]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu.c
kvm: mmu: extend the is_present check to 32 bits
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
3d0c27ad 44#include <asm/kvm_page_track.h>
6aa8b732 45
18552672
JR
46/*
47 * When setting this variable to true it enables Two-Dimensional-Paging
48 * where the hardware walks 2 page tables:
49 * 1. the guest-virtual to guest-physical
50 * 2. while doing 1. it walks guest-physical to host-physical
51 * If the hardware supports that we don't need to do shadow paging.
52 */
2f333bcb 53bool tdp_enabled = false;
18552672 54
8b1fe17c
XG
55enum {
56 AUDIT_PRE_PAGE_FAULT,
57 AUDIT_POST_PAGE_FAULT,
58 AUDIT_PRE_PTE_WRITE,
6903074c
XG
59 AUDIT_POST_PTE_WRITE,
60 AUDIT_PRE_SYNC,
61 AUDIT_POST_SYNC
8b1fe17c 62};
37a7d8b0 63
8b1fe17c 64#undef MMU_DEBUG
37a7d8b0
AK
65
66#ifdef MMU_DEBUG
fa4a2c08
PB
67static bool dbg = 0;
68module_param(dbg, bool, 0644);
37a7d8b0
AK
69
70#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 72#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 73#else
37a7d8b0
AK
74#define pgprintk(x...) do { } while (0)
75#define rmap_printk(x...) do { } while (0)
fa4a2c08 76#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 77#endif
6aa8b732 78
957ed9ef
XG
79#define PTE_PREFETCH_NUM 8
80
00763e41 81#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
82#define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
6aa8b732
AK
84#define PT64_LEVEL_BITS 9
85
86#define PT64_LEVEL_SHIFT(level) \
d77c26fc 87 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 88
6aa8b732
AK
89#define PT64_INDEX(address, level)\
90 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93#define PT32_LEVEL_BITS 10
94
95#define PT32_LEVEL_SHIFT(level) \
d77c26fc 96 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 97
e04da980
JR
98#define PT32_LVL_OFFSET_MASK(level) \
99 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
101
102#define PT32_INDEX(address, level)\
103 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
27aba766 106#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
107#define PT64_DIR_BASE_ADDR_MASK \
108 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
109#define PT64_LVL_ADDR_MASK(level) \
110 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111 * PT64_LEVEL_BITS))) - 1))
112#define PT64_LVL_OFFSET_MASK(level) \
113 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
115
116#define PT32_BASE_ADDR_MASK PAGE_MASK
117#define PT32_DIR_BASE_ADDR_MASK \
118 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
119#define PT32_LVL_ADDR_MASK(level) \
120 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121 * PT32_LEVEL_BITS))) - 1))
6aa8b732 122
53166229
GN
123#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124 | shadow_x_mask | shadow_nx_mask)
6aa8b732 125
fe135d2c
AK
126#define ACC_EXEC_MASK 1
127#define ACC_WRITE_MASK PT_WRITABLE_MASK
128#define ACC_USER_MASK PT_USER_MASK
129#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
90bb6fc5
AK
131#include <trace/events/kvm.h>
132
07420171
AK
133#define CREATE_TRACE_POINTS
134#include "mmutrace.h"
135
49fde340
XG
136#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 138
135f8c2b
AK
139#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
220f773a
TY
141/* make pte_list_desc fit well in cache line */
142#define PTE_LIST_EXT 3
143
53c07b18
XG
144struct pte_list_desc {
145 u64 *sptes[PTE_LIST_EXT];
146 struct pte_list_desc *more;
cd4a4e53
AK
147};
148
2d11123a
AK
149struct kvm_shadow_walk_iterator {
150 u64 addr;
151 hpa_t shadow_addr;
2d11123a 152 u64 *sptep;
dd3bfd59 153 int level;
2d11123a
AK
154 unsigned index;
155};
156
157#define for_each_shadow_entry(_vcpu, _addr, _walker) \
158 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
159 shadow_walk_okay(&(_walker)); \
160 shadow_walk_next(&(_walker)))
161
c2a2ac2b
XG
162#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
163 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
164 shadow_walk_okay(&(_walker)) && \
165 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
166 __shadow_walk_next(&(_walker), spte))
167
53c07b18 168static struct kmem_cache *pte_list_desc_cache;
d3d25b04 169static struct kmem_cache *mmu_page_header_cache;
45221ab6 170static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 171
7b52345e
SY
172static u64 __read_mostly shadow_nx_mask;
173static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174static u64 __read_mostly shadow_user_mask;
175static u64 __read_mostly shadow_accessed_mask;
176static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
177static u64 __read_mostly shadow_mmio_mask;
178
179static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 180static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
181
182void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
183{
184 shadow_mmio_mask = mmio_mask;
185}
186EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
187
f2fd125d 188/*
ee3d1570
DM
189 * the low bit of the generation number is always presumed to be zero.
190 * This disables mmio caching during memslot updates. The concept is
191 * similar to a seqcount but instead of retrying the access we just punt
192 * and ignore the cache.
193 *
194 * spte bits 3-11 are used as bits 1-9 of the generation number,
195 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 196 */
ee3d1570 197#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
198#define MMIO_SPTE_GEN_HIGH_SHIFT 52
199
ee3d1570
DM
200#define MMIO_GEN_SHIFT 20
201#define MMIO_GEN_LOW_SHIFT 10
202#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 203#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
204
205static u64 generation_mmio_spte_mask(unsigned int gen)
206{
207 u64 mask;
208
842bb26a 209 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
210
211 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
212 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
213 return mask;
214}
215
216static unsigned int get_mmio_spte_generation(u64 spte)
217{
218 unsigned int gen;
219
220 spte &= ~shadow_mmio_mask;
221
222 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
223 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
224 return gen;
225}
226
54bf36aa 227static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 228{
54bf36aa 229 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
230}
231
54bf36aa 232static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 233 unsigned access)
ce88decf 234{
54bf36aa 235 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 236 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 237
ce88decf 238 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 239 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 240
f8f55942 241 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 242 mmu_spte_set(sptep, mask);
ce88decf
XG
243}
244
245static bool is_mmio_spte(u64 spte)
246{
247 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
248}
249
250static gfn_t get_mmio_spte_gfn(u64 spte)
251{
842bb26a 252 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 253 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
254}
255
256static unsigned get_mmio_spte_access(u64 spte)
257{
842bb26a 258 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 259 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
260}
261
54bf36aa 262static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 263 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
264{
265 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 266 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
267 return true;
268 }
269
270 return false;
271}
c7addb90 272
54bf36aa 273static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 274{
089504c0
XG
275 unsigned int kvm_gen, spte_gen;
276
54bf36aa 277 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
278 spte_gen = get_mmio_spte_generation(spte);
279
280 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
281 return likely(kvm_gen == spte_gen);
f8f55942
XG
282}
283
7b52345e 284void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 285 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
286{
287 shadow_user_mask = user_mask;
288 shadow_accessed_mask = accessed_mask;
289 shadow_dirty_mask = dirty_mask;
290 shadow_nx_mask = nx_mask;
291 shadow_x_mask = x_mask;
292}
293EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
294
6aa8b732
AK
295static int is_cpuid_PSE36(void)
296{
297 return 1;
298}
299
73b1087e
AK
300static int is_nx(struct kvm_vcpu *vcpu)
301{
f6801dff 302 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
303}
304
c7addb90
AK
305static int is_shadow_present_pte(u64 pte)
306{
8d5cf161 307 return (pte & 0xFFFFFFFFull) && !is_mmio_spte(pte);
c7addb90
AK
308}
309
05da4558
MT
310static int is_large_pte(u64 pte)
311{
312 return pte & PT_PAGE_SIZE_MASK;
313}
314
776e6633
MT
315static int is_last_spte(u64 pte, int level)
316{
317 if (level == PT_PAGE_TABLE_LEVEL)
318 return 1;
852e3c19 319 if (is_large_pte(pte))
776e6633
MT
320 return 1;
321 return 0;
322}
323
ba049e93 324static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 325{
35149e21 326 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
327}
328
da928521
AK
329static gfn_t pse36_gfn_delta(u32 gpte)
330{
331 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
332
333 return (gpte & PT32_DIR_PSE36_MASK) << shift;
334}
335
603e0651 336#ifdef CONFIG_X86_64
d555c333 337static void __set_spte(u64 *sptep, u64 spte)
e663ee64 338{
b19ee2ff 339 WRITE_ONCE(*sptep, spte);
e663ee64
AK
340}
341
603e0651 342static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 343{
b19ee2ff 344 WRITE_ONCE(*sptep, spte);
603e0651
XG
345}
346
347static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348{
349 return xchg(sptep, spte);
350}
c2a2ac2b
XG
351
352static u64 __get_spte_lockless(u64 *sptep)
353{
354 return ACCESS_ONCE(*sptep);
355}
a9221dd5 356#else
603e0651
XG
357union split_spte {
358 struct {
359 u32 spte_low;
360 u32 spte_high;
361 };
362 u64 spte;
363};
a9221dd5 364
c2a2ac2b
XG
365static void count_spte_clear(u64 *sptep, u64 spte)
366{
367 struct kvm_mmu_page *sp = page_header(__pa(sptep));
368
369 if (is_shadow_present_pte(spte))
370 return;
371
372 /* Ensure the spte is completely set before we increase the count */
373 smp_wmb();
374 sp->clear_spte_count++;
375}
376
603e0651
XG
377static void __set_spte(u64 *sptep, u64 spte)
378{
379 union split_spte *ssptep, sspte;
a9221dd5 380
603e0651
XG
381 ssptep = (union split_spte *)sptep;
382 sspte = (union split_spte)spte;
383
384 ssptep->spte_high = sspte.spte_high;
385
386 /*
387 * If we map the spte from nonpresent to present, We should store
388 * the high bits firstly, then set present bit, so cpu can not
389 * fetch this spte while we are setting the spte.
390 */
391 smp_wmb();
392
b19ee2ff 393 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
394}
395
603e0651
XG
396static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397{
398 union split_spte *ssptep, sspte;
399
400 ssptep = (union split_spte *)sptep;
401 sspte = (union split_spte)spte;
402
b19ee2ff 403 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
404
405 /*
406 * If we map the spte from present to nonpresent, we should clear
407 * present bit firstly to avoid vcpu fetch the old high bits.
408 */
409 smp_wmb();
410
411 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 412 count_spte_clear(sptep, spte);
603e0651
XG
413}
414
415static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416{
417 union split_spte *ssptep, sspte, orig;
418
419 ssptep = (union split_spte *)sptep;
420 sspte = (union split_spte)spte;
421
422 /* xchg acts as a barrier before the setting of the high bits */
423 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
424 orig.spte_high = ssptep->spte_high;
425 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 426 count_spte_clear(sptep, spte);
603e0651
XG
427
428 return orig.spte;
429}
c2a2ac2b
XG
430
431/*
432 * The idea using the light way get the spte on x86_32 guest is from
433 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
434 *
435 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436 * coalesces them and we are running out of the MMU lock. Therefore
437 * we need to protect against in-progress updates of the spte.
438 *
439 * Reading the spte while an update is in progress may get the old value
440 * for the high part of the spte. The race is fine for a present->non-present
441 * change (because the high part of the spte is ignored for non-present spte),
442 * but for a present->present change we must reread the spte.
443 *
444 * All such changes are done in two steps (present->non-present and
445 * non-present->present), hence it is enough to count the number of
446 * present->non-present updates: if it changed while reading the spte,
447 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
448 */
449static u64 __get_spte_lockless(u64 *sptep)
450{
451 struct kvm_mmu_page *sp = page_header(__pa(sptep));
452 union split_spte spte, *orig = (union split_spte *)sptep;
453 int count;
454
455retry:
456 count = sp->clear_spte_count;
457 smp_rmb();
458
459 spte.spte_low = orig->spte_low;
460 smp_rmb();
461
462 spte.spte_high = orig->spte_high;
463 smp_rmb();
464
465 if (unlikely(spte.spte_low != orig->spte_low ||
466 count != sp->clear_spte_count))
467 goto retry;
468
469 return spte.spte;
470}
603e0651
XG
471#endif
472
c7ba5b48
XG
473static bool spte_is_locklessly_modifiable(u64 spte)
474{
feb3eb70
GN
475 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
476 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
477}
478
8672b721
XG
479static bool spte_has_volatile_bits(u64 spte)
480{
c7ba5b48 481 /*
6a6256f9 482 * Always atomically update spte if it can be updated
c7ba5b48
XG
483 * out of mmu-lock, it can ensure dirty bit is not lost,
484 * also, it can help us to get a stable is_writable_pte()
485 * to ensure tlb flush is not missed.
486 */
487 if (spte_is_locklessly_modifiable(spte))
488 return true;
489
8672b721
XG
490 if (!shadow_accessed_mask)
491 return false;
492
493 if (!is_shadow_present_pte(spte))
494 return false;
495
4132779b
XG
496 if ((spte & shadow_accessed_mask) &&
497 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
498 return false;
499
500 return true;
501}
502
4132779b
XG
503static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
504{
505 return (old_spte & bit_mask) && !(new_spte & bit_mask);
506}
507
7e71a59b
KH
508static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
509{
510 return (old_spte & bit_mask) != (new_spte & bit_mask);
511}
512
1df9f2dc
XG
513/* Rules for using mmu_spte_set:
514 * Set the sptep from nonpresent to present.
515 * Note: the sptep being assigned *must* be either not present
516 * or in a state where the hardware will not attempt to update
517 * the spte.
518 */
519static void mmu_spte_set(u64 *sptep, u64 new_spte)
520{
521 WARN_ON(is_shadow_present_pte(*sptep));
522 __set_spte(sptep, new_spte);
523}
524
525/* Rules for using mmu_spte_update:
bb3541f1 526 * Update the state bits, it means the mapped pfn is not changed.
6e7d0354
XG
527 *
528 * Whenever we overwrite a writable spte with a read-only one we
529 * should flush remote TLBs. Otherwise rmap_write_protect
530 * will find a read-only spte, even though the writable spte
531 * might be cached on a CPU's TLB, the return value indicates this
532 * case.
1df9f2dc 533 */
6e7d0354 534static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 535{
c7ba5b48 536 u64 old_spte = *sptep;
6e7d0354 537 bool ret = false;
4132779b 538
afd28fe1 539 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 540
6e7d0354
XG
541 if (!is_shadow_present_pte(old_spte)) {
542 mmu_spte_set(sptep, new_spte);
543 return ret;
544 }
4132779b 545
c7ba5b48 546 if (!spte_has_volatile_bits(old_spte))
603e0651 547 __update_clear_spte_fast(sptep, new_spte);
4132779b 548 else
603e0651 549 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 550
c7ba5b48
XG
551 /*
552 * For the spte updated out of mmu-lock is safe, since
6a6256f9 553 * we always atomically update it, see the comments in
c7ba5b48
XG
554 * spte_has_volatile_bits().
555 */
7f31c959
XG
556 if (spte_is_locklessly_modifiable(old_spte) &&
557 !is_writable_pte(new_spte))
6e7d0354
XG
558 ret = true;
559
14f47605
YZ
560 if (!shadow_accessed_mask) {
561 /*
562 * We don't set page dirty when dropping non-writable spte.
563 * So do it now if the new spte is becoming non-writable.
564 */
565 if (ret)
566 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354 567 return ret;
14f47605 568 }
4132779b 569
7e71a59b
KH
570 /*
571 * Flush TLB when accessed/dirty bits are changed in the page tables,
572 * to guarantee consistency between TLB and page tables.
573 */
574 if (spte_is_bit_changed(old_spte, new_spte,
575 shadow_accessed_mask | shadow_dirty_mask))
576 ret = true;
577
4132779b
XG
578 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
579 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
580 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
581 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
582
583 return ret;
b79b93f9
AK
584}
585
1df9f2dc
XG
586/*
587 * Rules for using mmu_spte_clear_track_bits:
588 * It sets the sptep from present to nonpresent, and track the
589 * state bits, it is used to clear the last level sptep.
590 */
591static int mmu_spte_clear_track_bits(u64 *sptep)
592{
ba049e93 593 kvm_pfn_t pfn;
1df9f2dc
XG
594 u64 old_spte = *sptep;
595
596 if (!spte_has_volatile_bits(old_spte))
603e0651 597 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 598 else
603e0651 599 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 600
afd28fe1 601 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
602 return 0;
603
604 pfn = spte_to_pfn(old_spte);
86fde74c
XG
605
606 /*
607 * KVM does not hold the refcount of the page used by
608 * kvm mmu, before reclaiming the page, we should
609 * unmap it from mmu first.
610 */
bf4bea8e 611 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 612
1df9f2dc
XG
613 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
614 kvm_set_pfn_accessed(pfn);
14f47605
YZ
615 if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask :
616 PT_WRITABLE_MASK))
1df9f2dc
XG
617 kvm_set_pfn_dirty(pfn);
618 return 1;
619}
620
621/*
622 * Rules for using mmu_spte_clear_no_track:
623 * Directly clear spte without caring the state bits of sptep,
624 * it is used to set the upper level spte.
625 */
626static void mmu_spte_clear_no_track(u64 *sptep)
627{
603e0651 628 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
629}
630
c2a2ac2b
XG
631static u64 mmu_spte_get_lockless(u64 *sptep)
632{
633 return __get_spte_lockless(sptep);
634}
635
636static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
637{
c142786c
AK
638 /*
639 * Prevent page table teardown by making any free-er wait during
640 * kvm_flush_remote_tlbs() IPI to all active vcpus.
641 */
642 local_irq_disable();
36ca7e0a 643
c142786c
AK
644 /*
645 * Make sure a following spte read is not reordered ahead of the write
646 * to vcpu->mode.
647 */
36ca7e0a 648 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
649}
650
651static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
652{
c142786c
AK
653 /*
654 * Make sure the write to vcpu->mode is not reordered in front of
655 * reads to sptes. If it does, kvm_commit_zap_page() can see us
656 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
657 */
36ca7e0a 658 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 659 local_irq_enable();
c2a2ac2b
XG
660}
661
e2dec939 662static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 663 struct kmem_cache *base_cache, int min)
714b93da
AK
664{
665 void *obj;
666
667 if (cache->nobjs >= min)
e2dec939 668 return 0;
714b93da 669 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 670 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 671 if (!obj)
e2dec939 672 return -ENOMEM;
714b93da
AK
673 cache->objects[cache->nobjs++] = obj;
674 }
e2dec939 675 return 0;
714b93da
AK
676}
677
f759e2b4
XG
678static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
679{
680 return cache->nobjs;
681}
682
e8ad9a70
XG
683static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
684 struct kmem_cache *cache)
714b93da
AK
685{
686 while (mc->nobjs)
e8ad9a70 687 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
688}
689
c1158e63 690static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 691 int min)
c1158e63 692{
842f22ed 693 void *page;
c1158e63
AK
694
695 if (cache->nobjs >= min)
696 return 0;
697 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 698 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
699 if (!page)
700 return -ENOMEM;
842f22ed 701 cache->objects[cache->nobjs++] = page;
c1158e63
AK
702 }
703 return 0;
704}
705
706static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
707{
708 while (mc->nobjs)
c4d198d5 709 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
710}
711
2e3e5882 712static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 713{
e2dec939
AK
714 int r;
715
53c07b18 716 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 717 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
718 if (r)
719 goto out;
ad312c7c 720 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
721 if (r)
722 goto out;
ad312c7c 723 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 724 mmu_page_header_cache, 4);
e2dec939
AK
725out:
726 return r;
714b93da
AK
727}
728
729static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
730{
53c07b18
XG
731 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
732 pte_list_desc_cache);
ad312c7c 733 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
734 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
735 mmu_page_header_cache);
714b93da
AK
736}
737
80feb89a 738static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
739{
740 void *p;
741
742 BUG_ON(!mc->nobjs);
743 p = mc->objects[--mc->nobjs];
714b93da
AK
744 return p;
745}
746
53c07b18 747static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 748{
80feb89a 749 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
750}
751
53c07b18 752static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 753{
53c07b18 754 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
755}
756
2032a93d
LJ
757static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
758{
759 if (!sp->role.direct)
760 return sp->gfns[index];
761
762 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
763}
764
765static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
766{
767 if (sp->role.direct)
768 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
769 else
770 sp->gfns[index] = gfn;
771}
772
05da4558 773/*
d4dbf470
TY
774 * Return the pointer to the large page information for a given gfn,
775 * handling slots that are not large page aligned.
05da4558 776 */
d4dbf470
TY
777static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
778 struct kvm_memory_slot *slot,
779 int level)
05da4558
MT
780{
781 unsigned long idx;
782
fb03cb6f 783 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 784 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
785}
786
547ffaed
XG
787static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
788 gfn_t gfn, int count)
789{
790 struct kvm_lpage_info *linfo;
791 int i;
792
793 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
794 linfo = lpage_info_slot(gfn, slot, i);
795 linfo->disallow_lpage += count;
796 WARN_ON(linfo->disallow_lpage < 0);
797 }
798}
799
800void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
801{
802 update_gfn_disallow_lpage_count(slot, gfn, 1);
803}
804
805void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
806{
807 update_gfn_disallow_lpage_count(slot, gfn, -1);
808}
809
3ed1a478 810static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 811{
699023e2 812 struct kvm_memslots *slots;
d25797b2 813 struct kvm_memory_slot *slot;
3ed1a478 814 gfn_t gfn;
05da4558 815
56ca57f9 816 kvm->arch.indirect_shadow_pages++;
3ed1a478 817 gfn = sp->gfn;
699023e2
PB
818 slots = kvm_memslots_for_spte_role(kvm, sp->role);
819 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
820
821 /* the non-leaf shadow pages are keeping readonly. */
822 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
823 return kvm_slot_page_track_add_page(kvm, slot, gfn,
824 KVM_PAGE_TRACK_WRITE);
825
547ffaed 826 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
827}
828
3ed1a478 829static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 830{
699023e2 831 struct kvm_memslots *slots;
d25797b2 832 struct kvm_memory_slot *slot;
3ed1a478 833 gfn_t gfn;
05da4558 834
56ca57f9 835 kvm->arch.indirect_shadow_pages--;
3ed1a478 836 gfn = sp->gfn;
699023e2
PB
837 slots = kvm_memslots_for_spte_role(kvm, sp->role);
838 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
839 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
840 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
841 KVM_PAGE_TRACK_WRITE);
842
547ffaed 843 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
844}
845
92f94f1e
XG
846static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
847 struct kvm_memory_slot *slot)
05da4558 848{
d4dbf470 849 struct kvm_lpage_info *linfo;
05da4558
MT
850
851 if (slot) {
d4dbf470 852 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 853 return !!linfo->disallow_lpage;
05da4558
MT
854 }
855
92f94f1e 856 return true;
05da4558
MT
857}
858
92f94f1e
XG
859static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
860 int level)
5225fdf8
TY
861{
862 struct kvm_memory_slot *slot;
863
864 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 865 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
866}
867
d25797b2 868static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 869{
8f0b1ab6 870 unsigned long page_size;
d25797b2 871 int i, ret = 0;
05da4558 872
8f0b1ab6 873 page_size = kvm_host_page_size(kvm, gfn);
05da4558 874
8a3d08f1 875 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
876 if (page_size >= KVM_HPAGE_SIZE(i))
877 ret = i;
878 else
879 break;
880 }
881
4c2155ce 882 return ret;
05da4558
MT
883}
884
d8aacf5d
TY
885static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
886 bool no_dirty_log)
887{
888 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
889 return false;
890 if (no_dirty_log && slot->dirty_bitmap)
891 return false;
892
893 return true;
894}
895
5d163b1c
XG
896static struct kvm_memory_slot *
897gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
898 bool no_dirty_log)
05da4558
MT
899{
900 struct kvm_memory_slot *slot;
5d163b1c 901
54bf36aa 902 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 903 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
904 slot = NULL;
905
906 return slot;
907}
908
fd136902
TY
909static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
910 bool *force_pt_level)
936a5fe6
AA
911{
912 int host_level, level, max_level;
d8aacf5d
TY
913 struct kvm_memory_slot *slot;
914
8c85ac1c
TY
915 if (unlikely(*force_pt_level))
916 return PT_PAGE_TABLE_LEVEL;
05da4558 917
8c85ac1c
TY
918 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
919 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
920 if (unlikely(*force_pt_level))
921 return PT_PAGE_TABLE_LEVEL;
922
d25797b2
JR
923 host_level = host_mapping_level(vcpu->kvm, large_gfn);
924
925 if (host_level == PT_PAGE_TABLE_LEVEL)
926 return host_level;
927
55dd98c3 928 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
929
930 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 931 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 932 break;
d25797b2
JR
933
934 return level - 1;
05da4558
MT
935}
936
290fc38d 937/*
018aabb5 938 * About rmap_head encoding:
cd4a4e53 939 *
018aabb5
TY
940 * If the bit zero of rmap_head->val is clear, then it points to the only spte
941 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 942 * pte_list_desc containing more mappings.
018aabb5
TY
943 */
944
945/*
946 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 947 */
53c07b18 948static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 949 struct kvm_rmap_head *rmap_head)
cd4a4e53 950{
53c07b18 951 struct pte_list_desc *desc;
53a27b39 952 int i, count = 0;
cd4a4e53 953
018aabb5 954 if (!rmap_head->val) {
53c07b18 955 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
956 rmap_head->val = (unsigned long)spte;
957 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
958 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
959 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 960 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 961 desc->sptes[1] = spte;
018aabb5 962 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 963 ++count;
cd4a4e53 964 } else {
53c07b18 965 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 966 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 967 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 968 desc = desc->more;
53c07b18 969 count += PTE_LIST_EXT;
53a27b39 970 }
53c07b18
XG
971 if (desc->sptes[PTE_LIST_EXT-1]) {
972 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
973 desc = desc->more;
974 }
d555c333 975 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 976 ++count;
d555c333 977 desc->sptes[i] = spte;
cd4a4e53 978 }
53a27b39 979 return count;
cd4a4e53
AK
980}
981
53c07b18 982static void
018aabb5
TY
983pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
984 struct pte_list_desc *desc, int i,
985 struct pte_list_desc *prev_desc)
cd4a4e53
AK
986{
987 int j;
988
53c07b18 989 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 990 ;
d555c333
AK
991 desc->sptes[i] = desc->sptes[j];
992 desc->sptes[j] = NULL;
cd4a4e53
AK
993 if (j != 0)
994 return;
995 if (!prev_desc && !desc->more)
018aabb5 996 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
997 else
998 if (prev_desc)
999 prev_desc->more = desc->more;
1000 else
018aabb5 1001 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1002 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1003}
1004
018aabb5 1005static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1006{
53c07b18
XG
1007 struct pte_list_desc *desc;
1008 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1009 int i;
1010
018aabb5 1011 if (!rmap_head->val) {
53c07b18 1012 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 1013 BUG();
018aabb5 1014 } else if (!(rmap_head->val & 1)) {
53c07b18 1015 rmap_printk("pte_list_remove: %p 1->0\n", spte);
018aabb5 1016 if ((u64 *)rmap_head->val != spte) {
53c07b18 1017 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
1018 BUG();
1019 }
018aabb5 1020 rmap_head->val = 0;
cd4a4e53 1021 } else {
53c07b18 1022 rmap_printk("pte_list_remove: %p many->many\n", spte);
018aabb5 1023 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1024 prev_desc = NULL;
1025 while (desc) {
018aabb5 1026 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1027 if (desc->sptes[i] == spte) {
018aabb5
TY
1028 pte_list_desc_remove_entry(rmap_head,
1029 desc, i, prev_desc);
cd4a4e53
AK
1030 return;
1031 }
018aabb5 1032 }
cd4a4e53
AK
1033 prev_desc = desc;
1034 desc = desc->more;
1035 }
53c07b18 1036 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1037 BUG();
1038 }
1039}
1040
018aabb5
TY
1041static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1042 struct kvm_memory_slot *slot)
53c07b18 1043{
77d11309 1044 unsigned long idx;
53c07b18 1045
77d11309 1046 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1047 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1048}
1049
018aabb5
TY
1050static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1051 struct kvm_mmu_page *sp)
9b9b1492 1052{
699023e2 1053 struct kvm_memslots *slots;
9b9b1492
TY
1054 struct kvm_memory_slot *slot;
1055
699023e2
PB
1056 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1057 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1058 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1059}
1060
f759e2b4
XG
1061static bool rmap_can_add(struct kvm_vcpu *vcpu)
1062{
1063 struct kvm_mmu_memory_cache *cache;
1064
1065 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1066 return mmu_memory_cache_free_objects(cache);
1067}
1068
53c07b18
XG
1069static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1070{
1071 struct kvm_mmu_page *sp;
018aabb5 1072 struct kvm_rmap_head *rmap_head;
53c07b18 1073
53c07b18
XG
1074 sp = page_header(__pa(spte));
1075 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1076 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1077 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1078}
1079
53c07b18
XG
1080static void rmap_remove(struct kvm *kvm, u64 *spte)
1081{
1082 struct kvm_mmu_page *sp;
1083 gfn_t gfn;
018aabb5 1084 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1085
1086 sp = page_header(__pa(spte));
1087 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5
TY
1088 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1089 pte_list_remove(spte, rmap_head);
53c07b18
XG
1090}
1091
1e3f42f0
TY
1092/*
1093 * Used by the following functions to iterate through the sptes linked by a
1094 * rmap. All fields are private and not assumed to be used outside.
1095 */
1096struct rmap_iterator {
1097 /* private fields */
1098 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1099 int pos; /* index of the sptep */
1100};
1101
1102/*
1103 * Iteration must be started by this function. This should also be used after
1104 * removing/dropping sptes from the rmap link because in such cases the
1105 * information in the itererator may not be valid.
1106 *
1107 * Returns sptep if found, NULL otherwise.
1108 */
018aabb5
TY
1109static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1110 struct rmap_iterator *iter)
1e3f42f0 1111{
77fbbbd2
TY
1112 u64 *sptep;
1113
018aabb5 1114 if (!rmap_head->val)
1e3f42f0
TY
1115 return NULL;
1116
018aabb5 1117 if (!(rmap_head->val & 1)) {
1e3f42f0 1118 iter->desc = NULL;
77fbbbd2
TY
1119 sptep = (u64 *)rmap_head->val;
1120 goto out;
1e3f42f0
TY
1121 }
1122
018aabb5 1123 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1124 iter->pos = 0;
77fbbbd2
TY
1125 sptep = iter->desc->sptes[iter->pos];
1126out:
1127 BUG_ON(!is_shadow_present_pte(*sptep));
1128 return sptep;
1e3f42f0
TY
1129}
1130
1131/*
1132 * Must be used with a valid iterator: e.g. after rmap_get_first().
1133 *
1134 * Returns sptep if found, NULL otherwise.
1135 */
1136static u64 *rmap_get_next(struct rmap_iterator *iter)
1137{
77fbbbd2
TY
1138 u64 *sptep;
1139
1e3f42f0
TY
1140 if (iter->desc) {
1141 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1142 ++iter->pos;
1143 sptep = iter->desc->sptes[iter->pos];
1144 if (sptep)
77fbbbd2 1145 goto out;
1e3f42f0
TY
1146 }
1147
1148 iter->desc = iter->desc->more;
1149
1150 if (iter->desc) {
1151 iter->pos = 0;
1152 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1153 sptep = iter->desc->sptes[iter->pos];
1154 goto out;
1e3f42f0
TY
1155 }
1156 }
1157
1158 return NULL;
77fbbbd2
TY
1159out:
1160 BUG_ON(!is_shadow_present_pte(*sptep));
1161 return sptep;
1e3f42f0
TY
1162}
1163
018aabb5
TY
1164#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1165 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1166 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1167
c3707958 1168static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1169{
1df9f2dc 1170 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1171 rmap_remove(kvm, sptep);
be38d276
AK
1172}
1173
8e22f955
XG
1174
1175static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1176{
1177 if (is_large_pte(*sptep)) {
1178 WARN_ON(page_header(__pa(sptep))->role.level ==
1179 PT_PAGE_TABLE_LEVEL);
1180 drop_spte(kvm, sptep);
1181 --kvm->stat.lpages;
1182 return true;
1183 }
1184
1185 return false;
1186}
1187
1188static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1189{
1190 if (__drop_large_spte(vcpu->kvm, sptep))
1191 kvm_flush_remote_tlbs(vcpu->kvm);
1192}
1193
1194/*
49fde340 1195 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1196 * spte write-protection is caused by protecting shadow page table.
49fde340 1197 *
b4619660 1198 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1199 * protection:
1200 * - for dirty logging, the spte can be set to writable at anytime if
1201 * its dirty bitmap is properly set.
1202 * - for spte protection, the spte can be writable only after unsync-ing
1203 * shadow page.
8e22f955 1204 *
c126d94f 1205 * Return true if tlb need be flushed.
8e22f955 1206 */
c126d94f 1207static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1208{
1209 u64 spte = *sptep;
1210
49fde340
XG
1211 if (!is_writable_pte(spte) &&
1212 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1213 return false;
1214
1215 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1216
49fde340
XG
1217 if (pt_protect)
1218 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1219 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1220
c126d94f 1221 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1222}
1223
018aabb5
TY
1224static bool __rmap_write_protect(struct kvm *kvm,
1225 struct kvm_rmap_head *rmap_head,
245c3912 1226 bool pt_protect)
98348e95 1227{
1e3f42f0
TY
1228 u64 *sptep;
1229 struct rmap_iterator iter;
d13bc5b5 1230 bool flush = false;
374cbac0 1231
018aabb5 1232 for_each_rmap_spte(rmap_head, &iter, sptep)
c126d94f 1233 flush |= spte_write_protect(kvm, sptep, pt_protect);
855149aa 1234
d13bc5b5 1235 return flush;
a0ed4607
TY
1236}
1237
f4b4b180
KH
1238static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1239{
1240 u64 spte = *sptep;
1241
1242 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1243
1244 spte &= ~shadow_dirty_mask;
1245
1246 return mmu_spte_update(sptep, spte);
1247}
1248
018aabb5 1249static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1250{
1251 u64 *sptep;
1252 struct rmap_iterator iter;
1253 bool flush = false;
1254
018aabb5 1255 for_each_rmap_spte(rmap_head, &iter, sptep)
f4b4b180 1256 flush |= spte_clear_dirty(kvm, sptep);
f4b4b180
KH
1257
1258 return flush;
1259}
1260
1261static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1262{
1263 u64 spte = *sptep;
1264
1265 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1266
1267 spte |= shadow_dirty_mask;
1268
1269 return mmu_spte_update(sptep, spte);
1270}
1271
018aabb5 1272static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1273{
1274 u64 *sptep;
1275 struct rmap_iterator iter;
1276 bool flush = false;
1277
018aabb5 1278 for_each_rmap_spte(rmap_head, &iter, sptep)
f4b4b180 1279 flush |= spte_set_dirty(kvm, sptep);
f4b4b180
KH
1280
1281 return flush;
1282}
1283
5dc99b23 1284/**
3b0f1d01 1285 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1286 * @kvm: kvm instance
1287 * @slot: slot to protect
1288 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1289 * @mask: indicates which pages we should protect
1290 *
1291 * Used when we do not need to care about huge page mappings: e.g. during dirty
1292 * logging we do not have any such mappings.
1293 */
3b0f1d01 1294static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1295 struct kvm_memory_slot *slot,
1296 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1297{
018aabb5 1298 struct kvm_rmap_head *rmap_head;
a0ed4607 1299
5dc99b23 1300 while (mask) {
018aabb5
TY
1301 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1302 PT_PAGE_TABLE_LEVEL, slot);
1303 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1304
5dc99b23
TY
1305 /* clear the first set bit */
1306 mask &= mask - 1;
1307 }
374cbac0
AK
1308}
1309
f4b4b180
KH
1310/**
1311 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1312 * @kvm: kvm instance
1313 * @slot: slot to clear D-bit
1314 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1315 * @mask: indicates which pages we should clear D-bit
1316 *
1317 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1318 */
1319void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1320 struct kvm_memory_slot *slot,
1321 gfn_t gfn_offset, unsigned long mask)
1322{
018aabb5 1323 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1324
1325 while (mask) {
018aabb5
TY
1326 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1327 PT_PAGE_TABLE_LEVEL, slot);
1328 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1329
1330 /* clear the first set bit */
1331 mask &= mask - 1;
1332 }
1333}
1334EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1335
3b0f1d01
KH
1336/**
1337 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1338 * PT level pages.
1339 *
1340 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1341 * enable dirty logging for them.
1342 *
1343 * Used when we do not need to care about huge page mappings: e.g. during dirty
1344 * logging we do not have any such mappings.
1345 */
1346void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1347 struct kvm_memory_slot *slot,
1348 gfn_t gfn_offset, unsigned long mask)
1349{
88178fd4
KH
1350 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1351 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1352 mask);
1353 else
1354 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1355}
1356
aeecee2e
XG
1357bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1358 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1359{
018aabb5 1360 struct kvm_rmap_head *rmap_head;
5dc99b23 1361 int i;
2f84569f 1362 bool write_protected = false;
95d4c16c 1363
8a3d08f1 1364 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1365 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1366 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1367 }
1368
1369 return write_protected;
95d4c16c
TY
1370}
1371
aeecee2e
XG
1372static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1373{
1374 struct kvm_memory_slot *slot;
1375
1376 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1377 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1378}
1379
018aabb5 1380static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1381{
1e3f42f0
TY
1382 u64 *sptep;
1383 struct rmap_iterator iter;
6a49f85c 1384 bool flush = false;
e930bffe 1385
018aabb5 1386 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1387 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1388
1389 drop_spte(kvm, sptep);
6a49f85c 1390 flush = true;
e930bffe 1391 }
1e3f42f0 1392
6a49f85c
XG
1393 return flush;
1394}
1395
018aabb5 1396static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1397 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1398 unsigned long data)
1399{
018aabb5 1400 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1401}
1402
018aabb5 1403static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1404 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1405 unsigned long data)
3da0dd43 1406{
1e3f42f0
TY
1407 u64 *sptep;
1408 struct rmap_iterator iter;
3da0dd43 1409 int need_flush = 0;
1e3f42f0 1410 u64 new_spte;
3da0dd43 1411 pte_t *ptep = (pte_t *)data;
ba049e93 1412 kvm_pfn_t new_pfn;
3da0dd43
IE
1413
1414 WARN_ON(pte_huge(*ptep));
1415 new_pfn = pte_pfn(*ptep);
1e3f42f0 1416
0d536790 1417restart:
018aabb5 1418 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2
ALC
1419 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1420 sptep, *sptep, gfn, level);
1e3f42f0 1421
3da0dd43 1422 need_flush = 1;
1e3f42f0 1423
3da0dd43 1424 if (pte_write(*ptep)) {
1e3f42f0 1425 drop_spte(kvm, sptep);
0d536790 1426 goto restart;
3da0dd43 1427 } else {
1e3f42f0 1428 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1429 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1430
1431 new_spte &= ~PT_WRITABLE_MASK;
1432 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1433 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1434
1435 mmu_spte_clear_track_bits(sptep);
1436 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1437 }
1438 }
1e3f42f0 1439
3da0dd43
IE
1440 if (need_flush)
1441 kvm_flush_remote_tlbs(kvm);
1442
1443 return 0;
1444}
1445
6ce1f4e2
XG
1446struct slot_rmap_walk_iterator {
1447 /* input fields. */
1448 struct kvm_memory_slot *slot;
1449 gfn_t start_gfn;
1450 gfn_t end_gfn;
1451 int start_level;
1452 int end_level;
1453
1454 /* output fields. */
1455 gfn_t gfn;
018aabb5 1456 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1457 int level;
1458
1459 /* private field. */
018aabb5 1460 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1461};
1462
1463static void
1464rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1465{
1466 iterator->level = level;
1467 iterator->gfn = iterator->start_gfn;
1468 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1469 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1470 iterator->slot);
1471}
1472
1473static void
1474slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1475 struct kvm_memory_slot *slot, int start_level,
1476 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1477{
1478 iterator->slot = slot;
1479 iterator->start_level = start_level;
1480 iterator->end_level = end_level;
1481 iterator->start_gfn = start_gfn;
1482 iterator->end_gfn = end_gfn;
1483
1484 rmap_walk_init_level(iterator, iterator->start_level);
1485}
1486
1487static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1488{
1489 return !!iterator->rmap;
1490}
1491
1492static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1493{
1494 if (++iterator->rmap <= iterator->end_rmap) {
1495 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1496 return;
1497 }
1498
1499 if (++iterator->level > iterator->end_level) {
1500 iterator->rmap = NULL;
1501 return;
1502 }
1503
1504 rmap_walk_init_level(iterator, iterator->level);
1505}
1506
1507#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1508 _start_gfn, _end_gfn, _iter_) \
1509 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1510 _end_level_, _start_gfn, _end_gfn); \
1511 slot_rmap_walk_okay(_iter_); \
1512 slot_rmap_walk_next(_iter_))
1513
84504ef3
TY
1514static int kvm_handle_hva_range(struct kvm *kvm,
1515 unsigned long start,
1516 unsigned long end,
1517 unsigned long data,
1518 int (*handler)(struct kvm *kvm,
018aabb5 1519 struct kvm_rmap_head *rmap_head,
048212d0 1520 struct kvm_memory_slot *slot,
8a9522d2
ALC
1521 gfn_t gfn,
1522 int level,
84504ef3 1523 unsigned long data))
e930bffe 1524{
bc6678a3 1525 struct kvm_memslots *slots;
be6ba0f0 1526 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1527 struct slot_rmap_walk_iterator iterator;
1528 int ret = 0;
9da0e4d5 1529 int i;
bc6678a3 1530
9da0e4d5
PB
1531 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1532 slots = __kvm_memslots(kvm, i);
1533 kvm_for_each_memslot(memslot, slots) {
1534 unsigned long hva_start, hva_end;
1535 gfn_t gfn_start, gfn_end;
e930bffe 1536
9da0e4d5
PB
1537 hva_start = max(start, memslot->userspace_addr);
1538 hva_end = min(end, memslot->userspace_addr +
1539 (memslot->npages << PAGE_SHIFT));
1540 if (hva_start >= hva_end)
1541 continue;
1542 /*
1543 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1544 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1545 */
1546 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1547 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1548
1549 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1550 PT_MAX_HUGEPAGE_LEVEL,
1551 gfn_start, gfn_end - 1,
1552 &iterator)
1553 ret |= handler(kvm, iterator.rmap, memslot,
1554 iterator.gfn, iterator.level, data);
1555 }
e930bffe
AA
1556 }
1557
f395302e 1558 return ret;
e930bffe
AA
1559}
1560
84504ef3
TY
1561static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1562 unsigned long data,
018aabb5
TY
1563 int (*handler)(struct kvm *kvm,
1564 struct kvm_rmap_head *rmap_head,
048212d0 1565 struct kvm_memory_slot *slot,
8a9522d2 1566 gfn_t gfn, int level,
84504ef3
TY
1567 unsigned long data))
1568{
1569 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1570}
1571
1572int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1573{
3da0dd43
IE
1574 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1575}
1576
b3ae2096
TY
1577int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1578{
1579 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1580}
1581
3da0dd43
IE
1582void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1583{
8a8365c5 1584 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1585}
1586
018aabb5 1587static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1588 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1589 unsigned long data)
e930bffe 1590{
1e3f42f0 1591 u64 *sptep;
79f702a6 1592 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1593 int young = 0;
1594
57128468 1595 BUG_ON(!shadow_accessed_mask);
534e38b4 1596
018aabb5 1597 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1598 if (*sptep & shadow_accessed_mask) {
e930bffe 1599 young = 1;
3f6d8c8a
XH
1600 clear_bit((ffs(shadow_accessed_mask) - 1),
1601 (unsigned long *)sptep);
e930bffe 1602 }
018aabb5 1603 }
0d536790 1604
8a9522d2 1605 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1606 return young;
1607}
1608
018aabb5 1609static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1610 struct kvm_memory_slot *slot, gfn_t gfn,
1611 int level, unsigned long data)
8ee53820 1612{
1e3f42f0
TY
1613 u64 *sptep;
1614 struct rmap_iterator iter;
8ee53820
AA
1615 int young = 0;
1616
1617 /*
1618 * If there's no access bit in the secondary pte set by the
1619 * hardware it's up to gup-fast/gup to set the access bit in
1620 * the primary pte or in the page structure.
1621 */
1622 if (!shadow_accessed_mask)
1623 goto out;
1624
018aabb5 1625 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1626 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1627 young = 1;
1628 break;
1629 }
018aabb5 1630 }
8ee53820
AA
1631out:
1632 return young;
1633}
1634
53a27b39
MT
1635#define RMAP_RECYCLE_THRESHOLD 1000
1636
852e3c19 1637static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1638{
018aabb5 1639 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1640 struct kvm_mmu_page *sp;
1641
1642 sp = page_header(__pa(spte));
53a27b39 1643
018aabb5 1644 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1645
018aabb5 1646 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1647 kvm_flush_remote_tlbs(vcpu->kvm);
1648}
1649
57128468 1650int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1651{
57128468
ALC
1652 /*
1653 * In case of absence of EPT Access and Dirty Bits supports,
1654 * emulate the accessed bit for EPT, by checking if this page has
1655 * an EPT mapping, and clearing it if it does. On the next access,
1656 * a new EPT mapping will be established.
1657 * This has some overhead, but not as much as the cost of swapping
1658 * out actively used pages or breaking up actively used hugepages.
1659 */
1660 if (!shadow_accessed_mask) {
1661 /*
1662 * We are holding the kvm->mmu_lock, and we are blowing up
1663 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1664 * This is correct as long as we don't decouple the mmu_lock
1665 * protected regions (like invalidate_range_start|end does).
1666 */
1667 kvm->mmu_notifier_seq++;
1668 return kvm_handle_hva_range(kvm, start, end, 0,
1669 kvm_unmap_rmapp);
1670 }
1671
1672 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1673}
1674
8ee53820
AA
1675int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1676{
1677 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1678}
1679
d6c69ee9 1680#ifdef MMU_DEBUG
47ad8e68 1681static int is_empty_shadow_page(u64 *spt)
6aa8b732 1682{
139bdb2d
AK
1683 u64 *pos;
1684 u64 *end;
1685
47ad8e68 1686 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1687 if (is_shadow_present_pte(*pos)) {
b8688d51 1688 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1689 pos, *pos);
6aa8b732 1690 return 0;
139bdb2d 1691 }
6aa8b732
AK
1692 return 1;
1693}
d6c69ee9 1694#endif
6aa8b732 1695
45221ab6
DH
1696/*
1697 * This value is the sum of all of the kvm instances's
1698 * kvm->arch.n_used_mmu_pages values. We need a global,
1699 * aggregate version in order to make the slab shrinker
1700 * faster
1701 */
1702static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1703{
1704 kvm->arch.n_used_mmu_pages += nr;
1705 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1706}
1707
834be0d8 1708static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1709{
fa4a2c08 1710 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1711 hlist_del(&sp->hash_link);
bd4c86ea
XG
1712 list_del(&sp->link);
1713 free_page((unsigned long)sp->spt);
834be0d8
GN
1714 if (!sp->role.direct)
1715 free_page((unsigned long)sp->gfns);
e8ad9a70 1716 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1717}
1718
cea0f0e7
AK
1719static unsigned kvm_page_table_hashfn(gfn_t gfn)
1720{
1ae0a13d 1721 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1722}
1723
714b93da 1724static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1725 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1726{
cea0f0e7
AK
1727 if (!parent_pte)
1728 return;
cea0f0e7 1729
67052b35 1730 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1731}
1732
4db35314 1733static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1734 u64 *parent_pte)
1735{
67052b35 1736 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1737}
1738
bcdd9a93
XG
1739static void drop_parent_pte(struct kvm_mmu_page *sp,
1740 u64 *parent_pte)
1741{
1742 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1743 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1744}
1745
47005792 1746static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1747{
67052b35 1748 struct kvm_mmu_page *sp;
7ddca7e4 1749
80feb89a
TY
1750 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1751 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1752 if (!direct)
80feb89a 1753 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1754 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1755
1756 /*
1757 * The active_mmu_pages list is the FIFO list, do not move the
1758 * page until it is zapped. kvm_zap_obsolete_pages depends on
1759 * this feature. See the comments in kvm_zap_obsolete_pages().
1760 */
67052b35 1761 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1762 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1763 return sp;
ad8cfbe3
MT
1764}
1765
67052b35 1766static void mark_unsync(u64 *spte);
1047df1f 1767static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1768{
74c4e63a
TY
1769 u64 *sptep;
1770 struct rmap_iterator iter;
1771
1772 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1773 mark_unsync(sptep);
1774 }
0074ff63
MT
1775}
1776
67052b35 1777static void mark_unsync(u64 *spte)
0074ff63 1778{
67052b35 1779 struct kvm_mmu_page *sp;
1047df1f 1780 unsigned int index;
0074ff63 1781
67052b35 1782 sp = page_header(__pa(spte));
1047df1f
XG
1783 index = spte - sp->spt;
1784 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1785 return;
1047df1f 1786 if (sp->unsync_children++)
0074ff63 1787 return;
1047df1f 1788 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1789}
1790
e8bc217a 1791static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1792 struct kvm_mmu_page *sp)
e8bc217a 1793{
1f50f1b3 1794 return 0;
e8bc217a
MT
1795}
1796
a7052897
MT
1797static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1798{
1799}
1800
0f53b5b1
XG
1801static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1802 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1803 const void *pte)
0f53b5b1
XG
1804{
1805 WARN_ON(1);
1806}
1807
60c8aec6
MT
1808#define KVM_PAGE_ARRAY_NR 16
1809
1810struct kvm_mmu_pages {
1811 struct mmu_page_and_offset {
1812 struct kvm_mmu_page *sp;
1813 unsigned int idx;
1814 } page[KVM_PAGE_ARRAY_NR];
1815 unsigned int nr;
1816};
1817
cded19f3
HE
1818static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1819 int idx)
4731d4c7 1820{
60c8aec6 1821 int i;
4731d4c7 1822
60c8aec6
MT
1823 if (sp->unsync)
1824 for (i=0; i < pvec->nr; i++)
1825 if (pvec->page[i].sp == sp)
1826 return 0;
1827
1828 pvec->page[pvec->nr].sp = sp;
1829 pvec->page[pvec->nr].idx = idx;
1830 pvec->nr++;
1831 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1832}
1833
fd951457
TY
1834static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1835{
1836 --sp->unsync_children;
1837 WARN_ON((int)sp->unsync_children < 0);
1838 __clear_bit(idx, sp->unsync_child_bitmap);
1839}
1840
60c8aec6
MT
1841static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1842 struct kvm_mmu_pages *pvec)
1843{
1844 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1845
37178b8b 1846 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1847 struct kvm_mmu_page *child;
4731d4c7
MT
1848 u64 ent = sp->spt[i];
1849
fd951457
TY
1850 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1851 clear_unsync_child_bit(sp, i);
1852 continue;
1853 }
7a8f1a74
XG
1854
1855 child = page_header(ent & PT64_BASE_ADDR_MASK);
1856
1857 if (child->unsync_children) {
1858 if (mmu_pages_add(pvec, child, i))
1859 return -ENOSPC;
1860
1861 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1862 if (!ret) {
1863 clear_unsync_child_bit(sp, i);
1864 continue;
1865 } else if (ret > 0) {
7a8f1a74 1866 nr_unsync_leaf += ret;
fd951457 1867 } else
7a8f1a74
XG
1868 return ret;
1869 } else if (child->unsync) {
1870 nr_unsync_leaf++;
1871 if (mmu_pages_add(pvec, child, i))
1872 return -ENOSPC;
1873 } else
fd951457 1874 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1875 }
1876
60c8aec6
MT
1877 return nr_unsync_leaf;
1878}
1879
e23d3fef
XG
1880#define INVALID_INDEX (-1)
1881
60c8aec6
MT
1882static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1883 struct kvm_mmu_pages *pvec)
1884{
0a47cd85 1885 pvec->nr = 0;
60c8aec6
MT
1886 if (!sp->unsync_children)
1887 return 0;
1888
e23d3fef 1889 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 1890 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1891}
1892
4731d4c7
MT
1893static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1894{
1895 WARN_ON(!sp->unsync);
5e1b3ddb 1896 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1897 sp->unsync = 0;
1898 --kvm->stat.mmu_unsync;
1899}
1900
7775834a
XG
1901static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1902 struct list_head *invalid_list);
1903static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1904 struct list_head *invalid_list);
4731d4c7 1905
f34d251d
XG
1906/*
1907 * NOTE: we should pay more attention on the zapped-obsolete page
1908 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1909 * since it has been deleted from active_mmu_pages but still can be found
1910 * at hast list.
1911 *
46971a2f 1912 * for_each_gfn_valid_sp() has skipped that kind of pages.
f34d251d 1913 */
46971a2f 1914#define for_each_gfn_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
1915 hlist_for_each_entry(_sp, \
1916 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
46971a2f
XG
1917 if ((_sp)->gfn != (_gfn) || is_obsolete_sp((_kvm), (_sp)) \
1918 || (_sp)->role.invalid) {} else
1044b030
TY
1919
1920#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
46971a2f
XG
1921 for_each_gfn_valid_sp(_kvm, _sp, _gfn) \
1922 if ((_sp)->role.direct) {} else
7ae680eb 1923
f918b443 1924/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
1925static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1926 struct list_head *invalid_list)
4731d4c7 1927{
5b7e0102 1928 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1929 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1930 return false;
4731d4c7
MT
1931 }
1932
1f50f1b3 1933 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
d98ba053 1934 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1935 return false;
4731d4c7
MT
1936 }
1937
1f50f1b3 1938 return true;
4731d4c7
MT
1939}
1940
35a70510
PB
1941static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1942 struct list_head *invalid_list,
1943 bool remote_flush, bool local_flush)
1d9dc7e0 1944{
35a70510
PB
1945 if (!list_empty(invalid_list)) {
1946 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1947 return;
1948 }
d98ba053 1949
35a70510
PB
1950 if (remote_flush)
1951 kvm_flush_remote_tlbs(vcpu->kvm);
1952 else if (local_flush)
1953 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
1954}
1955
e37fa785
XG
1956#ifdef CONFIG_KVM_MMU_AUDIT
1957#include "mmu_audit.c"
1958#else
1959static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1960static void mmu_audit_disable(void) { }
1961#endif
1962
46971a2f
XG
1963static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1964{
1965 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1966}
1967
1f50f1b3 1968static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1969 struct list_head *invalid_list)
1d9dc7e0 1970{
9a43c5d9
PB
1971 kvm_unlink_unsync_page(vcpu->kvm, sp);
1972 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
1973}
1974
9f1a122f 1975/* @gfn should be write-protected at the call site */
2a74003a
PB
1976static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1977 struct list_head *invalid_list)
9f1a122f 1978{
9f1a122f 1979 struct kvm_mmu_page *s;
2a74003a 1980 bool ret = false;
9f1a122f 1981
b67bfe0d 1982 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1983 if (!s->unsync)
9f1a122f
XG
1984 continue;
1985
1986 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 1987 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
1988 }
1989
2a74003a 1990 return ret;
9f1a122f
XG
1991}
1992
60c8aec6 1993struct mmu_page_path {
0a47cd85
PB
1994 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1995 unsigned int idx[PT64_ROOT_LEVEL];
4731d4c7
MT
1996};
1997
60c8aec6 1998#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 1999 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2000 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2001 i = mmu_pages_next(&pvec, &parents, i))
2002
cded19f3
HE
2003static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2004 struct mmu_page_path *parents,
2005 int i)
60c8aec6
MT
2006{
2007 int n;
2008
2009 for (n = i+1; n < pvec->nr; n++) {
2010 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2011 unsigned idx = pvec->page[n].idx;
2012 int level = sp->role.level;
60c8aec6 2013
0a47cd85
PB
2014 parents->idx[level-1] = idx;
2015 if (level == PT_PAGE_TABLE_LEVEL)
2016 break;
60c8aec6 2017
0a47cd85 2018 parents->parent[level-2] = sp;
60c8aec6
MT
2019 }
2020
2021 return n;
2022}
2023
0a47cd85
PB
2024static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2025 struct mmu_page_path *parents)
2026{
2027 struct kvm_mmu_page *sp;
2028 int level;
2029
2030 if (pvec->nr == 0)
2031 return 0;
2032
e23d3fef
XG
2033 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2034
0a47cd85
PB
2035 sp = pvec->page[0].sp;
2036 level = sp->role.level;
2037 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2038
2039 parents->parent[level-2] = sp;
2040
2041 /* Also set up a sentinel. Further entries in pvec are all
2042 * children of sp, so this element is never overwritten.
2043 */
2044 parents->parent[level-1] = NULL;
2045 return mmu_pages_next(pvec, parents, 0);
2046}
2047
cded19f3 2048static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2049{
60c8aec6
MT
2050 struct kvm_mmu_page *sp;
2051 unsigned int level = 0;
2052
2053 do {
2054 unsigned int idx = parents->idx[level];
60c8aec6
MT
2055 sp = parents->parent[level];
2056 if (!sp)
2057 return;
2058
e23d3fef 2059 WARN_ON(idx == INVALID_INDEX);
fd951457 2060 clear_unsync_child_bit(sp, idx);
60c8aec6 2061 level++;
0a47cd85 2062 } while (!sp->unsync_children);
60c8aec6 2063}
4731d4c7 2064
60c8aec6
MT
2065static void mmu_sync_children(struct kvm_vcpu *vcpu,
2066 struct kvm_mmu_page *parent)
2067{
2068 int i;
2069 struct kvm_mmu_page *sp;
2070 struct mmu_page_path parents;
2071 struct kvm_mmu_pages pages;
d98ba053 2072 LIST_HEAD(invalid_list);
50c9e6f3 2073 bool flush = false;
60c8aec6 2074
60c8aec6 2075 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2076 bool protected = false;
b1a36821
MT
2077
2078 for_each_sp(pages, sp, parents, i)
54bf36aa 2079 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2080
50c9e6f3 2081 if (protected) {
b1a36821 2082 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2083 flush = false;
2084 }
b1a36821 2085
60c8aec6 2086 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2087 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2088 mmu_pages_clear_parents(&parents);
2089 }
50c9e6f3
PB
2090 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2091 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2092 cond_resched_lock(&vcpu->kvm->mmu_lock);
2093 flush = false;
2094 }
60c8aec6 2095 }
50c9e6f3
PB
2096
2097 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2098}
2099
a30f47cb
XG
2100static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2101{
e5691a81 2102 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2103}
2104
2105static void clear_sp_write_flooding_count(u64 *spte)
2106{
2107 struct kvm_mmu_page *sp = page_header(__pa(spte));
2108
2109 __clear_sp_write_flooding_count(sp);
2110}
2111
cea0f0e7
AK
2112static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2113 gfn_t gfn,
2114 gva_t gaddr,
2115 unsigned level,
f6e2c02b 2116 int direct,
bb11c6c9 2117 unsigned access)
cea0f0e7
AK
2118{
2119 union kvm_mmu_page_role role;
cea0f0e7 2120 unsigned quadrant;
9f1a122f 2121 struct kvm_mmu_page *sp;
9f1a122f 2122 bool need_sync = false;
2a74003a
PB
2123 bool flush = false;
2124 LIST_HEAD(invalid_list);
cea0f0e7 2125
a770f6f2 2126 role = vcpu->arch.mmu.base_role;
cea0f0e7 2127 role.level = level;
f6e2c02b 2128 role.direct = direct;
84b0c8c6 2129 if (role.direct)
5b7e0102 2130 role.cr4_pae = 0;
41074d07 2131 role.access = access;
c5a78f2b
JR
2132 if (!vcpu->arch.mmu.direct_map
2133 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2134 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2135 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2136 role.quadrant = quadrant;
2137 }
46971a2f 2138 for_each_gfn_valid_sp(vcpu->kvm, sp, gfn) {
7ae680eb
XG
2139 if (!need_sync && sp->unsync)
2140 need_sync = true;
4731d4c7 2141
7ae680eb
XG
2142 if (sp->role.word != role.word)
2143 continue;
4731d4c7 2144
2a74003a
PB
2145 if (sp->unsync) {
2146 /* The page is good, but __kvm_sync_page might still end
2147 * up zapping it. If so, break in order to rebuild it.
2148 */
2149 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2150 break;
2151
2152 WARN_ON(!list_empty(&invalid_list));
2153 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2154 }
e02aa901 2155
98bba238 2156 if (sp->unsync_children)
a8eeb04a 2157 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2158
a30f47cb 2159 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
2160 trace_kvm_mmu_get_page(sp, false);
2161 return sp;
2162 }
47005792 2163
dfc5aa00 2164 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2165
2166 sp = kvm_mmu_alloc_page(vcpu, direct);
2167
4db35314
AK
2168 sp->gfn = gfn;
2169 sp->role = role;
7ae680eb
XG
2170 hlist_add_head(&sp->hash_link,
2171 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2172 if (!direct) {
56ca57f9
XG
2173 /*
2174 * we should do write protection before syncing pages
2175 * otherwise the content of the synced shadow page may
2176 * be inconsistent with guest page table.
2177 */
2178 account_shadowed(vcpu->kvm, sp);
2179 if (level == PT_PAGE_TABLE_LEVEL &&
2180 rmap_write_protect(vcpu, gfn))
b1a36821 2181 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f 2182
9f1a122f 2183 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2184 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2185 }
5304b8d3 2186 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2187 clear_page(sp->spt);
f691fe1d 2188 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2189
2190 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4db35314 2191 return sp;
cea0f0e7
AK
2192}
2193
2d11123a
AK
2194static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2195 struct kvm_vcpu *vcpu, u64 addr)
2196{
2197 iterator->addr = addr;
2198 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2199 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2200
2201 if (iterator->level == PT64_ROOT_LEVEL &&
2202 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2203 !vcpu->arch.mmu.direct_map)
2204 --iterator->level;
2205
2d11123a
AK
2206 if (iterator->level == PT32E_ROOT_LEVEL) {
2207 iterator->shadow_addr
2208 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2209 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2210 --iterator->level;
2211 if (!iterator->shadow_addr)
2212 iterator->level = 0;
2213 }
2214}
2215
2216static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2217{
2218 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2219 return false;
4d88954d 2220
2d11123a
AK
2221 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2222 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2223 return true;
2224}
2225
c2a2ac2b
XG
2226static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2227 u64 spte)
2d11123a 2228{
c2a2ac2b 2229 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2230 iterator->level = 0;
2231 return;
2232 }
2233
c2a2ac2b 2234 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2235 --iterator->level;
2236}
2237
c2a2ac2b
XG
2238static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2239{
2240 return __shadow_walk_next(iterator, *iterator->sptep);
2241}
2242
98bba238
TY
2243static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2244 struct kvm_mmu_page *sp)
32ef26a3
AK
2245{
2246 u64 spte;
2247
7a1638ce
YZ
2248 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2249 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2250
24db2734 2251 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
0e3d0648 2252 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
24db2734 2253
1df9f2dc 2254 mmu_spte_set(sptep, spte);
98bba238
TY
2255
2256 mmu_page_add_parent_pte(vcpu, sp, sptep);
2257
2258 if (sp->unsync_children || sp->unsync)
2259 mark_unsync(sptep);
32ef26a3
AK
2260}
2261
a357bd22
AK
2262static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2263 unsigned direct_access)
2264{
2265 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2266 struct kvm_mmu_page *child;
2267
2268 /*
2269 * For the direct sp, if the guest pte's dirty bit
2270 * changed form clean to dirty, it will corrupt the
2271 * sp's access: allow writable in the read-only sp,
2272 * so we should update the spte at this point to get
2273 * a new sp with the correct access.
2274 */
2275 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2276 if (child->role.access == direct_access)
2277 return;
2278
bcdd9a93 2279 drop_parent_pte(child, sptep);
a357bd22
AK
2280 kvm_flush_remote_tlbs(vcpu->kvm);
2281 }
2282}
2283
505aef8f 2284static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2285 u64 *spte)
2286{
2287 u64 pte;
2288 struct kvm_mmu_page *child;
2289
2290 pte = *spte;
2291 if (is_shadow_present_pte(pte)) {
505aef8f 2292 if (is_last_spte(pte, sp->role.level)) {
c3707958 2293 drop_spte(kvm, spte);
505aef8f
XG
2294 if (is_large_pte(pte))
2295 --kvm->stat.lpages;
2296 } else {
38e3b2b2 2297 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2298 drop_parent_pte(child, spte);
38e3b2b2 2299 }
505aef8f
XG
2300 return true;
2301 }
2302
2303 if (is_mmio_spte(pte))
ce88decf 2304 mmu_spte_clear_no_track(spte);
c3707958 2305
505aef8f 2306 return false;
38e3b2b2
XG
2307}
2308
90cb0529 2309static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2310 struct kvm_mmu_page *sp)
a436036b 2311{
697fe2e2 2312 unsigned i;
697fe2e2 2313
38e3b2b2
XG
2314 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2315 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2316}
2317
31aa2b44 2318static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2319{
1e3f42f0
TY
2320 u64 *sptep;
2321 struct rmap_iterator iter;
a436036b 2322
018aabb5 2323 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2324 drop_parent_pte(sp, sptep);
31aa2b44
AK
2325}
2326
60c8aec6 2327static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2328 struct kvm_mmu_page *parent,
2329 struct list_head *invalid_list)
4731d4c7 2330{
60c8aec6
MT
2331 int i, zapped = 0;
2332 struct mmu_page_path parents;
2333 struct kvm_mmu_pages pages;
4731d4c7 2334
60c8aec6 2335 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2336 return 0;
60c8aec6 2337
60c8aec6
MT
2338 while (mmu_unsync_walk(parent, &pages)) {
2339 struct kvm_mmu_page *sp;
2340
2341 for_each_sp(pages, sp, parents, i) {
7775834a 2342 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2343 mmu_pages_clear_parents(&parents);
77662e00 2344 zapped++;
60c8aec6 2345 }
60c8aec6
MT
2346 }
2347
2348 return zapped;
4731d4c7
MT
2349}
2350
7775834a
XG
2351static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2352 struct list_head *invalid_list)
31aa2b44 2353{
4731d4c7 2354 int ret;
f691fe1d 2355
7775834a 2356 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2357 ++kvm->stat.mmu_shadow_zapped;
7775834a 2358 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2359 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2360 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2361
f6e2c02b 2362 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2363 unaccount_shadowed(kvm, sp);
5304b8d3 2364
4731d4c7
MT
2365 if (sp->unsync)
2366 kvm_unlink_unsync_page(kvm, sp);
4db35314 2367 if (!sp->root_count) {
54a4f023
GJ
2368 /* Count self */
2369 ret++;
7775834a 2370 list_move(&sp->link, invalid_list);
aa6bd187 2371 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2372 } else {
5b5c6a5a 2373 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2374
2375 /*
2376 * The obsolete pages can not be used on any vcpus.
2377 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2378 */
2379 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2380 kvm_reload_remote_mmus(kvm);
2e53d63a 2381 }
7775834a
XG
2382
2383 sp->role.invalid = 1;
4731d4c7 2384 return ret;
a436036b
AK
2385}
2386
7775834a
XG
2387static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2388 struct list_head *invalid_list)
2389{
945315b9 2390 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2391
2392 if (list_empty(invalid_list))
2393 return;
2394
c142786c 2395 /*
9753f529
LT
2396 * We need to make sure everyone sees our modifications to
2397 * the page tables and see changes to vcpu->mode here. The barrier
2398 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2399 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2400 *
2401 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2402 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2403 */
2404 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2405
945315b9 2406 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2407 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2408 kvm_mmu_free_page(sp);
945315b9 2409 }
7775834a
XG
2410}
2411
5da59607
TY
2412static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2413 struct list_head *invalid_list)
2414{
2415 struct kvm_mmu_page *sp;
2416
2417 if (list_empty(&kvm->arch.active_mmu_pages))
2418 return false;
2419
d74c0e6b
GT
2420 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2421 struct kvm_mmu_page, link);
5da59607
TY
2422 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2423
2424 return true;
2425}
2426
82ce2c96
IE
2427/*
2428 * Changing the number of mmu pages allocated to the vm
49d5ca26 2429 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2430 */
49d5ca26 2431void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2432{
d98ba053 2433 LIST_HEAD(invalid_list);
82ce2c96 2434
b34cb590
TY
2435 spin_lock(&kvm->mmu_lock);
2436
49d5ca26 2437 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2438 /* Need to free some mmu pages to achieve the goal. */
2439 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2440 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2441 break;
82ce2c96 2442
aa6bd187 2443 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2444 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2445 }
82ce2c96 2446
49d5ca26 2447 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2448
2449 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2450}
2451
1cb3f3ae 2452int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2453{
4db35314 2454 struct kvm_mmu_page *sp;
d98ba053 2455 LIST_HEAD(invalid_list);
a436036b
AK
2456 int r;
2457
9ad17b10 2458 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2459 r = 0;
1cb3f3ae 2460 spin_lock(&kvm->mmu_lock);
b67bfe0d 2461 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2462 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2463 sp->role.word);
2464 r = 1;
f41d335a 2465 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2466 }
d98ba053 2467 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2468 spin_unlock(&kvm->mmu_lock);
2469
a436036b 2470 return r;
cea0f0e7 2471}
1cb3f3ae 2472EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2473
5c520e90 2474static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2475{
2476 trace_kvm_mmu_unsync_page(sp);
2477 ++vcpu->kvm->stat.mmu_unsync;
2478 sp->unsync = 1;
2479
2480 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2481}
2482
3d0c27ad
XG
2483static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2484 bool can_unsync)
4731d4c7 2485{
5c520e90 2486 struct kvm_mmu_page *sp;
4731d4c7 2487
3d0c27ad
XG
2488 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2489 return true;
9cf5cf5a 2490
5c520e90 2491 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2492 if (!can_unsync)
3d0c27ad 2493 return true;
36a2e677 2494
5c520e90
XG
2495 if (sp->unsync)
2496 continue;
9cf5cf5a 2497
5c520e90
XG
2498 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2499 kvm_unsync_page(vcpu, sp);
4731d4c7 2500 }
3d0c27ad
XG
2501
2502 return false;
4731d4c7
MT
2503}
2504
ba049e93 2505static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2506{
2507 if (pfn_valid(pfn))
2508 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2509
2510 return true;
2511}
2512
d555c333 2513static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2514 unsigned pte_access, int level,
ba049e93 2515 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2516 bool can_unsync, bool host_writable)
1c4f1fd6 2517{
6e7d0354 2518 u64 spte;
1e73f9dd 2519 int ret = 0;
64d4d521 2520
54bf36aa 2521 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2522 return 0;
2523
982c2565 2524 spte = PT_PRESENT_MASK;
947da538 2525 if (!speculative)
3201b5d9 2526 spte |= shadow_accessed_mask;
640d9b0d 2527
7b52345e
SY
2528 if (pte_access & ACC_EXEC_MASK)
2529 spte |= shadow_x_mask;
2530 else
2531 spte |= shadow_nx_mask;
49fde340 2532
1c4f1fd6 2533 if (pte_access & ACC_USER_MASK)
7b52345e 2534 spte |= shadow_user_mask;
49fde340 2535
852e3c19 2536 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2537 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2538 if (tdp_enabled)
4b12f0de 2539 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2540 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2541
9bdbba13 2542 if (host_writable)
1403283a 2543 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2544 else
2545 pte_access &= ~ACC_WRITE_MASK;
1403283a 2546
35149e21 2547 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2548
c2288505 2549 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2550
c2193463 2551 /*
7751babd
XG
2552 * Other vcpu creates new sp in the window between
2553 * mapping_level() and acquiring mmu-lock. We can
2554 * allow guest to retry the access, the mapping can
2555 * be fixed if guest refault.
c2193463 2556 */
852e3c19 2557 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2558 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2559 goto done;
38187c83 2560
49fde340 2561 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2562
ecc5589f
MT
2563 /*
2564 * Optimization: for pte sync, if spte was writable the hash
2565 * lookup is unnecessary (and expensive). Write protection
2566 * is responsibility of mmu_get_page / kvm_sync_page.
2567 * Same reasoning can be applied to dirty page accounting.
2568 */
8dae4445 2569 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2570 goto set_pte;
2571
4731d4c7 2572 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2573 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2574 __func__, gfn);
1e73f9dd 2575 ret = 1;
1c4f1fd6 2576 pte_access &= ~ACC_WRITE_MASK;
49fde340 2577 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2578 }
2579 }
2580
9b51a630 2581 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2582 kvm_vcpu_mark_page_dirty(vcpu, gfn);
9b51a630
KH
2583 spte |= shadow_dirty_mask;
2584 }
1c4f1fd6 2585
38187c83 2586set_pte:
6e7d0354 2587 if (mmu_spte_update(sptep, spte))
b330aa0c 2588 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2589done:
1e73f9dd
MT
2590 return ret;
2591}
2592
029499b4 2593static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
ba049e93 2594 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
029499b4 2595 bool speculative, bool host_writable)
1e73f9dd
MT
2596{
2597 int was_rmapped = 0;
53a27b39 2598 int rmap_count;
029499b4 2599 bool emulate = false;
1e73f9dd 2600
f7616203
XG
2601 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2602 *sptep, write_fault, gfn);
1e73f9dd 2603
afd28fe1 2604 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2605 /*
2606 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2607 * the parent of the now unreachable PTE.
2608 */
852e3c19
JR
2609 if (level > PT_PAGE_TABLE_LEVEL &&
2610 !is_large_pte(*sptep)) {
1e73f9dd 2611 struct kvm_mmu_page *child;
d555c333 2612 u64 pte = *sptep;
1e73f9dd
MT
2613
2614 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2615 drop_parent_pte(child, sptep);
3be2264b 2616 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2617 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2618 pgprintk("hfn old %llx new %llx\n",
d555c333 2619 spte_to_pfn(*sptep), pfn);
c3707958 2620 drop_spte(vcpu->kvm, sptep);
91546356 2621 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2622 } else
2623 was_rmapped = 1;
1e73f9dd 2624 }
852e3c19 2625
c2288505
XG
2626 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2627 true, host_writable)) {
1e73f9dd 2628 if (write_fault)
029499b4 2629 emulate = true;
77c3913b 2630 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2631 }
1e73f9dd 2632
029499b4
TY
2633 if (unlikely(is_mmio_spte(*sptep)))
2634 emulate = true;
ce88decf 2635
d555c333 2636 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2637 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2638 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2639 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2640 *sptep, sptep);
d555c333 2641 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2642 ++vcpu->kvm->stat.lpages;
2643
ffb61bb3 2644 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2645 if (!was_rmapped) {
2646 rmap_count = rmap_add(vcpu, sptep, gfn);
2647 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2648 rmap_recycle(vcpu, sptep, gfn);
2649 }
1c4f1fd6 2650 }
cb9aaa30 2651
f3ac1a4b 2652 kvm_release_pfn_clean(pfn);
029499b4
TY
2653
2654 return emulate;
1c4f1fd6
AK
2655}
2656
ba049e93 2657static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2658 bool no_dirty_log)
2659{
2660 struct kvm_memory_slot *slot;
957ed9ef 2661
5d163b1c 2662 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2663 if (!slot)
6c8ee57b 2664 return KVM_PFN_ERR_FAULT;
957ed9ef 2665
037d92dc 2666 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2667}
2668
2669static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2670 struct kvm_mmu_page *sp,
2671 u64 *start, u64 *end)
2672{
2673 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2674 struct kvm_memory_slot *slot;
957ed9ef
XG
2675 unsigned access = sp->role.access;
2676 int i, ret;
2677 gfn_t gfn;
2678
2679 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2680 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2681 if (!slot)
957ed9ef
XG
2682 return -1;
2683
d9ef13c2 2684 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2685 if (ret <= 0)
2686 return -1;
2687
2688 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
2689 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2690 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
2691
2692 return 0;
2693}
2694
2695static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2696 struct kvm_mmu_page *sp, u64 *sptep)
2697{
2698 u64 *spte, *start = NULL;
2699 int i;
2700
2701 WARN_ON(!sp->role.direct);
2702
2703 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2704 spte = sp->spt + i;
2705
2706 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2707 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2708 if (!start)
2709 continue;
2710 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2711 break;
2712 start = NULL;
2713 } else if (!start)
2714 start = spte;
2715 }
2716}
2717
2718static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2719{
2720 struct kvm_mmu_page *sp;
2721
2722 /*
2723 * Since it's no accessed bit on EPT, it's no way to
2724 * distinguish between actually accessed translations
2725 * and prefetched, so disable pte prefetch if EPT is
2726 * enabled.
2727 */
2728 if (!shadow_accessed_mask)
2729 return;
2730
2731 sp = page_header(__pa(sptep));
2732 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2733 return;
2734
2735 __direct_pte_prefetch(vcpu, sp, sptep);
2736}
2737
7ee0e5b2 2738static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 2739 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 2740{
9f652d21 2741 struct kvm_shadow_walk_iterator iterator;
140754bc 2742 struct kvm_mmu_page *sp;
b90a0e6c 2743 int emulate = 0;
140754bc 2744 gfn_t pseudo_gfn;
6aa8b732 2745
989c6b34
MT
2746 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2747 return 0;
2748
9f652d21 2749 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2750 if (iterator.level == level) {
029499b4
TY
2751 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2752 write, level, gfn, pfn, prefault,
2753 map_writable);
957ed9ef 2754 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2755 ++vcpu->stat.pf_fixed;
2756 break;
6aa8b732
AK
2757 }
2758
404381c5 2759 drop_large_spte(vcpu, iterator.sptep);
c3707958 2760 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2761 u64 base_addr = iterator.addr;
2762
2763 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2764 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 2765 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 2766 iterator.level - 1, 1, ACC_ALL);
140754bc 2767
98bba238 2768 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
2769 }
2770 }
b90a0e6c 2771 return emulate;
6aa8b732
AK
2772}
2773
77db5cbd 2774static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2775{
77db5cbd
HY
2776 siginfo_t info;
2777
2778 info.si_signo = SIGBUS;
2779 info.si_errno = 0;
2780 info.si_code = BUS_MCEERR_AR;
2781 info.si_addr = (void __user *)address;
2782 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2783
77db5cbd 2784 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2785}
2786
ba049e93 2787static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2788{
4d8b81ab
XG
2789 /*
2790 * Do not cache the mmio info caused by writing the readonly gfn
2791 * into the spte otherwise read access on readonly gfn also can
2792 * caused mmio page fault and treat it as mmio access.
2793 * Return 1 to tell kvm to emulate it.
2794 */
2795 if (pfn == KVM_PFN_ERR_RO_FAULT)
2796 return 1;
2797
e6c1502b 2798 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2799 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
bf998156 2800 return 0;
d7c55201 2801 }
edba23e5 2802
d7c55201 2803 return -EFAULT;
bf998156
HY
2804}
2805
936a5fe6 2806static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
2807 gfn_t *gfnp, kvm_pfn_t *pfnp,
2808 int *levelp)
936a5fe6 2809{
ba049e93 2810 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
2811 gfn_t gfn = *gfnp;
2812 int level = *levelp;
2813
2814 /*
2815 * Check if it's a transparent hugepage. If this would be an
2816 * hugetlbfs page, level wouldn't be set to
2817 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2818 * here.
2819 */
bf4bea8e 2820 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6 2821 level == PT_PAGE_TABLE_LEVEL &&
127393fb 2822 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 2823 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
2824 unsigned long mask;
2825 /*
2826 * mmu_notifier_retry was successful and we hold the
2827 * mmu_lock here, so the pmd can't become splitting
2828 * from under us, and in turn
2829 * __split_huge_page_refcount() can't run from under
2830 * us and we can safely transfer the refcount from
2831 * PG_tail to PG_head as we switch the pfn to tail to
2832 * head.
2833 */
2834 *levelp = level = PT_DIRECTORY_LEVEL;
2835 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2836 VM_BUG_ON((gfn & mask) != (pfn & mask));
2837 if (pfn & mask) {
2838 gfn &= ~mask;
2839 *gfnp = gfn;
2840 kvm_release_pfn_clean(pfn);
2841 pfn &= ~mask;
c3586667 2842 kvm_get_pfn(pfn);
936a5fe6
AA
2843 *pfnp = pfn;
2844 }
2845 }
2846}
2847
d7c55201 2848static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 2849 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 2850{
d7c55201 2851 /* The pfn is invalid, report the error! */
81c52c56 2852 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2853 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2854 return true;
d7c55201
XG
2855 }
2856
ce88decf 2857 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2858 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 2859
798e88b3 2860 return false;
d7c55201
XG
2861}
2862
e5552fd2 2863static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2864{
1c118b82
XG
2865 /*
2866 * Do not fix the mmio spte with invalid generation number which
2867 * need to be updated by slow page fault path.
2868 */
2869 if (unlikely(error_code & PFERR_RSVD_MASK))
2870 return false;
2871
c7ba5b48
XG
2872 /*
2873 * #PF can be fast only if the shadow page table is present and it
2874 * is caused by write-protect, that means we just need change the
2875 * W bit of the spte which can be done out of mmu-lock.
2876 */
2877 if (!(error_code & PFERR_PRESENT_MASK) ||
2878 !(error_code & PFERR_WRITE_MASK))
2879 return false;
2880
2881 return true;
2882}
2883
2884static bool
92a476cb
XG
2885fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2886 u64 *sptep, u64 spte)
c7ba5b48 2887{
c7ba5b48
XG
2888 gfn_t gfn;
2889
2890 WARN_ON(!sp->role.direct);
2891
2892 /*
2893 * The gfn of direct spte is stable since it is calculated
2894 * by sp->gfn.
2895 */
2896 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2897
9b51a630
KH
2898 /*
2899 * Theoretically we could also set dirty bit (and flush TLB) here in
2900 * order to eliminate unnecessary PML logging. See comments in
2901 * set_spte. But fast_page_fault is very unlikely to happen with PML
2902 * enabled, so we do not do this. This might result in the same GPA
2903 * to be logged in PML buffer again when the write really happens, and
2904 * eventually to be called by mark_page_dirty twice. But it's also no
2905 * harm. This also avoids the TLB flush needed after setting dirty bit
2906 * so non-PML cases won't be impacted.
2907 *
2908 * Compare with set_spte where instead shadow_dirty_mask is set.
2909 */
c7ba5b48 2910 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
54bf36aa 2911 kvm_vcpu_mark_page_dirty(vcpu, gfn);
c7ba5b48
XG
2912
2913 return true;
2914}
2915
2916/*
2917 * Return value:
2918 * - true: let the vcpu to access on the same address again.
2919 * - false: let the real page fault path to fix it.
2920 */
2921static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2922 u32 error_code)
2923{
2924 struct kvm_shadow_walk_iterator iterator;
92a476cb 2925 struct kvm_mmu_page *sp;
c7ba5b48
XG
2926 bool ret = false;
2927 u64 spte = 0ull;
2928
37f6a4e2
MT
2929 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2930 return false;
2931
e5552fd2 2932 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2933 return false;
2934
2935 walk_shadow_page_lockless_begin(vcpu);
2936 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2937 if (!is_shadow_present_pte(spte) || iterator.level < level)
2938 break;
2939
2940 /*
2941 * If the mapping has been changed, let the vcpu fault on the
2942 * same address again.
2943 */
afd28fe1 2944 if (!is_shadow_present_pte(spte)) {
c7ba5b48
XG
2945 ret = true;
2946 goto exit;
2947 }
2948
92a476cb
XG
2949 sp = page_header(__pa(iterator.sptep));
2950 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2951 goto exit;
2952
2953 /*
2954 * Check if it is a spurious fault caused by TLB lazily flushed.
2955 *
2956 * Need not check the access of upper level table entries since
2957 * they are always ACC_ALL.
2958 */
2959 if (is_writable_pte(spte)) {
2960 ret = true;
2961 goto exit;
2962 }
2963
2964 /*
2965 * Currently, to simplify the code, only the spte write-protected
2966 * by dirty-log can be fast fixed.
2967 */
2968 if (!spte_is_locklessly_modifiable(spte))
2969 goto exit;
2970
c126d94f
XG
2971 /*
2972 * Do not fix write-permission on the large spte since we only dirty
2973 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2974 * that means other pages are missed if its slot is dirty-logged.
2975 *
2976 * Instead, we let the slow page fault path create a normal spte to
2977 * fix the access.
2978 *
2979 * See the comments in kvm_arch_commit_memory_region().
2980 */
2981 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2982 goto exit;
2983
c7ba5b48
XG
2984 /*
2985 * Currently, fast page fault only works for direct mapping since
2986 * the gfn is not stable for indirect shadow page.
2987 * See Documentation/virtual/kvm/locking.txt to get more detail.
2988 */
92a476cb 2989 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 2990exit:
a72faf25
XG
2991 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2992 spte, ret);
c7ba5b48
XG
2993 walk_shadow_page_lockless_end(vcpu);
2994
2995 return ret;
2996}
2997
78b2c54a 2998static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 2999 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
450e0b41 3000static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3001
c7ba5b48
XG
3002static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3003 gfn_t gfn, bool prefault)
10589a46
MT
3004{
3005 int r;
852e3c19 3006 int level;
fd136902 3007 bool force_pt_level = false;
ba049e93 3008 kvm_pfn_t pfn;
e930bffe 3009 unsigned long mmu_seq;
c7ba5b48 3010 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3011
fd136902 3012 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3013 if (likely(!force_pt_level)) {
936a5fe6
AA
3014 /*
3015 * This path builds a PAE pagetable - so we can map
3016 * 2mb pages at maximum. Therefore check if the level
3017 * is larger than that.
3018 */
3019 if (level > PT_DIRECTORY_LEVEL)
3020 level = PT_DIRECTORY_LEVEL;
852e3c19 3021
936a5fe6 3022 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3023 }
05da4558 3024
c7ba5b48
XG
3025 if (fast_page_fault(vcpu, v, level, error_code))
3026 return 0;
3027
e930bffe 3028 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3029 smp_rmb();
060c2abe 3030
78b2c54a 3031 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3032 return 0;
aaee2c94 3033
d7c55201
XG
3034 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3035 return r;
d196e343 3036
aaee2c94 3037 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3038 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3039 goto out_unlock;
450e0b41 3040 make_mmu_pages_available(vcpu);
936a5fe6
AA
3041 if (likely(!force_pt_level))
3042 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3043 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3044 spin_unlock(&vcpu->kvm->mmu_lock);
3045
10589a46 3046 return r;
e930bffe
AA
3047
3048out_unlock:
3049 spin_unlock(&vcpu->kvm->mmu_lock);
3050 kvm_release_pfn_clean(pfn);
3051 return 0;
10589a46
MT
3052}
3053
3054
17ac10ad
AK
3055static void mmu_free_roots(struct kvm_vcpu *vcpu)
3056{
3057 int i;
4db35314 3058 struct kvm_mmu_page *sp;
d98ba053 3059 LIST_HEAD(invalid_list);
17ac10ad 3060
ad312c7c 3061 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3062 return;
35af577a 3063
81407ca5
JR
3064 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3065 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3066 vcpu->arch.mmu.direct_map)) {
ad312c7c 3067 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3068
35af577a 3069 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3070 sp = page_header(root);
3071 --sp->root_count;
d98ba053
XG
3072 if (!sp->root_count && sp->role.invalid) {
3073 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3074 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3075 }
aaee2c94 3076 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3077 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3078 return;
3079 }
35af577a
GN
3080
3081 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3082 for (i = 0; i < 4; ++i) {
ad312c7c 3083 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3084
417726a3 3085 if (root) {
417726a3 3086 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3087 sp = page_header(root);
3088 --sp->root_count;
2e53d63a 3089 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3090 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3091 &invalid_list);
417726a3 3092 }
ad312c7c 3093 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3094 }
d98ba053 3095 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3096 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3097 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3098}
3099
8986ecc0
MT
3100static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3101{
3102 int ret = 0;
3103
3104 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3105 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3106 ret = 1;
3107 }
3108
3109 return ret;
3110}
3111
651dd37a
JR
3112static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3113{
3114 struct kvm_mmu_page *sp;
7ebaf15e 3115 unsigned i;
651dd37a
JR
3116
3117 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3118 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3119 make_mmu_pages_available(vcpu);
bb11c6c9 3120 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3121 ++sp->root_count;
3122 spin_unlock(&vcpu->kvm->mmu_lock);
3123 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3124 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3125 for (i = 0; i < 4; ++i) {
3126 hpa_t root = vcpu->arch.mmu.pae_root[i];
3127
fa4a2c08 3128 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3129 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3130 make_mmu_pages_available(vcpu);
649497d1 3131 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3132 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3133 root = __pa(sp->spt);
3134 ++sp->root_count;
3135 spin_unlock(&vcpu->kvm->mmu_lock);
3136 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3137 }
6292757f 3138 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3139 } else
3140 BUG();
3141
3142 return 0;
3143}
3144
3145static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3146{
4db35314 3147 struct kvm_mmu_page *sp;
81407ca5
JR
3148 u64 pdptr, pm_mask;
3149 gfn_t root_gfn;
3150 int i;
3bb65a22 3151
5777ed34 3152 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3153
651dd37a
JR
3154 if (mmu_check_root(vcpu, root_gfn))
3155 return 1;
3156
3157 /*
3158 * Do we shadow a long mode page table? If so we need to
3159 * write-protect the guests page table root.
3160 */
3161 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3162 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3163
fa4a2c08 3164 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3165
8facbbff 3166 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3167 make_mmu_pages_available(vcpu);
651dd37a 3168 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
bb11c6c9 3169 0, ACC_ALL);
4db35314
AK
3170 root = __pa(sp->spt);
3171 ++sp->root_count;
8facbbff 3172 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3173 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3174 return 0;
17ac10ad 3175 }
f87f9288 3176
651dd37a
JR
3177 /*
3178 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3179 * or a PAE 3-level page table. In either case we need to be aware that
3180 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3181 */
81407ca5
JR
3182 pm_mask = PT_PRESENT_MASK;
3183 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3184 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3185
17ac10ad 3186 for (i = 0; i < 4; ++i) {
ad312c7c 3187 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3188
fa4a2c08 3189 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3190 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3191 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3192 if (!is_present_gpte(pdptr)) {
ad312c7c 3193 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3194 continue;
3195 }
6de4f3ad 3196 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3197 if (mmu_check_root(vcpu, root_gfn))
3198 return 1;
5a7388c2 3199 }
8facbbff 3200 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3201 make_mmu_pages_available(vcpu);
bb11c6c9
TY
3202 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3203 0, ACC_ALL);
4db35314
AK
3204 root = __pa(sp->spt);
3205 ++sp->root_count;
8facbbff
AK
3206 spin_unlock(&vcpu->kvm->mmu_lock);
3207
81407ca5 3208 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3209 }
6292757f 3210 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3211
3212 /*
3213 * If we shadow a 32 bit page table with a long mode page
3214 * table we enter this path.
3215 */
3216 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3217 if (vcpu->arch.mmu.lm_root == NULL) {
3218 /*
3219 * The additional page necessary for this is only
3220 * allocated on demand.
3221 */
3222
3223 u64 *lm_root;
3224
3225 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3226 if (lm_root == NULL)
3227 return 1;
3228
3229 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3230
3231 vcpu->arch.mmu.lm_root = lm_root;
3232 }
3233
3234 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3235 }
3236
8986ecc0 3237 return 0;
17ac10ad
AK
3238}
3239
651dd37a
JR
3240static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3241{
3242 if (vcpu->arch.mmu.direct_map)
3243 return mmu_alloc_direct_roots(vcpu);
3244 else
3245 return mmu_alloc_shadow_roots(vcpu);
3246}
3247
0ba73cda
MT
3248static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3249{
3250 int i;
3251 struct kvm_mmu_page *sp;
3252
81407ca5
JR
3253 if (vcpu->arch.mmu.direct_map)
3254 return;
3255
0ba73cda
MT
3256 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3257 return;
6903074c 3258
56f17dd3 3259 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3260 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3261 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3262 hpa_t root = vcpu->arch.mmu.root_hpa;
3263 sp = page_header(root);
3264 mmu_sync_children(vcpu, sp);
0375f7fa 3265 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3266 return;
3267 }
3268 for (i = 0; i < 4; ++i) {
3269 hpa_t root = vcpu->arch.mmu.pae_root[i];
3270
8986ecc0 3271 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3272 root &= PT64_BASE_ADDR_MASK;
3273 sp = page_header(root);
3274 mmu_sync_children(vcpu, sp);
3275 }
3276 }
0375f7fa 3277 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3278}
3279
3280void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3281{
3282 spin_lock(&vcpu->kvm->mmu_lock);
3283 mmu_sync_roots(vcpu);
6cffe8ca 3284 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3285}
bfd0a56b 3286EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3287
1871c602 3288static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3289 u32 access, struct x86_exception *exception)
6aa8b732 3290{
ab9ae313
AK
3291 if (exception)
3292 exception->error_code = 0;
6aa8b732
AK
3293 return vaddr;
3294}
3295
6539e738 3296static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3297 u32 access,
3298 struct x86_exception *exception)
6539e738 3299{
ab9ae313
AK
3300 if (exception)
3301 exception->error_code = 0;
54987b7a 3302 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3303}
3304
d625b155
XG
3305static bool
3306__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3307{
3308 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3309
3310 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3311 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3312}
3313
3314static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3315{
3316 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3317}
3318
3319static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3320{
3321 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3322}
3323
ded58749 3324static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3325{
3326 if (direct)
3327 return vcpu_match_mmio_gpa(vcpu, addr);
3328
3329 return vcpu_match_mmio_gva(vcpu, addr);
3330}
3331
47ab8751
XG
3332/* return true if reserved bit is detected on spte. */
3333static bool
3334walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3335{
3336 struct kvm_shadow_walk_iterator iterator;
47ab8751
XG
3337 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3338 int root, leaf;
3339 bool reserved = false;
ce88decf 3340
37f6a4e2 3341 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3342 goto exit;
37f6a4e2 3343
ce88decf 3344 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3345
29ecd660
PB
3346 for (shadow_walk_init(&iterator, vcpu, addr),
3347 leaf = root = iterator.level;
47ab8751
XG
3348 shadow_walk_okay(&iterator);
3349 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3350 spte = mmu_spte_get_lockless(iterator.sptep);
3351
3352 sptes[leaf - 1] = spte;
29ecd660 3353 leaf--;
47ab8751 3354
ce88decf
XG
3355 if (!is_shadow_present_pte(spte))
3356 break;
47ab8751
XG
3357
3358 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
58c95070 3359 iterator.level);
47ab8751
XG
3360 }
3361
ce88decf
XG
3362 walk_shadow_page_lockless_end(vcpu);
3363
47ab8751
XG
3364 if (reserved) {
3365 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3366 __func__, addr);
29ecd660 3367 while (root > leaf) {
47ab8751
XG
3368 pr_err("------ spte 0x%llx level %d.\n",
3369 sptes[root - 1], root);
3370 root--;
3371 }
3372 }
3373exit:
3374 *sptep = spte;
3375 return reserved;
ce88decf
XG
3376}
3377
450869d6 3378int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3379{
3380 u64 spte;
47ab8751 3381 bool reserved;
ce88decf 3382
ded58749 3383 if (mmio_info_in_cache(vcpu, addr, direct))
b37fbea6 3384 return RET_MMIO_PF_EMULATE;
ce88decf 3385
47ab8751 3386 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3387 if (WARN_ON(reserved))
47ab8751 3388 return RET_MMIO_PF_BUG;
ce88decf
XG
3389
3390 if (is_mmio_spte(spte)) {
3391 gfn_t gfn = get_mmio_spte_gfn(spte);
3392 unsigned access = get_mmio_spte_access(spte);
3393
54bf36aa 3394 if (!check_mmio_spte(vcpu, spte))
f8f55942
XG
3395 return RET_MMIO_PF_INVALID;
3396
ce88decf
XG
3397 if (direct)
3398 addr = 0;
4f022648
XG
3399
3400 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3401 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3402 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3403 }
3404
ce88decf
XG
3405 /*
3406 * If the page table is zapped by other cpus, let CPU fault again on
3407 * the address.
3408 */
b37fbea6 3409 return RET_MMIO_PF_RETRY;
ce88decf 3410}
450869d6 3411EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
ce88decf 3412
3d0c27ad
XG
3413static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3414 u32 error_code, gfn_t gfn)
3415{
3416 if (unlikely(error_code & PFERR_RSVD_MASK))
3417 return false;
3418
3419 if (!(error_code & PFERR_PRESENT_MASK) ||
3420 !(error_code & PFERR_WRITE_MASK))
3421 return false;
3422
3423 /*
3424 * guest is writing the page which is write tracked which can
3425 * not be fixed by page fault handler.
3426 */
3427 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3428 return true;
3429
3430 return false;
3431}
3432
e5691a81
XG
3433static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3434{
3435 struct kvm_shadow_walk_iterator iterator;
3436 u64 spte;
3437
3438 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3439 return;
3440
3441 walk_shadow_page_lockless_begin(vcpu);
3442 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3443 clear_sp_write_flooding_count(iterator.sptep);
3444 if (!is_shadow_present_pte(spte))
3445 break;
3446 }
3447 walk_shadow_page_lockless_end(vcpu);
3448}
3449
6aa8b732 3450static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3451 u32 error_code, bool prefault)
6aa8b732 3452{
3d0c27ad 3453 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3454 int r;
6aa8b732 3455
b8688d51 3456 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3457
3d0c27ad
XG
3458 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3459 return 1;
ce88decf 3460
e2dec939
AK
3461 r = mmu_topup_memory_caches(vcpu);
3462 if (r)
3463 return r;
714b93da 3464
fa4a2c08 3465 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3466
6aa8b732 3467
e833240f 3468 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3469 error_code, gfn, prefault);
6aa8b732
AK
3470}
3471
7e1fbeac 3472static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3473{
3474 struct kvm_arch_async_pf arch;
fb67e14f 3475
7c90705b 3476 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3477 arch.gfn = gfn;
c4806acd 3478 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3479 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3480
54bf36aa 3481 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3482}
3483
3484static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3485{
35754c98 3486 if (unlikely(!lapic_in_kernel(vcpu) ||
af585b92
GN
3487 kvm_event_needs_reinjection(vcpu)))
3488 return false;
3489
3490 return kvm_x86_ops->interrupt_allowed(vcpu);
3491}
3492
78b2c54a 3493static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3494 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 3495{
3520469d 3496 struct kvm_memory_slot *slot;
af585b92
GN
3497 bool async;
3498
54bf36aa 3499 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3500 async = false;
3501 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3502 if (!async)
3503 return false; /* *pfn has correct page already */
3504
78b2c54a 3505 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3506 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3507 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3508 trace_kvm_async_pf_doublefault(gva, gfn);
3509 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3510 return true;
3511 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3512 return true;
3513 }
3514
3520469d 3515 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3516 return false;
3517}
3518
6a39bbc5
XG
3519static bool
3520check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3521{
3522 int page_num = KVM_PAGES_PER_HPAGE(level);
3523
3524 gfn &= ~(page_num - 1);
3525
3526 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3527}
3528
56028d08 3529static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3530 bool prefault)
fb72d167 3531{
ba049e93 3532 kvm_pfn_t pfn;
fb72d167 3533 int r;
852e3c19 3534 int level;
cd1872f0 3535 bool force_pt_level;
05da4558 3536 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3537 unsigned long mmu_seq;
612819c3
MT
3538 int write = error_code & PFERR_WRITE_MASK;
3539 bool map_writable;
fb72d167 3540
fa4a2c08 3541 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3542
3d0c27ad
XG
3543 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3544 return 1;
ce88decf 3545
fb72d167
JR
3546 r = mmu_topup_memory_caches(vcpu);
3547 if (r)
3548 return r;
3549
fd136902
TY
3550 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3551 PT_DIRECTORY_LEVEL);
3552 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3553 if (likely(!force_pt_level)) {
6a39bbc5
XG
3554 if (level > PT_DIRECTORY_LEVEL &&
3555 !check_hugepage_cache_consistency(vcpu, gfn, level))
3556 level = PT_DIRECTORY_LEVEL;
936a5fe6 3557 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3558 }
852e3c19 3559
c7ba5b48
XG
3560 if (fast_page_fault(vcpu, gpa, level, error_code))
3561 return 0;
3562
e930bffe 3563 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3564 smp_rmb();
af585b92 3565
78b2c54a 3566 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3567 return 0;
3568
d7c55201
XG
3569 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3570 return r;
3571
fb72d167 3572 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3573 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3574 goto out_unlock;
450e0b41 3575 make_mmu_pages_available(vcpu);
936a5fe6
AA
3576 if (likely(!force_pt_level))
3577 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3578 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 3579 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3580
3581 return r;
e930bffe
AA
3582
3583out_unlock:
3584 spin_unlock(&vcpu->kvm->mmu_lock);
3585 kvm_release_pfn_clean(pfn);
3586 return 0;
fb72d167
JR
3587}
3588
8a3c1a33
PB
3589static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3590 struct kvm_mmu *context)
6aa8b732 3591{
6aa8b732 3592 context->page_fault = nonpaging_page_fault;
6aa8b732 3593 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3594 context->sync_page = nonpaging_sync_page;
a7052897 3595 context->invlpg = nonpaging_invlpg;
0f53b5b1 3596 context->update_pte = nonpaging_update_pte;
cea0f0e7 3597 context->root_level = 0;
6aa8b732 3598 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3599 context->root_hpa = INVALID_PAGE;
c5a78f2b 3600 context->direct_map = true;
2d48a985 3601 context->nx = false;
6aa8b732
AK
3602}
3603
d8d173da 3604void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3605{
cea0f0e7 3606 mmu_free_roots(vcpu);
6aa8b732
AK
3607}
3608
5777ed34
JR
3609static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3610{
9f8fe504 3611 return kvm_read_cr3(vcpu);
5777ed34
JR
3612}
3613
6389ee94
AK
3614static void inject_page_fault(struct kvm_vcpu *vcpu,
3615 struct x86_exception *fault)
6aa8b732 3616{
6389ee94 3617 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3618}
3619
54bf36aa 3620static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3621 unsigned access, int *nr_present)
ce88decf
XG
3622{
3623 if (unlikely(is_mmio_spte(*sptep))) {
3624 if (gfn != get_mmio_spte_gfn(*sptep)) {
3625 mmu_spte_clear_no_track(sptep);
3626 return true;
3627 }
3628
3629 (*nr_present)++;
54bf36aa 3630 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3631 return true;
3632 }
3633
3634 return false;
3635}
3636
6bb69c9b
PB
3637static inline bool is_last_gpte(struct kvm_mmu *mmu,
3638 unsigned level, unsigned gpte)
6fd01b71 3639{
6bb69c9b
PB
3640 /*
3641 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3642 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3643 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3644 */
3645 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
6fd01b71 3646
6bb69c9b
PB
3647 /*
3648 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3649 * If it is clear, there are no large pages at this level, so clear
3650 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3651 */
3652 gpte &= level - mmu->last_nonleaf_level;
3653
3654 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
3655}
3656
37406aaa
NHE
3657#define PTTYPE_EPT 18 /* arbitrary */
3658#define PTTYPE PTTYPE_EPT
3659#include "paging_tmpl.h"
3660#undef PTTYPE
3661
6aa8b732
AK
3662#define PTTYPE 64
3663#include "paging_tmpl.h"
3664#undef PTTYPE
3665
3666#define PTTYPE 32
3667#include "paging_tmpl.h"
3668#undef PTTYPE
3669
6dc98b86
XG
3670static void
3671__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3672 struct rsvd_bits_validate *rsvd_check,
3673 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3674 bool pse, bool amd)
82725b20 3675{
82725b20 3676 u64 exb_bit_rsvd = 0;
5f7dde7b 3677 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3678 u64 nonleaf_bit8_rsvd = 0;
82725b20 3679
a0a64f50 3680 rsvd_check->bad_mt_xwr = 0;
25d92081 3681
6dc98b86 3682 if (!nx)
82725b20 3683 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3684 if (!gbpages)
5f7dde7b 3685 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3686
3687 /*
3688 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3689 * leaf entries) on AMD CPUs only.
3690 */
6fec2144 3691 if (amd)
a0c0feb5
PB
3692 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3693
6dc98b86 3694 switch (level) {
82725b20
DE
3695 case PT32_ROOT_LEVEL:
3696 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3697 rsvd_check->rsvd_bits_mask[0][1] = 0;
3698 rsvd_check->rsvd_bits_mask[0][0] = 0;
3699 rsvd_check->rsvd_bits_mask[1][0] =
3700 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 3701
6dc98b86 3702 if (!pse) {
a0a64f50 3703 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
3704 break;
3705 }
3706
82725b20
DE
3707 if (is_cpuid_PSE36())
3708 /* 36bits PSE 4MB page */
a0a64f50 3709 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
3710 else
3711 /* 32 bits PSE 4MB page */
a0a64f50 3712 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3713 break;
3714 case PT32E_ROOT_LEVEL:
a0a64f50 3715 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 3716 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3717 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 3718 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3719 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 3720 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 3721 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 3722 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
3723 rsvd_bits(maxphyaddr, 62) |
3724 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3725 rsvd_check->rsvd_bits_mask[1][0] =
3726 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3727 break;
3728 case PT64_ROOT_LEVEL:
a0a64f50
XG
3729 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3730 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 3731 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3732 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3733 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 3734 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3735 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3736 rsvd_bits(maxphyaddr, 51);
3737 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3738 rsvd_bits(maxphyaddr, 51);
3739 rsvd_check->rsvd_bits_mask[1][3] =
3740 rsvd_check->rsvd_bits_mask[0][3];
3741 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3742 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3743 rsvd_bits(13, 29);
a0a64f50 3744 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3745 rsvd_bits(maxphyaddr, 51) |
3746 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3747 rsvd_check->rsvd_bits_mask[1][0] =
3748 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3749 break;
3750 }
3751}
3752
6dc98b86
XG
3753static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3754 struct kvm_mmu *context)
3755{
3756 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3757 cpuid_maxphyaddr(vcpu), context->root_level,
3758 context->nx, guest_cpuid_has_gbpages(vcpu),
6fec2144 3759 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
3760}
3761
81b8eebb
XG
3762static void
3763__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3764 int maxphyaddr, bool execonly)
25d92081 3765{
951f9fd7 3766 u64 bad_mt_xwr;
25d92081 3767
a0a64f50 3768 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 3769 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 3770 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 3771 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3772 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 3773 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3774 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
3775
3776 /* large page */
a0a64f50
XG
3777 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3778 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 3779 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 3780 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 3781 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 3782 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 3783
951f9fd7
PB
3784 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3785 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3786 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3787 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3788 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3789 if (!execonly) {
3790 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3791 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 3792 }
951f9fd7 3793 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
3794}
3795
81b8eebb
XG
3796static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3797 struct kvm_mmu *context, bool execonly)
3798{
3799 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3800 cpuid_maxphyaddr(vcpu), execonly);
3801}
3802
c258b62b
XG
3803/*
3804 * the page table on host is the shadow page table for the page
3805 * table in guest or amd nested guest, its mmu features completely
3806 * follow the features in guest.
3807 */
3808void
3809reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3810{
5f0b8199
PB
3811 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3812
6fec2144
PB
3813 /*
3814 * Passing "true" to the last argument is okay; it adds a check
3815 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3816 */
c258b62b
XG
3817 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3818 boot_cpu_data.x86_phys_bits,
5f0b8199 3819 context->shadow_root_level, uses_nx,
6fec2144
PB
3820 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3821 true);
c258b62b
XG
3822}
3823EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3824
6fec2144
PB
3825static inline bool boot_cpu_is_amd(void)
3826{
3827 WARN_ON_ONCE(!tdp_enabled);
3828 return shadow_x_mask == 0;
3829}
3830
c258b62b
XG
3831/*
3832 * the direct page table on host, use as much mmu features as
3833 * possible, however, kvm currently does not do execution-protection.
3834 */
3835static void
3836reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3837 struct kvm_mmu *context)
3838{
6fec2144 3839 if (boot_cpu_is_amd())
c258b62b
XG
3840 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3841 boot_cpu_data.x86_phys_bits,
3842 context->shadow_root_level, false,
b8291adc
BP
3843 boot_cpu_has(X86_FEATURE_GBPAGES),
3844 true, true);
c258b62b
XG
3845 else
3846 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3847 boot_cpu_data.x86_phys_bits,
3848 false);
3849
3850}
3851
3852/*
3853 * as the comments in reset_shadow_zero_bits_mask() except it
3854 * is the shadow page table for intel nested guest.
3855 */
3856static void
3857reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3858 struct kvm_mmu *context, bool execonly)
3859{
3860 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3861 boot_cpu_data.x86_phys_bits, execonly);
3862}
3863
edc90b7d
XG
3864static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3865 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3866{
3867 unsigned bit, byte, pfec;
3868 u8 map;
66386ade 3869 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3870
66386ade 3871 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3872 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3873 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3874 pfec = byte << 1;
3875 map = 0;
3876 wf = pfec & PFERR_WRITE_MASK;
3877 uf = pfec & PFERR_USER_MASK;
3878 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3879 /*
3880 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3881 * subject to SMAP restrictions, and cleared otherwise. The
3882 * bit is only meaningful if the SMAP bit is set in CR4.
3883 */
3884 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3885 for (bit = 0; bit < 8; ++bit) {
3886 x = bit & ACC_EXEC_MASK;
3887 w = bit & ACC_WRITE_MASK;
3888 u = bit & ACC_USER_MASK;
3889
25d92081
YZ
3890 if (!ept) {
3891 /* Not really needed: !nx will cause pte.nx to fault */
3892 x |= !mmu->nx;
3893 /* Allow supervisor writes if !cr0.wp */
3894 w |= !is_write_protection(vcpu) && !uf;
3895 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3896 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3897
3898 /*
3899 * SMAP:kernel-mode data accesses from user-mode
3900 * mappings should fault. A fault is considered
3901 * as a SMAP violation if all of the following
3902 * conditions are ture:
3903 * - X86_CR4_SMAP is set in CR4
3904 * - An user page is accessed
3905 * - Page fault in kernel mode
3906 * - if CPL = 3 or X86_EFLAGS_AC is clear
3907 *
3908 * Here, we cover the first three conditions.
3909 * The fourth is computed dynamically in
3910 * permission_fault() and is in smapf.
3911 *
3912 * Also, SMAP does not affect instruction
3913 * fetches, add the !ff check here to make it
3914 * clearer.
3915 */
3916 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3917 } else
3918 /* Not really needed: no U/S accesses on ept */
3919 u = 1;
97d64b78 3920
97ec8c06
FW
3921 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3922 (smapf && smap);
97d64b78
AK
3923 map |= fault << bit;
3924 }
3925 mmu->permissions[byte] = map;
3926 }
3927}
3928
2d344105
HH
3929/*
3930* PKU is an additional mechanism by which the paging controls access to
3931* user-mode addresses based on the value in the PKRU register. Protection
3932* key violations are reported through a bit in the page fault error code.
3933* Unlike other bits of the error code, the PK bit is not known at the
3934* call site of e.g. gva_to_gpa; it must be computed directly in
3935* permission_fault based on two bits of PKRU, on some machine state (CR4,
3936* CR0, EFER, CPL), and on other bits of the error code and the page tables.
3937*
3938* In particular the following conditions come from the error code, the
3939* page tables and the machine state:
3940* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
3941* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
3942* - PK is always zero if U=0 in the page tables
3943* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
3944*
3945* The PKRU bitmask caches the result of these four conditions. The error
3946* code (minus the P bit) and the page table's U bit form an index into the
3947* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
3948* with the two bits of the PKRU register corresponding to the protection key.
3949* For the first three conditions above the bits will be 00, thus masking
3950* away both AD and WD. For all reads or if the last condition holds, WD
3951* only will be masked away.
3952*/
3953static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3954 bool ept)
3955{
3956 unsigned bit;
3957 bool wp;
3958
3959 if (ept) {
3960 mmu->pkru_mask = 0;
3961 return;
3962 }
3963
3964 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
3965 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
3966 mmu->pkru_mask = 0;
3967 return;
3968 }
3969
3970 wp = is_write_protection(vcpu);
3971
3972 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
3973 unsigned pfec, pkey_bits;
3974 bool check_pkey, check_write, ff, uf, wf, pte_user;
3975
3976 pfec = bit << 1;
3977 ff = pfec & PFERR_FETCH_MASK;
3978 uf = pfec & PFERR_USER_MASK;
3979 wf = pfec & PFERR_WRITE_MASK;
3980
3981 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
3982 pte_user = pfec & PFERR_RSVD_MASK;
3983
3984 /*
3985 * Only need to check the access which is not an
3986 * instruction fetch and is to a user page.
3987 */
3988 check_pkey = (!ff && pte_user);
3989 /*
3990 * write access is controlled by PKRU if it is a
3991 * user access or CR0.WP = 1.
3992 */
3993 check_write = check_pkey && wf && (uf || wp);
3994
3995 /* PKRU.AD stops both read and write access. */
3996 pkey_bits = !!check_pkey;
3997 /* PKRU.WD stops write access. */
3998 pkey_bits |= (!!check_write) << 1;
3999
4000 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4001 }
4002}
4003
6bb69c9b 4004static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4005{
6bb69c9b
PB
4006 unsigned root_level = mmu->root_level;
4007
4008 mmu->last_nonleaf_level = root_level;
4009 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4010 mmu->last_nonleaf_level++;
6fd01b71
AK
4011}
4012
8a3c1a33
PB
4013static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4014 struct kvm_mmu *context,
4015 int level)
6aa8b732 4016{
2d48a985 4017 context->nx = is_nx(vcpu);
4d6931c3 4018 context->root_level = level;
2d48a985 4019
4d6931c3 4020 reset_rsvds_bits_mask(vcpu, context);
25d92081 4021 update_permission_bitmask(vcpu, context, false);
2d344105 4022 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4023 update_last_nonleaf_level(vcpu, context);
6aa8b732 4024
fa4a2c08 4025 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4026 context->page_fault = paging64_page_fault;
6aa8b732 4027 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4028 context->sync_page = paging64_sync_page;
a7052897 4029 context->invlpg = paging64_invlpg;
0f53b5b1 4030 context->update_pte = paging64_update_pte;
17ac10ad 4031 context->shadow_root_level = level;
17c3ba9d 4032 context->root_hpa = INVALID_PAGE;
c5a78f2b 4033 context->direct_map = false;
6aa8b732
AK
4034}
4035
8a3c1a33
PB
4036static void paging64_init_context(struct kvm_vcpu *vcpu,
4037 struct kvm_mmu *context)
17ac10ad 4038{
8a3c1a33 4039 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
4040}
4041
8a3c1a33
PB
4042static void paging32_init_context(struct kvm_vcpu *vcpu,
4043 struct kvm_mmu *context)
6aa8b732 4044{
2d48a985 4045 context->nx = false;
4d6931c3 4046 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4047
4d6931c3 4048 reset_rsvds_bits_mask(vcpu, context);
25d92081 4049 update_permission_bitmask(vcpu, context, false);
2d344105 4050 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4051 update_last_nonleaf_level(vcpu, context);
6aa8b732 4052
6aa8b732 4053 context->page_fault = paging32_page_fault;
6aa8b732 4054 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4055 context->sync_page = paging32_sync_page;
a7052897 4056 context->invlpg = paging32_invlpg;
0f53b5b1 4057 context->update_pte = paging32_update_pte;
6aa8b732 4058 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 4059 context->root_hpa = INVALID_PAGE;
c5a78f2b 4060 context->direct_map = false;
6aa8b732
AK
4061}
4062
8a3c1a33
PB
4063static void paging32E_init_context(struct kvm_vcpu *vcpu,
4064 struct kvm_mmu *context)
6aa8b732 4065{
8a3c1a33 4066 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4067}
4068
8a3c1a33 4069static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4070{
ad896af0 4071 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 4072
c445f8ef 4073 context->base_role.word = 0;
699023e2 4074 context->base_role.smm = is_smm(vcpu);
fb72d167 4075 context->page_fault = tdp_page_fault;
e8bc217a 4076 context->sync_page = nonpaging_sync_page;
a7052897 4077 context->invlpg = nonpaging_invlpg;
0f53b5b1 4078 context->update_pte = nonpaging_update_pte;
67253af5 4079 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 4080 context->root_hpa = INVALID_PAGE;
c5a78f2b 4081 context->direct_map = true;
1c97f0a0 4082 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4083 context->get_cr3 = get_cr3;
e4e517b4 4084 context->get_pdptr = kvm_pdptr_read;
cb659db8 4085 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4086
4087 if (!is_paging(vcpu)) {
2d48a985 4088 context->nx = false;
fb72d167
JR
4089 context->gva_to_gpa = nonpaging_gva_to_gpa;
4090 context->root_level = 0;
4091 } else if (is_long_mode(vcpu)) {
2d48a985 4092 context->nx = is_nx(vcpu);
fb72d167 4093 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
4094 reset_rsvds_bits_mask(vcpu, context);
4095 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4096 } else if (is_pae(vcpu)) {
2d48a985 4097 context->nx = is_nx(vcpu);
fb72d167 4098 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4099 reset_rsvds_bits_mask(vcpu, context);
4100 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4101 } else {
2d48a985 4102 context->nx = false;
fb72d167 4103 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4104 reset_rsvds_bits_mask(vcpu, context);
4105 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4106 }
4107
25d92081 4108 update_permission_bitmask(vcpu, context, false);
2d344105 4109 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4110 update_last_nonleaf_level(vcpu, context);
c258b62b 4111 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4112}
4113
ad896af0 4114void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 4115{
411c588d 4116 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 4117 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
4118 struct kvm_mmu *context = &vcpu->arch.mmu;
4119
fa4a2c08 4120 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
4121
4122 if (!is_paging(vcpu))
8a3c1a33 4123 nonpaging_init_context(vcpu, context);
a9058ecd 4124 else if (is_long_mode(vcpu))
8a3c1a33 4125 paging64_init_context(vcpu, context);
6aa8b732 4126 else if (is_pae(vcpu))
8a3c1a33 4127 paging32E_init_context(vcpu, context);
6aa8b732 4128 else
8a3c1a33 4129 paging32_init_context(vcpu, context);
a770f6f2 4130
ad896af0
PB
4131 context->base_role.nxe = is_nx(vcpu);
4132 context->base_role.cr4_pae = !!is_pae(vcpu);
4133 context->base_role.cr0_wp = is_write_protection(vcpu);
4134 context->base_role.smep_andnot_wp
411c588d 4135 = smep && !is_write_protection(vcpu);
edc90b7d
XG
4136 context->base_role.smap_andnot_wp
4137 = smap && !is_write_protection(vcpu);
699023e2 4138 context->base_role.smm = is_smm(vcpu);
c258b62b 4139 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4140}
4141EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4142
ad896af0 4143void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 4144{
ad896af0
PB
4145 struct kvm_mmu *context = &vcpu->arch.mmu;
4146
fa4a2c08 4147 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
4148
4149 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4150
4151 context->nx = true;
155a97a3
NHE
4152 context->page_fault = ept_page_fault;
4153 context->gva_to_gpa = ept_gva_to_gpa;
4154 context->sync_page = ept_sync_page;
4155 context->invlpg = ept_invlpg;
4156 context->update_pte = ept_update_pte;
155a97a3
NHE
4157 context->root_level = context->shadow_root_level;
4158 context->root_hpa = INVALID_PAGE;
4159 context->direct_map = false;
4160
4161 update_permission_bitmask(vcpu, context, true);
2d344105 4162 update_pkru_bitmask(vcpu, context, true);
155a97a3 4163 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4164 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4165}
4166EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4167
8a3c1a33 4168static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4169{
ad896af0
PB
4170 struct kvm_mmu *context = &vcpu->arch.mmu;
4171
4172 kvm_init_shadow_mmu(vcpu);
4173 context->set_cr3 = kvm_x86_ops->set_cr3;
4174 context->get_cr3 = get_cr3;
4175 context->get_pdptr = kvm_pdptr_read;
4176 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4177}
4178
8a3c1a33 4179static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4180{
4181 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4182
4183 g_context->get_cr3 = get_cr3;
e4e517b4 4184 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4185 g_context->inject_page_fault = kvm_inject_page_fault;
4186
4187 /*
0af2593b
DM
4188 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4189 * L1's nested page tables (e.g. EPT12). The nested translation
4190 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4191 * L2's page tables as the first level of translation and L1's
4192 * nested page tables as the second level of translation. Basically
4193 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4194 */
4195 if (!is_paging(vcpu)) {
2d48a985 4196 g_context->nx = false;
02f59dc9
JR
4197 g_context->root_level = 0;
4198 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4199 } else if (is_long_mode(vcpu)) {
2d48a985 4200 g_context->nx = is_nx(vcpu);
02f59dc9 4201 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4202 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4203 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4204 } else if (is_pae(vcpu)) {
2d48a985 4205 g_context->nx = is_nx(vcpu);
02f59dc9 4206 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4207 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4208 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4209 } else {
2d48a985 4210 g_context->nx = false;
02f59dc9 4211 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4212 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4213 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4214 }
4215
25d92081 4216 update_permission_bitmask(vcpu, g_context, false);
2d344105 4217 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4218 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4219}
4220
8a3c1a33 4221static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4222{
02f59dc9 4223 if (mmu_is_nested(vcpu))
e0c6db3e 4224 init_kvm_nested_mmu(vcpu);
02f59dc9 4225 else if (tdp_enabled)
e0c6db3e 4226 init_kvm_tdp_mmu(vcpu);
fb72d167 4227 else
e0c6db3e 4228 init_kvm_softmmu(vcpu);
fb72d167
JR
4229}
4230
8a3c1a33 4231void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4232{
95f93af4 4233 kvm_mmu_unload(vcpu);
8a3c1a33 4234 init_kvm_mmu(vcpu);
17c3ba9d 4235}
8668a3c4 4236EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4237
4238int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4239{
714b93da
AK
4240 int r;
4241
e2dec939 4242 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4243 if (r)
4244 goto out;
8986ecc0 4245 r = mmu_alloc_roots(vcpu);
e2858b4a 4246 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4247 if (r)
4248 goto out;
3662cb1c 4249 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4250 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4251out:
4252 return r;
6aa8b732 4253}
17c3ba9d
AK
4254EXPORT_SYMBOL_GPL(kvm_mmu_load);
4255
4256void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4257{
4258 mmu_free_roots(vcpu);
95f93af4 4259 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4260}
4b16184c 4261EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4262
0028425f 4263static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4264 struct kvm_mmu_page *sp, u64 *spte,
4265 const void *new)
0028425f 4266{
30945387 4267 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4268 ++vcpu->kvm->stat.mmu_pde_zapped;
4269 return;
30945387 4270 }
0028425f 4271
4cee5764 4272 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4273 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4274}
4275
79539cec
AK
4276static bool need_remote_flush(u64 old, u64 new)
4277{
4278 if (!is_shadow_present_pte(old))
4279 return false;
4280 if (!is_shadow_present_pte(new))
4281 return true;
4282 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4283 return true;
53166229
GN
4284 old ^= shadow_nx_mask;
4285 new ^= shadow_nx_mask;
79539cec
AK
4286 return (old & ~new & PT64_PERM_MASK) != 0;
4287}
4288
889e5cbc
XG
4289static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4290 const u8 *new, int *bytes)
da4a00f0 4291{
889e5cbc
XG
4292 u64 gentry;
4293 int r;
72016f3a 4294
72016f3a
AK
4295 /*
4296 * Assume that the pte write on a page table of the same type
49b26e26
XG
4297 * as the current vcpu paging mode since we update the sptes only
4298 * when they have the same mode.
72016f3a 4299 */
889e5cbc 4300 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4301 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4302 *gpa &= ~(gpa_t)7;
4303 *bytes = 8;
54bf36aa 4304 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4305 if (r)
4306 gentry = 0;
08e850c6
AK
4307 new = (const u8 *)&gentry;
4308 }
4309
889e5cbc 4310 switch (*bytes) {
08e850c6
AK
4311 case 4:
4312 gentry = *(const u32 *)new;
4313 break;
4314 case 8:
4315 gentry = *(const u64 *)new;
4316 break;
4317 default:
4318 gentry = 0;
4319 break;
72016f3a
AK
4320 }
4321
889e5cbc
XG
4322 return gentry;
4323}
4324
4325/*
4326 * If we're seeing too many writes to a page, it may no longer be a page table,
4327 * or we may be forking, in which case it is better to unmap the page.
4328 */
a138fe75 4329static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4330{
a30f47cb
XG
4331 /*
4332 * Skip write-flooding detected for the sp whose level is 1, because
4333 * it can become unsync, then the guest page is not write-protected.
4334 */
f71fa31f 4335 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4336 return false;
3246af0e 4337
e5691a81
XG
4338 atomic_inc(&sp->write_flooding_count);
4339 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4340}
4341
4342/*
4343 * Misaligned accesses are too much trouble to fix up; also, they usually
4344 * indicate a page is not used as a page table.
4345 */
4346static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4347 int bytes)
4348{
4349 unsigned offset, pte_size, misaligned;
4350
4351 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4352 gpa, bytes, sp->role.word);
4353
4354 offset = offset_in_page(gpa);
4355 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4356
4357 /*
4358 * Sometimes, the OS only writes the last one bytes to update status
4359 * bits, for example, in linux, andb instruction is used in clear_bit().
4360 */
4361 if (!(offset & (pte_size - 1)) && bytes == 1)
4362 return false;
4363
889e5cbc
XG
4364 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4365 misaligned |= bytes < 4;
4366
4367 return misaligned;
4368}
4369
4370static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4371{
4372 unsigned page_offset, quadrant;
4373 u64 *spte;
4374 int level;
4375
4376 page_offset = offset_in_page(gpa);
4377 level = sp->role.level;
4378 *nspte = 1;
4379 if (!sp->role.cr4_pae) {
4380 page_offset <<= 1; /* 32->64 */
4381 /*
4382 * A 32-bit pde maps 4MB while the shadow pdes map
4383 * only 2MB. So we need to double the offset again
4384 * and zap two pdes instead of one.
4385 */
4386 if (level == PT32_ROOT_LEVEL) {
4387 page_offset &= ~7; /* kill rounding error */
4388 page_offset <<= 1;
4389 *nspte = 2;
4390 }
4391 quadrant = page_offset >> PAGE_SHIFT;
4392 page_offset &= ~PAGE_MASK;
4393 if (quadrant != sp->role.quadrant)
4394 return NULL;
4395 }
4396
4397 spte = &sp->spt[page_offset / sizeof(*spte)];
4398 return spte;
4399}
4400
13d268ca
XG
4401static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4402 const u8 *new, int bytes)
889e5cbc
XG
4403{
4404 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4405 struct kvm_mmu_page *sp;
889e5cbc
XG
4406 LIST_HEAD(invalid_list);
4407 u64 entry, gentry, *spte;
4408 int npte;
b8c67b7a 4409 bool remote_flush, local_flush;
4141259b
AM
4410 union kvm_mmu_page_role mask = { };
4411
4412 mask.cr0_wp = 1;
4413 mask.cr4_pae = 1;
4414 mask.nxe = 1;
4415 mask.smep_andnot_wp = 1;
4416 mask.smap_andnot_wp = 1;
699023e2 4417 mask.smm = 1;
889e5cbc
XG
4418
4419 /*
4420 * If we don't have indirect shadow pages, it means no page is
4421 * write-protected, so we can exit simply.
4422 */
4423 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4424 return;
4425
b8c67b7a 4426 remote_flush = local_flush = false;
889e5cbc
XG
4427
4428 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4429
4430 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4431
4432 /*
4433 * No need to care whether allocation memory is successful
4434 * or not since pte prefetch is skiped if it does not have
4435 * enough objects in the cache.
4436 */
4437 mmu_topup_memory_caches(vcpu);
4438
4439 spin_lock(&vcpu->kvm->mmu_lock);
4440 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4441 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4442
b67bfe0d 4443 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4444 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4445 detect_write_flooding(sp)) {
b8c67b7a 4446 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4447 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4448 continue;
4449 }
889e5cbc
XG
4450
4451 spte = get_written_sptes(sp, gpa, &npte);
4452 if (!spte)
4453 continue;
4454
0671a8e7 4455 local_flush = true;
ac1b714e 4456 while (npte--) {
79539cec 4457 entry = *spte;
38e3b2b2 4458 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4459 if (gentry &&
4460 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4461 & mask.word) && rmap_can_add(vcpu))
7c562522 4462 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4463 if (need_remote_flush(entry, *spte))
0671a8e7 4464 remote_flush = true;
ac1b714e 4465 ++spte;
9b7a0325 4466 }
9b7a0325 4467 }
b8c67b7a 4468 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 4469 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4470 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4471}
4472
a436036b
AK
4473int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4474{
10589a46
MT
4475 gpa_t gpa;
4476 int r;
a436036b 4477
c5a78f2b 4478 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4479 return 0;
4480
1871c602 4481 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4482
10589a46 4483 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4484
10589a46 4485 return r;
a436036b 4486}
577bdc49 4487EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4488
81f4f76b 4489static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4490{
d98ba053 4491 LIST_HEAD(invalid_list);
103ad25a 4492
81f4f76b
TY
4493 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4494 return;
4495
5da59607
TY
4496 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4497 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4498 break;
ebeace86 4499
4cee5764 4500 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4501 }
aa6bd187 4502 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4503}
ebeace86 4504
dc25e89e
AP
4505int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4506 void *insn, int insn_len)
3067714c 4507{
1cb3f3ae 4508 int r, emulation_type = EMULTYPE_RETRY;
3067714c 4509 enum emulation_result er;
ded58749 4510 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
3067714c 4511
e9ee956e
TY
4512 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4513 r = handle_mmio_page_fault(vcpu, cr2, direct);
4514 if (r == RET_MMIO_PF_EMULATE) {
4515 emulation_type = 0;
4516 goto emulate;
4517 }
4518 if (r == RET_MMIO_PF_RETRY)
4519 return 1;
4520 if (r < 0)
4521 return r;
4522 }
3067714c 4523
56028d08 4524 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c 4525 if (r < 0)
e9ee956e
TY
4526 return r;
4527 if (!r)
4528 return 1;
3067714c 4529
ded58749 4530 if (mmio_info_in_cache(vcpu, cr2, direct))
1cb3f3ae 4531 emulation_type = 0;
e9ee956e 4532emulate:
1cb3f3ae 4533 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4534
4535 switch (er) {
4536 case EMULATE_DONE:
4537 return 1;
ac0a48c3 4538 case EMULATE_USER_EXIT:
3067714c 4539 ++vcpu->stat.mmio_exits;
6d77dbfc 4540 /* fall through */
3067714c 4541 case EMULATE_FAIL:
3f5d18a9 4542 return 0;
3067714c
AK
4543 default:
4544 BUG();
4545 }
3067714c
AK
4546}
4547EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4548
a7052897
MT
4549void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4550{
a7052897 4551 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4552 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4553 ++vcpu->stat.invlpg;
4554}
4555EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4556
18552672
JR
4557void kvm_enable_tdp(void)
4558{
4559 tdp_enabled = true;
4560}
4561EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4562
5f4cb662
JR
4563void kvm_disable_tdp(void)
4564{
4565 tdp_enabled = false;
4566}
4567EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4568
6aa8b732
AK
4569static void free_mmu_pages(struct kvm_vcpu *vcpu)
4570{
ad312c7c 4571 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4572 if (vcpu->arch.mmu.lm_root != NULL)
4573 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4574}
4575
4576static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4577{
17ac10ad 4578 struct page *page;
6aa8b732
AK
4579 int i;
4580
17ac10ad
AK
4581 /*
4582 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4583 * Therefore we need to allocate shadow page tables in the first
4584 * 4GB of memory, which happens to fit the DMA32 zone.
4585 */
4586 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4587 if (!page)
d7fa6ab2
WY
4588 return -ENOMEM;
4589
ad312c7c 4590 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4591 for (i = 0; i < 4; ++i)
ad312c7c 4592 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4593
6aa8b732 4594 return 0;
6aa8b732
AK
4595}
4596
8018c27b 4597int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4598{
e459e322
XG
4599 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4600 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4601 vcpu->arch.mmu.translate_gpa = translate_gpa;
4602 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4603
8018c27b
IM
4604 return alloc_mmu_pages(vcpu);
4605}
6aa8b732 4606
8a3c1a33 4607void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4608{
fa4a2c08 4609 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4610
8a3c1a33 4611 init_kvm_mmu(vcpu);
6aa8b732
AK
4612}
4613
13d268ca
XG
4614void kvm_mmu_init_vm(struct kvm *kvm)
4615{
4616 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4617
4618 node->track_write = kvm_mmu_pte_write;
4619 kvm_page_track_register_notifier(kvm, node);
4620}
4621
4622void kvm_mmu_uninit_vm(struct kvm *kvm)
4623{
4624 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4625
4626 kvm_page_track_unregister_notifier(kvm, node);
4627}
4628
1bad2b2a 4629/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 4630typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
4631
4632/* The caller should hold mmu-lock before calling this function. */
4633static bool
4634slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4635 slot_level_handler fn, int start_level, int end_level,
4636 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4637{
4638 struct slot_rmap_walk_iterator iterator;
4639 bool flush = false;
4640
4641 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4642 end_gfn, &iterator) {
4643 if (iterator.rmap)
4644 flush |= fn(kvm, iterator.rmap);
4645
4646 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4647 if (flush && lock_flush_tlb) {
4648 kvm_flush_remote_tlbs(kvm);
4649 flush = false;
4650 }
4651 cond_resched_lock(&kvm->mmu_lock);
4652 }
4653 }
4654
4655 if (flush && lock_flush_tlb) {
4656 kvm_flush_remote_tlbs(kvm);
4657 flush = false;
4658 }
4659
4660 return flush;
4661}
4662
4663static bool
4664slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4665 slot_level_handler fn, int start_level, int end_level,
4666 bool lock_flush_tlb)
4667{
4668 return slot_handle_level_range(kvm, memslot, fn, start_level,
4669 end_level, memslot->base_gfn,
4670 memslot->base_gfn + memslot->npages - 1,
4671 lock_flush_tlb);
4672}
4673
4674static bool
4675slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4676 slot_level_handler fn, bool lock_flush_tlb)
4677{
4678 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4679 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4680}
4681
4682static bool
4683slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4684 slot_level_handler fn, bool lock_flush_tlb)
4685{
4686 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4687 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4688}
4689
4690static bool
4691slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4692 slot_level_handler fn, bool lock_flush_tlb)
4693{
4694 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4695 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4696}
4697
efdfe536
XG
4698void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4699{
4700 struct kvm_memslots *slots;
4701 struct kvm_memory_slot *memslot;
9da0e4d5 4702 int i;
efdfe536
XG
4703
4704 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
4705 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4706 slots = __kvm_memslots(kvm, i);
4707 kvm_for_each_memslot(memslot, slots) {
4708 gfn_t start, end;
4709
4710 start = max(gfn_start, memslot->base_gfn);
4711 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4712 if (start >= end)
4713 continue;
efdfe536 4714
9da0e4d5
PB
4715 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4716 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4717 start, end - 1, true);
4718 }
efdfe536
XG
4719 }
4720
4721 spin_unlock(&kvm->mmu_lock);
4722}
4723
018aabb5
TY
4724static bool slot_rmap_write_protect(struct kvm *kvm,
4725 struct kvm_rmap_head *rmap_head)
d77aa73c 4726{
018aabb5 4727 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
4728}
4729
1c91cad4
KH
4730void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4731 struct kvm_memory_slot *memslot)
6aa8b732 4732{
d77aa73c 4733 bool flush;
6aa8b732 4734
9d1beefb 4735 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4736 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4737 false);
9d1beefb 4738 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4739
4740 /*
4741 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4742 * which do tlb flush out of mmu-lock should be serialized by
4743 * kvm->slots_lock otherwise tlb flush would be missed.
4744 */
4745 lockdep_assert_held(&kvm->slots_lock);
4746
4747 /*
4748 * We can flush all the TLBs out of the mmu lock without TLB
4749 * corruption since we just change the spte from writable to
4750 * readonly so that we only need to care the case of changing
4751 * spte from present to present (changing the spte from present
4752 * to nonpresent will flush all the TLBs immediately), in other
4753 * words, the only case we care is mmu_spte_update() where we
4754 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4755 * instead of PT_WRITABLE_MASK, that means it does not depend
4756 * on PT_WRITABLE_MASK anymore.
4757 */
d91ffee9
KH
4758 if (flush)
4759 kvm_flush_remote_tlbs(kvm);
6aa8b732 4760}
37a7d8b0 4761
3ea3b7fa 4762static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 4763 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
4764{
4765 u64 *sptep;
4766 struct rmap_iterator iter;
4767 int need_tlb_flush = 0;
ba049e93 4768 kvm_pfn_t pfn;
3ea3b7fa
WL
4769 struct kvm_mmu_page *sp;
4770
0d536790 4771restart:
018aabb5 4772 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
4773 sp = page_header(__pa(sptep));
4774 pfn = spte_to_pfn(*sptep);
4775
4776 /*
decf6333
XG
4777 * We cannot do huge page mapping for indirect shadow pages,
4778 * which are found on the last rmap (level = 1) when not using
4779 * tdp; such shadow pages are synced with the page table in
4780 * the guest, and the guest page table is using 4K page size
4781 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
4782 */
4783 if (sp->role.direct &&
4784 !kvm_is_reserved_pfn(pfn) &&
127393fb 4785 PageTransCompoundMap(pfn_to_page(pfn))) {
3ea3b7fa 4786 drop_spte(kvm, sptep);
3ea3b7fa 4787 need_tlb_flush = 1;
0d536790
XG
4788 goto restart;
4789 }
3ea3b7fa
WL
4790 }
4791
4792 return need_tlb_flush;
4793}
4794
4795void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 4796 const struct kvm_memory_slot *memslot)
3ea3b7fa 4797{
f36f3f28 4798 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 4799 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
4800 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4801 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
4802 spin_unlock(&kvm->mmu_lock);
4803}
4804
f4b4b180
KH
4805void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4806 struct kvm_memory_slot *memslot)
4807{
d77aa73c 4808 bool flush;
f4b4b180
KH
4809
4810 spin_lock(&kvm->mmu_lock);
d77aa73c 4811 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
4812 spin_unlock(&kvm->mmu_lock);
4813
4814 lockdep_assert_held(&kvm->slots_lock);
4815
4816 /*
4817 * It's also safe to flush TLBs out of mmu lock here as currently this
4818 * function is only used for dirty logging, in which case flushing TLB
4819 * out of mmu lock also guarantees no dirty pages will be lost in
4820 * dirty_bitmap.
4821 */
4822 if (flush)
4823 kvm_flush_remote_tlbs(kvm);
4824}
4825EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4826
4827void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4828 struct kvm_memory_slot *memslot)
4829{
d77aa73c 4830 bool flush;
f4b4b180
KH
4831
4832 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4833 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4834 false);
f4b4b180
KH
4835 spin_unlock(&kvm->mmu_lock);
4836
4837 /* see kvm_mmu_slot_remove_write_access */
4838 lockdep_assert_held(&kvm->slots_lock);
4839
4840 if (flush)
4841 kvm_flush_remote_tlbs(kvm);
4842}
4843EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4844
4845void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4846 struct kvm_memory_slot *memslot)
4847{
d77aa73c 4848 bool flush;
f4b4b180
KH
4849
4850 spin_lock(&kvm->mmu_lock);
d77aa73c 4851 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
4852 spin_unlock(&kvm->mmu_lock);
4853
4854 lockdep_assert_held(&kvm->slots_lock);
4855
4856 /* see kvm_mmu_slot_leaf_clear_dirty */
4857 if (flush)
4858 kvm_flush_remote_tlbs(kvm);
4859}
4860EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4861
e7d11c7a 4862#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4863static void kvm_zap_obsolete_pages(struct kvm *kvm)
4864{
4865 struct kvm_mmu_page *sp, *node;
e7d11c7a 4866 int batch = 0;
5304b8d3
XG
4867
4868restart:
4869 list_for_each_entry_safe_reverse(sp, node,
4870 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4871 int ret;
4872
5304b8d3
XG
4873 /*
4874 * No obsolete page exists before new created page since
4875 * active_mmu_pages is the FIFO list.
4876 */
4877 if (!is_obsolete_sp(kvm, sp))
4878 break;
4879
4880 /*
5304b8d3
XG
4881 * Since we are reversely walking the list and the invalid
4882 * list will be moved to the head, skip the invalid page
4883 * can help us to avoid the infinity list walking.
4884 */
4885 if (sp->role.invalid)
4886 continue;
4887
f34d251d
XG
4888 /*
4889 * Need not flush tlb since we only zap the sp with invalid
4890 * generation number.
4891 */
e7d11c7a 4892 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4893 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4894 batch = 0;
5304b8d3
XG
4895 goto restart;
4896 }
4897
365c8868
XG
4898 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4899 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4900 batch += ret;
4901
4902 if (ret)
5304b8d3
XG
4903 goto restart;
4904 }
4905
f34d251d
XG
4906 /*
4907 * Should flush tlb before free page tables since lockless-walking
4908 * may use the pages.
4909 */
365c8868 4910 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4911}
4912
4913/*
4914 * Fast invalidate all shadow pages and use lock-break technique
4915 * to zap obsolete pages.
4916 *
4917 * It's required when memslot is being deleted or VM is being
4918 * destroyed, in these cases, we should ensure that KVM MMU does
4919 * not use any resource of the being-deleted slot or all slots
4920 * after calling the function.
4921 */
4922void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4923{
4924 spin_lock(&kvm->mmu_lock);
35006126 4925 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4926 kvm->arch.mmu_valid_gen++;
4927
f34d251d
XG
4928 /*
4929 * Notify all vcpus to reload its shadow page table
4930 * and flush TLB. Then all vcpus will switch to new
4931 * shadow page table with the new mmu_valid_gen.
4932 *
4933 * Note: we should do this under the protection of
4934 * mmu-lock, otherwise, vcpu would purge shadow page
4935 * but miss tlb flush.
4936 */
4937 kvm_reload_remote_mmus(kvm);
4938
5304b8d3
XG
4939 kvm_zap_obsolete_pages(kvm);
4940 spin_unlock(&kvm->mmu_lock);
4941}
4942
365c8868
XG
4943static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4944{
4945 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4946}
4947
54bf36aa 4948void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
4949{
4950 /*
4951 * The very rare case: if the generation-number is round,
4952 * zap all shadow pages.
f8f55942 4953 */
54bf36aa 4954 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
a629df7e 4955 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4956 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4957 }
f8f55942
XG
4958}
4959
70534a73
DC
4960static unsigned long
4961mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4962{
4963 struct kvm *kvm;
1495f230 4964 int nr_to_scan = sc->nr_to_scan;
70534a73 4965 unsigned long freed = 0;
3ee16c81 4966
2f303b74 4967 spin_lock(&kvm_lock);
3ee16c81
IE
4968
4969 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4970 int idx;
d98ba053 4971 LIST_HEAD(invalid_list);
3ee16c81 4972
35f2d16b
TY
4973 /*
4974 * Never scan more than sc->nr_to_scan VM instances.
4975 * Will not hit this condition practically since we do not try
4976 * to shrink more than one VM and it is very unlikely to see
4977 * !n_used_mmu_pages so many times.
4978 */
4979 if (!nr_to_scan--)
4980 break;
19526396
GN
4981 /*
4982 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4983 * here. We may skip a VM instance errorneosly, but we do not
4984 * want to shrink a VM that only started to populate its MMU
4985 * anyway.
4986 */
365c8868
XG
4987 if (!kvm->arch.n_used_mmu_pages &&
4988 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4989 continue;
19526396 4990
f656ce01 4991 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4992 spin_lock(&kvm->mmu_lock);
3ee16c81 4993
365c8868
XG
4994 if (kvm_has_zapped_obsolete_pages(kvm)) {
4995 kvm_mmu_commit_zap_page(kvm,
4996 &kvm->arch.zapped_obsolete_pages);
4997 goto unlock;
4998 }
4999
70534a73
DC
5000 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5001 freed++;
d98ba053 5002 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 5003
365c8868 5004unlock:
3ee16c81 5005 spin_unlock(&kvm->mmu_lock);
f656ce01 5006 srcu_read_unlock(&kvm->srcu, idx);
19526396 5007
70534a73
DC
5008 /*
5009 * unfair on small ones
5010 * per-vm shrinkers cry out
5011 * sadness comes quickly
5012 */
19526396
GN
5013 list_move_tail(&kvm->vm_list, &vm_list);
5014 break;
3ee16c81 5015 }
3ee16c81 5016
2f303b74 5017 spin_unlock(&kvm_lock);
70534a73 5018 return freed;
70534a73
DC
5019}
5020
5021static unsigned long
5022mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5023{
45221ab6 5024 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5025}
5026
5027static struct shrinker mmu_shrinker = {
70534a73
DC
5028 .count_objects = mmu_shrink_count,
5029 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5030 .seeks = DEFAULT_SEEKS * 10,
5031};
5032
2ddfd20e 5033static void mmu_destroy_caches(void)
b5a33a75 5034{
53c07b18
XG
5035 if (pte_list_desc_cache)
5036 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
5037 if (mmu_page_header_cache)
5038 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5039}
5040
5041int kvm_mmu_module_init(void)
5042{
53c07b18
XG
5043 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5044 sizeof(struct pte_list_desc),
20c2df83 5045 0, 0, NULL);
53c07b18 5046 if (!pte_list_desc_cache)
b5a33a75
AK
5047 goto nomem;
5048
d3d25b04
AK
5049 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5050 sizeof(struct kvm_mmu_page),
20c2df83 5051 0, 0, NULL);
d3d25b04
AK
5052 if (!mmu_page_header_cache)
5053 goto nomem;
5054
908c7f19 5055 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
5056 goto nomem;
5057
3ee16c81
IE
5058 register_shrinker(&mmu_shrinker);
5059
b5a33a75
AK
5060 return 0;
5061
5062nomem:
3ee16c81 5063 mmu_destroy_caches();
b5a33a75
AK
5064 return -ENOMEM;
5065}
5066
3ad82a7e
ZX
5067/*
5068 * Caculate mmu pages needed for kvm.
5069 */
5070unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5071{
3ad82a7e
ZX
5072 unsigned int nr_mmu_pages;
5073 unsigned int nr_pages = 0;
bc6678a3 5074 struct kvm_memslots *slots;
be6ba0f0 5075 struct kvm_memory_slot *memslot;
9da0e4d5 5076 int i;
3ad82a7e 5077
9da0e4d5
PB
5078 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5079 slots = __kvm_memslots(kvm, i);
90d83dc3 5080
9da0e4d5
PB
5081 kvm_for_each_memslot(memslot, slots)
5082 nr_pages += memslot->npages;
5083 }
3ad82a7e
ZX
5084
5085 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5086 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 5087 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5088
5089 return nr_mmu_pages;
5090}
5091
c42fffe3
XG
5092void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5093{
95f93af4 5094 kvm_mmu_unload(vcpu);
c42fffe3
XG
5095 free_mmu_pages(vcpu);
5096 mmu_free_memory_caches(vcpu);
b034cf01
XG
5097}
5098
b034cf01
XG
5099void kvm_mmu_module_exit(void)
5100{
5101 mmu_destroy_caches();
5102 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5103 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5104 mmu_audit_disable();
5105}