]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: MMU: rename has_wrprotected_page to mmu_gfn_lpage_is_disallowed
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
6aa8b732 44
18552672
JR
45/*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
2f333bcb 52bool tdp_enabled = false;
18552672 53
8b1fe17c
XG
54enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
6903074c
XG
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
8b1fe17c 61};
37a7d8b0 62
8b1fe17c 63#undef MMU_DEBUG
37a7d8b0
AK
64
65#ifdef MMU_DEBUG
fa4a2c08
PB
66static bool dbg = 0;
67module_param(dbg, bool, 0644);
37a7d8b0
AK
68
69#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 71#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 72#else
37a7d8b0
AK
73#define pgprintk(x...) do { } while (0)
74#define rmap_printk(x...) do { } while (0)
fa4a2c08 75#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 76#endif
6aa8b732 77
957ed9ef
XG
78#define PTE_PREFETCH_NUM 8
79
00763e41 80#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
81#define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
6aa8b732
AK
83#define PT64_LEVEL_BITS 9
84
85#define PT64_LEVEL_SHIFT(level) \
d77c26fc 86 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 87
6aa8b732
AK
88#define PT64_INDEX(address, level)\
89 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92#define PT32_LEVEL_BITS 10
93
94#define PT32_LEVEL_SHIFT(level) \
d77c26fc 95 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 96
e04da980
JR
97#define PT32_LVL_OFFSET_MASK(level) \
98 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
100
101#define PT32_INDEX(address, level)\
102 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
27aba766 105#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
106#define PT64_DIR_BASE_ADDR_MASK \
107 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
108#define PT64_LVL_ADDR_MASK(level) \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 * PT64_LEVEL_BITS))) - 1))
111#define PT64_LVL_OFFSET_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
114
115#define PT32_BASE_ADDR_MASK PAGE_MASK
116#define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
118#define PT32_LVL_ADDR_MASK(level) \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT32_LEVEL_BITS))) - 1))
6aa8b732 121
53166229
GN
122#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 | shadow_x_mask | shadow_nx_mask)
6aa8b732 124
fe135d2c
AK
125#define ACC_EXEC_MASK 1
126#define ACC_WRITE_MASK PT_WRITABLE_MASK
127#define ACC_USER_MASK PT_USER_MASK
128#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
90bb6fc5
AK
130#include <trace/events/kvm.h>
131
07420171
AK
132#define CREATE_TRACE_POINTS
133#include "mmutrace.h"
134
49fde340
XG
135#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 137
135f8c2b
AK
138#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
220f773a
TY
140/* make pte_list_desc fit well in cache line */
141#define PTE_LIST_EXT 3
142
53c07b18
XG
143struct pte_list_desc {
144 u64 *sptes[PTE_LIST_EXT];
145 struct pte_list_desc *more;
cd4a4e53
AK
146};
147
2d11123a
AK
148struct kvm_shadow_walk_iterator {
149 u64 addr;
150 hpa_t shadow_addr;
2d11123a 151 u64 *sptep;
dd3bfd59 152 int level;
2d11123a
AK
153 unsigned index;
154};
155
156#define for_each_shadow_entry(_vcpu, _addr, _walker) \
157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
160
c2a2ac2b
XG
161#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)) && \
164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
165 __shadow_walk_next(&(_walker), spte))
166
53c07b18 167static struct kmem_cache *pte_list_desc_cache;
d3d25b04 168static struct kmem_cache *mmu_page_header_cache;
45221ab6 169static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 170
7b52345e
SY
171static u64 __read_mostly shadow_nx_mask;
172static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173static u64 __read_mostly shadow_user_mask;
174static u64 __read_mostly shadow_accessed_mask;
175static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
176static u64 __read_mostly shadow_mmio_mask;
177
178static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 179static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
180
181void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182{
183 shadow_mmio_mask = mmio_mask;
184}
185EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
f2fd125d 187/*
ee3d1570
DM
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates. The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
192 *
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 195 */
ee3d1570 196#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
197#define MMIO_SPTE_GEN_HIGH_SHIFT 52
198
ee3d1570
DM
199#define MMIO_GEN_SHIFT 20
200#define MMIO_GEN_LOW_SHIFT 10
201#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 202#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
203
204static u64 generation_mmio_spte_mask(unsigned int gen)
205{
206 u64 mask;
207
842bb26a 208 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
209
210 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212 return mask;
213}
214
215static unsigned int get_mmio_spte_generation(u64 spte)
216{
217 unsigned int gen;
218
219 spte &= ~shadow_mmio_mask;
220
221 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223 return gen;
224}
225
54bf36aa 226static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 227{
54bf36aa 228 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
229}
230
54bf36aa 231static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 232 unsigned access)
ce88decf 233{
54bf36aa 234 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 235 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 236
ce88decf 237 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 238 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 239
f8f55942 240 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 241 mmu_spte_set(sptep, mask);
ce88decf
XG
242}
243
244static bool is_mmio_spte(u64 spte)
245{
246 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247}
248
249static gfn_t get_mmio_spte_gfn(u64 spte)
250{
842bb26a 251 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 252 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
253}
254
255static unsigned get_mmio_spte_access(u64 spte)
256{
842bb26a 257 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 258 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
259}
260
54bf36aa 261static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 262 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
263{
264 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 265 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
266 return true;
267 }
268
269 return false;
270}
c7addb90 271
54bf36aa 272static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 273{
089504c0
XG
274 unsigned int kvm_gen, spte_gen;
275
54bf36aa 276 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
277 spte_gen = get_mmio_spte_generation(spte);
278
279 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280 return likely(kvm_gen == spte_gen);
f8f55942
XG
281}
282
7b52345e 283void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 284 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
285{
286 shadow_user_mask = user_mask;
287 shadow_accessed_mask = accessed_mask;
288 shadow_dirty_mask = dirty_mask;
289 shadow_nx_mask = nx_mask;
290 shadow_x_mask = x_mask;
291}
292EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
6aa8b732
AK
294static int is_cpuid_PSE36(void)
295{
296 return 1;
297}
298
73b1087e
AK
299static int is_nx(struct kvm_vcpu *vcpu)
300{
f6801dff 301 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
302}
303
c7addb90
AK
304static int is_shadow_present_pte(u64 pte)
305{
ce88decf 306 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
307}
308
05da4558
MT
309static int is_large_pte(u64 pte)
310{
311 return pte & PT_PAGE_SIZE_MASK;
312}
313
776e6633
MT
314static int is_last_spte(u64 pte, int level)
315{
316 if (level == PT_PAGE_TABLE_LEVEL)
317 return 1;
852e3c19 318 if (is_large_pte(pte))
776e6633
MT
319 return 1;
320 return 0;
321}
322
ba049e93 323static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 324{
35149e21 325 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
326}
327
da928521
AK
328static gfn_t pse36_gfn_delta(u32 gpte)
329{
330 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
331
332 return (gpte & PT32_DIR_PSE36_MASK) << shift;
333}
334
603e0651 335#ifdef CONFIG_X86_64
d555c333 336static void __set_spte(u64 *sptep, u64 spte)
e663ee64 337{
603e0651 338 *sptep = spte;
e663ee64
AK
339}
340
603e0651 341static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 342{
603e0651
XG
343 *sptep = spte;
344}
345
346static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
347{
348 return xchg(sptep, spte);
349}
c2a2ac2b
XG
350
351static u64 __get_spte_lockless(u64 *sptep)
352{
353 return ACCESS_ONCE(*sptep);
354}
a9221dd5 355#else
603e0651
XG
356union split_spte {
357 struct {
358 u32 spte_low;
359 u32 spte_high;
360 };
361 u64 spte;
362};
a9221dd5 363
c2a2ac2b
XG
364static void count_spte_clear(u64 *sptep, u64 spte)
365{
366 struct kvm_mmu_page *sp = page_header(__pa(sptep));
367
368 if (is_shadow_present_pte(spte))
369 return;
370
371 /* Ensure the spte is completely set before we increase the count */
372 smp_wmb();
373 sp->clear_spte_count++;
374}
375
603e0651
XG
376static void __set_spte(u64 *sptep, u64 spte)
377{
378 union split_spte *ssptep, sspte;
a9221dd5 379
603e0651
XG
380 ssptep = (union split_spte *)sptep;
381 sspte = (union split_spte)spte;
382
383 ssptep->spte_high = sspte.spte_high;
384
385 /*
386 * If we map the spte from nonpresent to present, We should store
387 * the high bits firstly, then set present bit, so cpu can not
388 * fetch this spte while we are setting the spte.
389 */
390 smp_wmb();
391
392 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
393}
394
603e0651
XG
395static void __update_clear_spte_fast(u64 *sptep, u64 spte)
396{
397 union split_spte *ssptep, sspte;
398
399 ssptep = (union split_spte *)sptep;
400 sspte = (union split_spte)spte;
401
402 ssptep->spte_low = sspte.spte_low;
403
404 /*
405 * If we map the spte from present to nonpresent, we should clear
406 * present bit firstly to avoid vcpu fetch the old high bits.
407 */
408 smp_wmb();
409
410 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 411 count_spte_clear(sptep, spte);
603e0651
XG
412}
413
414static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
415{
416 union split_spte *ssptep, sspte, orig;
417
418 ssptep = (union split_spte *)sptep;
419 sspte = (union split_spte)spte;
420
421 /* xchg acts as a barrier before the setting of the high bits */
422 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
423 orig.spte_high = ssptep->spte_high;
424 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 425 count_spte_clear(sptep, spte);
603e0651
XG
426
427 return orig.spte;
428}
c2a2ac2b
XG
429
430/*
431 * The idea using the light way get the spte on x86_32 guest is from
432 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
433 *
434 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
435 * coalesces them and we are running out of the MMU lock. Therefore
436 * we need to protect against in-progress updates of the spte.
437 *
438 * Reading the spte while an update is in progress may get the old value
439 * for the high part of the spte. The race is fine for a present->non-present
440 * change (because the high part of the spte is ignored for non-present spte),
441 * but for a present->present change we must reread the spte.
442 *
443 * All such changes are done in two steps (present->non-present and
444 * non-present->present), hence it is enough to count the number of
445 * present->non-present updates: if it changed while reading the spte,
446 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
447 */
448static u64 __get_spte_lockless(u64 *sptep)
449{
450 struct kvm_mmu_page *sp = page_header(__pa(sptep));
451 union split_spte spte, *orig = (union split_spte *)sptep;
452 int count;
453
454retry:
455 count = sp->clear_spte_count;
456 smp_rmb();
457
458 spte.spte_low = orig->spte_low;
459 smp_rmb();
460
461 spte.spte_high = orig->spte_high;
462 smp_rmb();
463
464 if (unlikely(spte.spte_low != orig->spte_low ||
465 count != sp->clear_spte_count))
466 goto retry;
467
468 return spte.spte;
469}
603e0651
XG
470#endif
471
c7ba5b48
XG
472static bool spte_is_locklessly_modifiable(u64 spte)
473{
feb3eb70
GN
474 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
475 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
476}
477
8672b721
XG
478static bool spte_has_volatile_bits(u64 spte)
479{
c7ba5b48
XG
480 /*
481 * Always atomicly update spte if it can be updated
482 * out of mmu-lock, it can ensure dirty bit is not lost,
483 * also, it can help us to get a stable is_writable_pte()
484 * to ensure tlb flush is not missed.
485 */
486 if (spte_is_locklessly_modifiable(spte))
487 return true;
488
8672b721
XG
489 if (!shadow_accessed_mask)
490 return false;
491
492 if (!is_shadow_present_pte(spte))
493 return false;
494
4132779b
XG
495 if ((spte & shadow_accessed_mask) &&
496 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
497 return false;
498
499 return true;
500}
501
4132779b
XG
502static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
503{
504 return (old_spte & bit_mask) && !(new_spte & bit_mask);
505}
506
7e71a59b
KH
507static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
508{
509 return (old_spte & bit_mask) != (new_spte & bit_mask);
510}
511
1df9f2dc
XG
512/* Rules for using mmu_spte_set:
513 * Set the sptep from nonpresent to present.
514 * Note: the sptep being assigned *must* be either not present
515 * or in a state where the hardware will not attempt to update
516 * the spte.
517 */
518static void mmu_spte_set(u64 *sptep, u64 new_spte)
519{
520 WARN_ON(is_shadow_present_pte(*sptep));
521 __set_spte(sptep, new_spte);
522}
523
524/* Rules for using mmu_spte_update:
525 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
526 *
527 * Whenever we overwrite a writable spte with a read-only one we
528 * should flush remote TLBs. Otherwise rmap_write_protect
529 * will find a read-only spte, even though the writable spte
530 * might be cached on a CPU's TLB, the return value indicates this
531 * case.
1df9f2dc 532 */
6e7d0354 533static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 534{
c7ba5b48 535 u64 old_spte = *sptep;
6e7d0354 536 bool ret = false;
4132779b 537
afd28fe1 538 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 539
6e7d0354
XG
540 if (!is_shadow_present_pte(old_spte)) {
541 mmu_spte_set(sptep, new_spte);
542 return ret;
543 }
4132779b 544
c7ba5b48 545 if (!spte_has_volatile_bits(old_spte))
603e0651 546 __update_clear_spte_fast(sptep, new_spte);
4132779b 547 else
603e0651 548 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 549
c7ba5b48
XG
550 /*
551 * For the spte updated out of mmu-lock is safe, since
552 * we always atomicly update it, see the comments in
553 * spte_has_volatile_bits().
554 */
7f31c959
XG
555 if (spte_is_locklessly_modifiable(old_spte) &&
556 !is_writable_pte(new_spte))
6e7d0354
XG
557 ret = true;
558
4132779b 559 if (!shadow_accessed_mask)
6e7d0354 560 return ret;
4132779b 561
7e71a59b
KH
562 /*
563 * Flush TLB when accessed/dirty bits are changed in the page tables,
564 * to guarantee consistency between TLB and page tables.
565 */
566 if (spte_is_bit_changed(old_spte, new_spte,
567 shadow_accessed_mask | shadow_dirty_mask))
568 ret = true;
569
4132779b
XG
570 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
571 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
572 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
573 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
574
575 return ret;
b79b93f9
AK
576}
577
1df9f2dc
XG
578/*
579 * Rules for using mmu_spte_clear_track_bits:
580 * It sets the sptep from present to nonpresent, and track the
581 * state bits, it is used to clear the last level sptep.
582 */
583static int mmu_spte_clear_track_bits(u64 *sptep)
584{
ba049e93 585 kvm_pfn_t pfn;
1df9f2dc
XG
586 u64 old_spte = *sptep;
587
588 if (!spte_has_volatile_bits(old_spte))
603e0651 589 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 590 else
603e0651 591 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 592
afd28fe1 593 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
594 return 0;
595
596 pfn = spte_to_pfn(old_spte);
86fde74c
XG
597
598 /*
599 * KVM does not hold the refcount of the page used by
600 * kvm mmu, before reclaiming the page, we should
601 * unmap it from mmu first.
602 */
bf4bea8e 603 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 604
1df9f2dc
XG
605 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
606 kvm_set_pfn_accessed(pfn);
607 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
608 kvm_set_pfn_dirty(pfn);
609 return 1;
610}
611
612/*
613 * Rules for using mmu_spte_clear_no_track:
614 * Directly clear spte without caring the state bits of sptep,
615 * it is used to set the upper level spte.
616 */
617static void mmu_spte_clear_no_track(u64 *sptep)
618{
603e0651 619 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
620}
621
c2a2ac2b
XG
622static u64 mmu_spte_get_lockless(u64 *sptep)
623{
624 return __get_spte_lockless(sptep);
625}
626
627static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
628{
c142786c
AK
629 /*
630 * Prevent page table teardown by making any free-er wait during
631 * kvm_flush_remote_tlbs() IPI to all active vcpus.
632 */
633 local_irq_disable();
634 vcpu->mode = READING_SHADOW_PAGE_TABLES;
635 /*
636 * Make sure a following spte read is not reordered ahead of the write
637 * to vcpu->mode.
638 */
639 smp_mb();
c2a2ac2b
XG
640}
641
642static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
643{
c142786c
AK
644 /*
645 * Make sure the write to vcpu->mode is not reordered in front of
646 * reads to sptes. If it does, kvm_commit_zap_page() can see us
647 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
648 */
649 smp_mb();
650 vcpu->mode = OUTSIDE_GUEST_MODE;
651 local_irq_enable();
c2a2ac2b
XG
652}
653
e2dec939 654static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 655 struct kmem_cache *base_cache, int min)
714b93da
AK
656{
657 void *obj;
658
659 if (cache->nobjs >= min)
e2dec939 660 return 0;
714b93da 661 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 662 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 663 if (!obj)
e2dec939 664 return -ENOMEM;
714b93da
AK
665 cache->objects[cache->nobjs++] = obj;
666 }
e2dec939 667 return 0;
714b93da
AK
668}
669
f759e2b4
XG
670static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
671{
672 return cache->nobjs;
673}
674
e8ad9a70
XG
675static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
676 struct kmem_cache *cache)
714b93da
AK
677{
678 while (mc->nobjs)
e8ad9a70 679 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
680}
681
c1158e63 682static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 683 int min)
c1158e63 684{
842f22ed 685 void *page;
c1158e63
AK
686
687 if (cache->nobjs >= min)
688 return 0;
689 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 690 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
691 if (!page)
692 return -ENOMEM;
842f22ed 693 cache->objects[cache->nobjs++] = page;
c1158e63
AK
694 }
695 return 0;
696}
697
698static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
699{
700 while (mc->nobjs)
c4d198d5 701 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
702}
703
2e3e5882 704static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 705{
e2dec939
AK
706 int r;
707
53c07b18 708 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 709 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
710 if (r)
711 goto out;
ad312c7c 712 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
713 if (r)
714 goto out;
ad312c7c 715 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 716 mmu_page_header_cache, 4);
e2dec939
AK
717out:
718 return r;
714b93da
AK
719}
720
721static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
722{
53c07b18
XG
723 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
724 pte_list_desc_cache);
ad312c7c 725 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
726 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
727 mmu_page_header_cache);
714b93da
AK
728}
729
80feb89a 730static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
731{
732 void *p;
733
734 BUG_ON(!mc->nobjs);
735 p = mc->objects[--mc->nobjs];
714b93da
AK
736 return p;
737}
738
53c07b18 739static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 740{
80feb89a 741 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
742}
743
53c07b18 744static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 745{
53c07b18 746 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
747}
748
2032a93d
LJ
749static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
750{
751 if (!sp->role.direct)
752 return sp->gfns[index];
753
754 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
755}
756
757static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
758{
759 if (sp->role.direct)
760 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
761 else
762 sp->gfns[index] = gfn;
763}
764
05da4558 765/*
d4dbf470
TY
766 * Return the pointer to the large page information for a given gfn,
767 * handling slots that are not large page aligned.
05da4558 768 */
d4dbf470
TY
769static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
770 struct kvm_memory_slot *slot,
771 int level)
05da4558
MT
772{
773 unsigned long idx;
774
fb03cb6f 775 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 776 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
777}
778
3ed1a478 779static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 780{
699023e2 781 struct kvm_memslots *slots;
d25797b2 782 struct kvm_memory_slot *slot;
d4dbf470 783 struct kvm_lpage_info *linfo;
3ed1a478 784 gfn_t gfn;
d25797b2 785 int i;
05da4558 786
3ed1a478 787 gfn = sp->gfn;
699023e2
PB
788 slots = kvm_memslots_for_spte_role(kvm, sp->role);
789 slot = __gfn_to_memslot(slots, gfn);
8a3d08f1 790 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d4dbf470 791 linfo = lpage_info_slot(gfn, slot, i);
92f94f1e 792 linfo->disallow_lpage += 1;
d25797b2 793 }
332b207d 794 kvm->arch.indirect_shadow_pages++;
05da4558
MT
795}
796
3ed1a478 797static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 798{
699023e2 799 struct kvm_memslots *slots;
d25797b2 800 struct kvm_memory_slot *slot;
d4dbf470 801 struct kvm_lpage_info *linfo;
3ed1a478 802 gfn_t gfn;
d25797b2 803 int i;
05da4558 804
3ed1a478 805 gfn = sp->gfn;
699023e2
PB
806 slots = kvm_memslots_for_spte_role(kvm, sp->role);
807 slot = __gfn_to_memslot(slots, gfn);
8a3d08f1 808 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d4dbf470 809 linfo = lpage_info_slot(gfn, slot, i);
92f94f1e
XG
810 linfo->disallow_lpage -= 1;
811 WARN_ON(linfo->disallow_lpage < 0);
d25797b2 812 }
332b207d 813 kvm->arch.indirect_shadow_pages--;
05da4558
MT
814}
815
92f94f1e
XG
816static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
817 struct kvm_memory_slot *slot)
05da4558 818{
d4dbf470 819 struct kvm_lpage_info *linfo;
05da4558
MT
820
821 if (slot) {
d4dbf470 822 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 823 return !!linfo->disallow_lpage;
05da4558
MT
824 }
825
92f94f1e 826 return true;
05da4558
MT
827}
828
92f94f1e
XG
829static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
830 int level)
5225fdf8
TY
831{
832 struct kvm_memory_slot *slot;
833
834 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 835 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
836}
837
d25797b2 838static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 839{
8f0b1ab6 840 unsigned long page_size;
d25797b2 841 int i, ret = 0;
05da4558 842
8f0b1ab6 843 page_size = kvm_host_page_size(kvm, gfn);
05da4558 844
8a3d08f1 845 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
846 if (page_size >= KVM_HPAGE_SIZE(i))
847 ret = i;
848 else
849 break;
850 }
851
4c2155ce 852 return ret;
05da4558
MT
853}
854
d8aacf5d
TY
855static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
856 bool no_dirty_log)
857{
858 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
859 return false;
860 if (no_dirty_log && slot->dirty_bitmap)
861 return false;
862
863 return true;
864}
865
5d163b1c
XG
866static struct kvm_memory_slot *
867gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
868 bool no_dirty_log)
05da4558
MT
869{
870 struct kvm_memory_slot *slot;
5d163b1c 871
54bf36aa 872 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 873 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
874 slot = NULL;
875
876 return slot;
877}
878
fd136902
TY
879static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
880 bool *force_pt_level)
936a5fe6
AA
881{
882 int host_level, level, max_level;
d8aacf5d
TY
883 struct kvm_memory_slot *slot;
884
8c85ac1c
TY
885 if (unlikely(*force_pt_level))
886 return PT_PAGE_TABLE_LEVEL;
05da4558 887
8c85ac1c
TY
888 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
889 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
890 if (unlikely(*force_pt_level))
891 return PT_PAGE_TABLE_LEVEL;
892
d25797b2
JR
893 host_level = host_mapping_level(vcpu->kvm, large_gfn);
894
895 if (host_level == PT_PAGE_TABLE_LEVEL)
896 return host_level;
897
55dd98c3 898 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
899
900 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 901 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 902 break;
d25797b2
JR
903
904 return level - 1;
05da4558
MT
905}
906
290fc38d 907/*
018aabb5 908 * About rmap_head encoding:
cd4a4e53 909 *
018aabb5
TY
910 * If the bit zero of rmap_head->val is clear, then it points to the only spte
911 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 912 * pte_list_desc containing more mappings.
018aabb5
TY
913 */
914
915/*
916 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 917 */
53c07b18 918static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 919 struct kvm_rmap_head *rmap_head)
cd4a4e53 920{
53c07b18 921 struct pte_list_desc *desc;
53a27b39 922 int i, count = 0;
cd4a4e53 923
018aabb5 924 if (!rmap_head->val) {
53c07b18 925 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
926 rmap_head->val = (unsigned long)spte;
927 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
928 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
929 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 930 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 931 desc->sptes[1] = spte;
018aabb5 932 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 933 ++count;
cd4a4e53 934 } else {
53c07b18 935 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 936 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 937 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 938 desc = desc->more;
53c07b18 939 count += PTE_LIST_EXT;
53a27b39 940 }
53c07b18
XG
941 if (desc->sptes[PTE_LIST_EXT-1]) {
942 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
943 desc = desc->more;
944 }
d555c333 945 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 946 ++count;
d555c333 947 desc->sptes[i] = spte;
cd4a4e53 948 }
53a27b39 949 return count;
cd4a4e53
AK
950}
951
53c07b18 952static void
018aabb5
TY
953pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
954 struct pte_list_desc *desc, int i,
955 struct pte_list_desc *prev_desc)
cd4a4e53
AK
956{
957 int j;
958
53c07b18 959 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 960 ;
d555c333
AK
961 desc->sptes[i] = desc->sptes[j];
962 desc->sptes[j] = NULL;
cd4a4e53
AK
963 if (j != 0)
964 return;
965 if (!prev_desc && !desc->more)
018aabb5 966 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
967 else
968 if (prev_desc)
969 prev_desc->more = desc->more;
970 else
018aabb5 971 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 972 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
973}
974
018aabb5 975static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 976{
53c07b18
XG
977 struct pte_list_desc *desc;
978 struct pte_list_desc *prev_desc;
cd4a4e53
AK
979 int i;
980
018aabb5 981 if (!rmap_head->val) {
53c07b18 982 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 983 BUG();
018aabb5 984 } else if (!(rmap_head->val & 1)) {
53c07b18 985 rmap_printk("pte_list_remove: %p 1->0\n", spte);
018aabb5 986 if ((u64 *)rmap_head->val != spte) {
53c07b18 987 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
988 BUG();
989 }
018aabb5 990 rmap_head->val = 0;
cd4a4e53 991 } else {
53c07b18 992 rmap_printk("pte_list_remove: %p many->many\n", spte);
018aabb5 993 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
994 prev_desc = NULL;
995 while (desc) {
018aabb5 996 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 997 if (desc->sptes[i] == spte) {
018aabb5
TY
998 pte_list_desc_remove_entry(rmap_head,
999 desc, i, prev_desc);
cd4a4e53
AK
1000 return;
1001 }
018aabb5 1002 }
cd4a4e53
AK
1003 prev_desc = desc;
1004 desc = desc->more;
1005 }
53c07b18 1006 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1007 BUG();
1008 }
1009}
1010
018aabb5
TY
1011static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1012 struct kvm_memory_slot *slot)
53c07b18 1013{
77d11309 1014 unsigned long idx;
53c07b18 1015
77d11309 1016 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1017 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1018}
1019
018aabb5
TY
1020static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1021 struct kvm_mmu_page *sp)
9b9b1492 1022{
699023e2 1023 struct kvm_memslots *slots;
9b9b1492
TY
1024 struct kvm_memory_slot *slot;
1025
699023e2
PB
1026 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1027 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1028 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1029}
1030
f759e2b4
XG
1031static bool rmap_can_add(struct kvm_vcpu *vcpu)
1032{
1033 struct kvm_mmu_memory_cache *cache;
1034
1035 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1036 return mmu_memory_cache_free_objects(cache);
1037}
1038
53c07b18
XG
1039static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1040{
1041 struct kvm_mmu_page *sp;
018aabb5 1042 struct kvm_rmap_head *rmap_head;
53c07b18 1043
53c07b18
XG
1044 sp = page_header(__pa(spte));
1045 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1046 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1047 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1048}
1049
53c07b18
XG
1050static void rmap_remove(struct kvm *kvm, u64 *spte)
1051{
1052 struct kvm_mmu_page *sp;
1053 gfn_t gfn;
018aabb5 1054 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1055
1056 sp = page_header(__pa(spte));
1057 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5
TY
1058 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1059 pte_list_remove(spte, rmap_head);
53c07b18
XG
1060}
1061
1e3f42f0
TY
1062/*
1063 * Used by the following functions to iterate through the sptes linked by a
1064 * rmap. All fields are private and not assumed to be used outside.
1065 */
1066struct rmap_iterator {
1067 /* private fields */
1068 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1069 int pos; /* index of the sptep */
1070};
1071
1072/*
1073 * Iteration must be started by this function. This should also be used after
1074 * removing/dropping sptes from the rmap link because in such cases the
1075 * information in the itererator may not be valid.
1076 *
1077 * Returns sptep if found, NULL otherwise.
1078 */
018aabb5
TY
1079static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1080 struct rmap_iterator *iter)
1e3f42f0 1081{
77fbbbd2
TY
1082 u64 *sptep;
1083
018aabb5 1084 if (!rmap_head->val)
1e3f42f0
TY
1085 return NULL;
1086
018aabb5 1087 if (!(rmap_head->val & 1)) {
1e3f42f0 1088 iter->desc = NULL;
77fbbbd2
TY
1089 sptep = (u64 *)rmap_head->val;
1090 goto out;
1e3f42f0
TY
1091 }
1092
018aabb5 1093 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1094 iter->pos = 0;
77fbbbd2
TY
1095 sptep = iter->desc->sptes[iter->pos];
1096out:
1097 BUG_ON(!is_shadow_present_pte(*sptep));
1098 return sptep;
1e3f42f0
TY
1099}
1100
1101/*
1102 * Must be used with a valid iterator: e.g. after rmap_get_first().
1103 *
1104 * Returns sptep if found, NULL otherwise.
1105 */
1106static u64 *rmap_get_next(struct rmap_iterator *iter)
1107{
77fbbbd2
TY
1108 u64 *sptep;
1109
1e3f42f0
TY
1110 if (iter->desc) {
1111 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1112 ++iter->pos;
1113 sptep = iter->desc->sptes[iter->pos];
1114 if (sptep)
77fbbbd2 1115 goto out;
1e3f42f0
TY
1116 }
1117
1118 iter->desc = iter->desc->more;
1119
1120 if (iter->desc) {
1121 iter->pos = 0;
1122 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1123 sptep = iter->desc->sptes[iter->pos];
1124 goto out;
1e3f42f0
TY
1125 }
1126 }
1127
1128 return NULL;
77fbbbd2
TY
1129out:
1130 BUG_ON(!is_shadow_present_pte(*sptep));
1131 return sptep;
1e3f42f0
TY
1132}
1133
018aabb5
TY
1134#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1135 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1136 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1137
c3707958 1138static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1139{
1df9f2dc 1140 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1141 rmap_remove(kvm, sptep);
be38d276
AK
1142}
1143
8e22f955
XG
1144
1145static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1146{
1147 if (is_large_pte(*sptep)) {
1148 WARN_ON(page_header(__pa(sptep))->role.level ==
1149 PT_PAGE_TABLE_LEVEL);
1150 drop_spte(kvm, sptep);
1151 --kvm->stat.lpages;
1152 return true;
1153 }
1154
1155 return false;
1156}
1157
1158static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1159{
1160 if (__drop_large_spte(vcpu->kvm, sptep))
1161 kvm_flush_remote_tlbs(vcpu->kvm);
1162}
1163
1164/*
49fde340 1165 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1166 * spte write-protection is caused by protecting shadow page table.
49fde340 1167 *
b4619660 1168 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1169 * protection:
1170 * - for dirty logging, the spte can be set to writable at anytime if
1171 * its dirty bitmap is properly set.
1172 * - for spte protection, the spte can be writable only after unsync-ing
1173 * shadow page.
8e22f955 1174 *
c126d94f 1175 * Return true if tlb need be flushed.
8e22f955 1176 */
c126d94f 1177static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1178{
1179 u64 spte = *sptep;
1180
49fde340
XG
1181 if (!is_writable_pte(spte) &&
1182 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1183 return false;
1184
1185 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1186
49fde340
XG
1187 if (pt_protect)
1188 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1189 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1190
c126d94f 1191 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1192}
1193
018aabb5
TY
1194static bool __rmap_write_protect(struct kvm *kvm,
1195 struct kvm_rmap_head *rmap_head,
245c3912 1196 bool pt_protect)
98348e95 1197{
1e3f42f0
TY
1198 u64 *sptep;
1199 struct rmap_iterator iter;
d13bc5b5 1200 bool flush = false;
374cbac0 1201
018aabb5 1202 for_each_rmap_spte(rmap_head, &iter, sptep)
c126d94f 1203 flush |= spte_write_protect(kvm, sptep, pt_protect);
855149aa 1204
d13bc5b5 1205 return flush;
a0ed4607
TY
1206}
1207
f4b4b180
KH
1208static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1209{
1210 u64 spte = *sptep;
1211
1212 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1213
1214 spte &= ~shadow_dirty_mask;
1215
1216 return mmu_spte_update(sptep, spte);
1217}
1218
018aabb5 1219static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1220{
1221 u64 *sptep;
1222 struct rmap_iterator iter;
1223 bool flush = false;
1224
018aabb5 1225 for_each_rmap_spte(rmap_head, &iter, sptep)
f4b4b180 1226 flush |= spte_clear_dirty(kvm, sptep);
f4b4b180
KH
1227
1228 return flush;
1229}
1230
1231static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1232{
1233 u64 spte = *sptep;
1234
1235 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1236
1237 spte |= shadow_dirty_mask;
1238
1239 return mmu_spte_update(sptep, spte);
1240}
1241
018aabb5 1242static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1243{
1244 u64 *sptep;
1245 struct rmap_iterator iter;
1246 bool flush = false;
1247
018aabb5 1248 for_each_rmap_spte(rmap_head, &iter, sptep)
f4b4b180 1249 flush |= spte_set_dirty(kvm, sptep);
f4b4b180
KH
1250
1251 return flush;
1252}
1253
5dc99b23 1254/**
3b0f1d01 1255 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1256 * @kvm: kvm instance
1257 * @slot: slot to protect
1258 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1259 * @mask: indicates which pages we should protect
1260 *
1261 * Used when we do not need to care about huge page mappings: e.g. during dirty
1262 * logging we do not have any such mappings.
1263 */
3b0f1d01 1264static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1265 struct kvm_memory_slot *slot,
1266 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1267{
018aabb5 1268 struct kvm_rmap_head *rmap_head;
a0ed4607 1269
5dc99b23 1270 while (mask) {
018aabb5
TY
1271 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1272 PT_PAGE_TABLE_LEVEL, slot);
1273 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1274
5dc99b23
TY
1275 /* clear the first set bit */
1276 mask &= mask - 1;
1277 }
374cbac0
AK
1278}
1279
f4b4b180
KH
1280/**
1281 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1282 * @kvm: kvm instance
1283 * @slot: slot to clear D-bit
1284 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1285 * @mask: indicates which pages we should clear D-bit
1286 *
1287 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1288 */
1289void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1290 struct kvm_memory_slot *slot,
1291 gfn_t gfn_offset, unsigned long mask)
1292{
018aabb5 1293 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1294
1295 while (mask) {
018aabb5
TY
1296 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1297 PT_PAGE_TABLE_LEVEL, slot);
1298 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1299
1300 /* clear the first set bit */
1301 mask &= mask - 1;
1302 }
1303}
1304EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1305
3b0f1d01
KH
1306/**
1307 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1308 * PT level pages.
1309 *
1310 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1311 * enable dirty logging for them.
1312 *
1313 * Used when we do not need to care about huge page mappings: e.g. during dirty
1314 * logging we do not have any such mappings.
1315 */
1316void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1317 struct kvm_memory_slot *slot,
1318 gfn_t gfn_offset, unsigned long mask)
1319{
88178fd4
KH
1320 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1321 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1322 mask);
1323 else
1324 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1325}
1326
54bf36aa 1327static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
95d4c16c
TY
1328{
1329 struct kvm_memory_slot *slot;
018aabb5 1330 struct kvm_rmap_head *rmap_head;
5dc99b23 1331 int i;
2f84569f 1332 bool write_protected = false;
95d4c16c 1333
54bf36aa 1334 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
5dc99b23 1335
8a3d08f1 1336 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5
TY
1337 rmap_head = __gfn_to_rmap(gfn, i, slot);
1338 write_protected |= __rmap_write_protect(vcpu->kvm, rmap_head, true);
5dc99b23
TY
1339 }
1340
1341 return write_protected;
95d4c16c
TY
1342}
1343
018aabb5 1344static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1345{
1e3f42f0
TY
1346 u64 *sptep;
1347 struct rmap_iterator iter;
6a49f85c 1348 bool flush = false;
e930bffe 1349
018aabb5 1350 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1351 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1352
1353 drop_spte(kvm, sptep);
6a49f85c 1354 flush = true;
e930bffe 1355 }
1e3f42f0 1356
6a49f85c
XG
1357 return flush;
1358}
1359
018aabb5 1360static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1361 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1362 unsigned long data)
1363{
018aabb5 1364 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1365}
1366
018aabb5 1367static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1368 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1369 unsigned long data)
3da0dd43 1370{
1e3f42f0
TY
1371 u64 *sptep;
1372 struct rmap_iterator iter;
3da0dd43 1373 int need_flush = 0;
1e3f42f0 1374 u64 new_spte;
3da0dd43 1375 pte_t *ptep = (pte_t *)data;
ba049e93 1376 kvm_pfn_t new_pfn;
3da0dd43
IE
1377
1378 WARN_ON(pte_huge(*ptep));
1379 new_pfn = pte_pfn(*ptep);
1e3f42f0 1380
0d536790 1381restart:
018aabb5 1382 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2
ALC
1383 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1384 sptep, *sptep, gfn, level);
1e3f42f0 1385
3da0dd43 1386 need_flush = 1;
1e3f42f0 1387
3da0dd43 1388 if (pte_write(*ptep)) {
1e3f42f0 1389 drop_spte(kvm, sptep);
0d536790 1390 goto restart;
3da0dd43 1391 } else {
1e3f42f0 1392 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1393 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1394
1395 new_spte &= ~PT_WRITABLE_MASK;
1396 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1397 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1398
1399 mmu_spte_clear_track_bits(sptep);
1400 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1401 }
1402 }
1e3f42f0 1403
3da0dd43
IE
1404 if (need_flush)
1405 kvm_flush_remote_tlbs(kvm);
1406
1407 return 0;
1408}
1409
6ce1f4e2
XG
1410struct slot_rmap_walk_iterator {
1411 /* input fields. */
1412 struct kvm_memory_slot *slot;
1413 gfn_t start_gfn;
1414 gfn_t end_gfn;
1415 int start_level;
1416 int end_level;
1417
1418 /* output fields. */
1419 gfn_t gfn;
018aabb5 1420 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1421 int level;
1422
1423 /* private field. */
018aabb5 1424 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1425};
1426
1427static void
1428rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1429{
1430 iterator->level = level;
1431 iterator->gfn = iterator->start_gfn;
1432 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1433 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1434 iterator->slot);
1435}
1436
1437static void
1438slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1439 struct kvm_memory_slot *slot, int start_level,
1440 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1441{
1442 iterator->slot = slot;
1443 iterator->start_level = start_level;
1444 iterator->end_level = end_level;
1445 iterator->start_gfn = start_gfn;
1446 iterator->end_gfn = end_gfn;
1447
1448 rmap_walk_init_level(iterator, iterator->start_level);
1449}
1450
1451static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1452{
1453 return !!iterator->rmap;
1454}
1455
1456static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1457{
1458 if (++iterator->rmap <= iterator->end_rmap) {
1459 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1460 return;
1461 }
1462
1463 if (++iterator->level > iterator->end_level) {
1464 iterator->rmap = NULL;
1465 return;
1466 }
1467
1468 rmap_walk_init_level(iterator, iterator->level);
1469}
1470
1471#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1472 _start_gfn, _end_gfn, _iter_) \
1473 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1474 _end_level_, _start_gfn, _end_gfn); \
1475 slot_rmap_walk_okay(_iter_); \
1476 slot_rmap_walk_next(_iter_))
1477
84504ef3
TY
1478static int kvm_handle_hva_range(struct kvm *kvm,
1479 unsigned long start,
1480 unsigned long end,
1481 unsigned long data,
1482 int (*handler)(struct kvm *kvm,
018aabb5 1483 struct kvm_rmap_head *rmap_head,
048212d0 1484 struct kvm_memory_slot *slot,
8a9522d2
ALC
1485 gfn_t gfn,
1486 int level,
84504ef3 1487 unsigned long data))
e930bffe 1488{
bc6678a3 1489 struct kvm_memslots *slots;
be6ba0f0 1490 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1491 struct slot_rmap_walk_iterator iterator;
1492 int ret = 0;
9da0e4d5 1493 int i;
bc6678a3 1494
9da0e4d5
PB
1495 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1496 slots = __kvm_memslots(kvm, i);
1497 kvm_for_each_memslot(memslot, slots) {
1498 unsigned long hva_start, hva_end;
1499 gfn_t gfn_start, gfn_end;
e930bffe 1500
9da0e4d5
PB
1501 hva_start = max(start, memslot->userspace_addr);
1502 hva_end = min(end, memslot->userspace_addr +
1503 (memslot->npages << PAGE_SHIFT));
1504 if (hva_start >= hva_end)
1505 continue;
1506 /*
1507 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1508 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1509 */
1510 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1511 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1512
1513 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1514 PT_MAX_HUGEPAGE_LEVEL,
1515 gfn_start, gfn_end - 1,
1516 &iterator)
1517 ret |= handler(kvm, iterator.rmap, memslot,
1518 iterator.gfn, iterator.level, data);
1519 }
e930bffe
AA
1520 }
1521
f395302e 1522 return ret;
e930bffe
AA
1523}
1524
84504ef3
TY
1525static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1526 unsigned long data,
018aabb5
TY
1527 int (*handler)(struct kvm *kvm,
1528 struct kvm_rmap_head *rmap_head,
048212d0 1529 struct kvm_memory_slot *slot,
8a9522d2 1530 gfn_t gfn, int level,
84504ef3
TY
1531 unsigned long data))
1532{
1533 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1534}
1535
1536int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1537{
3da0dd43
IE
1538 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1539}
1540
b3ae2096
TY
1541int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1542{
1543 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1544}
1545
3da0dd43
IE
1546void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1547{
8a8365c5 1548 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1549}
1550
018aabb5 1551static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1552 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1553 unsigned long data)
e930bffe 1554{
1e3f42f0 1555 u64 *sptep;
79f702a6 1556 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1557 int young = 0;
1558
57128468 1559 BUG_ON(!shadow_accessed_mask);
534e38b4 1560
018aabb5 1561 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1562 if (*sptep & shadow_accessed_mask) {
e930bffe 1563 young = 1;
3f6d8c8a
XH
1564 clear_bit((ffs(shadow_accessed_mask) - 1),
1565 (unsigned long *)sptep);
e930bffe 1566 }
018aabb5 1567 }
0d536790 1568
8a9522d2 1569 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1570 return young;
1571}
1572
018aabb5 1573static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1574 struct kvm_memory_slot *slot, gfn_t gfn,
1575 int level, unsigned long data)
8ee53820 1576{
1e3f42f0
TY
1577 u64 *sptep;
1578 struct rmap_iterator iter;
8ee53820
AA
1579 int young = 0;
1580
1581 /*
1582 * If there's no access bit in the secondary pte set by the
1583 * hardware it's up to gup-fast/gup to set the access bit in
1584 * the primary pte or in the page structure.
1585 */
1586 if (!shadow_accessed_mask)
1587 goto out;
1588
018aabb5 1589 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1590 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1591 young = 1;
1592 break;
1593 }
018aabb5 1594 }
8ee53820
AA
1595out:
1596 return young;
1597}
1598
53a27b39
MT
1599#define RMAP_RECYCLE_THRESHOLD 1000
1600
852e3c19 1601static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1602{
018aabb5 1603 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1604 struct kvm_mmu_page *sp;
1605
1606 sp = page_header(__pa(spte));
53a27b39 1607
018aabb5 1608 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1609
018aabb5 1610 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1611 kvm_flush_remote_tlbs(vcpu->kvm);
1612}
1613
57128468 1614int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1615{
57128468
ALC
1616 /*
1617 * In case of absence of EPT Access and Dirty Bits supports,
1618 * emulate the accessed bit for EPT, by checking if this page has
1619 * an EPT mapping, and clearing it if it does. On the next access,
1620 * a new EPT mapping will be established.
1621 * This has some overhead, but not as much as the cost of swapping
1622 * out actively used pages or breaking up actively used hugepages.
1623 */
1624 if (!shadow_accessed_mask) {
1625 /*
1626 * We are holding the kvm->mmu_lock, and we are blowing up
1627 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1628 * This is correct as long as we don't decouple the mmu_lock
1629 * protected regions (like invalidate_range_start|end does).
1630 */
1631 kvm->mmu_notifier_seq++;
1632 return kvm_handle_hva_range(kvm, start, end, 0,
1633 kvm_unmap_rmapp);
1634 }
1635
1636 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1637}
1638
8ee53820
AA
1639int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1640{
1641 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1642}
1643
d6c69ee9 1644#ifdef MMU_DEBUG
47ad8e68 1645static int is_empty_shadow_page(u64 *spt)
6aa8b732 1646{
139bdb2d
AK
1647 u64 *pos;
1648 u64 *end;
1649
47ad8e68 1650 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1651 if (is_shadow_present_pte(*pos)) {
b8688d51 1652 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1653 pos, *pos);
6aa8b732 1654 return 0;
139bdb2d 1655 }
6aa8b732
AK
1656 return 1;
1657}
d6c69ee9 1658#endif
6aa8b732 1659
45221ab6
DH
1660/*
1661 * This value is the sum of all of the kvm instances's
1662 * kvm->arch.n_used_mmu_pages values. We need a global,
1663 * aggregate version in order to make the slab shrinker
1664 * faster
1665 */
1666static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1667{
1668 kvm->arch.n_used_mmu_pages += nr;
1669 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1670}
1671
834be0d8 1672static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1673{
fa4a2c08 1674 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1675 hlist_del(&sp->hash_link);
bd4c86ea
XG
1676 list_del(&sp->link);
1677 free_page((unsigned long)sp->spt);
834be0d8
GN
1678 if (!sp->role.direct)
1679 free_page((unsigned long)sp->gfns);
e8ad9a70 1680 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1681}
1682
cea0f0e7
AK
1683static unsigned kvm_page_table_hashfn(gfn_t gfn)
1684{
1ae0a13d 1685 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1686}
1687
714b93da 1688static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1689 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1690{
cea0f0e7
AK
1691 if (!parent_pte)
1692 return;
cea0f0e7 1693
67052b35 1694 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1695}
1696
4db35314 1697static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1698 u64 *parent_pte)
1699{
67052b35 1700 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1701}
1702
bcdd9a93
XG
1703static void drop_parent_pte(struct kvm_mmu_page *sp,
1704 u64 *parent_pte)
1705{
1706 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1707 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1708}
1709
47005792 1710static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1711{
67052b35 1712 struct kvm_mmu_page *sp;
7ddca7e4 1713
80feb89a
TY
1714 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1715 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1716 if (!direct)
80feb89a 1717 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1718 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1719
1720 /*
1721 * The active_mmu_pages list is the FIFO list, do not move the
1722 * page until it is zapped. kvm_zap_obsolete_pages depends on
1723 * this feature. See the comments in kvm_zap_obsolete_pages().
1724 */
67052b35 1725 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1726 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1727 return sp;
ad8cfbe3
MT
1728}
1729
67052b35 1730static void mark_unsync(u64 *spte);
1047df1f 1731static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1732{
74c4e63a
TY
1733 u64 *sptep;
1734 struct rmap_iterator iter;
1735
1736 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1737 mark_unsync(sptep);
1738 }
0074ff63
MT
1739}
1740
67052b35 1741static void mark_unsync(u64 *spte)
0074ff63 1742{
67052b35 1743 struct kvm_mmu_page *sp;
1047df1f 1744 unsigned int index;
0074ff63 1745
67052b35 1746 sp = page_header(__pa(spte));
1047df1f
XG
1747 index = spte - sp->spt;
1748 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1749 return;
1047df1f 1750 if (sp->unsync_children++)
0074ff63 1751 return;
1047df1f 1752 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1753}
1754
e8bc217a 1755static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1756 struct kvm_mmu_page *sp)
e8bc217a
MT
1757{
1758 return 1;
1759}
1760
a7052897
MT
1761static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1762{
1763}
1764
0f53b5b1
XG
1765static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1766 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1767 const void *pte)
0f53b5b1
XG
1768{
1769 WARN_ON(1);
1770}
1771
60c8aec6
MT
1772#define KVM_PAGE_ARRAY_NR 16
1773
1774struct kvm_mmu_pages {
1775 struct mmu_page_and_offset {
1776 struct kvm_mmu_page *sp;
1777 unsigned int idx;
1778 } page[KVM_PAGE_ARRAY_NR];
1779 unsigned int nr;
1780};
1781
cded19f3
HE
1782static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1783 int idx)
4731d4c7 1784{
60c8aec6 1785 int i;
4731d4c7 1786
60c8aec6
MT
1787 if (sp->unsync)
1788 for (i=0; i < pvec->nr; i++)
1789 if (pvec->page[i].sp == sp)
1790 return 0;
1791
1792 pvec->page[pvec->nr].sp = sp;
1793 pvec->page[pvec->nr].idx = idx;
1794 pvec->nr++;
1795 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1796}
1797
fd951457
TY
1798static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1799{
1800 --sp->unsync_children;
1801 WARN_ON((int)sp->unsync_children < 0);
1802 __clear_bit(idx, sp->unsync_child_bitmap);
1803}
1804
60c8aec6
MT
1805static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1806 struct kvm_mmu_pages *pvec)
1807{
1808 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1809
37178b8b 1810 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1811 struct kvm_mmu_page *child;
4731d4c7
MT
1812 u64 ent = sp->spt[i];
1813
fd951457
TY
1814 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1815 clear_unsync_child_bit(sp, i);
1816 continue;
1817 }
7a8f1a74
XG
1818
1819 child = page_header(ent & PT64_BASE_ADDR_MASK);
1820
1821 if (child->unsync_children) {
1822 if (mmu_pages_add(pvec, child, i))
1823 return -ENOSPC;
1824
1825 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1826 if (!ret) {
1827 clear_unsync_child_bit(sp, i);
1828 continue;
1829 } else if (ret > 0) {
7a8f1a74 1830 nr_unsync_leaf += ret;
fd951457 1831 } else
7a8f1a74
XG
1832 return ret;
1833 } else if (child->unsync) {
1834 nr_unsync_leaf++;
1835 if (mmu_pages_add(pvec, child, i))
1836 return -ENOSPC;
1837 } else
fd951457 1838 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1839 }
1840
60c8aec6
MT
1841 return nr_unsync_leaf;
1842}
1843
1844static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1845 struct kvm_mmu_pages *pvec)
1846{
1847 if (!sp->unsync_children)
1848 return 0;
1849
1850 mmu_pages_add(pvec, sp, 0);
1851 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1852}
1853
4731d4c7
MT
1854static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1855{
1856 WARN_ON(!sp->unsync);
5e1b3ddb 1857 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1858 sp->unsync = 0;
1859 --kvm->stat.mmu_unsync;
1860}
1861
7775834a
XG
1862static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1863 struct list_head *invalid_list);
1864static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1865 struct list_head *invalid_list);
4731d4c7 1866
f34d251d
XG
1867/*
1868 * NOTE: we should pay more attention on the zapped-obsolete page
1869 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1870 * since it has been deleted from active_mmu_pages but still can be found
1871 * at hast list.
1872 *
1873 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1874 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1875 * all the obsolete pages.
1876 */
1044b030
TY
1877#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1878 hlist_for_each_entry(_sp, \
1879 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1880 if ((_sp)->gfn != (_gfn)) {} else
1881
1882#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1883 for_each_gfn_sp(_kvm, _sp, _gfn) \
1884 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1885
f918b443 1886/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1887static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1888 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1889{
5b7e0102 1890 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1891 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1892 return 1;
1893 }
1894
f918b443 1895 if (clear_unsync)
1d9dc7e0 1896 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1897
a4a8e6f7 1898 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1899 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1900 return 1;
1901 }
1902
77c3913b 1903 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4731d4c7
MT
1904 return 0;
1905}
1906
1d9dc7e0
XG
1907static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1908 struct kvm_mmu_page *sp)
1909{
d98ba053 1910 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1911 int ret;
1912
d98ba053 1913 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1914 if (ret)
d98ba053
XG
1915 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1916
1d9dc7e0
XG
1917 return ret;
1918}
1919
e37fa785
XG
1920#ifdef CONFIG_KVM_MMU_AUDIT
1921#include "mmu_audit.c"
1922#else
1923static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1924static void mmu_audit_disable(void) { }
1925#endif
1926
d98ba053
XG
1927static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1928 struct list_head *invalid_list)
1d9dc7e0 1929{
d98ba053 1930 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1931}
1932
9f1a122f
XG
1933/* @gfn should be write-protected at the call site */
1934static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1935{
9f1a122f 1936 struct kvm_mmu_page *s;
d98ba053 1937 LIST_HEAD(invalid_list);
9f1a122f
XG
1938 bool flush = false;
1939
b67bfe0d 1940 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1941 if (!s->unsync)
9f1a122f
XG
1942 continue;
1943
1944 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1945 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1946 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1947 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1948 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1949 continue;
1950 }
9f1a122f
XG
1951 flush = true;
1952 }
1953
d98ba053 1954 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f 1955 if (flush)
77c3913b 1956 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
9f1a122f
XG
1957}
1958
60c8aec6
MT
1959struct mmu_page_path {
1960 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1961 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1962};
1963
60c8aec6
MT
1964#define for_each_sp(pvec, sp, parents, i) \
1965 for (i = mmu_pages_next(&pvec, &parents, -1), \
1966 sp = pvec.page[i].sp; \
1967 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1968 i = mmu_pages_next(&pvec, &parents, i))
1969
cded19f3
HE
1970static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1971 struct mmu_page_path *parents,
1972 int i)
60c8aec6
MT
1973{
1974 int n;
1975
1976 for (n = i+1; n < pvec->nr; n++) {
1977 struct kvm_mmu_page *sp = pvec->page[n].sp;
1978
1979 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1980 parents->idx[0] = pvec->page[n].idx;
1981 return n;
1982 }
1983
1984 parents->parent[sp->role.level-2] = sp;
1985 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1986 }
1987
1988 return n;
1989}
1990
cded19f3 1991static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1992{
60c8aec6
MT
1993 struct kvm_mmu_page *sp;
1994 unsigned int level = 0;
1995
1996 do {
1997 unsigned int idx = parents->idx[level];
4731d4c7 1998
60c8aec6
MT
1999 sp = parents->parent[level];
2000 if (!sp)
2001 return;
2002
fd951457 2003 clear_unsync_child_bit(sp, idx);
60c8aec6
MT
2004 level++;
2005 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
2006}
2007
60c8aec6
MT
2008static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2009 struct mmu_page_path *parents,
2010 struct kvm_mmu_pages *pvec)
4731d4c7 2011{
60c8aec6
MT
2012 parents->parent[parent->role.level-1] = NULL;
2013 pvec->nr = 0;
2014}
4731d4c7 2015
60c8aec6
MT
2016static void mmu_sync_children(struct kvm_vcpu *vcpu,
2017 struct kvm_mmu_page *parent)
2018{
2019 int i;
2020 struct kvm_mmu_page *sp;
2021 struct mmu_page_path parents;
2022 struct kvm_mmu_pages pages;
d98ba053 2023 LIST_HEAD(invalid_list);
60c8aec6
MT
2024
2025 kvm_mmu_pages_init(parent, &parents, &pages);
2026 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2027 bool protected = false;
b1a36821
MT
2028
2029 for_each_sp(pages, sp, parents, i)
54bf36aa 2030 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821
MT
2031
2032 if (protected)
2033 kvm_flush_remote_tlbs(vcpu->kvm);
2034
60c8aec6 2035 for_each_sp(pages, sp, parents, i) {
d98ba053 2036 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2037 mmu_pages_clear_parents(&parents);
2038 }
d98ba053 2039 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 2040 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
2041 kvm_mmu_pages_init(parent, &parents, &pages);
2042 }
4731d4c7
MT
2043}
2044
a30f47cb
XG
2045static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2046{
2047 sp->write_flooding_count = 0;
2048}
2049
2050static void clear_sp_write_flooding_count(u64 *spte)
2051{
2052 struct kvm_mmu_page *sp = page_header(__pa(spte));
2053
2054 __clear_sp_write_flooding_count(sp);
2055}
2056
5304b8d3
XG
2057static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2058{
2059 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2060}
2061
cea0f0e7
AK
2062static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2063 gfn_t gfn,
2064 gva_t gaddr,
2065 unsigned level,
f6e2c02b 2066 int direct,
bb11c6c9 2067 unsigned access)
cea0f0e7
AK
2068{
2069 union kvm_mmu_page_role role;
cea0f0e7 2070 unsigned quadrant;
9f1a122f 2071 struct kvm_mmu_page *sp;
9f1a122f 2072 bool need_sync = false;
cea0f0e7 2073
a770f6f2 2074 role = vcpu->arch.mmu.base_role;
cea0f0e7 2075 role.level = level;
f6e2c02b 2076 role.direct = direct;
84b0c8c6 2077 if (role.direct)
5b7e0102 2078 role.cr4_pae = 0;
41074d07 2079 role.access = access;
c5a78f2b
JR
2080 if (!vcpu->arch.mmu.direct_map
2081 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2082 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2083 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2084 role.quadrant = quadrant;
2085 }
b67bfe0d 2086 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
2087 if (is_obsolete_sp(vcpu->kvm, sp))
2088 continue;
2089
7ae680eb
XG
2090 if (!need_sync && sp->unsync)
2091 need_sync = true;
4731d4c7 2092
7ae680eb
XG
2093 if (sp->role.word != role.word)
2094 continue;
4731d4c7 2095
7ae680eb
XG
2096 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2097 break;
e02aa901 2098
98bba238 2099 if (sp->unsync_children)
a8eeb04a 2100 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2101
a30f47cb 2102 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
2103 trace_kvm_mmu_get_page(sp, false);
2104 return sp;
2105 }
47005792 2106
dfc5aa00 2107 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2108
2109 sp = kvm_mmu_alloc_page(vcpu, direct);
2110
4db35314
AK
2111 sp->gfn = gfn;
2112 sp->role = role;
7ae680eb
XG
2113 hlist_add_head(&sp->hash_link,
2114 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2115 if (!direct) {
54bf36aa 2116 if (rmap_write_protect(vcpu, gfn))
b1a36821 2117 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
2118 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2119 kvm_sync_pages(vcpu, gfn);
2120
3ed1a478 2121 account_shadowed(vcpu->kvm, sp);
4731d4c7 2122 }
5304b8d3 2123 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2124 clear_page(sp->spt);
f691fe1d 2125 trace_kvm_mmu_get_page(sp, true);
4db35314 2126 return sp;
cea0f0e7
AK
2127}
2128
2d11123a
AK
2129static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2130 struct kvm_vcpu *vcpu, u64 addr)
2131{
2132 iterator->addr = addr;
2133 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2134 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2135
2136 if (iterator->level == PT64_ROOT_LEVEL &&
2137 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2138 !vcpu->arch.mmu.direct_map)
2139 --iterator->level;
2140
2d11123a
AK
2141 if (iterator->level == PT32E_ROOT_LEVEL) {
2142 iterator->shadow_addr
2143 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2144 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2145 --iterator->level;
2146 if (!iterator->shadow_addr)
2147 iterator->level = 0;
2148 }
2149}
2150
2151static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2152{
2153 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2154 return false;
4d88954d 2155
2d11123a
AK
2156 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2157 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2158 return true;
2159}
2160
c2a2ac2b
XG
2161static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2162 u64 spte)
2d11123a 2163{
c2a2ac2b 2164 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2165 iterator->level = 0;
2166 return;
2167 }
2168
c2a2ac2b 2169 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2170 --iterator->level;
2171}
2172
c2a2ac2b
XG
2173static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2174{
2175 return __shadow_walk_next(iterator, *iterator->sptep);
2176}
2177
98bba238
TY
2178static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2179 struct kvm_mmu_page *sp)
32ef26a3
AK
2180{
2181 u64 spte;
2182
7a1638ce
YZ
2183 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2184 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2185
24db2734 2186 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
0e3d0648 2187 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
24db2734 2188
1df9f2dc 2189 mmu_spte_set(sptep, spte);
98bba238
TY
2190
2191 mmu_page_add_parent_pte(vcpu, sp, sptep);
2192
2193 if (sp->unsync_children || sp->unsync)
2194 mark_unsync(sptep);
32ef26a3
AK
2195}
2196
a357bd22
AK
2197static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2198 unsigned direct_access)
2199{
2200 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2201 struct kvm_mmu_page *child;
2202
2203 /*
2204 * For the direct sp, if the guest pte's dirty bit
2205 * changed form clean to dirty, it will corrupt the
2206 * sp's access: allow writable in the read-only sp,
2207 * so we should update the spte at this point to get
2208 * a new sp with the correct access.
2209 */
2210 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2211 if (child->role.access == direct_access)
2212 return;
2213
bcdd9a93 2214 drop_parent_pte(child, sptep);
a357bd22
AK
2215 kvm_flush_remote_tlbs(vcpu->kvm);
2216 }
2217}
2218
505aef8f 2219static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2220 u64 *spte)
2221{
2222 u64 pte;
2223 struct kvm_mmu_page *child;
2224
2225 pte = *spte;
2226 if (is_shadow_present_pte(pte)) {
505aef8f 2227 if (is_last_spte(pte, sp->role.level)) {
c3707958 2228 drop_spte(kvm, spte);
505aef8f
XG
2229 if (is_large_pte(pte))
2230 --kvm->stat.lpages;
2231 } else {
38e3b2b2 2232 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2233 drop_parent_pte(child, spte);
38e3b2b2 2234 }
505aef8f
XG
2235 return true;
2236 }
2237
2238 if (is_mmio_spte(pte))
ce88decf 2239 mmu_spte_clear_no_track(spte);
c3707958 2240
505aef8f 2241 return false;
38e3b2b2
XG
2242}
2243
90cb0529 2244static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2245 struct kvm_mmu_page *sp)
a436036b 2246{
697fe2e2 2247 unsigned i;
697fe2e2 2248
38e3b2b2
XG
2249 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2250 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2251}
2252
31aa2b44 2253static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2254{
1e3f42f0
TY
2255 u64 *sptep;
2256 struct rmap_iterator iter;
a436036b 2257
018aabb5 2258 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2259 drop_parent_pte(sp, sptep);
31aa2b44
AK
2260}
2261
60c8aec6 2262static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2263 struct kvm_mmu_page *parent,
2264 struct list_head *invalid_list)
4731d4c7 2265{
60c8aec6
MT
2266 int i, zapped = 0;
2267 struct mmu_page_path parents;
2268 struct kvm_mmu_pages pages;
4731d4c7 2269
60c8aec6 2270 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2271 return 0;
60c8aec6
MT
2272
2273 kvm_mmu_pages_init(parent, &parents, &pages);
2274 while (mmu_unsync_walk(parent, &pages)) {
2275 struct kvm_mmu_page *sp;
2276
2277 for_each_sp(pages, sp, parents, i) {
7775834a 2278 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2279 mmu_pages_clear_parents(&parents);
77662e00 2280 zapped++;
60c8aec6 2281 }
60c8aec6
MT
2282 kvm_mmu_pages_init(parent, &parents, &pages);
2283 }
2284
2285 return zapped;
4731d4c7
MT
2286}
2287
7775834a
XG
2288static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2289 struct list_head *invalid_list)
31aa2b44 2290{
4731d4c7 2291 int ret;
f691fe1d 2292
7775834a 2293 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2294 ++kvm->stat.mmu_shadow_zapped;
7775834a 2295 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2296 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2297 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2298
f6e2c02b 2299 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2300 unaccount_shadowed(kvm, sp);
5304b8d3 2301
4731d4c7
MT
2302 if (sp->unsync)
2303 kvm_unlink_unsync_page(kvm, sp);
4db35314 2304 if (!sp->root_count) {
54a4f023
GJ
2305 /* Count self */
2306 ret++;
7775834a 2307 list_move(&sp->link, invalid_list);
aa6bd187 2308 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2309 } else {
5b5c6a5a 2310 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2311
2312 /*
2313 * The obsolete pages can not be used on any vcpus.
2314 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2315 */
2316 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2317 kvm_reload_remote_mmus(kvm);
2e53d63a 2318 }
7775834a
XG
2319
2320 sp->role.invalid = 1;
4731d4c7 2321 return ret;
a436036b
AK
2322}
2323
7775834a
XG
2324static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2325 struct list_head *invalid_list)
2326{
945315b9 2327 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2328
2329 if (list_empty(invalid_list))
2330 return;
2331
c142786c
AK
2332 /*
2333 * wmb: make sure everyone sees our modifications to the page tables
2334 * rmb: make sure we see changes to vcpu->mode
2335 */
2336 smp_mb();
4f022648 2337
c142786c
AK
2338 /*
2339 * Wait for all vcpus to exit guest mode and/or lockless shadow
2340 * page table walks.
2341 */
2342 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2343
945315b9 2344 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2345 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2346 kvm_mmu_free_page(sp);
945315b9 2347 }
7775834a
XG
2348}
2349
5da59607
TY
2350static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2351 struct list_head *invalid_list)
2352{
2353 struct kvm_mmu_page *sp;
2354
2355 if (list_empty(&kvm->arch.active_mmu_pages))
2356 return false;
2357
d74c0e6b
GT
2358 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2359 struct kvm_mmu_page, link);
5da59607
TY
2360 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2361
2362 return true;
2363}
2364
82ce2c96
IE
2365/*
2366 * Changing the number of mmu pages allocated to the vm
49d5ca26 2367 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2368 */
49d5ca26 2369void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2370{
d98ba053 2371 LIST_HEAD(invalid_list);
82ce2c96 2372
b34cb590
TY
2373 spin_lock(&kvm->mmu_lock);
2374
49d5ca26 2375 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2376 /* Need to free some mmu pages to achieve the goal. */
2377 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2378 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2379 break;
82ce2c96 2380
aa6bd187 2381 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2382 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2383 }
82ce2c96 2384
49d5ca26 2385 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2386
2387 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2388}
2389
1cb3f3ae 2390int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2391{
4db35314 2392 struct kvm_mmu_page *sp;
d98ba053 2393 LIST_HEAD(invalid_list);
a436036b
AK
2394 int r;
2395
9ad17b10 2396 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2397 r = 0;
1cb3f3ae 2398 spin_lock(&kvm->mmu_lock);
b67bfe0d 2399 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2400 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2401 sp->role.word);
2402 r = 1;
f41d335a 2403 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2404 }
d98ba053 2405 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2406 spin_unlock(&kvm->mmu_lock);
2407
a436036b 2408 return r;
cea0f0e7 2409}
1cb3f3ae 2410EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2411
9cf5cf5a
XG
2412static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2413{
2414 trace_kvm_mmu_unsync_page(sp);
2415 ++vcpu->kvm->stat.mmu_unsync;
2416 sp->unsync = 1;
2417
2418 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2419}
2420
2421static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2422{
4731d4c7 2423 struct kvm_mmu_page *s;
9cf5cf5a 2424
b67bfe0d 2425 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2426 if (s->unsync)
4731d4c7 2427 continue;
9cf5cf5a
XG
2428 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2429 __kvm_unsync_page(vcpu, s);
4731d4c7 2430 }
4731d4c7
MT
2431}
2432
2433static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2434 bool can_unsync)
2435{
9cf5cf5a 2436 struct kvm_mmu_page *s;
9cf5cf5a
XG
2437 bool need_unsync = false;
2438
b67bfe0d 2439 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2440 if (!can_unsync)
2441 return 1;
2442
9cf5cf5a 2443 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2444 return 1;
9cf5cf5a 2445
9bb4f6b1 2446 if (!s->unsync)
9cf5cf5a 2447 need_unsync = true;
4731d4c7 2448 }
9cf5cf5a
XG
2449 if (need_unsync)
2450 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2451 return 0;
2452}
2453
ba049e93 2454static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2455{
2456 if (pfn_valid(pfn))
2457 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2458
2459 return true;
2460}
2461
d555c333 2462static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2463 unsigned pte_access, int level,
ba049e93 2464 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2465 bool can_unsync, bool host_writable)
1c4f1fd6 2466{
6e7d0354 2467 u64 spte;
1e73f9dd 2468 int ret = 0;
64d4d521 2469
54bf36aa 2470 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2471 return 0;
2472
982c2565 2473 spte = PT_PRESENT_MASK;
947da538 2474 if (!speculative)
3201b5d9 2475 spte |= shadow_accessed_mask;
640d9b0d 2476
7b52345e
SY
2477 if (pte_access & ACC_EXEC_MASK)
2478 spte |= shadow_x_mask;
2479 else
2480 spte |= shadow_nx_mask;
49fde340 2481
1c4f1fd6 2482 if (pte_access & ACC_USER_MASK)
7b52345e 2483 spte |= shadow_user_mask;
49fde340 2484
852e3c19 2485 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2486 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2487 if (tdp_enabled)
4b12f0de 2488 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2489 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2490
9bdbba13 2491 if (host_writable)
1403283a 2492 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2493 else
2494 pte_access &= ~ACC_WRITE_MASK;
1403283a 2495
35149e21 2496 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2497
c2288505 2498 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2499
c2193463 2500 /*
7751babd
XG
2501 * Other vcpu creates new sp in the window between
2502 * mapping_level() and acquiring mmu-lock. We can
2503 * allow guest to retry the access, the mapping can
2504 * be fixed if guest refault.
c2193463 2505 */
852e3c19 2506 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2507 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2508 goto done;
38187c83 2509
49fde340 2510 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2511
ecc5589f
MT
2512 /*
2513 * Optimization: for pte sync, if spte was writable the hash
2514 * lookup is unnecessary (and expensive). Write protection
2515 * is responsibility of mmu_get_page / kvm_sync_page.
2516 * Same reasoning can be applied to dirty page accounting.
2517 */
8dae4445 2518 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2519 goto set_pte;
2520
4731d4c7 2521 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2522 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2523 __func__, gfn);
1e73f9dd 2524 ret = 1;
1c4f1fd6 2525 pte_access &= ~ACC_WRITE_MASK;
49fde340 2526 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2527 }
2528 }
2529
9b51a630 2530 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2531 kvm_vcpu_mark_page_dirty(vcpu, gfn);
9b51a630
KH
2532 spte |= shadow_dirty_mask;
2533 }
1c4f1fd6 2534
38187c83 2535set_pte:
6e7d0354 2536 if (mmu_spte_update(sptep, spte))
b330aa0c 2537 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2538done:
1e73f9dd
MT
2539 return ret;
2540}
2541
029499b4 2542static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
ba049e93 2543 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
029499b4 2544 bool speculative, bool host_writable)
1e73f9dd
MT
2545{
2546 int was_rmapped = 0;
53a27b39 2547 int rmap_count;
029499b4 2548 bool emulate = false;
1e73f9dd 2549
f7616203
XG
2550 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2551 *sptep, write_fault, gfn);
1e73f9dd 2552
afd28fe1 2553 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2554 /*
2555 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2556 * the parent of the now unreachable PTE.
2557 */
852e3c19
JR
2558 if (level > PT_PAGE_TABLE_LEVEL &&
2559 !is_large_pte(*sptep)) {
1e73f9dd 2560 struct kvm_mmu_page *child;
d555c333 2561 u64 pte = *sptep;
1e73f9dd
MT
2562
2563 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2564 drop_parent_pte(child, sptep);
3be2264b 2565 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2566 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2567 pgprintk("hfn old %llx new %llx\n",
d555c333 2568 spte_to_pfn(*sptep), pfn);
c3707958 2569 drop_spte(vcpu->kvm, sptep);
91546356 2570 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2571 } else
2572 was_rmapped = 1;
1e73f9dd 2573 }
852e3c19 2574
c2288505
XG
2575 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2576 true, host_writable)) {
1e73f9dd 2577 if (write_fault)
029499b4 2578 emulate = true;
77c3913b 2579 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2580 }
1e73f9dd 2581
029499b4
TY
2582 if (unlikely(is_mmio_spte(*sptep)))
2583 emulate = true;
ce88decf 2584
d555c333 2585 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2586 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2587 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2588 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2589 *sptep, sptep);
d555c333 2590 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2591 ++vcpu->kvm->stat.lpages;
2592
ffb61bb3 2593 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2594 if (!was_rmapped) {
2595 rmap_count = rmap_add(vcpu, sptep, gfn);
2596 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2597 rmap_recycle(vcpu, sptep, gfn);
2598 }
1c4f1fd6 2599 }
cb9aaa30 2600
f3ac1a4b 2601 kvm_release_pfn_clean(pfn);
029499b4
TY
2602
2603 return emulate;
1c4f1fd6
AK
2604}
2605
ba049e93 2606static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2607 bool no_dirty_log)
2608{
2609 struct kvm_memory_slot *slot;
957ed9ef 2610
5d163b1c 2611 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2612 if (!slot)
6c8ee57b 2613 return KVM_PFN_ERR_FAULT;
957ed9ef 2614
037d92dc 2615 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2616}
2617
2618static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2619 struct kvm_mmu_page *sp,
2620 u64 *start, u64 *end)
2621{
2622 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2623 struct kvm_memory_slot *slot;
957ed9ef
XG
2624 unsigned access = sp->role.access;
2625 int i, ret;
2626 gfn_t gfn;
2627
2628 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2629 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2630 if (!slot)
957ed9ef
XG
2631 return -1;
2632
d9ef13c2 2633 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2634 if (ret <= 0)
2635 return -1;
2636
2637 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
2638 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2639 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
2640
2641 return 0;
2642}
2643
2644static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2645 struct kvm_mmu_page *sp, u64 *sptep)
2646{
2647 u64 *spte, *start = NULL;
2648 int i;
2649
2650 WARN_ON(!sp->role.direct);
2651
2652 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2653 spte = sp->spt + i;
2654
2655 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2656 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2657 if (!start)
2658 continue;
2659 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2660 break;
2661 start = NULL;
2662 } else if (!start)
2663 start = spte;
2664 }
2665}
2666
2667static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2668{
2669 struct kvm_mmu_page *sp;
2670
2671 /*
2672 * Since it's no accessed bit on EPT, it's no way to
2673 * distinguish between actually accessed translations
2674 * and prefetched, so disable pte prefetch if EPT is
2675 * enabled.
2676 */
2677 if (!shadow_accessed_mask)
2678 return;
2679
2680 sp = page_header(__pa(sptep));
2681 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2682 return;
2683
2684 __direct_pte_prefetch(vcpu, sp, sptep);
2685}
2686
7ee0e5b2 2687static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 2688 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 2689{
9f652d21 2690 struct kvm_shadow_walk_iterator iterator;
140754bc 2691 struct kvm_mmu_page *sp;
b90a0e6c 2692 int emulate = 0;
140754bc 2693 gfn_t pseudo_gfn;
6aa8b732 2694
989c6b34
MT
2695 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2696 return 0;
2697
9f652d21 2698 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2699 if (iterator.level == level) {
029499b4
TY
2700 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2701 write, level, gfn, pfn, prefault,
2702 map_writable);
957ed9ef 2703 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2704 ++vcpu->stat.pf_fixed;
2705 break;
6aa8b732
AK
2706 }
2707
404381c5 2708 drop_large_spte(vcpu, iterator.sptep);
c3707958 2709 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2710 u64 base_addr = iterator.addr;
2711
2712 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2713 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 2714 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 2715 iterator.level - 1, 1, ACC_ALL);
140754bc 2716
98bba238 2717 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
2718 }
2719 }
b90a0e6c 2720 return emulate;
6aa8b732
AK
2721}
2722
77db5cbd 2723static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2724{
77db5cbd
HY
2725 siginfo_t info;
2726
2727 info.si_signo = SIGBUS;
2728 info.si_errno = 0;
2729 info.si_code = BUS_MCEERR_AR;
2730 info.si_addr = (void __user *)address;
2731 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2732
77db5cbd 2733 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2734}
2735
ba049e93 2736static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2737{
4d8b81ab
XG
2738 /*
2739 * Do not cache the mmio info caused by writing the readonly gfn
2740 * into the spte otherwise read access on readonly gfn also can
2741 * caused mmio page fault and treat it as mmio access.
2742 * Return 1 to tell kvm to emulate it.
2743 */
2744 if (pfn == KVM_PFN_ERR_RO_FAULT)
2745 return 1;
2746
e6c1502b 2747 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2748 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
bf998156 2749 return 0;
d7c55201 2750 }
edba23e5 2751
d7c55201 2752 return -EFAULT;
bf998156
HY
2753}
2754
936a5fe6 2755static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
2756 gfn_t *gfnp, kvm_pfn_t *pfnp,
2757 int *levelp)
936a5fe6 2758{
ba049e93 2759 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
2760 gfn_t gfn = *gfnp;
2761 int level = *levelp;
2762
2763 /*
2764 * Check if it's a transparent hugepage. If this would be an
2765 * hugetlbfs page, level wouldn't be set to
2766 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2767 * here.
2768 */
bf4bea8e 2769 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6
AA
2770 level == PT_PAGE_TABLE_LEVEL &&
2771 PageTransCompound(pfn_to_page(pfn)) &&
92f94f1e 2772 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
2773 unsigned long mask;
2774 /*
2775 * mmu_notifier_retry was successful and we hold the
2776 * mmu_lock here, so the pmd can't become splitting
2777 * from under us, and in turn
2778 * __split_huge_page_refcount() can't run from under
2779 * us and we can safely transfer the refcount from
2780 * PG_tail to PG_head as we switch the pfn to tail to
2781 * head.
2782 */
2783 *levelp = level = PT_DIRECTORY_LEVEL;
2784 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2785 VM_BUG_ON((gfn & mask) != (pfn & mask));
2786 if (pfn & mask) {
2787 gfn &= ~mask;
2788 *gfnp = gfn;
2789 kvm_release_pfn_clean(pfn);
2790 pfn &= ~mask;
c3586667 2791 kvm_get_pfn(pfn);
936a5fe6
AA
2792 *pfnp = pfn;
2793 }
2794 }
2795}
2796
d7c55201 2797static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 2798 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201
XG
2799{
2800 bool ret = true;
2801
2802 /* The pfn is invalid, report the error! */
81c52c56 2803 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2804 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2805 goto exit;
2806 }
2807
ce88decf 2808 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2809 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2810
2811 ret = false;
2812exit:
2813 return ret;
2814}
2815
e5552fd2 2816static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2817{
1c118b82
XG
2818 /*
2819 * Do not fix the mmio spte with invalid generation number which
2820 * need to be updated by slow page fault path.
2821 */
2822 if (unlikely(error_code & PFERR_RSVD_MASK))
2823 return false;
2824
c7ba5b48
XG
2825 /*
2826 * #PF can be fast only if the shadow page table is present and it
2827 * is caused by write-protect, that means we just need change the
2828 * W bit of the spte which can be done out of mmu-lock.
2829 */
2830 if (!(error_code & PFERR_PRESENT_MASK) ||
2831 !(error_code & PFERR_WRITE_MASK))
2832 return false;
2833
2834 return true;
2835}
2836
2837static bool
92a476cb
XG
2838fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2839 u64 *sptep, u64 spte)
c7ba5b48 2840{
c7ba5b48
XG
2841 gfn_t gfn;
2842
2843 WARN_ON(!sp->role.direct);
2844
2845 /*
2846 * The gfn of direct spte is stable since it is calculated
2847 * by sp->gfn.
2848 */
2849 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2850
9b51a630
KH
2851 /*
2852 * Theoretically we could also set dirty bit (and flush TLB) here in
2853 * order to eliminate unnecessary PML logging. See comments in
2854 * set_spte. But fast_page_fault is very unlikely to happen with PML
2855 * enabled, so we do not do this. This might result in the same GPA
2856 * to be logged in PML buffer again when the write really happens, and
2857 * eventually to be called by mark_page_dirty twice. But it's also no
2858 * harm. This also avoids the TLB flush needed after setting dirty bit
2859 * so non-PML cases won't be impacted.
2860 *
2861 * Compare with set_spte where instead shadow_dirty_mask is set.
2862 */
c7ba5b48 2863 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
54bf36aa 2864 kvm_vcpu_mark_page_dirty(vcpu, gfn);
c7ba5b48
XG
2865
2866 return true;
2867}
2868
2869/*
2870 * Return value:
2871 * - true: let the vcpu to access on the same address again.
2872 * - false: let the real page fault path to fix it.
2873 */
2874static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2875 u32 error_code)
2876{
2877 struct kvm_shadow_walk_iterator iterator;
92a476cb 2878 struct kvm_mmu_page *sp;
c7ba5b48
XG
2879 bool ret = false;
2880 u64 spte = 0ull;
2881
37f6a4e2
MT
2882 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2883 return false;
2884
e5552fd2 2885 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2886 return false;
2887
2888 walk_shadow_page_lockless_begin(vcpu);
2889 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2890 if (!is_shadow_present_pte(spte) || iterator.level < level)
2891 break;
2892
2893 /*
2894 * If the mapping has been changed, let the vcpu fault on the
2895 * same address again.
2896 */
afd28fe1 2897 if (!is_shadow_present_pte(spte)) {
c7ba5b48
XG
2898 ret = true;
2899 goto exit;
2900 }
2901
92a476cb
XG
2902 sp = page_header(__pa(iterator.sptep));
2903 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2904 goto exit;
2905
2906 /*
2907 * Check if it is a spurious fault caused by TLB lazily flushed.
2908 *
2909 * Need not check the access of upper level table entries since
2910 * they are always ACC_ALL.
2911 */
2912 if (is_writable_pte(spte)) {
2913 ret = true;
2914 goto exit;
2915 }
2916
2917 /*
2918 * Currently, to simplify the code, only the spte write-protected
2919 * by dirty-log can be fast fixed.
2920 */
2921 if (!spte_is_locklessly_modifiable(spte))
2922 goto exit;
2923
c126d94f
XG
2924 /*
2925 * Do not fix write-permission on the large spte since we only dirty
2926 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2927 * that means other pages are missed if its slot is dirty-logged.
2928 *
2929 * Instead, we let the slow page fault path create a normal spte to
2930 * fix the access.
2931 *
2932 * See the comments in kvm_arch_commit_memory_region().
2933 */
2934 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2935 goto exit;
2936
c7ba5b48
XG
2937 /*
2938 * Currently, fast page fault only works for direct mapping since
2939 * the gfn is not stable for indirect shadow page.
2940 * See Documentation/virtual/kvm/locking.txt to get more detail.
2941 */
92a476cb 2942 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 2943exit:
a72faf25
XG
2944 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2945 spte, ret);
c7ba5b48
XG
2946 walk_shadow_page_lockless_end(vcpu);
2947
2948 return ret;
2949}
2950
78b2c54a 2951static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 2952 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
450e0b41 2953static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2954
c7ba5b48
XG
2955static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2956 gfn_t gfn, bool prefault)
10589a46
MT
2957{
2958 int r;
852e3c19 2959 int level;
fd136902 2960 bool force_pt_level = false;
ba049e93 2961 kvm_pfn_t pfn;
e930bffe 2962 unsigned long mmu_seq;
c7ba5b48 2963 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2964
fd136902 2965 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 2966 if (likely(!force_pt_level)) {
936a5fe6
AA
2967 /*
2968 * This path builds a PAE pagetable - so we can map
2969 * 2mb pages at maximum. Therefore check if the level
2970 * is larger than that.
2971 */
2972 if (level > PT_DIRECTORY_LEVEL)
2973 level = PT_DIRECTORY_LEVEL;
852e3c19 2974
936a5fe6 2975 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 2976 }
05da4558 2977
c7ba5b48
XG
2978 if (fast_page_fault(vcpu, v, level, error_code))
2979 return 0;
2980
e930bffe 2981 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2982 smp_rmb();
060c2abe 2983
78b2c54a 2984 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2985 return 0;
aaee2c94 2986
d7c55201
XG
2987 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2988 return r;
d196e343 2989
aaee2c94 2990 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2991 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2992 goto out_unlock;
450e0b41 2993 make_mmu_pages_available(vcpu);
936a5fe6
AA
2994 if (likely(!force_pt_level))
2995 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 2996 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
2997 spin_unlock(&vcpu->kvm->mmu_lock);
2998
10589a46 2999 return r;
e930bffe
AA
3000
3001out_unlock:
3002 spin_unlock(&vcpu->kvm->mmu_lock);
3003 kvm_release_pfn_clean(pfn);
3004 return 0;
10589a46
MT
3005}
3006
3007
17ac10ad
AK
3008static void mmu_free_roots(struct kvm_vcpu *vcpu)
3009{
3010 int i;
4db35314 3011 struct kvm_mmu_page *sp;
d98ba053 3012 LIST_HEAD(invalid_list);
17ac10ad 3013
ad312c7c 3014 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3015 return;
35af577a 3016
81407ca5
JR
3017 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3018 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3019 vcpu->arch.mmu.direct_map)) {
ad312c7c 3020 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3021
35af577a 3022 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3023 sp = page_header(root);
3024 --sp->root_count;
d98ba053
XG
3025 if (!sp->root_count && sp->role.invalid) {
3026 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3027 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3028 }
aaee2c94 3029 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3030 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3031 return;
3032 }
35af577a
GN
3033
3034 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3035 for (i = 0; i < 4; ++i) {
ad312c7c 3036 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3037
417726a3 3038 if (root) {
417726a3 3039 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3040 sp = page_header(root);
3041 --sp->root_count;
2e53d63a 3042 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3043 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3044 &invalid_list);
417726a3 3045 }
ad312c7c 3046 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3047 }
d98ba053 3048 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3049 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3050 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3051}
3052
8986ecc0
MT
3053static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3054{
3055 int ret = 0;
3056
3057 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3058 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3059 ret = 1;
3060 }
3061
3062 return ret;
3063}
3064
651dd37a
JR
3065static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3066{
3067 struct kvm_mmu_page *sp;
7ebaf15e 3068 unsigned i;
651dd37a
JR
3069
3070 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3071 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3072 make_mmu_pages_available(vcpu);
bb11c6c9 3073 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3074 ++sp->root_count;
3075 spin_unlock(&vcpu->kvm->mmu_lock);
3076 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3077 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3078 for (i = 0; i < 4; ++i) {
3079 hpa_t root = vcpu->arch.mmu.pae_root[i];
3080
fa4a2c08 3081 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3082 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3083 make_mmu_pages_available(vcpu);
649497d1 3084 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3085 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3086 root = __pa(sp->spt);
3087 ++sp->root_count;
3088 spin_unlock(&vcpu->kvm->mmu_lock);
3089 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3090 }
6292757f 3091 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3092 } else
3093 BUG();
3094
3095 return 0;
3096}
3097
3098static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3099{
4db35314 3100 struct kvm_mmu_page *sp;
81407ca5
JR
3101 u64 pdptr, pm_mask;
3102 gfn_t root_gfn;
3103 int i;
3bb65a22 3104
5777ed34 3105 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3106
651dd37a
JR
3107 if (mmu_check_root(vcpu, root_gfn))
3108 return 1;
3109
3110 /*
3111 * Do we shadow a long mode page table? If so we need to
3112 * write-protect the guests page table root.
3113 */
3114 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3115 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3116
fa4a2c08 3117 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3118
8facbbff 3119 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3120 make_mmu_pages_available(vcpu);
651dd37a 3121 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
bb11c6c9 3122 0, ACC_ALL);
4db35314
AK
3123 root = __pa(sp->spt);
3124 ++sp->root_count;
8facbbff 3125 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3126 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3127 return 0;
17ac10ad 3128 }
f87f9288 3129
651dd37a
JR
3130 /*
3131 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3132 * or a PAE 3-level page table. In either case we need to be aware that
3133 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3134 */
81407ca5
JR
3135 pm_mask = PT_PRESENT_MASK;
3136 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3137 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3138
17ac10ad 3139 for (i = 0; i < 4; ++i) {
ad312c7c 3140 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3141
fa4a2c08 3142 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3143 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3144 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3145 if (!is_present_gpte(pdptr)) {
ad312c7c 3146 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3147 continue;
3148 }
6de4f3ad 3149 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3150 if (mmu_check_root(vcpu, root_gfn))
3151 return 1;
5a7388c2 3152 }
8facbbff 3153 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3154 make_mmu_pages_available(vcpu);
bb11c6c9
TY
3155 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3156 0, ACC_ALL);
4db35314
AK
3157 root = __pa(sp->spt);
3158 ++sp->root_count;
8facbbff
AK
3159 spin_unlock(&vcpu->kvm->mmu_lock);
3160
81407ca5 3161 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3162 }
6292757f 3163 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3164
3165 /*
3166 * If we shadow a 32 bit page table with a long mode page
3167 * table we enter this path.
3168 */
3169 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3170 if (vcpu->arch.mmu.lm_root == NULL) {
3171 /*
3172 * The additional page necessary for this is only
3173 * allocated on demand.
3174 */
3175
3176 u64 *lm_root;
3177
3178 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3179 if (lm_root == NULL)
3180 return 1;
3181
3182 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3183
3184 vcpu->arch.mmu.lm_root = lm_root;
3185 }
3186
3187 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3188 }
3189
8986ecc0 3190 return 0;
17ac10ad
AK
3191}
3192
651dd37a
JR
3193static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3194{
3195 if (vcpu->arch.mmu.direct_map)
3196 return mmu_alloc_direct_roots(vcpu);
3197 else
3198 return mmu_alloc_shadow_roots(vcpu);
3199}
3200
0ba73cda
MT
3201static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3202{
3203 int i;
3204 struct kvm_mmu_page *sp;
3205
81407ca5
JR
3206 if (vcpu->arch.mmu.direct_map)
3207 return;
3208
0ba73cda
MT
3209 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3210 return;
6903074c 3211
56f17dd3 3212 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3213 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3214 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3215 hpa_t root = vcpu->arch.mmu.root_hpa;
3216 sp = page_header(root);
3217 mmu_sync_children(vcpu, sp);
0375f7fa 3218 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3219 return;
3220 }
3221 for (i = 0; i < 4; ++i) {
3222 hpa_t root = vcpu->arch.mmu.pae_root[i];
3223
8986ecc0 3224 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3225 root &= PT64_BASE_ADDR_MASK;
3226 sp = page_header(root);
3227 mmu_sync_children(vcpu, sp);
3228 }
3229 }
0375f7fa 3230 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3231}
3232
3233void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3234{
3235 spin_lock(&vcpu->kvm->mmu_lock);
3236 mmu_sync_roots(vcpu);
6cffe8ca 3237 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3238}
bfd0a56b 3239EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3240
1871c602 3241static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3242 u32 access, struct x86_exception *exception)
6aa8b732 3243{
ab9ae313
AK
3244 if (exception)
3245 exception->error_code = 0;
6aa8b732
AK
3246 return vaddr;
3247}
3248
6539e738 3249static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3250 u32 access,
3251 struct x86_exception *exception)
6539e738 3252{
ab9ae313
AK
3253 if (exception)
3254 exception->error_code = 0;
54987b7a 3255 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3256}
3257
d625b155
XG
3258static bool
3259__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3260{
3261 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3262
3263 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3264 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3265}
3266
3267static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3268{
3269 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3270}
3271
3272static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3273{
3274 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3275}
3276
ded58749 3277static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3278{
3279 if (direct)
3280 return vcpu_match_mmio_gpa(vcpu, addr);
3281
3282 return vcpu_match_mmio_gva(vcpu, addr);
3283}
3284
47ab8751
XG
3285/* return true if reserved bit is detected on spte. */
3286static bool
3287walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3288{
3289 struct kvm_shadow_walk_iterator iterator;
47ab8751
XG
3290 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3291 int root, leaf;
3292 bool reserved = false;
ce88decf 3293
37f6a4e2 3294 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3295 goto exit;
37f6a4e2 3296
ce88decf 3297 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3298
29ecd660
PB
3299 for (shadow_walk_init(&iterator, vcpu, addr),
3300 leaf = root = iterator.level;
47ab8751
XG
3301 shadow_walk_okay(&iterator);
3302 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3303 spte = mmu_spte_get_lockless(iterator.sptep);
3304
3305 sptes[leaf - 1] = spte;
29ecd660 3306 leaf--;
47ab8751 3307
ce88decf
XG
3308 if (!is_shadow_present_pte(spte))
3309 break;
47ab8751
XG
3310
3311 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
58c95070 3312 iterator.level);
47ab8751
XG
3313 }
3314
ce88decf
XG
3315 walk_shadow_page_lockless_end(vcpu);
3316
47ab8751
XG
3317 if (reserved) {
3318 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3319 __func__, addr);
29ecd660 3320 while (root > leaf) {
47ab8751
XG
3321 pr_err("------ spte 0x%llx level %d.\n",
3322 sptes[root - 1], root);
3323 root--;
3324 }
3325 }
3326exit:
3327 *sptep = spte;
3328 return reserved;
ce88decf
XG
3329}
3330
450869d6 3331int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3332{
3333 u64 spte;
47ab8751 3334 bool reserved;
ce88decf 3335
ded58749 3336 if (mmio_info_in_cache(vcpu, addr, direct))
b37fbea6 3337 return RET_MMIO_PF_EMULATE;
ce88decf 3338
47ab8751 3339 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3340 if (WARN_ON(reserved))
47ab8751 3341 return RET_MMIO_PF_BUG;
ce88decf
XG
3342
3343 if (is_mmio_spte(spte)) {
3344 gfn_t gfn = get_mmio_spte_gfn(spte);
3345 unsigned access = get_mmio_spte_access(spte);
3346
54bf36aa 3347 if (!check_mmio_spte(vcpu, spte))
f8f55942
XG
3348 return RET_MMIO_PF_INVALID;
3349
ce88decf
XG
3350 if (direct)
3351 addr = 0;
4f022648
XG
3352
3353 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3354 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3355 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3356 }
3357
ce88decf
XG
3358 /*
3359 * If the page table is zapped by other cpus, let CPU fault again on
3360 * the address.
3361 */
b37fbea6 3362 return RET_MMIO_PF_RETRY;
ce88decf 3363}
450869d6 3364EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
ce88decf 3365
6aa8b732 3366static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3367 u32 error_code, bool prefault)
6aa8b732 3368{
e833240f 3369 gfn_t gfn;
e2dec939 3370 int r;
6aa8b732 3371
b8688d51 3372 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3373
e2dec939
AK
3374 r = mmu_topup_memory_caches(vcpu);
3375 if (r)
3376 return r;
714b93da 3377
fa4a2c08 3378 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3379
e833240f 3380 gfn = gva >> PAGE_SHIFT;
6aa8b732 3381
e833240f 3382 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3383 error_code, gfn, prefault);
6aa8b732
AK
3384}
3385
7e1fbeac 3386static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3387{
3388 struct kvm_arch_async_pf arch;
fb67e14f 3389
7c90705b 3390 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3391 arch.gfn = gfn;
c4806acd 3392 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3393 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3394
54bf36aa 3395 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3396}
3397
3398static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3399{
35754c98 3400 if (unlikely(!lapic_in_kernel(vcpu) ||
af585b92
GN
3401 kvm_event_needs_reinjection(vcpu)))
3402 return false;
3403
3404 return kvm_x86_ops->interrupt_allowed(vcpu);
3405}
3406
78b2c54a 3407static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3408 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 3409{
3520469d 3410 struct kvm_memory_slot *slot;
af585b92
GN
3411 bool async;
3412
54bf36aa 3413 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3414 async = false;
3415 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3416 if (!async)
3417 return false; /* *pfn has correct page already */
3418
78b2c54a 3419 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3420 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3421 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3422 trace_kvm_async_pf_doublefault(gva, gfn);
3423 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3424 return true;
3425 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3426 return true;
3427 }
3428
3520469d 3429 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3430 return false;
3431}
3432
6a39bbc5
XG
3433static bool
3434check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3435{
3436 int page_num = KVM_PAGES_PER_HPAGE(level);
3437
3438 gfn &= ~(page_num - 1);
3439
3440 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3441}
3442
56028d08 3443static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3444 bool prefault)
fb72d167 3445{
ba049e93 3446 kvm_pfn_t pfn;
fb72d167 3447 int r;
852e3c19 3448 int level;
cd1872f0 3449 bool force_pt_level;
05da4558 3450 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3451 unsigned long mmu_seq;
612819c3
MT
3452 int write = error_code & PFERR_WRITE_MASK;
3453 bool map_writable;
fb72d167 3454
fa4a2c08 3455 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167
JR
3456
3457 r = mmu_topup_memory_caches(vcpu);
3458 if (r)
3459 return r;
3460
fd136902
TY
3461 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3462 PT_DIRECTORY_LEVEL);
3463 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3464 if (likely(!force_pt_level)) {
6a39bbc5
XG
3465 if (level > PT_DIRECTORY_LEVEL &&
3466 !check_hugepage_cache_consistency(vcpu, gfn, level))
3467 level = PT_DIRECTORY_LEVEL;
936a5fe6 3468 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3469 }
852e3c19 3470
c7ba5b48
XG
3471 if (fast_page_fault(vcpu, gpa, level, error_code))
3472 return 0;
3473
e930bffe 3474 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3475 smp_rmb();
af585b92 3476
78b2c54a 3477 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3478 return 0;
3479
d7c55201
XG
3480 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3481 return r;
3482
fb72d167 3483 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3484 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3485 goto out_unlock;
450e0b41 3486 make_mmu_pages_available(vcpu);
936a5fe6
AA
3487 if (likely(!force_pt_level))
3488 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3489 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 3490 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3491
3492 return r;
e930bffe
AA
3493
3494out_unlock:
3495 spin_unlock(&vcpu->kvm->mmu_lock);
3496 kvm_release_pfn_clean(pfn);
3497 return 0;
fb72d167
JR
3498}
3499
8a3c1a33
PB
3500static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3501 struct kvm_mmu *context)
6aa8b732 3502{
6aa8b732 3503 context->page_fault = nonpaging_page_fault;
6aa8b732 3504 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3505 context->sync_page = nonpaging_sync_page;
a7052897 3506 context->invlpg = nonpaging_invlpg;
0f53b5b1 3507 context->update_pte = nonpaging_update_pte;
cea0f0e7 3508 context->root_level = 0;
6aa8b732 3509 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3510 context->root_hpa = INVALID_PAGE;
c5a78f2b 3511 context->direct_map = true;
2d48a985 3512 context->nx = false;
6aa8b732
AK
3513}
3514
d8d173da 3515void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3516{
cea0f0e7 3517 mmu_free_roots(vcpu);
6aa8b732
AK
3518}
3519
5777ed34
JR
3520static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3521{
9f8fe504 3522 return kvm_read_cr3(vcpu);
5777ed34
JR
3523}
3524
6389ee94
AK
3525static void inject_page_fault(struct kvm_vcpu *vcpu,
3526 struct x86_exception *fault)
6aa8b732 3527{
6389ee94 3528 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3529}
3530
54bf36aa 3531static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3532 unsigned access, int *nr_present)
ce88decf
XG
3533{
3534 if (unlikely(is_mmio_spte(*sptep))) {
3535 if (gfn != get_mmio_spte_gfn(*sptep)) {
3536 mmu_spte_clear_no_track(sptep);
3537 return true;
3538 }
3539
3540 (*nr_present)++;
54bf36aa 3541 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3542 return true;
3543 }
3544
3545 return false;
3546}
3547
6fd01b71
AK
3548static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3549{
3550 unsigned index;
3551
3552 index = level - 1;
3553 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3554 return mmu->last_pte_bitmap & (1 << index);
3555}
3556
37406aaa
NHE
3557#define PTTYPE_EPT 18 /* arbitrary */
3558#define PTTYPE PTTYPE_EPT
3559#include "paging_tmpl.h"
3560#undef PTTYPE
3561
6aa8b732
AK
3562#define PTTYPE 64
3563#include "paging_tmpl.h"
3564#undef PTTYPE
3565
3566#define PTTYPE 32
3567#include "paging_tmpl.h"
3568#undef PTTYPE
3569
6dc98b86
XG
3570static void
3571__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3572 struct rsvd_bits_validate *rsvd_check,
3573 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3574 bool pse, bool amd)
82725b20 3575{
82725b20 3576 u64 exb_bit_rsvd = 0;
5f7dde7b 3577 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3578 u64 nonleaf_bit8_rsvd = 0;
82725b20 3579
a0a64f50 3580 rsvd_check->bad_mt_xwr = 0;
25d92081 3581
6dc98b86 3582 if (!nx)
82725b20 3583 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3584 if (!gbpages)
5f7dde7b 3585 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3586
3587 /*
3588 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3589 * leaf entries) on AMD CPUs only.
3590 */
6fec2144 3591 if (amd)
a0c0feb5
PB
3592 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3593
6dc98b86 3594 switch (level) {
82725b20
DE
3595 case PT32_ROOT_LEVEL:
3596 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3597 rsvd_check->rsvd_bits_mask[0][1] = 0;
3598 rsvd_check->rsvd_bits_mask[0][0] = 0;
3599 rsvd_check->rsvd_bits_mask[1][0] =
3600 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 3601
6dc98b86 3602 if (!pse) {
a0a64f50 3603 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
3604 break;
3605 }
3606
82725b20
DE
3607 if (is_cpuid_PSE36())
3608 /* 36bits PSE 4MB page */
a0a64f50 3609 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
3610 else
3611 /* 32 bits PSE 4MB page */
a0a64f50 3612 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3613 break;
3614 case PT32E_ROOT_LEVEL:
a0a64f50 3615 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 3616 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3617 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 3618 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3619 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 3620 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 3621 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 3622 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
3623 rsvd_bits(maxphyaddr, 62) |
3624 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3625 rsvd_check->rsvd_bits_mask[1][0] =
3626 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3627 break;
3628 case PT64_ROOT_LEVEL:
a0a64f50
XG
3629 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3630 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 3631 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3632 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3633 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 3634 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3635 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3636 rsvd_bits(maxphyaddr, 51);
3637 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3638 rsvd_bits(maxphyaddr, 51);
3639 rsvd_check->rsvd_bits_mask[1][3] =
3640 rsvd_check->rsvd_bits_mask[0][3];
3641 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3642 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3643 rsvd_bits(13, 29);
a0a64f50 3644 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3645 rsvd_bits(maxphyaddr, 51) |
3646 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3647 rsvd_check->rsvd_bits_mask[1][0] =
3648 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3649 break;
3650 }
3651}
3652
6dc98b86
XG
3653static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3654 struct kvm_mmu *context)
3655{
3656 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3657 cpuid_maxphyaddr(vcpu), context->root_level,
3658 context->nx, guest_cpuid_has_gbpages(vcpu),
6fec2144 3659 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
3660}
3661
81b8eebb
XG
3662static void
3663__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3664 int maxphyaddr, bool execonly)
25d92081 3665{
951f9fd7 3666 u64 bad_mt_xwr;
25d92081 3667
a0a64f50 3668 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 3669 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 3670 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 3671 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3672 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 3673 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3674 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
3675
3676 /* large page */
a0a64f50
XG
3677 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3678 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 3679 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 3680 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 3681 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 3682 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 3683
951f9fd7
PB
3684 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3685 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3686 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3687 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3688 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3689 if (!execonly) {
3690 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3691 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 3692 }
951f9fd7 3693 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
3694}
3695
81b8eebb
XG
3696static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3697 struct kvm_mmu *context, bool execonly)
3698{
3699 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3700 cpuid_maxphyaddr(vcpu), execonly);
3701}
3702
c258b62b
XG
3703/*
3704 * the page table on host is the shadow page table for the page
3705 * table in guest or amd nested guest, its mmu features completely
3706 * follow the features in guest.
3707 */
3708void
3709reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3710{
6fec2144
PB
3711 /*
3712 * Passing "true" to the last argument is okay; it adds a check
3713 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3714 */
c258b62b
XG
3715 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3716 boot_cpu_data.x86_phys_bits,
3717 context->shadow_root_level, context->nx,
6fec2144
PB
3718 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3719 true);
c258b62b
XG
3720}
3721EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3722
6fec2144
PB
3723static inline bool boot_cpu_is_amd(void)
3724{
3725 WARN_ON_ONCE(!tdp_enabled);
3726 return shadow_x_mask == 0;
3727}
3728
c258b62b
XG
3729/*
3730 * the direct page table on host, use as much mmu features as
3731 * possible, however, kvm currently does not do execution-protection.
3732 */
3733static void
3734reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3735 struct kvm_mmu *context)
3736{
6fec2144 3737 if (boot_cpu_is_amd())
c258b62b
XG
3738 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3739 boot_cpu_data.x86_phys_bits,
3740 context->shadow_root_level, false,
6fec2144 3741 cpu_has_gbpages, true, true);
c258b62b
XG
3742 else
3743 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3744 boot_cpu_data.x86_phys_bits,
3745 false);
3746
3747}
3748
3749/*
3750 * as the comments in reset_shadow_zero_bits_mask() except it
3751 * is the shadow page table for intel nested guest.
3752 */
3753static void
3754reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3755 struct kvm_mmu *context, bool execonly)
3756{
3757 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3758 boot_cpu_data.x86_phys_bits, execonly);
3759}
3760
edc90b7d
XG
3761static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3762 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3763{
3764 unsigned bit, byte, pfec;
3765 u8 map;
66386ade 3766 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3767
66386ade 3768 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3769 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3770 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3771 pfec = byte << 1;
3772 map = 0;
3773 wf = pfec & PFERR_WRITE_MASK;
3774 uf = pfec & PFERR_USER_MASK;
3775 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3776 /*
3777 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3778 * subject to SMAP restrictions, and cleared otherwise. The
3779 * bit is only meaningful if the SMAP bit is set in CR4.
3780 */
3781 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3782 for (bit = 0; bit < 8; ++bit) {
3783 x = bit & ACC_EXEC_MASK;
3784 w = bit & ACC_WRITE_MASK;
3785 u = bit & ACC_USER_MASK;
3786
25d92081
YZ
3787 if (!ept) {
3788 /* Not really needed: !nx will cause pte.nx to fault */
3789 x |= !mmu->nx;
3790 /* Allow supervisor writes if !cr0.wp */
3791 w |= !is_write_protection(vcpu) && !uf;
3792 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3793 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3794
3795 /*
3796 * SMAP:kernel-mode data accesses from user-mode
3797 * mappings should fault. A fault is considered
3798 * as a SMAP violation if all of the following
3799 * conditions are ture:
3800 * - X86_CR4_SMAP is set in CR4
3801 * - An user page is accessed
3802 * - Page fault in kernel mode
3803 * - if CPL = 3 or X86_EFLAGS_AC is clear
3804 *
3805 * Here, we cover the first three conditions.
3806 * The fourth is computed dynamically in
3807 * permission_fault() and is in smapf.
3808 *
3809 * Also, SMAP does not affect instruction
3810 * fetches, add the !ff check here to make it
3811 * clearer.
3812 */
3813 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3814 } else
3815 /* Not really needed: no U/S accesses on ept */
3816 u = 1;
97d64b78 3817
97ec8c06
FW
3818 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3819 (smapf && smap);
97d64b78
AK
3820 map |= fault << bit;
3821 }
3822 mmu->permissions[byte] = map;
3823 }
3824}
3825
6fd01b71
AK
3826static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3827{
3828 u8 map;
3829 unsigned level, root_level = mmu->root_level;
3830 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3831
3832 if (root_level == PT32E_ROOT_LEVEL)
3833 --root_level;
3834 /* PT_PAGE_TABLE_LEVEL always terminates */
3835 map = 1 | (1 << ps_set_index);
3836 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3837 if (level <= PT_PDPE_LEVEL
3838 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3839 map |= 1 << (ps_set_index | (level - 1));
3840 }
3841 mmu->last_pte_bitmap = map;
3842}
3843
8a3c1a33
PB
3844static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3845 struct kvm_mmu *context,
3846 int level)
6aa8b732 3847{
2d48a985 3848 context->nx = is_nx(vcpu);
4d6931c3 3849 context->root_level = level;
2d48a985 3850
4d6931c3 3851 reset_rsvds_bits_mask(vcpu, context);
25d92081 3852 update_permission_bitmask(vcpu, context, false);
6fd01b71 3853 update_last_pte_bitmap(vcpu, context);
6aa8b732 3854
fa4a2c08 3855 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 3856 context->page_fault = paging64_page_fault;
6aa8b732 3857 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3858 context->sync_page = paging64_sync_page;
a7052897 3859 context->invlpg = paging64_invlpg;
0f53b5b1 3860 context->update_pte = paging64_update_pte;
17ac10ad 3861 context->shadow_root_level = level;
17c3ba9d 3862 context->root_hpa = INVALID_PAGE;
c5a78f2b 3863 context->direct_map = false;
6aa8b732
AK
3864}
3865
8a3c1a33
PB
3866static void paging64_init_context(struct kvm_vcpu *vcpu,
3867 struct kvm_mmu *context)
17ac10ad 3868{
8a3c1a33 3869 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3870}
3871
8a3c1a33
PB
3872static void paging32_init_context(struct kvm_vcpu *vcpu,
3873 struct kvm_mmu *context)
6aa8b732 3874{
2d48a985 3875 context->nx = false;
4d6931c3 3876 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3877
4d6931c3 3878 reset_rsvds_bits_mask(vcpu, context);
25d92081 3879 update_permission_bitmask(vcpu, context, false);
6fd01b71 3880 update_last_pte_bitmap(vcpu, context);
6aa8b732 3881
6aa8b732 3882 context->page_fault = paging32_page_fault;
6aa8b732 3883 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3884 context->sync_page = paging32_sync_page;
a7052897 3885 context->invlpg = paging32_invlpg;
0f53b5b1 3886 context->update_pte = paging32_update_pte;
6aa8b732 3887 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3888 context->root_hpa = INVALID_PAGE;
c5a78f2b 3889 context->direct_map = false;
6aa8b732
AK
3890}
3891
8a3c1a33
PB
3892static void paging32E_init_context(struct kvm_vcpu *vcpu,
3893 struct kvm_mmu *context)
6aa8b732 3894{
8a3c1a33 3895 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3896}
3897
8a3c1a33 3898static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3899{
ad896af0 3900 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 3901
c445f8ef 3902 context->base_role.word = 0;
699023e2 3903 context->base_role.smm = is_smm(vcpu);
fb72d167 3904 context->page_fault = tdp_page_fault;
e8bc217a 3905 context->sync_page = nonpaging_sync_page;
a7052897 3906 context->invlpg = nonpaging_invlpg;
0f53b5b1 3907 context->update_pte = nonpaging_update_pte;
67253af5 3908 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3909 context->root_hpa = INVALID_PAGE;
c5a78f2b 3910 context->direct_map = true;
1c97f0a0 3911 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3912 context->get_cr3 = get_cr3;
e4e517b4 3913 context->get_pdptr = kvm_pdptr_read;
cb659db8 3914 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3915
3916 if (!is_paging(vcpu)) {
2d48a985 3917 context->nx = false;
fb72d167
JR
3918 context->gva_to_gpa = nonpaging_gva_to_gpa;
3919 context->root_level = 0;
3920 } else if (is_long_mode(vcpu)) {
2d48a985 3921 context->nx = is_nx(vcpu);
fb72d167 3922 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3923 reset_rsvds_bits_mask(vcpu, context);
3924 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3925 } else if (is_pae(vcpu)) {
2d48a985 3926 context->nx = is_nx(vcpu);
fb72d167 3927 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3928 reset_rsvds_bits_mask(vcpu, context);
3929 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3930 } else {
2d48a985 3931 context->nx = false;
fb72d167 3932 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3933 reset_rsvds_bits_mask(vcpu, context);
3934 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3935 }
3936
25d92081 3937 update_permission_bitmask(vcpu, context, false);
6fd01b71 3938 update_last_pte_bitmap(vcpu, context);
c258b62b 3939 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
3940}
3941
ad896af0 3942void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 3943{
411c588d 3944 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 3945 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
3946 struct kvm_mmu *context = &vcpu->arch.mmu;
3947
fa4a2c08 3948 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
3949
3950 if (!is_paging(vcpu))
8a3c1a33 3951 nonpaging_init_context(vcpu, context);
a9058ecd 3952 else if (is_long_mode(vcpu))
8a3c1a33 3953 paging64_init_context(vcpu, context);
6aa8b732 3954 else if (is_pae(vcpu))
8a3c1a33 3955 paging32E_init_context(vcpu, context);
6aa8b732 3956 else
8a3c1a33 3957 paging32_init_context(vcpu, context);
a770f6f2 3958
ad896af0
PB
3959 context->base_role.nxe = is_nx(vcpu);
3960 context->base_role.cr4_pae = !!is_pae(vcpu);
3961 context->base_role.cr0_wp = is_write_protection(vcpu);
3962 context->base_role.smep_andnot_wp
411c588d 3963 = smep && !is_write_protection(vcpu);
edc90b7d
XG
3964 context->base_role.smap_andnot_wp
3965 = smap && !is_write_protection(vcpu);
699023e2 3966 context->base_role.smm = is_smm(vcpu);
c258b62b 3967 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
3968}
3969EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3970
ad896af0 3971void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 3972{
ad896af0
PB
3973 struct kvm_mmu *context = &vcpu->arch.mmu;
3974
fa4a2c08 3975 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
3976
3977 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3978
3979 context->nx = true;
155a97a3
NHE
3980 context->page_fault = ept_page_fault;
3981 context->gva_to_gpa = ept_gva_to_gpa;
3982 context->sync_page = ept_sync_page;
3983 context->invlpg = ept_invlpg;
3984 context->update_pte = ept_update_pte;
155a97a3
NHE
3985 context->root_level = context->shadow_root_level;
3986 context->root_hpa = INVALID_PAGE;
3987 context->direct_map = false;
3988
3989 update_permission_bitmask(vcpu, context, true);
3990 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 3991 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
3992}
3993EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3994
8a3c1a33 3995static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 3996{
ad896af0
PB
3997 struct kvm_mmu *context = &vcpu->arch.mmu;
3998
3999 kvm_init_shadow_mmu(vcpu);
4000 context->set_cr3 = kvm_x86_ops->set_cr3;
4001 context->get_cr3 = get_cr3;
4002 context->get_pdptr = kvm_pdptr_read;
4003 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4004}
4005
8a3c1a33 4006static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4007{
4008 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4009
4010 g_context->get_cr3 = get_cr3;
e4e517b4 4011 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4012 g_context->inject_page_fault = kvm_inject_page_fault;
4013
4014 /*
0af2593b
DM
4015 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4016 * L1's nested page tables (e.g. EPT12). The nested translation
4017 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4018 * L2's page tables as the first level of translation and L1's
4019 * nested page tables as the second level of translation. Basically
4020 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4021 */
4022 if (!is_paging(vcpu)) {
2d48a985 4023 g_context->nx = false;
02f59dc9
JR
4024 g_context->root_level = 0;
4025 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4026 } else if (is_long_mode(vcpu)) {
2d48a985 4027 g_context->nx = is_nx(vcpu);
02f59dc9 4028 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4029 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4030 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4031 } else if (is_pae(vcpu)) {
2d48a985 4032 g_context->nx = is_nx(vcpu);
02f59dc9 4033 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4034 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4035 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4036 } else {
2d48a985 4037 g_context->nx = false;
02f59dc9 4038 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4039 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4040 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4041 }
4042
25d92081 4043 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 4044 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
4045}
4046
8a3c1a33 4047static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4048{
02f59dc9 4049 if (mmu_is_nested(vcpu))
e0c6db3e 4050 init_kvm_nested_mmu(vcpu);
02f59dc9 4051 else if (tdp_enabled)
e0c6db3e 4052 init_kvm_tdp_mmu(vcpu);
fb72d167 4053 else
e0c6db3e 4054 init_kvm_softmmu(vcpu);
fb72d167
JR
4055}
4056
8a3c1a33 4057void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4058{
95f93af4 4059 kvm_mmu_unload(vcpu);
8a3c1a33 4060 init_kvm_mmu(vcpu);
17c3ba9d 4061}
8668a3c4 4062EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4063
4064int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4065{
714b93da
AK
4066 int r;
4067
e2dec939 4068 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4069 if (r)
4070 goto out;
8986ecc0 4071 r = mmu_alloc_roots(vcpu);
e2858b4a 4072 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4073 if (r)
4074 goto out;
3662cb1c 4075 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4076 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4077out:
4078 return r;
6aa8b732 4079}
17c3ba9d
AK
4080EXPORT_SYMBOL_GPL(kvm_mmu_load);
4081
4082void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4083{
4084 mmu_free_roots(vcpu);
95f93af4 4085 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4086}
4b16184c 4087EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4088
0028425f 4089static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4090 struct kvm_mmu_page *sp, u64 *spte,
4091 const void *new)
0028425f 4092{
30945387 4093 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4094 ++vcpu->kvm->stat.mmu_pde_zapped;
4095 return;
30945387 4096 }
0028425f 4097
4cee5764 4098 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4099 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4100}
4101
79539cec
AK
4102static bool need_remote_flush(u64 old, u64 new)
4103{
4104 if (!is_shadow_present_pte(old))
4105 return false;
4106 if (!is_shadow_present_pte(new))
4107 return true;
4108 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4109 return true;
53166229
GN
4110 old ^= shadow_nx_mask;
4111 new ^= shadow_nx_mask;
79539cec
AK
4112 return (old & ~new & PT64_PERM_MASK) != 0;
4113}
4114
0671a8e7
XG
4115static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4116 bool remote_flush, bool local_flush)
79539cec 4117{
0671a8e7
XG
4118 if (zap_page)
4119 return;
4120
4121 if (remote_flush)
79539cec 4122 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 4123 else if (local_flush)
77c3913b 4124 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
79539cec
AK
4125}
4126
889e5cbc
XG
4127static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4128 const u8 *new, int *bytes)
da4a00f0 4129{
889e5cbc
XG
4130 u64 gentry;
4131 int r;
72016f3a 4132
72016f3a
AK
4133 /*
4134 * Assume that the pte write on a page table of the same type
49b26e26
XG
4135 * as the current vcpu paging mode since we update the sptes only
4136 * when they have the same mode.
72016f3a 4137 */
889e5cbc 4138 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4139 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4140 *gpa &= ~(gpa_t)7;
4141 *bytes = 8;
54bf36aa 4142 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4143 if (r)
4144 gentry = 0;
08e850c6
AK
4145 new = (const u8 *)&gentry;
4146 }
4147
889e5cbc 4148 switch (*bytes) {
08e850c6
AK
4149 case 4:
4150 gentry = *(const u32 *)new;
4151 break;
4152 case 8:
4153 gentry = *(const u64 *)new;
4154 break;
4155 default:
4156 gentry = 0;
4157 break;
72016f3a
AK
4158 }
4159
889e5cbc
XG
4160 return gentry;
4161}
4162
4163/*
4164 * If we're seeing too many writes to a page, it may no longer be a page table,
4165 * or we may be forking, in which case it is better to unmap the page.
4166 */
a138fe75 4167static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4168{
a30f47cb
XG
4169 /*
4170 * Skip write-flooding detected for the sp whose level is 1, because
4171 * it can become unsync, then the guest page is not write-protected.
4172 */
f71fa31f 4173 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4174 return false;
3246af0e 4175
a30f47cb 4176 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
4177}
4178
4179/*
4180 * Misaligned accesses are too much trouble to fix up; also, they usually
4181 * indicate a page is not used as a page table.
4182 */
4183static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4184 int bytes)
4185{
4186 unsigned offset, pte_size, misaligned;
4187
4188 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4189 gpa, bytes, sp->role.word);
4190
4191 offset = offset_in_page(gpa);
4192 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4193
4194 /*
4195 * Sometimes, the OS only writes the last one bytes to update status
4196 * bits, for example, in linux, andb instruction is used in clear_bit().
4197 */
4198 if (!(offset & (pte_size - 1)) && bytes == 1)
4199 return false;
4200
889e5cbc
XG
4201 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4202 misaligned |= bytes < 4;
4203
4204 return misaligned;
4205}
4206
4207static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4208{
4209 unsigned page_offset, quadrant;
4210 u64 *spte;
4211 int level;
4212
4213 page_offset = offset_in_page(gpa);
4214 level = sp->role.level;
4215 *nspte = 1;
4216 if (!sp->role.cr4_pae) {
4217 page_offset <<= 1; /* 32->64 */
4218 /*
4219 * A 32-bit pde maps 4MB while the shadow pdes map
4220 * only 2MB. So we need to double the offset again
4221 * and zap two pdes instead of one.
4222 */
4223 if (level == PT32_ROOT_LEVEL) {
4224 page_offset &= ~7; /* kill rounding error */
4225 page_offset <<= 1;
4226 *nspte = 2;
4227 }
4228 quadrant = page_offset >> PAGE_SHIFT;
4229 page_offset &= ~PAGE_MASK;
4230 if (quadrant != sp->role.quadrant)
4231 return NULL;
4232 }
4233
4234 spte = &sp->spt[page_offset / sizeof(*spte)];
4235 return spte;
4236}
4237
4238void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4239 const u8 *new, int bytes)
4240{
4241 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4242 struct kvm_mmu_page *sp;
889e5cbc
XG
4243 LIST_HEAD(invalid_list);
4244 u64 entry, gentry, *spte;
4245 int npte;
a30f47cb 4246 bool remote_flush, local_flush, zap_page;
4141259b
AM
4247 union kvm_mmu_page_role mask = { };
4248
4249 mask.cr0_wp = 1;
4250 mask.cr4_pae = 1;
4251 mask.nxe = 1;
4252 mask.smep_andnot_wp = 1;
4253 mask.smap_andnot_wp = 1;
699023e2 4254 mask.smm = 1;
889e5cbc
XG
4255
4256 /*
4257 * If we don't have indirect shadow pages, it means no page is
4258 * write-protected, so we can exit simply.
4259 */
4260 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4261 return;
4262
4263 zap_page = remote_flush = local_flush = false;
4264
4265 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4266
4267 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4268
4269 /*
4270 * No need to care whether allocation memory is successful
4271 * or not since pte prefetch is skiped if it does not have
4272 * enough objects in the cache.
4273 */
4274 mmu_topup_memory_caches(vcpu);
4275
4276 spin_lock(&vcpu->kvm->mmu_lock);
4277 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4278 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4279
b67bfe0d 4280 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4281 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4282 detect_write_flooding(sp)) {
0671a8e7 4283 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4284 &invalid_list);
4cee5764 4285 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4286 continue;
4287 }
889e5cbc
XG
4288
4289 spte = get_written_sptes(sp, gpa, &npte);
4290 if (!spte)
4291 continue;
4292
0671a8e7 4293 local_flush = true;
ac1b714e 4294 while (npte--) {
79539cec 4295 entry = *spte;
38e3b2b2 4296 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4297 if (gentry &&
4298 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4299 & mask.word) && rmap_can_add(vcpu))
7c562522 4300 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4301 if (need_remote_flush(entry, *spte))
0671a8e7 4302 remote_flush = true;
ac1b714e 4303 ++spte;
9b7a0325 4304 }
9b7a0325 4305 }
0671a8e7 4306 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4307 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4308 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4309 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4310}
4311
a436036b
AK
4312int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4313{
10589a46
MT
4314 gpa_t gpa;
4315 int r;
a436036b 4316
c5a78f2b 4317 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4318 return 0;
4319
1871c602 4320 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4321
10589a46 4322 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4323
10589a46 4324 return r;
a436036b 4325}
577bdc49 4326EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4327
81f4f76b 4328static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4329{
d98ba053 4330 LIST_HEAD(invalid_list);
103ad25a 4331
81f4f76b
TY
4332 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4333 return;
4334
5da59607
TY
4335 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4336 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4337 break;
ebeace86 4338
4cee5764 4339 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4340 }
aa6bd187 4341 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4342}
ebeace86 4343
dc25e89e
AP
4344int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4345 void *insn, int insn_len)
3067714c 4346{
1cb3f3ae 4347 int r, emulation_type = EMULTYPE_RETRY;
3067714c 4348 enum emulation_result er;
ded58749 4349 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
3067714c 4350
e9ee956e
TY
4351 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4352 r = handle_mmio_page_fault(vcpu, cr2, direct);
4353 if (r == RET_MMIO_PF_EMULATE) {
4354 emulation_type = 0;
4355 goto emulate;
4356 }
4357 if (r == RET_MMIO_PF_RETRY)
4358 return 1;
4359 if (r < 0)
4360 return r;
4361 }
4362
56028d08 4363 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c 4364 if (r < 0)
e9ee956e
TY
4365 return r;
4366 if (!r)
4367 return 1;
3067714c 4368
ded58749 4369 if (mmio_info_in_cache(vcpu, cr2, direct))
1cb3f3ae 4370 emulation_type = 0;
e9ee956e 4371emulate:
1cb3f3ae 4372 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4373
4374 switch (er) {
4375 case EMULATE_DONE:
4376 return 1;
ac0a48c3 4377 case EMULATE_USER_EXIT:
3067714c 4378 ++vcpu->stat.mmio_exits;
6d77dbfc 4379 /* fall through */
3067714c 4380 case EMULATE_FAIL:
3f5d18a9 4381 return 0;
3067714c
AK
4382 default:
4383 BUG();
4384 }
3067714c
AK
4385}
4386EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4387
a7052897
MT
4388void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4389{
a7052897 4390 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4391 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4392 ++vcpu->stat.invlpg;
4393}
4394EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4395
18552672
JR
4396void kvm_enable_tdp(void)
4397{
4398 tdp_enabled = true;
4399}
4400EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4401
5f4cb662
JR
4402void kvm_disable_tdp(void)
4403{
4404 tdp_enabled = false;
4405}
4406EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4407
6aa8b732
AK
4408static void free_mmu_pages(struct kvm_vcpu *vcpu)
4409{
ad312c7c 4410 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4411 if (vcpu->arch.mmu.lm_root != NULL)
4412 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4413}
4414
4415static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4416{
17ac10ad 4417 struct page *page;
6aa8b732
AK
4418 int i;
4419
17ac10ad
AK
4420 /*
4421 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4422 * Therefore we need to allocate shadow page tables in the first
4423 * 4GB of memory, which happens to fit the DMA32 zone.
4424 */
4425 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4426 if (!page)
d7fa6ab2
WY
4427 return -ENOMEM;
4428
ad312c7c 4429 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4430 for (i = 0; i < 4; ++i)
ad312c7c 4431 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4432
6aa8b732 4433 return 0;
6aa8b732
AK
4434}
4435
8018c27b 4436int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4437{
e459e322
XG
4438 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4439 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4440 vcpu->arch.mmu.translate_gpa = translate_gpa;
4441 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4442
8018c27b
IM
4443 return alloc_mmu_pages(vcpu);
4444}
6aa8b732 4445
8a3c1a33 4446void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4447{
fa4a2c08 4448 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4449
8a3c1a33 4450 init_kvm_mmu(vcpu);
6aa8b732
AK
4451}
4452
1bad2b2a 4453/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 4454typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
4455
4456/* The caller should hold mmu-lock before calling this function. */
4457static bool
4458slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4459 slot_level_handler fn, int start_level, int end_level,
4460 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4461{
4462 struct slot_rmap_walk_iterator iterator;
4463 bool flush = false;
4464
4465 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4466 end_gfn, &iterator) {
4467 if (iterator.rmap)
4468 flush |= fn(kvm, iterator.rmap);
4469
4470 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4471 if (flush && lock_flush_tlb) {
4472 kvm_flush_remote_tlbs(kvm);
4473 flush = false;
4474 }
4475 cond_resched_lock(&kvm->mmu_lock);
4476 }
4477 }
4478
4479 if (flush && lock_flush_tlb) {
4480 kvm_flush_remote_tlbs(kvm);
4481 flush = false;
4482 }
4483
4484 return flush;
4485}
4486
4487static bool
4488slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4489 slot_level_handler fn, int start_level, int end_level,
4490 bool lock_flush_tlb)
4491{
4492 return slot_handle_level_range(kvm, memslot, fn, start_level,
4493 end_level, memslot->base_gfn,
4494 memslot->base_gfn + memslot->npages - 1,
4495 lock_flush_tlb);
4496}
4497
4498static bool
4499slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4500 slot_level_handler fn, bool lock_flush_tlb)
4501{
4502 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4503 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4504}
4505
4506static bool
4507slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4508 slot_level_handler fn, bool lock_flush_tlb)
4509{
4510 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4511 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4512}
4513
4514static bool
4515slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4516 slot_level_handler fn, bool lock_flush_tlb)
4517{
4518 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4519 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4520}
4521
efdfe536
XG
4522void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4523{
4524 struct kvm_memslots *slots;
4525 struct kvm_memory_slot *memslot;
9da0e4d5 4526 int i;
efdfe536
XG
4527
4528 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
4529 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4530 slots = __kvm_memslots(kvm, i);
4531 kvm_for_each_memslot(memslot, slots) {
4532 gfn_t start, end;
4533
4534 start = max(gfn_start, memslot->base_gfn);
4535 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4536 if (start >= end)
4537 continue;
efdfe536 4538
9da0e4d5
PB
4539 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4540 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4541 start, end - 1, true);
4542 }
efdfe536
XG
4543 }
4544
4545 spin_unlock(&kvm->mmu_lock);
4546}
4547
018aabb5
TY
4548static bool slot_rmap_write_protect(struct kvm *kvm,
4549 struct kvm_rmap_head *rmap_head)
d77aa73c 4550{
018aabb5 4551 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
4552}
4553
1c91cad4
KH
4554void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4555 struct kvm_memory_slot *memslot)
6aa8b732 4556{
d77aa73c 4557 bool flush;
6aa8b732 4558
9d1beefb 4559 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4560 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4561 false);
9d1beefb 4562 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4563
4564 /*
4565 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4566 * which do tlb flush out of mmu-lock should be serialized by
4567 * kvm->slots_lock otherwise tlb flush would be missed.
4568 */
4569 lockdep_assert_held(&kvm->slots_lock);
4570
4571 /*
4572 * We can flush all the TLBs out of the mmu lock without TLB
4573 * corruption since we just change the spte from writable to
4574 * readonly so that we only need to care the case of changing
4575 * spte from present to present (changing the spte from present
4576 * to nonpresent will flush all the TLBs immediately), in other
4577 * words, the only case we care is mmu_spte_update() where we
4578 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4579 * instead of PT_WRITABLE_MASK, that means it does not depend
4580 * on PT_WRITABLE_MASK anymore.
4581 */
d91ffee9
KH
4582 if (flush)
4583 kvm_flush_remote_tlbs(kvm);
6aa8b732 4584}
37a7d8b0 4585
3ea3b7fa 4586static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 4587 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
4588{
4589 u64 *sptep;
4590 struct rmap_iterator iter;
4591 int need_tlb_flush = 0;
ba049e93 4592 kvm_pfn_t pfn;
3ea3b7fa
WL
4593 struct kvm_mmu_page *sp;
4594
0d536790 4595restart:
018aabb5 4596 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
4597 sp = page_header(__pa(sptep));
4598 pfn = spte_to_pfn(*sptep);
4599
4600 /*
decf6333
XG
4601 * We cannot do huge page mapping for indirect shadow pages,
4602 * which are found on the last rmap (level = 1) when not using
4603 * tdp; such shadow pages are synced with the page table in
4604 * the guest, and the guest page table is using 4K page size
4605 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
4606 */
4607 if (sp->role.direct &&
4608 !kvm_is_reserved_pfn(pfn) &&
4609 PageTransCompound(pfn_to_page(pfn))) {
4610 drop_spte(kvm, sptep);
3ea3b7fa 4611 need_tlb_flush = 1;
0d536790
XG
4612 goto restart;
4613 }
3ea3b7fa
WL
4614 }
4615
4616 return need_tlb_flush;
4617}
4618
4619void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 4620 const struct kvm_memory_slot *memslot)
3ea3b7fa 4621{
f36f3f28 4622 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 4623 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
4624 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4625 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
4626 spin_unlock(&kvm->mmu_lock);
4627}
4628
f4b4b180
KH
4629void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4630 struct kvm_memory_slot *memslot)
4631{
d77aa73c 4632 bool flush;
f4b4b180
KH
4633
4634 spin_lock(&kvm->mmu_lock);
d77aa73c 4635 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
4636 spin_unlock(&kvm->mmu_lock);
4637
4638 lockdep_assert_held(&kvm->slots_lock);
4639
4640 /*
4641 * It's also safe to flush TLBs out of mmu lock here as currently this
4642 * function is only used for dirty logging, in which case flushing TLB
4643 * out of mmu lock also guarantees no dirty pages will be lost in
4644 * dirty_bitmap.
4645 */
4646 if (flush)
4647 kvm_flush_remote_tlbs(kvm);
4648}
4649EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4650
4651void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4652 struct kvm_memory_slot *memslot)
4653{
d77aa73c 4654 bool flush;
f4b4b180
KH
4655
4656 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4657 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4658 false);
f4b4b180
KH
4659 spin_unlock(&kvm->mmu_lock);
4660
4661 /* see kvm_mmu_slot_remove_write_access */
4662 lockdep_assert_held(&kvm->slots_lock);
4663
4664 if (flush)
4665 kvm_flush_remote_tlbs(kvm);
4666}
4667EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4668
4669void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4670 struct kvm_memory_slot *memslot)
4671{
d77aa73c 4672 bool flush;
f4b4b180
KH
4673
4674 spin_lock(&kvm->mmu_lock);
d77aa73c 4675 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
4676 spin_unlock(&kvm->mmu_lock);
4677
4678 lockdep_assert_held(&kvm->slots_lock);
4679
4680 /* see kvm_mmu_slot_leaf_clear_dirty */
4681 if (flush)
4682 kvm_flush_remote_tlbs(kvm);
4683}
4684EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4685
e7d11c7a 4686#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4687static void kvm_zap_obsolete_pages(struct kvm *kvm)
4688{
4689 struct kvm_mmu_page *sp, *node;
e7d11c7a 4690 int batch = 0;
5304b8d3
XG
4691
4692restart:
4693 list_for_each_entry_safe_reverse(sp, node,
4694 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4695 int ret;
4696
5304b8d3
XG
4697 /*
4698 * No obsolete page exists before new created page since
4699 * active_mmu_pages is the FIFO list.
4700 */
4701 if (!is_obsolete_sp(kvm, sp))
4702 break;
4703
4704 /*
5304b8d3
XG
4705 * Since we are reversely walking the list and the invalid
4706 * list will be moved to the head, skip the invalid page
4707 * can help us to avoid the infinity list walking.
4708 */
4709 if (sp->role.invalid)
4710 continue;
4711
f34d251d
XG
4712 /*
4713 * Need not flush tlb since we only zap the sp with invalid
4714 * generation number.
4715 */
e7d11c7a 4716 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4717 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4718 batch = 0;
5304b8d3
XG
4719 goto restart;
4720 }
4721
365c8868
XG
4722 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4723 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4724 batch += ret;
4725
4726 if (ret)
5304b8d3
XG
4727 goto restart;
4728 }
4729
f34d251d
XG
4730 /*
4731 * Should flush tlb before free page tables since lockless-walking
4732 * may use the pages.
4733 */
365c8868 4734 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4735}
4736
4737/*
4738 * Fast invalidate all shadow pages and use lock-break technique
4739 * to zap obsolete pages.
4740 *
4741 * It's required when memslot is being deleted or VM is being
4742 * destroyed, in these cases, we should ensure that KVM MMU does
4743 * not use any resource of the being-deleted slot or all slots
4744 * after calling the function.
4745 */
4746void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4747{
4748 spin_lock(&kvm->mmu_lock);
35006126 4749 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4750 kvm->arch.mmu_valid_gen++;
4751
f34d251d
XG
4752 /*
4753 * Notify all vcpus to reload its shadow page table
4754 * and flush TLB. Then all vcpus will switch to new
4755 * shadow page table with the new mmu_valid_gen.
4756 *
4757 * Note: we should do this under the protection of
4758 * mmu-lock, otherwise, vcpu would purge shadow page
4759 * but miss tlb flush.
4760 */
4761 kvm_reload_remote_mmus(kvm);
4762
5304b8d3
XG
4763 kvm_zap_obsolete_pages(kvm);
4764 spin_unlock(&kvm->mmu_lock);
4765}
4766
365c8868
XG
4767static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4768{
4769 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4770}
4771
54bf36aa 4772void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
4773{
4774 /*
4775 * The very rare case: if the generation-number is round,
4776 * zap all shadow pages.
f8f55942 4777 */
54bf36aa 4778 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
a629df7e 4779 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4780 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4781 }
f8f55942
XG
4782}
4783
70534a73
DC
4784static unsigned long
4785mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4786{
4787 struct kvm *kvm;
1495f230 4788 int nr_to_scan = sc->nr_to_scan;
70534a73 4789 unsigned long freed = 0;
3ee16c81 4790
2f303b74 4791 spin_lock(&kvm_lock);
3ee16c81
IE
4792
4793 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4794 int idx;
d98ba053 4795 LIST_HEAD(invalid_list);
3ee16c81 4796
35f2d16b
TY
4797 /*
4798 * Never scan more than sc->nr_to_scan VM instances.
4799 * Will not hit this condition practically since we do not try
4800 * to shrink more than one VM and it is very unlikely to see
4801 * !n_used_mmu_pages so many times.
4802 */
4803 if (!nr_to_scan--)
4804 break;
19526396
GN
4805 /*
4806 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4807 * here. We may skip a VM instance errorneosly, but we do not
4808 * want to shrink a VM that only started to populate its MMU
4809 * anyway.
4810 */
365c8868
XG
4811 if (!kvm->arch.n_used_mmu_pages &&
4812 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4813 continue;
19526396 4814
f656ce01 4815 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4816 spin_lock(&kvm->mmu_lock);
3ee16c81 4817
365c8868
XG
4818 if (kvm_has_zapped_obsolete_pages(kvm)) {
4819 kvm_mmu_commit_zap_page(kvm,
4820 &kvm->arch.zapped_obsolete_pages);
4821 goto unlock;
4822 }
4823
70534a73
DC
4824 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4825 freed++;
d98ba053 4826 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4827
365c8868 4828unlock:
3ee16c81 4829 spin_unlock(&kvm->mmu_lock);
f656ce01 4830 srcu_read_unlock(&kvm->srcu, idx);
19526396 4831
70534a73
DC
4832 /*
4833 * unfair on small ones
4834 * per-vm shrinkers cry out
4835 * sadness comes quickly
4836 */
19526396
GN
4837 list_move_tail(&kvm->vm_list, &vm_list);
4838 break;
3ee16c81 4839 }
3ee16c81 4840
2f303b74 4841 spin_unlock(&kvm_lock);
70534a73 4842 return freed;
70534a73
DC
4843}
4844
4845static unsigned long
4846mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4847{
45221ab6 4848 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4849}
4850
4851static struct shrinker mmu_shrinker = {
70534a73
DC
4852 .count_objects = mmu_shrink_count,
4853 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4854 .seeks = DEFAULT_SEEKS * 10,
4855};
4856
2ddfd20e 4857static void mmu_destroy_caches(void)
b5a33a75 4858{
53c07b18
XG
4859 if (pte_list_desc_cache)
4860 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4861 if (mmu_page_header_cache)
4862 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4863}
4864
4865int kvm_mmu_module_init(void)
4866{
53c07b18
XG
4867 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4868 sizeof(struct pte_list_desc),
20c2df83 4869 0, 0, NULL);
53c07b18 4870 if (!pte_list_desc_cache)
b5a33a75
AK
4871 goto nomem;
4872
d3d25b04
AK
4873 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4874 sizeof(struct kvm_mmu_page),
20c2df83 4875 0, 0, NULL);
d3d25b04
AK
4876 if (!mmu_page_header_cache)
4877 goto nomem;
4878
908c7f19 4879 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
4880 goto nomem;
4881
3ee16c81
IE
4882 register_shrinker(&mmu_shrinker);
4883
b5a33a75
AK
4884 return 0;
4885
4886nomem:
3ee16c81 4887 mmu_destroy_caches();
b5a33a75
AK
4888 return -ENOMEM;
4889}
4890
3ad82a7e
ZX
4891/*
4892 * Caculate mmu pages needed for kvm.
4893 */
4894unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4895{
3ad82a7e
ZX
4896 unsigned int nr_mmu_pages;
4897 unsigned int nr_pages = 0;
bc6678a3 4898 struct kvm_memslots *slots;
be6ba0f0 4899 struct kvm_memory_slot *memslot;
9da0e4d5 4900 int i;
3ad82a7e 4901
9da0e4d5
PB
4902 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4903 slots = __kvm_memslots(kvm, i);
90d83dc3 4904
9da0e4d5
PB
4905 kvm_for_each_memslot(memslot, slots)
4906 nr_pages += memslot->npages;
4907 }
3ad82a7e
ZX
4908
4909 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4910 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 4911 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
4912
4913 return nr_mmu_pages;
4914}
4915
c42fffe3
XG
4916void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4917{
95f93af4 4918 kvm_mmu_unload(vcpu);
c42fffe3
XG
4919 free_mmu_pages(vcpu);
4920 mmu_free_memory_caches(vcpu);
b034cf01
XG
4921}
4922
b034cf01
XG
4923void kvm_mmu_module_exit(void)
4924{
4925 mmu_destroy_caches();
4926 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4927 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4928 mmu_audit_disable();
4929}