]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: x86/mmu: Differentiate between nr zapped and list unstable
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
1767e931
PG
32#include <linux/moduleparam.h>
33#include <linux/export.h>
448353ca 34#include <linux/swap.h>
05da4558 35#include <linux/hugetlb.h>
2f333bcb 36#include <linux/compiler.h>
bc6678a3 37#include <linux/srcu.h>
5a0e3ad6 38#include <linux/slab.h>
3f07c014 39#include <linux/sched/signal.h>
bf998156 40#include <linux/uaccess.h>
114df303 41#include <linux/hash.h>
f160c7b7 42#include <linux/kern_levels.h>
6aa8b732 43
e495606d 44#include <asm/page.h>
aa2e063a 45#include <asm/pat.h>
e495606d 46#include <asm/cmpxchg.h>
4e542370 47#include <asm/io.h>
13673a90 48#include <asm/vmx.h>
3d0c27ad 49#include <asm/kvm_page_track.h>
1261bfa3 50#include "trace.h"
6aa8b732 51
18552672
JR
52/*
53 * When setting this variable to true it enables Two-Dimensional-Paging
54 * where the hardware walks 2 page tables:
55 * 1. the guest-virtual to guest-physical
56 * 2. while doing 1. it walks guest-physical to host-physical
57 * If the hardware supports that we don't need to do shadow paging.
58 */
2f333bcb 59bool tdp_enabled = false;
18552672 60
8b1fe17c
XG
61enum {
62 AUDIT_PRE_PAGE_FAULT,
63 AUDIT_POST_PAGE_FAULT,
64 AUDIT_PRE_PTE_WRITE,
6903074c
XG
65 AUDIT_POST_PTE_WRITE,
66 AUDIT_PRE_SYNC,
67 AUDIT_POST_SYNC
8b1fe17c 68};
37a7d8b0 69
8b1fe17c 70#undef MMU_DEBUG
37a7d8b0
AK
71
72#ifdef MMU_DEBUG
fa4a2c08
PB
73static bool dbg = 0;
74module_param(dbg, bool, 0644);
37a7d8b0
AK
75
76#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 78#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 79#else
37a7d8b0
AK
80#define pgprintk(x...) do { } while (0)
81#define rmap_printk(x...) do { } while (0)
fa4a2c08 82#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 83#endif
6aa8b732 84
957ed9ef
XG
85#define PTE_PREFETCH_NUM 8
86
00763e41 87#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
88#define PT64_SECOND_AVAIL_BITS_SHIFT 52
89
6aa8b732
AK
90#define PT64_LEVEL_BITS 9
91
92#define PT64_LEVEL_SHIFT(level) \
d77c26fc 93 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 94
6aa8b732
AK
95#define PT64_INDEX(address, level)\
96 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99#define PT32_LEVEL_BITS 10
100
101#define PT32_LEVEL_SHIFT(level) \
d77c26fc 102 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 103
e04da980
JR
104#define PT32_LVL_OFFSET_MASK(level) \
105 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
106 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
107
108#define PT32_INDEX(address, level)\
109 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
8acc0993
KH
112#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
113#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
114#else
115#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
116#endif
e04da980
JR
117#define PT64_LVL_ADDR_MASK(level) \
118 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
119 * PT64_LEVEL_BITS))) - 1))
120#define PT64_LVL_OFFSET_MASK(level) \
121 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
123
124#define PT32_BASE_ADDR_MASK PAGE_MASK
125#define PT32_DIR_BASE_ADDR_MASK \
126 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
127#define PT32_LVL_ADDR_MASK(level) \
128 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
129 * PT32_LEVEL_BITS))) - 1))
6aa8b732 130
53166229 131#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 132 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 133
fe135d2c
AK
134#define ACC_EXEC_MASK 1
135#define ACC_WRITE_MASK PT_WRITABLE_MASK
136#define ACC_USER_MASK PT_USER_MASK
137#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
138
f160c7b7
JS
139/* The mask for the R/X bits in EPT PTEs */
140#define PT64_EPT_READABLE_MASK 0x1ull
141#define PT64_EPT_EXECUTABLE_MASK 0x4ull
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
9b8ebbdb
PB
156/*
157 * Return values of handle_mmio_page_fault and mmu.page_fault:
158 * RET_PF_RETRY: let CPU fault again on the address.
159 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
160 *
161 * For handle_mmio_page_fault only:
162 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
163 */
164enum {
165 RET_PF_RETRY = 0,
166 RET_PF_EMULATE = 1,
167 RET_PF_INVALID = 2,
168};
169
53c07b18
XG
170struct pte_list_desc {
171 u64 *sptes[PTE_LIST_EXT];
172 struct pte_list_desc *more;
cd4a4e53
AK
173};
174
2d11123a
AK
175struct kvm_shadow_walk_iterator {
176 u64 addr;
177 hpa_t shadow_addr;
2d11123a 178 u64 *sptep;
dd3bfd59 179 int level;
2d11123a
AK
180 unsigned index;
181};
182
9fa72119
JS
183static const union kvm_mmu_page_role mmu_base_role_mask = {
184 .cr0_wp = 1,
185 .cr4_pae = 1,
186 .nxe = 1,
187 .smep_andnot_wp = 1,
188 .smap_andnot_wp = 1,
189 .smm = 1,
190 .guest_mode = 1,
191 .ad_disabled = 1,
192};
193
7eb77e9f
JS
194#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
195 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
196 (_root), (_addr)); \
197 shadow_walk_okay(&(_walker)); \
198 shadow_walk_next(&(_walker)))
199
200#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
201 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
202 shadow_walk_okay(&(_walker)); \
203 shadow_walk_next(&(_walker)))
204
c2a2ac2b
XG
205#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
206 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
207 shadow_walk_okay(&(_walker)) && \
208 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
209 __shadow_walk_next(&(_walker), spte))
210
53c07b18 211static struct kmem_cache *pte_list_desc_cache;
d3d25b04 212static struct kmem_cache *mmu_page_header_cache;
45221ab6 213static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 214
7b52345e
SY
215static u64 __read_mostly shadow_nx_mask;
216static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
217static u64 __read_mostly shadow_user_mask;
218static u64 __read_mostly shadow_accessed_mask;
219static u64 __read_mostly shadow_dirty_mask;
ce88decf 220static u64 __read_mostly shadow_mmio_mask;
dcdca5fe 221static u64 __read_mostly shadow_mmio_value;
ffb128c8 222static u64 __read_mostly shadow_present_mask;
d0ec49d4 223static u64 __read_mostly shadow_me_mask;
ce88decf 224
f160c7b7 225/*
ac8d57e5
PF
226 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
227 * Non-present SPTEs with shadow_acc_track_value set are in place for access
228 * tracking.
f160c7b7
JS
229 */
230static u64 __read_mostly shadow_acc_track_mask;
231static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
232
233/*
234 * The mask/shift to use for saving the original R/X bits when marking the PTE
235 * as not-present for access tracking purposes. We do not save the W bit as the
236 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
237 * restored only when a write is attempted to the page.
238 */
239static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
240 PT64_EPT_EXECUTABLE_MASK;
241static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
242
28a1f3ac
JS
243/*
244 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
245 * to guard against L1TF attacks.
246 */
247static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
248
249/*
250 * The number of high-order 1 bits to use in the mask above.
251 */
252static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
253
daa07cbc
SC
254/*
255 * In some cases, we need to preserve the GFN of a non-present or reserved
256 * SPTE when we usurp the upper five bits of the physical address space to
257 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
258 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
259 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
260 * high and low parts. This mask covers the lower bits of the GFN.
261 */
262static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
263
264
ce88decf 265static void mmu_spte_set(u64 *sptep, u64 spte);
9fa72119
JS
266static union kvm_mmu_page_role
267kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 268
40ef75a7
LT
269
270static inline bool kvm_available_flush_tlb_with_range(void)
271{
272 return kvm_x86_ops->tlb_remote_flush_with_range;
273}
274
275static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
276 struct kvm_tlb_range *range)
277{
278 int ret = -ENOTSUPP;
279
280 if (range && kvm_x86_ops->tlb_remote_flush_with_range)
281 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
282
283 if (ret)
284 kvm_flush_remote_tlbs(kvm);
285}
286
287static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
288 u64 start_gfn, u64 pages)
289{
290 struct kvm_tlb_range range;
291
292 range.start_gfn = start_gfn;
293 range.pages = pages;
294
295 kvm_flush_remote_tlbs_with_range(kvm, &range);
296}
297
dcdca5fe 298void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
ce88decf 299{
dcdca5fe
PF
300 BUG_ON((mmio_mask & mmio_value) != mmio_value);
301 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
312b616b 302 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
ce88decf
XG
303}
304EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
305
ac8d57e5
PF
306static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
307{
308 return sp->role.ad_disabled;
309}
310
311static inline bool spte_ad_enabled(u64 spte)
312{
313 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
314 return !(spte & shadow_acc_track_value);
315}
316
317static inline u64 spte_shadow_accessed_mask(u64 spte)
318{
319 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
320 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
321}
322
323static inline u64 spte_shadow_dirty_mask(u64 spte)
324{
325 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
326 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
327}
328
f160c7b7
JS
329static inline bool is_access_track_spte(u64 spte)
330{
ac8d57e5 331 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
332}
333
f2fd125d 334/*
cae7ed3c
SC
335 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
336 * the memslots generation and is derived as follows:
ee3d1570 337 *
164bf7e5
SC
338 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
339 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
cae7ed3c 340 *
164bf7e5
SC
341 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
342 * the MMIO generation number, as doing so would require stealing a bit from
343 * the "real" generation number and thus effectively halve the maximum number
344 * of MMIO generations that can be handled before encountering a wrap (which
345 * requires a full MMU zap). The flag is instead explicitly queried when
346 * checking for MMIO spte cache hits.
f2fd125d 347 */
164bf7e5 348#define MMIO_SPTE_GEN_MASK GENMASK_ULL(18, 0)
cae7ed3c
SC
349
350#define MMIO_SPTE_GEN_LOW_START 3
351#define MMIO_SPTE_GEN_LOW_END 11
352#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
353 MMIO_SPTE_GEN_LOW_START)
354
355#define MMIO_SPTE_GEN_HIGH_START 52
356#define MMIO_SPTE_GEN_HIGH_END 61
357#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
358 MMIO_SPTE_GEN_HIGH_START)
5192f9b9 359static u64 generation_mmio_spte_mask(u64 gen)
f2fd125d
XG
360{
361 u64 mask;
362
cae7ed3c 363 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
f2fd125d 364
cae7ed3c
SC
365 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
366 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
f2fd125d
XG
367 return mask;
368}
369
5192f9b9 370static u64 get_mmio_spte_generation(u64 spte)
f2fd125d 371{
5192f9b9 372 u64 gen;
f2fd125d
XG
373
374 spte &= ~shadow_mmio_mask;
375
cae7ed3c
SC
376 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
377 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
164bf7e5 378 return gen;
f8f55942
XG
379}
380
54bf36aa 381static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 382 unsigned access)
ce88decf 383{
cae7ed3c 384 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
f8f55942 385 u64 mask = generation_mmio_spte_mask(gen);
28a1f3ac 386 u64 gpa = gfn << PAGE_SHIFT;
95b0430d 387
ce88decf 388 access &= ACC_WRITE_MASK | ACC_USER_MASK;
28a1f3ac
JS
389 mask |= shadow_mmio_value | access;
390 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
391 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
392 << shadow_nonpresent_or_rsvd_mask_len;
f2fd125d 393
4771450c
SC
394 page_header(__pa(sptep))->mmio_cached = true;
395
f8f55942 396 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 397 mmu_spte_set(sptep, mask);
ce88decf
XG
398}
399
400static bool is_mmio_spte(u64 spte)
401{
dcdca5fe 402 return (spte & shadow_mmio_mask) == shadow_mmio_value;
ce88decf
XG
403}
404
405static gfn_t get_mmio_spte_gfn(u64 spte)
406{
daa07cbc 407 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac
JS
408
409 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
410 & shadow_nonpresent_or_rsvd_mask;
411
412 return gpa >> PAGE_SHIFT;
ce88decf
XG
413}
414
415static unsigned get_mmio_spte_access(u64 spte)
416{
cae7ed3c 417 u64 mask = generation_mmio_spte_mask(MMIO_SPTE_GEN_MASK) | shadow_mmio_mask;
f2fd125d 418 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
419}
420
54bf36aa 421static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 422 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
423{
424 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 425 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
426 return true;
427 }
428
429 return false;
430}
c7addb90 431
54bf36aa 432static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 433{
cae7ed3c
SC
434 u64 kvm_gen, spte_gen, gen;
435
436 gen = kvm_vcpu_memslots(vcpu)->generation;
437 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
438 return false;
089504c0 439
cae7ed3c 440 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
441 spte_gen = get_mmio_spte_generation(spte);
442
443 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
444 return likely(kvm_gen == spte_gen);
f8f55942
XG
445}
446
ce00053b
PF
447/*
448 * Sets the shadow PTE masks used by the MMU.
449 *
450 * Assumptions:
451 * - Setting either @accessed_mask or @dirty_mask requires setting both
452 * - At least one of @accessed_mask or @acc_track_mask must be set
453 */
7b52345e 454void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 455 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 456 u64 acc_track_mask, u64 me_mask)
7b52345e 457{
ce00053b
PF
458 BUG_ON(!dirty_mask != !accessed_mask);
459 BUG_ON(!accessed_mask && !acc_track_mask);
ac8d57e5 460 BUG_ON(acc_track_mask & shadow_acc_track_value);
312b616b 461
7b52345e
SY
462 shadow_user_mask = user_mask;
463 shadow_accessed_mask = accessed_mask;
464 shadow_dirty_mask = dirty_mask;
465 shadow_nx_mask = nx_mask;
466 shadow_x_mask = x_mask;
ffb128c8 467 shadow_present_mask = p_mask;
f160c7b7 468 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 469 shadow_me_mask = me_mask;
7b52345e
SY
470}
471EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
472
28a1f3ac 473static void kvm_mmu_reset_all_pte_masks(void)
f160c7b7 474{
daa07cbc
SC
475 u8 low_phys_bits;
476
f160c7b7
JS
477 shadow_user_mask = 0;
478 shadow_accessed_mask = 0;
479 shadow_dirty_mask = 0;
480 shadow_nx_mask = 0;
481 shadow_x_mask = 0;
482 shadow_mmio_mask = 0;
483 shadow_present_mask = 0;
484 shadow_acc_track_mask = 0;
28a1f3ac
JS
485
486 /*
487 * If the CPU has 46 or less physical address bits, then set an
488 * appropriate mask to guard against L1TF attacks. Otherwise, it is
489 * assumed that the CPU is not vulnerable to L1TF.
490 */
daa07cbc 491 low_phys_bits = boot_cpu_data.x86_phys_bits;
28a1f3ac 492 if (boot_cpu_data.x86_phys_bits <
daa07cbc 493 52 - shadow_nonpresent_or_rsvd_mask_len) {
28a1f3ac
JS
494 shadow_nonpresent_or_rsvd_mask =
495 rsvd_bits(boot_cpu_data.x86_phys_bits -
496 shadow_nonpresent_or_rsvd_mask_len,
497 boot_cpu_data.x86_phys_bits - 1);
daa07cbc
SC
498 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
499 }
500 shadow_nonpresent_or_rsvd_lower_gfn_mask =
501 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
f160c7b7
JS
502}
503
6aa8b732
AK
504static int is_cpuid_PSE36(void)
505{
506 return 1;
507}
508
73b1087e
AK
509static int is_nx(struct kvm_vcpu *vcpu)
510{
f6801dff 511 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
512}
513
c7addb90
AK
514static int is_shadow_present_pte(u64 pte)
515{
f160c7b7 516 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
517}
518
05da4558
MT
519static int is_large_pte(u64 pte)
520{
521 return pte & PT_PAGE_SIZE_MASK;
522}
523
776e6633
MT
524static int is_last_spte(u64 pte, int level)
525{
526 if (level == PT_PAGE_TABLE_LEVEL)
527 return 1;
852e3c19 528 if (is_large_pte(pte))
776e6633
MT
529 return 1;
530 return 0;
531}
532
d3e328f2
JS
533static bool is_executable_pte(u64 spte)
534{
535 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
536}
537
ba049e93 538static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 539{
35149e21 540 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
541}
542
da928521
AK
543static gfn_t pse36_gfn_delta(u32 gpte)
544{
545 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
546
547 return (gpte & PT32_DIR_PSE36_MASK) << shift;
548}
549
603e0651 550#ifdef CONFIG_X86_64
d555c333 551static void __set_spte(u64 *sptep, u64 spte)
e663ee64 552{
b19ee2ff 553 WRITE_ONCE(*sptep, spte);
e663ee64
AK
554}
555
603e0651 556static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 557{
b19ee2ff 558 WRITE_ONCE(*sptep, spte);
603e0651
XG
559}
560
561static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
562{
563 return xchg(sptep, spte);
564}
c2a2ac2b
XG
565
566static u64 __get_spte_lockless(u64 *sptep)
567{
6aa7de05 568 return READ_ONCE(*sptep);
c2a2ac2b 569}
a9221dd5 570#else
603e0651
XG
571union split_spte {
572 struct {
573 u32 spte_low;
574 u32 spte_high;
575 };
576 u64 spte;
577};
a9221dd5 578
c2a2ac2b
XG
579static void count_spte_clear(u64 *sptep, u64 spte)
580{
581 struct kvm_mmu_page *sp = page_header(__pa(sptep));
582
583 if (is_shadow_present_pte(spte))
584 return;
585
586 /* Ensure the spte is completely set before we increase the count */
587 smp_wmb();
588 sp->clear_spte_count++;
589}
590
603e0651
XG
591static void __set_spte(u64 *sptep, u64 spte)
592{
593 union split_spte *ssptep, sspte;
a9221dd5 594
603e0651
XG
595 ssptep = (union split_spte *)sptep;
596 sspte = (union split_spte)spte;
597
598 ssptep->spte_high = sspte.spte_high;
599
600 /*
601 * If we map the spte from nonpresent to present, We should store
602 * the high bits firstly, then set present bit, so cpu can not
603 * fetch this spte while we are setting the spte.
604 */
605 smp_wmb();
606
b19ee2ff 607 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
608}
609
603e0651
XG
610static void __update_clear_spte_fast(u64 *sptep, u64 spte)
611{
612 union split_spte *ssptep, sspte;
613
614 ssptep = (union split_spte *)sptep;
615 sspte = (union split_spte)spte;
616
b19ee2ff 617 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
618
619 /*
620 * If we map the spte from present to nonpresent, we should clear
621 * present bit firstly to avoid vcpu fetch the old high bits.
622 */
623 smp_wmb();
624
625 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 626 count_spte_clear(sptep, spte);
603e0651
XG
627}
628
629static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
630{
631 union split_spte *ssptep, sspte, orig;
632
633 ssptep = (union split_spte *)sptep;
634 sspte = (union split_spte)spte;
635
636 /* xchg acts as a barrier before the setting of the high bits */
637 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
638 orig.spte_high = ssptep->spte_high;
639 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 640 count_spte_clear(sptep, spte);
603e0651
XG
641
642 return orig.spte;
643}
c2a2ac2b
XG
644
645/*
646 * The idea using the light way get the spte on x86_32 guest is from
647 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
648 *
649 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
650 * coalesces them and we are running out of the MMU lock. Therefore
651 * we need to protect against in-progress updates of the spte.
652 *
653 * Reading the spte while an update is in progress may get the old value
654 * for the high part of the spte. The race is fine for a present->non-present
655 * change (because the high part of the spte is ignored for non-present spte),
656 * but for a present->present change we must reread the spte.
657 *
658 * All such changes are done in two steps (present->non-present and
659 * non-present->present), hence it is enough to count the number of
660 * present->non-present updates: if it changed while reading the spte,
661 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
662 */
663static u64 __get_spte_lockless(u64 *sptep)
664{
665 struct kvm_mmu_page *sp = page_header(__pa(sptep));
666 union split_spte spte, *orig = (union split_spte *)sptep;
667 int count;
668
669retry:
670 count = sp->clear_spte_count;
671 smp_rmb();
672
673 spte.spte_low = orig->spte_low;
674 smp_rmb();
675
676 spte.spte_high = orig->spte_high;
677 smp_rmb();
678
679 if (unlikely(spte.spte_low != orig->spte_low ||
680 count != sp->clear_spte_count))
681 goto retry;
682
683 return spte.spte;
684}
603e0651
XG
685#endif
686
ea4114bc 687static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 688{
feb3eb70
GN
689 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
690 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
691}
692
8672b721
XG
693static bool spte_has_volatile_bits(u64 spte)
694{
f160c7b7
JS
695 if (!is_shadow_present_pte(spte))
696 return false;
697
c7ba5b48 698 /*
6a6256f9 699 * Always atomically update spte if it can be updated
c7ba5b48
XG
700 * out of mmu-lock, it can ensure dirty bit is not lost,
701 * also, it can help us to get a stable is_writable_pte()
702 * to ensure tlb flush is not missed.
703 */
f160c7b7
JS
704 if (spte_can_locklessly_be_made_writable(spte) ||
705 is_access_track_spte(spte))
c7ba5b48
XG
706 return true;
707
ac8d57e5 708 if (spte_ad_enabled(spte)) {
f160c7b7
JS
709 if ((spte & shadow_accessed_mask) == 0 ||
710 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
711 return true;
712 }
8672b721 713
f160c7b7 714 return false;
8672b721
XG
715}
716
83ef6c81 717static bool is_accessed_spte(u64 spte)
4132779b 718{
ac8d57e5
PF
719 u64 accessed_mask = spte_shadow_accessed_mask(spte);
720
721 return accessed_mask ? spte & accessed_mask
722 : !is_access_track_spte(spte);
4132779b
XG
723}
724
83ef6c81 725static bool is_dirty_spte(u64 spte)
7e71a59b 726{
ac8d57e5
PF
727 u64 dirty_mask = spte_shadow_dirty_mask(spte);
728
729 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
730}
731
1df9f2dc
XG
732/* Rules for using mmu_spte_set:
733 * Set the sptep from nonpresent to present.
734 * Note: the sptep being assigned *must* be either not present
735 * or in a state where the hardware will not attempt to update
736 * the spte.
737 */
738static void mmu_spte_set(u64 *sptep, u64 new_spte)
739{
740 WARN_ON(is_shadow_present_pte(*sptep));
741 __set_spte(sptep, new_spte);
742}
743
f39a058d
JS
744/*
745 * Update the SPTE (excluding the PFN), but do not track changes in its
746 * accessed/dirty status.
1df9f2dc 747 */
f39a058d 748static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 749{
c7ba5b48 750 u64 old_spte = *sptep;
4132779b 751
afd28fe1 752 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 753
6e7d0354
XG
754 if (!is_shadow_present_pte(old_spte)) {
755 mmu_spte_set(sptep, new_spte);
f39a058d 756 return old_spte;
6e7d0354 757 }
4132779b 758
c7ba5b48 759 if (!spte_has_volatile_bits(old_spte))
603e0651 760 __update_clear_spte_fast(sptep, new_spte);
4132779b 761 else
603e0651 762 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 763
83ef6c81
JS
764 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
765
f39a058d
JS
766 return old_spte;
767}
768
769/* Rules for using mmu_spte_update:
770 * Update the state bits, it means the mapped pfn is not changed.
771 *
772 * Whenever we overwrite a writable spte with a read-only one we
773 * should flush remote TLBs. Otherwise rmap_write_protect
774 * will find a read-only spte, even though the writable spte
775 * might be cached on a CPU's TLB, the return value indicates this
776 * case.
777 *
778 * Returns true if the TLB needs to be flushed
779 */
780static bool mmu_spte_update(u64 *sptep, u64 new_spte)
781{
782 bool flush = false;
783 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
784
785 if (!is_shadow_present_pte(old_spte))
786 return false;
787
c7ba5b48
XG
788 /*
789 * For the spte updated out of mmu-lock is safe, since
6a6256f9 790 * we always atomically update it, see the comments in
c7ba5b48
XG
791 * spte_has_volatile_bits().
792 */
ea4114bc 793 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 794 !is_writable_pte(new_spte))
83ef6c81 795 flush = true;
4132779b 796
7e71a59b 797 /*
83ef6c81 798 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
799 * to guarantee consistency between TLB and page tables.
800 */
7e71a59b 801
83ef6c81
JS
802 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
803 flush = true;
4132779b 804 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
805 }
806
807 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
808 flush = true;
4132779b 809 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 810 }
6e7d0354 811
83ef6c81 812 return flush;
b79b93f9
AK
813}
814
1df9f2dc
XG
815/*
816 * Rules for using mmu_spte_clear_track_bits:
817 * It sets the sptep from present to nonpresent, and track the
818 * state bits, it is used to clear the last level sptep.
83ef6c81 819 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
820 */
821static int mmu_spte_clear_track_bits(u64 *sptep)
822{
ba049e93 823 kvm_pfn_t pfn;
1df9f2dc
XG
824 u64 old_spte = *sptep;
825
826 if (!spte_has_volatile_bits(old_spte))
603e0651 827 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 828 else
603e0651 829 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 830
afd28fe1 831 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
832 return 0;
833
834 pfn = spte_to_pfn(old_spte);
86fde74c
XG
835
836 /*
837 * KVM does not hold the refcount of the page used by
838 * kvm mmu, before reclaiming the page, we should
839 * unmap it from mmu first.
840 */
bf4bea8e 841 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 842
83ef6c81 843 if (is_accessed_spte(old_spte))
1df9f2dc 844 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
845
846 if (is_dirty_spte(old_spte))
1df9f2dc 847 kvm_set_pfn_dirty(pfn);
83ef6c81 848
1df9f2dc
XG
849 return 1;
850}
851
852/*
853 * Rules for using mmu_spte_clear_no_track:
854 * Directly clear spte without caring the state bits of sptep,
855 * it is used to set the upper level spte.
856 */
857static void mmu_spte_clear_no_track(u64 *sptep)
858{
603e0651 859 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
860}
861
c2a2ac2b
XG
862static u64 mmu_spte_get_lockless(u64 *sptep)
863{
864 return __get_spte_lockless(sptep);
865}
866
f160c7b7
JS
867static u64 mark_spte_for_access_track(u64 spte)
868{
ac8d57e5 869 if (spte_ad_enabled(spte))
f160c7b7
JS
870 return spte & ~shadow_accessed_mask;
871
ac8d57e5 872 if (is_access_track_spte(spte))
f160c7b7
JS
873 return spte;
874
875 /*
20d65236
JS
876 * Making an Access Tracking PTE will result in removal of write access
877 * from the PTE. So, verify that we will be able to restore the write
878 * access in the fast page fault path later on.
f160c7b7
JS
879 */
880 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
881 !spte_can_locklessly_be_made_writable(spte),
882 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
883
884 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
885 shadow_acc_track_saved_bits_shift),
886 "kvm: Access Tracking saved bit locations are not zero\n");
887
888 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
889 shadow_acc_track_saved_bits_shift;
890 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
891
892 return spte;
893}
894
d3e328f2
JS
895/* Restore an acc-track PTE back to a regular PTE */
896static u64 restore_acc_track_spte(u64 spte)
897{
898 u64 new_spte = spte;
899 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
900 & shadow_acc_track_saved_bits_mask;
901
ac8d57e5 902 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
903 WARN_ON_ONCE(!is_access_track_spte(spte));
904
905 new_spte &= ~shadow_acc_track_mask;
906 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
907 shadow_acc_track_saved_bits_shift);
908 new_spte |= saved_bits;
909
910 return new_spte;
911}
912
f160c7b7
JS
913/* Returns the Accessed status of the PTE and resets it at the same time. */
914static bool mmu_spte_age(u64 *sptep)
915{
916 u64 spte = mmu_spte_get_lockless(sptep);
917
918 if (!is_accessed_spte(spte))
919 return false;
920
ac8d57e5 921 if (spte_ad_enabled(spte)) {
f160c7b7
JS
922 clear_bit((ffs(shadow_accessed_mask) - 1),
923 (unsigned long *)sptep);
924 } else {
925 /*
926 * Capture the dirty status of the page, so that it doesn't get
927 * lost when the SPTE is marked for access tracking.
928 */
929 if (is_writable_pte(spte))
930 kvm_set_pfn_dirty(spte_to_pfn(spte));
931
932 spte = mark_spte_for_access_track(spte);
933 mmu_spte_update_no_track(sptep, spte);
934 }
935
936 return true;
937}
938
c2a2ac2b
XG
939static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
940{
c142786c
AK
941 /*
942 * Prevent page table teardown by making any free-er wait during
943 * kvm_flush_remote_tlbs() IPI to all active vcpus.
944 */
945 local_irq_disable();
36ca7e0a 946
c142786c
AK
947 /*
948 * Make sure a following spte read is not reordered ahead of the write
949 * to vcpu->mode.
950 */
36ca7e0a 951 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
952}
953
954static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
955{
c142786c
AK
956 /*
957 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 958 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
959 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
960 */
36ca7e0a 961 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 962 local_irq_enable();
c2a2ac2b
XG
963}
964
e2dec939 965static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 966 struct kmem_cache *base_cache, int min)
714b93da
AK
967{
968 void *obj;
969
970 if (cache->nobjs >= min)
e2dec939 971 return 0;
714b93da 972 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
254272ce 973 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
714b93da 974 if (!obj)
daefb794 975 return cache->nobjs >= min ? 0 : -ENOMEM;
714b93da
AK
976 cache->objects[cache->nobjs++] = obj;
977 }
e2dec939 978 return 0;
714b93da
AK
979}
980
f759e2b4
XG
981static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
982{
983 return cache->nobjs;
984}
985
e8ad9a70
XG
986static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
987 struct kmem_cache *cache)
714b93da
AK
988{
989 while (mc->nobjs)
e8ad9a70 990 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
991}
992
c1158e63 993static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 994 int min)
c1158e63 995{
842f22ed 996 void *page;
c1158e63
AK
997
998 if (cache->nobjs >= min)
999 return 0;
1000 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
d97e5e61 1001 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
c1158e63 1002 if (!page)
daefb794 1003 return cache->nobjs >= min ? 0 : -ENOMEM;
842f22ed 1004 cache->objects[cache->nobjs++] = page;
c1158e63
AK
1005 }
1006 return 0;
1007}
1008
1009static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1010{
1011 while (mc->nobjs)
c4d198d5 1012 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
1013}
1014
2e3e5882 1015static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 1016{
e2dec939
AK
1017 int r;
1018
53c07b18 1019 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 1020 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
1021 if (r)
1022 goto out;
ad312c7c 1023 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
1024 if (r)
1025 goto out;
ad312c7c 1026 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 1027 mmu_page_header_cache, 4);
e2dec939
AK
1028out:
1029 return r;
714b93da
AK
1030}
1031
1032static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1033{
53c07b18
XG
1034 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1035 pte_list_desc_cache);
ad312c7c 1036 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
1037 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1038 mmu_page_header_cache);
714b93da
AK
1039}
1040
80feb89a 1041static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
1042{
1043 void *p;
1044
1045 BUG_ON(!mc->nobjs);
1046 p = mc->objects[--mc->nobjs];
714b93da
AK
1047 return p;
1048}
1049
53c07b18 1050static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 1051{
80feb89a 1052 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
1053}
1054
53c07b18 1055static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 1056{
53c07b18 1057 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
1058}
1059
2032a93d
LJ
1060static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1061{
1062 if (!sp->role.direct)
1063 return sp->gfns[index];
1064
1065 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1066}
1067
1068static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1069{
1070 if (sp->role.direct)
1071 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
1072 else
1073 sp->gfns[index] = gfn;
1074}
1075
05da4558 1076/*
d4dbf470
TY
1077 * Return the pointer to the large page information for a given gfn,
1078 * handling slots that are not large page aligned.
05da4558 1079 */
d4dbf470
TY
1080static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1081 struct kvm_memory_slot *slot,
1082 int level)
05da4558
MT
1083{
1084 unsigned long idx;
1085
fb03cb6f 1086 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 1087 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
1088}
1089
547ffaed
XG
1090static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1091 gfn_t gfn, int count)
1092{
1093 struct kvm_lpage_info *linfo;
1094 int i;
1095
1096 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1097 linfo = lpage_info_slot(gfn, slot, i);
1098 linfo->disallow_lpage += count;
1099 WARN_ON(linfo->disallow_lpage < 0);
1100 }
1101}
1102
1103void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1104{
1105 update_gfn_disallow_lpage_count(slot, gfn, 1);
1106}
1107
1108void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1109{
1110 update_gfn_disallow_lpage_count(slot, gfn, -1);
1111}
1112
3ed1a478 1113static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1114{
699023e2 1115 struct kvm_memslots *slots;
d25797b2 1116 struct kvm_memory_slot *slot;
3ed1a478 1117 gfn_t gfn;
05da4558 1118
56ca57f9 1119 kvm->arch.indirect_shadow_pages++;
3ed1a478 1120 gfn = sp->gfn;
699023e2
PB
1121 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1122 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1123
1124 /* the non-leaf shadow pages are keeping readonly. */
1125 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1126 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1127 KVM_PAGE_TRACK_WRITE);
1128
547ffaed 1129 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1130}
1131
3ed1a478 1132static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1133{
699023e2 1134 struct kvm_memslots *slots;
d25797b2 1135 struct kvm_memory_slot *slot;
3ed1a478 1136 gfn_t gfn;
05da4558 1137
56ca57f9 1138 kvm->arch.indirect_shadow_pages--;
3ed1a478 1139 gfn = sp->gfn;
699023e2
PB
1140 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1141 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1142 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1143 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1144 KVM_PAGE_TRACK_WRITE);
1145
547ffaed 1146 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1147}
1148
92f94f1e
XG
1149static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1150 struct kvm_memory_slot *slot)
05da4558 1151{
d4dbf470 1152 struct kvm_lpage_info *linfo;
05da4558
MT
1153
1154 if (slot) {
d4dbf470 1155 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 1156 return !!linfo->disallow_lpage;
05da4558
MT
1157 }
1158
92f94f1e 1159 return true;
05da4558
MT
1160}
1161
92f94f1e
XG
1162static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1163 int level)
5225fdf8
TY
1164{
1165 struct kvm_memory_slot *slot;
1166
1167 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 1168 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
1169}
1170
d25797b2 1171static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 1172{
8f0b1ab6 1173 unsigned long page_size;
d25797b2 1174 int i, ret = 0;
05da4558 1175
8f0b1ab6 1176 page_size = kvm_host_page_size(kvm, gfn);
05da4558 1177
8a3d08f1 1178 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
1179 if (page_size >= KVM_HPAGE_SIZE(i))
1180 ret = i;
1181 else
1182 break;
1183 }
1184
4c2155ce 1185 return ret;
05da4558
MT
1186}
1187
d8aacf5d
TY
1188static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1189 bool no_dirty_log)
1190{
1191 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1192 return false;
1193 if (no_dirty_log && slot->dirty_bitmap)
1194 return false;
1195
1196 return true;
1197}
1198
5d163b1c
XG
1199static struct kvm_memory_slot *
1200gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1201 bool no_dirty_log)
05da4558
MT
1202{
1203 struct kvm_memory_slot *slot;
5d163b1c 1204
54bf36aa 1205 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 1206 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
1207 slot = NULL;
1208
1209 return slot;
1210}
1211
fd136902
TY
1212static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1213 bool *force_pt_level)
936a5fe6
AA
1214{
1215 int host_level, level, max_level;
d8aacf5d
TY
1216 struct kvm_memory_slot *slot;
1217
8c85ac1c
TY
1218 if (unlikely(*force_pt_level))
1219 return PT_PAGE_TABLE_LEVEL;
05da4558 1220
8c85ac1c
TY
1221 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1222 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
1223 if (unlikely(*force_pt_level))
1224 return PT_PAGE_TABLE_LEVEL;
1225
d25797b2
JR
1226 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1227
1228 if (host_level == PT_PAGE_TABLE_LEVEL)
1229 return host_level;
1230
55dd98c3 1231 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
1232
1233 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 1234 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 1235 break;
d25797b2
JR
1236
1237 return level - 1;
05da4558
MT
1238}
1239
290fc38d 1240/*
018aabb5 1241 * About rmap_head encoding:
cd4a4e53 1242 *
018aabb5
TY
1243 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1244 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1245 * pte_list_desc containing more mappings.
018aabb5
TY
1246 */
1247
1248/*
1249 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1250 */
53c07b18 1251static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1252 struct kvm_rmap_head *rmap_head)
cd4a4e53 1253{
53c07b18 1254 struct pte_list_desc *desc;
53a27b39 1255 int i, count = 0;
cd4a4e53 1256
018aabb5 1257 if (!rmap_head->val) {
53c07b18 1258 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1259 rmap_head->val = (unsigned long)spte;
1260 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1261 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1262 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1263 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1264 desc->sptes[1] = spte;
018aabb5 1265 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1266 ++count;
cd4a4e53 1267 } else {
53c07b18 1268 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1269 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1270 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1271 desc = desc->more;
53c07b18 1272 count += PTE_LIST_EXT;
53a27b39 1273 }
53c07b18
XG
1274 if (desc->sptes[PTE_LIST_EXT-1]) {
1275 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1276 desc = desc->more;
1277 }
d555c333 1278 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1279 ++count;
d555c333 1280 desc->sptes[i] = spte;
cd4a4e53 1281 }
53a27b39 1282 return count;
cd4a4e53
AK
1283}
1284
53c07b18 1285static void
018aabb5
TY
1286pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1287 struct pte_list_desc *desc, int i,
1288 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1289{
1290 int j;
1291
53c07b18 1292 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1293 ;
d555c333
AK
1294 desc->sptes[i] = desc->sptes[j];
1295 desc->sptes[j] = NULL;
cd4a4e53
AK
1296 if (j != 0)
1297 return;
1298 if (!prev_desc && !desc->more)
018aabb5 1299 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
1300 else
1301 if (prev_desc)
1302 prev_desc->more = desc->more;
1303 else
018aabb5 1304 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1305 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1306}
1307
8daf3462 1308static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1309{
53c07b18
XG
1310 struct pte_list_desc *desc;
1311 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1312 int i;
1313
018aabb5 1314 if (!rmap_head->val) {
8daf3462 1315 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 1316 BUG();
018aabb5 1317 } else if (!(rmap_head->val & 1)) {
8daf3462 1318 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 1319 if ((u64 *)rmap_head->val != spte) {
8daf3462 1320 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
1321 BUG();
1322 }
018aabb5 1323 rmap_head->val = 0;
cd4a4e53 1324 } else {
8daf3462 1325 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 1326 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1327 prev_desc = NULL;
1328 while (desc) {
018aabb5 1329 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1330 if (desc->sptes[i] == spte) {
018aabb5
TY
1331 pte_list_desc_remove_entry(rmap_head,
1332 desc, i, prev_desc);
cd4a4e53
AK
1333 return;
1334 }
018aabb5 1335 }
cd4a4e53
AK
1336 prev_desc = desc;
1337 desc = desc->more;
1338 }
8daf3462 1339 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
1340 BUG();
1341 }
1342}
1343
e7912386
WY
1344static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1345{
1346 mmu_spte_clear_track_bits(sptep);
1347 __pte_list_remove(sptep, rmap_head);
1348}
1349
018aabb5
TY
1350static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1351 struct kvm_memory_slot *slot)
53c07b18 1352{
77d11309 1353 unsigned long idx;
53c07b18 1354
77d11309 1355 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1356 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1357}
1358
018aabb5
TY
1359static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1360 struct kvm_mmu_page *sp)
9b9b1492 1361{
699023e2 1362 struct kvm_memslots *slots;
9b9b1492
TY
1363 struct kvm_memory_slot *slot;
1364
699023e2
PB
1365 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1366 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1367 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1368}
1369
f759e2b4
XG
1370static bool rmap_can_add(struct kvm_vcpu *vcpu)
1371{
1372 struct kvm_mmu_memory_cache *cache;
1373
1374 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1375 return mmu_memory_cache_free_objects(cache);
1376}
1377
53c07b18
XG
1378static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1379{
1380 struct kvm_mmu_page *sp;
018aabb5 1381 struct kvm_rmap_head *rmap_head;
53c07b18 1382
53c07b18
XG
1383 sp = page_header(__pa(spte));
1384 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1385 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1386 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1387}
1388
53c07b18
XG
1389static void rmap_remove(struct kvm *kvm, u64 *spte)
1390{
1391 struct kvm_mmu_page *sp;
1392 gfn_t gfn;
018aabb5 1393 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1394
1395 sp = page_header(__pa(spte));
1396 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 1397 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 1398 __pte_list_remove(spte, rmap_head);
53c07b18
XG
1399}
1400
1e3f42f0
TY
1401/*
1402 * Used by the following functions to iterate through the sptes linked by a
1403 * rmap. All fields are private and not assumed to be used outside.
1404 */
1405struct rmap_iterator {
1406 /* private fields */
1407 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1408 int pos; /* index of the sptep */
1409};
1410
1411/*
1412 * Iteration must be started by this function. This should also be used after
1413 * removing/dropping sptes from the rmap link because in such cases the
1414 * information in the itererator may not be valid.
1415 *
1416 * Returns sptep if found, NULL otherwise.
1417 */
018aabb5
TY
1418static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1419 struct rmap_iterator *iter)
1e3f42f0 1420{
77fbbbd2
TY
1421 u64 *sptep;
1422
018aabb5 1423 if (!rmap_head->val)
1e3f42f0
TY
1424 return NULL;
1425
018aabb5 1426 if (!(rmap_head->val & 1)) {
1e3f42f0 1427 iter->desc = NULL;
77fbbbd2
TY
1428 sptep = (u64 *)rmap_head->val;
1429 goto out;
1e3f42f0
TY
1430 }
1431
018aabb5 1432 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1433 iter->pos = 0;
77fbbbd2
TY
1434 sptep = iter->desc->sptes[iter->pos];
1435out:
1436 BUG_ON(!is_shadow_present_pte(*sptep));
1437 return sptep;
1e3f42f0
TY
1438}
1439
1440/*
1441 * Must be used with a valid iterator: e.g. after rmap_get_first().
1442 *
1443 * Returns sptep if found, NULL otherwise.
1444 */
1445static u64 *rmap_get_next(struct rmap_iterator *iter)
1446{
77fbbbd2
TY
1447 u64 *sptep;
1448
1e3f42f0
TY
1449 if (iter->desc) {
1450 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1451 ++iter->pos;
1452 sptep = iter->desc->sptes[iter->pos];
1453 if (sptep)
77fbbbd2 1454 goto out;
1e3f42f0
TY
1455 }
1456
1457 iter->desc = iter->desc->more;
1458
1459 if (iter->desc) {
1460 iter->pos = 0;
1461 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1462 sptep = iter->desc->sptes[iter->pos];
1463 goto out;
1e3f42f0
TY
1464 }
1465 }
1466
1467 return NULL;
77fbbbd2
TY
1468out:
1469 BUG_ON(!is_shadow_present_pte(*sptep));
1470 return sptep;
1e3f42f0
TY
1471}
1472
018aabb5
TY
1473#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1474 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1475 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1476
c3707958 1477static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1478{
1df9f2dc 1479 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1480 rmap_remove(kvm, sptep);
be38d276
AK
1481}
1482
8e22f955
XG
1483
1484static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1485{
1486 if (is_large_pte(*sptep)) {
1487 WARN_ON(page_header(__pa(sptep))->role.level ==
1488 PT_PAGE_TABLE_LEVEL);
1489 drop_spte(kvm, sptep);
1490 --kvm->stat.lpages;
1491 return true;
1492 }
1493
1494 return false;
1495}
1496
1497static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1498{
c3134ce2
LT
1499 if (__drop_large_spte(vcpu->kvm, sptep)) {
1500 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1501
1502 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1503 KVM_PAGES_PER_HPAGE(sp->role.level));
1504 }
8e22f955
XG
1505}
1506
1507/*
49fde340 1508 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1509 * spte write-protection is caused by protecting shadow page table.
49fde340 1510 *
b4619660 1511 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1512 * protection:
1513 * - for dirty logging, the spte can be set to writable at anytime if
1514 * its dirty bitmap is properly set.
1515 * - for spte protection, the spte can be writable only after unsync-ing
1516 * shadow page.
8e22f955 1517 *
c126d94f 1518 * Return true if tlb need be flushed.
8e22f955 1519 */
c4f138b4 1520static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1521{
1522 u64 spte = *sptep;
1523
49fde340 1524 if (!is_writable_pte(spte) &&
ea4114bc 1525 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1526 return false;
1527
1528 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1529
49fde340
XG
1530 if (pt_protect)
1531 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1532 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1533
c126d94f 1534 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1535}
1536
018aabb5
TY
1537static bool __rmap_write_protect(struct kvm *kvm,
1538 struct kvm_rmap_head *rmap_head,
245c3912 1539 bool pt_protect)
98348e95 1540{
1e3f42f0
TY
1541 u64 *sptep;
1542 struct rmap_iterator iter;
d13bc5b5 1543 bool flush = false;
374cbac0 1544
018aabb5 1545 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1546 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1547
d13bc5b5 1548 return flush;
a0ed4607
TY
1549}
1550
c4f138b4 1551static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1552{
1553 u64 spte = *sptep;
1554
1555 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1556
1557 spte &= ~shadow_dirty_mask;
1558
1559 return mmu_spte_update(sptep, spte);
1560}
1561
ac8d57e5
PF
1562static bool wrprot_ad_disabled_spte(u64 *sptep)
1563{
1564 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1565 (unsigned long *)sptep);
1566 if (was_writable)
1567 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1568
1569 return was_writable;
1570}
1571
1572/*
1573 * Gets the GFN ready for another round of dirty logging by clearing the
1574 * - D bit on ad-enabled SPTEs, and
1575 * - W bit on ad-disabled SPTEs.
1576 * Returns true iff any D or W bits were cleared.
1577 */
018aabb5 1578static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1579{
1580 u64 *sptep;
1581 struct rmap_iterator iter;
1582 bool flush = false;
1583
018aabb5 1584 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1585 if (spte_ad_enabled(*sptep))
1586 flush |= spte_clear_dirty(sptep);
1587 else
1588 flush |= wrprot_ad_disabled_spte(sptep);
f4b4b180
KH
1589
1590 return flush;
1591}
1592
c4f138b4 1593static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1594{
1595 u64 spte = *sptep;
1596
1597 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1598
1599 spte |= shadow_dirty_mask;
1600
1601 return mmu_spte_update(sptep, spte);
1602}
1603
018aabb5 1604static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1605{
1606 u64 *sptep;
1607 struct rmap_iterator iter;
1608 bool flush = false;
1609
018aabb5 1610 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1611 if (spte_ad_enabled(*sptep))
1612 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1613
1614 return flush;
1615}
1616
5dc99b23 1617/**
3b0f1d01 1618 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1619 * @kvm: kvm instance
1620 * @slot: slot to protect
1621 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1622 * @mask: indicates which pages we should protect
1623 *
1624 * Used when we do not need to care about huge page mappings: e.g. during dirty
1625 * logging we do not have any such mappings.
1626 */
3b0f1d01 1627static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1628 struct kvm_memory_slot *slot,
1629 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1630{
018aabb5 1631 struct kvm_rmap_head *rmap_head;
a0ed4607 1632
5dc99b23 1633 while (mask) {
018aabb5
TY
1634 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1635 PT_PAGE_TABLE_LEVEL, slot);
1636 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1637
5dc99b23
TY
1638 /* clear the first set bit */
1639 mask &= mask - 1;
1640 }
374cbac0
AK
1641}
1642
f4b4b180 1643/**
ac8d57e5
PF
1644 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1645 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1646 * @kvm: kvm instance
1647 * @slot: slot to clear D-bit
1648 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1649 * @mask: indicates which pages we should clear D-bit
1650 *
1651 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1652 */
1653void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1654 struct kvm_memory_slot *slot,
1655 gfn_t gfn_offset, unsigned long mask)
1656{
018aabb5 1657 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1658
1659 while (mask) {
018aabb5
TY
1660 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1661 PT_PAGE_TABLE_LEVEL, slot);
1662 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1663
1664 /* clear the first set bit */
1665 mask &= mask - 1;
1666 }
1667}
1668EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1669
3b0f1d01
KH
1670/**
1671 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1672 * PT level pages.
1673 *
1674 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1675 * enable dirty logging for them.
1676 *
1677 * Used when we do not need to care about huge page mappings: e.g. during dirty
1678 * logging we do not have any such mappings.
1679 */
1680void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1681 struct kvm_memory_slot *slot,
1682 gfn_t gfn_offset, unsigned long mask)
1683{
88178fd4
KH
1684 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1685 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1686 mask);
1687 else
1688 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1689}
1690
bab4165e
BD
1691/**
1692 * kvm_arch_write_log_dirty - emulate dirty page logging
1693 * @vcpu: Guest mode vcpu
1694 *
1695 * Emulate arch specific page modification logging for the
1696 * nested hypervisor
1697 */
1698int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1699{
1700 if (kvm_x86_ops->write_log_dirty)
1701 return kvm_x86_ops->write_log_dirty(vcpu);
1702
1703 return 0;
1704}
1705
aeecee2e
XG
1706bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1707 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1708{
018aabb5 1709 struct kvm_rmap_head *rmap_head;
5dc99b23 1710 int i;
2f84569f 1711 bool write_protected = false;
95d4c16c 1712
8a3d08f1 1713 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1714 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1715 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1716 }
1717
1718 return write_protected;
95d4c16c
TY
1719}
1720
aeecee2e
XG
1721static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1722{
1723 struct kvm_memory_slot *slot;
1724
1725 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1726 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1727}
1728
018aabb5 1729static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1730{
1e3f42f0
TY
1731 u64 *sptep;
1732 struct rmap_iterator iter;
6a49f85c 1733 bool flush = false;
e930bffe 1734
018aabb5 1735 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1736 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1737
e7912386 1738 pte_list_remove(rmap_head, sptep);
6a49f85c 1739 flush = true;
e930bffe 1740 }
1e3f42f0 1741
6a49f85c
XG
1742 return flush;
1743}
1744
018aabb5 1745static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1746 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1747 unsigned long data)
1748{
018aabb5 1749 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1750}
1751
018aabb5 1752static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1753 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1754 unsigned long data)
3da0dd43 1755{
1e3f42f0
TY
1756 u64 *sptep;
1757 struct rmap_iterator iter;
3da0dd43 1758 int need_flush = 0;
1e3f42f0 1759 u64 new_spte;
3da0dd43 1760 pte_t *ptep = (pte_t *)data;
ba049e93 1761 kvm_pfn_t new_pfn;
3da0dd43
IE
1762
1763 WARN_ON(pte_huge(*ptep));
1764 new_pfn = pte_pfn(*ptep);
1e3f42f0 1765
0d536790 1766restart:
018aabb5 1767 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1768 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1769 sptep, *sptep, gfn, level);
1e3f42f0 1770
3da0dd43 1771 need_flush = 1;
1e3f42f0 1772
3da0dd43 1773 if (pte_write(*ptep)) {
e7912386 1774 pte_list_remove(rmap_head, sptep);
0d536790 1775 goto restart;
3da0dd43 1776 } else {
1e3f42f0 1777 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1778 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1779
1780 new_spte &= ~PT_WRITABLE_MASK;
1781 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1782
1783 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1784
1785 mmu_spte_clear_track_bits(sptep);
1786 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1787 }
1788 }
1e3f42f0 1789
3cc5ea94
LT
1790 if (need_flush && kvm_available_flush_tlb_with_range()) {
1791 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1792 return 0;
1793 }
1794
0cf853c5 1795 return need_flush;
3da0dd43
IE
1796}
1797
6ce1f4e2
XG
1798struct slot_rmap_walk_iterator {
1799 /* input fields. */
1800 struct kvm_memory_slot *slot;
1801 gfn_t start_gfn;
1802 gfn_t end_gfn;
1803 int start_level;
1804 int end_level;
1805
1806 /* output fields. */
1807 gfn_t gfn;
018aabb5 1808 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1809 int level;
1810
1811 /* private field. */
018aabb5 1812 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1813};
1814
1815static void
1816rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1817{
1818 iterator->level = level;
1819 iterator->gfn = iterator->start_gfn;
1820 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1821 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1822 iterator->slot);
1823}
1824
1825static void
1826slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1827 struct kvm_memory_slot *slot, int start_level,
1828 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1829{
1830 iterator->slot = slot;
1831 iterator->start_level = start_level;
1832 iterator->end_level = end_level;
1833 iterator->start_gfn = start_gfn;
1834 iterator->end_gfn = end_gfn;
1835
1836 rmap_walk_init_level(iterator, iterator->start_level);
1837}
1838
1839static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1840{
1841 return !!iterator->rmap;
1842}
1843
1844static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1845{
1846 if (++iterator->rmap <= iterator->end_rmap) {
1847 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1848 return;
1849 }
1850
1851 if (++iterator->level > iterator->end_level) {
1852 iterator->rmap = NULL;
1853 return;
1854 }
1855
1856 rmap_walk_init_level(iterator, iterator->level);
1857}
1858
1859#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1860 _start_gfn, _end_gfn, _iter_) \
1861 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1862 _end_level_, _start_gfn, _end_gfn); \
1863 slot_rmap_walk_okay(_iter_); \
1864 slot_rmap_walk_next(_iter_))
1865
84504ef3
TY
1866static int kvm_handle_hva_range(struct kvm *kvm,
1867 unsigned long start,
1868 unsigned long end,
1869 unsigned long data,
1870 int (*handler)(struct kvm *kvm,
018aabb5 1871 struct kvm_rmap_head *rmap_head,
048212d0 1872 struct kvm_memory_slot *slot,
8a9522d2
ALC
1873 gfn_t gfn,
1874 int level,
84504ef3 1875 unsigned long data))
e930bffe 1876{
bc6678a3 1877 struct kvm_memslots *slots;
be6ba0f0 1878 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1879 struct slot_rmap_walk_iterator iterator;
1880 int ret = 0;
9da0e4d5 1881 int i;
bc6678a3 1882
9da0e4d5
PB
1883 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1884 slots = __kvm_memslots(kvm, i);
1885 kvm_for_each_memslot(memslot, slots) {
1886 unsigned long hva_start, hva_end;
1887 gfn_t gfn_start, gfn_end;
e930bffe 1888
9da0e4d5
PB
1889 hva_start = max(start, memslot->userspace_addr);
1890 hva_end = min(end, memslot->userspace_addr +
1891 (memslot->npages << PAGE_SHIFT));
1892 if (hva_start >= hva_end)
1893 continue;
1894 /*
1895 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1896 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1897 */
1898 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1899 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1900
1901 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1902 PT_MAX_HUGEPAGE_LEVEL,
1903 gfn_start, gfn_end - 1,
1904 &iterator)
1905 ret |= handler(kvm, iterator.rmap, memslot,
1906 iterator.gfn, iterator.level, data);
1907 }
e930bffe
AA
1908 }
1909
f395302e 1910 return ret;
e930bffe
AA
1911}
1912
84504ef3
TY
1913static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1914 unsigned long data,
018aabb5
TY
1915 int (*handler)(struct kvm *kvm,
1916 struct kvm_rmap_head *rmap_head,
048212d0 1917 struct kvm_memory_slot *slot,
8a9522d2 1918 gfn_t gfn, int level,
84504ef3
TY
1919 unsigned long data))
1920{
1921 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1922}
1923
b3ae2096
TY
1924int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1925{
1926 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1927}
1928
748c0e31 1929int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1930{
0cf853c5 1931 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1932}
1933
018aabb5 1934static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1935 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1936 unsigned long data)
e930bffe 1937{
1e3f42f0 1938 u64 *sptep;
79f702a6 1939 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1940 int young = 0;
1941
f160c7b7
JS
1942 for_each_rmap_spte(rmap_head, &iter, sptep)
1943 young |= mmu_spte_age(sptep);
0d536790 1944
8a9522d2 1945 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1946 return young;
1947}
1948
018aabb5 1949static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1950 struct kvm_memory_slot *slot, gfn_t gfn,
1951 int level, unsigned long data)
8ee53820 1952{
1e3f42f0
TY
1953 u64 *sptep;
1954 struct rmap_iterator iter;
8ee53820 1955
83ef6c81
JS
1956 for_each_rmap_spte(rmap_head, &iter, sptep)
1957 if (is_accessed_spte(*sptep))
1958 return 1;
83ef6c81 1959 return 0;
8ee53820
AA
1960}
1961
53a27b39
MT
1962#define RMAP_RECYCLE_THRESHOLD 1000
1963
852e3c19 1964static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1965{
018aabb5 1966 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1967 struct kvm_mmu_page *sp;
1968
1969 sp = page_header(__pa(spte));
53a27b39 1970
018aabb5 1971 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1972
018aabb5 1973 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
1974 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1975 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
1976}
1977
57128468 1978int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1979{
57128468 1980 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1981}
1982
8ee53820
AA
1983int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1984{
1985 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1986}
1987
d6c69ee9 1988#ifdef MMU_DEBUG
47ad8e68 1989static int is_empty_shadow_page(u64 *spt)
6aa8b732 1990{
139bdb2d
AK
1991 u64 *pos;
1992 u64 *end;
1993
47ad8e68 1994 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1995 if (is_shadow_present_pte(*pos)) {
b8688d51 1996 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1997 pos, *pos);
6aa8b732 1998 return 0;
139bdb2d 1999 }
6aa8b732
AK
2000 return 1;
2001}
d6c69ee9 2002#endif
6aa8b732 2003
45221ab6
DH
2004/*
2005 * This value is the sum of all of the kvm instances's
2006 * kvm->arch.n_used_mmu_pages values. We need a global,
2007 * aggregate version in order to make the slab shrinker
2008 * faster
2009 */
2010static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
2011{
2012 kvm->arch.n_used_mmu_pages += nr;
2013 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2014}
2015
834be0d8 2016static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 2017{
fa4a2c08 2018 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 2019 hlist_del(&sp->hash_link);
bd4c86ea
XG
2020 list_del(&sp->link);
2021 free_page((unsigned long)sp->spt);
834be0d8
GN
2022 if (!sp->role.direct)
2023 free_page((unsigned long)sp->gfns);
e8ad9a70 2024 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
2025}
2026
cea0f0e7
AK
2027static unsigned kvm_page_table_hashfn(gfn_t gfn)
2028{
114df303 2029 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
2030}
2031
714b93da 2032static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 2033 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2034{
cea0f0e7
AK
2035 if (!parent_pte)
2036 return;
cea0f0e7 2037
67052b35 2038 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2039}
2040
4db35314 2041static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
2042 u64 *parent_pte)
2043{
8daf3462 2044 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2045}
2046
bcdd9a93
XG
2047static void drop_parent_pte(struct kvm_mmu_page *sp,
2048 u64 *parent_pte)
2049{
2050 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 2051 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
2052}
2053
47005792 2054static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 2055{
67052b35 2056 struct kvm_mmu_page *sp;
7ddca7e4 2057
80feb89a
TY
2058 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2059 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2060 if (!direct)
80feb89a 2061 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
2062 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2063 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
2064 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2065 return sp;
ad8cfbe3
MT
2066}
2067
67052b35 2068static void mark_unsync(u64 *spte);
1047df1f 2069static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 2070{
74c4e63a
TY
2071 u64 *sptep;
2072 struct rmap_iterator iter;
2073
2074 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2075 mark_unsync(sptep);
2076 }
0074ff63
MT
2077}
2078
67052b35 2079static void mark_unsync(u64 *spte)
0074ff63 2080{
67052b35 2081 struct kvm_mmu_page *sp;
1047df1f 2082 unsigned int index;
0074ff63 2083
67052b35 2084 sp = page_header(__pa(spte));
1047df1f
XG
2085 index = spte - sp->spt;
2086 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 2087 return;
1047df1f 2088 if (sp->unsync_children++)
0074ff63 2089 return;
1047df1f 2090 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
2091}
2092
e8bc217a 2093static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 2094 struct kvm_mmu_page *sp)
e8bc217a 2095{
1f50f1b3 2096 return 0;
e8bc217a
MT
2097}
2098
7eb77e9f 2099static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
a7052897
MT
2100{
2101}
2102
0f53b5b1
XG
2103static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2104 struct kvm_mmu_page *sp, u64 *spte,
7c562522 2105 const void *pte)
0f53b5b1
XG
2106{
2107 WARN_ON(1);
2108}
2109
60c8aec6
MT
2110#define KVM_PAGE_ARRAY_NR 16
2111
2112struct kvm_mmu_pages {
2113 struct mmu_page_and_offset {
2114 struct kvm_mmu_page *sp;
2115 unsigned int idx;
2116 } page[KVM_PAGE_ARRAY_NR];
2117 unsigned int nr;
2118};
2119
cded19f3
HE
2120static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2121 int idx)
4731d4c7 2122{
60c8aec6 2123 int i;
4731d4c7 2124
60c8aec6
MT
2125 if (sp->unsync)
2126 for (i=0; i < pvec->nr; i++)
2127 if (pvec->page[i].sp == sp)
2128 return 0;
2129
2130 pvec->page[pvec->nr].sp = sp;
2131 pvec->page[pvec->nr].idx = idx;
2132 pvec->nr++;
2133 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2134}
2135
fd951457
TY
2136static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2137{
2138 --sp->unsync_children;
2139 WARN_ON((int)sp->unsync_children < 0);
2140 __clear_bit(idx, sp->unsync_child_bitmap);
2141}
2142
60c8aec6
MT
2143static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2144 struct kvm_mmu_pages *pvec)
2145{
2146 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2147
37178b8b 2148 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2149 struct kvm_mmu_page *child;
4731d4c7
MT
2150 u64 ent = sp->spt[i];
2151
fd951457
TY
2152 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2153 clear_unsync_child_bit(sp, i);
2154 continue;
2155 }
7a8f1a74
XG
2156
2157 child = page_header(ent & PT64_BASE_ADDR_MASK);
2158
2159 if (child->unsync_children) {
2160 if (mmu_pages_add(pvec, child, i))
2161 return -ENOSPC;
2162
2163 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2164 if (!ret) {
2165 clear_unsync_child_bit(sp, i);
2166 continue;
2167 } else if (ret > 0) {
7a8f1a74 2168 nr_unsync_leaf += ret;
fd951457 2169 } else
7a8f1a74
XG
2170 return ret;
2171 } else if (child->unsync) {
2172 nr_unsync_leaf++;
2173 if (mmu_pages_add(pvec, child, i))
2174 return -ENOSPC;
2175 } else
fd951457 2176 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2177 }
2178
60c8aec6
MT
2179 return nr_unsync_leaf;
2180}
2181
e23d3fef
XG
2182#define INVALID_INDEX (-1)
2183
60c8aec6
MT
2184static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2185 struct kvm_mmu_pages *pvec)
2186{
0a47cd85 2187 pvec->nr = 0;
60c8aec6
MT
2188 if (!sp->unsync_children)
2189 return 0;
2190
e23d3fef 2191 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2192 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2193}
2194
4731d4c7
MT
2195static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2196{
2197 WARN_ON(!sp->unsync);
5e1b3ddb 2198 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2199 sp->unsync = 0;
2200 --kvm->stat.mmu_unsync;
2201}
2202
83cdb568
SC
2203static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2204 struct list_head *invalid_list);
7775834a
XG
2205static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2206 struct list_head *invalid_list);
4731d4c7 2207
f3414bc7 2208#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2209 hlist_for_each_entry(_sp, \
2210 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
ea145aac 2211 if ((_sp)->role.invalid) { \
f3414bc7 2212 } else
1044b030
TY
2213
2214#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2215 for_each_valid_sp(_kvm, _sp, _gfn) \
2216 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2217
f918b443 2218/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2219static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2220 struct list_head *invalid_list)
4731d4c7 2221{
450917b6 2222 if (sp->role.cr4_pae != !!is_pae(vcpu)
44dd3ffa 2223 || vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 2224 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2225 return false;
4731d4c7
MT
2226 }
2227
1f50f1b3 2228 return true;
4731d4c7
MT
2229}
2230
a2113634
SC
2231static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2232 struct list_head *invalid_list,
2233 bool remote_flush)
2234{
2235 if (!remote_flush && !list_empty(invalid_list))
2236 return false;
2237
2238 if (!list_empty(invalid_list))
2239 kvm_mmu_commit_zap_page(kvm, invalid_list);
2240 else
2241 kvm_flush_remote_tlbs(kvm);
2242 return true;
2243}
2244
35a70510
PB
2245static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2246 struct list_head *invalid_list,
2247 bool remote_flush, bool local_flush)
1d9dc7e0 2248{
a2113634 2249 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 2250 return;
d98ba053 2251
a2113634 2252 if (local_flush)
35a70510 2253 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2254}
2255
e37fa785
XG
2256#ifdef CONFIG_KVM_MMU_AUDIT
2257#include "mmu_audit.c"
2258#else
2259static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2260static void mmu_audit_disable(void) { }
2261#endif
2262
1f50f1b3 2263static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2264 struct list_head *invalid_list)
1d9dc7e0 2265{
9a43c5d9
PB
2266 kvm_unlink_unsync_page(vcpu->kvm, sp);
2267 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2268}
2269
9f1a122f 2270/* @gfn should be write-protected at the call site */
2a74003a
PB
2271static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2272 struct list_head *invalid_list)
9f1a122f 2273{
9f1a122f 2274 struct kvm_mmu_page *s;
2a74003a 2275 bool ret = false;
9f1a122f 2276
b67bfe0d 2277 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2278 if (!s->unsync)
9f1a122f
XG
2279 continue;
2280
2281 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2282 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2283 }
2284
2a74003a 2285 return ret;
9f1a122f
XG
2286}
2287
60c8aec6 2288struct mmu_page_path {
2a7266a8
YZ
2289 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2290 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
2291};
2292
60c8aec6 2293#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2294 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2295 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2296 i = mmu_pages_next(&pvec, &parents, i))
2297
cded19f3
HE
2298static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2299 struct mmu_page_path *parents,
2300 int i)
60c8aec6
MT
2301{
2302 int n;
2303
2304 for (n = i+1; n < pvec->nr; n++) {
2305 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2306 unsigned idx = pvec->page[n].idx;
2307 int level = sp->role.level;
60c8aec6 2308
0a47cd85
PB
2309 parents->idx[level-1] = idx;
2310 if (level == PT_PAGE_TABLE_LEVEL)
2311 break;
60c8aec6 2312
0a47cd85 2313 parents->parent[level-2] = sp;
60c8aec6
MT
2314 }
2315
2316 return n;
2317}
2318
0a47cd85
PB
2319static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2320 struct mmu_page_path *parents)
2321{
2322 struct kvm_mmu_page *sp;
2323 int level;
2324
2325 if (pvec->nr == 0)
2326 return 0;
2327
e23d3fef
XG
2328 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2329
0a47cd85
PB
2330 sp = pvec->page[0].sp;
2331 level = sp->role.level;
2332 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2333
2334 parents->parent[level-2] = sp;
2335
2336 /* Also set up a sentinel. Further entries in pvec are all
2337 * children of sp, so this element is never overwritten.
2338 */
2339 parents->parent[level-1] = NULL;
2340 return mmu_pages_next(pvec, parents, 0);
2341}
2342
cded19f3 2343static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2344{
60c8aec6
MT
2345 struct kvm_mmu_page *sp;
2346 unsigned int level = 0;
2347
2348 do {
2349 unsigned int idx = parents->idx[level];
60c8aec6
MT
2350 sp = parents->parent[level];
2351 if (!sp)
2352 return;
2353
e23d3fef 2354 WARN_ON(idx == INVALID_INDEX);
fd951457 2355 clear_unsync_child_bit(sp, idx);
60c8aec6 2356 level++;
0a47cd85 2357 } while (!sp->unsync_children);
60c8aec6 2358}
4731d4c7 2359
60c8aec6
MT
2360static void mmu_sync_children(struct kvm_vcpu *vcpu,
2361 struct kvm_mmu_page *parent)
2362{
2363 int i;
2364 struct kvm_mmu_page *sp;
2365 struct mmu_page_path parents;
2366 struct kvm_mmu_pages pages;
d98ba053 2367 LIST_HEAD(invalid_list);
50c9e6f3 2368 bool flush = false;
60c8aec6 2369
60c8aec6 2370 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2371 bool protected = false;
b1a36821
MT
2372
2373 for_each_sp(pages, sp, parents, i)
54bf36aa 2374 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2375
50c9e6f3 2376 if (protected) {
b1a36821 2377 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2378 flush = false;
2379 }
b1a36821 2380
60c8aec6 2381 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2382 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2383 mmu_pages_clear_parents(&parents);
2384 }
50c9e6f3
PB
2385 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2386 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2387 cond_resched_lock(&vcpu->kvm->mmu_lock);
2388 flush = false;
2389 }
60c8aec6 2390 }
50c9e6f3
PB
2391
2392 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2393}
2394
a30f47cb
XG
2395static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2396{
e5691a81 2397 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2398}
2399
2400static void clear_sp_write_flooding_count(u64 *spte)
2401{
2402 struct kvm_mmu_page *sp = page_header(__pa(spte));
2403
2404 __clear_sp_write_flooding_count(sp);
2405}
2406
cea0f0e7
AK
2407static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2408 gfn_t gfn,
2409 gva_t gaddr,
2410 unsigned level,
f6e2c02b 2411 int direct,
bb11c6c9 2412 unsigned access)
cea0f0e7
AK
2413{
2414 union kvm_mmu_page_role role;
cea0f0e7 2415 unsigned quadrant;
9f1a122f 2416 struct kvm_mmu_page *sp;
9f1a122f 2417 bool need_sync = false;
2a74003a 2418 bool flush = false;
f3414bc7 2419 int collisions = 0;
2a74003a 2420 LIST_HEAD(invalid_list);
cea0f0e7 2421
36d9594d 2422 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2423 role.level = level;
f6e2c02b 2424 role.direct = direct;
84b0c8c6 2425 if (role.direct)
5b7e0102 2426 role.cr4_pae = 0;
41074d07 2427 role.access = access;
44dd3ffa
VK
2428 if (!vcpu->arch.mmu->direct_map
2429 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2430 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2431 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2432 role.quadrant = quadrant;
2433 }
f3414bc7
DM
2434 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2435 if (sp->gfn != gfn) {
2436 collisions++;
2437 continue;
2438 }
2439
7ae680eb
XG
2440 if (!need_sync && sp->unsync)
2441 need_sync = true;
4731d4c7 2442
7ae680eb
XG
2443 if (sp->role.word != role.word)
2444 continue;
4731d4c7 2445
2a74003a
PB
2446 if (sp->unsync) {
2447 /* The page is good, but __kvm_sync_page might still end
2448 * up zapping it. If so, break in order to rebuild it.
2449 */
2450 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2451 break;
2452
2453 WARN_ON(!list_empty(&invalid_list));
2454 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2455 }
e02aa901 2456
98bba238 2457 if (sp->unsync_children)
a8eeb04a 2458 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2459
a30f47cb 2460 __clear_sp_write_flooding_count(sp);
7ae680eb 2461 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2462 goto out;
7ae680eb 2463 }
47005792 2464
dfc5aa00 2465 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2466
2467 sp = kvm_mmu_alloc_page(vcpu, direct);
2468
4db35314
AK
2469 sp->gfn = gfn;
2470 sp->role = role;
7ae680eb
XG
2471 hlist_add_head(&sp->hash_link,
2472 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2473 if (!direct) {
56ca57f9
XG
2474 /*
2475 * we should do write protection before syncing pages
2476 * otherwise the content of the synced shadow page may
2477 * be inconsistent with guest page table.
2478 */
2479 account_shadowed(vcpu->kvm, sp);
2480 if (level == PT_PAGE_TABLE_LEVEL &&
2481 rmap_write_protect(vcpu, gfn))
c3134ce2 2482 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2483
9f1a122f 2484 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2485 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2486 }
77492664 2487 clear_page(sp->spt);
f691fe1d 2488 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2489
2490 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2491out:
2492 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2493 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2494 return sp;
cea0f0e7
AK
2495}
2496
7eb77e9f
JS
2497static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2498 struct kvm_vcpu *vcpu, hpa_t root,
2499 u64 addr)
2d11123a
AK
2500{
2501 iterator->addr = addr;
7eb77e9f 2502 iterator->shadow_addr = root;
44dd3ffa 2503 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2504
2a7266a8 2505 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2506 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2507 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2508 --iterator->level;
2509
2d11123a 2510 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2511 /*
2512 * prev_root is currently only used for 64-bit hosts. So only
2513 * the active root_hpa is valid here.
2514 */
44dd3ffa 2515 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2516
2d11123a 2517 iterator->shadow_addr
44dd3ffa 2518 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2519 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2520 --iterator->level;
2521 if (!iterator->shadow_addr)
2522 iterator->level = 0;
2523 }
2524}
2525
7eb77e9f
JS
2526static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2527 struct kvm_vcpu *vcpu, u64 addr)
2528{
44dd3ffa 2529 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2530 addr);
2531}
2532
2d11123a
AK
2533static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2534{
2535 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2536 return false;
4d88954d 2537
2d11123a
AK
2538 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2539 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2540 return true;
2541}
2542
c2a2ac2b
XG
2543static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2544 u64 spte)
2d11123a 2545{
c2a2ac2b 2546 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2547 iterator->level = 0;
2548 return;
2549 }
2550
c2a2ac2b 2551 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2552 --iterator->level;
2553}
2554
c2a2ac2b
XG
2555static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2556{
bb606a9b 2557 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2558}
2559
98bba238
TY
2560static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2561 struct kvm_mmu_page *sp)
32ef26a3
AK
2562{
2563 u64 spte;
2564
ffb128c8 2565 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2566
ffb128c8 2567 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2568 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2569
2570 if (sp_ad_disabled(sp))
2571 spte |= shadow_acc_track_value;
2572 else
2573 spte |= shadow_accessed_mask;
24db2734 2574
1df9f2dc 2575 mmu_spte_set(sptep, spte);
98bba238
TY
2576
2577 mmu_page_add_parent_pte(vcpu, sp, sptep);
2578
2579 if (sp->unsync_children || sp->unsync)
2580 mark_unsync(sptep);
32ef26a3
AK
2581}
2582
a357bd22
AK
2583static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2584 unsigned direct_access)
2585{
2586 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2587 struct kvm_mmu_page *child;
2588
2589 /*
2590 * For the direct sp, if the guest pte's dirty bit
2591 * changed form clean to dirty, it will corrupt the
2592 * sp's access: allow writable in the read-only sp,
2593 * so we should update the spte at this point to get
2594 * a new sp with the correct access.
2595 */
2596 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2597 if (child->role.access == direct_access)
2598 return;
2599
bcdd9a93 2600 drop_parent_pte(child, sptep);
c3134ce2 2601 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2602 }
2603}
2604
505aef8f 2605static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2606 u64 *spte)
2607{
2608 u64 pte;
2609 struct kvm_mmu_page *child;
2610
2611 pte = *spte;
2612 if (is_shadow_present_pte(pte)) {
505aef8f 2613 if (is_last_spte(pte, sp->role.level)) {
c3707958 2614 drop_spte(kvm, spte);
505aef8f
XG
2615 if (is_large_pte(pte))
2616 --kvm->stat.lpages;
2617 } else {
38e3b2b2 2618 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2619 drop_parent_pte(child, spte);
38e3b2b2 2620 }
505aef8f
XG
2621 return true;
2622 }
2623
2624 if (is_mmio_spte(pte))
ce88decf 2625 mmu_spte_clear_no_track(spte);
c3707958 2626
505aef8f 2627 return false;
38e3b2b2
XG
2628}
2629
90cb0529 2630static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2631 struct kvm_mmu_page *sp)
a436036b 2632{
697fe2e2 2633 unsigned i;
697fe2e2 2634
38e3b2b2
XG
2635 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2636 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2637}
2638
31aa2b44 2639static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2640{
1e3f42f0
TY
2641 u64 *sptep;
2642 struct rmap_iterator iter;
a436036b 2643
018aabb5 2644 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2645 drop_parent_pte(sp, sptep);
31aa2b44
AK
2646}
2647
60c8aec6 2648static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2649 struct kvm_mmu_page *parent,
2650 struct list_head *invalid_list)
4731d4c7 2651{
60c8aec6
MT
2652 int i, zapped = 0;
2653 struct mmu_page_path parents;
2654 struct kvm_mmu_pages pages;
4731d4c7 2655
60c8aec6 2656 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2657 return 0;
60c8aec6 2658
60c8aec6
MT
2659 while (mmu_unsync_walk(parent, &pages)) {
2660 struct kvm_mmu_page *sp;
2661
2662 for_each_sp(pages, sp, parents, i) {
7775834a 2663 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2664 mmu_pages_clear_parents(&parents);
77662e00 2665 zapped++;
60c8aec6 2666 }
60c8aec6
MT
2667 }
2668
2669 return zapped;
4731d4c7
MT
2670}
2671
83cdb568
SC
2672static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2673 struct kvm_mmu_page *sp,
2674 struct list_head *invalid_list,
2675 int *nr_zapped)
31aa2b44 2676{
83cdb568 2677 bool list_unstable;
f691fe1d 2678
7775834a 2679 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2680 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2681 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2682 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2683 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2684
83cdb568
SC
2685 /* Zapping children means active_mmu_pages has become unstable. */
2686 list_unstable = *nr_zapped;
2687
f6e2c02b 2688 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2689 unaccount_shadowed(kvm, sp);
5304b8d3 2690
4731d4c7
MT
2691 if (sp->unsync)
2692 kvm_unlink_unsync_page(kvm, sp);
4db35314 2693 if (!sp->root_count) {
54a4f023 2694 /* Count self */
83cdb568 2695 (*nr_zapped)++;
7775834a 2696 list_move(&sp->link, invalid_list);
aa6bd187 2697 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2698 } else {
5b5c6a5a 2699 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72 2700
5ff05683 2701 if (!sp->role.invalid)
05988d72 2702 kvm_reload_remote_mmus(kvm);
2e53d63a 2703 }
7775834a
XG
2704
2705 sp->role.invalid = 1;
83cdb568
SC
2706 return list_unstable;
2707}
2708
2709static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2710 struct list_head *invalid_list)
2711{
2712 int nr_zapped;
2713
2714 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2715 return nr_zapped;
a436036b
AK
2716}
2717
7775834a
XG
2718static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2719 struct list_head *invalid_list)
2720{
945315b9 2721 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2722
2723 if (list_empty(invalid_list))
2724 return;
2725
c142786c 2726 /*
9753f529
LT
2727 * We need to make sure everyone sees our modifications to
2728 * the page tables and see changes to vcpu->mode here. The barrier
2729 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2730 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2731 *
2732 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2733 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2734 */
2735 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2736
945315b9 2737 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2738 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2739 kvm_mmu_free_page(sp);
945315b9 2740 }
7775834a
XG
2741}
2742
5da59607
TY
2743static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2744 struct list_head *invalid_list)
2745{
2746 struct kvm_mmu_page *sp;
2747
2748 if (list_empty(&kvm->arch.active_mmu_pages))
2749 return false;
2750
d74c0e6b
GT
2751 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2752 struct kvm_mmu_page, link);
42bcbebf 2753 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
5da59607
TY
2754}
2755
82ce2c96
IE
2756/*
2757 * Changing the number of mmu pages allocated to the vm
49d5ca26 2758 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2759 */
49d5ca26 2760void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2761{
d98ba053 2762 LIST_HEAD(invalid_list);
82ce2c96 2763
b34cb590
TY
2764 spin_lock(&kvm->mmu_lock);
2765
49d5ca26 2766 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2767 /* Need to free some mmu pages to achieve the goal. */
2768 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2769 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2770 break;
82ce2c96 2771
aa6bd187 2772 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2773 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2774 }
82ce2c96 2775
49d5ca26 2776 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2777
2778 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2779}
2780
1cb3f3ae 2781int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2782{
4db35314 2783 struct kvm_mmu_page *sp;
d98ba053 2784 LIST_HEAD(invalid_list);
a436036b
AK
2785 int r;
2786
9ad17b10 2787 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2788 r = 0;
1cb3f3ae 2789 spin_lock(&kvm->mmu_lock);
b67bfe0d 2790 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2791 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2792 sp->role.word);
2793 r = 1;
f41d335a 2794 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2795 }
d98ba053 2796 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2797 spin_unlock(&kvm->mmu_lock);
2798
a436036b 2799 return r;
cea0f0e7 2800}
1cb3f3ae 2801EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2802
5c520e90 2803static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2804{
2805 trace_kvm_mmu_unsync_page(sp);
2806 ++vcpu->kvm->stat.mmu_unsync;
2807 sp->unsync = 1;
2808
2809 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2810}
2811
3d0c27ad
XG
2812static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2813 bool can_unsync)
4731d4c7 2814{
5c520e90 2815 struct kvm_mmu_page *sp;
4731d4c7 2816
3d0c27ad
XG
2817 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2818 return true;
9cf5cf5a 2819
5c520e90 2820 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2821 if (!can_unsync)
3d0c27ad 2822 return true;
36a2e677 2823
5c520e90
XG
2824 if (sp->unsync)
2825 continue;
9cf5cf5a 2826
5c520e90
XG
2827 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2828 kvm_unsync_page(vcpu, sp);
4731d4c7 2829 }
3d0c27ad 2830
578e1c4d
JS
2831 /*
2832 * We need to ensure that the marking of unsync pages is visible
2833 * before the SPTE is updated to allow writes because
2834 * kvm_mmu_sync_roots() checks the unsync flags without holding
2835 * the MMU lock and so can race with this. If the SPTE was updated
2836 * before the page had been marked as unsync-ed, something like the
2837 * following could happen:
2838 *
2839 * CPU 1 CPU 2
2840 * ---------------------------------------------------------------------
2841 * 1.2 Host updates SPTE
2842 * to be writable
2843 * 2.1 Guest writes a GPTE for GVA X.
2844 * (GPTE being in the guest page table shadowed
2845 * by the SP from CPU 1.)
2846 * This reads SPTE during the page table walk.
2847 * Since SPTE.W is read as 1, there is no
2848 * fault.
2849 *
2850 * 2.2 Guest issues TLB flush.
2851 * That causes a VM Exit.
2852 *
2853 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2854 * Since it is false, so it just returns.
2855 *
2856 * 2.4 Guest accesses GVA X.
2857 * Since the mapping in the SP was not updated,
2858 * so the old mapping for GVA X incorrectly
2859 * gets used.
2860 * 1.1 Host marks SP
2861 * as unsync
2862 * (sp->unsync = true)
2863 *
2864 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2865 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2866 * pairs with this write barrier.
2867 */
2868 smp_wmb();
2869
3d0c27ad 2870 return false;
4731d4c7
MT
2871}
2872
ba049e93 2873static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2874{
2875 if (pfn_valid(pfn))
aa2e063a
HZ
2876 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2877 /*
2878 * Some reserved pages, such as those from NVDIMM
2879 * DAX devices, are not for MMIO, and can be mapped
2880 * with cached memory type for better performance.
2881 * However, the above check misconceives those pages
2882 * as MMIO, and results in KVM mapping them with UC
2883 * memory type, which would hurt the performance.
2884 * Therefore, we check the host memory type in addition
2885 * and only treat UC/UC-/WC pages as MMIO.
2886 */
2887 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
d1fe9219
PB
2888
2889 return true;
2890}
2891
5ce4786f
JS
2892/* Bits which may be returned by set_spte() */
2893#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2894#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2895
d555c333 2896static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2897 unsigned pte_access, int level,
ba049e93 2898 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2899 bool can_unsync, bool host_writable)
1c4f1fd6 2900{
ffb128c8 2901 u64 spte = 0;
1e73f9dd 2902 int ret = 0;
ac8d57e5 2903 struct kvm_mmu_page *sp;
64d4d521 2904
54bf36aa 2905 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2906 return 0;
2907
ac8d57e5
PF
2908 sp = page_header(__pa(sptep));
2909 if (sp_ad_disabled(sp))
2910 spte |= shadow_acc_track_value;
2911
d95c5568
BD
2912 /*
2913 * For the EPT case, shadow_present_mask is 0 if hardware
2914 * supports exec-only page table entries. In that case,
2915 * ACC_USER_MASK and shadow_user_mask are used to represent
2916 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2917 */
ffb128c8 2918 spte |= shadow_present_mask;
947da538 2919 if (!speculative)
ac8d57e5 2920 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 2921
7b52345e
SY
2922 if (pte_access & ACC_EXEC_MASK)
2923 spte |= shadow_x_mask;
2924 else
2925 spte |= shadow_nx_mask;
49fde340 2926
1c4f1fd6 2927 if (pte_access & ACC_USER_MASK)
7b52345e 2928 spte |= shadow_user_mask;
49fde340 2929
852e3c19 2930 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2931 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2932 if (tdp_enabled)
4b12f0de 2933 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2934 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2935
9bdbba13 2936 if (host_writable)
1403283a 2937 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2938 else
2939 pte_access &= ~ACC_WRITE_MASK;
1403283a 2940
daaf216c
TL
2941 if (!kvm_is_mmio_pfn(pfn))
2942 spte |= shadow_me_mask;
2943
35149e21 2944 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2945
c2288505 2946 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2947
c2193463 2948 /*
7751babd
XG
2949 * Other vcpu creates new sp in the window between
2950 * mapping_level() and acquiring mmu-lock. We can
2951 * allow guest to retry the access, the mapping can
2952 * be fixed if guest refault.
c2193463 2953 */
852e3c19 2954 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2955 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2956 goto done;
38187c83 2957
49fde340 2958 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2959
ecc5589f
MT
2960 /*
2961 * Optimization: for pte sync, if spte was writable the hash
2962 * lookup is unnecessary (and expensive). Write protection
2963 * is responsibility of mmu_get_page / kvm_sync_page.
2964 * Same reasoning can be applied to dirty page accounting.
2965 */
8dae4445 2966 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2967 goto set_pte;
2968
4731d4c7 2969 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2970 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2971 __func__, gfn);
5ce4786f 2972 ret |= SET_SPTE_WRITE_PROTECTED_PT;
1c4f1fd6 2973 pte_access &= ~ACC_WRITE_MASK;
49fde340 2974 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2975 }
2976 }
2977
9b51a630 2978 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2979 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 2980 spte |= spte_shadow_dirty_mask(spte);
9b51a630 2981 }
1c4f1fd6 2982
f160c7b7
JS
2983 if (speculative)
2984 spte = mark_spte_for_access_track(spte);
2985
38187c83 2986set_pte:
6e7d0354 2987 if (mmu_spte_update(sptep, spte))
5ce4786f 2988 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
be38d276 2989done:
1e73f9dd
MT
2990 return ret;
2991}
2992
9b8ebbdb
PB
2993static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2994 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2995 bool speculative, bool host_writable)
1e73f9dd
MT
2996{
2997 int was_rmapped = 0;
53a27b39 2998 int rmap_count;
5ce4786f 2999 int set_spte_ret;
9b8ebbdb 3000 int ret = RET_PF_RETRY;
c2a4eadf 3001 bool flush = false;
1e73f9dd 3002
f7616203
XG
3003 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3004 *sptep, write_fault, gfn);
1e73f9dd 3005
afd28fe1 3006 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
3007 /*
3008 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3009 * the parent of the now unreachable PTE.
3010 */
852e3c19
JR
3011 if (level > PT_PAGE_TABLE_LEVEL &&
3012 !is_large_pte(*sptep)) {
1e73f9dd 3013 struct kvm_mmu_page *child;
d555c333 3014 u64 pte = *sptep;
1e73f9dd
MT
3015
3016 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 3017 drop_parent_pte(child, sptep);
c2a4eadf 3018 flush = true;
d555c333 3019 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 3020 pgprintk("hfn old %llx new %llx\n",
d555c333 3021 spte_to_pfn(*sptep), pfn);
c3707958 3022 drop_spte(vcpu->kvm, sptep);
c2a4eadf 3023 flush = true;
6bed6b9e
JR
3024 } else
3025 was_rmapped = 1;
1e73f9dd 3026 }
852e3c19 3027
5ce4786f
JS
3028 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3029 speculative, true, host_writable);
3030 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 3031 if (write_fault)
9b8ebbdb 3032 ret = RET_PF_EMULATE;
77c3913b 3033 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 3034 }
c3134ce2 3035
c2a4eadf 3036 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
3037 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3038 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 3039
029499b4 3040 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 3041 ret = RET_PF_EMULATE;
ce88decf 3042
d555c333 3043 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 3044 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 3045 is_large_pte(*sptep)? "2MB" : "4kB",
f160c7b7 3046 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
a205bc19 3047 *sptep, sptep);
d555c333 3048 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
3049 ++vcpu->kvm->stat.lpages;
3050
ffb61bb3 3051 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
3052 if (!was_rmapped) {
3053 rmap_count = rmap_add(vcpu, sptep, gfn);
3054 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3055 rmap_recycle(vcpu, sptep, gfn);
3056 }
1c4f1fd6 3057 }
cb9aaa30 3058
f3ac1a4b 3059 kvm_release_pfn_clean(pfn);
029499b4 3060
9b8ebbdb 3061 return ret;
1c4f1fd6
AK
3062}
3063
ba049e93 3064static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
3065 bool no_dirty_log)
3066{
3067 struct kvm_memory_slot *slot;
957ed9ef 3068
5d163b1c 3069 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 3070 if (!slot)
6c8ee57b 3071 return KVM_PFN_ERR_FAULT;
957ed9ef 3072
037d92dc 3073 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
3074}
3075
3076static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3077 struct kvm_mmu_page *sp,
3078 u64 *start, u64 *end)
3079{
3080 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 3081 struct kvm_memory_slot *slot;
957ed9ef
XG
3082 unsigned access = sp->role.access;
3083 int i, ret;
3084 gfn_t gfn;
3085
3086 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
3087 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3088 if (!slot)
957ed9ef
XG
3089 return -1;
3090
d9ef13c2 3091 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
3092 if (ret <= 0)
3093 return -1;
3094
3095 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
3096 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3097 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
3098
3099 return 0;
3100}
3101
3102static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3103 struct kvm_mmu_page *sp, u64 *sptep)
3104{
3105 u64 *spte, *start = NULL;
3106 int i;
3107
3108 WARN_ON(!sp->role.direct);
3109
3110 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3111 spte = sp->spt + i;
3112
3113 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 3114 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
3115 if (!start)
3116 continue;
3117 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3118 break;
3119 start = NULL;
3120 } else if (!start)
3121 start = spte;
3122 }
3123}
3124
3125static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3126{
3127 struct kvm_mmu_page *sp;
3128
ac8d57e5
PF
3129 sp = page_header(__pa(sptep));
3130
957ed9ef 3131 /*
ac8d57e5
PF
3132 * Without accessed bits, there's no way to distinguish between
3133 * actually accessed translations and prefetched, so disable pte
3134 * prefetch if accessed bits aren't available.
957ed9ef 3135 */
ac8d57e5 3136 if (sp_ad_disabled(sp))
957ed9ef
XG
3137 return;
3138
957ed9ef
XG
3139 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3140 return;
3141
3142 __direct_pte_prefetch(vcpu, sp, sptep);
3143}
3144
7ee0e5b2 3145static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 3146 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 3147{
9f652d21 3148 struct kvm_shadow_walk_iterator iterator;
140754bc 3149 struct kvm_mmu_page *sp;
b90a0e6c 3150 int emulate = 0;
140754bc 3151 gfn_t pseudo_gfn;
6aa8b732 3152
44dd3ffa 3153 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
989c6b34
MT
3154 return 0;
3155
9f652d21 3156 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 3157 if (iterator.level == level) {
029499b4
TY
3158 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
3159 write, level, gfn, pfn, prefault,
3160 map_writable);
957ed9ef 3161 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
3162 ++vcpu->stat.pf_fixed;
3163 break;
6aa8b732
AK
3164 }
3165
404381c5 3166 drop_large_spte(vcpu, iterator.sptep);
c3707958 3167 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
3168 u64 base_addr = iterator.addr;
3169
3170 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
3171 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 3172 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 3173 iterator.level - 1, 1, ACC_ALL);
140754bc 3174
98bba238 3175 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
3176 }
3177 }
b90a0e6c 3178 return emulate;
6aa8b732
AK
3179}
3180
77db5cbd 3181static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 3182{
585a8b9b 3183 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
3184}
3185
ba049e93 3186static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 3187{
4d8b81ab
XG
3188 /*
3189 * Do not cache the mmio info caused by writing the readonly gfn
3190 * into the spte otherwise read access on readonly gfn also can
3191 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
3192 */
3193 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 3194 return RET_PF_EMULATE;
4d8b81ab 3195
e6c1502b 3196 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3197 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 3198 return RET_PF_RETRY;
d7c55201 3199 }
edba23e5 3200
2c151b25 3201 return -EFAULT;
bf998156
HY
3202}
3203
936a5fe6 3204static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
3205 gfn_t *gfnp, kvm_pfn_t *pfnp,
3206 int *levelp)
936a5fe6 3207{
ba049e93 3208 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
3209 gfn_t gfn = *gfnp;
3210 int level = *levelp;
3211
3212 /*
3213 * Check if it's a transparent hugepage. If this would be an
3214 * hugetlbfs page, level wouldn't be set to
3215 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3216 * here.
3217 */
bf4bea8e 3218 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6 3219 level == PT_PAGE_TABLE_LEVEL &&
127393fb 3220 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 3221 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
3222 unsigned long mask;
3223 /*
3224 * mmu_notifier_retry was successful and we hold the
3225 * mmu_lock here, so the pmd can't become splitting
3226 * from under us, and in turn
3227 * __split_huge_page_refcount() can't run from under
3228 * us and we can safely transfer the refcount from
3229 * PG_tail to PG_head as we switch the pfn to tail to
3230 * head.
3231 */
3232 *levelp = level = PT_DIRECTORY_LEVEL;
3233 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3234 VM_BUG_ON((gfn & mask) != (pfn & mask));
3235 if (pfn & mask) {
3236 gfn &= ~mask;
3237 *gfnp = gfn;
3238 kvm_release_pfn_clean(pfn);
3239 pfn &= ~mask;
c3586667 3240 kvm_get_pfn(pfn);
936a5fe6
AA
3241 *pfnp = pfn;
3242 }
3243 }
3244}
3245
d7c55201 3246static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 3247 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 3248{
d7c55201 3249 /* The pfn is invalid, report the error! */
81c52c56 3250 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3251 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3252 return true;
d7c55201
XG
3253 }
3254
ce88decf 3255 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 3256 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 3257
798e88b3 3258 return false;
d7c55201
XG
3259}
3260
e5552fd2 3261static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3262{
1c118b82
XG
3263 /*
3264 * Do not fix the mmio spte with invalid generation number which
3265 * need to be updated by slow page fault path.
3266 */
3267 if (unlikely(error_code & PFERR_RSVD_MASK))
3268 return false;
3269
f160c7b7
JS
3270 /* See if the page fault is due to an NX violation */
3271 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3272 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3273 return false;
3274
c7ba5b48 3275 /*
f160c7b7
JS
3276 * #PF can be fast if:
3277 * 1. The shadow page table entry is not present, which could mean that
3278 * the fault is potentially caused by access tracking (if enabled).
3279 * 2. The shadow page table entry is present and the fault
3280 * is caused by write-protect, that means we just need change the W
3281 * bit of the spte which can be done out of mmu-lock.
3282 *
3283 * However, if access tracking is disabled we know that a non-present
3284 * page must be a genuine page fault where we have to create a new SPTE.
3285 * So, if access tracking is disabled, we return true only for write
3286 * accesses to a present page.
c7ba5b48 3287 */
c7ba5b48 3288
f160c7b7
JS
3289 return shadow_acc_track_mask != 0 ||
3290 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3291 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3292}
3293
97dceba2
JS
3294/*
3295 * Returns true if the SPTE was fixed successfully. Otherwise,
3296 * someone else modified the SPTE from its original value.
3297 */
c7ba5b48 3298static bool
92a476cb 3299fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3300 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3301{
c7ba5b48
XG
3302 gfn_t gfn;
3303
3304 WARN_ON(!sp->role.direct);
3305
9b51a630
KH
3306 /*
3307 * Theoretically we could also set dirty bit (and flush TLB) here in
3308 * order to eliminate unnecessary PML logging. See comments in
3309 * set_spte. But fast_page_fault is very unlikely to happen with PML
3310 * enabled, so we do not do this. This might result in the same GPA
3311 * to be logged in PML buffer again when the write really happens, and
3312 * eventually to be called by mark_page_dirty twice. But it's also no
3313 * harm. This also avoids the TLB flush needed after setting dirty bit
3314 * so non-PML cases won't be impacted.
3315 *
3316 * Compare with set_spte where instead shadow_dirty_mask is set.
3317 */
f160c7b7 3318 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3319 return false;
3320
d3e328f2 3321 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3322 /*
3323 * The gfn of direct spte is stable since it is
3324 * calculated by sp->gfn.
3325 */
3326 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3327 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3328 }
c7ba5b48
XG
3329
3330 return true;
3331}
3332
d3e328f2
JS
3333static bool is_access_allowed(u32 fault_err_code, u64 spte)
3334{
3335 if (fault_err_code & PFERR_FETCH_MASK)
3336 return is_executable_pte(spte);
3337
3338 if (fault_err_code & PFERR_WRITE_MASK)
3339 return is_writable_pte(spte);
3340
3341 /* Fault was on Read access */
3342 return spte & PT_PRESENT_MASK;
3343}
3344
c7ba5b48
XG
3345/*
3346 * Return value:
3347 * - true: let the vcpu to access on the same address again.
3348 * - false: let the real page fault path to fix it.
3349 */
3350static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3351 u32 error_code)
3352{
3353 struct kvm_shadow_walk_iterator iterator;
92a476cb 3354 struct kvm_mmu_page *sp;
97dceba2 3355 bool fault_handled = false;
c7ba5b48 3356 u64 spte = 0ull;
97dceba2 3357 uint retry_count = 0;
c7ba5b48 3358
44dd3ffa 3359 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
37f6a4e2
MT
3360 return false;
3361
e5552fd2 3362 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3363 return false;
3364
3365 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3366
97dceba2 3367 do {
d3e328f2 3368 u64 new_spte;
c7ba5b48 3369
d162f30a
JS
3370 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3371 if (!is_shadow_present_pte(spte) ||
3372 iterator.level < level)
3373 break;
3374
97dceba2
JS
3375 sp = page_header(__pa(iterator.sptep));
3376 if (!is_last_spte(spte, sp->role.level))
3377 break;
c7ba5b48 3378
97dceba2 3379 /*
f160c7b7
JS
3380 * Check whether the memory access that caused the fault would
3381 * still cause it if it were to be performed right now. If not,
3382 * then this is a spurious fault caused by TLB lazily flushed,
3383 * or some other CPU has already fixed the PTE after the
3384 * current CPU took the fault.
97dceba2
JS
3385 *
3386 * Need not check the access of upper level table entries since
3387 * they are always ACC_ALL.
3388 */
d3e328f2
JS
3389 if (is_access_allowed(error_code, spte)) {
3390 fault_handled = true;
3391 break;
3392 }
f160c7b7 3393
d3e328f2
JS
3394 new_spte = spte;
3395
3396 if (is_access_track_spte(spte))
3397 new_spte = restore_acc_track_spte(new_spte);
3398
3399 /*
3400 * Currently, to simplify the code, write-protection can
3401 * be removed in the fast path only if the SPTE was
3402 * write-protected for dirty-logging or access tracking.
3403 */
3404 if ((error_code & PFERR_WRITE_MASK) &&
3405 spte_can_locklessly_be_made_writable(spte))
3406 {
3407 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3408
3409 /*
d3e328f2
JS
3410 * Do not fix write-permission on the large spte. Since
3411 * we only dirty the first page into the dirty-bitmap in
3412 * fast_pf_fix_direct_spte(), other pages are missed
3413 * if its slot has dirty logging enabled.
3414 *
3415 * Instead, we let the slow page fault path create a
3416 * normal spte to fix the access.
3417 *
3418 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3419 */
d3e328f2 3420 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3421 break;
97dceba2 3422 }
c7ba5b48 3423
f160c7b7 3424 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3425 if (new_spte == spte ||
3426 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3427 break;
3428
3429 /*
3430 * Currently, fast page fault only works for direct mapping
3431 * since the gfn is not stable for indirect shadow page. See
3432 * Documentation/virtual/kvm/locking.txt to get more detail.
3433 */
3434 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3435 iterator.sptep, spte,
d3e328f2 3436 new_spte);
97dceba2
JS
3437 if (fault_handled)
3438 break;
3439
3440 if (++retry_count > 4) {
3441 printk_once(KERN_WARNING
3442 "kvm: Fast #PF retrying more than 4 times.\n");
3443 break;
3444 }
3445
97dceba2 3446 } while (true);
c126d94f 3447
a72faf25 3448 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
97dceba2 3449 spte, fault_handled);
c7ba5b48
XG
3450 walk_shadow_page_lockless_end(vcpu);
3451
97dceba2 3452 return fault_handled;
c7ba5b48
XG
3453}
3454
78b2c54a 3455static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3456 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
26eeb53c 3457static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3458
c7ba5b48
XG
3459static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3460 gfn_t gfn, bool prefault)
10589a46
MT
3461{
3462 int r;
852e3c19 3463 int level;
fd136902 3464 bool force_pt_level = false;
ba049e93 3465 kvm_pfn_t pfn;
e930bffe 3466 unsigned long mmu_seq;
c7ba5b48 3467 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3468
fd136902 3469 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3470 if (likely(!force_pt_level)) {
936a5fe6
AA
3471 /*
3472 * This path builds a PAE pagetable - so we can map
3473 * 2mb pages at maximum. Therefore check if the level
3474 * is larger than that.
3475 */
3476 if (level > PT_DIRECTORY_LEVEL)
3477 level = PT_DIRECTORY_LEVEL;
852e3c19 3478
936a5fe6 3479 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3480 }
05da4558 3481
c7ba5b48 3482 if (fast_page_fault(vcpu, v, level, error_code))
9b8ebbdb 3483 return RET_PF_RETRY;
c7ba5b48 3484
e930bffe 3485 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3486 smp_rmb();
060c2abe 3487
78b2c54a 3488 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
9b8ebbdb 3489 return RET_PF_RETRY;
aaee2c94 3490
d7c55201
XG
3491 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3492 return r;
d196e343 3493
aaee2c94 3494 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3495 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3496 goto out_unlock;
26eeb53c
WL
3497 if (make_mmu_pages_available(vcpu) < 0)
3498 goto out_unlock;
936a5fe6
AA
3499 if (likely(!force_pt_level))
3500 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3501 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3502 spin_unlock(&vcpu->kvm->mmu_lock);
3503
10589a46 3504 return r;
e930bffe
AA
3505
3506out_unlock:
3507 spin_unlock(&vcpu->kvm->mmu_lock);
3508 kvm_release_pfn_clean(pfn);
9b8ebbdb 3509 return RET_PF_RETRY;
10589a46
MT
3510}
3511
74b566e6
JS
3512static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3513 struct list_head *invalid_list)
17ac10ad 3514{
4db35314 3515 struct kvm_mmu_page *sp;
17ac10ad 3516
74b566e6 3517 if (!VALID_PAGE(*root_hpa))
7b53aa56 3518 return;
35af577a 3519
74b566e6
JS
3520 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3521 --sp->root_count;
3522 if (!sp->root_count && sp->role.invalid)
3523 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
17ac10ad 3524
74b566e6
JS
3525 *root_hpa = INVALID_PAGE;
3526}
3527
08fb59d8 3528/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3529void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3530 ulong roots_to_free)
74b566e6
JS
3531{
3532 int i;
3533 LIST_HEAD(invalid_list);
08fb59d8 3534 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3535
b94742c9 3536 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3537
08fb59d8 3538 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3539 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3540 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3541 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3542 VALID_PAGE(mmu->prev_roots[i].hpa))
3543 break;
3544
3545 if (i == KVM_MMU_NUM_PREV_ROOTS)
3546 return;
3547 }
35af577a
GN
3548
3549 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3550
b94742c9
JS
3551 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3552 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3553 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3554 &invalid_list);
7c390d35 3555
08fb59d8
JS
3556 if (free_active_root) {
3557 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3558 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3559 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3560 &invalid_list);
3561 } else {
3562 for (i = 0; i < 4; ++i)
3563 if (mmu->pae_root[i] != 0)
3564 mmu_free_root_page(vcpu->kvm,
3565 &mmu->pae_root[i],
3566 &invalid_list);
3567 mmu->root_hpa = INVALID_PAGE;
3568 }
17ac10ad 3569 }
74b566e6 3570
d98ba053 3571 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3572 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad 3573}
74b566e6 3574EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3575
8986ecc0
MT
3576static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3577{
3578 int ret = 0;
3579
3580 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3581 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3582 ret = 1;
3583 }
3584
3585 return ret;
3586}
3587
651dd37a
JR
3588static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3589{
3590 struct kvm_mmu_page *sp;
7ebaf15e 3591 unsigned i;
651dd37a 3592
44dd3ffa 3593 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
651dd37a 3594 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3595 if(make_mmu_pages_available(vcpu) < 0) {
3596 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3597 return -ENOSPC;
26eeb53c 3598 }
855feb67 3599 sp = kvm_mmu_get_page(vcpu, 0, 0,
44dd3ffa 3600 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
651dd37a
JR
3601 ++sp->root_count;
3602 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa
VK
3603 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3604 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3605 for (i = 0; i < 4; ++i) {
44dd3ffa 3606 hpa_t root = vcpu->arch.mmu->pae_root[i];
651dd37a 3607
fa4a2c08 3608 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3609 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3610 if (make_mmu_pages_available(vcpu) < 0) {
3611 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3612 return -ENOSPC;
26eeb53c 3613 }
649497d1 3614 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3615 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3616 root = __pa(sp->spt);
3617 ++sp->root_count;
3618 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3619 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3620 }
44dd3ffa 3621 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3622 } else
3623 BUG();
3624
3625 return 0;
3626}
3627
3628static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3629{
4db35314 3630 struct kvm_mmu_page *sp;
81407ca5
JR
3631 u64 pdptr, pm_mask;
3632 gfn_t root_gfn;
3633 int i;
3bb65a22 3634
44dd3ffa 3635 root_gfn = vcpu->arch.mmu->get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3636
651dd37a
JR
3637 if (mmu_check_root(vcpu, root_gfn))
3638 return 1;
3639
3640 /*
3641 * Do we shadow a long mode page table? If so we need to
3642 * write-protect the guests page table root.
3643 */
44dd3ffa
VK
3644 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3645 hpa_t root = vcpu->arch.mmu->root_hpa;
17ac10ad 3646
fa4a2c08 3647 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3648
8facbbff 3649 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3650 if (make_mmu_pages_available(vcpu) < 0) {
3651 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3652 return -ENOSPC;
26eeb53c 3653 }
855feb67 3654 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
44dd3ffa 3655 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
4db35314
AK
3656 root = __pa(sp->spt);
3657 ++sp->root_count;
8facbbff 3658 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3659 vcpu->arch.mmu->root_hpa = root;
8986ecc0 3660 return 0;
17ac10ad 3661 }
f87f9288 3662
651dd37a
JR
3663 /*
3664 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3665 * or a PAE 3-level page table. In either case we need to be aware that
3666 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3667 */
81407ca5 3668 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3669 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3670 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3671
17ac10ad 3672 for (i = 0; i < 4; ++i) {
44dd3ffa 3673 hpa_t root = vcpu->arch.mmu->pae_root[i];
17ac10ad 3674
fa4a2c08 3675 MMU_WARN_ON(VALID_PAGE(root));
44dd3ffa
VK
3676 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3677 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3678 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3679 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3680 continue;
3681 }
6de4f3ad 3682 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3683 if (mmu_check_root(vcpu, root_gfn))
3684 return 1;
5a7388c2 3685 }
8facbbff 3686 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3687 if (make_mmu_pages_available(vcpu) < 0) {
3688 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3689 return -ENOSPC;
26eeb53c 3690 }
bb11c6c9
TY
3691 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3692 0, ACC_ALL);
4db35314
AK
3693 root = __pa(sp->spt);
3694 ++sp->root_count;
8facbbff
AK
3695 spin_unlock(&vcpu->kvm->mmu_lock);
3696
44dd3ffa 3697 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3698 }
44dd3ffa 3699 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3700
3701 /*
3702 * If we shadow a 32 bit page table with a long mode page
3703 * table we enter this path.
3704 */
44dd3ffa
VK
3705 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3706 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3707 /*
3708 * The additional page necessary for this is only
3709 * allocated on demand.
3710 */
3711
3712 u64 *lm_root;
3713
254272ce 3714 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3715 if (lm_root == NULL)
3716 return 1;
3717
44dd3ffa 3718 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3719
44dd3ffa 3720 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3721 }
3722
44dd3ffa 3723 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3724 }
3725
8986ecc0 3726 return 0;
17ac10ad
AK
3727}
3728
651dd37a
JR
3729static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3730{
44dd3ffa 3731 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3732 return mmu_alloc_direct_roots(vcpu);
3733 else
3734 return mmu_alloc_shadow_roots(vcpu);
3735}
3736
578e1c4d 3737void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3738{
3739 int i;
3740 struct kvm_mmu_page *sp;
3741
44dd3ffa 3742 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3743 return;
3744
44dd3ffa 3745 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3746 return;
6903074c 3747
56f17dd3 3748 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3749
44dd3ffa
VK
3750 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3751 hpa_t root = vcpu->arch.mmu->root_hpa;
0ba73cda 3752 sp = page_header(root);
578e1c4d
JS
3753
3754 /*
3755 * Even if another CPU was marking the SP as unsync-ed
3756 * simultaneously, any guest page table changes are not
3757 * guaranteed to be visible anyway until this VCPU issues a TLB
3758 * flush strictly after those changes are made. We only need to
3759 * ensure that the other CPU sets these flags before any actual
3760 * changes to the page tables are made. The comments in
3761 * mmu_need_write_protect() describe what could go wrong if this
3762 * requirement isn't satisfied.
3763 */
3764 if (!smp_load_acquire(&sp->unsync) &&
3765 !smp_load_acquire(&sp->unsync_children))
3766 return;
3767
3768 spin_lock(&vcpu->kvm->mmu_lock);
3769 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3770
0ba73cda 3771 mmu_sync_children(vcpu, sp);
578e1c4d 3772
0375f7fa 3773 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3774 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3775 return;
3776 }
578e1c4d
JS
3777
3778 spin_lock(&vcpu->kvm->mmu_lock);
3779 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3780
0ba73cda 3781 for (i = 0; i < 4; ++i) {
44dd3ffa 3782 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3783
8986ecc0 3784 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3785 root &= PT64_BASE_ADDR_MASK;
3786 sp = page_header(root);
3787 mmu_sync_children(vcpu, sp);
3788 }
3789 }
0ba73cda 3790
578e1c4d 3791 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3792 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3793}
bfd0a56b 3794EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3795
1871c602 3796static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3797 u32 access, struct x86_exception *exception)
6aa8b732 3798{
ab9ae313
AK
3799 if (exception)
3800 exception->error_code = 0;
6aa8b732
AK
3801 return vaddr;
3802}
3803
6539e738 3804static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3805 u32 access,
3806 struct x86_exception *exception)
6539e738 3807{
ab9ae313
AK
3808 if (exception)
3809 exception->error_code = 0;
54987b7a 3810 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3811}
3812
d625b155
XG
3813static bool
3814__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3815{
3816 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3817
3818 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3819 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3820}
3821
3822static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3823{
3824 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3825}
3826
3827static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3828{
3829 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3830}
3831
ded58749 3832static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3833{
9034e6e8
PB
3834 /*
3835 * A nested guest cannot use the MMIO cache if it is using nested
3836 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3837 */
3838 if (mmu_is_nested(vcpu))
3839 return false;
3840
ce88decf
XG
3841 if (direct)
3842 return vcpu_match_mmio_gpa(vcpu, addr);
3843
3844 return vcpu_match_mmio_gva(vcpu, addr);
3845}
3846
47ab8751
XG
3847/* return true if reserved bit is detected on spte. */
3848static bool
3849walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3850{
3851 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3852 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
47ab8751
XG
3853 int root, leaf;
3854 bool reserved = false;
ce88decf 3855
44dd3ffa 3856 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
47ab8751 3857 goto exit;
37f6a4e2 3858
ce88decf 3859 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3860
29ecd660
PB
3861 for (shadow_walk_init(&iterator, vcpu, addr),
3862 leaf = root = iterator.level;
47ab8751
XG
3863 shadow_walk_okay(&iterator);
3864 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3865 spte = mmu_spte_get_lockless(iterator.sptep);
3866
3867 sptes[leaf - 1] = spte;
29ecd660 3868 leaf--;
47ab8751 3869
ce88decf
XG
3870 if (!is_shadow_present_pte(spte))
3871 break;
47ab8751 3872
44dd3ffa 3873 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
58c95070 3874 iterator.level);
47ab8751
XG
3875 }
3876
ce88decf
XG
3877 walk_shadow_page_lockless_end(vcpu);
3878
47ab8751
XG
3879 if (reserved) {
3880 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3881 __func__, addr);
29ecd660 3882 while (root > leaf) {
47ab8751
XG
3883 pr_err("------ spte 0x%llx level %d.\n",
3884 sptes[root - 1], root);
3885 root--;
3886 }
3887 }
3888exit:
3889 *sptep = spte;
3890 return reserved;
ce88decf
XG
3891}
3892
e08d26f0 3893static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3894{
3895 u64 spte;
47ab8751 3896 bool reserved;
ce88decf 3897
ded58749 3898 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3899 return RET_PF_EMULATE;
ce88decf 3900
47ab8751 3901 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3902 if (WARN_ON(reserved))
9b8ebbdb 3903 return -EINVAL;
ce88decf
XG
3904
3905 if (is_mmio_spte(spte)) {
3906 gfn_t gfn = get_mmio_spte_gfn(spte);
3907 unsigned access = get_mmio_spte_access(spte);
3908
54bf36aa 3909 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3910 return RET_PF_INVALID;
f8f55942 3911
ce88decf
XG
3912 if (direct)
3913 addr = 0;
4f022648
XG
3914
3915 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3916 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3917 return RET_PF_EMULATE;
ce88decf
XG
3918 }
3919
ce88decf
XG
3920 /*
3921 * If the page table is zapped by other cpus, let CPU fault again on
3922 * the address.
3923 */
9b8ebbdb 3924 return RET_PF_RETRY;
ce88decf 3925}
ce88decf 3926
3d0c27ad
XG
3927static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3928 u32 error_code, gfn_t gfn)
3929{
3930 if (unlikely(error_code & PFERR_RSVD_MASK))
3931 return false;
3932
3933 if (!(error_code & PFERR_PRESENT_MASK) ||
3934 !(error_code & PFERR_WRITE_MASK))
3935 return false;
3936
3937 /*
3938 * guest is writing the page which is write tracked which can
3939 * not be fixed by page fault handler.
3940 */
3941 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3942 return true;
3943
3944 return false;
3945}
3946
e5691a81
XG
3947static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3948{
3949 struct kvm_shadow_walk_iterator iterator;
3950 u64 spte;
3951
44dd3ffa 3952 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
e5691a81
XG
3953 return;
3954
3955 walk_shadow_page_lockless_begin(vcpu);
3956 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3957 clear_sp_write_flooding_count(iterator.sptep);
3958 if (!is_shadow_present_pte(spte))
3959 break;
3960 }
3961 walk_shadow_page_lockless_end(vcpu);
3962}
3963
6aa8b732 3964static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3965 u32 error_code, bool prefault)
6aa8b732 3966{
3d0c27ad 3967 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3968 int r;
6aa8b732 3969
b8688d51 3970 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3971
3d0c27ad 3972 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3973 return RET_PF_EMULATE;
ce88decf 3974
e2dec939
AK
3975 r = mmu_topup_memory_caches(vcpu);
3976 if (r)
3977 return r;
714b93da 3978
44dd3ffa 3979 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
6aa8b732 3980
6aa8b732 3981
e833240f 3982 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3983 error_code, gfn, prefault);
6aa8b732
AK
3984}
3985
7e1fbeac 3986static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3987{
3988 struct kvm_arch_async_pf arch;
fb67e14f 3989
7c90705b 3990 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3991 arch.gfn = gfn;
44dd3ffa
VK
3992 arch.direct_map = vcpu->arch.mmu->direct_map;
3993 arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
af585b92 3994
54bf36aa 3995 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3996}
3997
9bc1f09f 3998bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
af585b92 3999{
35754c98 4000 if (unlikely(!lapic_in_kernel(vcpu) ||
2a266f23
HZ
4001 kvm_event_needs_reinjection(vcpu) ||
4002 vcpu->arch.exception.pending))
af585b92
GN
4003 return false;
4004
52a5c155 4005 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
9bc1f09f
WL
4006 return false;
4007
af585b92
GN
4008 return kvm_x86_ops->interrupt_allowed(vcpu);
4009}
4010
78b2c54a 4011static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 4012 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 4013{
3520469d 4014 struct kvm_memory_slot *slot;
af585b92
GN
4015 bool async;
4016
3a2936de
JM
4017 /*
4018 * Don't expose private memslots to L2.
4019 */
4020 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4021 *pfn = KVM_PFN_NOSLOT;
4022 return false;
4023 }
4024
54bf36aa 4025 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
4026 async = false;
4027 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
4028 if (!async)
4029 return false; /* *pfn has correct page already */
4030
9bc1f09f 4031 if (!prefault && kvm_can_do_async_pf(vcpu)) {
c9b263d2 4032 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
4033 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4034 trace_kvm_async_pf_doublefault(gva, gfn);
4035 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4036 return true;
4037 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
4038 return true;
4039 }
4040
3520469d 4041 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
4042 return false;
4043}
4044
1261bfa3 4045int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 4046 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
4047{
4048 int r = 1;
4049
c595ceee 4050 vcpu->arch.l1tf_flush_l1d = true;
1261bfa3
WL
4051 switch (vcpu->arch.apf.host_apf_reason) {
4052 default:
4053 trace_kvm_page_fault(fault_address, error_code);
4054
d0006530 4055 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
4056 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4057 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4058 insn_len);
4059 break;
4060 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4061 vcpu->arch.apf.host_apf_reason = 0;
4062 local_irq_disable();
a2b7861b 4063 kvm_async_pf_task_wait(fault_address, 0);
1261bfa3
WL
4064 local_irq_enable();
4065 break;
4066 case KVM_PV_REASON_PAGE_READY:
4067 vcpu->arch.apf.host_apf_reason = 0;
4068 local_irq_disable();
4069 kvm_async_pf_task_wake(fault_address);
4070 local_irq_enable();
4071 break;
4072 }
4073 return r;
4074}
4075EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4076
6a39bbc5
XG
4077static bool
4078check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4079{
4080 int page_num = KVM_PAGES_PER_HPAGE(level);
4081
4082 gfn &= ~(page_num - 1);
4083
4084 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4085}
4086
56028d08 4087static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 4088 bool prefault)
fb72d167 4089{
ba049e93 4090 kvm_pfn_t pfn;
fb72d167 4091 int r;
852e3c19 4092 int level;
cd1872f0 4093 bool force_pt_level;
05da4558 4094 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 4095 unsigned long mmu_seq;
612819c3
MT
4096 int write = error_code & PFERR_WRITE_MASK;
4097 bool map_writable;
fb72d167 4098
44dd3ffa 4099 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
fb72d167 4100
3d0c27ad 4101 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 4102 return RET_PF_EMULATE;
ce88decf 4103
fb72d167
JR
4104 r = mmu_topup_memory_caches(vcpu);
4105 if (r)
4106 return r;
4107
fd136902
TY
4108 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4109 PT_DIRECTORY_LEVEL);
4110 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 4111 if (likely(!force_pt_level)) {
6a39bbc5
XG
4112 if (level > PT_DIRECTORY_LEVEL &&
4113 !check_hugepage_cache_consistency(vcpu, gfn, level))
4114 level = PT_DIRECTORY_LEVEL;
936a5fe6 4115 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 4116 }
852e3c19 4117
c7ba5b48 4118 if (fast_page_fault(vcpu, gpa, level, error_code))
9b8ebbdb 4119 return RET_PF_RETRY;
c7ba5b48 4120
e930bffe 4121 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 4122 smp_rmb();
af585b92 4123
78b2c54a 4124 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
9b8ebbdb 4125 return RET_PF_RETRY;
af585b92 4126
d7c55201
XG
4127 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4128 return r;
4129
fb72d167 4130 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 4131 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 4132 goto out_unlock;
26eeb53c
WL
4133 if (make_mmu_pages_available(vcpu) < 0)
4134 goto out_unlock;
936a5fe6
AA
4135 if (likely(!force_pt_level))
4136 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 4137 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 4138 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
4139
4140 return r;
e930bffe
AA
4141
4142out_unlock:
4143 spin_unlock(&vcpu->kvm->mmu_lock);
4144 kvm_release_pfn_clean(pfn);
9b8ebbdb 4145 return RET_PF_RETRY;
fb72d167
JR
4146}
4147
8a3c1a33
PB
4148static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4149 struct kvm_mmu *context)
6aa8b732 4150{
6aa8b732 4151 context->page_fault = nonpaging_page_fault;
6aa8b732 4152 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 4153 context->sync_page = nonpaging_sync_page;
a7052897 4154 context->invlpg = nonpaging_invlpg;
0f53b5b1 4155 context->update_pte = nonpaging_update_pte;
cea0f0e7 4156 context->root_level = 0;
6aa8b732 4157 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4158 context->direct_map = true;
2d48a985 4159 context->nx = false;
6aa8b732
AK
4160}
4161
b94742c9
JS
4162/*
4163 * Find out if a previously cached root matching the new CR3/role is available.
4164 * The current root is also inserted into the cache.
4165 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4166 * returned.
4167 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4168 * false is returned. This root should now be freed by the caller.
4169 */
4170static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4171 union kvm_mmu_page_role new_role)
4172{
4173 uint i;
4174 struct kvm_mmu_root_info root;
44dd3ffa 4175 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9
JS
4176
4177 root.cr3 = mmu->get_cr3(vcpu);
4178 root.hpa = mmu->root_hpa;
4179
4180 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4181 swap(root, mmu->prev_roots[i]);
4182
4183 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4184 page_header(root.hpa) != NULL &&
4185 new_role.word == page_header(root.hpa)->role.word)
4186 break;
4187 }
4188
4189 mmu->root_hpa = root.hpa;
4190
4191 return i < KVM_MMU_NUM_PREV_ROOTS;
4192}
4193
0aab33e4 4194static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4195 union kvm_mmu_page_role new_role,
4196 bool skip_tlb_flush)
6aa8b732 4197{
44dd3ffa 4198 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
4199
4200 /*
4201 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4202 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4203 * later if necessary.
4204 */
4205 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4206 mmu->root_level >= PT64_ROOT_4LEVEL) {
7c390d35
JS
4207 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4208 return false;
4209
b94742c9 4210 if (cached_root_available(vcpu, new_cr3, new_role)) {
0aab33e4 4211 kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
956bf353
JS
4212 if (!skip_tlb_flush) {
4213 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
ade61e28 4214 kvm_x86_ops->tlb_flush(vcpu, true);
956bf353
JS
4215 }
4216
4217 /*
4218 * The last MMIO access's GVA and GPA are cached in the
4219 * VCPU. When switching to a new CR3, that GVA->GPA
4220 * mapping may no longer be valid. So clear any cached
4221 * MMIO info even when we don't need to sync the shadow
4222 * page tables.
4223 */
4224 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
ade61e28 4225
7c390d35
JS
4226 __clear_sp_write_flooding_count(
4227 page_header(mmu->root_hpa));
4228
7c390d35
JS
4229 return true;
4230 }
4231 }
4232
4233 return false;
6aa8b732
AK
4234}
4235
0aab33e4 4236static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4237 union kvm_mmu_page_role new_role,
4238 bool skip_tlb_flush)
6aa8b732 4239{
ade61e28 4240 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
6a82cd1c
VK
4241 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4242 KVM_MMU_ROOT_CURRENT);
6aa8b732
AK
4243}
4244
ade61e28 4245void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
0aab33e4 4246{
ade61e28
JS
4247 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4248 skip_tlb_flush);
0aab33e4 4249}
50c28f21 4250EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
0aab33e4 4251
5777ed34
JR
4252static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4253{
9f8fe504 4254 return kvm_read_cr3(vcpu);
5777ed34
JR
4255}
4256
6389ee94
AK
4257static void inject_page_fault(struct kvm_vcpu *vcpu,
4258 struct x86_exception *fault)
6aa8b732 4259{
44dd3ffa 4260 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
6aa8b732
AK
4261}
4262
54bf36aa 4263static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 4264 unsigned access, int *nr_present)
ce88decf
XG
4265{
4266 if (unlikely(is_mmio_spte(*sptep))) {
4267 if (gfn != get_mmio_spte_gfn(*sptep)) {
4268 mmu_spte_clear_no_track(sptep);
4269 return true;
4270 }
4271
4272 (*nr_present)++;
54bf36aa 4273 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
4274 return true;
4275 }
4276
4277 return false;
4278}
4279
6bb69c9b
PB
4280static inline bool is_last_gpte(struct kvm_mmu *mmu,
4281 unsigned level, unsigned gpte)
6fd01b71 4282{
6bb69c9b
PB
4283 /*
4284 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4285 * If it is clear, there are no large pages at this level, so clear
4286 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4287 */
4288 gpte &= level - mmu->last_nonleaf_level;
4289
829ee279
LP
4290 /*
4291 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4292 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4293 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4294 */
4295 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4296
6bb69c9b 4297 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4298}
4299
37406aaa
NHE
4300#define PTTYPE_EPT 18 /* arbitrary */
4301#define PTTYPE PTTYPE_EPT
4302#include "paging_tmpl.h"
4303#undef PTTYPE
4304
6aa8b732
AK
4305#define PTTYPE 64
4306#include "paging_tmpl.h"
4307#undef PTTYPE
4308
4309#define PTTYPE 32
4310#include "paging_tmpl.h"
4311#undef PTTYPE
4312
6dc98b86
XG
4313static void
4314__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4315 struct rsvd_bits_validate *rsvd_check,
4316 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 4317 bool pse, bool amd)
82725b20 4318{
82725b20 4319 u64 exb_bit_rsvd = 0;
5f7dde7b 4320 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4321 u64 nonleaf_bit8_rsvd = 0;
82725b20 4322
a0a64f50 4323 rsvd_check->bad_mt_xwr = 0;
25d92081 4324
6dc98b86 4325 if (!nx)
82725b20 4326 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 4327 if (!gbpages)
5f7dde7b 4328 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4329
4330 /*
4331 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4332 * leaf entries) on AMD CPUs only.
4333 */
6fec2144 4334 if (amd)
a0c0feb5
PB
4335 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4336
6dc98b86 4337 switch (level) {
82725b20
DE
4338 case PT32_ROOT_LEVEL:
4339 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4340 rsvd_check->rsvd_bits_mask[0][1] = 0;
4341 rsvd_check->rsvd_bits_mask[0][0] = 0;
4342 rsvd_check->rsvd_bits_mask[1][0] =
4343 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4344
6dc98b86 4345 if (!pse) {
a0a64f50 4346 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4347 break;
4348 }
4349
82725b20
DE
4350 if (is_cpuid_PSE36())
4351 /* 36bits PSE 4MB page */
a0a64f50 4352 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4353 else
4354 /* 32 bits PSE 4MB page */
a0a64f50 4355 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4356 break;
4357 case PT32E_ROOT_LEVEL:
a0a64f50 4358 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4359 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4360 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4361 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4362 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4363 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4364 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4365 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4366 rsvd_bits(maxphyaddr, 62) |
4367 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4368 rsvd_check->rsvd_bits_mask[1][0] =
4369 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4370 break;
855feb67
YZ
4371 case PT64_ROOT_5LEVEL:
4372 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4373 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4374 rsvd_bits(maxphyaddr, 51);
4375 rsvd_check->rsvd_bits_mask[1][4] =
4376 rsvd_check->rsvd_bits_mask[0][4];
b2869f28 4377 /* fall through */
2a7266a8 4378 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4379 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4380 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4381 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4382 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4383 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 4384 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4385 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4386 rsvd_bits(maxphyaddr, 51);
4387 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4388 rsvd_bits(maxphyaddr, 51);
4389 rsvd_check->rsvd_bits_mask[1][3] =
4390 rsvd_check->rsvd_bits_mask[0][3];
4391 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4392 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4393 rsvd_bits(13, 29);
a0a64f50 4394 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4395 rsvd_bits(maxphyaddr, 51) |
4396 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4397 rsvd_check->rsvd_bits_mask[1][0] =
4398 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4399 break;
4400 }
4401}
4402
6dc98b86
XG
4403static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4404 struct kvm_mmu *context)
4405{
4406 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4407 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4408 context->nx,
4409 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
6fec2144 4410 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
4411}
4412
81b8eebb
XG
4413static void
4414__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4415 int maxphyaddr, bool execonly)
25d92081 4416{
951f9fd7 4417 u64 bad_mt_xwr;
25d92081 4418
855feb67
YZ
4419 rsvd_check->rsvd_bits_mask[0][4] =
4420 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4421 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4422 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4423 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4424 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4425 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4426 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4427 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4428
4429 /* large page */
855feb67 4430 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4431 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4432 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4433 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4434 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4435 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4436 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4437
951f9fd7
PB
4438 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4439 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4440 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4441 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4442 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4443 if (!execonly) {
4444 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4445 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4446 }
951f9fd7 4447 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4448}
4449
81b8eebb
XG
4450static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4451 struct kvm_mmu *context, bool execonly)
4452{
4453 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4454 cpuid_maxphyaddr(vcpu), execonly);
4455}
4456
c258b62b
XG
4457/*
4458 * the page table on host is the shadow page table for the page
4459 * table in guest or amd nested guest, its mmu features completely
4460 * follow the features in guest.
4461 */
4462void
4463reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4464{
36d9594d
VK
4465 bool uses_nx = context->nx ||
4466 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4467 struct rsvd_bits_validate *shadow_zero_check;
4468 int i;
5f0b8199 4469
6fec2144
PB
4470 /*
4471 * Passing "true" to the last argument is okay; it adds a check
4472 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4473 */
ea2800dd
BS
4474 shadow_zero_check = &context->shadow_zero_check;
4475 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
c258b62b 4476 boot_cpu_data.x86_phys_bits,
5f0b8199 4477 context->shadow_root_level, uses_nx,
d6321d49
RK
4478 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4479 is_pse(vcpu), true);
ea2800dd
BS
4480
4481 if (!shadow_me_mask)
4482 return;
4483
4484 for (i = context->shadow_root_level; --i >= 0;) {
4485 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4486 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4487 }
4488
c258b62b
XG
4489}
4490EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4491
6fec2144
PB
4492static inline bool boot_cpu_is_amd(void)
4493{
4494 WARN_ON_ONCE(!tdp_enabled);
4495 return shadow_x_mask == 0;
4496}
4497
c258b62b
XG
4498/*
4499 * the direct page table on host, use as much mmu features as
4500 * possible, however, kvm currently does not do execution-protection.
4501 */
4502static void
4503reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4504 struct kvm_mmu *context)
4505{
ea2800dd
BS
4506 struct rsvd_bits_validate *shadow_zero_check;
4507 int i;
4508
4509 shadow_zero_check = &context->shadow_zero_check;
4510
6fec2144 4511 if (boot_cpu_is_amd())
ea2800dd 4512 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
c258b62b
XG
4513 boot_cpu_data.x86_phys_bits,
4514 context->shadow_root_level, false,
b8291adc
BP
4515 boot_cpu_has(X86_FEATURE_GBPAGES),
4516 true, true);
c258b62b 4517 else
ea2800dd 4518 __reset_rsvds_bits_mask_ept(shadow_zero_check,
c258b62b
XG
4519 boot_cpu_data.x86_phys_bits,
4520 false);
4521
ea2800dd
BS
4522 if (!shadow_me_mask)
4523 return;
4524
4525 for (i = context->shadow_root_level; --i >= 0;) {
4526 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4527 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4528 }
c258b62b
XG
4529}
4530
4531/*
4532 * as the comments in reset_shadow_zero_bits_mask() except it
4533 * is the shadow page table for intel nested guest.
4534 */
4535static void
4536reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4537 struct kvm_mmu *context, bool execonly)
4538{
4539 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4540 boot_cpu_data.x86_phys_bits, execonly);
4541}
4542
09f037aa
PB
4543#define BYTE_MASK(access) \
4544 ((1 & (access) ? 2 : 0) | \
4545 (2 & (access) ? 4 : 0) | \
4546 (3 & (access) ? 8 : 0) | \
4547 (4 & (access) ? 16 : 0) | \
4548 (5 & (access) ? 32 : 0) | \
4549 (6 & (access) ? 64 : 0) | \
4550 (7 & (access) ? 128 : 0))
4551
4552
edc90b7d
XG
4553static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4554 struct kvm_mmu *mmu, bool ept)
97d64b78 4555{
09f037aa
PB
4556 unsigned byte;
4557
4558 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4559 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4560 const u8 u = BYTE_MASK(ACC_USER_MASK);
4561
4562 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4563 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4564 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4565
97d64b78 4566 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4567 unsigned pfec = byte << 1;
4568
97ec8c06 4569 /*
09f037aa
PB
4570 * Each "*f" variable has a 1 bit for each UWX value
4571 * that causes a fault with the given PFEC.
97ec8c06 4572 */
97d64b78 4573
09f037aa
PB
4574 /* Faults from writes to non-writable pages */
4575 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4576 /* Faults from user mode accesses to supervisor pages */
4577 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4578 /* Faults from fetches of non-executable pages*/
4579 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4580 /* Faults from kernel mode fetches of user pages */
4581 u8 smepf = 0;
4582 /* Faults from kernel mode accesses of user pages */
4583 u8 smapf = 0;
4584
4585 if (!ept) {
4586 /* Faults from kernel mode accesses to user pages */
4587 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4588
4589 /* Not really needed: !nx will cause pte.nx to fault */
4590 if (!mmu->nx)
4591 ff = 0;
4592
4593 /* Allow supervisor writes if !cr0.wp */
4594 if (!cr0_wp)
4595 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4596
4597 /* Disallow supervisor fetches of user code if cr4.smep */
4598 if (cr4_smep)
4599 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4600
4601 /*
4602 * SMAP:kernel-mode data accesses from user-mode
4603 * mappings should fault. A fault is considered
4604 * as a SMAP violation if all of the following
39337ad1 4605 * conditions are true:
09f037aa
PB
4606 * - X86_CR4_SMAP is set in CR4
4607 * - A user page is accessed
4608 * - The access is not a fetch
4609 * - Page fault in kernel mode
4610 * - if CPL = 3 or X86_EFLAGS_AC is clear
4611 *
4612 * Here, we cover the first three conditions.
4613 * The fourth is computed dynamically in permission_fault();
4614 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4615 * *not* subject to SMAP restrictions.
4616 */
4617 if (cr4_smap)
4618 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4619 }
09f037aa
PB
4620
4621 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4622 }
4623}
4624
2d344105
HH
4625/*
4626* PKU is an additional mechanism by which the paging controls access to
4627* user-mode addresses based on the value in the PKRU register. Protection
4628* key violations are reported through a bit in the page fault error code.
4629* Unlike other bits of the error code, the PK bit is not known at the
4630* call site of e.g. gva_to_gpa; it must be computed directly in
4631* permission_fault based on two bits of PKRU, on some machine state (CR4,
4632* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4633*
4634* In particular the following conditions come from the error code, the
4635* page tables and the machine state:
4636* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4637* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4638* - PK is always zero if U=0 in the page tables
4639* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4640*
4641* The PKRU bitmask caches the result of these four conditions. The error
4642* code (minus the P bit) and the page table's U bit form an index into the
4643* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4644* with the two bits of the PKRU register corresponding to the protection key.
4645* For the first three conditions above the bits will be 00, thus masking
4646* away both AD and WD. For all reads or if the last condition holds, WD
4647* only will be masked away.
4648*/
4649static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4650 bool ept)
4651{
4652 unsigned bit;
4653 bool wp;
4654
4655 if (ept) {
4656 mmu->pkru_mask = 0;
4657 return;
4658 }
4659
4660 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4661 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4662 mmu->pkru_mask = 0;
4663 return;
4664 }
4665
4666 wp = is_write_protection(vcpu);
4667
4668 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4669 unsigned pfec, pkey_bits;
4670 bool check_pkey, check_write, ff, uf, wf, pte_user;
4671
4672 pfec = bit << 1;
4673 ff = pfec & PFERR_FETCH_MASK;
4674 uf = pfec & PFERR_USER_MASK;
4675 wf = pfec & PFERR_WRITE_MASK;
4676
4677 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4678 pte_user = pfec & PFERR_RSVD_MASK;
4679
4680 /*
4681 * Only need to check the access which is not an
4682 * instruction fetch and is to a user page.
4683 */
4684 check_pkey = (!ff && pte_user);
4685 /*
4686 * write access is controlled by PKRU if it is a
4687 * user access or CR0.WP = 1.
4688 */
4689 check_write = check_pkey && wf && (uf || wp);
4690
4691 /* PKRU.AD stops both read and write access. */
4692 pkey_bits = !!check_pkey;
4693 /* PKRU.WD stops write access. */
4694 pkey_bits |= (!!check_write) << 1;
4695
4696 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4697 }
4698}
4699
6bb69c9b 4700static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4701{
6bb69c9b
PB
4702 unsigned root_level = mmu->root_level;
4703
4704 mmu->last_nonleaf_level = root_level;
4705 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4706 mmu->last_nonleaf_level++;
6fd01b71
AK
4707}
4708
8a3c1a33
PB
4709static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4710 struct kvm_mmu *context,
4711 int level)
6aa8b732 4712{
2d48a985 4713 context->nx = is_nx(vcpu);
4d6931c3 4714 context->root_level = level;
2d48a985 4715
4d6931c3 4716 reset_rsvds_bits_mask(vcpu, context);
25d92081 4717 update_permission_bitmask(vcpu, context, false);
2d344105 4718 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4719 update_last_nonleaf_level(vcpu, context);
6aa8b732 4720
fa4a2c08 4721 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4722 context->page_fault = paging64_page_fault;
6aa8b732 4723 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4724 context->sync_page = paging64_sync_page;
a7052897 4725 context->invlpg = paging64_invlpg;
0f53b5b1 4726 context->update_pte = paging64_update_pte;
17ac10ad 4727 context->shadow_root_level = level;
c5a78f2b 4728 context->direct_map = false;
6aa8b732
AK
4729}
4730
8a3c1a33
PB
4731static void paging64_init_context(struct kvm_vcpu *vcpu,
4732 struct kvm_mmu *context)
17ac10ad 4733{
855feb67
YZ
4734 int root_level = is_la57_mode(vcpu) ?
4735 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4736
4737 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4738}
4739
8a3c1a33
PB
4740static void paging32_init_context(struct kvm_vcpu *vcpu,
4741 struct kvm_mmu *context)
6aa8b732 4742{
2d48a985 4743 context->nx = false;
4d6931c3 4744 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4745
4d6931c3 4746 reset_rsvds_bits_mask(vcpu, context);
25d92081 4747 update_permission_bitmask(vcpu, context, false);
2d344105 4748 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4749 update_last_nonleaf_level(vcpu, context);
6aa8b732 4750
6aa8b732 4751 context->page_fault = paging32_page_fault;
6aa8b732 4752 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4753 context->sync_page = paging32_sync_page;
a7052897 4754 context->invlpg = paging32_invlpg;
0f53b5b1 4755 context->update_pte = paging32_update_pte;
6aa8b732 4756 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4757 context->direct_map = false;
6aa8b732
AK
4758}
4759
8a3c1a33
PB
4760static void paging32E_init_context(struct kvm_vcpu *vcpu,
4761 struct kvm_mmu *context)
6aa8b732 4762{
8a3c1a33 4763 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4764}
4765
a336282d
VK
4766static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4767{
4768 union kvm_mmu_extended_role ext = {0};
4769
7dcd5755 4770 ext.cr0_pg = !!is_paging(vcpu);
a336282d
VK
4771 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4772 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4773 ext.cr4_pse = !!is_pse(vcpu);
4774 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
7dcd5755 4775 ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
a336282d
VK
4776
4777 ext.valid = 1;
4778
4779 return ext;
4780}
4781
7dcd5755
VK
4782static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4783 bool base_only)
4784{
4785 union kvm_mmu_role role = {0};
4786
4787 role.base.access = ACC_ALL;
4788 role.base.nxe = !!is_nx(vcpu);
4789 role.base.cr4_pae = !!is_pae(vcpu);
4790 role.base.cr0_wp = is_write_protection(vcpu);
4791 role.base.smm = is_smm(vcpu);
4792 role.base.guest_mode = is_guest_mode(vcpu);
4793
4794 if (base_only)
4795 return role;
4796
4797 role.ext = kvm_calc_mmu_role_ext(vcpu);
4798
4799 return role;
4800}
4801
4802static union kvm_mmu_role
4803kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4804{
7dcd5755 4805 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4806
7dcd5755
VK
4807 role.base.ad_disabled = (shadow_accessed_mask == 0);
4808 role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4809 role.base.direct = true;
9fa72119
JS
4810
4811 return role;
4812}
4813
8a3c1a33 4814static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4815{
44dd3ffa 4816 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4817 union kvm_mmu_role new_role =
4818 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4819
7dcd5755
VK
4820 new_role.base.word &= mmu_base_role_mask.word;
4821 if (new_role.as_u64 == context->mmu_role.as_u64)
4822 return;
4823
4824 context->mmu_role.as_u64 = new_role.as_u64;
fb72d167 4825 context->page_fault = tdp_page_fault;
e8bc217a 4826 context->sync_page = nonpaging_sync_page;
a7052897 4827 context->invlpg = nonpaging_invlpg;
0f53b5b1 4828 context->update_pte = nonpaging_update_pte;
855feb67 4829 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
c5a78f2b 4830 context->direct_map = true;
1c97f0a0 4831 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4832 context->get_cr3 = get_cr3;
e4e517b4 4833 context->get_pdptr = kvm_pdptr_read;
cb659db8 4834 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4835
4836 if (!is_paging(vcpu)) {
2d48a985 4837 context->nx = false;
fb72d167
JR
4838 context->gva_to_gpa = nonpaging_gva_to_gpa;
4839 context->root_level = 0;
4840 } else if (is_long_mode(vcpu)) {
2d48a985 4841 context->nx = is_nx(vcpu);
855feb67
YZ
4842 context->root_level = is_la57_mode(vcpu) ?
4843 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4844 reset_rsvds_bits_mask(vcpu, context);
4845 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4846 } else if (is_pae(vcpu)) {
2d48a985 4847 context->nx = is_nx(vcpu);
fb72d167 4848 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4849 reset_rsvds_bits_mask(vcpu, context);
4850 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4851 } else {
2d48a985 4852 context->nx = false;
fb72d167 4853 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4854 reset_rsvds_bits_mask(vcpu, context);
4855 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4856 }
4857
25d92081 4858 update_permission_bitmask(vcpu, context, false);
2d344105 4859 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4860 update_last_nonleaf_level(vcpu, context);
c258b62b 4861 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4862}
4863
7dcd5755
VK
4864static union kvm_mmu_role
4865kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4866{
4867 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4868
4869 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4870 !is_write_protection(vcpu);
4871 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4872 !is_write_protection(vcpu);
4873 role.base.direct = !is_paging(vcpu);
9fa72119
JS
4874
4875 if (!is_long_mode(vcpu))
7dcd5755 4876 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4877 else if (is_la57_mode(vcpu))
7dcd5755 4878 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4879 else
7dcd5755 4880 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4881
4882 return role;
4883}
4884
4885void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4886{
44dd3ffa 4887 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4888 union kvm_mmu_role new_role =
4889 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4890
4891 new_role.base.word &= mmu_base_role_mask.word;
4892 if (new_role.as_u64 == context->mmu_role.as_u64)
4893 return;
6aa8b732
AK
4894
4895 if (!is_paging(vcpu))
8a3c1a33 4896 nonpaging_init_context(vcpu, context);
a9058ecd 4897 else if (is_long_mode(vcpu))
8a3c1a33 4898 paging64_init_context(vcpu, context);
6aa8b732 4899 else if (is_pae(vcpu))
8a3c1a33 4900 paging32E_init_context(vcpu, context);
6aa8b732 4901 else
8a3c1a33 4902 paging32_init_context(vcpu, context);
a770f6f2 4903
7dcd5755 4904 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4905 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4906}
4907EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4908
a336282d
VK
4909static union kvm_mmu_role
4910kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4911 bool execonly)
9fa72119 4912{
a336282d 4913 union kvm_mmu_role role;
14c07ad8 4914
a336282d
VK
4915 /* Base role is inherited from root_mmu */
4916 role.base.word = vcpu->arch.root_mmu.mmu_role.base.word;
4917 role.ext = kvm_calc_mmu_role_ext(vcpu);
9fa72119 4918
a336282d
VK
4919 role.base.level = PT64_ROOT_4LEVEL;
4920 role.base.direct = false;
4921 role.base.ad_disabled = !accessed_dirty;
4922 role.base.guest_mode = true;
4923 role.base.access = ACC_ALL;
9fa72119 4924
a336282d 4925 role.ext.execonly = execonly;
9fa72119
JS
4926
4927 return role;
4928}
4929
ae1e2d10 4930void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4931 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4932{
44dd3ffa 4933 struct kvm_mmu *context = vcpu->arch.mmu;
a336282d
VK
4934 union kvm_mmu_role new_role =
4935 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4936 execonly);
4937
4938 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
4939
4940 new_role.base.word &= mmu_base_role_mask.word;
4941 if (new_role.as_u64 == context->mmu_role.as_u64)
4942 return;
ad896af0 4943
855feb67 4944 context->shadow_root_level = PT64_ROOT_4LEVEL;
155a97a3
NHE
4945
4946 context->nx = true;
ae1e2d10 4947 context->ept_ad = accessed_dirty;
155a97a3
NHE
4948 context->page_fault = ept_page_fault;
4949 context->gva_to_gpa = ept_gva_to_gpa;
4950 context->sync_page = ept_sync_page;
4951 context->invlpg = ept_invlpg;
4952 context->update_pte = ept_update_pte;
855feb67 4953 context->root_level = PT64_ROOT_4LEVEL;
155a97a3 4954 context->direct_map = false;
a336282d 4955 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4956
155a97a3 4957 update_permission_bitmask(vcpu, context, true);
2d344105 4958 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4959 update_last_nonleaf_level(vcpu, context);
155a97a3 4960 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4961 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4962}
4963EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4964
8a3c1a33 4965static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4966{
44dd3ffa 4967 struct kvm_mmu *context = vcpu->arch.mmu;
ad896af0
PB
4968
4969 kvm_init_shadow_mmu(vcpu);
4970 context->set_cr3 = kvm_x86_ops->set_cr3;
4971 context->get_cr3 = get_cr3;
4972 context->get_pdptr = kvm_pdptr_read;
4973 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4974}
4975
8a3c1a33 4976static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 4977{
bf627a92 4978 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
4979 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4980
bf627a92
VK
4981 new_role.base.word &= mmu_base_role_mask.word;
4982 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4983 return;
4984
4985 g_context->mmu_role.as_u64 = new_role.as_u64;
02f59dc9 4986 g_context->get_cr3 = get_cr3;
e4e517b4 4987 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4988 g_context->inject_page_fault = kvm_inject_page_fault;
4989
4990 /*
44dd3ffa 4991 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
4992 * L1's nested page tables (e.g. EPT12). The nested translation
4993 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4994 * L2's page tables as the first level of translation and L1's
4995 * nested page tables as the second level of translation. Basically
4996 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4997 */
4998 if (!is_paging(vcpu)) {
2d48a985 4999 g_context->nx = false;
02f59dc9
JR
5000 g_context->root_level = 0;
5001 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5002 } else if (is_long_mode(vcpu)) {
2d48a985 5003 g_context->nx = is_nx(vcpu);
855feb67
YZ
5004 g_context->root_level = is_la57_mode(vcpu) ?
5005 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 5006 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5007 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5008 } else if (is_pae(vcpu)) {
2d48a985 5009 g_context->nx = is_nx(vcpu);
02f59dc9 5010 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 5011 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5012 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5013 } else {
2d48a985 5014 g_context->nx = false;
02f59dc9 5015 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 5016 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5017 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5018 }
5019
25d92081 5020 update_permission_bitmask(vcpu, g_context, false);
2d344105 5021 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 5022 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
5023}
5024
1c53da3f 5025void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 5026{
1c53da3f 5027 if (reset_roots) {
b94742c9
JS
5028 uint i;
5029
44dd3ffa 5030 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
5031
5032 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5033 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
5034 }
5035
02f59dc9 5036 if (mmu_is_nested(vcpu))
e0c6db3e 5037 init_kvm_nested_mmu(vcpu);
02f59dc9 5038 else if (tdp_enabled)
e0c6db3e 5039 init_kvm_tdp_mmu(vcpu);
fb72d167 5040 else
e0c6db3e 5041 init_kvm_softmmu(vcpu);
fb72d167 5042}
1c53da3f 5043EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 5044
9fa72119
JS
5045static union kvm_mmu_page_role
5046kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5047{
7dcd5755
VK
5048 union kvm_mmu_role role;
5049
9fa72119 5050 if (tdp_enabled)
7dcd5755 5051 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 5052 else
7dcd5755
VK
5053 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5054
5055 return role.base;
9fa72119 5056}
fb72d167 5057
8a3c1a33 5058void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 5059{
95f93af4 5060 kvm_mmu_unload(vcpu);
1c53da3f 5061 kvm_init_mmu(vcpu, true);
17c3ba9d 5062}
8668a3c4 5063EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
5064
5065int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 5066{
714b93da
AK
5067 int r;
5068
e2dec939 5069 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
5070 if (r)
5071 goto out;
8986ecc0 5072 r = mmu_alloc_roots(vcpu);
e2858b4a 5073 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
5074 if (r)
5075 goto out;
6e42782f 5076 kvm_mmu_load_cr3(vcpu);
afe828d1 5077 kvm_x86_ops->tlb_flush(vcpu, true);
714b93da
AK
5078out:
5079 return r;
6aa8b732 5080}
17c3ba9d
AK
5081EXPORT_SYMBOL_GPL(kvm_mmu_load);
5082
5083void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5084{
14c07ad8
VK
5085 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5086 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5087 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5088 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 5089}
4b16184c 5090EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 5091
0028425f 5092static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
5093 struct kvm_mmu_page *sp, u64 *spte,
5094 const void *new)
0028425f 5095{
30945387 5096 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
5097 ++vcpu->kvm->stat.mmu_pde_zapped;
5098 return;
30945387 5099 }
0028425f 5100
4cee5764 5101 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 5102 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
5103}
5104
79539cec
AK
5105static bool need_remote_flush(u64 old, u64 new)
5106{
5107 if (!is_shadow_present_pte(old))
5108 return false;
5109 if (!is_shadow_present_pte(new))
5110 return true;
5111 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5112 return true;
53166229
GN
5113 old ^= shadow_nx_mask;
5114 new ^= shadow_nx_mask;
79539cec
AK
5115 return (old & ~new & PT64_PERM_MASK) != 0;
5116}
5117
889e5cbc 5118static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 5119 int *bytes)
da4a00f0 5120{
0e0fee5c 5121 u64 gentry = 0;
889e5cbc 5122 int r;
72016f3a 5123
72016f3a
AK
5124 /*
5125 * Assume that the pte write on a page table of the same type
49b26e26
XG
5126 * as the current vcpu paging mode since we update the sptes only
5127 * when they have the same mode.
72016f3a 5128 */
889e5cbc 5129 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 5130 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
5131 *gpa &= ~(gpa_t)7;
5132 *bytes = 8;
08e850c6
AK
5133 }
5134
0e0fee5c
JS
5135 if (*bytes == 4 || *bytes == 8) {
5136 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5137 if (r)
5138 gentry = 0;
72016f3a
AK
5139 }
5140
889e5cbc
XG
5141 return gentry;
5142}
5143
5144/*
5145 * If we're seeing too many writes to a page, it may no longer be a page table,
5146 * or we may be forking, in which case it is better to unmap the page.
5147 */
a138fe75 5148static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 5149{
a30f47cb
XG
5150 /*
5151 * Skip write-flooding detected for the sp whose level is 1, because
5152 * it can become unsync, then the guest page is not write-protected.
5153 */
f71fa31f 5154 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 5155 return false;
3246af0e 5156
e5691a81
XG
5157 atomic_inc(&sp->write_flooding_count);
5158 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
5159}
5160
5161/*
5162 * Misaligned accesses are too much trouble to fix up; also, they usually
5163 * indicate a page is not used as a page table.
5164 */
5165static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5166 int bytes)
5167{
5168 unsigned offset, pte_size, misaligned;
5169
5170 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5171 gpa, bytes, sp->role.word);
5172
5173 offset = offset_in_page(gpa);
5174 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
5175
5176 /*
5177 * Sometimes, the OS only writes the last one bytes to update status
5178 * bits, for example, in linux, andb instruction is used in clear_bit().
5179 */
5180 if (!(offset & (pte_size - 1)) && bytes == 1)
5181 return false;
5182
889e5cbc
XG
5183 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5184 misaligned |= bytes < 4;
5185
5186 return misaligned;
5187}
5188
5189static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5190{
5191 unsigned page_offset, quadrant;
5192 u64 *spte;
5193 int level;
5194
5195 page_offset = offset_in_page(gpa);
5196 level = sp->role.level;
5197 *nspte = 1;
5198 if (!sp->role.cr4_pae) {
5199 page_offset <<= 1; /* 32->64 */
5200 /*
5201 * A 32-bit pde maps 4MB while the shadow pdes map
5202 * only 2MB. So we need to double the offset again
5203 * and zap two pdes instead of one.
5204 */
5205 if (level == PT32_ROOT_LEVEL) {
5206 page_offset &= ~7; /* kill rounding error */
5207 page_offset <<= 1;
5208 *nspte = 2;
5209 }
5210 quadrant = page_offset >> PAGE_SHIFT;
5211 page_offset &= ~PAGE_MASK;
5212 if (quadrant != sp->role.quadrant)
5213 return NULL;
5214 }
5215
5216 spte = &sp->spt[page_offset / sizeof(*spte)];
5217 return spte;
5218}
5219
13d268ca 5220static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
5221 const u8 *new, int bytes,
5222 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
5223{
5224 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 5225 struct kvm_mmu_page *sp;
889e5cbc
XG
5226 LIST_HEAD(invalid_list);
5227 u64 entry, gentry, *spte;
5228 int npte;
b8c67b7a 5229 bool remote_flush, local_flush;
889e5cbc
XG
5230
5231 /*
5232 * If we don't have indirect shadow pages, it means no page is
5233 * write-protected, so we can exit simply.
5234 */
6aa7de05 5235 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
5236 return;
5237
b8c67b7a 5238 remote_flush = local_flush = false;
889e5cbc
XG
5239
5240 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5241
889e5cbc
XG
5242 /*
5243 * No need to care whether allocation memory is successful
5244 * or not since pte prefetch is skiped if it does not have
5245 * enough objects in the cache.
5246 */
5247 mmu_topup_memory_caches(vcpu);
5248
5249 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
5250
5251 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5252
889e5cbc 5253 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5254 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5255
b67bfe0d 5256 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5257 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5258 detect_write_flooding(sp)) {
b8c67b7a 5259 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5260 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5261 continue;
5262 }
889e5cbc
XG
5263
5264 spte = get_written_sptes(sp, gpa, &npte);
5265 if (!spte)
5266 continue;
5267
0671a8e7 5268 local_flush = true;
ac1b714e 5269 while (npte--) {
36d9594d
VK
5270 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5271
79539cec 5272 entry = *spte;
38e3b2b2 5273 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf 5274 if (gentry &&
36d9594d 5275 !((sp->role.word ^ base_role)
9fa72119 5276 & mmu_base_role_mask.word) && rmap_can_add(vcpu))
7c562522 5277 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 5278 if (need_remote_flush(entry, *spte))
0671a8e7 5279 remote_flush = true;
ac1b714e 5280 ++spte;
9b7a0325 5281 }
9b7a0325 5282 }
b8c67b7a 5283 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5284 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 5285 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5286}
5287
a436036b
AK
5288int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5289{
10589a46
MT
5290 gpa_t gpa;
5291 int r;
a436036b 5292
44dd3ffa 5293 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5294 return 0;
5295
1871c602 5296 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5297
10589a46 5298 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5299
10589a46 5300 return r;
a436036b 5301}
577bdc49 5302EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5303
26eeb53c 5304static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 5305{
d98ba053 5306 LIST_HEAD(invalid_list);
103ad25a 5307
81f4f76b 5308 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
26eeb53c 5309 return 0;
81f4f76b 5310
5da59607
TY
5311 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5312 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5313 break;
ebeace86 5314
4cee5764 5315 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 5316 }
aa6bd187 5317 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
26eeb53c
WL
5318
5319 if (!kvm_mmu_available_pages(vcpu->kvm))
5320 return -ENOSPC;
5321 return 0;
ebeace86 5322}
ebeace86 5323
14727754 5324int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
dc25e89e 5325 void *insn, int insn_len)
3067714c 5326{
472faffa 5327 int r, emulation_type = 0;
3067714c 5328 enum emulation_result er;
44dd3ffa 5329 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5330
618232e2 5331 /* With shadow page tables, fault_address contains a GVA or nGPA. */
44dd3ffa 5332 if (vcpu->arch.mmu->direct_map) {
618232e2
BS
5333 vcpu->arch.gpa_available = true;
5334 vcpu->arch.gpa_val = cr2;
5335 }
3067714c 5336
9b8ebbdb 5337 r = RET_PF_INVALID;
e9ee956e
TY
5338 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5339 r = handle_mmio_page_fault(vcpu, cr2, direct);
472faffa 5340 if (r == RET_PF_EMULATE)
e9ee956e 5341 goto emulate;
e9ee956e 5342 }
3067714c 5343
9b8ebbdb 5344 if (r == RET_PF_INVALID) {
44dd3ffa
VK
5345 r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5346 lower_32_bits(error_code),
5347 false);
9b8ebbdb
PB
5348 WARN_ON(r == RET_PF_INVALID);
5349 }
5350
5351 if (r == RET_PF_RETRY)
5352 return 1;
3067714c 5353 if (r < 0)
e9ee956e 5354 return r;
3067714c 5355
14727754
TL
5356 /*
5357 * Before emulating the instruction, check if the error code
5358 * was due to a RO violation while translating the guest page.
5359 * This can occur when using nested virtualization with nested
5360 * paging in both guests. If true, we simply unprotect the page
5361 * and resume the guest.
14727754 5362 */
44dd3ffa 5363 if (vcpu->arch.mmu->direct_map &&
eebed243 5364 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
14727754
TL
5365 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5366 return 1;
5367 }
5368
472faffa
SC
5369 /*
5370 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5371 * optimistically try to just unprotect the page and let the processor
5372 * re-execute the instruction that caused the page fault. Do not allow
5373 * retrying MMIO emulation, as it's not only pointless but could also
5374 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5375 * faulting on the non-existent MMIO address. Retrying an instruction
5376 * from a nested guest is also pointless and dangerous as we are only
5377 * explicitly shadowing L1's page tables, i.e. unprotecting something
5378 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5379 */
6c3dfeb6 5380 if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
472faffa 5381 emulation_type = EMULTYPE_ALLOW_RETRY;
e9ee956e 5382emulate:
00b10fe1
BS
5383 /*
5384 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5385 * This can happen if a guest gets a page-fault on data access but the HW
5386 * table walker is not able to read the instruction page (e.g instruction
5387 * page is not present in memory). In those cases we simply restart the
5388 * guest.
5389 */
5390 if (unlikely(insn && !insn_len))
5391 return 1;
5392
1cb3f3ae 5393 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
5394
5395 switch (er) {
5396 case EMULATE_DONE:
5397 return 1;
ac0a48c3 5398 case EMULATE_USER_EXIT:
3067714c 5399 ++vcpu->stat.mmio_exits;
6d77dbfc 5400 /* fall through */
3067714c 5401 case EMULATE_FAIL:
3f5d18a9 5402 return 0;
3067714c
AK
5403 default:
5404 BUG();
5405 }
3067714c
AK
5406}
5407EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5408
a7052897
MT
5409void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5410{
44dd3ffa 5411 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 5412 int i;
7eb77e9f 5413
faff8758
JS
5414 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
5415 if (is_noncanonical_address(gva, vcpu))
5416 return;
5417
7eb77e9f 5418 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353
JS
5419
5420 /*
5421 * INVLPG is required to invalidate any global mappings for the VA,
5422 * irrespective of PCID. Since it would take us roughly similar amount
b94742c9
JS
5423 * of work to determine whether any of the prev_root mappings of the VA
5424 * is marked global, or to just sync it blindly, so we might as well
5425 * just always sync it.
956bf353 5426 *
b94742c9
JS
5427 * Mappings not reachable via the current cr3 or the prev_roots will be
5428 * synced when switching to that cr3, so nothing needs to be done here
5429 * for them.
956bf353 5430 */
b94742c9
JS
5431 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5432 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5433 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
956bf353 5434
faff8758 5435 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
a7052897
MT
5436 ++vcpu->stat.invlpg;
5437}
5438EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5439
eb4b248e
JS
5440void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5441{
44dd3ffa 5442 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5443 bool tlb_flush = false;
b94742c9 5444 uint i;
eb4b248e
JS
5445
5446 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5447 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5448 tlb_flush = true;
eb4b248e
JS
5449 }
5450
b94742c9
JS
5451 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5452 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5453 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5454 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5455 tlb_flush = true;
5456 }
956bf353 5457 }
ade61e28 5458
faff8758
JS
5459 if (tlb_flush)
5460 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5461
eb4b248e
JS
5462 ++vcpu->stat.invlpg;
5463
5464 /*
b94742c9
JS
5465 * Mappings not reachable via the current cr3 or the prev_roots will be
5466 * synced when switching to that cr3, so nothing needs to be done here
5467 * for them.
eb4b248e
JS
5468 */
5469}
5470EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5471
18552672
JR
5472void kvm_enable_tdp(void)
5473{
5474 tdp_enabled = true;
5475}
5476EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5477
5f4cb662
JR
5478void kvm_disable_tdp(void)
5479{
5480 tdp_enabled = false;
5481}
5482EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5483
85875a13
SC
5484
5485/* The return value indicates if tlb flush on all vcpus is needed. */
5486typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5487
5488/* The caller should hold mmu-lock before calling this function. */
5489static __always_inline bool
5490slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5491 slot_level_handler fn, int start_level, int end_level,
5492 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5493{
5494 struct slot_rmap_walk_iterator iterator;
5495 bool flush = false;
5496
5497 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5498 end_gfn, &iterator) {
5499 if (iterator.rmap)
5500 flush |= fn(kvm, iterator.rmap);
5501
5502 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5503 if (flush && lock_flush_tlb) {
5504 kvm_flush_remote_tlbs(kvm);
5505 flush = false;
5506 }
5507 cond_resched_lock(&kvm->mmu_lock);
5508 }
5509 }
5510
5511 if (flush && lock_flush_tlb) {
5512 kvm_flush_remote_tlbs(kvm);
5513 flush = false;
5514 }
5515
5516 return flush;
5517}
5518
5519static __always_inline bool
5520slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5521 slot_level_handler fn, int start_level, int end_level,
5522 bool lock_flush_tlb)
5523{
5524 return slot_handle_level_range(kvm, memslot, fn, start_level,
5525 end_level, memslot->base_gfn,
5526 memslot->base_gfn + memslot->npages - 1,
5527 lock_flush_tlb);
5528}
5529
5530static __always_inline bool
5531slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5532 slot_level_handler fn, bool lock_flush_tlb)
5533{
5534 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5535 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5536}
5537
5538static __always_inline bool
5539slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5540 slot_level_handler fn, bool lock_flush_tlb)
5541{
5542 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5543 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5544}
5545
5546static __always_inline bool
5547slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5548 slot_level_handler fn, bool lock_flush_tlb)
5549{
5550 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5551 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5552}
5553
6aa8b732
AK
5554static void free_mmu_pages(struct kvm_vcpu *vcpu)
5555{
44dd3ffa
VK
5556 free_page((unsigned long)vcpu->arch.mmu->pae_root);
5557 free_page((unsigned long)vcpu->arch.mmu->lm_root);
6aa8b732
AK
5558}
5559
5560static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5561{
17ac10ad 5562 struct page *page;
6aa8b732
AK
5563 int i;
5564
ee6268ba
LC
5565 if (tdp_enabled)
5566 return 0;
5567
17ac10ad
AK
5568 /*
5569 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5570 * Therefore we need to allocate shadow page tables in the first
5571 * 4GB of memory, which happens to fit the DMA32 zone.
5572 */
254272ce 5573 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5574 if (!page)
d7fa6ab2
WY
5575 return -ENOMEM;
5576
44dd3ffa 5577 vcpu->arch.mmu->pae_root = page_address(page);
17ac10ad 5578 for (i = 0; i < 4; ++i)
44dd3ffa 5579 vcpu->arch.mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5580
6aa8b732 5581 return 0;
6aa8b732
AK
5582}
5583
8018c27b 5584int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5585{
b94742c9
JS
5586 uint i;
5587
44dd3ffa
VK
5588 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5589 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5590
44dd3ffa
VK
5591 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5592 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
b94742c9 5593 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5594 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6aa8b732 5595
14c07ad8
VK
5596 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5597 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5598 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5599 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
2c264957 5600
14c07ad8 5601 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
8018c27b 5602 return alloc_mmu_pages(vcpu);
6aa8b732
AK
5603}
5604
b5f5fdca 5605static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5606 struct kvm_memory_slot *slot,
5607 struct kvm_page_track_notifier_node *node)
b5f5fdca 5608{
4e103134
SC
5609 struct kvm_mmu_page *sp;
5610 LIST_HEAD(invalid_list);
5611 unsigned long i;
5612 bool flush;
5613 gfn_t gfn;
5614
5615 spin_lock(&kvm->mmu_lock);
5616
5617 if (list_empty(&kvm->arch.active_mmu_pages))
5618 goto out_unlock;
5619
5620 flush = slot_handle_all_level(kvm, slot, kvm_zap_rmapp, false);
5621
5622 for (i = 0; i < slot->npages; i++) {
5623 gfn = slot->base_gfn + i;
5624
5625 for_each_valid_sp(kvm, sp, gfn) {
5626 if (sp->gfn != gfn)
5627 continue;
5628
5629 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5630 }
5631 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5632 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5633 flush = false;
5634 cond_resched_lock(&kvm->mmu_lock);
5635 }
5636 }
5637 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5638
5639out_unlock:
5640 spin_unlock(&kvm->mmu_lock);
b5f5fdca
XC
5641}
5642
13d268ca
XG
5643void kvm_mmu_init_vm(struct kvm *kvm)
5644{
5645 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5646
5647 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5648 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca
XG
5649 kvm_page_track_register_notifier(kvm, node);
5650}
5651
5652void kvm_mmu_uninit_vm(struct kvm *kvm)
5653{
5654 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5655
5656 kvm_page_track_unregister_notifier(kvm, node);
5657}
5658
efdfe536
XG
5659void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5660{
5661 struct kvm_memslots *slots;
5662 struct kvm_memory_slot *memslot;
71883a62
LT
5663 bool flush_tlb = true;
5664 bool flush = false;
9da0e4d5 5665 int i;
efdfe536 5666
71883a62
LT
5667 if (kvm_available_flush_tlb_with_range())
5668 flush_tlb = false;
5669
efdfe536 5670 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5671 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5672 slots = __kvm_memslots(kvm, i);
5673 kvm_for_each_memslot(memslot, slots) {
5674 gfn_t start, end;
5675
5676 start = max(gfn_start, memslot->base_gfn);
5677 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5678 if (start >= end)
5679 continue;
efdfe536 5680
71883a62
LT
5681 flush |= slot_handle_level_range(kvm, memslot,
5682 kvm_zap_rmapp, PT_PAGE_TABLE_LEVEL,
5683 PT_MAX_HUGEPAGE_LEVEL, start,
5684 end - 1, flush_tlb);
9da0e4d5 5685 }
efdfe536
XG
5686 }
5687
71883a62
LT
5688 if (flush)
5689 kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5690 gfn_end - gfn_start + 1);
5691
efdfe536
XG
5692 spin_unlock(&kvm->mmu_lock);
5693}
5694
018aabb5
TY
5695static bool slot_rmap_write_protect(struct kvm *kvm,
5696 struct kvm_rmap_head *rmap_head)
d77aa73c 5697{
018aabb5 5698 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5699}
5700
1c91cad4
KH
5701void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5702 struct kvm_memory_slot *memslot)
6aa8b732 5703{
d77aa73c 5704 bool flush;
6aa8b732 5705
9d1beefb 5706 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5707 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5708 false);
9d1beefb 5709 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
5710
5711 /*
5712 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5713 * which do tlb flush out of mmu-lock should be serialized by
5714 * kvm->slots_lock otherwise tlb flush would be missed.
5715 */
5716 lockdep_assert_held(&kvm->slots_lock);
5717
5718 /*
5719 * We can flush all the TLBs out of the mmu lock without TLB
5720 * corruption since we just change the spte from writable to
5721 * readonly so that we only need to care the case of changing
5722 * spte from present to present (changing the spte from present
5723 * to nonpresent will flush all the TLBs immediately), in other
5724 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5725 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5726 * instead of PT_WRITABLE_MASK, that means it does not depend
5727 * on PT_WRITABLE_MASK anymore.
5728 */
d91ffee9 5729 if (flush)
c3134ce2
LT
5730 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5731 memslot->npages);
6aa8b732 5732}
37a7d8b0 5733
3ea3b7fa 5734static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5735 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5736{
5737 u64 *sptep;
5738 struct rmap_iterator iter;
5739 int need_tlb_flush = 0;
ba049e93 5740 kvm_pfn_t pfn;
3ea3b7fa
WL
5741 struct kvm_mmu_page *sp;
5742
0d536790 5743restart:
018aabb5 5744 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
5745 sp = page_header(__pa(sptep));
5746 pfn = spte_to_pfn(*sptep);
5747
5748 /*
decf6333
XG
5749 * We cannot do huge page mapping for indirect shadow pages,
5750 * which are found on the last rmap (level = 1) when not using
5751 * tdp; such shadow pages are synced with the page table in
5752 * the guest, and the guest page table is using 4K page size
5753 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
5754 */
5755 if (sp->role.direct &&
5756 !kvm_is_reserved_pfn(pfn) &&
127393fb 5757 PageTransCompoundMap(pfn_to_page(pfn))) {
e7912386 5758 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5759
5760 if (kvm_available_flush_tlb_with_range())
5761 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5762 KVM_PAGES_PER_HPAGE(sp->role.level));
5763 else
5764 need_tlb_flush = 1;
5765
0d536790
XG
5766 goto restart;
5767 }
3ea3b7fa
WL
5768 }
5769
5770 return need_tlb_flush;
5771}
5772
5773void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5774 const struct kvm_memory_slot *memslot)
3ea3b7fa 5775{
f36f3f28 5776 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5777 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5778 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5779 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5780 spin_unlock(&kvm->mmu_lock);
5781}
5782
f4b4b180
KH
5783void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5784 struct kvm_memory_slot *memslot)
5785{
d77aa73c 5786 bool flush;
f4b4b180
KH
5787
5788 spin_lock(&kvm->mmu_lock);
d77aa73c 5789 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5790 spin_unlock(&kvm->mmu_lock);
5791
5792 lockdep_assert_held(&kvm->slots_lock);
5793
5794 /*
5795 * It's also safe to flush TLBs out of mmu lock here as currently this
5796 * function is only used for dirty logging, in which case flushing TLB
5797 * out of mmu lock also guarantees no dirty pages will be lost in
5798 * dirty_bitmap.
5799 */
5800 if (flush)
c3134ce2
LT
5801 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5802 memslot->npages);
f4b4b180
KH
5803}
5804EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5805
5806void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5807 struct kvm_memory_slot *memslot)
5808{
d77aa73c 5809 bool flush;
f4b4b180
KH
5810
5811 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5812 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5813 false);
f4b4b180
KH
5814 spin_unlock(&kvm->mmu_lock);
5815
5816 /* see kvm_mmu_slot_remove_write_access */
5817 lockdep_assert_held(&kvm->slots_lock);
5818
5819 if (flush)
c3134ce2
LT
5820 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5821 memslot->npages);
f4b4b180
KH
5822}
5823EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5824
5825void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5826 struct kvm_memory_slot *memslot)
5827{
d77aa73c 5828 bool flush;
f4b4b180
KH
5829
5830 spin_lock(&kvm->mmu_lock);
d77aa73c 5831 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
5832 spin_unlock(&kvm->mmu_lock);
5833
5834 lockdep_assert_held(&kvm->slots_lock);
5835
5836 /* see kvm_mmu_slot_leaf_clear_dirty */
5837 if (flush)
c3134ce2
LT
5838 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5839 memslot->npages);
f4b4b180
KH
5840}
5841EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5842
7390de1e
SC
5843void kvm_mmu_zap_all(struct kvm *kvm)
5844{
5845 struct kvm_mmu_page *sp, *node;
5846 LIST_HEAD(invalid_list);
83cdb568 5847 int ign;
7390de1e
SC
5848
5849 spin_lock(&kvm->mmu_lock);
5850restart:
8a674adc
SC
5851 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5852 if (sp->role.invalid && sp->root_count)
5853 continue;
83cdb568 5854 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign) ||
5d6317ca 5855 cond_resched_lock(&kvm->mmu_lock))
7390de1e 5856 goto restart;
8a674adc 5857 }
7390de1e
SC
5858
5859 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5860 spin_unlock(&kvm->mmu_lock);
5861}
5862
4771450c
SC
5863static void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
5864{
5865 struct kvm_mmu_page *sp, *node;
5866 LIST_HEAD(invalid_list);
83cdb568 5867 int ign;
4771450c
SC
5868
5869 spin_lock(&kvm->mmu_lock);
5870restart:
5871 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5872 if (!sp->mmio_cached)
5873 continue;
83cdb568 5874 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign) ||
571c5af0 5875 cond_resched_lock(&kvm->mmu_lock))
4771450c
SC
5876 goto restart;
5877 }
5878
5879 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5880 spin_unlock(&kvm->mmu_lock);
5881}
5882
15248258 5883void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 5884{
164bf7e5 5885 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 5886
164bf7e5 5887 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b
SC
5888
5889 /*
5890 * Generation numbers are incremented in multiples of the number of
5891 * address spaces in order to provide unique generations across all
5892 * address spaces. Strip what is effectively the address space
5893 * modifier prior to checking for a wrap of the MMIO generation so
5894 * that a wrap in any address space is detected.
5895 */
5896 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5897
f8f55942 5898 /*
e1359e2b 5899 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 5900 * zap all shadow pages.
f8f55942 5901 */
e1359e2b 5902 if (unlikely(gen == 0)) {
ae0f5499 5903 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
4771450c 5904 kvm_mmu_zap_mmio_sptes(kvm);
7a2e8aaf 5905 }
f8f55942
XG
5906}
5907
70534a73
DC
5908static unsigned long
5909mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5910{
5911 struct kvm *kvm;
1495f230 5912 int nr_to_scan = sc->nr_to_scan;
70534a73 5913 unsigned long freed = 0;
3ee16c81 5914
2f303b74 5915 spin_lock(&kvm_lock);
3ee16c81
IE
5916
5917 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5918 int idx;
d98ba053 5919 LIST_HEAD(invalid_list);
3ee16c81 5920
35f2d16b
TY
5921 /*
5922 * Never scan more than sc->nr_to_scan VM instances.
5923 * Will not hit this condition practically since we do not try
5924 * to shrink more than one VM and it is very unlikely to see
5925 * !n_used_mmu_pages so many times.
5926 */
5927 if (!nr_to_scan--)
5928 break;
19526396
GN
5929 /*
5930 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5931 * here. We may skip a VM instance errorneosly, but we do not
5932 * want to shrink a VM that only started to populate its MMU
5933 * anyway.
5934 */
52d5dedc 5935 if (!kvm->arch.n_used_mmu_pages)
19526396 5936 continue;
19526396 5937
f656ce01 5938 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5939 spin_lock(&kvm->mmu_lock);
3ee16c81 5940
70534a73
DC
5941 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5942 freed++;
d98ba053 5943 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 5944
3ee16c81 5945 spin_unlock(&kvm->mmu_lock);
f656ce01 5946 srcu_read_unlock(&kvm->srcu, idx);
19526396 5947
70534a73
DC
5948 /*
5949 * unfair on small ones
5950 * per-vm shrinkers cry out
5951 * sadness comes quickly
5952 */
19526396
GN
5953 list_move_tail(&kvm->vm_list, &vm_list);
5954 break;
3ee16c81 5955 }
3ee16c81 5956
2f303b74 5957 spin_unlock(&kvm_lock);
70534a73 5958 return freed;
70534a73
DC
5959}
5960
5961static unsigned long
5962mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5963{
45221ab6 5964 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5965}
5966
5967static struct shrinker mmu_shrinker = {
70534a73
DC
5968 .count_objects = mmu_shrink_count,
5969 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5970 .seeks = DEFAULT_SEEKS * 10,
5971};
5972
2ddfd20e 5973static void mmu_destroy_caches(void)
b5a33a75 5974{
c1bd743e
TH
5975 kmem_cache_destroy(pte_list_desc_cache);
5976 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5977}
5978
5979int kvm_mmu_module_init(void)
5980{
ab271bd4
AB
5981 int ret = -ENOMEM;
5982
36d9594d
VK
5983 /*
5984 * MMU roles use union aliasing which is, generally speaking, an
5985 * undefined behavior. However, we supposedly know how compilers behave
5986 * and the current status quo is unlikely to change. Guardians below are
5987 * supposed to let us know if the assumption becomes false.
5988 */
5989 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5990 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5991 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5992
28a1f3ac 5993 kvm_mmu_reset_all_pte_masks();
f160c7b7 5994
53c07b18
XG
5995 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5996 sizeof(struct pte_list_desc),
46bea48a 5997 0, SLAB_ACCOUNT, NULL);
53c07b18 5998 if (!pte_list_desc_cache)
ab271bd4 5999 goto out;
b5a33a75 6000
d3d25b04
AK
6001 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6002 sizeof(struct kvm_mmu_page),
46bea48a 6003 0, SLAB_ACCOUNT, NULL);
d3d25b04 6004 if (!mmu_page_header_cache)
ab271bd4 6005 goto out;
d3d25b04 6006
908c7f19 6007 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 6008 goto out;
45bf21a8 6009
ab271bd4
AB
6010 ret = register_shrinker(&mmu_shrinker);
6011 if (ret)
6012 goto out;
3ee16c81 6013
b5a33a75
AK
6014 return 0;
6015
ab271bd4 6016out:
3ee16c81 6017 mmu_destroy_caches();
ab271bd4 6018 return ret;
b5a33a75
AK
6019}
6020
3ad82a7e 6021/*
39337ad1 6022 * Calculate mmu pages needed for kvm.
3ad82a7e
ZX
6023 */
6024unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
6025{
3ad82a7e
ZX
6026 unsigned int nr_mmu_pages;
6027 unsigned int nr_pages = 0;
bc6678a3 6028 struct kvm_memslots *slots;
be6ba0f0 6029 struct kvm_memory_slot *memslot;
9da0e4d5 6030 int i;
3ad82a7e 6031
9da0e4d5
PB
6032 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6033 slots = __kvm_memslots(kvm, i);
90d83dc3 6034
9da0e4d5
PB
6035 kvm_for_each_memslot(memslot, slots)
6036 nr_pages += memslot->npages;
6037 }
3ad82a7e
ZX
6038
6039 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6040 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 6041 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
6042
6043 return nr_mmu_pages;
6044}
6045
c42fffe3
XG
6046void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6047{
95f93af4 6048 kvm_mmu_unload(vcpu);
c42fffe3
XG
6049 free_mmu_pages(vcpu);
6050 mmu_free_memory_caches(vcpu);
b034cf01
XG
6051}
6052
b034cf01
XG
6053void kvm_mmu_module_exit(void)
6054{
6055 mmu_destroy_caches();
6056 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6057 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
6058 mmu_audit_disable();
6059}