 unsigned long end,
1749 unsigned long data,
1750 int (*handler)(struct kvm *kvm,
018aabb5 1751 struct kvm_rmap_head *rmap_head,
048212d0 1752 struct kvm_memory_slot *slot,
8a9522d2
ALC
1753 gfn_t gfn,
1754 int level,
84504ef3 1755 unsigned long data))
e930bffe 1756{
bc6678a3 1757 struct kvm_memslots *slots;
be6ba0f0 1758 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1759 struct slot_rmap_walk_iterator iterator;
1760 int ret = 0;
9da0e4d5 1761 int i;
bc6678a3 1762
9da0e4d5
PB
1763 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1764 slots = __kvm_memslots(kvm, i);
1765 kvm_for_each_memslot(memslot, slots) {
1766 unsigned long hva_start, hva_end;
1767 gfn_t gfn_start, gfn_end;
e930bffe 1768
9da0e4d5
PB
1769 hva_start = max(start, memslot->userspace_addr);
1770 hva_end = min(end, memslot->userspace_addr +
1771 (memslot->npages << PAGE_SHIFT));
1772 if (hva_start >= hva_end)
1773 continue;
1774 /*
1775 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1776 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1777 */
1778 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1779 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1780
1781 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1782 PT_MAX_HUGEPAGE_LEVEL,
1783 gfn_start, gfn_end - 1,
1784 &iterator)
1785 ret |= handler(kvm, iterator.rmap, memslot,
1786 iterator.gfn, iterator.level, data);
1787 }
e930bffe
AA
1788 }
1789
f395302e 1790 return ret;
e930bffe
AA
1791}
1792
84504ef3
TY
1793static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1794 unsigned long data,
018aabb5
TY
1795 int (*handler)(struct kvm *kvm,
1796 struct kvm_rmap_head *rmap_head,
048212d0 1797 struct kvm_memory_slot *slot,
8a9522d2 1798 gfn_t gfn, int level,
84504ef3
TY
1799 unsigned long data))
1800{
1801 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1802}
1803
1804int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1805{
3da0dd43
IE
1806 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1807}
1808
b3ae2096
TY
1809int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1810{
1811 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1812}
1813
3da0dd43
IE
1814void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1815{
8a8365c5 1816 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1817}
1818
018aabb5 1819static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1820 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1821 unsigned long data)
e930bffe 1822{
1e3f42f0 1823 u64 *sptep;
79f702a6 1824 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1825 int young = 0;
1826
f160c7b7
JS
1827 for_each_rmap_spte(rmap_head, &iter, sptep)
1828 young |= mmu_spte_age(sptep);
0d536790 1829
8a9522d2 1830 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1831 return young;
1832}
1833
018aabb5 1834static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1835 struct kvm_memory_slot *slot, gfn_t gfn,
1836 int level, unsigned long data)
8ee53820 1837{
1e3f42f0
TY
1838 u64 *sptep;
1839 struct rmap_iterator iter;
8ee53820 1840
83ef6c81
JS
1841 for_each_rmap_spte(rmap_head, &iter, sptep)
1842 if (is_accessed_spte(*sptep))
1843 return 1;
83ef6c81 1844 return 0;
8ee53820
AA
1845}
1846
53a27b39
MT
1847#define RMAP_RECYCLE_THRESHOLD 1000
1848
852e3c19 1849static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1850{
018aabb5 1851 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1852 struct kvm_mmu_page *sp;
1853
1854 sp = page_header(__pa(spte));
53a27b39 1855
018aabb5 1856 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1857
018aabb5 1858 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1859 kvm_flush_remote_tlbs(vcpu->kvm);
1860}
1861
57128468 1862int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1863{
57128468 1864 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1865}
1866
8ee53820
AA
1867int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1868{
1869 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1870}
1871
d6c69ee9 1872#ifdef MMU_DEBUG
47ad8e68 1873static int is_empty_shadow_page(u64 *spt)
6aa8b732 1874{
139bdb2d
AK
1875 u64 *pos;
1876 u64 *end;
1877
47ad8e68 1878 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1879 if (is_shadow_present_pte(*pos)) {
b8688d51 1880 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1881 pos, *pos);
6aa8b732 1882 return 0;
139bdb2d 1883 }
6aa8b732
AK
1884 return 1;
1885}
d6c69ee9 1886#endif
6aa8b732 1887
45221ab6
DH
1888/*
1889 * This value is the sum of all of the kvm instances's
1890 * kvm->arch.n_used_mmu_pages values. We need a global,
1891 * aggregate version in order to make the slab shrinker
1892 * faster
1893 */
1894static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1895{
1896 kvm->arch.n_used_mmu_pages += nr;
1897 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1898}
1899
834be0d8 1900static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1901{
fa4a2c08 1902 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1903 hlist_del(&sp->hash_link);
bd4c86ea
XG
1904 list_del(&sp->link);
1905 free_page((unsigned long)sp->spt);
834be0d8
GN
1906 if (!sp->role.direct)
1907 free_page((unsigned long)sp->gfns);
e8ad9a70 1908 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1909}
1910
cea0f0e7
AK
1911static unsigned kvm_page_table_hashfn(gfn_t gfn)
1912{
114df303 1913 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1914}
1915
714b93da 1916static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1917 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1918{
cea0f0e7
AK
1919 if (!parent_pte)
1920 return;
cea0f0e7 1921
67052b35 1922 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1923}
1924
4db35314 1925static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1926 u64 *parent_pte)
1927{
67052b35 1928 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1929}
1930
bcdd9a93
XG
1931static void drop_parent_pte(struct kvm_mmu_page *sp,
1932 u64 *parent_pte)
1933{
1934 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1935 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1936}
1937
47005792 1938static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1939{
67052b35 1940 struct kvm_mmu_page *sp;
7ddca7e4 1941
80feb89a
TY
1942 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1943 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1944 if (!direct)
80feb89a 1945 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1946 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1947
1948 /*
1949 * The active_mmu_pages list is the FIFO list, do not move the
1950 * page until it is zapped. kvm_zap_obsolete_pages depends on
1951 * this feature. See the comments in kvm_zap_obsolete_pages().
1952 */
67052b35 1953 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1954 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1955 return sp;
ad8cfbe3
MT
1956}
1957
67052b35 1958static void mark_unsync(u64 *spte);
1047df1f 1959static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1960{
74c4e63a
TY
1961 u64 *sptep;
1962 struct rmap_iterator iter;
1963
1964 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1965 mark_unsync(sptep);
1966 }
0074ff63
MT
1967}
1968
67052b35 1969static void mark_unsync(u64 *spte)
0074ff63 1970{
67052b35 1971 struct kvm_mmu_page *sp;
1047df1f 1972 unsigned int index;
0074ff63 1973
67052b35 1974 sp = page_header(__pa(spte));
1047df1f
XG
1975 index = spte - sp->spt;
1976 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1977 return;
1047df1f 1978 if (sp->unsync_children++)
0074ff63 1979 return;
1047df1f 1980 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1981}
1982
e8bc217a 1983static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1984 struct kvm_mmu_page *sp)
e8bc217a 1985{
1f50f1b3 1986 return 0;
e8bc217a
MT
1987}
1988
a7052897
MT
1989static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1990{
1991}
1992
0f53b5b1
XG
1993static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1994 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1995 const void *pte)
0f53b5b1
XG
1996{
1997 WARN_ON(1);
1998}
1999
60c8aec6
MT
2000#define KVM_PAGE_ARRAY_NR 16
2001
2002struct kvm_mmu_pages {
2003 struct mmu_page_and_offset {
2004 struct kvm_mmu_page *sp;
2005 unsigned int idx;
2006 } page[KVM_PAGE_ARRAY_NR];
2007 unsigned int nr;
2008};
2009
cded19f3
HE
2010static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2011 int idx)
4731d4c7 2012{
60c8aec6 2013 int i;
4731d4c7 2014
60c8aec6
MT
2015 if (sp->unsync)
2016 for (i=0; i < pvec->nr; i++)
2017 if (pvec->page[i].sp == sp)
2018 return 0;
2019
2020 pvec->page[pvec->nr].sp = sp;
2021 pvec->page[pvec->nr].idx = idx;
2022 pvec->nr++;
2023 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2024}
2025
fd951457
TY
2026static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2027{
2028 --sp->unsync_children;
2029 WARN_ON((int)sp->unsync_children < 0);
2030 __clear_bit(idx, sp->unsync_child_bitmap);
2031}
2032
60c8aec6
MT
2033static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2034 struct kvm_mmu_pages *pvec)
2035{
2036 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2037
37178b8b 2038 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2039 struct kvm_mmu_page *child;
4731d4c7
MT
2040 u64 ent = sp->spt[i];
2041
fd951457
TY
2042 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2043 clear_unsync_child_bit(sp, i);
2044 continue;
2045 }
7a8f1a74
XG
2046
2047 child = page_header(ent & PT64_BASE_ADDR_MASK);
2048
2049 if (child->unsync_children) {
2050 if (mmu_pages_add(pvec, child, i))
2051 return -ENOSPC;
2052
2053 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2054 if (!ret) {
2055 clear_unsync_child_bit(sp, i);
2056 continue;
2057 } else if (ret > 0) {
7a8f1a74 2058 nr_unsync_leaf += ret;
fd951457 2059 } else
7a8f1a74
XG
2060 return ret;
2061 } else if (child->unsync) {
2062 nr_unsync_leaf++;
2063 if (mmu_pages_add(pvec, child, i))
2064 return -ENOSPC;
2065 } else
fd951457 2066 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2067 }
2068
60c8aec6
MT
2069 return nr_unsync_leaf;
2070}
2071
e23d3fef
XG
2072#define INVALID_INDEX (-1)
2073
60c8aec6
MT
2074static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2075 struct kvm_mmu_pages *pvec)
2076{
0a47cd85 2077 pvec->nr = 0;
60c8aec6
MT
2078 if (!sp->unsync_children)
2079 return 0;
2080
e23d3fef 2081 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2082 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2083}
2084
4731d4c7
MT
2085static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2086{
2087 WARN_ON(!sp->unsync);
5e1b3ddb 2088 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2089 sp->unsync = 0;
2090 --kvm->stat.mmu_unsync;
2091}
2092
7775834a
XG
2093static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2094 struct list_head *invalid_list);
2095static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2096 struct list_head *invalid_list);
4731d4c7 2097
f34d251d
XG
2098/*
2099 * NOTE: we should pay more attention on the zapped-obsolete page
2100 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2101 * since it has been deleted from active_mmu_pages but still can be found
2102 * at hast list.
2103 *
f3414bc7 2104 * for_each_valid_sp() has skipped that kind of pages.
f34d251d 2105 */
f3414bc7 2106#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2107 hlist_for_each_entry(_sp, \
2108 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
f3414bc7
DM
2109 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2110 } else
1044b030
TY
2111
2112#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2113 for_each_valid_sp(_kvm, _sp, _gfn) \
2114 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2115
f918b443 2116/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2117static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2118 struct list_head *invalid_list)
4731d4c7 2119{
5b7e0102 2120 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 2121 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2122 return false;
4731d4c7
MT
2123 }
2124
1f50f1b3 2125 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
d98ba053 2126 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2127 return false;
4731d4c7
MT
2128 }
2129
1f50f1b3 2130 return true;
4731d4c7
MT
2131}
2132
35a70510
PB
2133static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2134 struct list_head *invalid_list,
2135 bool remote_flush, bool local_flush)
1d9dc7e0 2136{
35a70510
PB
2137 if (!list_empty(invalid_list)) {
2138 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2139 return;
2140 }
d98ba053 2141
35a70510
PB
2142 if (remote_flush)
2143 kvm_flush_remote_tlbs(vcpu->kvm);
2144 else if (local_flush)
2145 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2146}
2147
e37fa785
XG
2148#ifdef CONFIG_KVM_MMU_AUDIT
2149#include "mmu_audit.c"
2150#else
2151static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2152static void mmu_audit_disable(void) { }
2153#endif
2154
46971a2f
XG
2155static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2156{
2157 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2158}
2159
1f50f1b3 2160static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2161 struct list_head *invalid_list)
1d9dc7e0 2162{
9a43c5d9
PB
2163 kvm_unlink_unsync_page(vcpu->kvm, sp);
2164 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2165}
2166
9f1a122f 2167/* @gfn should be write-protected at the call site */
2a74003a
PB
2168static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2169 struct list_head *invalid_list)
9f1a122f 2170{
9f1a122f 2171 struct kvm_mmu_page *s;
2a74003a 2172 bool ret = false;
9f1a122f 2173
b67bfe0d 2174 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2175 if (!s->unsync)
9f1a122f
XG
2176 continue;
2177
2178 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2179 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2180 }
2181
2a74003a 2182 return ret;
9f1a122f
XG
2183}
2184
60c8aec6 2185struct mmu_page_path {
2a7266a8
YZ
2186 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2187 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
2188};
2189
60c8aec6 2190#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2191 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2192 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2193 i = mmu_pages_next(&pvec, &parents, i))
2194
cded19f3
HE
2195static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2196 struct mmu_page_path *parents,
2197 int i)
60c8aec6
MT
2198{
2199 int n;
2200
2201 for (n = i+1; n < pvec->nr; n++) {
2202 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2203 unsigned idx = pvec->page[n].idx;
2204 int level = sp->role.level;
60c8aec6 2205
0a47cd85
PB
2206 parents->idx[level-1] = idx;
2207 if (level == PT_PAGE_TABLE_LEVEL)
2208 break;
60c8aec6 2209
0a47cd85 2210 parents->parent[level-2] = sp;
60c8aec6
MT
2211 }
2212
2213 return n;
2214}
2215
0a47cd85
PB
2216static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2217 struct mmu_page_path *parents)
2218{
2219 struct kvm_mmu_page *sp;
2220 int level;
2221
2222 if (pvec->nr == 0)
2223 return 0;
2224
e23d3fef
XG
2225 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2226
0a47cd85
PB
2227 sp = pvec->page[0].sp;
2228 level = sp->role.level;
2229 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2230
2231 parents->parent[level-2] = sp;
2232
2233 /* Also set up a sentinel. Further entries in pvec are all
2234 * children of sp, so this element is never overwritten.
2235 */
2236 parents->parent[level-1] = NULL;
2237 return mmu_pages_next(pvec, parents, 0);
2238}
2239
cded19f3 2240static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2241{
60c8aec6
MT
2242 struct kvm_mmu_page *sp;
2243 unsigned int level = 0;
2244
2245 do {
2246 unsigned int idx = parents->idx[level];
60c8aec6
MT
2247 sp = parents->parent[level];
2248 if (!sp)
2249 return;
2250
e23d3fef 2251 WARN_ON(idx == INVALID_INDEX);
fd951457 2252 clear_unsync_child_bit(sp, idx);
60c8aec6 2253 level++;
0a47cd85 2254 } while (!sp->unsync_children);
60c8aec6 2255}
4731d4c7 2256
60c8aec6
MT
2257static void mmu_sync_children(struct kvm_vcpu *vcpu,
2258 struct kvm_mmu_page *parent)
2259{
2260 int i;
2261 struct kvm_mmu_page *sp;
2262 struct mmu_page_path parents;
2263 struct kvm_mmu_pages pages;
d98ba053 2264 LIST_HEAD(invalid_list);
50c9e6f3 2265 bool flush = false;
60c8aec6 2266
60c8aec6 2267 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2268 bool protected = false;
b1a36821
MT
2269
2270 for_each_sp(pages, sp, parents, i)
54bf36aa 2271 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2272
50c9e6f3 2273 if (protected) {
b1a36821 2274 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2275 flush = false;
2276 }
b1a36821 2277
60c8aec6 2278 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2279 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2280 mmu_pages_clear_parents(&parents);
2281 }
50c9e6f3
PB
2282 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2283 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2284 cond_resched_lock(&vcpu->kvm->mmu_lock);
2285 flush = false;
2286 }
60c8aec6 2287 }
50c9e6f3
PB
2288
2289 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2290}
2291
a30f47cb
XG
2292static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2293{
e5691a81 2294 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2295}
2296
2297static void clear_sp_write_flooding_count(u64 *spte)
2298{
2299 struct kvm_mmu_page *sp = page_header(__pa(spte));
2300
2301 __clear_sp_write_flooding_count(sp);
2302}
2303
cea0f0e7
AK
2304static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2305 gfn_t gfn,
2306 gva_t gaddr,
2307 unsigned level,
f6e2c02b 2308 int direct,
bb11c6c9 2309 unsigned access)
cea0f0e7
AK
2310{
2311 union kvm_mmu_page_role role;
cea0f0e7 2312 unsigned quadrant;
9f1a122f 2313 struct kvm_mmu_page *sp;
9f1a122f 2314 bool need_sync = false;
2a74003a 2315 bool flush = false;
f3414bc7 2316 int collisions = 0;
2a74003a 2317 LIST_HEAD(invalid_list);
cea0f0e7 2318
a770f6f2 2319 role = vcpu->arch.mmu.base_role;
cea0f0e7 2320 role.level = level;
f6e2c02b 2321 role.direct = direct;
84b0c8c6 2322 if (role.direct)
5b7e0102 2323 role.cr4_pae = 0;
41074d07 2324 role.access = access;
c5a78f2b
JR
2325 if (!vcpu->arch.mmu.direct_map
2326 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2327 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2328 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2329 role.quadrant = quadrant;
2330 }
f3414bc7
DM
2331 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2332 if (sp->gfn != gfn) {
2333 collisions++;
2334 continue;
2335 }
2336
7ae680eb
XG
2337 if (!need_sync && sp->unsync)
2338 need_sync = true;
4731d4c7 2339
7ae680eb
XG
2340 if (sp->role.word != role.word)
2341 continue;
4731d4c7 2342
2a74003a
PB
2343 if (sp->unsync) {
2344 /* The page is good, but __kvm_sync_page might still end
2345 * up zapping it. If so, break in order to rebuild it.
2346 */
2347 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2348 break;
2349
2350 WARN_ON(!list_empty(&invalid_list));
2351 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2352 }
e02aa901 2353
98bba238 2354 if (sp->unsync_children)
a8eeb04a 2355 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2356
a30f47cb 2357 __clear_sp_write_flooding_count(sp);
7ae680eb 2358 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2359 goto out;
7ae680eb 2360 }
47005792 2361
dfc5aa00 2362 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2363
2364 sp = kvm_mmu_alloc_page(vcpu, direct);
2365
4db35314
AK
2366 sp->gfn = gfn;
2367 sp->role = role;
7ae680eb
XG
2368 hlist_add_head(&sp->hash_link,
2369 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2370 if (!direct) {
56ca57f9
XG
2371 /*
2372 * we should do write protection before syncing pages
2373 * otherwise the content of the synced shadow page may
2374 * be inconsistent with guest page table.
2375 */
2376 account_shadowed(vcpu->kvm, sp);
2377 if (level == PT_PAGE_TABLE_LEVEL &&
2378 rmap_write_protect(vcpu, gfn))
b1a36821 2379 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f 2380
9f1a122f 2381 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2382 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2383 }
5304b8d3 2384 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2385 clear_page(sp->spt);
f691fe1d 2386 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2387
2388 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2389out:
2390 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2391 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2392 return sp;
cea0f0e7
AK
2393}
2394
2d11123a
AK
2395static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2396 struct kvm_vcpu *vcpu, u64 addr)
2397{
2398 iterator->addr = addr;
2399 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2400 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5 2401
2a7266a8
YZ
2402 if (iterator->level == PT64_ROOT_4LEVEL &&
2403 vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
81407ca5
JR
2404 !vcpu->arch.mmu.direct_map)
2405 --iterator->level;
2406
2d11123a
AK
2407 if (iterator->level == PT32E_ROOT_LEVEL) {
2408 iterator->shadow_addr
2409 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2410 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2411 --iterator->level;
2412 if (!iterator->shadow_addr)
2413 iterator->level = 0;
2414 }
2415}
2416
2417static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2418{
2419 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2420 return false;
4d88954d 2421
2d11123a
AK
2422 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2423 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2424 return true;
2425}
2426
c2a2ac2b
XG
2427static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2428 u64 spte)
2d11123a 2429{
c2a2ac2b 2430 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2431 iterator->level = 0;
2432 return;
2433 }
2434
c2a2ac2b 2435 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2436 --iterator->level;
2437}
2438
c2a2ac2b
XG
2439static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2440{
bb606a9b 2441 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2442}
2443
98bba238
TY
2444static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2445 struct kvm_mmu_page *sp)
32ef26a3
AK
2446{
2447 u64 spte;
2448
ffb128c8 2449 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2450
ffb128c8 2451 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2452 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2453
2454 if (sp_ad_disabled(sp))
2455 spte |= shadow_acc_track_value;
2456 else
2457 spte |= shadow_accessed_mask;
24db2734 2458
1df9f2dc 2459 mmu_spte_set(sptep, spte);
98bba238
TY
2460
2461 mmu_page_add_parent_pte(vcpu, sp, sptep);
2462
2463 if (sp->unsync_children || sp->unsync)
2464 mark_unsync(sptep);
32ef26a3
AK
2465}
2466
a357bd22
AK
2467static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2468 unsigned direct_access)
2469{
2470 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2471 struct kvm_mmu_page *child;
2472
2473 /*
2474 * For the direct sp, if the guest pte's dirty bit
2475 * changed form clean to dirty, it will corrupt the
2476 * sp's access: allow writable in the read-only sp,
2477 * so we should update the spte at this point to get
2478 * a new sp with the correct access.
2479 */
2480 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2481 if (child->role.access == direct_access)
2482 return;
2483
bcdd9a93 2484 drop_parent_pte(child, sptep);
a357bd22
AK
2485 kvm_flush_remote_tlbs(vcpu->kvm);
2486 }
2487}
2488
505aef8f 2489static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2490 u64 *spte)
2491{
2492 u64 pte;
2493 struct kvm_mmu_page *child;
2494
2495 pte = *spte;
2496 if (is_shadow_present_pte(pte)) {
505aef8f 2497 if (is_last_spte(pte, sp->role.level)) {
c3707958 2498 drop_spte(kvm, spte);
505aef8f
XG
2499 if (is_large_pte(pte))
2500 --kvm->stat.lpages;
2501 } else {
38e3b2b2 2502 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2503 drop_parent_pte(child, spte);
38e3b2b2 2504 }
505aef8f
XG
2505 return true;
2506 }
2507
2508 if (is_mmio_spte(pte))
ce88decf 2509 mmu_spte_clear_no_track(spte);
c3707958 2510
505aef8f 2511 return false;
38e3b2b2
XG
2512}
2513
90cb0529 2514static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2515 struct kvm_mmu_page *sp)
a436036b 2516{
697fe2e2 2517 unsigned i;
697fe2e2 2518
38e3b2b2
XG
2519 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2520 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2521}
2522
31aa2b44 2523static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2524{
1e3f42f0
TY
2525 u64 *sptep;
2526 struct rmap_iterator iter;
a436036b 2527
018aabb5 2528 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2529 drop_parent_pte(sp, sptep);
31aa2b44
AK
2530}
2531
60c8aec6 2532static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2533 struct kvm_mmu_page *parent,
2534 struct list_head *invalid_list)
4731d4c7 2535{
60c8aec6
MT
2536 int i, zapped = 0;
2537 struct mmu_page_path parents;
2538 struct kvm_mmu_pages pages;
4731d4c7 2539
60c8aec6 2540 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2541 return 0;
60c8aec6 2542
60c8aec6
MT
2543 while (mmu_unsync_walk(parent, &pages)) {
2544 struct kvm_mmu_page *sp;
2545
2546 for_each_sp(pages, sp, parents, i) {
7775834a 2547 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2548 mmu_pages_clear_parents(&parents);
77662e00 2549 zapped++;
60c8aec6 2550 }
60c8aec6
MT
2551 }
2552
2553 return zapped;
4731d4c7
MT
2554}
2555
7775834a
XG
2556static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2557 struct list_head *invalid_list)
31aa2b44 2558{
4731d4c7 2559 int ret;
f691fe1d 2560
7775834a 2561 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2562 ++kvm->stat.mmu_shadow_zapped;
7775834a 2563 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2564 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2565 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2566
f6e2c02b 2567 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2568 unaccount_shadowed(kvm, sp);
5304b8d3 2569
4731d4c7
MT
2570 if (sp->unsync)
2571 kvm_unlink_unsync_page(kvm, sp);
4db35314 2572 if (!sp->root_count) {
54a4f023
GJ
2573 /* Count self */
2574 ret++;
7775834a 2575 list_move(&sp->link, invalid_list);
aa6bd187 2576 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2577 } else {
5b5c6a5a 2578 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2579
2580 /*
2581 * The obsolete pages can not be used on any vcpus.
2582 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2583 */
2584 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2585 kvm_reload_remote_mmus(kvm);
2e53d63a 2586 }
7775834a
XG
2587
2588 sp->role.invalid = 1;
4731d4c7 2589 return ret;
a436036b
AK
2590}
2591
7775834a
XG
2592static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2593 struct list_head *invalid_list)
2594{
945315b9 2595 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2596
2597 if (list_empty(invalid_list))
2598 return;
2599
c142786c 2600 /*
9753f529
LT
2601 * We need to make sure everyone sees our modifications to
2602 * the page tables and see changes to vcpu->mode here. The barrier
2603 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2604 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2605 *
2606 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2607 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2608 */
2609 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2610
945315b9 2611 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2612 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2613 kvm_mmu_free_page(sp);
945315b9 2614 }
7775834a
XG
2615}
2616
5da59607
TY
2617static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2618 struct list_head *invalid_list)
2619{
2620 struct kvm_mmu_page *sp;
2621
2622 if (list_empty(&kvm->arch.active_mmu_pages))
2623 return false;
2624
d74c0e6b
GT
2625 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2626 struct kvm_mmu_page, link);
42bcbebf 2627 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
5da59607
TY
2628}
2629
82ce2c96
IE
2630/*
2631 * Changing the number of mmu pages allocated to the vm
49d5ca26 2632 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2633 */
49d5ca26 2634void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2635{
d98ba053 2636 LIST_HEAD(invalid_list);
82ce2c96 2637
b34cb590
TY
2638 spin_lock(&kvm->mmu_lock);
2639
49d5ca26 2640 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2641 /* Need to free some mmu pages to achieve the goal. */
2642 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2643 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2644 break;
82ce2c96 2645
aa6bd187 2646 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2647 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2648 }
82ce2c96 2649
49d5ca26 2650 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2651
2652 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2653}
2654
1cb3f3ae 2655int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2656{
4db35314 2657 struct kvm_mmu_page *sp;
d98ba053 2658 LIST_HEAD(invalid_list);
a436036b
AK
2659 int r;
2660
9ad17b10 2661 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2662 r = 0;
1cb3f3ae 2663 spin_lock(&kvm->mmu_lock);
b67bfe0d 2664 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2665 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2666 sp->role.word);
2667 r = 1;
f41d335a 2668 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2669 }
d98ba053 2670 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2671 spin_unlock(&kvm->mmu_lock);
2672
a436036b 2673 return r;
cea0f0e7 2674}
1cb3f3ae 2675EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2676
5c520e90 2677static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2678{
2679 trace_kvm_mmu_unsync_page(sp);
2680 ++vcpu->kvm->stat.mmu_unsync;
2681 sp->unsync = 1;
2682
2683 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2684}
2685
3d0c27ad
XG
2686static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2687 bool can_unsync)
4731d4c7 2688{
5c520e90 2689 struct kvm_mmu_page *sp;
4731d4c7 2690
3d0c27ad
XG
2691 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2692 return true;
9cf5cf5a 2693
5c520e90 2694 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2695 if (!can_unsync)
3d0c27ad 2696 return true;
36a2e677 2697
5c520e90
XG
2698 if (sp->unsync)
2699 continue;
9cf5cf5a 2700
5c520e90
XG
2701 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2702 kvm_unsync_page(vcpu, sp);
4731d4c7 2703 }
3d0c27ad
XG
2704
2705 return false;
4731d4c7
MT
2706}
2707
ba049e93 2708static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2709{
2710 if (pfn_valid(pfn))
2711 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2712
2713 return true;
2714}
2715
d555c333 2716static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2717 unsigned pte_access, int level,
ba049e93 2718 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2719 bool can_unsync, bool host_writable)
1c4f1fd6 2720{
ffb128c8 2721 u64 spte = 0;
1e73f9dd 2722 int ret = 0;
ac8d57e5 2723 struct kvm_mmu_page *sp;
64d4d521 2724
54bf36aa 2725 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2726 return 0;
2727
ac8d57e5
PF
2728 sp = page_header(__pa(sptep));
2729 if (sp_ad_disabled(sp))
2730 spte |= shadow_acc_track_value;
2731
d95c5568
BD
2732 /*
2733 * For the EPT case, shadow_present_mask is 0 if hardware
2734 * supports exec-only page table entries. In that case,
2735 * ACC_USER_MASK and shadow_user_mask are used to represent
2736 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2737 */
ffb128c8 2738 spte |= shadow_present_mask;
947da538 2739 if (!speculative)
ac8d57e5 2740 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 2741
7b52345e
SY
2742 if (pte_access & ACC_EXEC_MASK)
2743 spte |= shadow_x_mask;
2744 else
2745 spte |= shadow_nx_mask;
49fde340 2746
1c4f1fd6 2747 if (pte_access & ACC_USER_MASK)
7b52345e 2748 spte |= shadow_user_mask;
49fde340 2749
852e3c19 2750 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2751 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2752 if (tdp_enabled)
4b12f0de 2753 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2754 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2755
9bdbba13 2756 if (host_writable)
1403283a 2757 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2758 else
2759 pte_access &= ~ACC_WRITE_MASK;
1403283a 2760
35149e21 2761 spte |= (u64)pfn << PAGE_SHIFT;
d0ec49d4 2762 spte |= shadow_me_mask;
1c4f1fd6 2763
c2288505 2764 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2765
c2193463 2766 /*
7751babd
XG
2767 * Other vcpu creates new sp in the window between
2768 * mapping_level() and acquiring mmu-lock. We can
2769 * allow guest to retry the access, the mapping can
2770 * be fixed if guest refault.
c2193463 2771 */
852e3c19 2772 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2773 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2774 goto done;
38187c83 2775
49fde340 2776 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2777
ecc5589f
MT
2778 /*
2779 * Optimization: for pte sync, if spte was writable the hash
2780 * lookup is unnecessary (and expensive). Write protection
2781 * is responsibility of mmu_get_page / kvm_sync_page.
2782 * Same reasoning can be applied to dirty page accounting.
2783 */
8dae4445 2784 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2785 goto set_pte;
2786
4731d4c7 2787 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2788 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2789 __func__, gfn);
1e73f9dd 2790 ret = 1;
1c4f1fd6 2791 pte_access &= ~ACC_WRITE_MASK;
49fde340 2792 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2793 }
2794 }
2795
9b51a630 2796 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2797 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 2798 spte |= spte_shadow_dirty_mask(spte);
9b51a630 2799 }
1c4f1fd6 2800
f160c7b7
JS
2801 if (speculative)
2802 spte = mark_spte_for_access_track(spte);
2803
38187c83 2804set_pte:
6e7d0354 2805 if (mmu_spte_update(sptep, spte))
b330aa0c 2806 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2807done:
1e73f9dd
MT
2808 return ret;
2809}
2810
9b8ebbdb
PB
2811static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2812 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2813 bool speculative, bool host_writable)
1e73f9dd
MT
2814{
2815 int was_rmapped = 0;
53a27b39 2816 int rmap_count;
9b8ebbdb 2817 int ret = RET_PF_RETRY;
1e73f9dd 2818
f7616203
XG
2819 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2820 *sptep, write_fault, gfn);
1e73f9dd 2821
afd28fe1 2822 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2823 /*
2824 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2825 * the parent of the now unreachable PTE.
2826 */
852e3c19
JR
2827 if (level > PT_PAGE_TABLE_LEVEL &&
2828 !is_large_pte(*sptep)) {
1e73f9dd 2829 struct kvm_mmu_page *child;
d555c333 2830 u64 pte = *sptep;
1e73f9dd
MT
2831
2832 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2833 drop_parent_pte(child, sptep);
3be2264b 2834 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2835 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2836 pgprintk("hfn old %llx new %llx\n",
d555c333 2837 spte_to_pfn(*sptep), pfn);
c3707958 2838 drop_spte(vcpu->kvm, sptep);
91546356 2839 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2840 } else
2841 was_rmapped = 1;
1e73f9dd 2842 }
852e3c19 2843
c2288505
XG
2844 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2845 true, host_writable)) {
1e73f9dd 2846 if (write_fault)
9b8ebbdb 2847 ret = RET_PF_EMULATE;
77c3913b 2848 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2849 }
1e73f9dd 2850
029499b4 2851 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 2852 ret = RET_PF_EMULATE;
ce88decf 2853
d555c333 2854 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2855 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2856 is_large_pte(*sptep)? "2MB" : "4kB",
f160c7b7 2857 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
a205bc19 2858 *sptep, sptep);
d555c333 2859 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2860 ++vcpu->kvm->stat.lpages;
2861
ffb61bb3 2862 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2863 if (!was_rmapped) {
2864 rmap_count = rmap_add(vcpu, sptep, gfn);
2865 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2866 rmap_recycle(vcpu, sptep, gfn);
2867 }
1c4f1fd6 2868 }
cb9aaa30 2869
f3ac1a4b 2870 kvm_release_pfn_clean(pfn);
029499b4 2871
9b8ebbdb 2872 return ret;
1c4f1fd6
AK
2873}
2874
ba049e93 2875static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2876 bool no_dirty_log)
2877{
2878 struct kvm_memory_slot *slot;
957ed9ef 2879
5d163b1c 2880 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2881 if (!slot)
6c8ee57b 2882 return KVM_PFN_ERR_FAULT;
957ed9ef 2883
037d92dc 2884 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2885}
2886
2887static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2888 struct kvm_mmu_page *sp,
2889 u64 *start, u64 *end)
2890{
2891 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2892 struct kvm_memory_slot *slot;
957ed9ef
XG
2893 unsigned access = sp->role.access;
2894 int i, ret;
2895 gfn_t gfn;
2896
2897 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2898 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2899 if (!slot)
957ed9ef
XG
2900 return -1;
2901
d9ef13c2 2902 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2903 if (ret <= 0)
2904 return -1;
2905
2906 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
2907 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2908 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
2909
2910 return 0;
2911}
2912
2913static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2914 struct kvm_mmu_page *sp, u64 *sptep)
2915{
2916 u64 *spte, *start = NULL;
2917 int i;
2918
2919 WARN_ON(!sp->role.direct);
2920
2921 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2922 spte = sp->spt + i;
2923
2924 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2925 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2926 if (!start)
2927 continue;
2928 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2929 break;
2930 start = NULL;
2931 } else if (!start)
2932 start = spte;
2933 }
2934}
2935
2936static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2937{
2938 struct kvm_mmu_page *sp;
2939
ac8d57e5
PF
2940 sp = page_header(__pa(sptep));
2941
957ed9ef 2942 /*
ac8d57e5
PF
2943 * Without accessed bits, there's no way to distinguish between
2944 * actually accessed translations and prefetched, so disable pte
2945 * prefetch if accessed bits aren't available.
957ed9ef 2946 */
ac8d57e5 2947 if (sp_ad_disabled(sp))
957ed9ef
XG
2948 return;
2949
957ed9ef
XG
2950 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2951 return;
2952
2953 __direct_pte_prefetch(vcpu, sp, sptep);
2954}
2955
7ee0e5b2 2956static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 2957 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 2958{
9f652d21 2959 struct kvm_shadow_walk_iterator iterator;
140754bc 2960 struct kvm_mmu_page *sp;
b90a0e6c 2961 int emulate = 0;
140754bc 2962 gfn_t pseudo_gfn;
6aa8b732 2963
989c6b34
MT
2964 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2965 return 0;
2966
9f652d21 2967 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2968 if (iterator.level == level) {
029499b4
TY
2969 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2970 write, level, gfn, pfn, prefault,
2971 map_writable);
957ed9ef 2972 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2973 ++vcpu->stat.pf_fixed;
2974 break;
6aa8b732
AK
2975 }
2976
404381c5 2977 drop_large_spte(vcpu, iterator.sptep);
c3707958 2978 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2979 u64 base_addr = iterator.addr;
2980
2981 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2982 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 2983 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 2984 iterator.level - 1, 1, ACC_ALL);
140754bc 2985
98bba238 2986 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
2987 }
2988 }
b90a0e6c 2989 return emulate;
6aa8b732
AK
2990}
2991
77db5cbd 2992static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2993{
77db5cbd
HY
2994 siginfo_t info;
2995
2996 info.si_signo = SIGBUS;
2997 info.si_errno = 0;
2998 info.si_code = BUS_MCEERR_AR;
2999 info.si_addr = (void __user *)address;
3000 info.si_addr_lsb = PAGE_SHIFT;
bf998156 3001
77db5cbd 3002 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
3003}
3004
ba049e93 3005static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 3006{
4d8b81ab
XG
3007 /*
3008 * Do not cache the mmio info caused by writing the readonly gfn
3009 * into the spte otherwise read access on readonly gfn also can
3010 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
3011 */
3012 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 3013 return RET_PF_EMULATE;
4d8b81ab 3014
e6c1502b 3015 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3016 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 3017 return RET_PF_RETRY;
d7c55201 3018 }
edba23e5 3019
d7c55201 3020 return -EFAULT;
bf998156
HY
3021}
3022
936a5fe6 3023static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
3024 gfn_t *gfnp, kvm_pfn_t *pfnp,
3025 int *levelp)
936a5fe6 3026{
ba049e93 3027 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
3028 gfn_t gfn = *gfnp;
3029 int level = *levelp;
3030
3031 /*
3032 * Check if it's a transparent hugepage. If this would be an
3033 * hugetlbfs page, level wouldn't be set to
3034 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3035 * here.
3036 */
bf4bea8e 3037 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6 3038 level == PT_PAGE_TABLE_LEVEL &&
127393fb 3039 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 3040 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
3041 unsigned long mask;
3042 /*
3043 * mmu_notifier_retry was successful and we hold the
3044 * mmu_lock here, so the pmd can't become splitting
3045 * from under us, and in turn
3046 * __split_huge_page_refcount() can't run from under
3047 * us and we can safely transfer the refcount from
3048 * PG_tail to PG_head as we switch the pfn to tail to
3049 * head.
3050 */
3051 *levelp = level = PT_DIRECTORY_LEVEL;
3052 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3053 VM_BUG_ON((gfn & mask) != (pfn & mask));
3054 if (pfn & mask) {
3055 gfn &= ~mask;
3056 *gfnp = gfn;
3057 kvm_release_pfn_clean(pfn);
3058 pfn &= ~mask;
c3586667 3059 kvm_get_pfn(pfn);
936a5fe6
AA
3060 *pfnp = pfn;
3061 }
3062 }
3063}
3064
d7c55201 3065static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 3066 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 3067{
d7c55201 3068 /* The pfn is invalid, report the error! */
81c52c56 3069 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3070 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3071 return true;
d7c55201
XG
3072 }
3073
ce88decf 3074 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 3075 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 3076
798e88b3 3077 return false;
d7c55201
XG
3078}
3079
e5552fd2 3080static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3081{
1c118b82
XG
3082 /*
3083 * Do not fix the mmio spte with invalid generation number which
3084 * need to be updated by slow page fault path.
3085 */
3086 if (unlikely(error_code & PFERR_RSVD_MASK))
3087 return false;
3088
f160c7b7
JS
3089 /* See if the page fault is due to an NX violation */
3090 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3091 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3092 return false;
3093
c7ba5b48 3094 /*
f160c7b7
JS
3095 * #PF can be fast if:
3096 * 1. The shadow page table entry is not present, which could mean that
3097 * the fault is potentially caused by access tracking (if enabled).
3098 * 2. The shadow page table entry is present and the fault
3099 * is caused by write-protect, that means we just need change the W
3100 * bit of the spte which can be done out of mmu-lock.
3101 *
3102 * However, if access tracking is disabled we know that a non-present
3103 * page must be a genuine page fault where we have to create a new SPTE.
3104 * So, if access tracking is disabled, we return true only for write
3105 * accesses to a present page.
c7ba5b48 3106 */
c7ba5b48 3107
f160c7b7
JS
3108 return shadow_acc_track_mask != 0 ||
3109 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3110 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3111}
3112
97dceba2
JS
3113/*
3114 * Returns true if the SPTE was fixed successfully. Otherwise,
3115 * someone else modified the SPTE from its original value.
3116 */
c7ba5b48 3117static bool
92a476cb 3118fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3119 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3120{
c7ba5b48
XG
3121 gfn_t gfn;
3122
3123 WARN_ON(!sp->role.direct);
3124
9b51a630
KH
3125 /*
3126 * Theoretically we could also set dirty bit (and flush TLB) here in
3127 * order to eliminate unnecessary PML logging. See comments in
3128 * set_spte. But fast_page_fault is very unlikely to happen with PML
3129 * enabled, so we do not do this. This might result in the same GPA
3130 * to be logged in PML buffer again when the write really happens, and
3131 * eventually to be called by mark_page_dirty twice. But it's also no
3132 * harm. This also avoids the TLB flush needed after setting dirty bit
3133 * so non-PML cases won't be impacted.
3134 *
3135 * Compare with set_spte where instead shadow_dirty_mask is set.
3136 */
f160c7b7 3137 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3138 return false;
3139
d3e328f2 3140 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3141 /*
3142 * The gfn of direct spte is stable since it is
3143 * calculated by sp->gfn.
3144 */
3145 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3146 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3147 }
c7ba5b48
XG
3148
3149 return true;
3150}
3151
d3e328f2
JS
3152static bool is_access_allowed(u32 fault_err_code, u64 spte)
3153{
3154 if (fault_err_code & PFERR_FETCH_MASK)
3155 return is_executable_pte(spte);
3156
3157 if (fault_err_code & PFERR_WRITE_MASK)
3158 return is_writable_pte(spte);
3159
3160 /* Fault was on Read access */
3161 return spte & PT_PRESENT_MASK;
3162}
3163
c7ba5b48
XG
3164/*
3165 * Return value:
3166 * - true: let the vcpu to access on the same address again.
3167 * - false: let the real page fault path to fix it.
3168 */
3169static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3170 u32 error_code)
3171{
3172 struct kvm_shadow_walk_iterator iterator;
92a476cb 3173 struct kvm_mmu_page *sp;
97dceba2 3174 bool fault_handled = false;
c7ba5b48 3175 u64 spte = 0ull;
97dceba2 3176 uint retry_count = 0;
c7ba5b48 3177
37f6a4e2
MT
3178 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3179 return false;
3180
e5552fd2 3181 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3182 return false;
3183
3184 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3185
97dceba2 3186 do {
d3e328f2 3187 u64 new_spte;
c7ba5b48 3188
d162f30a
JS
3189 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3190 if (!is_shadow_present_pte(spte) ||
3191 iterator.level < level)
3192 break;
3193
97dceba2
JS
3194 sp = page_header(__pa(iterator.sptep));
3195 if (!is_last_spte(spte, sp->role.level))
3196 break;
c7ba5b48 3197
97dceba2 3198 /*
f160c7b7
JS
3199 * Check whether the memory access that caused the fault would
3200 * still cause it if it were to be performed right now. If not,
3201 * then this is a spurious fault caused by TLB lazily flushed,
3202 * or some other CPU has already fixed the PTE after the
3203 * current CPU took the fault.
97dceba2
JS
3204 *
3205 * Need not check the access of upper level table entries since
3206 * they are always ACC_ALL.
3207 */
d3e328f2
JS
3208 if (is_access_allowed(error_code, spte)) {
3209 fault_handled = true;
3210 break;
3211 }
f160c7b7 3212
d3e328f2
JS
3213 new_spte = spte;
3214
3215 if (is_access_track_spte(spte))
3216 new_spte = restore_acc_track_spte(new_spte);
3217
3218 /*
3219 * Currently, to simplify the code, write-protection can
3220 * be removed in the fast path only if the SPTE was
3221 * write-protected for dirty-logging or access tracking.
3222 */
3223 if ((error_code & PFERR_WRITE_MASK) &&
3224 spte_can_locklessly_be_made_writable(spte))
3225 {
3226 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3227
3228 /*
d3e328f2
JS
3229 * Do not fix write-permission on the large spte. Since
3230 * we only dirty the first page into the dirty-bitmap in
3231 * fast_pf_fix_direct_spte(), other pages are missed
3232 * if its slot has dirty logging enabled.
3233 *
3234 * Instead, we let the slow page fault path create a
3235 * normal spte to fix the access.
3236 *
3237 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3238 */
d3e328f2 3239 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3240 break;
97dceba2 3241 }
c7ba5b48 3242
f160c7b7 3243 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3244 if (new_spte == spte ||
3245 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3246 break;
3247
3248 /*
3249 * Currently, fast page fault only works for direct mapping
3250 * since the gfn is not stable for indirect shadow page. See
3251 * Documentation/virtual/kvm/locking.txt to get more detail.
3252 */
3253 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3254 iterator.sptep, spte,
d3e328f2 3255 new_spte);
97dceba2
JS
3256 if (fault_handled)
3257 break;
3258
3259 if (++retry_count > 4) {
3260 printk_once(KERN_WARNING
3261 "kvm: Fast #PF retrying more than 4 times.\n");
3262 break;
3263 }
3264
97dceba2 3265 } while (true);
c126d94f 3266
a72faf25 3267 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
97dceba2 3268 spte, fault_handled);
c7ba5b48
XG
3269 walk_shadow_page_lockless_end(vcpu);
3270
97dceba2 3271 return fault_handled;
c7ba5b48
XG
3272}
3273
78b2c54a 3274static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3275 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
26eeb53c 3276static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3277
c7ba5b48
XG
3278static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3279 gfn_t gfn, bool prefault)
10589a46
MT
3280{
3281 int r;
852e3c19 3282 int level;
fd136902 3283 bool force_pt_level = false;
ba049e93 3284 kvm_pfn_t pfn;
e930bffe 3285 unsigned long mmu_seq;
c7ba5b48 3286 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3287
fd136902 3288 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3289 if (likely(!force_pt_level)) {
936a5fe6
AA
3290 /*
3291 * This path builds a PAE pagetable - so we can map
3292 * 2mb pages at maximum. Therefore check if the level
3293 * is larger than that.
3294 */
3295 if (level > PT_DIRECTORY_LEVEL)
3296 level = PT_DIRECTORY_LEVEL;
852e3c19 3297
936a5fe6 3298 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3299 }
05da4558 3300
c7ba5b48 3301 if (fast_page_fault(vcpu, v, level, error_code))
9b8ebbdb 3302 return RET_PF_RETRY;
c7ba5b48 3303
e930bffe 3304 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3305 smp_rmb();
060c2abe 3306
78b2c54a 3307 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
9b8ebbdb 3308 return RET_PF_RETRY;
aaee2c94 3309
d7c55201
XG
3310 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3311 return r;
d196e343 3312
aaee2c94 3313 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3314 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3315 goto out_unlock;
26eeb53c
WL
3316 if (make_mmu_pages_available(vcpu) < 0)
3317 goto out_unlock;
936a5fe6
AA
3318 if (likely(!force_pt_level))
3319 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3320 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3321 spin_unlock(&vcpu->kvm->mmu_lock);
3322
10589a46 3323 return r;
e930bffe
AA
3324
3325out_unlock:
3326 spin_unlock(&vcpu->kvm->mmu_lock);
3327 kvm_release_pfn_clean(pfn);
9b8ebbdb 3328 return RET_PF_RETRY;
10589a46
MT
3329}
3330
3331
17ac10ad
AK
3332static void mmu_free_roots(struct kvm_vcpu *vcpu)
3333{
3334 int i;
4db35314 3335 struct kvm_mmu_page *sp;
d98ba053 3336 LIST_HEAD(invalid_list);
17ac10ad 3337
ad312c7c 3338 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3339 return;
35af577a 3340
855feb67
YZ
3341 if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL &&
3342 (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL ||
81407ca5 3343 vcpu->arch.mmu.direct_map)) {
ad312c7c 3344 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3345
35af577a 3346 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3347 sp = page_header(root);
3348 --sp->root_count;
d98ba053
XG
3349 if (!sp->root_count && sp->role.invalid) {
3350 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3351 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3352 }
aaee2c94 3353 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3354 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3355 return;
3356 }
35af577a
GN
3357
3358 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3359 for (i = 0; i < 4; ++i) {
ad312c7c 3360 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3361
417726a3 3362 if (root) {
417726a3 3363 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3364 sp = page_header(root);
3365 --sp->root_count;
2e53d63a 3366 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3367 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3368 &invalid_list);
417726a3 3369 }
ad312c7c 3370 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3371 }
d98ba053 3372 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3373 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3374 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3375}
3376
8986ecc0
MT
3377static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3378{
3379 int ret = 0;
3380
3381 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3382 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3383 ret = 1;
3384 }
3385
3386 return ret;
3387}
3388
651dd37a
JR
3389static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3390{
3391 struct kvm_mmu_page *sp;
7ebaf15e 3392 unsigned i;
651dd37a 3393
855feb67 3394 if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
651dd37a 3395 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3396 if(make_mmu_pages_available(vcpu) < 0) {
3397 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3398 return -ENOSPC;
26eeb53c 3399 }
855feb67
YZ
3400 sp = kvm_mmu_get_page(vcpu, 0, 0,
3401 vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
651dd37a
JR
3402 ++sp->root_count;
3403 spin_unlock(&vcpu->kvm->mmu_lock);
3404 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3405 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3406 for (i = 0; i < 4; ++i) {
3407 hpa_t root = vcpu->arch.mmu.pae_root[i];
3408
fa4a2c08 3409 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3410 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3411 if (make_mmu_pages_available(vcpu) < 0) {
3412 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3413 return -ENOSPC;
26eeb53c 3414 }
649497d1 3415 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3416 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3417 root = __pa(sp->spt);
3418 ++sp->root_count;
3419 spin_unlock(&vcpu->kvm->mmu_lock);
3420 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3421 }
6292757f 3422 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3423 } else
3424 BUG();
3425
3426 return 0;
3427}
3428
3429static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3430{
4db35314 3431 struct kvm_mmu_page *sp;
81407ca5
JR
3432 u64 pdptr, pm_mask;
3433 gfn_t root_gfn;
3434 int i;
3bb65a22 3435
5777ed34 3436 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3437
651dd37a
JR
3438 if (mmu_check_root(vcpu, root_gfn))
3439 return 1;
3440
3441 /*
3442 * Do we shadow a long mode page table? If so we need to
3443 * write-protect the guests page table root.
3444 */
855feb67 3445 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
ad312c7c 3446 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3447
fa4a2c08 3448 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3449
8facbbff 3450 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3451 if (make_mmu_pages_available(vcpu) < 0) {
3452 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3453 return -ENOSPC;
26eeb53c 3454 }
855feb67
YZ
3455 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3456 vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
4db35314
AK
3457 root = __pa(sp->spt);
3458 ++sp->root_count;
8facbbff 3459 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3460 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3461 return 0;
17ac10ad 3462 }
f87f9288 3463
651dd37a
JR
3464 /*
3465 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3466 * or a PAE 3-level page table. In either case we need to be aware that
3467 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3468 */
81407ca5 3469 pm_mask = PT_PRESENT_MASK;
2a7266a8 3470 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3471 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3472
17ac10ad 3473 for (i = 0; i < 4; ++i) {
ad312c7c 3474 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3475
fa4a2c08 3476 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3477 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3478 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
812f30b2 3479 if (!(pdptr & PT_PRESENT_MASK)) {
ad312c7c 3480 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3481 continue;
3482 }
6de4f3ad 3483 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3484 if (mmu_check_root(vcpu, root_gfn))
3485 return 1;
5a7388c2 3486 }
8facbbff 3487 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3488 if (make_mmu_pages_available(vcpu) < 0) {
3489 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3490 return -ENOSPC;
26eeb53c 3491 }
bb11c6c9
TY
3492 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3493 0, ACC_ALL);
4db35314
AK
3494 root = __pa(sp->spt);
3495 ++sp->root_count;
8facbbff
AK
3496 spin_unlock(&vcpu->kvm->mmu_lock);
3497
81407ca5 3498 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3499 }
6292757f 3500 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3501
3502 /*
3503 * If we shadow a 32 bit page table with a long mode page
3504 * table we enter this path.
3505 */
2a7266a8 3506 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
81407ca5
JR
3507 if (vcpu->arch.mmu.lm_root == NULL) {
3508 /*
3509 * The additional page necessary for this is only
3510 * allocated on demand.
3511 */
3512
3513 u64 *lm_root;
3514
3515 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3516 if (lm_root == NULL)
3517 return 1;
3518
3519 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3520
3521 vcpu->arch.mmu.lm_root = lm_root;
3522 }
3523
3524 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3525 }
3526
8986ecc0 3527 return 0;
17ac10ad
AK
3528}
3529
651dd37a
JR
3530static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3531{
3532 if (vcpu->arch.mmu.direct_map)
3533 return mmu_alloc_direct_roots(vcpu);
3534 else
3535 return mmu_alloc_shadow_roots(vcpu);
3536}
3537
0ba73cda
MT
3538static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3539{
3540 int i;
3541 struct kvm_mmu_page *sp;
3542
81407ca5
JR
3543 if (vcpu->arch.mmu.direct_map)
3544 return;
3545
0ba73cda
MT
3546 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3547 return;
6903074c 3548
56f17dd3 3549 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3550 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
855feb67 3551 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
0ba73cda
MT
3552 hpa_t root = vcpu->arch.mmu.root_hpa;
3553 sp = page_header(root);
3554 mmu_sync_children(vcpu, sp);
0375f7fa 3555 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3556 return;
3557 }
3558 for (i = 0; i < 4; ++i) {
3559 hpa_t root = vcpu->arch.mmu.pae_root[i];
3560
8986ecc0 3561 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3562 root &= PT64_BASE_ADDR_MASK;
3563 sp = page_header(root);
3564 mmu_sync_children(vcpu, sp);
3565 }
3566 }
0375f7fa 3567 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3568}
3569
3570void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3571{
3572 spin_lock(&vcpu->kvm->mmu_lock);
3573 mmu_sync_roots(vcpu);
6cffe8ca 3574 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3575}
bfd0a56b 3576EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3577
1871c602 3578static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3579 u32 access, struct x86_exception *exception)
6aa8b732 3580{
ab9ae313
AK
3581 if (exception)
3582 exception->error_code = 0;
6aa8b732
AK
3583 return vaddr;
3584}
3585
6539e738 3586static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3587 u32 access,
3588 struct x86_exception *exception)
6539e738 3589{
ab9ae313
AK
3590 if (exception)
3591 exception->error_code = 0;
54987b7a 3592 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3593}
3594
d625b155
XG
3595static bool
3596__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3597{
3598 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3599
3600 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3601 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3602}
3603
3604static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3605{
3606 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3607}
3608
3609static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3610{
3611 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3612}
3613
ded58749 3614static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3615{
9034e6e8
PB
3616 /*
3617 * A nested guest cannot use the MMIO cache if it is using nested
3618 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3619 */
3620 if (mmu_is_nested(vcpu))
3621 return false;
3622
ce88decf
XG
3623 if (direct)
3624 return vcpu_match_mmio_gpa(vcpu, addr);
3625
3626 return vcpu_match_mmio_gva(vcpu, addr);
3627}
3628
47ab8751
XG
3629/* return true if reserved bit is detected on spte. */
3630static bool
3631walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3632{
3633 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3634 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
47ab8751
XG
3635 int root, leaf;
3636 bool reserved = false;
ce88decf 3637
37f6a4e2 3638 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3639 goto exit;
37f6a4e2 3640
ce88decf 3641 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3642
29ecd660
PB
3643 for (shadow_walk_init(&iterator, vcpu, addr),
3644 leaf = root = iterator.level;
47ab8751
XG
3645 shadow_walk_okay(&iterator);
3646 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3647 spte = mmu_spte_get_lockless(iterator.sptep);
3648
3649 sptes[leaf - 1] = spte;
29ecd660 3650 leaf--;
47ab8751 3651
ce88decf
XG
3652 if (!is_shadow_present_pte(spte))
3653 break;
47ab8751
XG
3654
3655 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
58c95070 3656 iterator.level);
47ab8751
XG
3657 }
3658
ce88decf
XG
3659 walk_shadow_page_lockless_end(vcpu);
3660
47ab8751
XG
3661 if (reserved) {
3662 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3663 __func__, addr);
29ecd660 3664 while (root > leaf) {
47ab8751
XG
3665 pr_err("------ spte 0x%llx level %d.\n",
3666 sptes[root - 1], root);
3667 root--;
3668 }
3669 }
3670exit:
3671 *sptep = spte;
3672 return reserved;
ce88decf
XG
3673}
3674
e08d26f0 3675static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3676{
3677 u64 spte;
47ab8751 3678 bool reserved;
ce88decf 3679
ded58749 3680 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3681 return RET_PF_EMULATE;
ce88decf 3682
47ab8751 3683 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3684 if (WARN_ON(reserved))
9b8ebbdb 3685 return -EINVAL;
ce88decf
XG
3686
3687 if (is_mmio_spte(spte)) {
3688 gfn_t gfn = get_mmio_spte_gfn(spte);
3689 unsigned access = get_mmio_spte_access(spte);
3690
54bf36aa 3691 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3692 return RET_PF_INVALID;
f8f55942 3693
ce88decf
XG
3694 if (direct)
3695 addr = 0;
4f022648
XG
3696
3697 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3698 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3699 return RET_PF_EMULATE;
ce88decf
XG
3700 }
3701
ce88decf
XG
3702 /*
3703 * If the page table is zapped by other cpus, let CPU fault again on
3704 * the address.
3705 */
9b8ebbdb 3706 return RET_PF_RETRY;
ce88decf 3707}
450869d6 3708EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
ce88decf 3709
3d0c27ad
XG
3710static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3711 u32 error_code, gfn_t gfn)
3712{
3713 if (unlikely(error_code & PFERR_RSVD_MASK))
3714 return false;
3715
3716 if (!(error_code & PFERR_PRESENT_MASK) ||
3717 !(error_code & PFERR_WRITE_MASK))
3718 return false;
3719
3720 /*
3721 * guest is writing the page which is write tracked which can
3722 * not be fixed by page fault handler.
3723 */
3724 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3725 return true;
3726
3727 return false;
3728}
3729
e5691a81
XG
3730static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3731{
3732 struct kvm_shadow_walk_iterator iterator;
3733 u64 spte;
3734
3735 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3736 return;
3737
3738 walk_shadow_page_lockless_begin(vcpu);
3739 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3740 clear_sp_write_flooding_count(iterator.sptep);
3741 if (!is_shadow_present_pte(spte))
3742 break;
3743 }
3744 walk_shadow_page_lockless_end(vcpu);
3745}
3746
6aa8b732 3747static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3748 u32 error_code, bool prefault)
6aa8b732 3749{
3d0c27ad 3750 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3751 int r;
6aa8b732 3752
b8688d51 3753 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3754
3d0c27ad 3755 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3756 return RET_PF_EMULATE;
ce88decf 3757
e2dec939
AK
3758 r = mmu_topup_memory_caches(vcpu);
3759 if (r)
3760 return r;
714b93da 3761
fa4a2c08 3762 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3763
6aa8b732 3764
e833240f 3765 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3766 error_code, gfn, prefault);
6aa8b732
AK
3767}
3768
7e1fbeac 3769static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3770{
3771 struct kvm_arch_async_pf arch;
fb67e14f 3772
7c90705b 3773 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3774 arch.gfn = gfn;
c4806acd 3775 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3776 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3777
54bf36aa 3778 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3779}
3780
9bc1f09f 3781bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
af585b92 3782{
35754c98 3783 if (unlikely(!lapic_in_kernel(vcpu) ||
af585b92
GN
3784 kvm_event_needs_reinjection(vcpu)))
3785 return false;
3786
52a5c155 3787 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
9bc1f09f
WL
3788 return false;
3789
af585b92
GN
3790 return kvm_x86_ops->interrupt_allowed(vcpu);
3791}
3792
78b2c54a 3793static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3794 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 3795{
3520469d 3796 struct kvm_memory_slot *slot;
af585b92
GN
3797 bool async;
3798
54bf36aa 3799 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3800 async = false;
3801 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3802 if (!async)
3803 return false; /* *pfn has correct page already */
3804
9bc1f09f 3805 if (!prefault && kvm_can_do_async_pf(vcpu)) {
c9b263d2 3806 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3807 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3808 trace_kvm_async_pf_doublefault(gva, gfn);
3809 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3810 return true;
3811 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3812 return true;
3813 }
3814
3520469d 3815 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3816 return false;
3817}
3818
1261bfa3 3819int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 3820 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
3821{
3822 int r = 1;
3823
3824 switch (vcpu->arch.apf.host_apf_reason) {
3825 default:
3826 trace_kvm_page_fault(fault_address, error_code);
3827
d0006530 3828 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
3829 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3830 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3831 insn_len);
3832 break;
3833 case KVM_PV_REASON_PAGE_NOT_PRESENT:
3834 vcpu->arch.apf.host_apf_reason = 0;
3835 local_irq_disable();
a2b7861b 3836 kvm_async_pf_task_wait(fault_address, 0);
1261bfa3
WL
3837 local_irq_enable();
3838 break;
3839 case KVM_PV_REASON_PAGE_READY:
3840 vcpu->arch.apf.host_apf_reason = 0;
3841 local_irq_disable();
3842 kvm_async_pf_task_wake(fault_address);
3843 local_irq_enable();
3844 break;
3845 }
3846 return r;
3847}
3848EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3849
6a39bbc5
XG
3850static bool
3851check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3852{
3853 int page_num = KVM_PAGES_PER_HPAGE(level);
3854
3855 gfn &= ~(page_num - 1);
3856
3857 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3858}
3859
56028d08 3860static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3861 bool prefault)
fb72d167 3862{
ba049e93 3863 kvm_pfn_t pfn;
fb72d167 3864 int r;
852e3c19 3865 int level;
cd1872f0 3866 bool force_pt_level;
05da4558 3867 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3868 unsigned long mmu_seq;
612819c3
MT
3869 int write = error_code & PFERR_WRITE_MASK;
3870 bool map_writable;
fb72d167 3871
fa4a2c08 3872 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3873
3d0c27ad 3874 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3875 return RET_PF_EMULATE;
ce88decf 3876
fb72d167
JR
3877 r = mmu_topup_memory_caches(vcpu);
3878 if (r)
3879 return r;
3880
fd136902
TY
3881 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3882 PT_DIRECTORY_LEVEL);
3883 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3884 if (likely(!force_pt_level)) {
6a39bbc5
XG
3885 if (level > PT_DIRECTORY_LEVEL &&
3886 !check_hugepage_cache_consistency(vcpu, gfn, level))
3887 level = PT_DIRECTORY_LEVEL;
936a5fe6 3888 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3889 }
852e3c19 3890
c7ba5b48 3891 if (fast_page_fault(vcpu, gpa, level, error_code))
9b8ebbdb 3892 return RET_PF_RETRY;
c7ba5b48 3893
e930bffe 3894 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3895 smp_rmb();
af585b92 3896
78b2c54a 3897 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
9b8ebbdb 3898 return RET_PF_RETRY;
af585b92 3899
d7c55201
XG
3900 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3901 return r;
3902
fb72d167 3903 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3904 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3905 goto out_unlock;
26eeb53c
WL
3906 if (make_mmu_pages_available(vcpu) < 0)
3907 goto out_unlock;
936a5fe6
AA
3908 if (likely(!force_pt_level))
3909 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3910 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 3911 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3912
3913 return r;
e930bffe
AA
3914
3915out_unlock:
3916 spin_unlock(&vcpu->kvm->mmu_lock);
3917 kvm_release_pfn_clean(pfn);
9b8ebbdb 3918 return RET_PF_RETRY;
fb72d167
JR
3919}
3920
8a3c1a33
PB
3921static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3922 struct kvm_mmu *context)
6aa8b732 3923{
6aa8b732 3924 context->page_fault = nonpaging_page_fault;
6aa8b732 3925 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3926 context->sync_page = nonpaging_sync_page;
a7052897 3927 context->invlpg = nonpaging_invlpg;
0f53b5b1 3928 context->update_pte = nonpaging_update_pte;
cea0f0e7 3929 context->root_level = 0;
6aa8b732 3930 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3931 context->root_hpa = INVALID_PAGE;
c5a78f2b 3932 context->direct_map = true;
2d48a985 3933 context->nx = false;
6aa8b732
AK
3934}
3935
d8d173da 3936void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3937{
cea0f0e7 3938 mmu_free_roots(vcpu);
6aa8b732
AK
3939}
3940
5777ed34
JR
3941static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3942{
9f8fe504 3943 return kvm_read_cr3(vcpu);
5777ed34
JR
3944}
3945
6389ee94
AK
3946static void inject_page_fault(struct kvm_vcpu *vcpu,
3947 struct x86_exception *fault)
6aa8b732 3948{
6389ee94 3949 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3950}
3951
54bf36aa 3952static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3953 unsigned access, int *nr_present)
ce88decf
XG
3954{
3955 if (unlikely(is_mmio_spte(*sptep))) {
3956 if (gfn != get_mmio_spte_gfn(*sptep)) {
3957 mmu_spte_clear_no_track(sptep);
3958 return true;
3959 }
3960
3961 (*nr_present)++;
54bf36aa 3962 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3963 return true;
3964 }
3965
3966 return false;
3967}
3968
6bb69c9b
PB
3969static inline bool is_last_gpte(struct kvm_mmu *mmu,
3970 unsigned level, unsigned gpte)
6fd01b71 3971{
6bb69c9b
PB
3972 /*
3973 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3974 * If it is clear, there are no large pages at this level, so clear
3975 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3976 */
3977 gpte &= level - mmu->last_nonleaf_level;
3978
829ee279
LP
3979 /*
3980 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3981 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3982 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3983 */
3984 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3985
6bb69c9b 3986 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
3987}
3988
37406aaa
NHE
3989#define PTTYPE_EPT 18 /* arbitrary */
3990#define PTTYPE PTTYPE_EPT
3991#include "paging_tmpl.h"
3992#undef PTTYPE
3993
6aa8b732
AK
3994#define PTTYPE 64
3995#include "paging_tmpl.h"
3996#undef PTTYPE
3997
3998#define PTTYPE 32
3999#include "paging_tmpl.h"
4000#undef PTTYPE
4001
6dc98b86
XG
4002static void
4003__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4004 struct rsvd_bits_validate *rsvd_check,
4005 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 4006 bool pse, bool amd)
82725b20 4007{
82725b20 4008 u64 exb_bit_rsvd = 0;
5f7dde7b 4009 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4010 u64 nonleaf_bit8_rsvd = 0;
82725b20 4011
a0a64f50 4012 rsvd_check->bad_mt_xwr = 0;
25d92081 4013
6dc98b86 4014 if (!nx)
82725b20 4015 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 4016 if (!gbpages)
5f7dde7b 4017 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4018
4019 /*
4020 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4021 * leaf entries) on AMD CPUs only.
4022 */
6fec2144 4023 if (amd)
a0c0feb5
PB
4024 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4025
6dc98b86 4026 switch (level) {
82725b20
DE
4027 case PT32_ROOT_LEVEL:
4028 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4029 rsvd_check->rsvd_bits_mask[0][1] = 0;
4030 rsvd_check->rsvd_bits_mask[0][0] = 0;
4031 rsvd_check->rsvd_bits_mask[1][0] =
4032 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4033
6dc98b86 4034 if (!pse) {
a0a64f50 4035 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4036 break;
4037 }
4038
82725b20
DE
4039 if (is_cpuid_PSE36())
4040 /* 36bits PSE 4MB page */
a0a64f50 4041 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4042 else
4043 /* 32 bits PSE 4MB page */
a0a64f50 4044 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4045 break;
4046 case PT32E_ROOT_LEVEL:
a0a64f50 4047 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4048 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4049 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4050 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4051 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4052 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4053 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4054 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4055 rsvd_bits(maxphyaddr, 62) |
4056 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4057 rsvd_check->rsvd_bits_mask[1][0] =
4058 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4059 break;
855feb67
YZ
4060 case PT64_ROOT_5LEVEL:
4061 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4062 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4063 rsvd_bits(maxphyaddr, 51);
4064 rsvd_check->rsvd_bits_mask[1][4] =
4065 rsvd_check->rsvd_bits_mask[0][4];
2a7266a8 4066 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4067 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4068 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4069 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4070 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4071 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 4072 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4073 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4074 rsvd_bits(maxphyaddr, 51);
4075 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4076 rsvd_bits(maxphyaddr, 51);
4077 rsvd_check->rsvd_bits_mask[1][3] =
4078 rsvd_check->rsvd_bits_mask[0][3];
4079 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4080 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4081 rsvd_bits(13, 29);
a0a64f50 4082 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4083 rsvd_bits(maxphyaddr, 51) |
4084 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4085 rsvd_check->rsvd_bits_mask[1][0] =
4086 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4087 break;
4088 }
4089}
4090
6dc98b86
XG
4091static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4092 struct kvm_mmu *context)
4093{
4094 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4095 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4096 context->nx,
4097 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
6fec2144 4098 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
4099}
4100
81b8eebb
XG
4101static void
4102__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4103 int maxphyaddr, bool execonly)
25d92081 4104{
951f9fd7 4105 u64 bad_mt_xwr;
25d92081 4106
855feb67
YZ
4107 rsvd_check->rsvd_bits_mask[0][4] =
4108 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4109 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4110 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4111 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4112 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4113 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4114 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4115 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4116
4117 /* large page */
855feb67 4118 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4119 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4120 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4121 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4122 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4123 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4124 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4125
951f9fd7
PB
4126 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4127 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4128 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4129 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4130 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4131 if (!execonly) {
4132 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4133 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4134 }
951f9fd7 4135 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4136}
4137
81b8eebb
XG
4138static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4139 struct kvm_mmu *context, bool execonly)
4140{
4141 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4142 cpuid_maxphyaddr(vcpu), execonly);
4143}
4144
c258b62b
XG
4145/*
4146 * the page table on host is the shadow page table for the page
4147 * table in guest or amd nested guest, its mmu features completely
4148 * follow the features in guest.
4149 */
4150void
4151reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4152{
5f0b8199 4153 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
ea2800dd
BS
4154 struct rsvd_bits_validate *shadow_zero_check;
4155 int i;
5f0b8199 4156
6fec2144
PB
4157 /*
4158 * Passing "true" to the last argument is okay; it adds a check
4159 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4160 */
ea2800dd
BS
4161 shadow_zero_check = &context->shadow_zero_check;
4162 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
c258b62b 4163 boot_cpu_data.x86_phys_bits,
5f0b8199 4164 context->shadow_root_level, uses_nx,
d6321d49
RK
4165 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4166 is_pse(vcpu), true);
ea2800dd
BS
4167
4168 if (!shadow_me_mask)
4169 return;
4170
4171 for (i = context->shadow_root_level; --i >= 0;) {
4172 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4173 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4174 }
4175
c258b62b
XG
4176}
4177EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4178
6fec2144
PB
4179static inline bool boot_cpu_is_amd(void)
4180{
4181 WARN_ON_ONCE(!tdp_enabled);
4182 return shadow_x_mask == 0;
4183}
4184
c258b62b
XG
4185/*
4186 * the direct page table on host, use as much mmu features as
4187 * possible, however, kvm currently does not do execution-protection.
4188 */
4189static void
4190reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4191 struct kvm_mmu *context)
4192{
ea2800dd
BS
4193 struct rsvd_bits_validate *shadow_zero_check;
4194 int i;
4195
4196 shadow_zero_check = &context->shadow_zero_check;
4197
6fec2144 4198 if (boot_cpu_is_amd())
ea2800dd 4199 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
c258b62b
XG
4200 boot_cpu_data.x86_phys_bits,
4201 context->shadow_root_level, false,
b8291adc
BP
4202 boot_cpu_has(X86_FEATURE_GBPAGES),
4203 true, true);
c258b62b 4204 else
ea2800dd 4205 __reset_rsvds_bits_mask_ept(shadow_zero_check,
c258b62b
XG
4206 boot_cpu_data.x86_phys_bits,
4207 false);
4208
ea2800dd
BS
4209 if (!shadow_me_mask)
4210 return;
4211
4212 for (i = context->shadow_root_level; --i >= 0;) {
4213 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4214 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4215 }
c258b62b
XG
4216}
4217
4218/*
4219 * as the comments in reset_shadow_zero_bits_mask() except it
4220 * is the shadow page table for intel nested guest.
4221 */
4222static void
4223reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4224 struct kvm_mmu *context, bool execonly)
4225{
4226 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4227 boot_cpu_data.x86_phys_bits, execonly);
4228}
4229
09f037aa
PB
4230#define BYTE_MASK(access) \
4231 ((1 & (access) ? 2 : 0) | \
4232 (2 & (access) ? 4 : 0) | \
4233 (3 & (access) ? 8 : 0) | \
4234 (4 & (access) ? 16 : 0) | \
4235 (5 & (access) ? 32 : 0) | \
4236 (6 & (access) ? 64 : 0) | \
4237 (7 & (access) ? 128 : 0))
4238
4239
edc90b7d
XG
4240static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4241 struct kvm_mmu *mmu, bool ept)
97d64b78 4242{
09f037aa
PB
4243 unsigned byte;
4244
4245 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4246 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4247 const u8 u = BYTE_MASK(ACC_USER_MASK);
4248
4249 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4250 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4251 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4252
97d64b78 4253 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4254 unsigned pfec = byte << 1;
4255
97ec8c06 4256 /*
09f037aa
PB
4257 * Each "*f" variable has a 1 bit for each UWX value
4258 * that causes a fault with the given PFEC.
97ec8c06 4259 */
97d64b78 4260
09f037aa
PB
4261 /* Faults from writes to non-writable pages */
4262 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4263 /* Faults from user mode accesses to supervisor pages */
4264 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4265 /* Faults from fetches of non-executable pages*/
4266 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4267 /* Faults from kernel mode fetches of user pages */
4268 u8 smepf = 0;
4269 /* Faults from kernel mode accesses of user pages */
4270 u8 smapf = 0;
4271
4272 if (!ept) {
4273 /* Faults from kernel mode accesses to user pages */
4274 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4275
4276 /* Not really needed: !nx will cause pte.nx to fault */
4277 if (!mmu->nx)
4278 ff = 0;
4279
4280 /* Allow supervisor writes if !cr0.wp */
4281 if (!cr0_wp)
4282 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4283
4284 /* Disallow supervisor fetches of user code if cr4.smep */
4285 if (cr4_smep)
4286 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4287
4288 /*
4289 * SMAP:kernel-mode data accesses from user-mode
4290 * mappings should fault. A fault is considered
4291 * as a SMAP violation if all of the following
4292 * conditions are ture:
4293 * - X86_CR4_SMAP is set in CR4
4294 * - A user page is accessed
4295 * - The access is not a fetch
4296 * - Page fault in kernel mode
4297 * - if CPL = 3 or X86_EFLAGS_AC is clear
4298 *
4299 * Here, we cover the first three conditions.
4300 * The fourth is computed dynamically in permission_fault();
4301 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4302 * *not* subject to SMAP restrictions.
4303 */
4304 if (cr4_smap)
4305 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4306 }
09f037aa
PB
4307
4308 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4309 }
4310}
4311
2d344105
HH
4312/*
4313* PKU is an additional mechanism by which the paging controls access to
4314* user-mode addresses based on the value in the PKRU register. Protection
4315* key violations are reported through a bit in the page fault error code.
4316* Unlike other bits of the error code, the PK bit is not known at the
4317* call site of e.g. gva_to_gpa; it must be computed directly in
4318* permission_fault based on two bits of PKRU, on some machine state (CR4,
4319* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4320*
4321* In particular the following conditions come from the error code, the
4322* page tables and the machine state:
4323* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4324* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4325* - PK is always zero if U=0 in the page tables
4326* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4327*
4328* The PKRU bitmask caches the result of these four conditions. The error
4329* code (minus the P bit) and the page table's U bit form an index into the
4330* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4331* with the two bits of the PKRU register corresponding to the protection key.
4332* For the first three conditions above the bits will be 00, thus masking
4333* away both AD and WD. For all reads or if the last condition holds, WD
4334* only will be masked away.
4335*/
4336static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4337 bool ept)
4338{
4339 unsigned bit;
4340 bool wp;
4341
4342 if (ept) {
4343 mmu->pkru_mask = 0;
4344 return;
4345 }
4346
4347 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4348 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4349 mmu->pkru_mask = 0;
4350 return;
4351 }
4352
4353 wp = is_write_protection(vcpu);
4354
4355 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4356 unsigned pfec, pkey_bits;
4357 bool check_pkey, check_write, ff, uf, wf, pte_user;
4358
4359 pfec = bit << 1;
4360 ff = pfec & PFERR_FETCH_MASK;
4361 uf = pfec & PFERR_USER_MASK;
4362 wf = pfec & PFERR_WRITE_MASK;
4363
4364 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4365 pte_user = pfec & PFERR_RSVD_MASK;
4366
4367 /*
4368 * Only need to check the access which is not an
4369 * instruction fetch and is to a user page.
4370 */
4371 check_pkey = (!ff && pte_user);
4372 /*
4373 * write access is controlled by PKRU if it is a
4374 * user access or CR0.WP = 1.
4375 */
4376 check_write = check_pkey && wf && (uf || wp);
4377
4378 /* PKRU.AD stops both read and write access. */
4379 pkey_bits = !!check_pkey;
4380 /* PKRU.WD stops write access. */
4381 pkey_bits |= (!!check_write) << 1;
4382
4383 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4384 }
4385}
4386
6bb69c9b 4387static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4388{
6bb69c9b
PB
4389 unsigned root_level = mmu->root_level;
4390
4391 mmu->last_nonleaf_level = root_level;
4392 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4393 mmu->last_nonleaf_level++;
6fd01b71
AK
4394}
4395
8a3c1a33
PB
4396static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4397 struct kvm_mmu *context,
4398 int level)
6aa8b732 4399{
2d48a985 4400 context->nx = is_nx(vcpu);
4d6931c3 4401 context->root_level = level;
2d48a985 4402
4d6931c3 4403 reset_rsvds_bits_mask(vcpu, context);
25d92081 4404 update_permission_bitmask(vcpu, context, false);
2d344105 4405 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4406 update_last_nonleaf_level(vcpu, context);
6aa8b732 4407
fa4a2c08 4408 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4409 context->page_fault = paging64_page_fault;
6aa8b732 4410 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4411 context->sync_page = paging64_sync_page;
a7052897 4412 context->invlpg = paging64_invlpg;
0f53b5b1 4413 context->update_pte = paging64_update_pte;
17ac10ad 4414 context->shadow_root_level = level;
17c3ba9d 4415 context->root_hpa = INVALID_PAGE;
c5a78f2b 4416 context->direct_map = false;
6aa8b732
AK
4417}
4418
8a3c1a33
PB
4419static void paging64_init_context(struct kvm_vcpu *vcpu,
4420 struct kvm_mmu *context)
17ac10ad 4421{
855feb67
YZ
4422 int root_level = is_la57_mode(vcpu) ?
4423 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4424
4425 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4426}
4427
8a3c1a33
PB
4428static void paging32_init_context(struct kvm_vcpu *vcpu,
4429 struct kvm_mmu *context)
6aa8b732 4430{
2d48a985 4431 context->nx = false;
4d6931c3 4432 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4433
4d6931c3 4434 reset_rsvds_bits_mask(vcpu, context);
25d92081 4435 update_permission_bitmask(vcpu, context, false);
2d344105 4436 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4437 update_last_nonleaf_level(vcpu, context);
6aa8b732 4438
6aa8b732 4439 context->page_fault = paging32_page_fault;
6aa8b732 4440 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4441 context->sync_page = paging32_sync_page;
a7052897 4442 context->invlpg = paging32_invlpg;
0f53b5b1 4443 context->update_pte = paging32_update_pte;
6aa8b732 4444 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 4445 context->root_hpa = INVALID_PAGE;
c5a78f2b 4446 context->direct_map = false;
6aa8b732
AK
4447}
4448
8a3c1a33
PB
4449static void paging32E_init_context(struct kvm_vcpu *vcpu,
4450 struct kvm_mmu *context)
6aa8b732 4451{
8a3c1a33 4452 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4453}
4454
8a3c1a33 4455static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4456{
ad896af0 4457 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 4458
c445f8ef 4459 context->base_role.word = 0;
699023e2 4460 context->base_role.smm = is_smm(vcpu);
ac8d57e5 4461 context->base_role.ad_disabled = (shadow_accessed_mask == 0);
fb72d167 4462 context->page_fault = tdp_page_fault;
e8bc217a 4463 context->sync_page = nonpaging_sync_page;
a7052897 4464 context->invlpg = nonpaging_invlpg;
0f53b5b1 4465 context->update_pte = nonpaging_update_pte;
855feb67 4466 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
fb72d167 4467 context->root_hpa = INVALID_PAGE;
c5a78f2b 4468 context->direct_map = true;
1c97f0a0 4469 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4470 context->get_cr3 = get_cr3;
e4e517b4 4471 context->get_pdptr = kvm_pdptr_read;
cb659db8 4472 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4473
4474 if (!is_paging(vcpu)) {
2d48a985 4475 context->nx = false;
fb72d167
JR
4476 context->gva_to_gpa = nonpaging_gva_to_gpa;
4477 context->root_level = 0;
4478 } else if (is_long_mode(vcpu)) {
2d48a985 4479 context->nx = is_nx(vcpu);
855feb67
YZ
4480 context->root_level = is_la57_mode(vcpu) ?
4481 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4482 reset_rsvds_bits_mask(vcpu, context);
4483 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4484 } else if (is_pae(vcpu)) {
2d48a985 4485 context->nx = is_nx(vcpu);
fb72d167 4486 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4487 reset_rsvds_bits_mask(vcpu, context);
4488 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4489 } else {
2d48a985 4490 context->nx = false;
fb72d167 4491 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4492 reset_rsvds_bits_mask(vcpu, context);
4493 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4494 }
4495
25d92081 4496 update_permission_bitmask(vcpu, context, false);
2d344105 4497 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4498 update_last_nonleaf_level(vcpu, context);
c258b62b 4499 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4500}
4501
ad896af0 4502void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 4503{
411c588d 4504 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 4505 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
4506 struct kvm_mmu *context = &vcpu->arch.mmu;
4507
fa4a2c08 4508 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
4509
4510 if (!is_paging(vcpu))
8a3c1a33 4511 nonpaging_init_context(vcpu, context);
a9058ecd 4512 else if (is_long_mode(vcpu))
8a3c1a33 4513 paging64_init_context(vcpu, context);
6aa8b732 4514 else if (is_pae(vcpu))
8a3c1a33 4515 paging32E_init_context(vcpu, context);
6aa8b732 4516 else
8a3c1a33 4517 paging32_init_context(vcpu, context);
a770f6f2 4518
ad896af0
PB
4519 context->base_role.nxe = is_nx(vcpu);
4520 context->base_role.cr4_pae = !!is_pae(vcpu);
4521 context->base_role.cr0_wp = is_write_protection(vcpu);
4522 context->base_role.smep_andnot_wp
411c588d 4523 = smep && !is_write_protection(vcpu);
edc90b7d
XG
4524 context->base_role.smap_andnot_wp
4525 = smap && !is_write_protection(vcpu);
699023e2 4526 context->base_role.smm = is_smm(vcpu);
c258b62b 4527 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4528}
4529EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4530
ae1e2d10
PB
4531void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4532 bool accessed_dirty)
155a97a3 4533{
ad896af0
PB
4534 struct kvm_mmu *context = &vcpu->arch.mmu;
4535
fa4a2c08 4536 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3 4537
855feb67 4538 context->shadow_root_level = PT64_ROOT_4LEVEL;
155a97a3
NHE
4539
4540 context->nx = true;
ae1e2d10 4541 context->ept_ad = accessed_dirty;
155a97a3
NHE
4542 context->page_fault = ept_page_fault;
4543 context->gva_to_gpa = ept_gva_to_gpa;
4544 context->sync_page = ept_sync_page;
4545 context->invlpg = ept_invlpg;
4546 context->update_pte = ept_update_pte;
855feb67 4547 context->root_level = PT64_ROOT_4LEVEL;
155a97a3
NHE
4548 context->root_hpa = INVALID_PAGE;
4549 context->direct_map = false;
995f00a6 4550 context->base_role.ad_disabled = !accessed_dirty;
155a97a3
NHE
4551
4552 update_permission_bitmask(vcpu, context, true);
2d344105 4553 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4554 update_last_nonleaf_level(vcpu, context);
155a97a3 4555 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4556 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4557}
4558EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4559
8a3c1a33 4560static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4561{
ad896af0
PB
4562 struct kvm_mmu *context = &vcpu->arch.mmu;
4563
4564 kvm_init_shadow_mmu(vcpu);
4565 context->set_cr3 = kvm_x86_ops->set_cr3;
4566 context->get_cr3 = get_cr3;
4567 context->get_pdptr = kvm_pdptr_read;
4568 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4569}
4570
8a3c1a33 4571static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4572{
4573 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4574
4575 g_context->get_cr3 = get_cr3;
e4e517b4 4576 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4577 g_context->inject_page_fault = kvm_inject_page_fault;
4578
4579 /*
0af2593b
DM
4580 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4581 * L1's nested page tables (e.g. EPT12). The nested translation
4582 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4583 * L2's page tables as the first level of translation and L1's
4584 * nested page tables as the second level of translation. Basically
4585 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4586 */
4587 if (!is_paging(vcpu)) {
2d48a985 4588 g_context->nx = false;
02f59dc9
JR
4589 g_context->root_level = 0;
4590 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4591 } else if (is_long_mode(vcpu)) {
2d48a985 4592 g_context->nx = is_nx(vcpu);
855feb67
YZ
4593 g_context->root_level = is_la57_mode(vcpu) ?
4594 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 4595 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4596 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4597 } else if (is_pae(vcpu)) {
2d48a985 4598 g_context->nx = is_nx(vcpu);
02f59dc9 4599 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4600 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4601 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4602 } else {
2d48a985 4603 g_context->nx = false;
02f59dc9 4604 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4605 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4606 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4607 }
4608
25d92081 4609 update_permission_bitmask(vcpu, g_context, false);
2d344105 4610 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4611 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4612}
4613
8a3c1a33 4614static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4615{
02f59dc9 4616 if (mmu_is_nested(vcpu))
e0c6db3e 4617 init_kvm_nested_mmu(vcpu);
02f59dc9 4618 else if (tdp_enabled)
e0c6db3e 4619 init_kvm_tdp_mmu(vcpu);
fb72d167 4620 else
e0c6db3e 4621 init_kvm_softmmu(vcpu);
fb72d167
JR
4622}
4623
8a3c1a33 4624void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4625{
95f93af4 4626 kvm_mmu_unload(vcpu);
8a3c1a33 4627 init_kvm_mmu(vcpu);
17c3ba9d 4628}
8668a3c4 4629EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4630
4631int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4632{
714b93da
AK
4633 int r;
4634
e2dec939 4635 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4636 if (r)
4637 goto out;
8986ecc0 4638 r = mmu_alloc_roots(vcpu);
e2858b4a 4639 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4640 if (r)
4641 goto out;
3662cb1c 4642 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4643 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4644out:
4645 return r;
6aa8b732 4646}
17c3ba9d
AK
4647EXPORT_SYMBOL_GPL(kvm_mmu_load);
4648
4649void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4650{
4651 mmu_free_roots(vcpu);
95f93af4 4652 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4653}
4b16184c 4654EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4655
0028425f 4656static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4657 struct kvm_mmu_page *sp, u64 *spte,
4658 const void *new)
0028425f 4659{
30945387 4660 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4661 ++vcpu->kvm->stat.mmu_pde_zapped;
4662 return;
30945387 4663 }
0028425f 4664
4cee5764 4665 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4666 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4667}
4668
79539cec
AK
4669static bool need_remote_flush(u64 old, u64 new)
4670{
4671 if (!is_shadow_present_pte(old))
4672 return false;
4673 if (!is_shadow_present_pte(new))
4674 return true;
4675 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4676 return true;
53166229
GN
4677 old ^= shadow_nx_mask;
4678 new ^= shadow_nx_mask;
79539cec
AK
4679 return (old & ~new & PT64_PERM_MASK) != 0;
4680}
4681
889e5cbc
XG
4682static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4683 const u8 *new, int *bytes)
da4a00f0 4684{
889e5cbc
XG
4685 u64 gentry;
4686 int r;
72016f3a 4687
72016f3a
AK
4688 /*
4689 * Assume that the pte write on a page table of the same type
49b26e26
XG
4690 * as the current vcpu paging mode since we update the sptes only
4691 * when they have the same mode.
72016f3a 4692 */
889e5cbc 4693 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4694 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4695 *gpa &= ~(gpa_t)7;
4696 *bytes = 8;
54bf36aa 4697 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4698 if (r)
4699 gentry = 0;
08e850c6
AK
4700 new = (const u8 *)&gentry;
4701 }
4702
889e5cbc 4703 switch (*bytes) {
08e850c6
AK
4704 case 4:
4705 gentry = *(const u32 *)new;
4706 break;
4707 case 8:
4708 gentry = *(const u64 *)new;
4709 break;
4710 default:
4711 gentry = 0;
4712 break;
72016f3a
AK
4713 }
4714
889e5cbc
XG
4715 return gentry;
4716}
4717
4718/*
4719 * If we're seeing too many writes to a page, it may no longer be a page table,
4720 * or we may be forking, in which case it is better to unmap the page.
4721 */
a138fe75 4722static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4723{
a30f47cb
XG
4724 /*
4725 * Skip write-flooding detected for the sp whose level is 1, because
4726 * it can become unsync, then the guest page is not write-protected.
4727 */
f71fa31f 4728 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4729 return false;
3246af0e 4730
e5691a81
XG
4731 atomic_inc(&sp->write_flooding_count);
4732 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4733}
4734
4735/*
4736 * Misaligned accesses are too much trouble to fix up; also, they usually
4737 * indicate a page is not used as a page table.
4738 */
4739static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4740 int bytes)
4741{
4742 unsigned offset, pte_size, misaligned;
4743
4744 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4745 gpa, bytes, sp->role.word);
4746
4747 offset = offset_in_page(gpa);
4748 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4749
4750 /*
4751 * Sometimes, the OS only writes the last one bytes to update status
4752 * bits, for example, in linux, andb instruction is used in clear_bit().
4753 */
4754 if (!(offset & (pte_size - 1)) && bytes == 1)
4755 return false;
4756
889e5cbc
XG
4757 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4758 misaligned |= bytes < 4;
4759
4760 return misaligned;
4761}
4762
4763static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4764{
4765 unsigned page_offset, quadrant;
4766 u64 *spte;
4767 int level;
4768
4769 page_offset = offset_in_page(gpa);
4770 level = sp->role.level;
4771 *nspte = 1;
4772 if (!sp->role.cr4_pae) {
4773 page_offset <<= 1; /* 32->64 */
4774 /*
4775 * A 32-bit pde maps 4MB while the shadow pdes map
4776 * only 2MB. So we need to double the offset again
4777 * and zap two pdes instead of one.
4778 */
4779 if (level == PT32_ROOT_LEVEL) {
4780 page_offset &= ~7; /* kill rounding error */
4781 page_offset <<= 1;
4782 *nspte = 2;
4783 }
4784 quadrant = page_offset >> PAGE_SHIFT;
4785 page_offset &= ~PAGE_MASK;
4786 if (quadrant != sp->role.quadrant)
4787 return NULL;
4788 }
4789
4790 spte = &sp->spt[page_offset / sizeof(*spte)];
4791 return spte;
4792}
4793
13d268ca 4794static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
4795 const u8 *new, int bytes,
4796 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
4797{
4798 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4799 struct kvm_mmu_page *sp;
889e5cbc
XG
4800 LIST_HEAD(invalid_list);
4801 u64 entry, gentry, *spte;
4802 int npte;
b8c67b7a 4803 bool remote_flush, local_flush;
4141259b
AM
4804 union kvm_mmu_page_role mask = { };
4805
4806 mask.cr0_wp = 1;
4807 mask.cr4_pae = 1;
4808 mask.nxe = 1;
4809 mask.smep_andnot_wp = 1;
4810 mask.smap_andnot_wp = 1;
699023e2 4811 mask.smm = 1;
ac8d57e5 4812 mask.ad_disabled = 1;
889e5cbc
XG
4813
4814 /*
4815 * If we don't have indirect shadow pages, it means no page is
4816 * write-protected, so we can exit simply.
4817 */
6aa7de05 4818 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
4819 return;
4820
b8c67b7a 4821 remote_flush = local_flush = false;
889e5cbc
XG
4822
4823 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4824
4825 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4826
4827 /*
4828 * No need to care whether allocation memory is successful
4829 * or not since pte prefetch is skiped if it does not have
4830 * enough objects in the cache.
4831 */
4832 mmu_topup_memory_caches(vcpu);
4833
4834 spin_lock(&vcpu->kvm->mmu_lock);
4835 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4836 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4837
b67bfe0d 4838 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4839 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4840 detect_write_flooding(sp)) {
b8c67b7a 4841 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4842 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4843 continue;
4844 }
889e5cbc
XG
4845
4846 spte = get_written_sptes(sp, gpa, &npte);
4847 if (!spte)
4848 continue;
4849
0671a8e7 4850 local_flush = true;
ac1b714e 4851 while (npte--) {
79539cec 4852 entry = *spte;
38e3b2b2 4853 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4854 if (gentry &&
4855 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4856 & mask.word) && rmap_can_add(vcpu))
7c562522 4857 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4858 if (need_remote_flush(entry, *spte))
0671a8e7 4859 remote_flush = true;
ac1b714e 4860 ++spte;
9b7a0325 4861 }
9b7a0325 4862 }
b8c67b7a 4863 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 4864 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4865 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4866}
4867
a436036b
AK
4868int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4869{
10589a46
MT
4870 gpa_t gpa;
4871 int r;
a436036b 4872
c5a78f2b 4873 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4874 return 0;
4875
1871c602 4876 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4877
10589a46 4878 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4879
10589a46 4880 return r;
a436036b 4881}
577bdc49 4882EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4883
26eeb53c 4884static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4885{
d98ba053 4886 LIST_HEAD(invalid_list);
103ad25a 4887
81f4f76b 4888 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
26eeb53c 4889 return 0;
81f4f76b 4890
5da59607
TY
4891 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4892 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4893 break;
ebeace86 4894
4cee5764 4895 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4896 }
aa6bd187 4897 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
26eeb53c
WL
4898
4899 if (!kvm_mmu_available_pages(vcpu->kvm))
4900 return -ENOSPC;
4901 return 0;
ebeace86 4902}
ebeace86 4903
14727754 4904int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
dc25e89e 4905 void *insn, int insn_len)
3067714c 4906{
1cb3f3ae 4907 int r, emulation_type = EMULTYPE_RETRY;
3067714c 4908 enum emulation_result er;
9034e6e8 4909 bool direct = vcpu->arch.mmu.direct_map;
3067714c 4910
618232e2
BS
4911 /* With shadow page tables, fault_address contains a GVA or nGPA. */
4912 if (vcpu->arch.mmu.direct_map) {
4913 vcpu->arch.gpa_available = true;
4914 vcpu->arch.gpa_val = cr2;
4915 }
3067714c 4916
9b8ebbdb 4917 r = RET_PF_INVALID;
e9ee956e
TY
4918 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4919 r = handle_mmio_page_fault(vcpu, cr2, direct);
9b8ebbdb 4920 if (r == RET_PF_EMULATE) {
e9ee956e
TY
4921 emulation_type = 0;
4922 goto emulate;
4923 }
e9ee956e 4924 }
3067714c 4925
9b8ebbdb
PB
4926 if (r == RET_PF_INVALID) {
4927 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4928 false);
4929 WARN_ON(r == RET_PF_INVALID);
4930 }
4931
4932 if (r == RET_PF_RETRY)
4933 return 1;
3067714c 4934 if (r < 0)
e9ee956e 4935 return r;
3067714c 4936
14727754
TL
4937 /*
4938 * Before emulating the instruction, check if the error code
4939 * was due to a RO violation while translating the guest page.
4940 * This can occur when using nested virtualization with nested
4941 * paging in both guests. If true, we simply unprotect the page
4942 * and resume the guest.
14727754 4943 */
64531a3b 4944 if (vcpu->arch.mmu.direct_map &&
eebed243 4945 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
14727754
TL
4946 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4947 return 1;
4948 }
4949
ded58749 4950 if (mmio_info_in_cache(vcpu, cr2, direct))
1cb3f3ae 4951 emulation_type = 0;
e9ee956e 4952emulate:
1cb3f3ae 4953 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4954
4955 switch (er) {
4956 case EMULATE_DONE:
4957 return 1;
ac0a48c3 4958 case EMULATE_USER_EXIT:
3067714c 4959 ++vcpu->stat.mmio_exits;
6d77dbfc 4960 /* fall through */
3067714c 4961 case EMULATE_FAIL:
3f5d18a9 4962 return 0;
3067714c
AK
4963 default:
4964 BUG();
4965 }
3067714c
AK
4966}
4967EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4968
a7052897
MT
4969void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4970{
a7052897 4971 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4972 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4973 ++vcpu->stat.invlpg;
4974}
4975EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4976
18552672
JR
4977void kvm_enable_tdp(void)
4978{
4979 tdp_enabled = true;
4980}
4981EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4982
5f4cb662
JR
4983void kvm_disable_tdp(void)
4984{
4985 tdp_enabled = false;
4986}
4987EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4988
6aa8b732
AK
4989static void free_mmu_pages(struct kvm_vcpu *vcpu)
4990{
ad312c7c 4991 free_page((unsigned long)vcpu->arch.mmu.pae_root);
87ca74ad 4992 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4993}
4994
4995static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4996{
17ac10ad 4997 struct page *page;
6aa8b732
AK
4998 int i;
4999
17ac10ad
AK
5000 /*
5001 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5002 * Therefore we need to allocate shadow page tables in the first
5003 * 4GB of memory, which happens to fit the DMA32 zone.
5004 */
5005 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5006 if (!page)
d7fa6ab2
WY
5007 return -ENOMEM;
5008
ad312c7c 5009 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 5010 for (i = 0; i < 4; ++i)
ad312c7c 5011 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 5012
6aa8b732 5013 return 0;
6aa8b732
AK
5014}
5015
8018c27b 5016int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5017{
e459e322
XG
5018 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5019 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5020 vcpu->arch.mmu.translate_gpa = translate_gpa;
5021 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 5022
8018c27b
IM
5023 return alloc_mmu_pages(vcpu);
5024}
6aa8b732 5025
8a3c1a33 5026void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 5027{
fa4a2c08 5028 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 5029
8a3c1a33 5030 init_kvm_mmu(vcpu);
6aa8b732
AK
5031}
5032
b5f5fdca 5033static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5034 struct kvm_memory_slot *slot,
5035 struct kvm_page_track_notifier_node *node)
b5f5fdca
XC
5036{
5037 kvm_mmu_invalidate_zap_all_pages(kvm);
5038}
5039
13d268ca
XG
5040void kvm_mmu_init_vm(struct kvm *kvm)
5041{
5042 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5043
5044 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5045 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca
XG
5046 kvm_page_track_register_notifier(kvm, node);
5047}
5048
5049void kvm_mmu_uninit_vm(struct kvm *kvm)
5050{
5051 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5052
5053 kvm_page_track_unregister_notifier(kvm, node);
5054}
5055
1bad2b2a 5056/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 5057typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
5058
5059/* The caller should hold mmu-lock before calling this function. */
5060static bool
5061slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5062 slot_level_handler fn, int start_level, int end_level,
5063 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5064{
5065 struct slot_rmap_walk_iterator iterator;
5066 bool flush = false;
5067
5068 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5069 end_gfn, &iterator) {
5070 if (iterator.rmap)
5071 flush |= fn(kvm, iterator.rmap);
5072
5073 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5074 if (flush && lock_flush_tlb) {
5075 kvm_flush_remote_tlbs(kvm);
5076 flush = false;
5077 }
5078 cond_resched_lock(&kvm->mmu_lock);
5079 }
5080 }
5081
5082 if (flush && lock_flush_tlb) {
5083 kvm_flush_remote_tlbs(kvm);
5084 flush = false;
5085 }
5086
5087 return flush;
5088}
5089
5090static bool
5091slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5092 slot_level_handler fn, int start_level, int end_level,
5093 bool lock_flush_tlb)
5094{
5095 return slot_handle_level_range(kvm, memslot, fn, start_level,
5096 end_level, memslot->base_gfn,
5097 memslot->base_gfn + memslot->npages - 1,
5098 lock_flush_tlb);
5099}
5100
5101static bool
5102slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5103 slot_level_handler fn, bool lock_flush_tlb)
5104{
5105 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5106 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5107}
5108
5109static bool
5110slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5111 slot_level_handler fn, bool lock_flush_tlb)
5112{
5113 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5114 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5115}
5116
5117static bool
5118slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5119 slot_level_handler fn, bool lock_flush_tlb)
5120{
5121 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5122 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5123}
5124
efdfe536
XG
5125void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5126{
5127 struct kvm_memslots *slots;
5128 struct kvm_memory_slot *memslot;
9da0e4d5 5129 int i;
efdfe536
XG
5130
5131 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5132 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5133 slots = __kvm_memslots(kvm, i);
5134 kvm_for_each_memslot(memslot, slots) {
5135 gfn_t start, end;
5136
5137 start = max(gfn_start, memslot->base_gfn);
5138 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5139 if (start >= end)
5140 continue;
efdfe536 5141
9da0e4d5
PB
5142 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5143 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5144 start, end - 1, true);
5145 }
efdfe536
XG
5146 }
5147
5148 spin_unlock(&kvm->mmu_lock);
5149}
5150
018aabb5
TY
5151static bool slot_rmap_write_protect(struct kvm *kvm,
5152 struct kvm_rmap_head *rmap_head)
d77aa73c 5153{
018aabb5 5154 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5155}
5156
1c91cad4
KH
5157void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5158 struct kvm_memory_slot *memslot)
6aa8b732 5159{
d77aa73c 5160 bool flush;
6aa8b732 5161
9d1beefb 5162 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5163 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5164 false);
9d1beefb 5165 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
5166
5167 /*
5168 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5169 * which do tlb flush out of mmu-lock should be serialized by
5170 * kvm->slots_lock otherwise tlb flush would be missed.
5171 */
5172 lockdep_assert_held(&kvm->slots_lock);
5173
5174 /*
5175 * We can flush all the TLBs out of the mmu lock without TLB
5176 * corruption since we just change the spte from writable to
5177 * readonly so that we only need to care the case of changing
5178 * spte from present to present (changing the spte from present
5179 * to nonpresent will flush all the TLBs immediately), in other
5180 * words, the only case we care is mmu_spte_update() where we
5181 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5182 * instead of PT_WRITABLE_MASK, that means it does not depend
5183 * on PT_WRITABLE_MASK anymore.
5184 */
d91ffee9
KH
5185 if (flush)
5186 kvm_flush_remote_tlbs(kvm);
6aa8b732 5187}
37a7d8b0 5188
3ea3b7fa 5189static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5190 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5191{
5192 u64 *sptep;
5193 struct rmap_iterator iter;
5194 int need_tlb_flush = 0;
ba049e93 5195 kvm_pfn_t pfn;
3ea3b7fa
WL
5196 struct kvm_mmu_page *sp;
5197
0d536790 5198restart:
018aabb5 5199 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
5200 sp = page_header(__pa(sptep));
5201 pfn = spte_to_pfn(*sptep);
5202
5203 /*
decf6333
XG
5204 * We cannot do huge page mapping for indirect shadow pages,
5205 * which are found on the last rmap (level = 1) when not using
5206 * tdp; such shadow pages are synced with the page table in
5207 * the guest, and the guest page table is using 4K page size
5208 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
5209 */
5210 if (sp->role.direct &&
5211 !kvm_is_reserved_pfn(pfn) &&
127393fb 5212 PageTransCompoundMap(pfn_to_page(pfn))) {
3ea3b7fa 5213 drop_spte(kvm, sptep);
3ea3b7fa 5214 need_tlb_flush = 1;
0d536790
XG
5215 goto restart;
5216 }
3ea3b7fa
WL
5217 }
5218
5219 return need_tlb_flush;
5220}
5221
5222void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5223 const struct kvm_memory_slot *memslot)
3ea3b7fa 5224{
f36f3f28 5225 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5226 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5227 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5228 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5229 spin_unlock(&kvm->mmu_lock);
5230}
5231
f4b4b180
KH
5232void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5233 struct kvm_memory_slot *memslot)
5234{
d77aa73c 5235 bool flush;
f4b4b180
KH
5236
5237 spin_lock(&kvm->mmu_lock);
d77aa73c 5238 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5239 spin_unlock(&kvm->mmu_lock);
5240
5241 lockdep_assert_held(&kvm->slots_lock);
5242
5243 /*
5244 * It's also safe to flush TLBs out of mmu lock here as currently this
5245 * function is only used for dirty logging, in which case flushing TLB
5246 * out of mmu lock also guarantees no dirty pages will be lost in
5247 * dirty_bitmap.
5248 */
5249 if (flush)
5250 kvm_flush_remote_tlbs(kvm);
5251}
5252EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5253
5254void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5255 struct kvm_memory_slot *memslot)
5256{
d77aa73c 5257 bool flush;
f4b4b180
KH
5258
5259 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5260 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5261 false);
f4b4b180
KH
5262 spin_unlock(&kvm->mmu_lock);
5263
5264 /* see kvm_mmu_slot_remove_write_access */
5265 lockdep_assert_held(&kvm->slots_lock);
5266
5267 if (flush)
5268 kvm_flush_remote_tlbs(kvm);
5269}
5270EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5271
5272void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5273 struct kvm_memory_slot *memslot)
5274{
d77aa73c 5275 bool flush;
f4b4b180
KH
5276
5277 spin_lock(&kvm->mmu_lock);
d77aa73c 5278 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
5279 spin_unlock(&kvm->mmu_lock);
5280
5281 lockdep_assert_held(&kvm->slots_lock);
5282
5283 /* see kvm_mmu_slot_leaf_clear_dirty */
5284 if (flush)
5285 kvm_flush_remote_tlbs(kvm);
5286}
5287EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5288
e7d11c7a 5289#define BATCH_ZAP_PAGES 10
5304b8d3
XG
5290static void kvm_zap_obsolete_pages(struct kvm *kvm)
5291{
5292 struct kvm_mmu_page *sp, *node;
e7d11c7a 5293 int batch = 0;
5304b8d3
XG
5294
5295restart:
5296 list_for_each_entry_safe_reverse(sp, node,
5297 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
5298 int ret;
5299
5304b8d3
XG
5300 /*
5301 * No obsolete page exists before new created page since
5302 * active_mmu_pages is the FIFO list.
5303 */
5304 if (!is_obsolete_sp(kvm, sp))
5305 break;
5306
5307 /*
5304b8d3
XG
5308 * Since we are reversely walking the list and the invalid
5309 * list will be moved to the head, skip the invalid page
5310 * can help us to avoid the infinity list walking.
5311 */
5312 if (sp->role.invalid)
5313 continue;
5314
f34d251d
XG
5315 /*
5316 * Need not flush tlb since we only zap the sp with invalid
5317 * generation number.
5318 */
e7d11c7a 5319 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 5320 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 5321 batch = 0;
5304b8d3
XG
5322 goto restart;
5323 }
5324
365c8868
XG
5325 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5326 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
5327 batch += ret;
5328
5329 if (ret)
5304b8d3
XG
5330 goto restart;
5331 }
5332
f34d251d
XG
5333 /*
5334 * Should flush tlb before free page tables since lockless-walking
5335 * may use the pages.
5336 */
365c8868 5337 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
5338}
5339
5340/*
5341 * Fast invalidate all shadow pages and use lock-break technique
5342 * to zap obsolete pages.
5343 *
5344 * It's required when memslot is being deleted or VM is being
5345 * destroyed, in these cases, we should ensure that KVM MMU does
5346 * not use any resource of the being-deleted slot or all slots
5347 * after calling the function.
5348 */
5349void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5350{
5351 spin_lock(&kvm->mmu_lock);
35006126 5352 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
5353 kvm->arch.mmu_valid_gen++;
5354
f34d251d
XG
5355 /*
5356 * Notify all vcpus to reload its shadow page table
5357 * and flush TLB. Then all vcpus will switch to new
5358 * shadow page table with the new mmu_valid_gen.
5359 *
5360 * Note: we should do this under the protection of
5361 * mmu-lock, otherwise, vcpu would purge shadow page
5362 * but miss tlb flush.
5363 */
5364 kvm_reload_remote_mmus(kvm);
5365
5304b8d3
XG
5366 kvm_zap_obsolete_pages(kvm);
5367 spin_unlock(&kvm->mmu_lock);
5368}
5369
365c8868
XG
5370static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5371{
5372 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5373}
5374
54bf36aa 5375void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
5376{
5377 /*
5378 * The very rare case: if the generation-number is round,
5379 * zap all shadow pages.
f8f55942 5380 */
54bf36aa 5381 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
ae0f5499 5382 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 5383 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 5384 }
f8f55942
XG
5385}
5386
70534a73
DC
5387static unsigned long
5388mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5389{
5390 struct kvm *kvm;
1495f230 5391 int nr_to_scan = sc->nr_to_scan;
70534a73 5392 unsigned long freed = 0;
3ee16c81 5393
2f303b74 5394 spin_lock(&kvm_lock);
3ee16c81
IE
5395
5396 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5397 int idx;
d98ba053 5398 LIST_HEAD(invalid_list);
3ee16c81 5399
35f2d16b
TY
5400 /*
5401 * Never scan more than sc->nr_to_scan VM instances.
5402 * Will not hit this condition practically since we do not try
5403 * to shrink more than one VM and it is very unlikely to see
5404 * !n_used_mmu_pages so many times.
5405 */
5406 if (!nr_to_scan--)
5407 break;
19526396
GN
5408 /*
5409 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5410 * here. We may skip a VM instance errorneosly, but we do not
5411 * want to shrink a VM that only started to populate its MMU
5412 * anyway.
5413 */
365c8868
XG
5414 if (!kvm->arch.n_used_mmu_pages &&
5415 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5416 continue;
19526396 5417
f656ce01 5418 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5419 spin_lock(&kvm->mmu_lock);
3ee16c81 5420
365c8868
XG
5421 if (kvm_has_zapped_obsolete_pages(kvm)) {
5422 kvm_mmu_commit_zap_page(kvm,
5423 &kvm->arch.zapped_obsolete_pages);
5424 goto unlock;
5425 }
5426
70534a73
DC
5427 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5428 freed++;
d98ba053 5429 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 5430
365c8868 5431unlock:
3ee16c81 5432 spin_unlock(&kvm->mmu_lock);
f656ce01 5433 srcu_read_unlock(&kvm->srcu, idx);
19526396 5434
70534a73
DC
5435 /*
5436 * unfair on small ones
5437 * per-vm shrinkers cry out
5438 * sadness comes quickly
5439 */
19526396
GN
5440 list_move_tail(&kvm->vm_list, &vm_list);
5441 break;
3ee16c81 5442 }
3ee16c81 5443
2f303b74 5444 spin_unlock(&kvm_lock);
70534a73 5445 return freed;
70534a73
DC
5446}
5447
5448static unsigned long
5449mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5450{
45221ab6 5451 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5452}
5453
5454static struct shrinker mmu_shrinker = {
70534a73
DC
5455 .count_objects = mmu_shrink_count,
5456 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5457 .seeks = DEFAULT_SEEKS * 10,
5458};
5459
2ddfd20e 5460static void mmu_destroy_caches(void)
b5a33a75 5461{
c1bd743e
TH
5462 kmem_cache_destroy(pte_list_desc_cache);
5463 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5464}
5465
5466int kvm_mmu_module_init(void)
5467{
f160c7b7
JS
5468 kvm_mmu_clear_all_pte_masks();
5469
53c07b18
XG
5470 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5471 sizeof(struct pte_list_desc),
46bea48a 5472 0, SLAB_ACCOUNT, NULL);
53c07b18 5473 if (!pte_list_desc_cache)
b5a33a75
AK
5474 goto nomem;
5475
d3d25b04
AK
5476 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5477 sizeof(struct kvm_mmu_page),
46bea48a 5478 0, SLAB_ACCOUNT, NULL);
d3d25b04
AK
5479 if (!mmu_page_header_cache)
5480 goto nomem;
5481
908c7f19 5482 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
5483 goto nomem;
5484
3ee16c81
IE
5485 register_shrinker(&mmu_shrinker);
5486
b5a33a75
AK
5487 return 0;
5488
5489nomem:
3ee16c81 5490 mmu_destroy_caches();
b5a33a75
AK
5491 return -ENOMEM;
5492}
5493
3ad82a7e
ZX
5494/*
5495 * Caculate mmu pages needed for kvm.
5496 */
5497unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5498{
3ad82a7e
ZX
5499 unsigned int nr_mmu_pages;
5500 unsigned int nr_pages = 0;
bc6678a3 5501 struct kvm_memslots *slots;
be6ba0f0 5502 struct kvm_memory_slot *memslot;
9da0e4d5 5503 int i;
3ad82a7e 5504
9da0e4d5
PB
5505 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5506 slots = __kvm_memslots(kvm, i);
90d83dc3 5507
9da0e4d5
PB
5508 kvm_for_each_memslot(memslot, slots)
5509 nr_pages += memslot->npages;
5510 }
3ad82a7e
ZX
5511
5512 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5513 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 5514 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5515
5516 return nr_mmu_pages;
5517}
5518
c42fffe3
XG
5519void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5520{
95f93af4 5521 kvm_mmu_unload(vcpu);
c42fffe3
XG
5522 free_mmu_pages(vcpu);
5523 mmu_free_memory_caches(vcpu);
b034cf01
XG
5524}
5525
b034cf01
XG
5526void kvm_mmu_module_exit(void)
5527{
5528 mmu_destroy_caches();
5529 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5530 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5531 mmu_audit_disable();
5532}