]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
Merge branch 'kvm-ppc-next' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
1767e931
PG
32#include <linux/moduleparam.h>
33#include <linux/export.h>
448353ca 34#include <linux/swap.h>
05da4558 35#include <linux/hugetlb.h>
2f333bcb 36#include <linux/compiler.h>
bc6678a3 37#include <linux/srcu.h>
5a0e3ad6 38#include <linux/slab.h>
3f07c014 39#include <linux/sched/signal.h>
bf998156 40#include <linux/uaccess.h>
114df303 41#include <linux/hash.h>
f160c7b7 42#include <linux/kern_levels.h>
6aa8b732 43
e495606d
AK
44#include <asm/page.h>
45#include <asm/cmpxchg.h>
4e542370 46#include <asm/io.h>
13673a90 47#include <asm/vmx.h>
3d0c27ad 48#include <asm/kvm_page_track.h>
6aa8b732 49
18552672
JR
50/*
51 * When setting this variable to true it enables Two-Dimensional-Paging
52 * where the hardware walks 2 page tables:
53 * 1. the guest-virtual to guest-physical
54 * 2. while doing 1. it walks guest-physical to host-physical
55 * If the hardware supports that we don't need to do shadow paging.
56 */
2f333bcb 57bool tdp_enabled = false;
18552672 58
8b1fe17c
XG
59enum {
60 AUDIT_PRE_PAGE_FAULT,
61 AUDIT_POST_PAGE_FAULT,
62 AUDIT_PRE_PTE_WRITE,
6903074c
XG
63 AUDIT_POST_PTE_WRITE,
64 AUDIT_PRE_SYNC,
65 AUDIT_POST_SYNC
8b1fe17c 66};
37a7d8b0 67
8b1fe17c 68#undef MMU_DEBUG
37a7d8b0
AK
69
70#ifdef MMU_DEBUG
fa4a2c08
PB
71static bool dbg = 0;
72module_param(dbg, bool, 0644);
37a7d8b0
AK
73
74#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
75#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 76#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 77#else
37a7d8b0
AK
78#define pgprintk(x...) do { } while (0)
79#define rmap_printk(x...) do { } while (0)
fa4a2c08 80#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 81#endif
6aa8b732 82
957ed9ef
XG
83#define PTE_PREFETCH_NUM 8
84
00763e41 85#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
86#define PT64_SECOND_AVAIL_BITS_SHIFT 52
87
6aa8b732
AK
88#define PT64_LEVEL_BITS 9
89
90#define PT64_LEVEL_SHIFT(level) \
d77c26fc 91 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 92
6aa8b732
AK
93#define PT64_INDEX(address, level)\
94 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
95
96
97#define PT32_LEVEL_BITS 10
98
99#define PT32_LEVEL_SHIFT(level) \
d77c26fc 100 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 101
e04da980
JR
102#define PT32_LVL_OFFSET_MASK(level) \
103 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
104 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
105
106#define PT32_INDEX(address, level)\
107 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
108
109
27aba766 110#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
111#define PT64_DIR_BASE_ADDR_MASK \
112 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
113#define PT64_LVL_ADDR_MASK(level) \
114 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
115 * PT64_LEVEL_BITS))) - 1))
116#define PT64_LVL_OFFSET_MASK(level) \
117 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
118 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
119
120#define PT32_BASE_ADDR_MASK PAGE_MASK
121#define PT32_DIR_BASE_ADDR_MASK \
122 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
123#define PT32_LVL_ADDR_MASK(level) \
124 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
125 * PT32_LEVEL_BITS))) - 1))
6aa8b732 126
53166229
GN
127#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
128 | shadow_x_mask | shadow_nx_mask)
6aa8b732 129
fe135d2c
AK
130#define ACC_EXEC_MASK 1
131#define ACC_WRITE_MASK PT_WRITABLE_MASK
132#define ACC_USER_MASK PT_USER_MASK
133#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
134
f160c7b7
JS
135/* The mask for the R/X bits in EPT PTEs */
136#define PT64_EPT_READABLE_MASK 0x1ull
137#define PT64_EPT_EXECUTABLE_MASK 0x4ull
138
90bb6fc5
AK
139#include <trace/events/kvm.h>
140
07420171
AK
141#define CREATE_TRACE_POINTS
142#include "mmutrace.h"
143
49fde340
XG
144#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
145#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 146
135f8c2b
AK
147#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
148
220f773a
TY
149/* make pte_list_desc fit well in cache line */
150#define PTE_LIST_EXT 3
151
53c07b18
XG
152struct pte_list_desc {
153 u64 *sptes[PTE_LIST_EXT];
154 struct pte_list_desc *more;
cd4a4e53
AK
155};
156
2d11123a
AK
157struct kvm_shadow_walk_iterator {
158 u64 addr;
159 hpa_t shadow_addr;
2d11123a 160 u64 *sptep;
dd3bfd59 161 int level;
2d11123a
AK
162 unsigned index;
163};
164
165#define for_each_shadow_entry(_vcpu, _addr, _walker) \
166 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
167 shadow_walk_okay(&(_walker)); \
168 shadow_walk_next(&(_walker)))
169
c2a2ac2b
XG
170#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
172 shadow_walk_okay(&(_walker)) && \
173 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
174 __shadow_walk_next(&(_walker), spte))
175
53c07b18 176static struct kmem_cache *pte_list_desc_cache;
d3d25b04 177static struct kmem_cache *mmu_page_header_cache;
45221ab6 178static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 179
7b52345e
SY
180static u64 __read_mostly shadow_nx_mask;
181static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
182static u64 __read_mostly shadow_user_mask;
183static u64 __read_mostly shadow_accessed_mask;
184static u64 __read_mostly shadow_dirty_mask;
ce88decf 185static u64 __read_mostly shadow_mmio_mask;
ffb128c8 186static u64 __read_mostly shadow_present_mask;
ce88decf 187
f160c7b7
JS
188/*
189 * The mask/value to distinguish a PTE that has been marked not-present for
190 * access tracking purposes.
191 * The mask would be either 0 if access tracking is disabled, or
192 * SPTE_SPECIAL_MASK|VMX_EPT_RWX_MASK if access tracking is enabled.
193 */
194static u64 __read_mostly shadow_acc_track_mask;
195static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
196
197/*
198 * The mask/shift to use for saving the original R/X bits when marking the PTE
199 * as not-present for access tracking purposes. We do not save the W bit as the
200 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
201 * restored only when a write is attempted to the page.
202 */
203static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
204 PT64_EPT_EXECUTABLE_MASK;
205static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
206
ce88decf 207static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 208static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
209
210void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
211{
312b616b 212 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
ce88decf
XG
213}
214EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
215
f160c7b7
JS
216static inline bool is_access_track_spte(u64 spte)
217{
218 /* Always false if shadow_acc_track_mask is zero. */
219 return (spte & shadow_acc_track_mask) == shadow_acc_track_value;
220}
221
f2fd125d 222/*
ee3d1570
DM
223 * the low bit of the generation number is always presumed to be zero.
224 * This disables mmio caching during memslot updates. The concept is
225 * similar to a seqcount but instead of retrying the access we just punt
226 * and ignore the cache.
227 *
228 * spte bits 3-11 are used as bits 1-9 of the generation number,
229 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 230 */
ee3d1570 231#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
232#define MMIO_SPTE_GEN_HIGH_SHIFT 52
233
ee3d1570
DM
234#define MMIO_GEN_SHIFT 20
235#define MMIO_GEN_LOW_SHIFT 10
236#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 237#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
238
239static u64 generation_mmio_spte_mask(unsigned int gen)
240{
241 u64 mask;
242
842bb26a 243 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
244
245 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
246 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
247 return mask;
248}
249
250static unsigned int get_mmio_spte_generation(u64 spte)
251{
252 unsigned int gen;
253
254 spte &= ~shadow_mmio_mask;
255
256 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
257 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
258 return gen;
259}
260
54bf36aa 261static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 262{
54bf36aa 263 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
264}
265
54bf36aa 266static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 267 unsigned access)
ce88decf 268{
54bf36aa 269 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 270 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 271
ce88decf 272 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 273 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 274
f8f55942 275 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 276 mmu_spte_set(sptep, mask);
ce88decf
XG
277}
278
279static bool is_mmio_spte(u64 spte)
280{
281 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
282}
283
284static gfn_t get_mmio_spte_gfn(u64 spte)
285{
842bb26a 286 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 287 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
288}
289
290static unsigned get_mmio_spte_access(u64 spte)
291{
842bb26a 292 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 293 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
294}
295
54bf36aa 296static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 297 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
298{
299 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 300 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
301 return true;
302 }
303
304 return false;
305}
c7addb90 306
54bf36aa 307static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 308{
089504c0
XG
309 unsigned int kvm_gen, spte_gen;
310
54bf36aa 311 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
312 spte_gen = get_mmio_spte_generation(spte);
313
314 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
315 return likely(kvm_gen == spte_gen);
f8f55942
XG
316}
317
7b52345e 318void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7
JS
319 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
320 u64 acc_track_mask)
7b52345e 321{
312b616b
JS
322 if (acc_track_mask != 0)
323 acc_track_mask |= SPTE_SPECIAL_MASK;
324
7b52345e
SY
325 shadow_user_mask = user_mask;
326 shadow_accessed_mask = accessed_mask;
327 shadow_dirty_mask = dirty_mask;
328 shadow_nx_mask = nx_mask;
329 shadow_x_mask = x_mask;
ffb128c8 330 shadow_present_mask = p_mask;
f160c7b7
JS
331 shadow_acc_track_mask = acc_track_mask;
332 WARN_ON(shadow_accessed_mask != 0 && shadow_acc_track_mask != 0);
7b52345e
SY
333}
334EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
335
f160c7b7
JS
336void kvm_mmu_clear_all_pte_masks(void)
337{
338 shadow_user_mask = 0;
339 shadow_accessed_mask = 0;
340 shadow_dirty_mask = 0;
341 shadow_nx_mask = 0;
342 shadow_x_mask = 0;
343 shadow_mmio_mask = 0;
344 shadow_present_mask = 0;
345 shadow_acc_track_mask = 0;
346}
347
6aa8b732
AK
348static int is_cpuid_PSE36(void)
349{
350 return 1;
351}
352
73b1087e
AK
353static int is_nx(struct kvm_vcpu *vcpu)
354{
f6801dff 355 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
356}
357
c7addb90
AK
358static int is_shadow_present_pte(u64 pte)
359{
f160c7b7 360 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
361}
362
05da4558
MT
363static int is_large_pte(u64 pte)
364{
365 return pte & PT_PAGE_SIZE_MASK;
366}
367
776e6633
MT
368static int is_last_spte(u64 pte, int level)
369{
370 if (level == PT_PAGE_TABLE_LEVEL)
371 return 1;
852e3c19 372 if (is_large_pte(pte))
776e6633
MT
373 return 1;
374 return 0;
375}
376
d3e328f2
JS
377static bool is_executable_pte(u64 spte)
378{
379 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
380}
381
ba049e93 382static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 383{
35149e21 384 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
385}
386
da928521
AK
387static gfn_t pse36_gfn_delta(u32 gpte)
388{
389 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
390
391 return (gpte & PT32_DIR_PSE36_MASK) << shift;
392}
393
603e0651 394#ifdef CONFIG_X86_64
d555c333 395static void __set_spte(u64 *sptep, u64 spte)
e663ee64 396{
b19ee2ff 397 WRITE_ONCE(*sptep, spte);
e663ee64
AK
398}
399
603e0651 400static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 401{
b19ee2ff 402 WRITE_ONCE(*sptep, spte);
603e0651
XG
403}
404
405static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
406{
407 return xchg(sptep, spte);
408}
c2a2ac2b
XG
409
410static u64 __get_spte_lockless(u64 *sptep)
411{
412 return ACCESS_ONCE(*sptep);
413}
a9221dd5 414#else
603e0651
XG
415union split_spte {
416 struct {
417 u32 spte_low;
418 u32 spte_high;
419 };
420 u64 spte;
421};
a9221dd5 422
c2a2ac2b
XG
423static void count_spte_clear(u64 *sptep, u64 spte)
424{
425 struct kvm_mmu_page *sp = page_header(__pa(sptep));
426
427 if (is_shadow_present_pte(spte))
428 return;
429
430 /* Ensure the spte is completely set before we increase the count */
431 smp_wmb();
432 sp->clear_spte_count++;
433}
434
603e0651
XG
435static void __set_spte(u64 *sptep, u64 spte)
436{
437 union split_spte *ssptep, sspte;
a9221dd5 438
603e0651
XG
439 ssptep = (union split_spte *)sptep;
440 sspte = (union split_spte)spte;
441
442 ssptep->spte_high = sspte.spte_high;
443
444 /*
445 * If we map the spte from nonpresent to present, We should store
446 * the high bits firstly, then set present bit, so cpu can not
447 * fetch this spte while we are setting the spte.
448 */
449 smp_wmb();
450
b19ee2ff 451 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
452}
453
603e0651
XG
454static void __update_clear_spte_fast(u64 *sptep, u64 spte)
455{
456 union split_spte *ssptep, sspte;
457
458 ssptep = (union split_spte *)sptep;
459 sspte = (union split_spte)spte;
460
b19ee2ff 461 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
462
463 /*
464 * If we map the spte from present to nonpresent, we should clear
465 * present bit firstly to avoid vcpu fetch the old high bits.
466 */
467 smp_wmb();
468
469 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 470 count_spte_clear(sptep, spte);
603e0651
XG
471}
472
473static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
474{
475 union split_spte *ssptep, sspte, orig;
476
477 ssptep = (union split_spte *)sptep;
478 sspte = (union split_spte)spte;
479
480 /* xchg acts as a barrier before the setting of the high bits */
481 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
482 orig.spte_high = ssptep->spte_high;
483 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 484 count_spte_clear(sptep, spte);
603e0651
XG
485
486 return orig.spte;
487}
c2a2ac2b
XG
488
489/*
490 * The idea using the light way get the spte on x86_32 guest is from
491 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
492 *
493 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
494 * coalesces them and we are running out of the MMU lock. Therefore
495 * we need to protect against in-progress updates of the spte.
496 *
497 * Reading the spte while an update is in progress may get the old value
498 * for the high part of the spte. The race is fine for a present->non-present
499 * change (because the high part of the spte is ignored for non-present spte),
500 * but for a present->present change we must reread the spte.
501 *
502 * All such changes are done in two steps (present->non-present and
503 * non-present->present), hence it is enough to count the number of
504 * present->non-present updates: if it changed while reading the spte,
505 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
506 */
507static u64 __get_spte_lockless(u64 *sptep)
508{
509 struct kvm_mmu_page *sp = page_header(__pa(sptep));
510 union split_spte spte, *orig = (union split_spte *)sptep;
511 int count;
512
513retry:
514 count = sp->clear_spte_count;
515 smp_rmb();
516
517 spte.spte_low = orig->spte_low;
518 smp_rmb();
519
520 spte.spte_high = orig->spte_high;
521 smp_rmb();
522
523 if (unlikely(spte.spte_low != orig->spte_low ||
524 count != sp->clear_spte_count))
525 goto retry;
526
527 return spte.spte;
528}
603e0651
XG
529#endif
530
ea4114bc 531static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 532{
feb3eb70
GN
533 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
534 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
535}
536
8672b721
XG
537static bool spte_has_volatile_bits(u64 spte)
538{
f160c7b7
JS
539 if (!is_shadow_present_pte(spte))
540 return false;
541
c7ba5b48 542 /*
6a6256f9 543 * Always atomically update spte if it can be updated
c7ba5b48
XG
544 * out of mmu-lock, it can ensure dirty bit is not lost,
545 * also, it can help us to get a stable is_writable_pte()
546 * to ensure tlb flush is not missed.
547 */
f160c7b7
JS
548 if (spte_can_locklessly_be_made_writable(spte) ||
549 is_access_track_spte(spte))
c7ba5b48
XG
550 return true;
551
f160c7b7
JS
552 if (shadow_accessed_mask) {
553 if ((spte & shadow_accessed_mask) == 0 ||
554 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
555 return true;
556 }
8672b721 557
f160c7b7 558 return false;
8672b721
XG
559}
560
83ef6c81 561static bool is_accessed_spte(u64 spte)
4132779b 562{
83ef6c81 563 return shadow_accessed_mask ? spte & shadow_accessed_mask
f160c7b7 564 : !is_access_track_spte(spte);
4132779b
XG
565}
566
83ef6c81 567static bool is_dirty_spte(u64 spte)
7e71a59b 568{
83ef6c81
JS
569 return shadow_dirty_mask ? spte & shadow_dirty_mask
570 : spte & PT_WRITABLE_MASK;
7e71a59b
KH
571}
572
1df9f2dc
XG
573/* Rules for using mmu_spte_set:
574 * Set the sptep from nonpresent to present.
575 * Note: the sptep being assigned *must* be either not present
576 * or in a state where the hardware will not attempt to update
577 * the spte.
578 */
579static void mmu_spte_set(u64 *sptep, u64 new_spte)
580{
581 WARN_ON(is_shadow_present_pte(*sptep));
582 __set_spte(sptep, new_spte);
583}
584
f39a058d
JS
585/*
586 * Update the SPTE (excluding the PFN), but do not track changes in its
587 * accessed/dirty status.
1df9f2dc 588 */
f39a058d 589static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 590{
c7ba5b48 591 u64 old_spte = *sptep;
4132779b 592
afd28fe1 593 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 594
6e7d0354
XG
595 if (!is_shadow_present_pte(old_spte)) {
596 mmu_spte_set(sptep, new_spte);
f39a058d 597 return old_spte;
6e7d0354 598 }
4132779b 599
c7ba5b48 600 if (!spte_has_volatile_bits(old_spte))
603e0651 601 __update_clear_spte_fast(sptep, new_spte);
4132779b 602 else
603e0651 603 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 604
83ef6c81
JS
605 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
606
f39a058d
JS
607 return old_spte;
608}
609
610/* Rules for using mmu_spte_update:
611 * Update the state bits, it means the mapped pfn is not changed.
612 *
613 * Whenever we overwrite a writable spte with a read-only one we
614 * should flush remote TLBs. Otherwise rmap_write_protect
615 * will find a read-only spte, even though the writable spte
616 * might be cached on a CPU's TLB, the return value indicates this
617 * case.
618 *
619 * Returns true if the TLB needs to be flushed
620 */
621static bool mmu_spte_update(u64 *sptep, u64 new_spte)
622{
623 bool flush = false;
624 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
625
626 if (!is_shadow_present_pte(old_spte))
627 return false;
628
c7ba5b48
XG
629 /*
630 * For the spte updated out of mmu-lock is safe, since
6a6256f9 631 * we always atomically update it, see the comments in
c7ba5b48
XG
632 * spte_has_volatile_bits().
633 */
ea4114bc 634 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 635 !is_writable_pte(new_spte))
83ef6c81 636 flush = true;
4132779b 637
7e71a59b 638 /*
83ef6c81 639 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
640 * to guarantee consistency between TLB and page tables.
641 */
7e71a59b 642
83ef6c81
JS
643 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
644 flush = true;
4132779b 645 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
646 }
647
648 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
649 flush = true;
4132779b 650 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 651 }
6e7d0354 652
83ef6c81 653 return flush;
b79b93f9
AK
654}
655
1df9f2dc
XG
656/*
657 * Rules for using mmu_spte_clear_track_bits:
658 * It sets the sptep from present to nonpresent, and track the
659 * state bits, it is used to clear the last level sptep.
83ef6c81 660 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
661 */
662static int mmu_spte_clear_track_bits(u64 *sptep)
663{
ba049e93 664 kvm_pfn_t pfn;
1df9f2dc
XG
665 u64 old_spte = *sptep;
666
667 if (!spte_has_volatile_bits(old_spte))
603e0651 668 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 669 else
603e0651 670 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 671
afd28fe1 672 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
673 return 0;
674
675 pfn = spte_to_pfn(old_spte);
86fde74c
XG
676
677 /*
678 * KVM does not hold the refcount of the page used by
679 * kvm mmu, before reclaiming the page, we should
680 * unmap it from mmu first.
681 */
bf4bea8e 682 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 683
83ef6c81 684 if (is_accessed_spte(old_spte))
1df9f2dc 685 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
686
687 if (is_dirty_spte(old_spte))
1df9f2dc 688 kvm_set_pfn_dirty(pfn);
83ef6c81 689
1df9f2dc
XG
690 return 1;
691}
692
693/*
694 * Rules for using mmu_spte_clear_no_track:
695 * Directly clear spte without caring the state bits of sptep,
696 * it is used to set the upper level spte.
697 */
698static void mmu_spte_clear_no_track(u64 *sptep)
699{
603e0651 700 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
701}
702
c2a2ac2b
XG
703static u64 mmu_spte_get_lockless(u64 *sptep)
704{
705 return __get_spte_lockless(sptep);
706}
707
f160c7b7
JS
708static u64 mark_spte_for_access_track(u64 spte)
709{
710 if (shadow_accessed_mask != 0)
711 return spte & ~shadow_accessed_mask;
712
713 if (shadow_acc_track_mask == 0 || is_access_track_spte(spte))
714 return spte;
715
716 /*
20d65236
JS
717 * Making an Access Tracking PTE will result in removal of write access
718 * from the PTE. So, verify that we will be able to restore the write
719 * access in the fast page fault path later on.
f160c7b7
JS
720 */
721 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
722 !spte_can_locklessly_be_made_writable(spte),
723 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
724
725 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
726 shadow_acc_track_saved_bits_shift),
727 "kvm: Access Tracking saved bit locations are not zero\n");
728
729 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
730 shadow_acc_track_saved_bits_shift;
731 spte &= ~shadow_acc_track_mask;
732 spte |= shadow_acc_track_value;
733
734 return spte;
735}
736
d3e328f2
JS
737/* Restore an acc-track PTE back to a regular PTE */
738static u64 restore_acc_track_spte(u64 spte)
739{
740 u64 new_spte = spte;
741 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
742 & shadow_acc_track_saved_bits_mask;
743
744 WARN_ON_ONCE(!is_access_track_spte(spte));
745
746 new_spte &= ~shadow_acc_track_mask;
747 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
748 shadow_acc_track_saved_bits_shift);
749 new_spte |= saved_bits;
750
751 return new_spte;
752}
753
f160c7b7
JS
754/* Returns the Accessed status of the PTE and resets it at the same time. */
755static bool mmu_spte_age(u64 *sptep)
756{
757 u64 spte = mmu_spte_get_lockless(sptep);
758
759 if (!is_accessed_spte(spte))
760 return false;
761
762 if (shadow_accessed_mask) {
763 clear_bit((ffs(shadow_accessed_mask) - 1),
764 (unsigned long *)sptep);
765 } else {
766 /*
767 * Capture the dirty status of the page, so that it doesn't get
768 * lost when the SPTE is marked for access tracking.
769 */
770 if (is_writable_pte(spte))
771 kvm_set_pfn_dirty(spte_to_pfn(spte));
772
773 spte = mark_spte_for_access_track(spte);
774 mmu_spte_update_no_track(sptep, spte);
775 }
776
777 return true;
778}
779
c2a2ac2b
XG
780static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
781{
c142786c
AK
782 /*
783 * Prevent page table teardown by making any free-er wait during
784 * kvm_flush_remote_tlbs() IPI to all active vcpus.
785 */
786 local_irq_disable();
36ca7e0a 787
c142786c
AK
788 /*
789 * Make sure a following spte read is not reordered ahead of the write
790 * to vcpu->mode.
791 */
36ca7e0a 792 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
793}
794
795static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
796{
c142786c
AK
797 /*
798 * Make sure the write to vcpu->mode is not reordered in front of
799 * reads to sptes. If it does, kvm_commit_zap_page() can see us
800 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
801 */
36ca7e0a 802 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 803 local_irq_enable();
c2a2ac2b
XG
804}
805
e2dec939 806static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 807 struct kmem_cache *base_cache, int min)
714b93da
AK
808{
809 void *obj;
810
811 if (cache->nobjs >= min)
e2dec939 812 return 0;
714b93da 813 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 814 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 815 if (!obj)
e2dec939 816 return -ENOMEM;
714b93da
AK
817 cache->objects[cache->nobjs++] = obj;
818 }
e2dec939 819 return 0;
714b93da
AK
820}
821
f759e2b4
XG
822static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
823{
824 return cache->nobjs;
825}
826
e8ad9a70
XG
827static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
828 struct kmem_cache *cache)
714b93da
AK
829{
830 while (mc->nobjs)
e8ad9a70 831 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
832}
833
c1158e63 834static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 835 int min)
c1158e63 836{
842f22ed 837 void *page;
c1158e63
AK
838
839 if (cache->nobjs >= min)
840 return 0;
841 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 842 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
843 if (!page)
844 return -ENOMEM;
842f22ed 845 cache->objects[cache->nobjs++] = page;
c1158e63
AK
846 }
847 return 0;
848}
849
850static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
851{
852 while (mc->nobjs)
c4d198d5 853 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
854}
855
2e3e5882 856static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 857{
e2dec939
AK
858 int r;
859
53c07b18 860 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 861 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
862 if (r)
863 goto out;
ad312c7c 864 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
865 if (r)
866 goto out;
ad312c7c 867 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 868 mmu_page_header_cache, 4);
e2dec939
AK
869out:
870 return r;
714b93da
AK
871}
872
873static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
874{
53c07b18
XG
875 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
876 pte_list_desc_cache);
ad312c7c 877 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
878 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
879 mmu_page_header_cache);
714b93da
AK
880}
881
80feb89a 882static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
883{
884 void *p;
885
886 BUG_ON(!mc->nobjs);
887 p = mc->objects[--mc->nobjs];
714b93da
AK
888 return p;
889}
890
53c07b18 891static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 892{
80feb89a 893 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
894}
895
53c07b18 896static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 897{
53c07b18 898 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
899}
900
2032a93d
LJ
901static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
902{
903 if (!sp->role.direct)
904 return sp->gfns[index];
905
906 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
907}
908
909static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
910{
911 if (sp->role.direct)
912 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
913 else
914 sp->gfns[index] = gfn;
915}
916
05da4558 917/*
d4dbf470
TY
918 * Return the pointer to the large page information for a given gfn,
919 * handling slots that are not large page aligned.
05da4558 920 */
d4dbf470
TY
921static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
922 struct kvm_memory_slot *slot,
923 int level)
05da4558
MT
924{
925 unsigned long idx;
926
fb03cb6f 927 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 928 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
929}
930
547ffaed
XG
931static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
932 gfn_t gfn, int count)
933{
934 struct kvm_lpage_info *linfo;
935 int i;
936
937 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
938 linfo = lpage_info_slot(gfn, slot, i);
939 linfo->disallow_lpage += count;
940 WARN_ON(linfo->disallow_lpage < 0);
941 }
942}
943
944void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
945{
946 update_gfn_disallow_lpage_count(slot, gfn, 1);
947}
948
949void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
950{
951 update_gfn_disallow_lpage_count(slot, gfn, -1);
952}
953
3ed1a478 954static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 955{
699023e2 956 struct kvm_memslots *slots;
d25797b2 957 struct kvm_memory_slot *slot;
3ed1a478 958 gfn_t gfn;
05da4558 959
56ca57f9 960 kvm->arch.indirect_shadow_pages++;
3ed1a478 961 gfn = sp->gfn;
699023e2
PB
962 slots = kvm_memslots_for_spte_role(kvm, sp->role);
963 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
964
965 /* the non-leaf shadow pages are keeping readonly. */
966 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
967 return kvm_slot_page_track_add_page(kvm, slot, gfn,
968 KVM_PAGE_TRACK_WRITE);
969
547ffaed 970 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
971}
972
3ed1a478 973static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 974{
699023e2 975 struct kvm_memslots *slots;
d25797b2 976 struct kvm_memory_slot *slot;
3ed1a478 977 gfn_t gfn;
05da4558 978
56ca57f9 979 kvm->arch.indirect_shadow_pages--;
3ed1a478 980 gfn = sp->gfn;
699023e2
PB
981 slots = kvm_memslots_for_spte_role(kvm, sp->role);
982 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
983 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
984 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
985 KVM_PAGE_TRACK_WRITE);
986
547ffaed 987 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
988}
989
92f94f1e
XG
990static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
991 struct kvm_memory_slot *slot)
05da4558 992{
d4dbf470 993 struct kvm_lpage_info *linfo;
05da4558
MT
994
995 if (slot) {
d4dbf470 996 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 997 return !!linfo->disallow_lpage;
05da4558
MT
998 }
999
92f94f1e 1000 return true;
05da4558
MT
1001}
1002
92f94f1e
XG
1003static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1004 int level)
5225fdf8
TY
1005{
1006 struct kvm_memory_slot *slot;
1007
1008 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 1009 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
1010}
1011
d25797b2 1012static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 1013{
8f0b1ab6 1014 unsigned long page_size;
d25797b2 1015 int i, ret = 0;
05da4558 1016
8f0b1ab6 1017 page_size = kvm_host_page_size(kvm, gfn);
05da4558 1018
8a3d08f1 1019 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
1020 if (page_size >= KVM_HPAGE_SIZE(i))
1021 ret = i;
1022 else
1023 break;
1024 }
1025
4c2155ce 1026 return ret;
05da4558
MT
1027}
1028
d8aacf5d
TY
1029static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1030 bool no_dirty_log)
1031{
1032 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1033 return false;
1034 if (no_dirty_log && slot->dirty_bitmap)
1035 return false;
1036
1037 return true;
1038}
1039
5d163b1c
XG
1040static struct kvm_memory_slot *
1041gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1042 bool no_dirty_log)
05da4558
MT
1043{
1044 struct kvm_memory_slot *slot;
5d163b1c 1045
54bf36aa 1046 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 1047 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
1048 slot = NULL;
1049
1050 return slot;
1051}
1052
fd136902
TY
1053static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1054 bool *force_pt_level)
936a5fe6
AA
1055{
1056 int host_level, level, max_level;
d8aacf5d
TY
1057 struct kvm_memory_slot *slot;
1058
8c85ac1c
TY
1059 if (unlikely(*force_pt_level))
1060 return PT_PAGE_TABLE_LEVEL;
05da4558 1061
8c85ac1c
TY
1062 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1063 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
1064 if (unlikely(*force_pt_level))
1065 return PT_PAGE_TABLE_LEVEL;
1066
d25797b2
JR
1067 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1068
1069 if (host_level == PT_PAGE_TABLE_LEVEL)
1070 return host_level;
1071
55dd98c3 1072 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
1073
1074 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 1075 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 1076 break;
d25797b2
JR
1077
1078 return level - 1;
05da4558
MT
1079}
1080
290fc38d 1081/*
018aabb5 1082 * About rmap_head encoding:
cd4a4e53 1083 *
018aabb5
TY
1084 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1085 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1086 * pte_list_desc containing more mappings.
018aabb5
TY
1087 */
1088
1089/*
1090 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1091 */
53c07b18 1092static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1093 struct kvm_rmap_head *rmap_head)
cd4a4e53 1094{
53c07b18 1095 struct pte_list_desc *desc;
53a27b39 1096 int i, count = 0;
cd4a4e53 1097
018aabb5 1098 if (!rmap_head->val) {
53c07b18 1099 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1100 rmap_head->val = (unsigned long)spte;
1101 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1102 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1103 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1104 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1105 desc->sptes[1] = spte;
018aabb5 1106 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1107 ++count;
cd4a4e53 1108 } else {
53c07b18 1109 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1110 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1111 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1112 desc = desc->more;
53c07b18 1113 count += PTE_LIST_EXT;
53a27b39 1114 }
53c07b18
XG
1115 if (desc->sptes[PTE_LIST_EXT-1]) {
1116 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1117 desc = desc->more;
1118 }
d555c333 1119 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1120 ++count;
d555c333 1121 desc->sptes[i] = spte;
cd4a4e53 1122 }
53a27b39 1123 return count;
cd4a4e53
AK
1124}
1125
53c07b18 1126static void
018aabb5
TY
1127pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1128 struct pte_list_desc *desc, int i,
1129 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1130{
1131 int j;
1132
53c07b18 1133 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1134 ;
d555c333
AK
1135 desc->sptes[i] = desc->sptes[j];
1136 desc->sptes[j] = NULL;
cd4a4e53
AK
1137 if (j != 0)
1138 return;
1139 if (!prev_desc && !desc->more)
018aabb5 1140 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
1141 else
1142 if (prev_desc)
1143 prev_desc->more = desc->more;
1144 else
018aabb5 1145 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1146 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1147}
1148
018aabb5 1149static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1150{
53c07b18
XG
1151 struct pte_list_desc *desc;
1152 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1153 int i;
1154
018aabb5 1155 if (!rmap_head->val) {
53c07b18 1156 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 1157 BUG();
018aabb5 1158 } else if (!(rmap_head->val & 1)) {
53c07b18 1159 rmap_printk("pte_list_remove: %p 1->0\n", spte);
018aabb5 1160 if ((u64 *)rmap_head->val != spte) {
53c07b18 1161 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
1162 BUG();
1163 }
018aabb5 1164 rmap_head->val = 0;
cd4a4e53 1165 } else {
53c07b18 1166 rmap_printk("pte_list_remove: %p many->many\n", spte);
018aabb5 1167 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1168 prev_desc = NULL;
1169 while (desc) {
018aabb5 1170 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1171 if (desc->sptes[i] == spte) {
018aabb5
TY
1172 pte_list_desc_remove_entry(rmap_head,
1173 desc, i, prev_desc);
cd4a4e53
AK
1174 return;
1175 }
018aabb5 1176 }
cd4a4e53
AK
1177 prev_desc = desc;
1178 desc = desc->more;
1179 }
53c07b18 1180 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1181 BUG();
1182 }
1183}
1184
018aabb5
TY
1185static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1186 struct kvm_memory_slot *slot)
53c07b18 1187{
77d11309 1188 unsigned long idx;
53c07b18 1189
77d11309 1190 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1191 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1192}
1193
018aabb5
TY
1194static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1195 struct kvm_mmu_page *sp)
9b9b1492 1196{
699023e2 1197 struct kvm_memslots *slots;
9b9b1492
TY
1198 struct kvm_memory_slot *slot;
1199
699023e2
PB
1200 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1201 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1202 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1203}
1204
f759e2b4
XG
1205static bool rmap_can_add(struct kvm_vcpu *vcpu)
1206{
1207 struct kvm_mmu_memory_cache *cache;
1208
1209 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1210 return mmu_memory_cache_free_objects(cache);
1211}
1212
53c07b18
XG
1213static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1214{
1215 struct kvm_mmu_page *sp;
018aabb5 1216 struct kvm_rmap_head *rmap_head;
53c07b18 1217
53c07b18
XG
1218 sp = page_header(__pa(spte));
1219 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1220 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1221 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1222}
1223
53c07b18
XG
1224static void rmap_remove(struct kvm *kvm, u64 *spte)
1225{
1226 struct kvm_mmu_page *sp;
1227 gfn_t gfn;
018aabb5 1228 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1229
1230 sp = page_header(__pa(spte));
1231 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5
TY
1232 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1233 pte_list_remove(spte, rmap_head);
53c07b18
XG
1234}
1235
1e3f42f0
TY
1236/*
1237 * Used by the following functions to iterate through the sptes linked by a
1238 * rmap. All fields are private and not assumed to be used outside.
1239 */
1240struct rmap_iterator {
1241 /* private fields */
1242 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1243 int pos; /* index of the sptep */
1244};
1245
1246/*
1247 * Iteration must be started by this function. This should also be used after
1248 * removing/dropping sptes from the rmap link because in such cases the
1249 * information in the itererator may not be valid.
1250 *
1251 * Returns sptep if found, NULL otherwise.
1252 */
018aabb5
TY
1253static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1254 struct rmap_iterator *iter)
1e3f42f0 1255{
77fbbbd2
TY
1256 u64 *sptep;
1257
018aabb5 1258 if (!rmap_head->val)
1e3f42f0
TY
1259 return NULL;
1260
018aabb5 1261 if (!(rmap_head->val & 1)) {
1e3f42f0 1262 iter->desc = NULL;
77fbbbd2
TY
1263 sptep = (u64 *)rmap_head->val;
1264 goto out;
1e3f42f0
TY
1265 }
1266
018aabb5 1267 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1268 iter->pos = 0;
77fbbbd2
TY
1269 sptep = iter->desc->sptes[iter->pos];
1270out:
1271 BUG_ON(!is_shadow_present_pte(*sptep));
1272 return sptep;
1e3f42f0
TY
1273}
1274
1275/*
1276 * Must be used with a valid iterator: e.g. after rmap_get_first().
1277 *
1278 * Returns sptep if found, NULL otherwise.
1279 */
1280static u64 *rmap_get_next(struct rmap_iterator *iter)
1281{
77fbbbd2
TY
1282 u64 *sptep;
1283
1e3f42f0
TY
1284 if (iter->desc) {
1285 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1286 ++iter->pos;
1287 sptep = iter->desc->sptes[iter->pos];
1288 if (sptep)
77fbbbd2 1289 goto out;
1e3f42f0
TY
1290 }
1291
1292 iter->desc = iter->desc->more;
1293
1294 if (iter->desc) {
1295 iter->pos = 0;
1296 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1297 sptep = iter->desc->sptes[iter->pos];
1298 goto out;
1e3f42f0
TY
1299 }
1300 }
1301
1302 return NULL;
77fbbbd2
TY
1303out:
1304 BUG_ON(!is_shadow_present_pte(*sptep));
1305 return sptep;
1e3f42f0
TY
1306}
1307
018aabb5
TY
1308#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1309 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1310 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1311
c3707958 1312static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1313{
1df9f2dc 1314 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1315 rmap_remove(kvm, sptep);
be38d276
AK
1316}
1317
8e22f955
XG
1318
1319static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1320{
1321 if (is_large_pte(*sptep)) {
1322 WARN_ON(page_header(__pa(sptep))->role.level ==
1323 PT_PAGE_TABLE_LEVEL);
1324 drop_spte(kvm, sptep);
1325 --kvm->stat.lpages;
1326 return true;
1327 }
1328
1329 return false;
1330}
1331
1332static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1333{
1334 if (__drop_large_spte(vcpu->kvm, sptep))
1335 kvm_flush_remote_tlbs(vcpu->kvm);
1336}
1337
1338/*
49fde340 1339 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1340 * spte write-protection is caused by protecting shadow page table.
49fde340 1341 *
b4619660 1342 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1343 * protection:
1344 * - for dirty logging, the spte can be set to writable at anytime if
1345 * its dirty bitmap is properly set.
1346 * - for spte protection, the spte can be writable only after unsync-ing
1347 * shadow page.
8e22f955 1348 *
c126d94f 1349 * Return true if tlb need be flushed.
8e22f955 1350 */
c4f138b4 1351static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1352{
1353 u64 spte = *sptep;
1354
49fde340 1355 if (!is_writable_pte(spte) &&
ea4114bc 1356 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1357 return false;
1358
1359 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1360
49fde340
XG
1361 if (pt_protect)
1362 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1363 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1364
c126d94f 1365 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1366}
1367
018aabb5
TY
1368static bool __rmap_write_protect(struct kvm *kvm,
1369 struct kvm_rmap_head *rmap_head,
245c3912 1370 bool pt_protect)
98348e95 1371{
1e3f42f0
TY
1372 u64 *sptep;
1373 struct rmap_iterator iter;
d13bc5b5 1374 bool flush = false;
374cbac0 1375
018aabb5 1376 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1377 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1378
d13bc5b5 1379 return flush;
a0ed4607
TY
1380}
1381
c4f138b4 1382static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1383{
1384 u64 spte = *sptep;
1385
1386 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1387
1388 spte &= ~shadow_dirty_mask;
1389
1390 return mmu_spte_update(sptep, spte);
1391}
1392
018aabb5 1393static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1394{
1395 u64 *sptep;
1396 struct rmap_iterator iter;
1397 bool flush = false;
1398
018aabb5 1399 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1400 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1401
1402 return flush;
1403}
1404
c4f138b4 1405static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1406{
1407 u64 spte = *sptep;
1408
1409 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1410
1411 spte |= shadow_dirty_mask;
1412
1413 return mmu_spte_update(sptep, spte);
1414}
1415
018aabb5 1416static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1417{
1418 u64 *sptep;
1419 struct rmap_iterator iter;
1420 bool flush = false;
1421
018aabb5 1422 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1423 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1424
1425 return flush;
1426}
1427
5dc99b23 1428/**
3b0f1d01 1429 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1430 * @kvm: kvm instance
1431 * @slot: slot to protect
1432 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1433 * @mask: indicates which pages we should protect
1434 *
1435 * Used when we do not need to care about huge page mappings: e.g. during dirty
1436 * logging we do not have any such mappings.
1437 */
3b0f1d01 1438static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1439 struct kvm_memory_slot *slot,
1440 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1441{
018aabb5 1442 struct kvm_rmap_head *rmap_head;
a0ed4607 1443
5dc99b23 1444 while (mask) {
018aabb5
TY
1445 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1446 PT_PAGE_TABLE_LEVEL, slot);
1447 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1448
5dc99b23
TY
1449 /* clear the first set bit */
1450 mask &= mask - 1;
1451 }
374cbac0
AK
1452}
1453
f4b4b180
KH
1454/**
1455 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1456 * @kvm: kvm instance
1457 * @slot: slot to clear D-bit
1458 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1459 * @mask: indicates which pages we should clear D-bit
1460 *
1461 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1462 */
1463void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1464 struct kvm_memory_slot *slot,
1465 gfn_t gfn_offset, unsigned long mask)
1466{
018aabb5 1467 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1468
1469 while (mask) {
018aabb5
TY
1470 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1471 PT_PAGE_TABLE_LEVEL, slot);
1472 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1473
1474 /* clear the first set bit */
1475 mask &= mask - 1;
1476 }
1477}
1478EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1479
3b0f1d01
KH
1480/**
1481 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1482 * PT level pages.
1483 *
1484 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1485 * enable dirty logging for them.
1486 *
1487 * Used when we do not need to care about huge page mappings: e.g. during dirty
1488 * logging we do not have any such mappings.
1489 */
1490void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1491 struct kvm_memory_slot *slot,
1492 gfn_t gfn_offset, unsigned long mask)
1493{
88178fd4
KH
1494 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1495 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1496 mask);
1497 else
1498 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1499}
1500
bab4165e
BD
1501/**
1502 * kvm_arch_write_log_dirty - emulate dirty page logging
1503 * @vcpu: Guest mode vcpu
1504 *
1505 * Emulate arch specific page modification logging for the
1506 * nested hypervisor
1507 */
1508int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1509{
1510 if (kvm_x86_ops->write_log_dirty)
1511 return kvm_x86_ops->write_log_dirty(vcpu);
1512
1513 return 0;
1514}
1515
aeecee2e
XG
1516bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1517 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1518{
018aabb5 1519 struct kvm_rmap_head *rmap_head;
5dc99b23 1520 int i;
2f84569f 1521 bool write_protected = false;
95d4c16c 1522
8a3d08f1 1523 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1524 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1525 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1526 }
1527
1528 return write_protected;
95d4c16c
TY
1529}
1530
aeecee2e
XG
1531static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1532{
1533 struct kvm_memory_slot *slot;
1534
1535 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1536 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1537}
1538
018aabb5 1539static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1540{
1e3f42f0
TY
1541 u64 *sptep;
1542 struct rmap_iterator iter;
6a49f85c 1543 bool flush = false;
e930bffe 1544
018aabb5 1545 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1546 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1547
1548 drop_spte(kvm, sptep);
6a49f85c 1549 flush = true;
e930bffe 1550 }
1e3f42f0 1551
6a49f85c
XG
1552 return flush;
1553}
1554
018aabb5 1555static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1556 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1557 unsigned long data)
1558{
018aabb5 1559 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1560}
1561
018aabb5 1562static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1563 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1564 unsigned long data)
3da0dd43 1565{
1e3f42f0
TY
1566 u64 *sptep;
1567 struct rmap_iterator iter;
3da0dd43 1568 int need_flush = 0;
1e3f42f0 1569 u64 new_spte;
3da0dd43 1570 pte_t *ptep = (pte_t *)data;
ba049e93 1571 kvm_pfn_t new_pfn;
3da0dd43
IE
1572
1573 WARN_ON(pte_huge(*ptep));
1574 new_pfn = pte_pfn(*ptep);
1e3f42f0 1575
0d536790 1576restart:
018aabb5 1577 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1578 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1579 sptep, *sptep, gfn, level);
1e3f42f0 1580
3da0dd43 1581 need_flush = 1;
1e3f42f0 1582
3da0dd43 1583 if (pte_write(*ptep)) {
1e3f42f0 1584 drop_spte(kvm, sptep);
0d536790 1585 goto restart;
3da0dd43 1586 } else {
1e3f42f0 1587 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1588 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1589
1590 new_spte &= ~PT_WRITABLE_MASK;
1591 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1592
1593 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1594
1595 mmu_spte_clear_track_bits(sptep);
1596 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1597 }
1598 }
1e3f42f0 1599
3da0dd43
IE
1600 if (need_flush)
1601 kvm_flush_remote_tlbs(kvm);
1602
1603 return 0;
1604}
1605
6ce1f4e2
XG
1606struct slot_rmap_walk_iterator {
1607 /* input fields. */
1608 struct kvm_memory_slot *slot;
1609 gfn_t start_gfn;
1610 gfn_t end_gfn;
1611 int start_level;
1612 int end_level;
1613
1614 /* output fields. */
1615 gfn_t gfn;
018aabb5 1616 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1617 int level;
1618
1619 /* private field. */
018aabb5 1620 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1621};
1622
1623static void
1624rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1625{
1626 iterator->level = level;
1627 iterator->gfn = iterator->start_gfn;
1628 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1629 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1630 iterator->slot);
1631}
1632
1633static void
1634slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1635 struct kvm_memory_slot *slot, int start_level,
1636 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1637{
1638 iterator->slot = slot;
1639 iterator->start_level = start_level;
1640 iterator->end_level = end_level;
1641 iterator->start_gfn = start_gfn;
1642 iterator->end_gfn = end_gfn;
1643
1644 rmap_walk_init_level(iterator, iterator->start_level);
1645}
1646
1647static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1648{
1649 return !!iterator->rmap;
1650}
1651
1652static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1653{
1654 if (++iterator->rmap <= iterator->end_rmap) {
1655 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1656 return;
1657 }
1658
1659 if (++iterator->level > iterator->end_level) {
1660 iterator->rmap = NULL;
1661 return;
1662 }
1663
1664 rmap_walk_init_level(iterator, iterator->level);
1665}
1666
1667#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1668 _start_gfn, _end_gfn, _iter_) \
1669 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1670 _end_level_, _start_gfn, _end_gfn); \
1671 slot_rmap_walk_okay(_iter_); \
1672 slot_rmap_walk_next(_iter_))
1673
84504ef3
TY
1674static int kvm_handle_hva_range(struct kvm *kvm,
1675 unsigned long start,
1676 unsigned long end,
1677 unsigned long data,
1678 int (*handler)(struct kvm *kvm,
018aabb5 1679 struct kvm_rmap_head *rmap_head,
048212d0 1680 struct kvm_memory_slot *slot,
8a9522d2
ALC
1681 gfn_t gfn,
1682 int level,
84504ef3 1683 unsigned long data))
e930bffe 1684{
bc6678a3 1685 struct kvm_memslots *slots;
be6ba0f0 1686 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1687 struct slot_rmap_walk_iterator iterator;
1688 int ret = 0;
9da0e4d5 1689 int i;
bc6678a3 1690
9da0e4d5
PB
1691 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1692 slots = __kvm_memslots(kvm, i);
1693 kvm_for_each_memslot(memslot, slots) {
1694 unsigned long hva_start, hva_end;
1695 gfn_t gfn_start, gfn_end;
e930bffe 1696
9da0e4d5
PB
1697 hva_start = max(start, memslot->userspace_addr);
1698 hva_end = min(end, memslot->userspace_addr +
1699 (memslot->npages << PAGE_SHIFT));
1700 if (hva_start >= hva_end)
1701 continue;
1702 /*
1703 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1704 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1705 */
1706 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1707 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1708
1709 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1710 PT_MAX_HUGEPAGE_LEVEL,
1711 gfn_start, gfn_end - 1,
1712 &iterator)
1713 ret |= handler(kvm, iterator.rmap, memslot,
1714 iterator.gfn, iterator.level, data);
1715 }
e930bffe
AA
1716 }
1717
f395302e 1718 return ret;
e930bffe
AA
1719}
1720
84504ef3
TY
1721static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1722 unsigned long data,
018aabb5
TY
1723 int (*handler)(struct kvm *kvm,
1724 struct kvm_rmap_head *rmap_head,
048212d0 1725 struct kvm_memory_slot *slot,
8a9522d2 1726 gfn_t gfn, int level,
84504ef3
TY
1727 unsigned long data))
1728{
1729 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1730}
1731
1732int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1733{
3da0dd43
IE
1734 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1735}
1736
b3ae2096
TY
1737int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1738{
1739 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1740}
1741
3da0dd43
IE
1742void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1743{
8a8365c5 1744 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1745}
1746
018aabb5 1747static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1748 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1749 unsigned long data)
e930bffe 1750{
1e3f42f0 1751 u64 *sptep;
79f702a6 1752 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1753 int young = 0;
1754
f160c7b7
JS
1755 for_each_rmap_spte(rmap_head, &iter, sptep)
1756 young |= mmu_spte_age(sptep);
0d536790 1757
8a9522d2 1758 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1759 return young;
1760}
1761
018aabb5 1762static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1763 struct kvm_memory_slot *slot, gfn_t gfn,
1764 int level, unsigned long data)
8ee53820 1765{
1e3f42f0
TY
1766 u64 *sptep;
1767 struct rmap_iterator iter;
8ee53820
AA
1768
1769 /*
f160c7b7
JS
1770 * If there's no access bit in the secondary pte set by the hardware and
1771 * fast access tracking is also not enabled, it's up to gup-fast/gup to
1772 * set the access bit in the primary pte or in the page structure.
8ee53820 1773 */
f160c7b7 1774 if (!shadow_accessed_mask && !shadow_acc_track_mask)
8ee53820
AA
1775 goto out;
1776
83ef6c81
JS
1777 for_each_rmap_spte(rmap_head, &iter, sptep)
1778 if (is_accessed_spte(*sptep))
1779 return 1;
8ee53820 1780out:
83ef6c81 1781 return 0;
8ee53820
AA
1782}
1783
53a27b39
MT
1784#define RMAP_RECYCLE_THRESHOLD 1000
1785
852e3c19 1786static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1787{
018aabb5 1788 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1789 struct kvm_mmu_page *sp;
1790
1791 sp = page_header(__pa(spte));
53a27b39 1792
018aabb5 1793 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1794
018aabb5 1795 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1796 kvm_flush_remote_tlbs(vcpu->kvm);
1797}
1798
57128468 1799int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1800{
57128468
ALC
1801 /*
1802 * In case of absence of EPT Access and Dirty Bits supports,
1803 * emulate the accessed bit for EPT, by checking if this page has
1804 * an EPT mapping, and clearing it if it does. On the next access,
1805 * a new EPT mapping will be established.
1806 * This has some overhead, but not as much as the cost of swapping
1807 * out actively used pages or breaking up actively used hugepages.
1808 */
f160c7b7 1809 if (!shadow_accessed_mask && !shadow_acc_track_mask)
57128468
ALC
1810 return kvm_handle_hva_range(kvm, start, end, 0,
1811 kvm_unmap_rmapp);
57128468
ALC
1812
1813 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1814}
1815
8ee53820
AA
1816int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1817{
1818 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1819}
1820
d6c69ee9 1821#ifdef MMU_DEBUG
47ad8e68 1822static int is_empty_shadow_page(u64 *spt)
6aa8b732 1823{
139bdb2d
AK
1824 u64 *pos;
1825 u64 *end;
1826
47ad8e68 1827 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1828 if (is_shadow_present_pte(*pos)) {
b8688d51 1829 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1830 pos, *pos);
6aa8b732 1831 return 0;
139bdb2d 1832 }
6aa8b732
AK
1833 return 1;
1834}
d6c69ee9 1835#endif
6aa8b732 1836
45221ab6
DH
1837/*
1838 * This value is the sum of all of the kvm instances's
1839 * kvm->arch.n_used_mmu_pages values. We need a global,
1840 * aggregate version in order to make the slab shrinker
1841 * faster
1842 */
1843static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1844{
1845 kvm->arch.n_used_mmu_pages += nr;
1846 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1847}
1848
834be0d8 1849static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1850{
fa4a2c08 1851 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1852 hlist_del(&sp->hash_link);
bd4c86ea
XG
1853 list_del(&sp->link);
1854 free_page((unsigned long)sp->spt);
834be0d8
GN
1855 if (!sp->role.direct)
1856 free_page((unsigned long)sp->gfns);
e8ad9a70 1857 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1858}
1859
cea0f0e7
AK
1860static unsigned kvm_page_table_hashfn(gfn_t gfn)
1861{
114df303 1862 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1863}
1864
714b93da 1865static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1866 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1867{
cea0f0e7
AK
1868 if (!parent_pte)
1869 return;
cea0f0e7 1870
67052b35 1871 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1872}
1873
4db35314 1874static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1875 u64 *parent_pte)
1876{
67052b35 1877 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1878}
1879
bcdd9a93
XG
1880static void drop_parent_pte(struct kvm_mmu_page *sp,
1881 u64 *parent_pte)
1882{
1883 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1884 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1885}
1886
47005792 1887static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1888{
67052b35 1889 struct kvm_mmu_page *sp;
7ddca7e4 1890
80feb89a
TY
1891 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1892 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1893 if (!direct)
80feb89a 1894 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1895 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1896
1897 /*
1898 * The active_mmu_pages list is the FIFO list, do not move the
1899 * page until it is zapped. kvm_zap_obsolete_pages depends on
1900 * this feature. See the comments in kvm_zap_obsolete_pages().
1901 */
67052b35 1902 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1903 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1904 return sp;
ad8cfbe3
MT
1905}
1906
67052b35 1907static void mark_unsync(u64 *spte);
1047df1f 1908static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1909{
74c4e63a
TY
1910 u64 *sptep;
1911 struct rmap_iterator iter;
1912
1913 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1914 mark_unsync(sptep);
1915 }
0074ff63
MT
1916}
1917
67052b35 1918static void mark_unsync(u64 *spte)
0074ff63 1919{
67052b35 1920 struct kvm_mmu_page *sp;
1047df1f 1921 unsigned int index;
0074ff63 1922
67052b35 1923 sp = page_header(__pa(spte));
1047df1f
XG
1924 index = spte - sp->spt;
1925 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1926 return;
1047df1f 1927 if (sp->unsync_children++)
0074ff63 1928 return;
1047df1f 1929 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1930}
1931
e8bc217a 1932static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1933 struct kvm_mmu_page *sp)
e8bc217a 1934{
1f50f1b3 1935 return 0;
e8bc217a
MT
1936}
1937
a7052897
MT
1938static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1939{
1940}
1941
0f53b5b1
XG
1942static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1943 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1944 const void *pte)
0f53b5b1
XG
1945{
1946 WARN_ON(1);
1947}
1948
60c8aec6
MT
1949#define KVM_PAGE_ARRAY_NR 16
1950
1951struct kvm_mmu_pages {
1952 struct mmu_page_and_offset {
1953 struct kvm_mmu_page *sp;
1954 unsigned int idx;
1955 } page[KVM_PAGE_ARRAY_NR];
1956 unsigned int nr;
1957};
1958
cded19f3
HE
1959static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1960 int idx)
4731d4c7 1961{
60c8aec6 1962 int i;
4731d4c7 1963
60c8aec6
MT
1964 if (sp->unsync)
1965 for (i=0; i < pvec->nr; i++)
1966 if (pvec->page[i].sp == sp)
1967 return 0;
1968
1969 pvec->page[pvec->nr].sp = sp;
1970 pvec->page[pvec->nr].idx = idx;
1971 pvec->nr++;
1972 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1973}
1974
fd951457
TY
1975static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1976{
1977 --sp->unsync_children;
1978 WARN_ON((int)sp->unsync_children < 0);
1979 __clear_bit(idx, sp->unsync_child_bitmap);
1980}
1981
60c8aec6
MT
1982static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1983 struct kvm_mmu_pages *pvec)
1984{
1985 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1986
37178b8b 1987 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1988 struct kvm_mmu_page *child;
4731d4c7
MT
1989 u64 ent = sp->spt[i];
1990
fd951457
TY
1991 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1992 clear_unsync_child_bit(sp, i);
1993 continue;
1994 }
7a8f1a74
XG
1995
1996 child = page_header(ent & PT64_BASE_ADDR_MASK);
1997
1998 if (child->unsync_children) {
1999 if (mmu_pages_add(pvec, child, i))
2000 return -ENOSPC;
2001
2002 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2003 if (!ret) {
2004 clear_unsync_child_bit(sp, i);
2005 continue;
2006 } else if (ret > 0) {
7a8f1a74 2007 nr_unsync_leaf += ret;
fd951457 2008 } else
7a8f1a74
XG
2009 return ret;
2010 } else if (child->unsync) {
2011 nr_unsync_leaf++;
2012 if (mmu_pages_add(pvec, child, i))
2013 return -ENOSPC;
2014 } else
fd951457 2015 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2016 }
2017
60c8aec6
MT
2018 return nr_unsync_leaf;
2019}
2020
e23d3fef
XG
2021#define INVALID_INDEX (-1)
2022
60c8aec6
MT
2023static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2024 struct kvm_mmu_pages *pvec)
2025{
0a47cd85 2026 pvec->nr = 0;
60c8aec6
MT
2027 if (!sp->unsync_children)
2028 return 0;
2029
e23d3fef 2030 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2031 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2032}
2033
4731d4c7
MT
2034static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2035{
2036 WARN_ON(!sp->unsync);
5e1b3ddb 2037 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2038 sp->unsync = 0;
2039 --kvm->stat.mmu_unsync;
2040}
2041
7775834a
XG
2042static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2043 struct list_head *invalid_list);
2044static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2045 struct list_head *invalid_list);
4731d4c7 2046
f34d251d
XG
2047/*
2048 * NOTE: we should pay more attention on the zapped-obsolete page
2049 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2050 * since it has been deleted from active_mmu_pages but still can be found
2051 * at hast list.
2052 *
f3414bc7 2053 * for_each_valid_sp() has skipped that kind of pages.
f34d251d 2054 */
f3414bc7 2055#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2056 hlist_for_each_entry(_sp, \
2057 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
f3414bc7
DM
2058 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2059 } else
1044b030
TY
2060
2061#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2062 for_each_valid_sp(_kvm, _sp, _gfn) \
2063 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2064
f918b443 2065/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2066static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2067 struct list_head *invalid_list)
4731d4c7 2068{
5b7e0102 2069 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 2070 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2071 return false;
4731d4c7
MT
2072 }
2073
1f50f1b3 2074 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
d98ba053 2075 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2076 return false;
4731d4c7
MT
2077 }
2078
1f50f1b3 2079 return true;
4731d4c7
MT
2080}
2081
35a70510
PB
2082static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2083 struct list_head *invalid_list,
2084 bool remote_flush, bool local_flush)
1d9dc7e0 2085{
35a70510
PB
2086 if (!list_empty(invalid_list)) {
2087 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2088 return;
2089 }
d98ba053 2090
35a70510
PB
2091 if (remote_flush)
2092 kvm_flush_remote_tlbs(vcpu->kvm);
2093 else if (local_flush)
2094 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2095}
2096
e37fa785
XG
2097#ifdef CONFIG_KVM_MMU_AUDIT
2098#include "mmu_audit.c"
2099#else
2100static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2101static void mmu_audit_disable(void) { }
2102#endif
2103
46971a2f
XG
2104static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2105{
2106 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2107}
2108
1f50f1b3 2109static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2110 struct list_head *invalid_list)
1d9dc7e0 2111{
9a43c5d9
PB
2112 kvm_unlink_unsync_page(vcpu->kvm, sp);
2113 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2114}
2115
9f1a122f 2116/* @gfn should be write-protected at the call site */
2a74003a
PB
2117static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2118 struct list_head *invalid_list)
9f1a122f 2119{
9f1a122f 2120 struct kvm_mmu_page *s;
2a74003a 2121 bool ret = false;
9f1a122f 2122
b67bfe0d 2123 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2124 if (!s->unsync)
9f1a122f
XG
2125 continue;
2126
2127 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2128 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2129 }
2130
2a74003a 2131 return ret;
9f1a122f
XG
2132}
2133
60c8aec6 2134struct mmu_page_path {
0a47cd85
PB
2135 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
2136 unsigned int idx[PT64_ROOT_LEVEL];
4731d4c7
MT
2137};
2138
60c8aec6 2139#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2140 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2141 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2142 i = mmu_pages_next(&pvec, &parents, i))
2143
cded19f3
HE
2144static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2145 struct mmu_page_path *parents,
2146 int i)
60c8aec6
MT
2147{
2148 int n;
2149
2150 for (n = i+1; n < pvec->nr; n++) {
2151 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2152 unsigned idx = pvec->page[n].idx;
2153 int level = sp->role.level;
60c8aec6 2154
0a47cd85
PB
2155 parents->idx[level-1] = idx;
2156 if (level == PT_PAGE_TABLE_LEVEL)
2157 break;
60c8aec6 2158
0a47cd85 2159 parents->parent[level-2] = sp;
60c8aec6
MT
2160 }
2161
2162 return n;
2163}
2164
0a47cd85
PB
2165static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2166 struct mmu_page_path *parents)
2167{
2168 struct kvm_mmu_page *sp;
2169 int level;
2170
2171 if (pvec->nr == 0)
2172 return 0;
2173
e23d3fef
XG
2174 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2175
0a47cd85
PB
2176 sp = pvec->page[0].sp;
2177 level = sp->role.level;
2178 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2179
2180 parents->parent[level-2] = sp;
2181
2182 /* Also set up a sentinel. Further entries in pvec are all
2183 * children of sp, so this element is never overwritten.
2184 */
2185 parents->parent[level-1] = NULL;
2186 return mmu_pages_next(pvec, parents, 0);
2187}
2188
cded19f3 2189static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2190{
60c8aec6
MT
2191 struct kvm_mmu_page *sp;
2192 unsigned int level = 0;
2193
2194 do {
2195 unsigned int idx = parents->idx[level];
60c8aec6
MT
2196 sp = parents->parent[level];
2197 if (!sp)
2198 return;
2199
e23d3fef 2200 WARN_ON(idx == INVALID_INDEX);
fd951457 2201 clear_unsync_child_bit(sp, idx);
60c8aec6 2202 level++;
0a47cd85 2203 } while (!sp->unsync_children);
60c8aec6 2204}
4731d4c7 2205
60c8aec6
MT
2206static void mmu_sync_children(struct kvm_vcpu *vcpu,
2207 struct kvm_mmu_page *parent)
2208{
2209 int i;
2210 struct kvm_mmu_page *sp;
2211 struct mmu_page_path parents;
2212 struct kvm_mmu_pages pages;
d98ba053 2213 LIST_HEAD(invalid_list);
50c9e6f3 2214 bool flush = false;
60c8aec6 2215
60c8aec6 2216 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2217 bool protected = false;
b1a36821
MT
2218
2219 for_each_sp(pages, sp, parents, i)
54bf36aa 2220 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2221
50c9e6f3 2222 if (protected) {
b1a36821 2223 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2224 flush = false;
2225 }
b1a36821 2226
60c8aec6 2227 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2228 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2229 mmu_pages_clear_parents(&parents);
2230 }
50c9e6f3
PB
2231 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2232 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2233 cond_resched_lock(&vcpu->kvm->mmu_lock);
2234 flush = false;
2235 }
60c8aec6 2236 }
50c9e6f3
PB
2237
2238 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2239}
2240
a30f47cb
XG
2241static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2242{
e5691a81 2243 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2244}
2245
2246static void clear_sp_write_flooding_count(u64 *spte)
2247{
2248 struct kvm_mmu_page *sp = page_header(__pa(spte));
2249
2250 __clear_sp_write_flooding_count(sp);
2251}
2252
cea0f0e7
AK
2253static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2254 gfn_t gfn,
2255 gva_t gaddr,
2256 unsigned level,
f6e2c02b 2257 int direct,
bb11c6c9 2258 unsigned access)
cea0f0e7
AK
2259{
2260 union kvm_mmu_page_role role;
cea0f0e7 2261 unsigned quadrant;
9f1a122f 2262 struct kvm_mmu_page *sp;
9f1a122f 2263 bool need_sync = false;
2a74003a 2264 bool flush = false;
f3414bc7 2265 int collisions = 0;
2a74003a 2266 LIST_HEAD(invalid_list);
cea0f0e7 2267
a770f6f2 2268 role = vcpu->arch.mmu.base_role;
cea0f0e7 2269 role.level = level;
f6e2c02b 2270 role.direct = direct;
84b0c8c6 2271 if (role.direct)
5b7e0102 2272 role.cr4_pae = 0;
41074d07 2273 role.access = access;
c5a78f2b
JR
2274 if (!vcpu->arch.mmu.direct_map
2275 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2276 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2277 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2278 role.quadrant = quadrant;
2279 }
f3414bc7
DM
2280 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2281 if (sp->gfn != gfn) {
2282 collisions++;
2283 continue;
2284 }
2285
7ae680eb
XG
2286 if (!need_sync && sp->unsync)
2287 need_sync = true;
4731d4c7 2288
7ae680eb
XG
2289 if (sp->role.word != role.word)
2290 continue;
4731d4c7 2291
2a74003a
PB
2292 if (sp->unsync) {
2293 /* The page is good, but __kvm_sync_page might still end
2294 * up zapping it. If so, break in order to rebuild it.
2295 */
2296 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2297 break;
2298
2299 WARN_ON(!list_empty(&invalid_list));
2300 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2301 }
e02aa901 2302
98bba238 2303 if (sp->unsync_children)
a8eeb04a 2304 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2305
a30f47cb 2306 __clear_sp_write_flooding_count(sp);
7ae680eb 2307 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2308 goto out;
7ae680eb 2309 }
47005792 2310
dfc5aa00 2311 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2312
2313 sp = kvm_mmu_alloc_page(vcpu, direct);
2314
4db35314
AK
2315 sp->gfn = gfn;
2316 sp->role = role;
7ae680eb
XG
2317 hlist_add_head(&sp->hash_link,
2318 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2319 if (!direct) {
56ca57f9
XG
2320 /*
2321 * we should do write protection before syncing pages
2322 * otherwise the content of the synced shadow page may
2323 * be inconsistent with guest page table.
2324 */
2325 account_shadowed(vcpu->kvm, sp);
2326 if (level == PT_PAGE_TABLE_LEVEL &&
2327 rmap_write_protect(vcpu, gfn))
b1a36821 2328 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f 2329
9f1a122f 2330 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2331 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2332 }
5304b8d3 2333 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2334 clear_page(sp->spt);
f691fe1d 2335 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2336
2337 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2338out:
2339 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2340 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2341 return sp;
cea0f0e7
AK
2342}
2343
2d11123a
AK
2344static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2345 struct kvm_vcpu *vcpu, u64 addr)
2346{
2347 iterator->addr = addr;
2348 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2349 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2350
2351 if (iterator->level == PT64_ROOT_LEVEL &&
2352 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2353 !vcpu->arch.mmu.direct_map)
2354 --iterator->level;
2355
2d11123a
AK
2356 if (iterator->level == PT32E_ROOT_LEVEL) {
2357 iterator->shadow_addr
2358 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2359 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2360 --iterator->level;
2361 if (!iterator->shadow_addr)
2362 iterator->level = 0;
2363 }
2364}
2365
2366static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2367{
2368 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2369 return false;
4d88954d 2370
2d11123a
AK
2371 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2372 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2373 return true;
2374}
2375
c2a2ac2b
XG
2376static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2377 u64 spte)
2d11123a 2378{
c2a2ac2b 2379 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2380 iterator->level = 0;
2381 return;
2382 }
2383
c2a2ac2b 2384 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2385 --iterator->level;
2386}
2387
c2a2ac2b
XG
2388static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2389{
2390 return __shadow_walk_next(iterator, *iterator->sptep);
2391}
2392
98bba238
TY
2393static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2394 struct kvm_mmu_page *sp)
32ef26a3
AK
2395{
2396 u64 spte;
2397
ffb128c8 2398 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2399
ffb128c8 2400 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
0e3d0648 2401 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
24db2734 2402
1df9f2dc 2403 mmu_spte_set(sptep, spte);
98bba238
TY
2404
2405 mmu_page_add_parent_pte(vcpu, sp, sptep);
2406
2407 if (sp->unsync_children || sp->unsync)
2408 mark_unsync(sptep);
32ef26a3
AK
2409}
2410
a357bd22
AK
2411static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2412 unsigned direct_access)
2413{
2414 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2415 struct kvm_mmu_page *child;
2416
2417 /*
2418 * For the direct sp, if the guest pte's dirty bit
2419 * changed form clean to dirty, it will corrupt the
2420 * sp's access: allow writable in the read-only sp,
2421 * so we should update the spte at this point to get
2422 * a new sp with the correct access.
2423 */
2424 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2425 if (child->role.access == direct_access)
2426 return;
2427
bcdd9a93 2428 drop_parent_pte(child, sptep);
a357bd22
AK
2429 kvm_flush_remote_tlbs(vcpu->kvm);
2430 }
2431}
2432
505aef8f 2433static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2434 u64 *spte)
2435{
2436 u64 pte;
2437 struct kvm_mmu_page *child;
2438
2439 pte = *spte;
2440 if (is_shadow_present_pte(pte)) {
505aef8f 2441 if (is_last_spte(pte, sp->role.level)) {
c3707958 2442 drop_spte(kvm, spte);
505aef8f
XG
2443 if (is_large_pte(pte))
2444 --kvm->stat.lpages;
2445 } else {
38e3b2b2 2446 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2447 drop_parent_pte(child, spte);
38e3b2b2 2448 }
505aef8f
XG
2449 return true;
2450 }
2451
2452 if (is_mmio_spte(pte))
ce88decf 2453 mmu_spte_clear_no_track(spte);
c3707958 2454
505aef8f 2455 return false;
38e3b2b2
XG
2456}
2457
90cb0529 2458static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2459 struct kvm_mmu_page *sp)
a436036b 2460{
697fe2e2 2461 unsigned i;
697fe2e2 2462
38e3b2b2
XG
2463 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2464 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2465}
2466
31aa2b44 2467static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2468{
1e3f42f0
TY
2469 u64 *sptep;
2470 struct rmap_iterator iter;
a436036b 2471
018aabb5 2472 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2473 drop_parent_pte(sp, sptep);
31aa2b44
AK
2474}
2475
60c8aec6 2476static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2477 struct kvm_mmu_page *parent,
2478 struct list_head *invalid_list)
4731d4c7 2479{
60c8aec6
MT
2480 int i, zapped = 0;
2481 struct mmu_page_path parents;
2482 struct kvm_mmu_pages pages;
4731d4c7 2483
60c8aec6 2484 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2485 return 0;
60c8aec6 2486
60c8aec6
MT
2487 while (mmu_unsync_walk(parent, &pages)) {
2488 struct kvm_mmu_page *sp;
2489
2490 for_each_sp(pages, sp, parents, i) {
7775834a 2491 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2492 mmu_pages_clear_parents(&parents);
77662e00 2493 zapped++;
60c8aec6 2494 }
60c8aec6
MT
2495 }
2496
2497 return zapped;
4731d4c7
MT
2498}
2499
7775834a
XG
2500static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2501 struct list_head *invalid_list)
31aa2b44 2502{
4731d4c7 2503 int ret;
f691fe1d 2504
7775834a 2505 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2506 ++kvm->stat.mmu_shadow_zapped;
7775834a 2507 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2508 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2509 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2510
f6e2c02b 2511 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2512 unaccount_shadowed(kvm, sp);
5304b8d3 2513
4731d4c7
MT
2514 if (sp->unsync)
2515 kvm_unlink_unsync_page(kvm, sp);
4db35314 2516 if (!sp->root_count) {
54a4f023
GJ
2517 /* Count self */
2518 ret++;
7775834a 2519 list_move(&sp->link, invalid_list);
aa6bd187 2520 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2521 } else {
5b5c6a5a 2522 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2523
2524 /*
2525 * The obsolete pages can not be used on any vcpus.
2526 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2527 */
2528 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2529 kvm_reload_remote_mmus(kvm);
2e53d63a 2530 }
7775834a
XG
2531
2532 sp->role.invalid = 1;
4731d4c7 2533 return ret;
a436036b
AK
2534}
2535
7775834a
XG
2536static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2537 struct list_head *invalid_list)
2538{
945315b9 2539 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2540
2541 if (list_empty(invalid_list))
2542 return;
2543
c142786c 2544 /*
9753f529
LT
2545 * We need to make sure everyone sees our modifications to
2546 * the page tables and see changes to vcpu->mode here. The barrier
2547 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2548 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2549 *
2550 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2551 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2552 */
2553 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2554
945315b9 2555 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2556 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2557 kvm_mmu_free_page(sp);
945315b9 2558 }
7775834a
XG
2559}
2560
5da59607
TY
2561static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2562 struct list_head *invalid_list)
2563{
2564 struct kvm_mmu_page *sp;
2565
2566 if (list_empty(&kvm->arch.active_mmu_pages))
2567 return false;
2568
d74c0e6b
GT
2569 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2570 struct kvm_mmu_page, link);
5da59607
TY
2571 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2572
2573 return true;
2574}
2575
82ce2c96
IE
2576/*
2577 * Changing the number of mmu pages allocated to the vm
49d5ca26 2578 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2579 */
49d5ca26 2580void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2581{
d98ba053 2582 LIST_HEAD(invalid_list);
82ce2c96 2583
b34cb590
TY
2584 spin_lock(&kvm->mmu_lock);
2585
49d5ca26 2586 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2587 /* Need to free some mmu pages to achieve the goal. */
2588 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2589 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2590 break;
82ce2c96 2591
aa6bd187 2592 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2593 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2594 }
82ce2c96 2595
49d5ca26 2596 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2597
2598 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2599}
2600
1cb3f3ae 2601int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2602{
4db35314 2603 struct kvm_mmu_page *sp;
d98ba053 2604 LIST_HEAD(invalid_list);
a436036b
AK
2605 int r;
2606
9ad17b10 2607 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2608 r = 0;
1cb3f3ae 2609 spin_lock(&kvm->mmu_lock);
b67bfe0d 2610 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2611 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2612 sp->role.word);
2613 r = 1;
f41d335a 2614 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2615 }
d98ba053 2616 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2617 spin_unlock(&kvm->mmu_lock);
2618
a436036b 2619 return r;
cea0f0e7 2620}
1cb3f3ae 2621EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2622
5c520e90 2623static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2624{
2625 trace_kvm_mmu_unsync_page(sp);
2626 ++vcpu->kvm->stat.mmu_unsync;
2627 sp->unsync = 1;
2628
2629 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2630}
2631
3d0c27ad
XG
2632static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2633 bool can_unsync)
4731d4c7 2634{
5c520e90 2635 struct kvm_mmu_page *sp;
4731d4c7 2636
3d0c27ad
XG
2637 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2638 return true;
9cf5cf5a 2639
5c520e90 2640 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2641 if (!can_unsync)
3d0c27ad 2642 return true;
36a2e677 2643
5c520e90
XG
2644 if (sp->unsync)
2645 continue;
9cf5cf5a 2646
5c520e90
XG
2647 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2648 kvm_unsync_page(vcpu, sp);
4731d4c7 2649 }
3d0c27ad
XG
2650
2651 return false;
4731d4c7
MT
2652}
2653
ba049e93 2654static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2655{
2656 if (pfn_valid(pfn))
2657 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2658
2659 return true;
2660}
2661
d555c333 2662static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2663 unsigned pte_access, int level,
ba049e93 2664 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2665 bool can_unsync, bool host_writable)
1c4f1fd6 2666{
ffb128c8 2667 u64 spte = 0;
1e73f9dd 2668 int ret = 0;
64d4d521 2669
54bf36aa 2670 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2671 return 0;
2672
d95c5568
BD
2673 /*
2674 * For the EPT case, shadow_present_mask is 0 if hardware
2675 * supports exec-only page table entries. In that case,
2676 * ACC_USER_MASK and shadow_user_mask are used to represent
2677 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2678 */
ffb128c8 2679 spte |= shadow_present_mask;
947da538 2680 if (!speculative)
3201b5d9 2681 spte |= shadow_accessed_mask;
640d9b0d 2682
7b52345e
SY
2683 if (pte_access & ACC_EXEC_MASK)
2684 spte |= shadow_x_mask;
2685 else
2686 spte |= shadow_nx_mask;
49fde340 2687
1c4f1fd6 2688 if (pte_access & ACC_USER_MASK)
7b52345e 2689 spte |= shadow_user_mask;
49fde340 2690
852e3c19 2691 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2692 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2693 if (tdp_enabled)
4b12f0de 2694 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2695 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2696
9bdbba13 2697 if (host_writable)
1403283a 2698 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2699 else
2700 pte_access &= ~ACC_WRITE_MASK;
1403283a 2701
35149e21 2702 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2703
c2288505 2704 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2705
c2193463 2706 /*
7751babd
XG
2707 * Other vcpu creates new sp in the window between
2708 * mapping_level() and acquiring mmu-lock. We can
2709 * allow guest to retry the access, the mapping can
2710 * be fixed if guest refault.
c2193463 2711 */
852e3c19 2712 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2713 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2714 goto done;
38187c83 2715
49fde340 2716 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2717
ecc5589f
MT
2718 /*
2719 * Optimization: for pte sync, if spte was writable the hash
2720 * lookup is unnecessary (and expensive). Write protection
2721 * is responsibility of mmu_get_page / kvm_sync_page.
2722 * Same reasoning can be applied to dirty page accounting.
2723 */
8dae4445 2724 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2725 goto set_pte;
2726
4731d4c7 2727 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2728 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2729 __func__, gfn);
1e73f9dd 2730 ret = 1;
1c4f1fd6 2731 pte_access &= ~ACC_WRITE_MASK;
49fde340 2732 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2733 }
2734 }
2735
9b51a630 2736 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2737 kvm_vcpu_mark_page_dirty(vcpu, gfn);
9b51a630
KH
2738 spte |= shadow_dirty_mask;
2739 }
1c4f1fd6 2740
f160c7b7
JS
2741 if (speculative)
2742 spte = mark_spte_for_access_track(spte);
2743
38187c83 2744set_pte:
6e7d0354 2745 if (mmu_spte_update(sptep, spte))
b330aa0c 2746 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2747done:
1e73f9dd
MT
2748 return ret;
2749}
2750
029499b4 2751static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
ba049e93 2752 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
029499b4 2753 bool speculative, bool host_writable)
1e73f9dd
MT
2754{
2755 int was_rmapped = 0;
53a27b39 2756 int rmap_count;
029499b4 2757 bool emulate = false;
1e73f9dd 2758
f7616203
XG
2759 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2760 *sptep, write_fault, gfn);
1e73f9dd 2761
afd28fe1 2762 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2763 /*
2764 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2765 * the parent of the now unreachable PTE.
2766 */
852e3c19
JR
2767 if (level > PT_PAGE_TABLE_LEVEL &&
2768 !is_large_pte(*sptep)) {
1e73f9dd 2769 struct kvm_mmu_page *child;
d555c333 2770 u64 pte = *sptep;
1e73f9dd
MT
2771
2772 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2773 drop_parent_pte(child, sptep);
3be2264b 2774 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2775 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2776 pgprintk("hfn old %llx new %llx\n",
d555c333 2777 spte_to_pfn(*sptep), pfn);
c3707958 2778 drop_spte(vcpu->kvm, sptep);
91546356 2779 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2780 } else
2781 was_rmapped = 1;
1e73f9dd 2782 }
852e3c19 2783
c2288505
XG
2784 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2785 true, host_writable)) {
1e73f9dd 2786 if (write_fault)
029499b4 2787 emulate = true;
77c3913b 2788 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2789 }
1e73f9dd 2790
029499b4
TY
2791 if (unlikely(is_mmio_spte(*sptep)))
2792 emulate = true;
ce88decf 2793
d555c333 2794 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2795 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2796 is_large_pte(*sptep)? "2MB" : "4kB",
f160c7b7 2797 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
a205bc19 2798 *sptep, sptep);
d555c333 2799 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2800 ++vcpu->kvm->stat.lpages;
2801
ffb61bb3 2802 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2803 if (!was_rmapped) {
2804 rmap_count = rmap_add(vcpu, sptep, gfn);
2805 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2806 rmap_recycle(vcpu, sptep, gfn);
2807 }
1c4f1fd6 2808 }
cb9aaa30 2809
f3ac1a4b 2810 kvm_release_pfn_clean(pfn);
029499b4
TY
2811
2812 return emulate;
1c4f1fd6
AK
2813}
2814
ba049e93 2815static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2816 bool no_dirty_log)
2817{
2818 struct kvm_memory_slot *slot;
957ed9ef 2819
5d163b1c 2820 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2821 if (!slot)
6c8ee57b 2822 return KVM_PFN_ERR_FAULT;
957ed9ef 2823
037d92dc 2824 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2825}
2826
2827static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2828 struct kvm_mmu_page *sp,
2829 u64 *start, u64 *end)
2830{
2831 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2832 struct kvm_memory_slot *slot;
957ed9ef
XG
2833 unsigned access = sp->role.access;
2834 int i, ret;
2835 gfn_t gfn;
2836
2837 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2838 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2839 if (!slot)
957ed9ef
XG
2840 return -1;
2841
d9ef13c2 2842 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2843 if (ret <= 0)
2844 return -1;
2845
2846 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
2847 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2848 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
2849
2850 return 0;
2851}
2852
2853static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2854 struct kvm_mmu_page *sp, u64 *sptep)
2855{
2856 u64 *spte, *start = NULL;
2857 int i;
2858
2859 WARN_ON(!sp->role.direct);
2860
2861 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2862 spte = sp->spt + i;
2863
2864 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2865 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2866 if (!start)
2867 continue;
2868 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2869 break;
2870 start = NULL;
2871 } else if (!start)
2872 start = spte;
2873 }
2874}
2875
2876static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2877{
2878 struct kvm_mmu_page *sp;
2879
2880 /*
2881 * Since it's no accessed bit on EPT, it's no way to
2882 * distinguish between actually accessed translations
2883 * and prefetched, so disable pte prefetch if EPT is
2884 * enabled.
2885 */
2886 if (!shadow_accessed_mask)
2887 return;
2888
2889 sp = page_header(__pa(sptep));
2890 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2891 return;
2892
2893 __direct_pte_prefetch(vcpu, sp, sptep);
2894}
2895
7ee0e5b2 2896static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 2897 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 2898{
9f652d21 2899 struct kvm_shadow_walk_iterator iterator;
140754bc 2900 struct kvm_mmu_page *sp;
b90a0e6c 2901 int emulate = 0;
140754bc 2902 gfn_t pseudo_gfn;
6aa8b732 2903
989c6b34
MT
2904 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2905 return 0;
2906
9f652d21 2907 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2908 if (iterator.level == level) {
029499b4
TY
2909 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2910 write, level, gfn, pfn, prefault,
2911 map_writable);
957ed9ef 2912 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2913 ++vcpu->stat.pf_fixed;
2914 break;
6aa8b732
AK
2915 }
2916
404381c5 2917 drop_large_spte(vcpu, iterator.sptep);
c3707958 2918 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2919 u64 base_addr = iterator.addr;
2920
2921 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2922 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 2923 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 2924 iterator.level - 1, 1, ACC_ALL);
140754bc 2925
98bba238 2926 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
2927 }
2928 }
b90a0e6c 2929 return emulate;
6aa8b732
AK
2930}
2931
77db5cbd 2932static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2933{
77db5cbd
HY
2934 siginfo_t info;
2935
2936 info.si_signo = SIGBUS;
2937 info.si_errno = 0;
2938 info.si_code = BUS_MCEERR_AR;
2939 info.si_addr = (void __user *)address;
2940 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2941
77db5cbd 2942 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2943}
2944
ba049e93 2945static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2946{
4d8b81ab
XG
2947 /*
2948 * Do not cache the mmio info caused by writing the readonly gfn
2949 * into the spte otherwise read access on readonly gfn also can
2950 * caused mmio page fault and treat it as mmio access.
2951 * Return 1 to tell kvm to emulate it.
2952 */
2953 if (pfn == KVM_PFN_ERR_RO_FAULT)
2954 return 1;
2955
e6c1502b 2956 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2957 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
bf998156 2958 return 0;
d7c55201 2959 }
edba23e5 2960
d7c55201 2961 return -EFAULT;
bf998156
HY
2962}
2963
936a5fe6 2964static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
2965 gfn_t *gfnp, kvm_pfn_t *pfnp,
2966 int *levelp)
936a5fe6 2967{
ba049e93 2968 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
2969 gfn_t gfn = *gfnp;
2970 int level = *levelp;
2971
2972 /*
2973 * Check if it's a transparent hugepage. If this would be an
2974 * hugetlbfs page, level wouldn't be set to
2975 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2976 * here.
2977 */
bf4bea8e 2978 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6 2979 level == PT_PAGE_TABLE_LEVEL &&
127393fb 2980 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 2981 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
2982 unsigned long mask;
2983 /*
2984 * mmu_notifier_retry was successful and we hold the
2985 * mmu_lock here, so the pmd can't become splitting
2986 * from under us, and in turn
2987 * __split_huge_page_refcount() can't run from under
2988 * us and we can safely transfer the refcount from
2989 * PG_tail to PG_head as we switch the pfn to tail to
2990 * head.
2991 */
2992 *levelp = level = PT_DIRECTORY_LEVEL;
2993 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2994 VM_BUG_ON((gfn & mask) != (pfn & mask));
2995 if (pfn & mask) {
2996 gfn &= ~mask;
2997 *gfnp = gfn;
2998 kvm_release_pfn_clean(pfn);
2999 pfn &= ~mask;
c3586667 3000 kvm_get_pfn(pfn);
936a5fe6
AA
3001 *pfnp = pfn;
3002 }
3003 }
3004}
3005
d7c55201 3006static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 3007 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 3008{
d7c55201 3009 /* The pfn is invalid, report the error! */
81c52c56 3010 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3011 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3012 return true;
d7c55201
XG
3013 }
3014
ce88decf 3015 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 3016 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 3017
798e88b3 3018 return false;
d7c55201
XG
3019}
3020
e5552fd2 3021static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3022{
1c118b82
XG
3023 /*
3024 * Do not fix the mmio spte with invalid generation number which
3025 * need to be updated by slow page fault path.
3026 */
3027 if (unlikely(error_code & PFERR_RSVD_MASK))
3028 return false;
3029
f160c7b7
JS
3030 /* See if the page fault is due to an NX violation */
3031 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3032 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3033 return false;
3034
c7ba5b48 3035 /*
f160c7b7
JS
3036 * #PF can be fast if:
3037 * 1. The shadow page table entry is not present, which could mean that
3038 * the fault is potentially caused by access tracking (if enabled).
3039 * 2. The shadow page table entry is present and the fault
3040 * is caused by write-protect, that means we just need change the W
3041 * bit of the spte which can be done out of mmu-lock.
3042 *
3043 * However, if access tracking is disabled we know that a non-present
3044 * page must be a genuine page fault where we have to create a new SPTE.
3045 * So, if access tracking is disabled, we return true only for write
3046 * accesses to a present page.
c7ba5b48 3047 */
c7ba5b48 3048
f160c7b7
JS
3049 return shadow_acc_track_mask != 0 ||
3050 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3051 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3052}
3053
97dceba2
JS
3054/*
3055 * Returns true if the SPTE was fixed successfully. Otherwise,
3056 * someone else modified the SPTE from its original value.
3057 */
c7ba5b48 3058static bool
92a476cb 3059fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3060 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3061{
c7ba5b48
XG
3062 gfn_t gfn;
3063
3064 WARN_ON(!sp->role.direct);
3065
9b51a630
KH
3066 /*
3067 * Theoretically we could also set dirty bit (and flush TLB) here in
3068 * order to eliminate unnecessary PML logging. See comments in
3069 * set_spte. But fast_page_fault is very unlikely to happen with PML
3070 * enabled, so we do not do this. This might result in the same GPA
3071 * to be logged in PML buffer again when the write really happens, and
3072 * eventually to be called by mark_page_dirty twice. But it's also no
3073 * harm. This also avoids the TLB flush needed after setting dirty bit
3074 * so non-PML cases won't be impacted.
3075 *
3076 * Compare with set_spte where instead shadow_dirty_mask is set.
3077 */
f160c7b7 3078 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3079 return false;
3080
d3e328f2 3081 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3082 /*
3083 * The gfn of direct spte is stable since it is
3084 * calculated by sp->gfn.
3085 */
3086 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3087 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3088 }
c7ba5b48
XG
3089
3090 return true;
3091}
3092
d3e328f2
JS
3093static bool is_access_allowed(u32 fault_err_code, u64 spte)
3094{
3095 if (fault_err_code & PFERR_FETCH_MASK)
3096 return is_executable_pte(spte);
3097
3098 if (fault_err_code & PFERR_WRITE_MASK)
3099 return is_writable_pte(spte);
3100
3101 /* Fault was on Read access */
3102 return spte & PT_PRESENT_MASK;
3103}
3104
c7ba5b48
XG
3105/*
3106 * Return value:
3107 * - true: let the vcpu to access on the same address again.
3108 * - false: let the real page fault path to fix it.
3109 */
3110static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3111 u32 error_code)
3112{
3113 struct kvm_shadow_walk_iterator iterator;
92a476cb 3114 struct kvm_mmu_page *sp;
97dceba2 3115 bool fault_handled = false;
c7ba5b48 3116 u64 spte = 0ull;
97dceba2 3117 uint retry_count = 0;
c7ba5b48 3118
37f6a4e2
MT
3119 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3120 return false;
3121
e5552fd2 3122 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3123 return false;
3124
3125 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3126
97dceba2 3127 do {
d3e328f2 3128 u64 new_spte;
c7ba5b48 3129
d162f30a
JS
3130 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3131 if (!is_shadow_present_pte(spte) ||
3132 iterator.level < level)
3133 break;
3134
97dceba2
JS
3135 sp = page_header(__pa(iterator.sptep));
3136 if (!is_last_spte(spte, sp->role.level))
3137 break;
c7ba5b48 3138
97dceba2 3139 /*
f160c7b7
JS
3140 * Check whether the memory access that caused the fault would
3141 * still cause it if it were to be performed right now. If not,
3142 * then this is a spurious fault caused by TLB lazily flushed,
3143 * or some other CPU has already fixed the PTE after the
3144 * current CPU took the fault.
97dceba2
JS
3145 *
3146 * Need not check the access of upper level table entries since
3147 * they are always ACC_ALL.
3148 */
d3e328f2
JS
3149 if (is_access_allowed(error_code, spte)) {
3150 fault_handled = true;
3151 break;
3152 }
f160c7b7 3153
d3e328f2
JS
3154 new_spte = spte;
3155
3156 if (is_access_track_spte(spte))
3157 new_spte = restore_acc_track_spte(new_spte);
3158
3159 /*
3160 * Currently, to simplify the code, write-protection can
3161 * be removed in the fast path only if the SPTE was
3162 * write-protected for dirty-logging or access tracking.
3163 */
3164 if ((error_code & PFERR_WRITE_MASK) &&
3165 spte_can_locklessly_be_made_writable(spte))
3166 {
3167 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3168
3169 /*
d3e328f2
JS
3170 * Do not fix write-permission on the large spte. Since
3171 * we only dirty the first page into the dirty-bitmap in
3172 * fast_pf_fix_direct_spte(), other pages are missed
3173 * if its slot has dirty logging enabled.
3174 *
3175 * Instead, we let the slow page fault path create a
3176 * normal spte to fix the access.
3177 *
3178 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3179 */
d3e328f2 3180 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3181 break;
97dceba2 3182 }
c7ba5b48 3183
f160c7b7 3184 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3185 if (new_spte == spte ||
3186 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3187 break;
3188
3189 /*
3190 * Currently, fast page fault only works for direct mapping
3191 * since the gfn is not stable for indirect shadow page. See
3192 * Documentation/virtual/kvm/locking.txt to get more detail.
3193 */
3194 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3195 iterator.sptep, spte,
d3e328f2 3196 new_spte);
97dceba2
JS
3197 if (fault_handled)
3198 break;
3199
3200 if (++retry_count > 4) {
3201 printk_once(KERN_WARNING
3202 "kvm: Fast #PF retrying more than 4 times.\n");
3203 break;
3204 }
3205
97dceba2 3206 } while (true);
c126d94f 3207
a72faf25 3208 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
97dceba2 3209 spte, fault_handled);
c7ba5b48
XG
3210 walk_shadow_page_lockless_end(vcpu);
3211
97dceba2 3212 return fault_handled;
c7ba5b48
XG
3213}
3214
78b2c54a 3215static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3216 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
450e0b41 3217static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3218
c7ba5b48
XG
3219static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3220 gfn_t gfn, bool prefault)
10589a46
MT
3221{
3222 int r;
852e3c19 3223 int level;
fd136902 3224 bool force_pt_level = false;
ba049e93 3225 kvm_pfn_t pfn;
e930bffe 3226 unsigned long mmu_seq;
c7ba5b48 3227 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3228
fd136902 3229 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3230 if (likely(!force_pt_level)) {
936a5fe6
AA
3231 /*
3232 * This path builds a PAE pagetable - so we can map
3233 * 2mb pages at maximum. Therefore check if the level
3234 * is larger than that.
3235 */
3236 if (level > PT_DIRECTORY_LEVEL)
3237 level = PT_DIRECTORY_LEVEL;
852e3c19 3238
936a5fe6 3239 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3240 }
05da4558 3241
c7ba5b48
XG
3242 if (fast_page_fault(vcpu, v, level, error_code))
3243 return 0;
3244
e930bffe 3245 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3246 smp_rmb();
060c2abe 3247
78b2c54a 3248 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3249 return 0;
aaee2c94 3250
d7c55201
XG
3251 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3252 return r;
d196e343 3253
aaee2c94 3254 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3255 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3256 goto out_unlock;
450e0b41 3257 make_mmu_pages_available(vcpu);
936a5fe6
AA
3258 if (likely(!force_pt_level))
3259 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3260 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3261 spin_unlock(&vcpu->kvm->mmu_lock);
3262
10589a46 3263 return r;
e930bffe
AA
3264
3265out_unlock:
3266 spin_unlock(&vcpu->kvm->mmu_lock);
3267 kvm_release_pfn_clean(pfn);
3268 return 0;
10589a46
MT
3269}
3270
3271
17ac10ad
AK
3272static void mmu_free_roots(struct kvm_vcpu *vcpu)
3273{
3274 int i;
4db35314 3275 struct kvm_mmu_page *sp;
d98ba053 3276 LIST_HEAD(invalid_list);
17ac10ad 3277
ad312c7c 3278 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3279 return;
35af577a 3280
81407ca5
JR
3281 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3282 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3283 vcpu->arch.mmu.direct_map)) {
ad312c7c 3284 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3285
35af577a 3286 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3287 sp = page_header(root);
3288 --sp->root_count;
d98ba053
XG
3289 if (!sp->root_count && sp->role.invalid) {
3290 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3291 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3292 }
aaee2c94 3293 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3294 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3295 return;
3296 }
35af577a
GN
3297
3298 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3299 for (i = 0; i < 4; ++i) {
ad312c7c 3300 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3301
417726a3 3302 if (root) {
417726a3 3303 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3304 sp = page_header(root);
3305 --sp->root_count;
2e53d63a 3306 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3307 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3308 &invalid_list);
417726a3 3309 }
ad312c7c 3310 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3311 }
d98ba053 3312 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3313 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3314 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3315}
3316
8986ecc0
MT
3317static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3318{
3319 int ret = 0;
3320
3321 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3322 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3323 ret = 1;
3324 }
3325
3326 return ret;
3327}
3328
651dd37a
JR
3329static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3330{
3331 struct kvm_mmu_page *sp;
7ebaf15e 3332 unsigned i;
651dd37a
JR
3333
3334 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3335 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3336 make_mmu_pages_available(vcpu);
bb11c6c9 3337 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3338 ++sp->root_count;
3339 spin_unlock(&vcpu->kvm->mmu_lock);
3340 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3341 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3342 for (i = 0; i < 4; ++i) {
3343 hpa_t root = vcpu->arch.mmu.pae_root[i];
3344
fa4a2c08 3345 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3346 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3347 make_mmu_pages_available(vcpu);
649497d1 3348 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3349 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3350 root = __pa(sp->spt);
3351 ++sp->root_count;
3352 spin_unlock(&vcpu->kvm->mmu_lock);
3353 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3354 }
6292757f 3355 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3356 } else
3357 BUG();
3358
3359 return 0;
3360}
3361
3362static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3363{
4db35314 3364 struct kvm_mmu_page *sp;
81407ca5
JR
3365 u64 pdptr, pm_mask;
3366 gfn_t root_gfn;
3367 int i;
3bb65a22 3368
5777ed34 3369 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3370
651dd37a
JR
3371 if (mmu_check_root(vcpu, root_gfn))
3372 return 1;
3373
3374 /*
3375 * Do we shadow a long mode page table? If so we need to
3376 * write-protect the guests page table root.
3377 */
3378 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3379 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3380
fa4a2c08 3381 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3382
8facbbff 3383 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3384 make_mmu_pages_available(vcpu);
651dd37a 3385 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
bb11c6c9 3386 0, ACC_ALL);
4db35314
AK
3387 root = __pa(sp->spt);
3388 ++sp->root_count;
8facbbff 3389 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3390 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3391 return 0;
17ac10ad 3392 }
f87f9288 3393
651dd37a
JR
3394 /*
3395 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3396 * or a PAE 3-level page table. In either case we need to be aware that
3397 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3398 */
81407ca5
JR
3399 pm_mask = PT_PRESENT_MASK;
3400 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3401 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3402
17ac10ad 3403 for (i = 0; i < 4; ++i) {
ad312c7c 3404 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3405
fa4a2c08 3406 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3407 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3408 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
812f30b2 3409 if (!(pdptr & PT_PRESENT_MASK)) {
ad312c7c 3410 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3411 continue;
3412 }
6de4f3ad 3413 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3414 if (mmu_check_root(vcpu, root_gfn))
3415 return 1;
5a7388c2 3416 }
8facbbff 3417 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3418 make_mmu_pages_available(vcpu);
bb11c6c9
TY
3419 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3420 0, ACC_ALL);
4db35314
AK
3421 root = __pa(sp->spt);
3422 ++sp->root_count;
8facbbff
AK
3423 spin_unlock(&vcpu->kvm->mmu_lock);
3424
81407ca5 3425 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3426 }
6292757f 3427 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3428
3429 /*
3430 * If we shadow a 32 bit page table with a long mode page
3431 * table we enter this path.
3432 */
3433 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3434 if (vcpu->arch.mmu.lm_root == NULL) {
3435 /*
3436 * The additional page necessary for this is only
3437 * allocated on demand.
3438 */
3439
3440 u64 *lm_root;
3441
3442 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3443 if (lm_root == NULL)
3444 return 1;
3445
3446 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3447
3448 vcpu->arch.mmu.lm_root = lm_root;
3449 }
3450
3451 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3452 }
3453
8986ecc0 3454 return 0;
17ac10ad
AK
3455}
3456
651dd37a
JR
3457static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3458{
3459 if (vcpu->arch.mmu.direct_map)
3460 return mmu_alloc_direct_roots(vcpu);
3461 else
3462 return mmu_alloc_shadow_roots(vcpu);
3463}
3464
0ba73cda
MT
3465static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3466{
3467 int i;
3468 struct kvm_mmu_page *sp;
3469
81407ca5
JR
3470 if (vcpu->arch.mmu.direct_map)
3471 return;
3472
0ba73cda
MT
3473 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3474 return;
6903074c 3475
56f17dd3 3476 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3477 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3478 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3479 hpa_t root = vcpu->arch.mmu.root_hpa;
3480 sp = page_header(root);
3481 mmu_sync_children(vcpu, sp);
0375f7fa 3482 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3483 return;
3484 }
3485 for (i = 0; i < 4; ++i) {
3486 hpa_t root = vcpu->arch.mmu.pae_root[i];
3487
8986ecc0 3488 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3489 root &= PT64_BASE_ADDR_MASK;
3490 sp = page_header(root);
3491 mmu_sync_children(vcpu, sp);
3492 }
3493 }
0375f7fa 3494 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3495}
3496
3497void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3498{
3499 spin_lock(&vcpu->kvm->mmu_lock);
3500 mmu_sync_roots(vcpu);
6cffe8ca 3501 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3502}
bfd0a56b 3503EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3504
1871c602 3505static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3506 u32 access, struct x86_exception *exception)
6aa8b732 3507{
ab9ae313
AK
3508 if (exception)
3509 exception->error_code = 0;
6aa8b732
AK
3510 return vaddr;
3511}
3512
6539e738 3513static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3514 u32 access,
3515 struct x86_exception *exception)
6539e738 3516{
ab9ae313
AK
3517 if (exception)
3518 exception->error_code = 0;
54987b7a 3519 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3520}
3521
d625b155
XG
3522static bool
3523__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3524{
3525 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3526
3527 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3528 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3529}
3530
3531static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3532{
3533 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3534}
3535
3536static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3537{
3538 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3539}
3540
ded58749 3541static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3542{
3543 if (direct)
3544 return vcpu_match_mmio_gpa(vcpu, addr);
3545
3546 return vcpu_match_mmio_gva(vcpu, addr);
3547}
3548
47ab8751
XG
3549/* return true if reserved bit is detected on spte. */
3550static bool
3551walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3552{
3553 struct kvm_shadow_walk_iterator iterator;
47ab8751
XG
3554 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3555 int root, leaf;
3556 bool reserved = false;
ce88decf 3557
37f6a4e2 3558 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3559 goto exit;
37f6a4e2 3560
ce88decf 3561 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3562
29ecd660
PB
3563 for (shadow_walk_init(&iterator, vcpu, addr),
3564 leaf = root = iterator.level;
47ab8751
XG
3565 shadow_walk_okay(&iterator);
3566 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3567 spte = mmu_spte_get_lockless(iterator.sptep);
3568
3569 sptes[leaf - 1] = spte;
29ecd660 3570 leaf--;
47ab8751 3571
ce88decf
XG
3572 if (!is_shadow_present_pte(spte))
3573 break;
47ab8751
XG
3574
3575 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
58c95070 3576 iterator.level);
47ab8751
XG
3577 }
3578
ce88decf
XG
3579 walk_shadow_page_lockless_end(vcpu);
3580
47ab8751
XG
3581 if (reserved) {
3582 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3583 __func__, addr);
29ecd660 3584 while (root > leaf) {
47ab8751
XG
3585 pr_err("------ spte 0x%llx level %d.\n",
3586 sptes[root - 1], root);
3587 root--;
3588 }
3589 }
3590exit:
3591 *sptep = spte;
3592 return reserved;
ce88decf
XG
3593}
3594
450869d6 3595int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3596{
3597 u64 spte;
47ab8751 3598 bool reserved;
ce88decf 3599
ded58749 3600 if (mmio_info_in_cache(vcpu, addr, direct))
b37fbea6 3601 return RET_MMIO_PF_EMULATE;
ce88decf 3602
47ab8751 3603 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3604 if (WARN_ON(reserved))
47ab8751 3605 return RET_MMIO_PF_BUG;
ce88decf
XG
3606
3607 if (is_mmio_spte(spte)) {
3608 gfn_t gfn = get_mmio_spte_gfn(spte);
3609 unsigned access = get_mmio_spte_access(spte);
3610
54bf36aa 3611 if (!check_mmio_spte(vcpu, spte))
f8f55942
XG
3612 return RET_MMIO_PF_INVALID;
3613
ce88decf
XG
3614 if (direct)
3615 addr = 0;
4f022648
XG
3616
3617 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3618 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3619 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3620 }
3621
ce88decf
XG
3622 /*
3623 * If the page table is zapped by other cpus, let CPU fault again on
3624 * the address.
3625 */
b37fbea6 3626 return RET_MMIO_PF_RETRY;
ce88decf 3627}
450869d6 3628EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
ce88decf 3629
3d0c27ad
XG
3630static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3631 u32 error_code, gfn_t gfn)
3632{
3633 if (unlikely(error_code & PFERR_RSVD_MASK))
3634 return false;
3635
3636 if (!(error_code & PFERR_PRESENT_MASK) ||
3637 !(error_code & PFERR_WRITE_MASK))
3638 return false;
3639
3640 /*
3641 * guest is writing the page which is write tracked which can
3642 * not be fixed by page fault handler.
3643 */
3644 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3645 return true;
3646
3647 return false;
3648}
3649
e5691a81
XG
3650static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3651{
3652 struct kvm_shadow_walk_iterator iterator;
3653 u64 spte;
3654
3655 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3656 return;
3657
3658 walk_shadow_page_lockless_begin(vcpu);
3659 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3660 clear_sp_write_flooding_count(iterator.sptep);
3661 if (!is_shadow_present_pte(spte))
3662 break;
3663 }
3664 walk_shadow_page_lockless_end(vcpu);
3665}
3666
6aa8b732 3667static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3668 u32 error_code, bool prefault)
6aa8b732 3669{
3d0c27ad 3670 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3671 int r;
6aa8b732 3672
b8688d51 3673 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3674
3d0c27ad
XG
3675 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3676 return 1;
ce88decf 3677
e2dec939
AK
3678 r = mmu_topup_memory_caches(vcpu);
3679 if (r)
3680 return r;
714b93da 3681
fa4a2c08 3682 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3683
6aa8b732 3684
e833240f 3685 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3686 error_code, gfn, prefault);
6aa8b732
AK
3687}
3688
7e1fbeac 3689static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3690{
3691 struct kvm_arch_async_pf arch;
fb67e14f 3692
7c90705b 3693 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3694 arch.gfn = gfn;
c4806acd 3695 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3696 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3697
54bf36aa 3698 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3699}
3700
3701static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3702{
35754c98 3703 if (unlikely(!lapic_in_kernel(vcpu) ||
af585b92
GN
3704 kvm_event_needs_reinjection(vcpu)))
3705 return false;
3706
3707 return kvm_x86_ops->interrupt_allowed(vcpu);
3708}
3709
78b2c54a 3710static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3711 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 3712{
3520469d 3713 struct kvm_memory_slot *slot;
af585b92
GN
3714 bool async;
3715
54bf36aa 3716 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3717 async = false;
3718 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3719 if (!async)
3720 return false; /* *pfn has correct page already */
3721
78b2c54a 3722 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3723 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3724 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3725 trace_kvm_async_pf_doublefault(gva, gfn);
3726 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3727 return true;
3728 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3729 return true;
3730 }
3731
3520469d 3732 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3733 return false;
3734}
3735
6a39bbc5
XG
3736static bool
3737check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3738{
3739 int page_num = KVM_PAGES_PER_HPAGE(level);
3740
3741 gfn &= ~(page_num - 1);
3742
3743 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3744}
3745
56028d08 3746static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3747 bool prefault)
fb72d167 3748{
ba049e93 3749 kvm_pfn_t pfn;
fb72d167 3750 int r;
852e3c19 3751 int level;
cd1872f0 3752 bool force_pt_level;
05da4558 3753 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3754 unsigned long mmu_seq;
612819c3
MT
3755 int write = error_code & PFERR_WRITE_MASK;
3756 bool map_writable;
fb72d167 3757
fa4a2c08 3758 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3759
3d0c27ad
XG
3760 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3761 return 1;
ce88decf 3762
fb72d167
JR
3763 r = mmu_topup_memory_caches(vcpu);
3764 if (r)
3765 return r;
3766
fd136902
TY
3767 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3768 PT_DIRECTORY_LEVEL);
3769 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3770 if (likely(!force_pt_level)) {
6a39bbc5
XG
3771 if (level > PT_DIRECTORY_LEVEL &&
3772 !check_hugepage_cache_consistency(vcpu, gfn, level))
3773 level = PT_DIRECTORY_LEVEL;
936a5fe6 3774 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3775 }
852e3c19 3776
c7ba5b48
XG
3777 if (fast_page_fault(vcpu, gpa, level, error_code))
3778 return 0;
3779
e930bffe 3780 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3781 smp_rmb();
af585b92 3782
78b2c54a 3783 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3784 return 0;
3785
d7c55201
XG
3786 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3787 return r;
3788
fb72d167 3789 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3790 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3791 goto out_unlock;
450e0b41 3792 make_mmu_pages_available(vcpu);
936a5fe6
AA
3793 if (likely(!force_pt_level))
3794 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3795 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 3796 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3797
3798 return r;
e930bffe
AA
3799
3800out_unlock:
3801 spin_unlock(&vcpu->kvm->mmu_lock);
3802 kvm_release_pfn_clean(pfn);
3803 return 0;
fb72d167
JR
3804}
3805
8a3c1a33
PB
3806static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3807 struct kvm_mmu *context)
6aa8b732 3808{
6aa8b732 3809 context->page_fault = nonpaging_page_fault;
6aa8b732 3810 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3811 context->sync_page = nonpaging_sync_page;
a7052897 3812 context->invlpg = nonpaging_invlpg;
0f53b5b1 3813 context->update_pte = nonpaging_update_pte;
cea0f0e7 3814 context->root_level = 0;
6aa8b732 3815 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3816 context->root_hpa = INVALID_PAGE;
c5a78f2b 3817 context->direct_map = true;
2d48a985 3818 context->nx = false;
6aa8b732
AK
3819}
3820
d8d173da 3821void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3822{
cea0f0e7 3823 mmu_free_roots(vcpu);
6aa8b732
AK
3824}
3825
5777ed34
JR
3826static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3827{
9f8fe504 3828 return kvm_read_cr3(vcpu);
5777ed34
JR
3829}
3830
6389ee94
AK
3831static void inject_page_fault(struct kvm_vcpu *vcpu,
3832 struct x86_exception *fault)
6aa8b732 3833{
6389ee94 3834 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3835}
3836
54bf36aa 3837static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3838 unsigned access, int *nr_present)
ce88decf
XG
3839{
3840 if (unlikely(is_mmio_spte(*sptep))) {
3841 if (gfn != get_mmio_spte_gfn(*sptep)) {
3842 mmu_spte_clear_no_track(sptep);
3843 return true;
3844 }
3845
3846 (*nr_present)++;
54bf36aa 3847 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3848 return true;
3849 }
3850
3851 return false;
3852}
3853
6bb69c9b
PB
3854static inline bool is_last_gpte(struct kvm_mmu *mmu,
3855 unsigned level, unsigned gpte)
6fd01b71 3856{
6bb69c9b
PB
3857 /*
3858 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3859 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3860 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3861 */
3862 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
6fd01b71 3863
6bb69c9b
PB
3864 /*
3865 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3866 * If it is clear, there are no large pages at this level, so clear
3867 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3868 */
3869 gpte &= level - mmu->last_nonleaf_level;
3870
3871 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
3872}
3873
37406aaa
NHE
3874#define PTTYPE_EPT 18 /* arbitrary */
3875#define PTTYPE PTTYPE_EPT
3876#include "paging_tmpl.h"
3877#undef PTTYPE
3878
6aa8b732
AK
3879#define PTTYPE 64
3880#include "paging_tmpl.h"
3881#undef PTTYPE
3882
3883#define PTTYPE 32
3884#include "paging_tmpl.h"
3885#undef PTTYPE
3886
6dc98b86
XG
3887static void
3888__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3889 struct rsvd_bits_validate *rsvd_check,
3890 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3891 bool pse, bool amd)
82725b20 3892{
82725b20 3893 u64 exb_bit_rsvd = 0;
5f7dde7b 3894 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3895 u64 nonleaf_bit8_rsvd = 0;
82725b20 3896
a0a64f50 3897 rsvd_check->bad_mt_xwr = 0;
25d92081 3898
6dc98b86 3899 if (!nx)
82725b20 3900 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3901 if (!gbpages)
5f7dde7b 3902 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3903
3904 /*
3905 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3906 * leaf entries) on AMD CPUs only.
3907 */
6fec2144 3908 if (amd)
a0c0feb5
PB
3909 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3910
6dc98b86 3911 switch (level) {
82725b20
DE
3912 case PT32_ROOT_LEVEL:
3913 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3914 rsvd_check->rsvd_bits_mask[0][1] = 0;
3915 rsvd_check->rsvd_bits_mask[0][0] = 0;
3916 rsvd_check->rsvd_bits_mask[1][0] =
3917 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 3918
6dc98b86 3919 if (!pse) {
a0a64f50 3920 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
3921 break;
3922 }
3923
82725b20
DE
3924 if (is_cpuid_PSE36())
3925 /* 36bits PSE 4MB page */
a0a64f50 3926 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
3927 else
3928 /* 32 bits PSE 4MB page */
a0a64f50 3929 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3930 break;
3931 case PT32E_ROOT_LEVEL:
a0a64f50 3932 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 3933 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3934 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 3935 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3936 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 3937 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 3938 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 3939 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
3940 rsvd_bits(maxphyaddr, 62) |
3941 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3942 rsvd_check->rsvd_bits_mask[1][0] =
3943 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3944 break;
3945 case PT64_ROOT_LEVEL:
a0a64f50
XG
3946 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3947 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 3948 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3949 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3950 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 3951 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3952 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3953 rsvd_bits(maxphyaddr, 51);
3954 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3955 rsvd_bits(maxphyaddr, 51);
3956 rsvd_check->rsvd_bits_mask[1][3] =
3957 rsvd_check->rsvd_bits_mask[0][3];
3958 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3959 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3960 rsvd_bits(13, 29);
a0a64f50 3961 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3962 rsvd_bits(maxphyaddr, 51) |
3963 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3964 rsvd_check->rsvd_bits_mask[1][0] =
3965 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3966 break;
3967 }
3968}
3969
6dc98b86
XG
3970static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3971 struct kvm_mmu *context)
3972{
3973 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3974 cpuid_maxphyaddr(vcpu), context->root_level,
3975 context->nx, guest_cpuid_has_gbpages(vcpu),
6fec2144 3976 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
3977}
3978
81b8eebb
XG
3979static void
3980__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3981 int maxphyaddr, bool execonly)
25d92081 3982{
951f9fd7 3983 u64 bad_mt_xwr;
25d92081 3984
a0a64f50 3985 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 3986 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 3987 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 3988 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3989 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 3990 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3991 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
3992
3993 /* large page */
a0a64f50
XG
3994 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3995 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 3996 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 3997 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 3998 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 3999 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4000
951f9fd7
PB
4001 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4002 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4003 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4004 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4005 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4006 if (!execonly) {
4007 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4008 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4009 }
951f9fd7 4010 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4011}
4012
81b8eebb
XG
4013static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4014 struct kvm_mmu *context, bool execonly)
4015{
4016 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4017 cpuid_maxphyaddr(vcpu), execonly);
4018}
4019
c258b62b
XG
4020/*
4021 * the page table on host is the shadow page table for the page
4022 * table in guest or amd nested guest, its mmu features completely
4023 * follow the features in guest.
4024 */
4025void
4026reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4027{
5f0b8199
PB
4028 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4029
6fec2144
PB
4030 /*
4031 * Passing "true" to the last argument is okay; it adds a check
4032 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4033 */
c258b62b
XG
4034 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4035 boot_cpu_data.x86_phys_bits,
5f0b8199 4036 context->shadow_root_level, uses_nx,
6fec2144
PB
4037 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
4038 true);
c258b62b
XG
4039}
4040EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4041
6fec2144
PB
4042static inline bool boot_cpu_is_amd(void)
4043{
4044 WARN_ON_ONCE(!tdp_enabled);
4045 return shadow_x_mask == 0;
4046}
4047
c258b62b
XG
4048/*
4049 * the direct page table on host, use as much mmu features as
4050 * possible, however, kvm currently does not do execution-protection.
4051 */
4052static void
4053reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4054 struct kvm_mmu *context)
4055{
6fec2144 4056 if (boot_cpu_is_amd())
c258b62b
XG
4057 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4058 boot_cpu_data.x86_phys_bits,
4059 context->shadow_root_level, false,
b8291adc
BP
4060 boot_cpu_has(X86_FEATURE_GBPAGES),
4061 true, true);
c258b62b
XG
4062 else
4063 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4064 boot_cpu_data.x86_phys_bits,
4065 false);
4066
4067}
4068
4069/*
4070 * as the comments in reset_shadow_zero_bits_mask() except it
4071 * is the shadow page table for intel nested guest.
4072 */
4073static void
4074reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4075 struct kvm_mmu *context, bool execonly)
4076{
4077 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4078 boot_cpu_data.x86_phys_bits, execonly);
4079}
4080
edc90b7d
XG
4081static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4082 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
4083{
4084 unsigned bit, byte, pfec;
4085 u8 map;
66386ade 4086 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 4087
66386ade 4088 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 4089 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
4090 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4091 pfec = byte << 1;
4092 map = 0;
4093 wf = pfec & PFERR_WRITE_MASK;
4094 uf = pfec & PFERR_USER_MASK;
4095 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
4096 /*
4097 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
4098 * subject to SMAP restrictions, and cleared otherwise. The
4099 * bit is only meaningful if the SMAP bit is set in CR4.
4100 */
4101 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
4102 for (bit = 0; bit < 8; ++bit) {
4103 x = bit & ACC_EXEC_MASK;
4104 w = bit & ACC_WRITE_MASK;
4105 u = bit & ACC_USER_MASK;
4106
25d92081
YZ
4107 if (!ept) {
4108 /* Not really needed: !nx will cause pte.nx to fault */
4109 x |= !mmu->nx;
4110 /* Allow supervisor writes if !cr0.wp */
4111 w |= !is_write_protection(vcpu) && !uf;
4112 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 4113 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
4114
4115 /*
4116 * SMAP:kernel-mode data accesses from user-mode
4117 * mappings should fault. A fault is considered
4118 * as a SMAP violation if all of the following
4119 * conditions are ture:
4120 * - X86_CR4_SMAP is set in CR4
9332ef9d 4121 * - A user page is accessed
97ec8c06
FW
4122 * - Page fault in kernel mode
4123 * - if CPL = 3 or X86_EFLAGS_AC is clear
4124 *
4125 * Here, we cover the first three conditions.
4126 * The fourth is computed dynamically in
4127 * permission_fault() and is in smapf.
4128 *
4129 * Also, SMAP does not affect instruction
4130 * fetches, add the !ff check here to make it
4131 * clearer.
4132 */
4133 smap = cr4_smap && u && !uf && !ff;
d95c5568 4134 }
97d64b78 4135
97ec8c06
FW
4136 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
4137 (smapf && smap);
97d64b78
AK
4138 map |= fault << bit;
4139 }
4140 mmu->permissions[byte] = map;
4141 }
4142}
4143
2d344105
HH
4144/*
4145* PKU is an additional mechanism by which the paging controls access to
4146* user-mode addresses based on the value in the PKRU register. Protection
4147* key violations are reported through a bit in the page fault error code.
4148* Unlike other bits of the error code, the PK bit is not known at the
4149* call site of e.g. gva_to_gpa; it must be computed directly in
4150* permission_fault based on two bits of PKRU, on some machine state (CR4,
4151* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4152*
4153* In particular the following conditions come from the error code, the
4154* page tables and the machine state:
4155* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4156* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4157* - PK is always zero if U=0 in the page tables
4158* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4159*
4160* The PKRU bitmask caches the result of these four conditions. The error
4161* code (minus the P bit) and the page table's U bit form an index into the
4162* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4163* with the two bits of the PKRU register corresponding to the protection key.
4164* For the first three conditions above the bits will be 00, thus masking
4165* away both AD and WD. For all reads or if the last condition holds, WD
4166* only will be masked away.
4167*/
4168static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4169 bool ept)
4170{
4171 unsigned bit;
4172 bool wp;
4173
4174 if (ept) {
4175 mmu->pkru_mask = 0;
4176 return;
4177 }
4178
4179 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4180 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4181 mmu->pkru_mask = 0;
4182 return;
4183 }
4184
4185 wp = is_write_protection(vcpu);
4186
4187 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4188 unsigned pfec, pkey_bits;
4189 bool check_pkey, check_write, ff, uf, wf, pte_user;
4190
4191 pfec = bit << 1;
4192 ff = pfec & PFERR_FETCH_MASK;
4193 uf = pfec & PFERR_USER_MASK;
4194 wf = pfec & PFERR_WRITE_MASK;
4195
4196 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4197 pte_user = pfec & PFERR_RSVD_MASK;
4198
4199 /*
4200 * Only need to check the access which is not an
4201 * instruction fetch and is to a user page.
4202 */
4203 check_pkey = (!ff && pte_user);
4204 /*
4205 * write access is controlled by PKRU if it is a
4206 * user access or CR0.WP = 1.
4207 */
4208 check_write = check_pkey && wf && (uf || wp);
4209
4210 /* PKRU.AD stops both read and write access. */
4211 pkey_bits = !!check_pkey;
4212 /* PKRU.WD stops write access. */
4213 pkey_bits |= (!!check_write) << 1;
4214
4215 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4216 }
4217}
4218
6bb69c9b 4219static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4220{
6bb69c9b
PB
4221 unsigned root_level = mmu->root_level;
4222
4223 mmu->last_nonleaf_level = root_level;
4224 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4225 mmu->last_nonleaf_level++;
6fd01b71
AK
4226}
4227
8a3c1a33
PB
4228static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4229 struct kvm_mmu *context,
4230 int level)
6aa8b732 4231{
2d48a985 4232 context->nx = is_nx(vcpu);
4d6931c3 4233 context->root_level = level;
2d48a985 4234
4d6931c3 4235 reset_rsvds_bits_mask(vcpu, context);
25d92081 4236 update_permission_bitmask(vcpu, context, false);
2d344105 4237 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4238 update_last_nonleaf_level(vcpu, context);
6aa8b732 4239
fa4a2c08 4240 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4241 context->page_fault = paging64_page_fault;
6aa8b732 4242 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4243 context->sync_page = paging64_sync_page;
a7052897 4244 context->invlpg = paging64_invlpg;
0f53b5b1 4245 context->update_pte = paging64_update_pte;
17ac10ad 4246 context->shadow_root_level = level;
17c3ba9d 4247 context->root_hpa = INVALID_PAGE;
c5a78f2b 4248 context->direct_map = false;
6aa8b732
AK
4249}
4250
8a3c1a33
PB
4251static void paging64_init_context(struct kvm_vcpu *vcpu,
4252 struct kvm_mmu *context)
17ac10ad 4253{
8a3c1a33 4254 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
4255}
4256
8a3c1a33
PB
4257static void paging32_init_context(struct kvm_vcpu *vcpu,
4258 struct kvm_mmu *context)
6aa8b732 4259{
2d48a985 4260 context->nx = false;
4d6931c3 4261 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4262
4d6931c3 4263 reset_rsvds_bits_mask(vcpu, context);
25d92081 4264 update_permission_bitmask(vcpu, context, false);
2d344105 4265 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4266 update_last_nonleaf_level(vcpu, context);
6aa8b732 4267
6aa8b732 4268 context->page_fault = paging32_page_fault;
6aa8b732 4269 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4270 context->sync_page = paging32_sync_page;
a7052897 4271 context->invlpg = paging32_invlpg;
0f53b5b1 4272 context->update_pte = paging32_update_pte;
6aa8b732 4273 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 4274 context->root_hpa = INVALID_PAGE;
c5a78f2b 4275 context->direct_map = false;
6aa8b732
AK
4276}
4277
8a3c1a33
PB
4278static void paging32E_init_context(struct kvm_vcpu *vcpu,
4279 struct kvm_mmu *context)
6aa8b732 4280{
8a3c1a33 4281 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4282}
4283
8a3c1a33 4284static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4285{
ad896af0 4286 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 4287
c445f8ef 4288 context->base_role.word = 0;
699023e2 4289 context->base_role.smm = is_smm(vcpu);
fb72d167 4290 context->page_fault = tdp_page_fault;
e8bc217a 4291 context->sync_page = nonpaging_sync_page;
a7052897 4292 context->invlpg = nonpaging_invlpg;
0f53b5b1 4293 context->update_pte = nonpaging_update_pte;
67253af5 4294 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 4295 context->root_hpa = INVALID_PAGE;
c5a78f2b 4296 context->direct_map = true;
1c97f0a0 4297 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4298 context->get_cr3 = get_cr3;
e4e517b4 4299 context->get_pdptr = kvm_pdptr_read;
cb659db8 4300 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4301
4302 if (!is_paging(vcpu)) {
2d48a985 4303 context->nx = false;
fb72d167
JR
4304 context->gva_to_gpa = nonpaging_gva_to_gpa;
4305 context->root_level = 0;
4306 } else if (is_long_mode(vcpu)) {
2d48a985 4307 context->nx = is_nx(vcpu);
fb72d167 4308 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
4309 reset_rsvds_bits_mask(vcpu, context);
4310 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4311 } else if (is_pae(vcpu)) {
2d48a985 4312 context->nx = is_nx(vcpu);
fb72d167 4313 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4314 reset_rsvds_bits_mask(vcpu, context);
4315 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4316 } else {
2d48a985 4317 context->nx = false;
fb72d167 4318 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4319 reset_rsvds_bits_mask(vcpu, context);
4320 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4321 }
4322
25d92081 4323 update_permission_bitmask(vcpu, context, false);
2d344105 4324 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4325 update_last_nonleaf_level(vcpu, context);
c258b62b 4326 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4327}
4328
ad896af0 4329void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 4330{
411c588d 4331 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 4332 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
4333 struct kvm_mmu *context = &vcpu->arch.mmu;
4334
fa4a2c08 4335 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
4336
4337 if (!is_paging(vcpu))
8a3c1a33 4338 nonpaging_init_context(vcpu, context);
a9058ecd 4339 else if (is_long_mode(vcpu))
8a3c1a33 4340 paging64_init_context(vcpu, context);
6aa8b732 4341 else if (is_pae(vcpu))
8a3c1a33 4342 paging32E_init_context(vcpu, context);
6aa8b732 4343 else
8a3c1a33 4344 paging32_init_context(vcpu, context);
a770f6f2 4345
ad896af0
PB
4346 context->base_role.nxe = is_nx(vcpu);
4347 context->base_role.cr4_pae = !!is_pae(vcpu);
4348 context->base_role.cr0_wp = is_write_protection(vcpu);
4349 context->base_role.smep_andnot_wp
411c588d 4350 = smep && !is_write_protection(vcpu);
edc90b7d
XG
4351 context->base_role.smap_andnot_wp
4352 = smap && !is_write_protection(vcpu);
699023e2 4353 context->base_role.smm = is_smm(vcpu);
c258b62b 4354 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4355}
4356EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4357
ae1e2d10
PB
4358void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4359 bool accessed_dirty)
155a97a3 4360{
ad896af0
PB
4361 struct kvm_mmu *context = &vcpu->arch.mmu;
4362
fa4a2c08 4363 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
4364
4365 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4366
4367 context->nx = true;
ae1e2d10 4368 context->ept_ad = accessed_dirty;
155a97a3
NHE
4369 context->page_fault = ept_page_fault;
4370 context->gva_to_gpa = ept_gva_to_gpa;
4371 context->sync_page = ept_sync_page;
4372 context->invlpg = ept_invlpg;
4373 context->update_pte = ept_update_pte;
155a97a3
NHE
4374 context->root_level = context->shadow_root_level;
4375 context->root_hpa = INVALID_PAGE;
4376 context->direct_map = false;
4377
4378 update_permission_bitmask(vcpu, context, true);
2d344105 4379 update_pkru_bitmask(vcpu, context, true);
155a97a3 4380 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4381 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4382}
4383EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4384
8a3c1a33 4385static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4386{
ad896af0
PB
4387 struct kvm_mmu *context = &vcpu->arch.mmu;
4388
4389 kvm_init_shadow_mmu(vcpu);
4390 context->set_cr3 = kvm_x86_ops->set_cr3;
4391 context->get_cr3 = get_cr3;
4392 context->get_pdptr = kvm_pdptr_read;
4393 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4394}
4395
8a3c1a33 4396static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4397{
4398 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4399
4400 g_context->get_cr3 = get_cr3;
e4e517b4 4401 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4402 g_context->inject_page_fault = kvm_inject_page_fault;
4403
4404 /*
0af2593b
DM
4405 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4406 * L1's nested page tables (e.g. EPT12). The nested translation
4407 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4408 * L2's page tables as the first level of translation and L1's
4409 * nested page tables as the second level of translation. Basically
4410 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4411 */
4412 if (!is_paging(vcpu)) {
2d48a985 4413 g_context->nx = false;
02f59dc9
JR
4414 g_context->root_level = 0;
4415 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4416 } else if (is_long_mode(vcpu)) {
2d48a985 4417 g_context->nx = is_nx(vcpu);
02f59dc9 4418 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4419 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4420 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4421 } else if (is_pae(vcpu)) {
2d48a985 4422 g_context->nx = is_nx(vcpu);
02f59dc9 4423 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4424 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4425 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4426 } else {
2d48a985 4427 g_context->nx = false;
02f59dc9 4428 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4429 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4430 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4431 }
4432
25d92081 4433 update_permission_bitmask(vcpu, g_context, false);
2d344105 4434 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4435 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4436}
4437
8a3c1a33 4438static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4439{
02f59dc9 4440 if (mmu_is_nested(vcpu))
e0c6db3e 4441 init_kvm_nested_mmu(vcpu);
02f59dc9 4442 else if (tdp_enabled)
e0c6db3e 4443 init_kvm_tdp_mmu(vcpu);
fb72d167 4444 else
e0c6db3e 4445 init_kvm_softmmu(vcpu);
fb72d167
JR
4446}
4447
8a3c1a33 4448void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4449{
95f93af4 4450 kvm_mmu_unload(vcpu);
8a3c1a33 4451 init_kvm_mmu(vcpu);
17c3ba9d 4452}
8668a3c4 4453EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4454
4455int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4456{
714b93da
AK
4457 int r;
4458
e2dec939 4459 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4460 if (r)
4461 goto out;
8986ecc0 4462 r = mmu_alloc_roots(vcpu);
e2858b4a 4463 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4464 if (r)
4465 goto out;
3662cb1c 4466 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4467 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4468out:
4469 return r;
6aa8b732 4470}
17c3ba9d
AK
4471EXPORT_SYMBOL_GPL(kvm_mmu_load);
4472
4473void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4474{
4475 mmu_free_roots(vcpu);
95f93af4 4476 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4477}
4b16184c 4478EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4479
0028425f 4480static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4481 struct kvm_mmu_page *sp, u64 *spte,
4482 const void *new)
0028425f 4483{
30945387 4484 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4485 ++vcpu->kvm->stat.mmu_pde_zapped;
4486 return;
30945387 4487 }
0028425f 4488
4cee5764 4489 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4490 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4491}
4492
79539cec
AK
4493static bool need_remote_flush(u64 old, u64 new)
4494{
4495 if (!is_shadow_present_pte(old))
4496 return false;
4497 if (!is_shadow_present_pte(new))
4498 return true;
4499 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4500 return true;
53166229
GN
4501 old ^= shadow_nx_mask;
4502 new ^= shadow_nx_mask;
79539cec
AK
4503 return (old & ~new & PT64_PERM_MASK) != 0;
4504}
4505
889e5cbc
XG
4506static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4507 const u8 *new, int *bytes)
da4a00f0 4508{
889e5cbc
XG
4509 u64 gentry;
4510 int r;
72016f3a 4511
72016f3a
AK
4512 /*
4513 * Assume that the pte write on a page table of the same type
49b26e26
XG
4514 * as the current vcpu paging mode since we update the sptes only
4515 * when they have the same mode.
72016f3a 4516 */
889e5cbc 4517 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4518 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4519 *gpa &= ~(gpa_t)7;
4520 *bytes = 8;
54bf36aa 4521 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4522 if (r)
4523 gentry = 0;
08e850c6
AK
4524 new = (const u8 *)&gentry;
4525 }
4526
889e5cbc 4527 switch (*bytes) {
08e850c6
AK
4528 case 4:
4529 gentry = *(const u32 *)new;
4530 break;
4531 case 8:
4532 gentry = *(const u64 *)new;
4533 break;
4534 default:
4535 gentry = 0;
4536 break;
72016f3a
AK
4537 }
4538
889e5cbc
XG
4539 return gentry;
4540}
4541
4542/*
4543 * If we're seeing too many writes to a page, it may no longer be a page table,
4544 * or we may be forking, in which case it is better to unmap the page.
4545 */
a138fe75 4546static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4547{
a30f47cb
XG
4548 /*
4549 * Skip write-flooding detected for the sp whose level is 1, because
4550 * it can become unsync, then the guest page is not write-protected.
4551 */
f71fa31f 4552 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4553 return false;
3246af0e 4554
e5691a81
XG
4555 atomic_inc(&sp->write_flooding_count);
4556 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4557}
4558
4559/*
4560 * Misaligned accesses are too much trouble to fix up; also, they usually
4561 * indicate a page is not used as a page table.
4562 */
4563static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4564 int bytes)
4565{
4566 unsigned offset, pte_size, misaligned;
4567
4568 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4569 gpa, bytes, sp->role.word);
4570
4571 offset = offset_in_page(gpa);
4572 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4573
4574 /*
4575 * Sometimes, the OS only writes the last one bytes to update status
4576 * bits, for example, in linux, andb instruction is used in clear_bit().
4577 */
4578 if (!(offset & (pte_size - 1)) && bytes == 1)
4579 return false;
4580
889e5cbc
XG
4581 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4582 misaligned |= bytes < 4;
4583
4584 return misaligned;
4585}
4586
4587static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4588{
4589 unsigned page_offset, quadrant;
4590 u64 *spte;
4591 int level;
4592
4593 page_offset = offset_in_page(gpa);
4594 level = sp->role.level;
4595 *nspte = 1;
4596 if (!sp->role.cr4_pae) {
4597 page_offset <<= 1; /* 32->64 */
4598 /*
4599 * A 32-bit pde maps 4MB while the shadow pdes map
4600 * only 2MB. So we need to double the offset again
4601 * and zap two pdes instead of one.
4602 */
4603 if (level == PT32_ROOT_LEVEL) {
4604 page_offset &= ~7; /* kill rounding error */
4605 page_offset <<= 1;
4606 *nspte = 2;
4607 }
4608 quadrant = page_offset >> PAGE_SHIFT;
4609 page_offset &= ~PAGE_MASK;
4610 if (quadrant != sp->role.quadrant)
4611 return NULL;
4612 }
4613
4614 spte = &sp->spt[page_offset / sizeof(*spte)];
4615 return spte;
4616}
4617
13d268ca 4618static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
4619 const u8 *new, int bytes,
4620 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
4621{
4622 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4623 struct kvm_mmu_page *sp;
889e5cbc
XG
4624 LIST_HEAD(invalid_list);
4625 u64 entry, gentry, *spte;
4626 int npte;
b8c67b7a 4627 bool remote_flush, local_flush;
4141259b
AM
4628 union kvm_mmu_page_role mask = { };
4629
4630 mask.cr0_wp = 1;
4631 mask.cr4_pae = 1;
4632 mask.nxe = 1;
4633 mask.smep_andnot_wp = 1;
4634 mask.smap_andnot_wp = 1;
699023e2 4635 mask.smm = 1;
889e5cbc
XG
4636
4637 /*
4638 * If we don't have indirect shadow pages, it means no page is
4639 * write-protected, so we can exit simply.
4640 */
4641 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4642 return;
4643
b8c67b7a 4644 remote_flush = local_flush = false;
889e5cbc
XG
4645
4646 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4647
4648 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4649
4650 /*
4651 * No need to care whether allocation memory is successful
4652 * or not since pte prefetch is skiped if it does not have
4653 * enough objects in the cache.
4654 */
4655 mmu_topup_memory_caches(vcpu);
4656
4657 spin_lock(&vcpu->kvm->mmu_lock);
4658 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4659 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4660
b67bfe0d 4661 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4662 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4663 detect_write_flooding(sp)) {
b8c67b7a 4664 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4665 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4666 continue;
4667 }
889e5cbc
XG
4668
4669 spte = get_written_sptes(sp, gpa, &npte);
4670 if (!spte)
4671 continue;
4672
0671a8e7 4673 local_flush = true;
ac1b714e 4674 while (npte--) {
79539cec 4675 entry = *spte;
38e3b2b2 4676 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4677 if (gentry &&
4678 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4679 & mask.word) && rmap_can_add(vcpu))
7c562522 4680 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4681 if (need_remote_flush(entry, *spte))
0671a8e7 4682 remote_flush = true;
ac1b714e 4683 ++spte;
9b7a0325 4684 }
9b7a0325 4685 }
b8c67b7a 4686 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 4687 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4688 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4689}
4690
a436036b
AK
4691int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4692{
10589a46
MT
4693 gpa_t gpa;
4694 int r;
a436036b 4695
c5a78f2b 4696 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4697 return 0;
4698
1871c602 4699 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4700
10589a46 4701 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4702
10589a46 4703 return r;
a436036b 4704}
577bdc49 4705EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4706
81f4f76b 4707static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4708{
d98ba053 4709 LIST_HEAD(invalid_list);
103ad25a 4710
81f4f76b
TY
4711 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4712 return;
4713
5da59607
TY
4714 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4715 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4716 break;
ebeace86 4717
4cee5764 4718 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4719 }
aa6bd187 4720 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4721}
ebeace86 4722
14727754 4723int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
dc25e89e 4724 void *insn, int insn_len)
3067714c 4725{
1cb3f3ae 4726 int r, emulation_type = EMULTYPE_RETRY;
3067714c 4727 enum emulation_result er;
ded58749 4728 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
3067714c 4729
e9ee956e
TY
4730 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4731 r = handle_mmio_page_fault(vcpu, cr2, direct);
4732 if (r == RET_MMIO_PF_EMULATE) {
4733 emulation_type = 0;
4734 goto emulate;
4735 }
4736 if (r == RET_MMIO_PF_RETRY)
4737 return 1;
4738 if (r < 0)
4739 return r;
4740 }
3067714c 4741
14727754
TL
4742 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4743 false);
3067714c 4744 if (r < 0)
e9ee956e
TY
4745 return r;
4746 if (!r)
4747 return 1;
3067714c 4748
14727754
TL
4749 /*
4750 * Before emulating the instruction, check if the error code
4751 * was due to a RO violation while translating the guest page.
4752 * This can occur when using nested virtualization with nested
4753 * paging in both guests. If true, we simply unprotect the page
4754 * and resume the guest.
4755 *
4756 * Note: AMD only (since it supports the PFERR_GUEST_PAGE_MASK used
4757 * in PFERR_NEXT_GUEST_PAGE)
4758 */
4759 if (error_code == PFERR_NESTED_GUEST_PAGE) {
4760 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4761 return 1;
4762 }
4763
ded58749 4764 if (mmio_info_in_cache(vcpu, cr2, direct))
1cb3f3ae 4765 emulation_type = 0;
e9ee956e 4766emulate:
1cb3f3ae 4767 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4768
4769 switch (er) {
4770 case EMULATE_DONE:
4771 return 1;
ac0a48c3 4772 case EMULATE_USER_EXIT:
3067714c 4773 ++vcpu->stat.mmio_exits;
6d77dbfc 4774 /* fall through */
3067714c 4775 case EMULATE_FAIL:
3f5d18a9 4776 return 0;
3067714c
AK
4777 default:
4778 BUG();
4779 }
3067714c
AK
4780}
4781EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4782
a7052897
MT
4783void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4784{
a7052897 4785 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4786 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4787 ++vcpu->stat.invlpg;
4788}
4789EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4790
18552672
JR
4791void kvm_enable_tdp(void)
4792{
4793 tdp_enabled = true;
4794}
4795EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4796
5f4cb662
JR
4797void kvm_disable_tdp(void)
4798{
4799 tdp_enabled = false;
4800}
4801EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4802
6aa8b732
AK
4803static void free_mmu_pages(struct kvm_vcpu *vcpu)
4804{
ad312c7c 4805 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4806 if (vcpu->arch.mmu.lm_root != NULL)
4807 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4808}
4809
4810static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4811{
17ac10ad 4812 struct page *page;
6aa8b732
AK
4813 int i;
4814
17ac10ad
AK
4815 /*
4816 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4817 * Therefore we need to allocate shadow page tables in the first
4818 * 4GB of memory, which happens to fit the DMA32 zone.
4819 */
4820 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4821 if (!page)
d7fa6ab2
WY
4822 return -ENOMEM;
4823
ad312c7c 4824 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4825 for (i = 0; i < 4; ++i)
ad312c7c 4826 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4827
6aa8b732 4828 return 0;
6aa8b732
AK
4829}
4830
8018c27b 4831int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4832{
e459e322
XG
4833 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4834 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4835 vcpu->arch.mmu.translate_gpa = translate_gpa;
4836 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4837
8018c27b
IM
4838 return alloc_mmu_pages(vcpu);
4839}
6aa8b732 4840
8a3c1a33 4841void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4842{
fa4a2c08 4843 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4844
8a3c1a33 4845 init_kvm_mmu(vcpu);
6aa8b732
AK
4846}
4847
b5f5fdca 4848static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
4849 struct kvm_memory_slot *slot,
4850 struct kvm_page_track_notifier_node *node)
b5f5fdca
XC
4851{
4852 kvm_mmu_invalidate_zap_all_pages(kvm);
4853}
4854
13d268ca
XG
4855void kvm_mmu_init_vm(struct kvm *kvm)
4856{
4857 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4858
4859 node->track_write = kvm_mmu_pte_write;
b5f5fdca 4860 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca
XG
4861 kvm_page_track_register_notifier(kvm, node);
4862}
4863
4864void kvm_mmu_uninit_vm(struct kvm *kvm)
4865{
4866 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4867
4868 kvm_page_track_unregister_notifier(kvm, node);
4869}
4870
1bad2b2a 4871/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 4872typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
4873
4874/* The caller should hold mmu-lock before calling this function. */
4875static bool
4876slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4877 slot_level_handler fn, int start_level, int end_level,
4878 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4879{
4880 struct slot_rmap_walk_iterator iterator;
4881 bool flush = false;
4882
4883 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4884 end_gfn, &iterator) {
4885 if (iterator.rmap)
4886 flush |= fn(kvm, iterator.rmap);
4887
4888 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4889 if (flush && lock_flush_tlb) {
4890 kvm_flush_remote_tlbs(kvm);
4891 flush = false;
4892 }
4893 cond_resched_lock(&kvm->mmu_lock);
4894 }
4895 }
4896
4897 if (flush && lock_flush_tlb) {
4898 kvm_flush_remote_tlbs(kvm);
4899 flush = false;
4900 }
4901
4902 return flush;
4903}
4904
4905static bool
4906slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4907 slot_level_handler fn, int start_level, int end_level,
4908 bool lock_flush_tlb)
4909{
4910 return slot_handle_level_range(kvm, memslot, fn, start_level,
4911 end_level, memslot->base_gfn,
4912 memslot->base_gfn + memslot->npages - 1,
4913 lock_flush_tlb);
4914}
4915
4916static bool
4917slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4918 slot_level_handler fn, bool lock_flush_tlb)
4919{
4920 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4921 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4922}
4923
4924static bool
4925slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4926 slot_level_handler fn, bool lock_flush_tlb)
4927{
4928 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4929 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4930}
4931
4932static bool
4933slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4934 slot_level_handler fn, bool lock_flush_tlb)
4935{
4936 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4937 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4938}
4939
efdfe536
XG
4940void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4941{
4942 struct kvm_memslots *slots;
4943 struct kvm_memory_slot *memslot;
9da0e4d5 4944 int i;
efdfe536
XG
4945
4946 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
4947 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4948 slots = __kvm_memslots(kvm, i);
4949 kvm_for_each_memslot(memslot, slots) {
4950 gfn_t start, end;
4951
4952 start = max(gfn_start, memslot->base_gfn);
4953 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4954 if (start >= end)
4955 continue;
efdfe536 4956
9da0e4d5
PB
4957 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4958 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4959 start, end - 1, true);
4960 }
efdfe536
XG
4961 }
4962
4963 spin_unlock(&kvm->mmu_lock);
4964}
4965
018aabb5
TY
4966static bool slot_rmap_write_protect(struct kvm *kvm,
4967 struct kvm_rmap_head *rmap_head)
d77aa73c 4968{
018aabb5 4969 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
4970}
4971
1c91cad4
KH
4972void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4973 struct kvm_memory_slot *memslot)
6aa8b732 4974{
d77aa73c 4975 bool flush;
6aa8b732 4976
9d1beefb 4977 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4978 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4979 false);
9d1beefb 4980 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4981
4982 /*
4983 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4984 * which do tlb flush out of mmu-lock should be serialized by
4985 * kvm->slots_lock otherwise tlb flush would be missed.
4986 */
4987 lockdep_assert_held(&kvm->slots_lock);
4988
4989 /*
4990 * We can flush all the TLBs out of the mmu lock without TLB
4991 * corruption since we just change the spte from writable to
4992 * readonly so that we only need to care the case of changing
4993 * spte from present to present (changing the spte from present
4994 * to nonpresent will flush all the TLBs immediately), in other
4995 * words, the only case we care is mmu_spte_update() where we
4996 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4997 * instead of PT_WRITABLE_MASK, that means it does not depend
4998 * on PT_WRITABLE_MASK anymore.
4999 */
d91ffee9
KH
5000 if (flush)
5001 kvm_flush_remote_tlbs(kvm);
6aa8b732 5002}
37a7d8b0 5003
3ea3b7fa 5004static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5005 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5006{
5007 u64 *sptep;
5008 struct rmap_iterator iter;
5009 int need_tlb_flush = 0;
ba049e93 5010 kvm_pfn_t pfn;
3ea3b7fa
WL
5011 struct kvm_mmu_page *sp;
5012
0d536790 5013restart:
018aabb5 5014 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
5015 sp = page_header(__pa(sptep));
5016 pfn = spte_to_pfn(*sptep);
5017
5018 /*
decf6333
XG
5019 * We cannot do huge page mapping for indirect shadow pages,
5020 * which are found on the last rmap (level = 1) when not using
5021 * tdp; such shadow pages are synced with the page table in
5022 * the guest, and the guest page table is using 4K page size
5023 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
5024 */
5025 if (sp->role.direct &&
5026 !kvm_is_reserved_pfn(pfn) &&
127393fb 5027 PageTransCompoundMap(pfn_to_page(pfn))) {
3ea3b7fa 5028 drop_spte(kvm, sptep);
3ea3b7fa 5029 need_tlb_flush = 1;
0d536790
XG
5030 goto restart;
5031 }
3ea3b7fa
WL
5032 }
5033
5034 return need_tlb_flush;
5035}
5036
5037void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5038 const struct kvm_memory_slot *memslot)
3ea3b7fa 5039{
f36f3f28 5040 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5041 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5042 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5043 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5044 spin_unlock(&kvm->mmu_lock);
5045}
5046
f4b4b180
KH
5047void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5048 struct kvm_memory_slot *memslot)
5049{
d77aa73c 5050 bool flush;
f4b4b180
KH
5051
5052 spin_lock(&kvm->mmu_lock);
d77aa73c 5053 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5054 spin_unlock(&kvm->mmu_lock);
5055
5056 lockdep_assert_held(&kvm->slots_lock);
5057
5058 /*
5059 * It's also safe to flush TLBs out of mmu lock here as currently this
5060 * function is only used for dirty logging, in which case flushing TLB
5061 * out of mmu lock also guarantees no dirty pages will be lost in
5062 * dirty_bitmap.
5063 */
5064 if (flush)
5065 kvm_flush_remote_tlbs(kvm);
5066}
5067EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5068
5069void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5070 struct kvm_memory_slot *memslot)
5071{
d77aa73c 5072 bool flush;
f4b4b180
KH
5073
5074 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5075 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5076 false);
f4b4b180
KH
5077 spin_unlock(&kvm->mmu_lock);
5078
5079 /* see kvm_mmu_slot_remove_write_access */
5080 lockdep_assert_held(&kvm->slots_lock);
5081
5082 if (flush)
5083 kvm_flush_remote_tlbs(kvm);
5084}
5085EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5086
5087void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5088 struct kvm_memory_slot *memslot)
5089{
d77aa73c 5090 bool flush;
f4b4b180
KH
5091
5092 spin_lock(&kvm->mmu_lock);
d77aa73c 5093 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
5094 spin_unlock(&kvm->mmu_lock);
5095
5096 lockdep_assert_held(&kvm->slots_lock);
5097
5098 /* see kvm_mmu_slot_leaf_clear_dirty */
5099 if (flush)
5100 kvm_flush_remote_tlbs(kvm);
5101}
5102EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5103
e7d11c7a 5104#define BATCH_ZAP_PAGES 10
5304b8d3
XG
5105static void kvm_zap_obsolete_pages(struct kvm *kvm)
5106{
5107 struct kvm_mmu_page *sp, *node;
e7d11c7a 5108 int batch = 0;
5304b8d3
XG
5109
5110restart:
5111 list_for_each_entry_safe_reverse(sp, node,
5112 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
5113 int ret;
5114
5304b8d3
XG
5115 /*
5116 * No obsolete page exists before new created page since
5117 * active_mmu_pages is the FIFO list.
5118 */
5119 if (!is_obsolete_sp(kvm, sp))
5120 break;
5121
5122 /*
5304b8d3
XG
5123 * Since we are reversely walking the list and the invalid
5124 * list will be moved to the head, skip the invalid page
5125 * can help us to avoid the infinity list walking.
5126 */
5127 if (sp->role.invalid)
5128 continue;
5129
f34d251d
XG
5130 /*
5131 * Need not flush tlb since we only zap the sp with invalid
5132 * generation number.
5133 */
e7d11c7a 5134 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 5135 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 5136 batch = 0;
5304b8d3
XG
5137 goto restart;
5138 }
5139
365c8868
XG
5140 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5141 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
5142 batch += ret;
5143
5144 if (ret)
5304b8d3
XG
5145 goto restart;
5146 }
5147
f34d251d
XG
5148 /*
5149 * Should flush tlb before free page tables since lockless-walking
5150 * may use the pages.
5151 */
365c8868 5152 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
5153}
5154
5155/*
5156 * Fast invalidate all shadow pages and use lock-break technique
5157 * to zap obsolete pages.
5158 *
5159 * It's required when memslot is being deleted or VM is being
5160 * destroyed, in these cases, we should ensure that KVM MMU does
5161 * not use any resource of the being-deleted slot or all slots
5162 * after calling the function.
5163 */
5164void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5165{
5166 spin_lock(&kvm->mmu_lock);
35006126 5167 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
5168 kvm->arch.mmu_valid_gen++;
5169
f34d251d
XG
5170 /*
5171 * Notify all vcpus to reload its shadow page table
5172 * and flush TLB. Then all vcpus will switch to new
5173 * shadow page table with the new mmu_valid_gen.
5174 *
5175 * Note: we should do this under the protection of
5176 * mmu-lock, otherwise, vcpu would purge shadow page
5177 * but miss tlb flush.
5178 */
5179 kvm_reload_remote_mmus(kvm);
5180
5304b8d3
XG
5181 kvm_zap_obsolete_pages(kvm);
5182 spin_unlock(&kvm->mmu_lock);
5183}
5184
365c8868
XG
5185static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5186{
5187 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5188}
5189
54bf36aa 5190void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
5191{
5192 /*
5193 * The very rare case: if the generation-number is round,
5194 * zap all shadow pages.
f8f55942 5195 */
54bf36aa 5196 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
ae0f5499 5197 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 5198 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 5199 }
f8f55942
XG
5200}
5201
70534a73
DC
5202static unsigned long
5203mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5204{
5205 struct kvm *kvm;
1495f230 5206 int nr_to_scan = sc->nr_to_scan;
70534a73 5207 unsigned long freed = 0;
3ee16c81 5208
2f303b74 5209 spin_lock(&kvm_lock);
3ee16c81
IE
5210
5211 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5212 int idx;
d98ba053 5213 LIST_HEAD(invalid_list);
3ee16c81 5214
35f2d16b
TY
5215 /*
5216 * Never scan more than sc->nr_to_scan VM instances.
5217 * Will not hit this condition practically since we do not try
5218 * to shrink more than one VM and it is very unlikely to see
5219 * !n_used_mmu_pages so many times.
5220 */
5221 if (!nr_to_scan--)
5222 break;
19526396
GN
5223 /*
5224 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5225 * here. We may skip a VM instance errorneosly, but we do not
5226 * want to shrink a VM that only started to populate its MMU
5227 * anyway.
5228 */
365c8868
XG
5229 if (!kvm->arch.n_used_mmu_pages &&
5230 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5231 continue;
19526396 5232
f656ce01 5233 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5234 spin_lock(&kvm->mmu_lock);
3ee16c81 5235
365c8868
XG
5236 if (kvm_has_zapped_obsolete_pages(kvm)) {
5237 kvm_mmu_commit_zap_page(kvm,
5238 &kvm->arch.zapped_obsolete_pages);
5239 goto unlock;
5240 }
5241
70534a73
DC
5242 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5243 freed++;
d98ba053 5244 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 5245
365c8868 5246unlock:
3ee16c81 5247 spin_unlock(&kvm->mmu_lock);
f656ce01 5248 srcu_read_unlock(&kvm->srcu, idx);
19526396 5249
70534a73
DC
5250 /*
5251 * unfair on small ones
5252 * per-vm shrinkers cry out
5253 * sadness comes quickly
5254 */
19526396
GN
5255 list_move_tail(&kvm->vm_list, &vm_list);
5256 break;
3ee16c81 5257 }
3ee16c81 5258
2f303b74 5259 spin_unlock(&kvm_lock);
70534a73 5260 return freed;
70534a73
DC
5261}
5262
5263static unsigned long
5264mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5265{
45221ab6 5266 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5267}
5268
5269static struct shrinker mmu_shrinker = {
70534a73
DC
5270 .count_objects = mmu_shrink_count,
5271 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5272 .seeks = DEFAULT_SEEKS * 10,
5273};
5274
2ddfd20e 5275static void mmu_destroy_caches(void)
b5a33a75 5276{
53c07b18
XG
5277 if (pte_list_desc_cache)
5278 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
5279 if (mmu_page_header_cache)
5280 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5281}
5282
5283int kvm_mmu_module_init(void)
5284{
f160c7b7
JS
5285 kvm_mmu_clear_all_pte_masks();
5286
53c07b18
XG
5287 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5288 sizeof(struct pte_list_desc),
20c2df83 5289 0, 0, NULL);
53c07b18 5290 if (!pte_list_desc_cache)
b5a33a75
AK
5291 goto nomem;
5292
d3d25b04
AK
5293 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5294 sizeof(struct kvm_mmu_page),
20c2df83 5295 0, 0, NULL);
d3d25b04
AK
5296 if (!mmu_page_header_cache)
5297 goto nomem;
5298
908c7f19 5299 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
5300 goto nomem;
5301
3ee16c81
IE
5302 register_shrinker(&mmu_shrinker);
5303
b5a33a75
AK
5304 return 0;
5305
5306nomem:
3ee16c81 5307 mmu_destroy_caches();
b5a33a75
AK
5308 return -ENOMEM;
5309}
5310
3ad82a7e
ZX
5311/*
5312 * Caculate mmu pages needed for kvm.
5313 */
5314unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5315{
3ad82a7e
ZX
5316 unsigned int nr_mmu_pages;
5317 unsigned int nr_pages = 0;
bc6678a3 5318 struct kvm_memslots *slots;
be6ba0f0 5319 struct kvm_memory_slot *memslot;
9da0e4d5 5320 int i;
3ad82a7e 5321
9da0e4d5
PB
5322 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5323 slots = __kvm_memslots(kvm, i);
90d83dc3 5324
9da0e4d5
PB
5325 kvm_for_each_memslot(memslot, slots)
5326 nr_pages += memslot->npages;
5327 }
3ad82a7e
ZX
5328
5329 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5330 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 5331 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5332
5333 return nr_mmu_pages;
5334}
5335
c42fffe3
XG
5336void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5337{
95f93af4 5338 kvm_mmu_unload(vcpu);
c42fffe3
XG
5339 free_mmu_pages(vcpu);
5340 mmu_free_memory_caches(vcpu);
b034cf01
XG
5341}
5342
b034cf01
XG
5343void kvm_mmu_module_exit(void)
5344{
5345 mmu_destroy_caches();
5346 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5347 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5348 mmu_audit_disable();
5349}