]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
kvm: x86: mmu: Fast Page Fault path retries
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
1767e931
PG
32#include <linux/moduleparam.h>
33#include <linux/export.h>
448353ca 34#include <linux/swap.h>
05da4558 35#include <linux/hugetlb.h>
2f333bcb 36#include <linux/compiler.h>
bc6678a3 37#include <linux/srcu.h>
5a0e3ad6 38#include <linux/slab.h>
bf998156 39#include <linux/uaccess.h>
114df303 40#include <linux/hash.h>
6aa8b732 41
e495606d
AK
42#include <asm/page.h>
43#include <asm/cmpxchg.h>
4e542370 44#include <asm/io.h>
13673a90 45#include <asm/vmx.h>
3d0c27ad 46#include <asm/kvm_page_track.h>
6aa8b732 47
18552672
JR
48/*
49 * When setting this variable to true it enables Two-Dimensional-Paging
50 * where the hardware walks 2 page tables:
51 * 1. the guest-virtual to guest-physical
52 * 2. while doing 1. it walks guest-physical to host-physical
53 * If the hardware supports that we don't need to do shadow paging.
54 */
2f333bcb 55bool tdp_enabled = false;
18552672 56
8b1fe17c
XG
57enum {
58 AUDIT_PRE_PAGE_FAULT,
59 AUDIT_POST_PAGE_FAULT,
60 AUDIT_PRE_PTE_WRITE,
6903074c
XG
61 AUDIT_POST_PTE_WRITE,
62 AUDIT_PRE_SYNC,
63 AUDIT_POST_SYNC
8b1fe17c 64};
37a7d8b0 65
8b1fe17c 66#undef MMU_DEBUG
37a7d8b0
AK
67
68#ifdef MMU_DEBUG
fa4a2c08
PB
69static bool dbg = 0;
70module_param(dbg, bool, 0644);
37a7d8b0
AK
71
72#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
73#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 74#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 75#else
37a7d8b0
AK
76#define pgprintk(x...) do { } while (0)
77#define rmap_printk(x...) do { } while (0)
fa4a2c08 78#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 79#endif
6aa8b732 80
957ed9ef
XG
81#define PTE_PREFETCH_NUM 8
82
00763e41 83#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
84#define PT64_SECOND_AVAIL_BITS_SHIFT 52
85
6aa8b732
AK
86#define PT64_LEVEL_BITS 9
87
88#define PT64_LEVEL_SHIFT(level) \
d77c26fc 89 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 90
6aa8b732
AK
91#define PT64_INDEX(address, level)\
92 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
93
94
95#define PT32_LEVEL_BITS 10
96
97#define PT32_LEVEL_SHIFT(level) \
d77c26fc 98 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 99
e04da980
JR
100#define PT32_LVL_OFFSET_MASK(level) \
101 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
102 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
103
104#define PT32_INDEX(address, level)\
105 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
106
107
27aba766 108#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
109#define PT64_DIR_BASE_ADDR_MASK \
110 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
111#define PT64_LVL_ADDR_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
114#define PT64_LVL_OFFSET_MASK(level) \
115 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
116 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
117
118#define PT32_BASE_ADDR_MASK PAGE_MASK
119#define PT32_DIR_BASE_ADDR_MASK \
120 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT32_LVL_ADDR_MASK(level) \
122 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT32_LEVEL_BITS))) - 1))
6aa8b732 124
53166229
GN
125#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
126 | shadow_x_mask | shadow_nx_mask)
6aa8b732 127
fe135d2c
AK
128#define ACC_EXEC_MASK 1
129#define ACC_WRITE_MASK PT_WRITABLE_MASK
130#define ACC_USER_MASK PT_USER_MASK
131#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
132
90bb6fc5
AK
133#include <trace/events/kvm.h>
134
07420171
AK
135#define CREATE_TRACE_POINTS
136#include "mmutrace.h"
137
49fde340
XG
138#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
139#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 140
135f8c2b
AK
141#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
142
220f773a
TY
143/* make pte_list_desc fit well in cache line */
144#define PTE_LIST_EXT 3
145
53c07b18
XG
146struct pte_list_desc {
147 u64 *sptes[PTE_LIST_EXT];
148 struct pte_list_desc *more;
cd4a4e53
AK
149};
150
2d11123a
AK
151struct kvm_shadow_walk_iterator {
152 u64 addr;
153 hpa_t shadow_addr;
2d11123a 154 u64 *sptep;
dd3bfd59 155 int level;
2d11123a
AK
156 unsigned index;
157};
158
159#define for_each_shadow_entry(_vcpu, _addr, _walker) \
160 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
161 shadow_walk_okay(&(_walker)); \
162 shadow_walk_next(&(_walker)))
163
c2a2ac2b
XG
164#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
165 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
166 shadow_walk_okay(&(_walker)) && \
167 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
168 __shadow_walk_next(&(_walker), spte))
169
53c07b18 170static struct kmem_cache *pte_list_desc_cache;
d3d25b04 171static struct kmem_cache *mmu_page_header_cache;
45221ab6 172static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 173
7b52345e
SY
174static u64 __read_mostly shadow_nx_mask;
175static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
176static u64 __read_mostly shadow_user_mask;
177static u64 __read_mostly shadow_accessed_mask;
178static u64 __read_mostly shadow_dirty_mask;
ce88decf 179static u64 __read_mostly shadow_mmio_mask;
ffb128c8 180static u64 __read_mostly shadow_present_mask;
ce88decf
XG
181
182static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 183static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
184
185void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
186{
187 shadow_mmio_mask = mmio_mask;
188}
189EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
190
f2fd125d 191/*
ee3d1570
DM
192 * the low bit of the generation number is always presumed to be zero.
193 * This disables mmio caching during memslot updates. The concept is
194 * similar to a seqcount but instead of retrying the access we just punt
195 * and ignore the cache.
196 *
197 * spte bits 3-11 are used as bits 1-9 of the generation number,
198 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 199 */
ee3d1570 200#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
201#define MMIO_SPTE_GEN_HIGH_SHIFT 52
202
ee3d1570
DM
203#define MMIO_GEN_SHIFT 20
204#define MMIO_GEN_LOW_SHIFT 10
205#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 206#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
207
208static u64 generation_mmio_spte_mask(unsigned int gen)
209{
210 u64 mask;
211
842bb26a 212 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
213
214 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
215 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
216 return mask;
217}
218
219static unsigned int get_mmio_spte_generation(u64 spte)
220{
221 unsigned int gen;
222
223 spte &= ~shadow_mmio_mask;
224
225 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
226 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
227 return gen;
228}
229
54bf36aa 230static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 231{
54bf36aa 232 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
233}
234
54bf36aa 235static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 236 unsigned access)
ce88decf 237{
54bf36aa 238 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 239 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 240
ce88decf 241 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 242 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 243
f8f55942 244 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 245 mmu_spte_set(sptep, mask);
ce88decf
XG
246}
247
248static bool is_mmio_spte(u64 spte)
249{
250 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
251}
252
253static gfn_t get_mmio_spte_gfn(u64 spte)
254{
842bb26a 255 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 256 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
257}
258
259static unsigned get_mmio_spte_access(u64 spte)
260{
842bb26a 261 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 262 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
263}
264
54bf36aa 265static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 266 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
267{
268 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 269 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
270 return true;
271 }
272
273 return false;
274}
c7addb90 275
54bf36aa 276static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 277{
089504c0
XG
278 unsigned int kvm_gen, spte_gen;
279
54bf36aa 280 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
281 spte_gen = get_mmio_spte_generation(spte);
282
283 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
284 return likely(kvm_gen == spte_gen);
f8f55942
XG
285}
286
7b52345e 287void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
ffb128c8 288 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask)
7b52345e
SY
289{
290 shadow_user_mask = user_mask;
291 shadow_accessed_mask = accessed_mask;
292 shadow_dirty_mask = dirty_mask;
293 shadow_nx_mask = nx_mask;
294 shadow_x_mask = x_mask;
ffb128c8 295 shadow_present_mask = p_mask;
7b52345e
SY
296}
297EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
298
6aa8b732
AK
299static int is_cpuid_PSE36(void)
300{
301 return 1;
302}
303
73b1087e
AK
304static int is_nx(struct kvm_vcpu *vcpu)
305{
f6801dff 306 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
307}
308
c7addb90
AK
309static int is_shadow_present_pte(u64 pte)
310{
8d5cf161 311 return (pte & 0xFFFFFFFFull) && !is_mmio_spte(pte);
c7addb90
AK
312}
313
05da4558
MT
314static int is_large_pte(u64 pte)
315{
316 return pte & PT_PAGE_SIZE_MASK;
317}
318
776e6633
MT
319static int is_last_spte(u64 pte, int level)
320{
321 if (level == PT_PAGE_TABLE_LEVEL)
322 return 1;
852e3c19 323 if (is_large_pte(pte))
776e6633
MT
324 return 1;
325 return 0;
326}
327
ba049e93 328static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 329{
35149e21 330 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
331}
332
da928521
AK
333static gfn_t pse36_gfn_delta(u32 gpte)
334{
335 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337 return (gpte & PT32_DIR_PSE36_MASK) << shift;
338}
339
603e0651 340#ifdef CONFIG_X86_64
d555c333 341static void __set_spte(u64 *sptep, u64 spte)
e663ee64 342{
b19ee2ff 343 WRITE_ONCE(*sptep, spte);
e663ee64
AK
344}
345
603e0651 346static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 347{
b19ee2ff 348 WRITE_ONCE(*sptep, spte);
603e0651
XG
349}
350
351static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352{
353 return xchg(sptep, spte);
354}
c2a2ac2b
XG
355
356static u64 __get_spte_lockless(u64 *sptep)
357{
358 return ACCESS_ONCE(*sptep);
359}
a9221dd5 360#else
603e0651
XG
361union split_spte {
362 struct {
363 u32 spte_low;
364 u32 spte_high;
365 };
366 u64 spte;
367};
a9221dd5 368
c2a2ac2b
XG
369static void count_spte_clear(u64 *sptep, u64 spte)
370{
371 struct kvm_mmu_page *sp = page_header(__pa(sptep));
372
373 if (is_shadow_present_pte(spte))
374 return;
375
376 /* Ensure the spte is completely set before we increase the count */
377 smp_wmb();
378 sp->clear_spte_count++;
379}
380
603e0651
XG
381static void __set_spte(u64 *sptep, u64 spte)
382{
383 union split_spte *ssptep, sspte;
a9221dd5 384
603e0651
XG
385 ssptep = (union split_spte *)sptep;
386 sspte = (union split_spte)spte;
387
388 ssptep->spte_high = sspte.spte_high;
389
390 /*
391 * If we map the spte from nonpresent to present, We should store
392 * the high bits firstly, then set present bit, so cpu can not
393 * fetch this spte while we are setting the spte.
394 */
395 smp_wmb();
396
b19ee2ff 397 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
398}
399
603e0651
XG
400static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401{
402 union split_spte *ssptep, sspte;
403
404 ssptep = (union split_spte *)sptep;
405 sspte = (union split_spte)spte;
406
b19ee2ff 407 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
408
409 /*
410 * If we map the spte from present to nonpresent, we should clear
411 * present bit firstly to avoid vcpu fetch the old high bits.
412 */
413 smp_wmb();
414
415 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 416 count_spte_clear(sptep, spte);
603e0651
XG
417}
418
419static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
420{
421 union split_spte *ssptep, sspte, orig;
422
423 ssptep = (union split_spte *)sptep;
424 sspte = (union split_spte)spte;
425
426 /* xchg acts as a barrier before the setting of the high bits */
427 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
428 orig.spte_high = ssptep->spte_high;
429 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 430 count_spte_clear(sptep, spte);
603e0651
XG
431
432 return orig.spte;
433}
c2a2ac2b
XG
434
435/*
436 * The idea using the light way get the spte on x86_32 guest is from
437 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
438 *
439 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
440 * coalesces them and we are running out of the MMU lock. Therefore
441 * we need to protect against in-progress updates of the spte.
442 *
443 * Reading the spte while an update is in progress may get the old value
444 * for the high part of the spte. The race is fine for a present->non-present
445 * change (because the high part of the spte is ignored for non-present spte),
446 * but for a present->present change we must reread the spte.
447 *
448 * All such changes are done in two steps (present->non-present and
449 * non-present->present), hence it is enough to count the number of
450 * present->non-present updates: if it changed while reading the spte,
451 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
452 */
453static u64 __get_spte_lockless(u64 *sptep)
454{
455 struct kvm_mmu_page *sp = page_header(__pa(sptep));
456 union split_spte spte, *orig = (union split_spte *)sptep;
457 int count;
458
459retry:
460 count = sp->clear_spte_count;
461 smp_rmb();
462
463 spte.spte_low = orig->spte_low;
464 smp_rmb();
465
466 spte.spte_high = orig->spte_high;
467 smp_rmb();
468
469 if (unlikely(spte.spte_low != orig->spte_low ||
470 count != sp->clear_spte_count))
471 goto retry;
472
473 return spte.spte;
474}
603e0651
XG
475#endif
476
ea4114bc 477static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 478{
feb3eb70
GN
479 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
480 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
481}
482
8672b721
XG
483static bool spte_has_volatile_bits(u64 spte)
484{
c7ba5b48 485 /*
6a6256f9 486 * Always atomically update spte if it can be updated
c7ba5b48
XG
487 * out of mmu-lock, it can ensure dirty bit is not lost,
488 * also, it can help us to get a stable is_writable_pte()
489 * to ensure tlb flush is not missed.
490 */
ea4114bc 491 if (spte_can_locklessly_be_made_writable(spte))
c7ba5b48
XG
492 return true;
493
8672b721
XG
494 if (!shadow_accessed_mask)
495 return false;
496
497 if (!is_shadow_present_pte(spte))
498 return false;
499
4132779b
XG
500 if ((spte & shadow_accessed_mask) &&
501 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
502 return false;
503
504 return true;
505}
506
4132779b
XG
507static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
508{
509 return (old_spte & bit_mask) && !(new_spte & bit_mask);
510}
511
7e71a59b
KH
512static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
513{
514 return (old_spte & bit_mask) != (new_spte & bit_mask);
515}
516
1df9f2dc
XG
517/* Rules for using mmu_spte_set:
518 * Set the sptep from nonpresent to present.
519 * Note: the sptep being assigned *must* be either not present
520 * or in a state where the hardware will not attempt to update
521 * the spte.
522 */
523static void mmu_spte_set(u64 *sptep, u64 new_spte)
524{
525 WARN_ON(is_shadow_present_pte(*sptep));
526 __set_spte(sptep, new_spte);
527}
528
529/* Rules for using mmu_spte_update:
bb3541f1 530 * Update the state bits, it means the mapped pfn is not changed.
6e7d0354
XG
531 *
532 * Whenever we overwrite a writable spte with a read-only one we
533 * should flush remote TLBs. Otherwise rmap_write_protect
534 * will find a read-only spte, even though the writable spte
535 * might be cached on a CPU's TLB, the return value indicates this
536 * case.
1df9f2dc 537 */
6e7d0354 538static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 539{
c7ba5b48 540 u64 old_spte = *sptep;
6e7d0354 541 bool ret = false;
4132779b 542
afd28fe1 543 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 544
6e7d0354
XG
545 if (!is_shadow_present_pte(old_spte)) {
546 mmu_spte_set(sptep, new_spte);
547 return ret;
548 }
4132779b 549
c7ba5b48 550 if (!spte_has_volatile_bits(old_spte))
603e0651 551 __update_clear_spte_fast(sptep, new_spte);
4132779b 552 else
603e0651 553 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 554
c7ba5b48
XG
555 /*
556 * For the spte updated out of mmu-lock is safe, since
6a6256f9 557 * we always atomically update it, see the comments in
c7ba5b48
XG
558 * spte_has_volatile_bits().
559 */
ea4114bc 560 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 561 !is_writable_pte(new_spte))
6e7d0354
XG
562 ret = true;
563
14f47605
YZ
564 if (!shadow_accessed_mask) {
565 /*
566 * We don't set page dirty when dropping non-writable spte.
567 * So do it now if the new spte is becoming non-writable.
568 */
569 if (ret)
570 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354 571 return ret;
14f47605 572 }
4132779b 573
7e71a59b
KH
574 /*
575 * Flush TLB when accessed/dirty bits are changed in the page tables,
576 * to guarantee consistency between TLB and page tables.
577 */
578 if (spte_is_bit_changed(old_spte, new_spte,
579 shadow_accessed_mask | shadow_dirty_mask))
580 ret = true;
581
4132779b
XG
582 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
583 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
584 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
585 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
586
587 return ret;
b79b93f9
AK
588}
589
1df9f2dc
XG
590/*
591 * Rules for using mmu_spte_clear_track_bits:
592 * It sets the sptep from present to nonpresent, and track the
593 * state bits, it is used to clear the last level sptep.
594 */
595static int mmu_spte_clear_track_bits(u64 *sptep)
596{
ba049e93 597 kvm_pfn_t pfn;
1df9f2dc
XG
598 u64 old_spte = *sptep;
599
600 if (!spte_has_volatile_bits(old_spte))
603e0651 601 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 602 else
603e0651 603 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 604
afd28fe1 605 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
606 return 0;
607
608 pfn = spte_to_pfn(old_spte);
86fde74c
XG
609
610 /*
611 * KVM does not hold the refcount of the page used by
612 * kvm mmu, before reclaiming the page, we should
613 * unmap it from mmu first.
614 */
bf4bea8e 615 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 616
1df9f2dc
XG
617 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
618 kvm_set_pfn_accessed(pfn);
14f47605
YZ
619 if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask :
620 PT_WRITABLE_MASK))
1df9f2dc
XG
621 kvm_set_pfn_dirty(pfn);
622 return 1;
623}
624
625/*
626 * Rules for using mmu_spte_clear_no_track:
627 * Directly clear spte without caring the state bits of sptep,
628 * it is used to set the upper level spte.
629 */
630static void mmu_spte_clear_no_track(u64 *sptep)
631{
603e0651 632 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
633}
634
c2a2ac2b
XG
635static u64 mmu_spte_get_lockless(u64 *sptep)
636{
637 return __get_spte_lockless(sptep);
638}
639
640static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
641{
c142786c
AK
642 /*
643 * Prevent page table teardown by making any free-er wait during
644 * kvm_flush_remote_tlbs() IPI to all active vcpus.
645 */
646 local_irq_disable();
36ca7e0a 647
c142786c
AK
648 /*
649 * Make sure a following spte read is not reordered ahead of the write
650 * to vcpu->mode.
651 */
36ca7e0a 652 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
653}
654
655static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
656{
c142786c
AK
657 /*
658 * Make sure the write to vcpu->mode is not reordered in front of
659 * reads to sptes. If it does, kvm_commit_zap_page() can see us
660 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
661 */
36ca7e0a 662 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 663 local_irq_enable();
c2a2ac2b
XG
664}
665
e2dec939 666static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 667 struct kmem_cache *base_cache, int min)
714b93da
AK
668{
669 void *obj;
670
671 if (cache->nobjs >= min)
e2dec939 672 return 0;
714b93da 673 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 674 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 675 if (!obj)
e2dec939 676 return -ENOMEM;
714b93da
AK
677 cache->objects[cache->nobjs++] = obj;
678 }
e2dec939 679 return 0;
714b93da
AK
680}
681
f759e2b4
XG
682static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
683{
684 return cache->nobjs;
685}
686
e8ad9a70
XG
687static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
688 struct kmem_cache *cache)
714b93da
AK
689{
690 while (mc->nobjs)
e8ad9a70 691 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
692}
693
c1158e63 694static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 695 int min)
c1158e63 696{
842f22ed 697 void *page;
c1158e63
AK
698
699 if (cache->nobjs >= min)
700 return 0;
701 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 702 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
703 if (!page)
704 return -ENOMEM;
842f22ed 705 cache->objects[cache->nobjs++] = page;
c1158e63
AK
706 }
707 return 0;
708}
709
710static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
711{
712 while (mc->nobjs)
c4d198d5 713 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
714}
715
2e3e5882 716static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 717{
e2dec939
AK
718 int r;
719
53c07b18 720 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 721 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
722 if (r)
723 goto out;
ad312c7c 724 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
725 if (r)
726 goto out;
ad312c7c 727 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 728 mmu_page_header_cache, 4);
e2dec939
AK
729out:
730 return r;
714b93da
AK
731}
732
733static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
734{
53c07b18
XG
735 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
736 pte_list_desc_cache);
ad312c7c 737 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
738 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
739 mmu_page_header_cache);
714b93da
AK
740}
741
80feb89a 742static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
743{
744 void *p;
745
746 BUG_ON(!mc->nobjs);
747 p = mc->objects[--mc->nobjs];
714b93da
AK
748 return p;
749}
750
53c07b18 751static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 752{
80feb89a 753 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
754}
755
53c07b18 756static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 757{
53c07b18 758 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
759}
760
2032a93d
LJ
761static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
762{
763 if (!sp->role.direct)
764 return sp->gfns[index];
765
766 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
767}
768
769static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
770{
771 if (sp->role.direct)
772 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
773 else
774 sp->gfns[index] = gfn;
775}
776
05da4558 777/*
d4dbf470
TY
778 * Return the pointer to the large page information for a given gfn,
779 * handling slots that are not large page aligned.
05da4558 780 */
d4dbf470
TY
781static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
782 struct kvm_memory_slot *slot,
783 int level)
05da4558
MT
784{
785 unsigned long idx;
786
fb03cb6f 787 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 788 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
789}
790
547ffaed
XG
791static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
792 gfn_t gfn, int count)
793{
794 struct kvm_lpage_info *linfo;
795 int i;
796
797 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
798 linfo = lpage_info_slot(gfn, slot, i);
799 linfo->disallow_lpage += count;
800 WARN_ON(linfo->disallow_lpage < 0);
801 }
802}
803
804void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
805{
806 update_gfn_disallow_lpage_count(slot, gfn, 1);
807}
808
809void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
810{
811 update_gfn_disallow_lpage_count(slot, gfn, -1);
812}
813
3ed1a478 814static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 815{
699023e2 816 struct kvm_memslots *slots;
d25797b2 817 struct kvm_memory_slot *slot;
3ed1a478 818 gfn_t gfn;
05da4558 819
56ca57f9 820 kvm->arch.indirect_shadow_pages++;
3ed1a478 821 gfn = sp->gfn;
699023e2
PB
822 slots = kvm_memslots_for_spte_role(kvm, sp->role);
823 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
824
825 /* the non-leaf shadow pages are keeping readonly. */
826 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
827 return kvm_slot_page_track_add_page(kvm, slot, gfn,
828 KVM_PAGE_TRACK_WRITE);
829
547ffaed 830 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
831}
832
3ed1a478 833static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 834{
699023e2 835 struct kvm_memslots *slots;
d25797b2 836 struct kvm_memory_slot *slot;
3ed1a478 837 gfn_t gfn;
05da4558 838
56ca57f9 839 kvm->arch.indirect_shadow_pages--;
3ed1a478 840 gfn = sp->gfn;
699023e2
PB
841 slots = kvm_memslots_for_spte_role(kvm, sp->role);
842 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
843 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
844 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
845 KVM_PAGE_TRACK_WRITE);
846
547ffaed 847 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
848}
849
92f94f1e
XG
850static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
851 struct kvm_memory_slot *slot)
05da4558 852{
d4dbf470 853 struct kvm_lpage_info *linfo;
05da4558
MT
854
855 if (slot) {
d4dbf470 856 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 857 return !!linfo->disallow_lpage;
05da4558
MT
858 }
859
92f94f1e 860 return true;
05da4558
MT
861}
862
92f94f1e
XG
863static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
864 int level)
5225fdf8
TY
865{
866 struct kvm_memory_slot *slot;
867
868 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 869 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
870}
871
d25797b2 872static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 873{
8f0b1ab6 874 unsigned long page_size;
d25797b2 875 int i, ret = 0;
05da4558 876
8f0b1ab6 877 page_size = kvm_host_page_size(kvm, gfn);
05da4558 878
8a3d08f1 879 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
880 if (page_size >= KVM_HPAGE_SIZE(i))
881 ret = i;
882 else
883 break;
884 }
885
4c2155ce 886 return ret;
05da4558
MT
887}
888
d8aacf5d
TY
889static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
890 bool no_dirty_log)
891{
892 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
893 return false;
894 if (no_dirty_log && slot->dirty_bitmap)
895 return false;
896
897 return true;
898}
899
5d163b1c
XG
900static struct kvm_memory_slot *
901gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
902 bool no_dirty_log)
05da4558
MT
903{
904 struct kvm_memory_slot *slot;
5d163b1c 905
54bf36aa 906 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 907 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
908 slot = NULL;
909
910 return slot;
911}
912
fd136902
TY
913static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
914 bool *force_pt_level)
936a5fe6
AA
915{
916 int host_level, level, max_level;
d8aacf5d
TY
917 struct kvm_memory_slot *slot;
918
8c85ac1c
TY
919 if (unlikely(*force_pt_level))
920 return PT_PAGE_TABLE_LEVEL;
05da4558 921
8c85ac1c
TY
922 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
923 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
924 if (unlikely(*force_pt_level))
925 return PT_PAGE_TABLE_LEVEL;
926
d25797b2
JR
927 host_level = host_mapping_level(vcpu->kvm, large_gfn);
928
929 if (host_level == PT_PAGE_TABLE_LEVEL)
930 return host_level;
931
55dd98c3 932 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
933
934 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 935 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 936 break;
d25797b2
JR
937
938 return level - 1;
05da4558
MT
939}
940
290fc38d 941/*
018aabb5 942 * About rmap_head encoding:
cd4a4e53 943 *
018aabb5
TY
944 * If the bit zero of rmap_head->val is clear, then it points to the only spte
945 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 946 * pte_list_desc containing more mappings.
018aabb5
TY
947 */
948
949/*
950 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 951 */
53c07b18 952static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 953 struct kvm_rmap_head *rmap_head)
cd4a4e53 954{
53c07b18 955 struct pte_list_desc *desc;
53a27b39 956 int i, count = 0;
cd4a4e53 957
018aabb5 958 if (!rmap_head->val) {
53c07b18 959 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
960 rmap_head->val = (unsigned long)spte;
961 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
962 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
963 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 964 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 965 desc->sptes[1] = spte;
018aabb5 966 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 967 ++count;
cd4a4e53 968 } else {
53c07b18 969 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 970 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 971 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 972 desc = desc->more;
53c07b18 973 count += PTE_LIST_EXT;
53a27b39 974 }
53c07b18
XG
975 if (desc->sptes[PTE_LIST_EXT-1]) {
976 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
977 desc = desc->more;
978 }
d555c333 979 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 980 ++count;
d555c333 981 desc->sptes[i] = spte;
cd4a4e53 982 }
53a27b39 983 return count;
cd4a4e53
AK
984}
985
53c07b18 986static void
018aabb5
TY
987pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
988 struct pte_list_desc *desc, int i,
989 struct pte_list_desc *prev_desc)
cd4a4e53
AK
990{
991 int j;
992
53c07b18 993 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 994 ;
d555c333
AK
995 desc->sptes[i] = desc->sptes[j];
996 desc->sptes[j] = NULL;
cd4a4e53
AK
997 if (j != 0)
998 return;
999 if (!prev_desc && !desc->more)
018aabb5 1000 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
1001 else
1002 if (prev_desc)
1003 prev_desc->more = desc->more;
1004 else
018aabb5 1005 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1006 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1007}
1008
018aabb5 1009static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1010{
53c07b18
XG
1011 struct pte_list_desc *desc;
1012 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1013 int i;
1014
018aabb5 1015 if (!rmap_head->val) {
53c07b18 1016 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 1017 BUG();
018aabb5 1018 } else if (!(rmap_head->val & 1)) {
53c07b18 1019 rmap_printk("pte_list_remove: %p 1->0\n", spte);
018aabb5 1020 if ((u64 *)rmap_head->val != spte) {
53c07b18 1021 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
1022 BUG();
1023 }
018aabb5 1024 rmap_head->val = 0;
cd4a4e53 1025 } else {
53c07b18 1026 rmap_printk("pte_list_remove: %p many->many\n", spte);
018aabb5 1027 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1028 prev_desc = NULL;
1029 while (desc) {
018aabb5 1030 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1031 if (desc->sptes[i] == spte) {
018aabb5
TY
1032 pte_list_desc_remove_entry(rmap_head,
1033 desc, i, prev_desc);
cd4a4e53
AK
1034 return;
1035 }
018aabb5 1036 }
cd4a4e53
AK
1037 prev_desc = desc;
1038 desc = desc->more;
1039 }
53c07b18 1040 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1041 BUG();
1042 }
1043}
1044
018aabb5
TY
1045static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1046 struct kvm_memory_slot *slot)
53c07b18 1047{
77d11309 1048 unsigned long idx;
53c07b18 1049
77d11309 1050 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1051 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1052}
1053
018aabb5
TY
1054static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1055 struct kvm_mmu_page *sp)
9b9b1492 1056{
699023e2 1057 struct kvm_memslots *slots;
9b9b1492
TY
1058 struct kvm_memory_slot *slot;
1059
699023e2
PB
1060 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1061 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1062 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1063}
1064
f759e2b4
XG
1065static bool rmap_can_add(struct kvm_vcpu *vcpu)
1066{
1067 struct kvm_mmu_memory_cache *cache;
1068
1069 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1070 return mmu_memory_cache_free_objects(cache);
1071}
1072
53c07b18
XG
1073static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1074{
1075 struct kvm_mmu_page *sp;
018aabb5 1076 struct kvm_rmap_head *rmap_head;
53c07b18 1077
53c07b18
XG
1078 sp = page_header(__pa(spte));
1079 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1080 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1081 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1082}
1083
53c07b18
XG
1084static void rmap_remove(struct kvm *kvm, u64 *spte)
1085{
1086 struct kvm_mmu_page *sp;
1087 gfn_t gfn;
018aabb5 1088 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1089
1090 sp = page_header(__pa(spte));
1091 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5
TY
1092 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1093 pte_list_remove(spte, rmap_head);
53c07b18
XG
1094}
1095
1e3f42f0
TY
1096/*
1097 * Used by the following functions to iterate through the sptes linked by a
1098 * rmap. All fields are private and not assumed to be used outside.
1099 */
1100struct rmap_iterator {
1101 /* private fields */
1102 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1103 int pos; /* index of the sptep */
1104};
1105
1106/*
1107 * Iteration must be started by this function. This should also be used after
1108 * removing/dropping sptes from the rmap link because in such cases the
1109 * information in the itererator may not be valid.
1110 *
1111 * Returns sptep if found, NULL otherwise.
1112 */
018aabb5
TY
1113static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1114 struct rmap_iterator *iter)
1e3f42f0 1115{
77fbbbd2
TY
1116 u64 *sptep;
1117
018aabb5 1118 if (!rmap_head->val)
1e3f42f0
TY
1119 return NULL;
1120
018aabb5 1121 if (!(rmap_head->val & 1)) {
1e3f42f0 1122 iter->desc = NULL;
77fbbbd2
TY
1123 sptep = (u64 *)rmap_head->val;
1124 goto out;
1e3f42f0
TY
1125 }
1126
018aabb5 1127 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1128 iter->pos = 0;
77fbbbd2
TY
1129 sptep = iter->desc->sptes[iter->pos];
1130out:
1131 BUG_ON(!is_shadow_present_pte(*sptep));
1132 return sptep;
1e3f42f0
TY
1133}
1134
1135/*
1136 * Must be used with a valid iterator: e.g. after rmap_get_first().
1137 *
1138 * Returns sptep if found, NULL otherwise.
1139 */
1140static u64 *rmap_get_next(struct rmap_iterator *iter)
1141{
77fbbbd2
TY
1142 u64 *sptep;
1143
1e3f42f0
TY
1144 if (iter->desc) {
1145 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1146 ++iter->pos;
1147 sptep = iter->desc->sptes[iter->pos];
1148 if (sptep)
77fbbbd2 1149 goto out;
1e3f42f0
TY
1150 }
1151
1152 iter->desc = iter->desc->more;
1153
1154 if (iter->desc) {
1155 iter->pos = 0;
1156 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1157 sptep = iter->desc->sptes[iter->pos];
1158 goto out;
1e3f42f0
TY
1159 }
1160 }
1161
1162 return NULL;
77fbbbd2
TY
1163out:
1164 BUG_ON(!is_shadow_present_pte(*sptep));
1165 return sptep;
1e3f42f0
TY
1166}
1167
018aabb5
TY
1168#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1169 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1170 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1171
c3707958 1172static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1173{
1df9f2dc 1174 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1175 rmap_remove(kvm, sptep);
be38d276
AK
1176}
1177
8e22f955
XG
1178
1179static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1180{
1181 if (is_large_pte(*sptep)) {
1182 WARN_ON(page_header(__pa(sptep))->role.level ==
1183 PT_PAGE_TABLE_LEVEL);
1184 drop_spte(kvm, sptep);
1185 --kvm->stat.lpages;
1186 return true;
1187 }
1188
1189 return false;
1190}
1191
1192static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1193{
1194 if (__drop_large_spte(vcpu->kvm, sptep))
1195 kvm_flush_remote_tlbs(vcpu->kvm);
1196}
1197
1198/*
49fde340 1199 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1200 * spte write-protection is caused by protecting shadow page table.
49fde340 1201 *
b4619660 1202 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1203 * protection:
1204 * - for dirty logging, the spte can be set to writable at anytime if
1205 * its dirty bitmap is properly set.
1206 * - for spte protection, the spte can be writable only after unsync-ing
1207 * shadow page.
8e22f955 1208 *
c126d94f 1209 * Return true if tlb need be flushed.
8e22f955 1210 */
c4f138b4 1211static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1212{
1213 u64 spte = *sptep;
1214
49fde340 1215 if (!is_writable_pte(spte) &&
ea4114bc 1216 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1217 return false;
1218
1219 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1220
49fde340
XG
1221 if (pt_protect)
1222 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1223 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1224
c126d94f 1225 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1226}
1227
018aabb5
TY
1228static bool __rmap_write_protect(struct kvm *kvm,
1229 struct kvm_rmap_head *rmap_head,
245c3912 1230 bool pt_protect)
98348e95 1231{
1e3f42f0
TY
1232 u64 *sptep;
1233 struct rmap_iterator iter;
d13bc5b5 1234 bool flush = false;
374cbac0 1235
018aabb5 1236 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1237 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1238
d13bc5b5 1239 return flush;
a0ed4607
TY
1240}
1241
c4f138b4 1242static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1243{
1244 u64 spte = *sptep;
1245
1246 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1247
1248 spte &= ~shadow_dirty_mask;
1249
1250 return mmu_spte_update(sptep, spte);
1251}
1252
018aabb5 1253static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1254{
1255 u64 *sptep;
1256 struct rmap_iterator iter;
1257 bool flush = false;
1258
018aabb5 1259 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1260 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1261
1262 return flush;
1263}
1264
c4f138b4 1265static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1266{
1267 u64 spte = *sptep;
1268
1269 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1270
1271 spte |= shadow_dirty_mask;
1272
1273 return mmu_spte_update(sptep, spte);
1274}
1275
018aabb5 1276static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1277{
1278 u64 *sptep;
1279 struct rmap_iterator iter;
1280 bool flush = false;
1281
018aabb5 1282 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1283 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1284
1285 return flush;
1286}
1287
5dc99b23 1288/**
3b0f1d01 1289 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1290 * @kvm: kvm instance
1291 * @slot: slot to protect
1292 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1293 * @mask: indicates which pages we should protect
1294 *
1295 * Used when we do not need to care about huge page mappings: e.g. during dirty
1296 * logging we do not have any such mappings.
1297 */
3b0f1d01 1298static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1299 struct kvm_memory_slot *slot,
1300 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1301{
018aabb5 1302 struct kvm_rmap_head *rmap_head;
a0ed4607 1303
5dc99b23 1304 while (mask) {
018aabb5
TY
1305 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1306 PT_PAGE_TABLE_LEVEL, slot);
1307 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1308
5dc99b23
TY
1309 /* clear the first set bit */
1310 mask &= mask - 1;
1311 }
374cbac0
AK
1312}
1313
f4b4b180
KH
1314/**
1315 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1316 * @kvm: kvm instance
1317 * @slot: slot to clear D-bit
1318 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1319 * @mask: indicates which pages we should clear D-bit
1320 *
1321 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1322 */
1323void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1324 struct kvm_memory_slot *slot,
1325 gfn_t gfn_offset, unsigned long mask)
1326{
018aabb5 1327 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1328
1329 while (mask) {
018aabb5
TY
1330 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1331 PT_PAGE_TABLE_LEVEL, slot);
1332 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1333
1334 /* clear the first set bit */
1335 mask &= mask - 1;
1336 }
1337}
1338EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1339
3b0f1d01
KH
1340/**
1341 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1342 * PT level pages.
1343 *
1344 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1345 * enable dirty logging for them.
1346 *
1347 * Used when we do not need to care about huge page mappings: e.g. during dirty
1348 * logging we do not have any such mappings.
1349 */
1350void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1351 struct kvm_memory_slot *slot,
1352 gfn_t gfn_offset, unsigned long mask)
1353{
88178fd4
KH
1354 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1355 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1356 mask);
1357 else
1358 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1359}
1360
aeecee2e
XG
1361bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1362 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1363{
018aabb5 1364 struct kvm_rmap_head *rmap_head;
5dc99b23 1365 int i;
2f84569f 1366 bool write_protected = false;
95d4c16c 1367
8a3d08f1 1368 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1369 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1370 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1371 }
1372
1373 return write_protected;
95d4c16c
TY
1374}
1375
aeecee2e
XG
1376static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1377{
1378 struct kvm_memory_slot *slot;
1379
1380 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1381 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1382}
1383
018aabb5 1384static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1385{
1e3f42f0
TY
1386 u64 *sptep;
1387 struct rmap_iterator iter;
6a49f85c 1388 bool flush = false;
e930bffe 1389
018aabb5 1390 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1391 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1392
1393 drop_spte(kvm, sptep);
6a49f85c 1394 flush = true;
e930bffe 1395 }
1e3f42f0 1396
6a49f85c
XG
1397 return flush;
1398}
1399
018aabb5 1400static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1401 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1402 unsigned long data)
1403{
018aabb5 1404 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1405}
1406
018aabb5 1407static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1408 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1409 unsigned long data)
3da0dd43 1410{
1e3f42f0
TY
1411 u64 *sptep;
1412 struct rmap_iterator iter;
3da0dd43 1413 int need_flush = 0;
1e3f42f0 1414 u64 new_spte;
3da0dd43 1415 pte_t *ptep = (pte_t *)data;
ba049e93 1416 kvm_pfn_t new_pfn;
3da0dd43
IE
1417
1418 WARN_ON(pte_huge(*ptep));
1419 new_pfn = pte_pfn(*ptep);
1e3f42f0 1420
0d536790 1421restart:
018aabb5 1422 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2
ALC
1423 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1424 sptep, *sptep, gfn, level);
1e3f42f0 1425
3da0dd43 1426 need_flush = 1;
1e3f42f0 1427
3da0dd43 1428 if (pte_write(*ptep)) {
1e3f42f0 1429 drop_spte(kvm, sptep);
0d536790 1430 goto restart;
3da0dd43 1431 } else {
1e3f42f0 1432 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1433 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1434
1435 new_spte &= ~PT_WRITABLE_MASK;
1436 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1437 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1438
1439 mmu_spte_clear_track_bits(sptep);
1440 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1441 }
1442 }
1e3f42f0 1443
3da0dd43
IE
1444 if (need_flush)
1445 kvm_flush_remote_tlbs(kvm);
1446
1447 return 0;
1448}
1449
6ce1f4e2
XG
1450struct slot_rmap_walk_iterator {
1451 /* input fields. */
1452 struct kvm_memory_slot *slot;
1453 gfn_t start_gfn;
1454 gfn_t end_gfn;
1455 int start_level;
1456 int end_level;
1457
1458 /* output fields. */
1459 gfn_t gfn;
018aabb5 1460 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1461 int level;
1462
1463 /* private field. */
018aabb5 1464 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1465};
1466
1467static void
1468rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1469{
1470 iterator->level = level;
1471 iterator->gfn = iterator->start_gfn;
1472 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1473 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1474 iterator->slot);
1475}
1476
1477static void
1478slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1479 struct kvm_memory_slot *slot, int start_level,
1480 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1481{
1482 iterator->slot = slot;
1483 iterator->start_level = start_level;
1484 iterator->end_level = end_level;
1485 iterator->start_gfn = start_gfn;
1486 iterator->end_gfn = end_gfn;
1487
1488 rmap_walk_init_level(iterator, iterator->start_level);
1489}
1490
1491static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1492{
1493 return !!iterator->rmap;
1494}
1495
1496static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1497{
1498 if (++iterator->rmap <= iterator->end_rmap) {
1499 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1500 return;
1501 }
1502
1503 if (++iterator->level > iterator->end_level) {
1504 iterator->rmap = NULL;
1505 return;
1506 }
1507
1508 rmap_walk_init_level(iterator, iterator->level);
1509}
1510
1511#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1512 _start_gfn, _end_gfn, _iter_) \
1513 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1514 _end_level_, _start_gfn, _end_gfn); \
1515 slot_rmap_walk_okay(_iter_); \
1516 slot_rmap_walk_next(_iter_))
1517
84504ef3
TY
1518static int kvm_handle_hva_range(struct kvm *kvm,
1519 unsigned long start,
1520 unsigned long end,
1521 unsigned long data,
1522 int (*handler)(struct kvm *kvm,
018aabb5 1523 struct kvm_rmap_head *rmap_head,
048212d0 1524 struct kvm_memory_slot *slot,
8a9522d2
ALC
1525 gfn_t gfn,
1526 int level,
84504ef3 1527 unsigned long data))
e930bffe 1528{
bc6678a3 1529 struct kvm_memslots *slots;
be6ba0f0 1530 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1531 struct slot_rmap_walk_iterator iterator;
1532 int ret = 0;
9da0e4d5 1533 int i;
bc6678a3 1534
9da0e4d5
PB
1535 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1536 slots = __kvm_memslots(kvm, i);
1537 kvm_for_each_memslot(memslot, slots) {
1538 unsigned long hva_start, hva_end;
1539 gfn_t gfn_start, gfn_end;
e930bffe 1540
9da0e4d5
PB
1541 hva_start = max(start, memslot->userspace_addr);
1542 hva_end = min(end, memslot->userspace_addr +
1543 (memslot->npages << PAGE_SHIFT));
1544 if (hva_start >= hva_end)
1545 continue;
1546 /*
1547 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1548 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1549 */
1550 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1551 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1552
1553 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1554 PT_MAX_HUGEPAGE_LEVEL,
1555 gfn_start, gfn_end - 1,
1556 &iterator)
1557 ret |= handler(kvm, iterator.rmap, memslot,
1558 iterator.gfn, iterator.level, data);
1559 }
e930bffe
AA
1560 }
1561
f395302e 1562 return ret;
e930bffe
AA
1563}
1564
84504ef3
TY
1565static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1566 unsigned long data,
018aabb5
TY
1567 int (*handler)(struct kvm *kvm,
1568 struct kvm_rmap_head *rmap_head,
048212d0 1569 struct kvm_memory_slot *slot,
8a9522d2 1570 gfn_t gfn, int level,
84504ef3
TY
1571 unsigned long data))
1572{
1573 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1574}
1575
1576int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1577{
3da0dd43
IE
1578 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1579}
1580
b3ae2096
TY
1581int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1582{
1583 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1584}
1585
3da0dd43
IE
1586void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1587{
8a8365c5 1588 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1589}
1590
018aabb5 1591static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1592 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1593 unsigned long data)
e930bffe 1594{
1e3f42f0 1595 u64 *sptep;
79f702a6 1596 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1597 int young = 0;
1598
57128468 1599 BUG_ON(!shadow_accessed_mask);
534e38b4 1600
018aabb5 1601 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1602 if (*sptep & shadow_accessed_mask) {
e930bffe 1603 young = 1;
3f6d8c8a
XH
1604 clear_bit((ffs(shadow_accessed_mask) - 1),
1605 (unsigned long *)sptep);
e930bffe 1606 }
018aabb5 1607 }
0d536790 1608
8a9522d2 1609 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1610 return young;
1611}
1612
018aabb5 1613static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1614 struct kvm_memory_slot *slot, gfn_t gfn,
1615 int level, unsigned long data)
8ee53820 1616{
1e3f42f0
TY
1617 u64 *sptep;
1618 struct rmap_iterator iter;
8ee53820
AA
1619 int young = 0;
1620
1621 /*
1622 * If there's no access bit in the secondary pte set by the
1623 * hardware it's up to gup-fast/gup to set the access bit in
1624 * the primary pte or in the page structure.
1625 */
1626 if (!shadow_accessed_mask)
1627 goto out;
1628
018aabb5 1629 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1630 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1631 young = 1;
1632 break;
1633 }
018aabb5 1634 }
8ee53820
AA
1635out:
1636 return young;
1637}
1638
53a27b39
MT
1639#define RMAP_RECYCLE_THRESHOLD 1000
1640
852e3c19 1641static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1642{
018aabb5 1643 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1644 struct kvm_mmu_page *sp;
1645
1646 sp = page_header(__pa(spte));
53a27b39 1647
018aabb5 1648 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1649
018aabb5 1650 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1651 kvm_flush_remote_tlbs(vcpu->kvm);
1652}
1653
57128468 1654int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1655{
57128468
ALC
1656 /*
1657 * In case of absence of EPT Access and Dirty Bits supports,
1658 * emulate the accessed bit for EPT, by checking if this page has
1659 * an EPT mapping, and clearing it if it does. On the next access,
1660 * a new EPT mapping will be established.
1661 * This has some overhead, but not as much as the cost of swapping
1662 * out actively used pages or breaking up actively used hugepages.
1663 */
66d73e12 1664 if (!shadow_accessed_mask)
57128468
ALC
1665 return kvm_handle_hva_range(kvm, start, end, 0,
1666 kvm_unmap_rmapp);
57128468
ALC
1667
1668 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1669}
1670
8ee53820
AA
1671int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1672{
1673 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1674}
1675
d6c69ee9 1676#ifdef MMU_DEBUG
47ad8e68 1677static int is_empty_shadow_page(u64 *spt)
6aa8b732 1678{
139bdb2d
AK
1679 u64 *pos;
1680 u64 *end;
1681
47ad8e68 1682 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1683 if (is_shadow_present_pte(*pos)) {
b8688d51 1684 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1685 pos, *pos);
6aa8b732 1686 return 0;
139bdb2d 1687 }
6aa8b732
AK
1688 return 1;
1689}
d6c69ee9 1690#endif
6aa8b732 1691
45221ab6
DH
1692/*
1693 * This value is the sum of all of the kvm instances's
1694 * kvm->arch.n_used_mmu_pages values. We need a global,
1695 * aggregate version in order to make the slab shrinker
1696 * faster
1697 */
1698static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1699{
1700 kvm->arch.n_used_mmu_pages += nr;
1701 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1702}
1703
834be0d8 1704static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1705{
fa4a2c08 1706 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1707 hlist_del(&sp->hash_link);
bd4c86ea
XG
1708 list_del(&sp->link);
1709 free_page((unsigned long)sp->spt);
834be0d8
GN
1710 if (!sp->role.direct)
1711 free_page((unsigned long)sp->gfns);
e8ad9a70 1712 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1713}
1714
cea0f0e7
AK
1715static unsigned kvm_page_table_hashfn(gfn_t gfn)
1716{
114df303 1717 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1718}
1719
714b93da 1720static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1721 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1722{
cea0f0e7
AK
1723 if (!parent_pte)
1724 return;
cea0f0e7 1725
67052b35 1726 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1727}
1728
4db35314 1729static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1730 u64 *parent_pte)
1731{
67052b35 1732 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1733}
1734
bcdd9a93
XG
1735static void drop_parent_pte(struct kvm_mmu_page *sp,
1736 u64 *parent_pte)
1737{
1738 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1739 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1740}
1741
47005792 1742static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1743{
67052b35 1744 struct kvm_mmu_page *sp;
7ddca7e4 1745
80feb89a
TY
1746 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1747 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1748 if (!direct)
80feb89a 1749 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1750 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1751
1752 /*
1753 * The active_mmu_pages list is the FIFO list, do not move the
1754 * page until it is zapped. kvm_zap_obsolete_pages depends on
1755 * this feature. See the comments in kvm_zap_obsolete_pages().
1756 */
67052b35 1757 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1758 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1759 return sp;
ad8cfbe3
MT
1760}
1761
67052b35 1762static void mark_unsync(u64 *spte);
1047df1f 1763static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1764{
74c4e63a
TY
1765 u64 *sptep;
1766 struct rmap_iterator iter;
1767
1768 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1769 mark_unsync(sptep);
1770 }
0074ff63
MT
1771}
1772
67052b35 1773static void mark_unsync(u64 *spte)
0074ff63 1774{
67052b35 1775 struct kvm_mmu_page *sp;
1047df1f 1776 unsigned int index;
0074ff63 1777
67052b35 1778 sp = page_header(__pa(spte));
1047df1f
XG
1779 index = spte - sp->spt;
1780 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1781 return;
1047df1f 1782 if (sp->unsync_children++)
0074ff63 1783 return;
1047df1f 1784 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1785}
1786
e8bc217a 1787static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1788 struct kvm_mmu_page *sp)
e8bc217a 1789{
1f50f1b3 1790 return 0;
e8bc217a
MT
1791}
1792
a7052897
MT
1793static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1794{
1795}
1796
0f53b5b1
XG
1797static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1798 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1799 const void *pte)
0f53b5b1
XG
1800{
1801 WARN_ON(1);
1802}
1803
60c8aec6
MT
1804#define KVM_PAGE_ARRAY_NR 16
1805
1806struct kvm_mmu_pages {
1807 struct mmu_page_and_offset {
1808 struct kvm_mmu_page *sp;
1809 unsigned int idx;
1810 } page[KVM_PAGE_ARRAY_NR];
1811 unsigned int nr;
1812};
1813
cded19f3
HE
1814static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1815 int idx)
4731d4c7 1816{
60c8aec6 1817 int i;
4731d4c7 1818
60c8aec6
MT
1819 if (sp->unsync)
1820 for (i=0; i < pvec->nr; i++)
1821 if (pvec->page[i].sp == sp)
1822 return 0;
1823
1824 pvec->page[pvec->nr].sp = sp;
1825 pvec->page[pvec->nr].idx = idx;
1826 pvec->nr++;
1827 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1828}
1829
fd951457
TY
1830static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1831{
1832 --sp->unsync_children;
1833 WARN_ON((int)sp->unsync_children < 0);
1834 __clear_bit(idx, sp->unsync_child_bitmap);
1835}
1836
60c8aec6
MT
1837static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1838 struct kvm_mmu_pages *pvec)
1839{
1840 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1841
37178b8b 1842 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1843 struct kvm_mmu_page *child;
4731d4c7
MT
1844 u64 ent = sp->spt[i];
1845
fd951457
TY
1846 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1847 clear_unsync_child_bit(sp, i);
1848 continue;
1849 }
7a8f1a74
XG
1850
1851 child = page_header(ent & PT64_BASE_ADDR_MASK);
1852
1853 if (child->unsync_children) {
1854 if (mmu_pages_add(pvec, child, i))
1855 return -ENOSPC;
1856
1857 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1858 if (!ret) {
1859 clear_unsync_child_bit(sp, i);
1860 continue;
1861 } else if (ret > 0) {
7a8f1a74 1862 nr_unsync_leaf += ret;
fd951457 1863 } else
7a8f1a74
XG
1864 return ret;
1865 } else if (child->unsync) {
1866 nr_unsync_leaf++;
1867 if (mmu_pages_add(pvec, child, i))
1868 return -ENOSPC;
1869 } else
fd951457 1870 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1871 }
1872
60c8aec6
MT
1873 return nr_unsync_leaf;
1874}
1875
e23d3fef
XG
1876#define INVALID_INDEX (-1)
1877
60c8aec6
MT
1878static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1879 struct kvm_mmu_pages *pvec)
1880{
0a47cd85 1881 pvec->nr = 0;
60c8aec6
MT
1882 if (!sp->unsync_children)
1883 return 0;
1884
e23d3fef 1885 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 1886 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1887}
1888
4731d4c7
MT
1889static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1890{
1891 WARN_ON(!sp->unsync);
5e1b3ddb 1892 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1893 sp->unsync = 0;
1894 --kvm->stat.mmu_unsync;
1895}
1896
7775834a
XG
1897static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1898 struct list_head *invalid_list);
1899static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1900 struct list_head *invalid_list);
4731d4c7 1901
f34d251d
XG
1902/*
1903 * NOTE: we should pay more attention on the zapped-obsolete page
1904 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1905 * since it has been deleted from active_mmu_pages but still can be found
1906 * at hast list.
1907 *
f3414bc7 1908 * for_each_valid_sp() has skipped that kind of pages.
f34d251d 1909 */
f3414bc7 1910#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
1911 hlist_for_each_entry(_sp, \
1912 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
f3414bc7
DM
1913 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
1914 } else
1044b030
TY
1915
1916#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
1917 for_each_valid_sp(_kvm, _sp, _gfn) \
1918 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 1919
f918b443 1920/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
1921static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1922 struct list_head *invalid_list)
4731d4c7 1923{
5b7e0102 1924 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1925 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1926 return false;
4731d4c7
MT
1927 }
1928
1f50f1b3 1929 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
d98ba053 1930 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1931 return false;
4731d4c7
MT
1932 }
1933
1f50f1b3 1934 return true;
4731d4c7
MT
1935}
1936
35a70510
PB
1937static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1938 struct list_head *invalid_list,
1939 bool remote_flush, bool local_flush)
1d9dc7e0 1940{
35a70510
PB
1941 if (!list_empty(invalid_list)) {
1942 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1943 return;
1944 }
d98ba053 1945
35a70510
PB
1946 if (remote_flush)
1947 kvm_flush_remote_tlbs(vcpu->kvm);
1948 else if (local_flush)
1949 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
1950}
1951
e37fa785
XG
1952#ifdef CONFIG_KVM_MMU_AUDIT
1953#include "mmu_audit.c"
1954#else
1955static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1956static void mmu_audit_disable(void) { }
1957#endif
1958
46971a2f
XG
1959static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1960{
1961 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1962}
1963
1f50f1b3 1964static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1965 struct list_head *invalid_list)
1d9dc7e0 1966{
9a43c5d9
PB
1967 kvm_unlink_unsync_page(vcpu->kvm, sp);
1968 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
1969}
1970
9f1a122f 1971/* @gfn should be write-protected at the call site */
2a74003a
PB
1972static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1973 struct list_head *invalid_list)
9f1a122f 1974{
9f1a122f 1975 struct kvm_mmu_page *s;
2a74003a 1976 bool ret = false;
9f1a122f 1977
b67bfe0d 1978 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1979 if (!s->unsync)
9f1a122f
XG
1980 continue;
1981
1982 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 1983 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
1984 }
1985
2a74003a 1986 return ret;
9f1a122f
XG
1987}
1988
60c8aec6 1989struct mmu_page_path {
0a47cd85
PB
1990 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1991 unsigned int idx[PT64_ROOT_LEVEL];
4731d4c7
MT
1992};
1993
60c8aec6 1994#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 1995 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
1996 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1997 i = mmu_pages_next(&pvec, &parents, i))
1998
cded19f3
HE
1999static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2000 struct mmu_page_path *parents,
2001 int i)
60c8aec6
MT
2002{
2003 int n;
2004
2005 for (n = i+1; n < pvec->nr; n++) {
2006 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2007 unsigned idx = pvec->page[n].idx;
2008 int level = sp->role.level;
60c8aec6 2009
0a47cd85
PB
2010 parents->idx[level-1] = idx;
2011 if (level == PT_PAGE_TABLE_LEVEL)
2012 break;
60c8aec6 2013
0a47cd85 2014 parents->parent[level-2] = sp;
60c8aec6
MT
2015 }
2016
2017 return n;
2018}
2019
0a47cd85
PB
2020static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2021 struct mmu_page_path *parents)
2022{
2023 struct kvm_mmu_page *sp;
2024 int level;
2025
2026 if (pvec->nr == 0)
2027 return 0;
2028
e23d3fef
XG
2029 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2030
0a47cd85
PB
2031 sp = pvec->page[0].sp;
2032 level = sp->role.level;
2033 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2034
2035 parents->parent[level-2] = sp;
2036
2037 /* Also set up a sentinel. Further entries in pvec are all
2038 * children of sp, so this element is never overwritten.
2039 */
2040 parents->parent[level-1] = NULL;
2041 return mmu_pages_next(pvec, parents, 0);
2042}
2043
cded19f3 2044static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2045{
60c8aec6
MT
2046 struct kvm_mmu_page *sp;
2047 unsigned int level = 0;
2048
2049 do {
2050 unsigned int idx = parents->idx[level];
60c8aec6
MT
2051 sp = parents->parent[level];
2052 if (!sp)
2053 return;
2054
e23d3fef 2055 WARN_ON(idx == INVALID_INDEX);
fd951457 2056 clear_unsync_child_bit(sp, idx);
60c8aec6 2057 level++;
0a47cd85 2058 } while (!sp->unsync_children);
60c8aec6 2059}
4731d4c7 2060
60c8aec6
MT
2061static void mmu_sync_children(struct kvm_vcpu *vcpu,
2062 struct kvm_mmu_page *parent)
2063{
2064 int i;
2065 struct kvm_mmu_page *sp;
2066 struct mmu_page_path parents;
2067 struct kvm_mmu_pages pages;
d98ba053 2068 LIST_HEAD(invalid_list);
50c9e6f3 2069 bool flush = false;
60c8aec6 2070
60c8aec6 2071 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2072 bool protected = false;
b1a36821
MT
2073
2074 for_each_sp(pages, sp, parents, i)
54bf36aa 2075 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2076
50c9e6f3 2077 if (protected) {
b1a36821 2078 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2079 flush = false;
2080 }
b1a36821 2081
60c8aec6 2082 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2083 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2084 mmu_pages_clear_parents(&parents);
2085 }
50c9e6f3
PB
2086 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2087 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2088 cond_resched_lock(&vcpu->kvm->mmu_lock);
2089 flush = false;
2090 }
60c8aec6 2091 }
50c9e6f3
PB
2092
2093 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2094}
2095
a30f47cb
XG
2096static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2097{
e5691a81 2098 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2099}
2100
2101static void clear_sp_write_flooding_count(u64 *spte)
2102{
2103 struct kvm_mmu_page *sp = page_header(__pa(spte));
2104
2105 __clear_sp_write_flooding_count(sp);
2106}
2107
cea0f0e7
AK
2108static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2109 gfn_t gfn,
2110 gva_t gaddr,
2111 unsigned level,
f6e2c02b 2112 int direct,
bb11c6c9 2113 unsigned access)
cea0f0e7
AK
2114{
2115 union kvm_mmu_page_role role;
cea0f0e7 2116 unsigned quadrant;
9f1a122f 2117 struct kvm_mmu_page *sp;
9f1a122f 2118 bool need_sync = false;
2a74003a 2119 bool flush = false;
f3414bc7 2120 int collisions = 0;
2a74003a 2121 LIST_HEAD(invalid_list);
cea0f0e7 2122
a770f6f2 2123 role = vcpu->arch.mmu.base_role;
cea0f0e7 2124 role.level = level;
f6e2c02b 2125 role.direct = direct;
84b0c8c6 2126 if (role.direct)
5b7e0102 2127 role.cr4_pae = 0;
41074d07 2128 role.access = access;
c5a78f2b
JR
2129 if (!vcpu->arch.mmu.direct_map
2130 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2131 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2132 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2133 role.quadrant = quadrant;
2134 }
f3414bc7
DM
2135 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2136 if (sp->gfn != gfn) {
2137 collisions++;
2138 continue;
2139 }
2140
7ae680eb
XG
2141 if (!need_sync && sp->unsync)
2142 need_sync = true;
4731d4c7 2143
7ae680eb
XG
2144 if (sp->role.word != role.word)
2145 continue;
4731d4c7 2146
2a74003a
PB
2147 if (sp->unsync) {
2148 /* The page is good, but __kvm_sync_page might still end
2149 * up zapping it. If so, break in order to rebuild it.
2150 */
2151 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2152 break;
2153
2154 WARN_ON(!list_empty(&invalid_list));
2155 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2156 }
e02aa901 2157
98bba238 2158 if (sp->unsync_children)
a8eeb04a 2159 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2160
a30f47cb 2161 __clear_sp_write_flooding_count(sp);
7ae680eb 2162 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2163 goto out;
7ae680eb 2164 }
47005792 2165
dfc5aa00 2166 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2167
2168 sp = kvm_mmu_alloc_page(vcpu, direct);
2169
4db35314
AK
2170 sp->gfn = gfn;
2171 sp->role = role;
7ae680eb
XG
2172 hlist_add_head(&sp->hash_link,
2173 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2174 if (!direct) {
56ca57f9
XG
2175 /*
2176 * we should do write protection before syncing pages
2177 * otherwise the content of the synced shadow page may
2178 * be inconsistent with guest page table.
2179 */
2180 account_shadowed(vcpu->kvm, sp);
2181 if (level == PT_PAGE_TABLE_LEVEL &&
2182 rmap_write_protect(vcpu, gfn))
b1a36821 2183 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f 2184
9f1a122f 2185 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2186 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2187 }
5304b8d3 2188 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2189 clear_page(sp->spt);
f691fe1d 2190 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2191
2192 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2193out:
2194 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2195 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2196 return sp;
cea0f0e7
AK
2197}
2198
2d11123a
AK
2199static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2200 struct kvm_vcpu *vcpu, u64 addr)
2201{
2202 iterator->addr = addr;
2203 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2204 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2205
2206 if (iterator->level == PT64_ROOT_LEVEL &&
2207 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2208 !vcpu->arch.mmu.direct_map)
2209 --iterator->level;
2210
2d11123a
AK
2211 if (iterator->level == PT32E_ROOT_LEVEL) {
2212 iterator->shadow_addr
2213 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2214 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2215 --iterator->level;
2216 if (!iterator->shadow_addr)
2217 iterator->level = 0;
2218 }
2219}
2220
2221static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2222{
2223 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2224 return false;
4d88954d 2225
2d11123a
AK
2226 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2227 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2228 return true;
2229}
2230
c2a2ac2b
XG
2231static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2232 u64 spte)
2d11123a 2233{
c2a2ac2b 2234 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2235 iterator->level = 0;
2236 return;
2237 }
2238
c2a2ac2b 2239 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2240 --iterator->level;
2241}
2242
c2a2ac2b
XG
2243static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2244{
2245 return __shadow_walk_next(iterator, *iterator->sptep);
2246}
2247
98bba238
TY
2248static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2249 struct kvm_mmu_page *sp)
32ef26a3
AK
2250{
2251 u64 spte;
2252
ffb128c8 2253 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2254
ffb128c8 2255 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
0e3d0648 2256 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
24db2734 2257
1df9f2dc 2258 mmu_spte_set(sptep, spte);
98bba238
TY
2259
2260 mmu_page_add_parent_pte(vcpu, sp, sptep);
2261
2262 if (sp->unsync_children || sp->unsync)
2263 mark_unsync(sptep);
32ef26a3
AK
2264}
2265
a357bd22
AK
2266static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2267 unsigned direct_access)
2268{
2269 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2270 struct kvm_mmu_page *child;
2271
2272 /*
2273 * For the direct sp, if the guest pte's dirty bit
2274 * changed form clean to dirty, it will corrupt the
2275 * sp's access: allow writable in the read-only sp,
2276 * so we should update the spte at this point to get
2277 * a new sp with the correct access.
2278 */
2279 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2280 if (child->role.access == direct_access)
2281 return;
2282
bcdd9a93 2283 drop_parent_pte(child, sptep);
a357bd22
AK
2284 kvm_flush_remote_tlbs(vcpu->kvm);
2285 }
2286}
2287
505aef8f 2288static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2289 u64 *spte)
2290{
2291 u64 pte;
2292 struct kvm_mmu_page *child;
2293
2294 pte = *spte;
2295 if (is_shadow_present_pte(pte)) {
505aef8f 2296 if (is_last_spte(pte, sp->role.level)) {
c3707958 2297 drop_spte(kvm, spte);
505aef8f
XG
2298 if (is_large_pte(pte))
2299 --kvm->stat.lpages;
2300 } else {
38e3b2b2 2301 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2302 drop_parent_pte(child, spte);
38e3b2b2 2303 }
505aef8f
XG
2304 return true;
2305 }
2306
2307 if (is_mmio_spte(pte))
ce88decf 2308 mmu_spte_clear_no_track(spte);
c3707958 2309
505aef8f 2310 return false;
38e3b2b2
XG
2311}
2312
90cb0529 2313static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2314 struct kvm_mmu_page *sp)
a436036b 2315{
697fe2e2 2316 unsigned i;
697fe2e2 2317
38e3b2b2
XG
2318 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2319 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2320}
2321
31aa2b44 2322static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2323{
1e3f42f0
TY
2324 u64 *sptep;
2325 struct rmap_iterator iter;
a436036b 2326
018aabb5 2327 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2328 drop_parent_pte(sp, sptep);
31aa2b44
AK
2329}
2330
60c8aec6 2331static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2332 struct kvm_mmu_page *parent,
2333 struct list_head *invalid_list)
4731d4c7 2334{
60c8aec6
MT
2335 int i, zapped = 0;
2336 struct mmu_page_path parents;
2337 struct kvm_mmu_pages pages;
4731d4c7 2338
60c8aec6 2339 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2340 return 0;
60c8aec6 2341
60c8aec6
MT
2342 while (mmu_unsync_walk(parent, &pages)) {
2343 struct kvm_mmu_page *sp;
2344
2345 for_each_sp(pages, sp, parents, i) {
7775834a 2346 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2347 mmu_pages_clear_parents(&parents);
77662e00 2348 zapped++;
60c8aec6 2349 }
60c8aec6
MT
2350 }
2351
2352 return zapped;
4731d4c7
MT
2353}
2354
7775834a
XG
2355static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2356 struct list_head *invalid_list)
31aa2b44 2357{
4731d4c7 2358 int ret;
f691fe1d 2359
7775834a 2360 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2361 ++kvm->stat.mmu_shadow_zapped;
7775834a 2362 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2363 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2364 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2365
f6e2c02b 2366 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2367 unaccount_shadowed(kvm, sp);
5304b8d3 2368
4731d4c7
MT
2369 if (sp->unsync)
2370 kvm_unlink_unsync_page(kvm, sp);
4db35314 2371 if (!sp->root_count) {
54a4f023
GJ
2372 /* Count self */
2373 ret++;
7775834a 2374 list_move(&sp->link, invalid_list);
aa6bd187 2375 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2376 } else {
5b5c6a5a 2377 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2378
2379 /*
2380 * The obsolete pages can not be used on any vcpus.
2381 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2382 */
2383 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2384 kvm_reload_remote_mmus(kvm);
2e53d63a 2385 }
7775834a
XG
2386
2387 sp->role.invalid = 1;
4731d4c7 2388 return ret;
a436036b
AK
2389}
2390
7775834a
XG
2391static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2392 struct list_head *invalid_list)
2393{
945315b9 2394 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2395
2396 if (list_empty(invalid_list))
2397 return;
2398
c142786c 2399 /*
9753f529
LT
2400 * We need to make sure everyone sees our modifications to
2401 * the page tables and see changes to vcpu->mode here. The barrier
2402 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2403 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2404 *
2405 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2406 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2407 */
2408 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2409
945315b9 2410 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2411 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2412 kvm_mmu_free_page(sp);
945315b9 2413 }
7775834a
XG
2414}
2415
5da59607
TY
2416static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2417 struct list_head *invalid_list)
2418{
2419 struct kvm_mmu_page *sp;
2420
2421 if (list_empty(&kvm->arch.active_mmu_pages))
2422 return false;
2423
d74c0e6b
GT
2424 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2425 struct kvm_mmu_page, link);
5da59607
TY
2426 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2427
2428 return true;
2429}
2430
82ce2c96
IE
2431/*
2432 * Changing the number of mmu pages allocated to the vm
49d5ca26 2433 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2434 */
49d5ca26 2435void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2436{
d98ba053 2437 LIST_HEAD(invalid_list);
82ce2c96 2438
b34cb590
TY
2439 spin_lock(&kvm->mmu_lock);
2440
49d5ca26 2441 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2442 /* Need to free some mmu pages to achieve the goal. */
2443 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2444 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2445 break;
82ce2c96 2446
aa6bd187 2447 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2448 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2449 }
82ce2c96 2450
49d5ca26 2451 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2452
2453 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2454}
2455
1cb3f3ae 2456int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2457{
4db35314 2458 struct kvm_mmu_page *sp;
d98ba053 2459 LIST_HEAD(invalid_list);
a436036b
AK
2460 int r;
2461
9ad17b10 2462 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2463 r = 0;
1cb3f3ae 2464 spin_lock(&kvm->mmu_lock);
b67bfe0d 2465 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2466 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2467 sp->role.word);
2468 r = 1;
f41d335a 2469 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2470 }
d98ba053 2471 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2472 spin_unlock(&kvm->mmu_lock);
2473
a436036b 2474 return r;
cea0f0e7 2475}
1cb3f3ae 2476EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2477
5c520e90 2478static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2479{
2480 trace_kvm_mmu_unsync_page(sp);
2481 ++vcpu->kvm->stat.mmu_unsync;
2482 sp->unsync = 1;
2483
2484 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2485}
2486
3d0c27ad
XG
2487static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2488 bool can_unsync)
4731d4c7 2489{
5c520e90 2490 struct kvm_mmu_page *sp;
4731d4c7 2491
3d0c27ad
XG
2492 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2493 return true;
9cf5cf5a 2494
5c520e90 2495 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2496 if (!can_unsync)
3d0c27ad 2497 return true;
36a2e677 2498
5c520e90
XG
2499 if (sp->unsync)
2500 continue;
9cf5cf5a 2501
5c520e90
XG
2502 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2503 kvm_unsync_page(vcpu, sp);
4731d4c7 2504 }
3d0c27ad
XG
2505
2506 return false;
4731d4c7
MT
2507}
2508
ba049e93 2509static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2510{
2511 if (pfn_valid(pfn))
2512 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2513
2514 return true;
2515}
2516
d555c333 2517static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2518 unsigned pte_access, int level,
ba049e93 2519 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2520 bool can_unsync, bool host_writable)
1c4f1fd6 2521{
ffb128c8 2522 u64 spte = 0;
1e73f9dd 2523 int ret = 0;
64d4d521 2524
54bf36aa 2525 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2526 return 0;
2527
d95c5568
BD
2528 /*
2529 * For the EPT case, shadow_present_mask is 0 if hardware
2530 * supports exec-only page table entries. In that case,
2531 * ACC_USER_MASK and shadow_user_mask are used to represent
2532 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2533 */
ffb128c8 2534 spte |= shadow_present_mask;
947da538 2535 if (!speculative)
3201b5d9 2536 spte |= shadow_accessed_mask;
640d9b0d 2537
7b52345e
SY
2538 if (pte_access & ACC_EXEC_MASK)
2539 spte |= shadow_x_mask;
2540 else
2541 spte |= shadow_nx_mask;
49fde340 2542
1c4f1fd6 2543 if (pte_access & ACC_USER_MASK)
7b52345e 2544 spte |= shadow_user_mask;
49fde340 2545
852e3c19 2546 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2547 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2548 if (tdp_enabled)
4b12f0de 2549 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2550 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2551
9bdbba13 2552 if (host_writable)
1403283a 2553 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2554 else
2555 pte_access &= ~ACC_WRITE_MASK;
1403283a 2556
35149e21 2557 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2558
c2288505 2559 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2560
c2193463 2561 /*
7751babd
XG
2562 * Other vcpu creates new sp in the window between
2563 * mapping_level() and acquiring mmu-lock. We can
2564 * allow guest to retry the access, the mapping can
2565 * be fixed if guest refault.
c2193463 2566 */
852e3c19 2567 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2568 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2569 goto done;
38187c83 2570
49fde340 2571 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2572
ecc5589f
MT
2573 /*
2574 * Optimization: for pte sync, if spte was writable the hash
2575 * lookup is unnecessary (and expensive). Write protection
2576 * is responsibility of mmu_get_page / kvm_sync_page.
2577 * Same reasoning can be applied to dirty page accounting.
2578 */
8dae4445 2579 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2580 goto set_pte;
2581
4731d4c7 2582 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2583 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2584 __func__, gfn);
1e73f9dd 2585 ret = 1;
1c4f1fd6 2586 pte_access &= ~ACC_WRITE_MASK;
49fde340 2587 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2588 }
2589 }
2590
9b51a630 2591 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2592 kvm_vcpu_mark_page_dirty(vcpu, gfn);
9b51a630
KH
2593 spte |= shadow_dirty_mask;
2594 }
1c4f1fd6 2595
38187c83 2596set_pte:
6e7d0354 2597 if (mmu_spte_update(sptep, spte))
b330aa0c 2598 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2599done:
1e73f9dd
MT
2600 return ret;
2601}
2602
029499b4 2603static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
ba049e93 2604 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
029499b4 2605 bool speculative, bool host_writable)
1e73f9dd
MT
2606{
2607 int was_rmapped = 0;
53a27b39 2608 int rmap_count;
029499b4 2609 bool emulate = false;
1e73f9dd 2610
f7616203
XG
2611 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2612 *sptep, write_fault, gfn);
1e73f9dd 2613
afd28fe1 2614 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2615 /*
2616 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2617 * the parent of the now unreachable PTE.
2618 */
852e3c19
JR
2619 if (level > PT_PAGE_TABLE_LEVEL &&
2620 !is_large_pte(*sptep)) {
1e73f9dd 2621 struct kvm_mmu_page *child;
d555c333 2622 u64 pte = *sptep;
1e73f9dd
MT
2623
2624 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2625 drop_parent_pte(child, sptep);
3be2264b 2626 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2627 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2628 pgprintk("hfn old %llx new %llx\n",
d555c333 2629 spte_to_pfn(*sptep), pfn);
c3707958 2630 drop_spte(vcpu->kvm, sptep);
91546356 2631 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2632 } else
2633 was_rmapped = 1;
1e73f9dd 2634 }
852e3c19 2635
c2288505
XG
2636 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2637 true, host_writable)) {
1e73f9dd 2638 if (write_fault)
029499b4 2639 emulate = true;
77c3913b 2640 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2641 }
1e73f9dd 2642
029499b4
TY
2643 if (unlikely(is_mmio_spte(*sptep)))
2644 emulate = true;
ce88decf 2645
d555c333 2646 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2647 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2648 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2649 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2650 *sptep, sptep);
d555c333 2651 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2652 ++vcpu->kvm->stat.lpages;
2653
ffb61bb3 2654 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2655 if (!was_rmapped) {
2656 rmap_count = rmap_add(vcpu, sptep, gfn);
2657 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2658 rmap_recycle(vcpu, sptep, gfn);
2659 }
1c4f1fd6 2660 }
cb9aaa30 2661
f3ac1a4b 2662 kvm_release_pfn_clean(pfn);
029499b4
TY
2663
2664 return emulate;
1c4f1fd6
AK
2665}
2666
ba049e93 2667static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2668 bool no_dirty_log)
2669{
2670 struct kvm_memory_slot *slot;
957ed9ef 2671
5d163b1c 2672 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2673 if (!slot)
6c8ee57b 2674 return KVM_PFN_ERR_FAULT;
957ed9ef 2675
037d92dc 2676 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2677}
2678
2679static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2680 struct kvm_mmu_page *sp,
2681 u64 *start, u64 *end)
2682{
2683 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2684 struct kvm_memory_slot *slot;
957ed9ef
XG
2685 unsigned access = sp->role.access;
2686 int i, ret;
2687 gfn_t gfn;
2688
2689 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2690 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2691 if (!slot)
957ed9ef
XG
2692 return -1;
2693
d9ef13c2 2694 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2695 if (ret <= 0)
2696 return -1;
2697
2698 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
2699 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2700 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
2701
2702 return 0;
2703}
2704
2705static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2706 struct kvm_mmu_page *sp, u64 *sptep)
2707{
2708 u64 *spte, *start = NULL;
2709 int i;
2710
2711 WARN_ON(!sp->role.direct);
2712
2713 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2714 spte = sp->spt + i;
2715
2716 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2717 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2718 if (!start)
2719 continue;
2720 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2721 break;
2722 start = NULL;
2723 } else if (!start)
2724 start = spte;
2725 }
2726}
2727
2728static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2729{
2730 struct kvm_mmu_page *sp;
2731
2732 /*
2733 * Since it's no accessed bit on EPT, it's no way to
2734 * distinguish between actually accessed translations
2735 * and prefetched, so disable pte prefetch if EPT is
2736 * enabled.
2737 */
2738 if (!shadow_accessed_mask)
2739 return;
2740
2741 sp = page_header(__pa(sptep));
2742 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2743 return;
2744
2745 __direct_pte_prefetch(vcpu, sp, sptep);
2746}
2747
7ee0e5b2 2748static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 2749 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 2750{
9f652d21 2751 struct kvm_shadow_walk_iterator iterator;
140754bc 2752 struct kvm_mmu_page *sp;
b90a0e6c 2753 int emulate = 0;
140754bc 2754 gfn_t pseudo_gfn;
6aa8b732 2755
989c6b34
MT
2756 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2757 return 0;
2758
9f652d21 2759 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2760 if (iterator.level == level) {
029499b4
TY
2761 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2762 write, level, gfn, pfn, prefault,
2763 map_writable);
957ed9ef 2764 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2765 ++vcpu->stat.pf_fixed;
2766 break;
6aa8b732
AK
2767 }
2768
404381c5 2769 drop_large_spte(vcpu, iterator.sptep);
c3707958 2770 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2771 u64 base_addr = iterator.addr;
2772
2773 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2774 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 2775 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 2776 iterator.level - 1, 1, ACC_ALL);
140754bc 2777
98bba238 2778 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
2779 }
2780 }
b90a0e6c 2781 return emulate;
6aa8b732
AK
2782}
2783
77db5cbd 2784static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2785{
77db5cbd
HY
2786 siginfo_t info;
2787
2788 info.si_signo = SIGBUS;
2789 info.si_errno = 0;
2790 info.si_code = BUS_MCEERR_AR;
2791 info.si_addr = (void __user *)address;
2792 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2793
77db5cbd 2794 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2795}
2796
ba049e93 2797static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2798{
4d8b81ab
XG
2799 /*
2800 * Do not cache the mmio info caused by writing the readonly gfn
2801 * into the spte otherwise read access on readonly gfn also can
2802 * caused mmio page fault and treat it as mmio access.
2803 * Return 1 to tell kvm to emulate it.
2804 */
2805 if (pfn == KVM_PFN_ERR_RO_FAULT)
2806 return 1;
2807
e6c1502b 2808 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2809 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
bf998156 2810 return 0;
d7c55201 2811 }
edba23e5 2812
d7c55201 2813 return -EFAULT;
bf998156
HY
2814}
2815
936a5fe6 2816static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
2817 gfn_t *gfnp, kvm_pfn_t *pfnp,
2818 int *levelp)
936a5fe6 2819{
ba049e93 2820 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
2821 gfn_t gfn = *gfnp;
2822 int level = *levelp;
2823
2824 /*
2825 * Check if it's a transparent hugepage. If this would be an
2826 * hugetlbfs page, level wouldn't be set to
2827 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2828 * here.
2829 */
bf4bea8e 2830 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6 2831 level == PT_PAGE_TABLE_LEVEL &&
127393fb 2832 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 2833 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
2834 unsigned long mask;
2835 /*
2836 * mmu_notifier_retry was successful and we hold the
2837 * mmu_lock here, so the pmd can't become splitting
2838 * from under us, and in turn
2839 * __split_huge_page_refcount() can't run from under
2840 * us and we can safely transfer the refcount from
2841 * PG_tail to PG_head as we switch the pfn to tail to
2842 * head.
2843 */
2844 *levelp = level = PT_DIRECTORY_LEVEL;
2845 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2846 VM_BUG_ON((gfn & mask) != (pfn & mask));
2847 if (pfn & mask) {
2848 gfn &= ~mask;
2849 *gfnp = gfn;
2850 kvm_release_pfn_clean(pfn);
2851 pfn &= ~mask;
c3586667 2852 kvm_get_pfn(pfn);
936a5fe6
AA
2853 *pfnp = pfn;
2854 }
2855 }
2856}
2857
d7c55201 2858static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 2859 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 2860{
d7c55201 2861 /* The pfn is invalid, report the error! */
81c52c56 2862 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2863 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2864 return true;
d7c55201
XG
2865 }
2866
ce88decf 2867 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2868 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 2869
798e88b3 2870 return false;
d7c55201
XG
2871}
2872
e5552fd2 2873static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2874{
1c118b82
XG
2875 /*
2876 * Do not fix the mmio spte with invalid generation number which
2877 * need to be updated by slow page fault path.
2878 */
2879 if (unlikely(error_code & PFERR_RSVD_MASK))
2880 return false;
2881
c7ba5b48
XG
2882 /*
2883 * #PF can be fast only if the shadow page table is present and it
2884 * is caused by write-protect, that means we just need change the
2885 * W bit of the spte which can be done out of mmu-lock.
2886 */
2887 if (!(error_code & PFERR_PRESENT_MASK) ||
2888 !(error_code & PFERR_WRITE_MASK))
2889 return false;
2890
2891 return true;
2892}
2893
97dceba2
JS
2894/*
2895 * Returns true if the SPTE was fixed successfully. Otherwise,
2896 * someone else modified the SPTE from its original value.
2897 */
c7ba5b48 2898static bool
92a476cb
XG
2899fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2900 u64 *sptep, u64 spte)
c7ba5b48 2901{
c7ba5b48
XG
2902 gfn_t gfn;
2903
2904 WARN_ON(!sp->role.direct);
2905
2906 /*
2907 * The gfn of direct spte is stable since it is calculated
2908 * by sp->gfn.
2909 */
2910 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2911
9b51a630
KH
2912 /*
2913 * Theoretically we could also set dirty bit (and flush TLB) here in
2914 * order to eliminate unnecessary PML logging. See comments in
2915 * set_spte. But fast_page_fault is very unlikely to happen with PML
2916 * enabled, so we do not do this. This might result in the same GPA
2917 * to be logged in PML buffer again when the write really happens, and
2918 * eventually to be called by mark_page_dirty twice. But it's also no
2919 * harm. This also avoids the TLB flush needed after setting dirty bit
2920 * so non-PML cases won't be impacted.
2921 *
2922 * Compare with set_spte where instead shadow_dirty_mask is set.
2923 */
97dceba2
JS
2924 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) != spte)
2925 return false;
2926
2927 kvm_vcpu_mark_page_dirty(vcpu, gfn);
c7ba5b48
XG
2928
2929 return true;
2930}
2931
2932/*
2933 * Return value:
2934 * - true: let the vcpu to access on the same address again.
2935 * - false: let the real page fault path to fix it.
2936 */
2937static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2938 u32 error_code)
2939{
2940 struct kvm_shadow_walk_iterator iterator;
92a476cb 2941 struct kvm_mmu_page *sp;
97dceba2 2942 bool fault_handled = false;
c7ba5b48 2943 u64 spte = 0ull;
97dceba2 2944 uint retry_count = 0;
c7ba5b48 2945
37f6a4e2
MT
2946 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2947 return false;
2948
e5552fd2 2949 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2950 return false;
2951
2952 walk_shadow_page_lockless_begin(vcpu);
2953 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2954 if (!is_shadow_present_pte(spte) || iterator.level < level)
2955 break;
2956
97dceba2
JS
2957 do {
2958 /*
2959 * If the mapping has been changed, let the vcpu fault on the
2960 * same address again.
2961 */
2962 if (!is_shadow_present_pte(spte)) {
2963 fault_handled = true;
2964 break;
2965 }
c7ba5b48 2966
97dceba2
JS
2967 sp = page_header(__pa(iterator.sptep));
2968 if (!is_last_spte(spte, sp->role.level))
2969 break;
c7ba5b48 2970
97dceba2
JS
2971 /*
2972 * Check if it is a spurious fault caused by TLB lazily flushed.
2973 *
2974 * Need not check the access of upper level table entries since
2975 * they are always ACC_ALL.
2976 */
2977 if (is_writable_pte(spte)) {
2978 fault_handled = true;
2979 break;
2980 }
c7ba5b48 2981
97dceba2
JS
2982 /*
2983 * Currently, to simplify the code, only the spte
2984 * write-protected by dirty-log can be fast fixed.
2985 */
2986 if (!spte_can_locklessly_be_made_writable(spte))
2987 break;
c7ba5b48 2988
97dceba2
JS
2989 /*
2990 * Do not fix write-permission on the large spte since we only
2991 * dirty the first page into the dirty-bitmap in
2992 * fast_pf_fix_direct_spte() that means other pages are missed
2993 * if its slot is dirty-logged.
2994 *
2995 * Instead, we let the slow page fault path create a normal spte
2996 * to fix the access.
2997 *
2998 * See the comments in kvm_arch_commit_memory_region().
2999 */
3000 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3001 break;
3002
3003 /*
3004 * Currently, fast page fault only works for direct mapping
3005 * since the gfn is not stable for indirect shadow page. See
3006 * Documentation/virtual/kvm/locking.txt to get more detail.
3007 */
3008 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3009 iterator.sptep, spte);
3010 if (fault_handled)
3011 break;
3012
3013 if (++retry_count > 4) {
3014 printk_once(KERN_WARNING
3015 "kvm: Fast #PF retrying more than 4 times.\n");
3016 break;
3017 }
3018
3019 spte = mmu_spte_get_lockless(iterator.sptep);
3020
3021 } while (true);
c126d94f 3022
a72faf25 3023 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
97dceba2 3024 spte, fault_handled);
c7ba5b48
XG
3025 walk_shadow_page_lockless_end(vcpu);
3026
97dceba2 3027 return fault_handled;
c7ba5b48
XG
3028}
3029
78b2c54a 3030static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3031 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
450e0b41 3032static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3033
c7ba5b48
XG
3034static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3035 gfn_t gfn, bool prefault)
10589a46
MT
3036{
3037 int r;
852e3c19 3038 int level;
fd136902 3039 bool force_pt_level = false;
ba049e93 3040 kvm_pfn_t pfn;
e930bffe 3041 unsigned long mmu_seq;
c7ba5b48 3042 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3043
fd136902 3044 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3045 if (likely(!force_pt_level)) {
936a5fe6
AA
3046 /*
3047 * This path builds a PAE pagetable - so we can map
3048 * 2mb pages at maximum. Therefore check if the level
3049 * is larger than that.
3050 */
3051 if (level > PT_DIRECTORY_LEVEL)
3052 level = PT_DIRECTORY_LEVEL;
852e3c19 3053
936a5fe6 3054 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3055 }
05da4558 3056
c7ba5b48
XG
3057 if (fast_page_fault(vcpu, v, level, error_code))
3058 return 0;
3059
e930bffe 3060 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3061 smp_rmb();
060c2abe 3062
78b2c54a 3063 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3064 return 0;
aaee2c94 3065
d7c55201
XG
3066 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3067 return r;
d196e343 3068
aaee2c94 3069 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3070 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3071 goto out_unlock;
450e0b41 3072 make_mmu_pages_available(vcpu);
936a5fe6
AA
3073 if (likely(!force_pt_level))
3074 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3075 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3076 spin_unlock(&vcpu->kvm->mmu_lock);
3077
10589a46 3078 return r;
e930bffe
AA
3079
3080out_unlock:
3081 spin_unlock(&vcpu->kvm->mmu_lock);
3082 kvm_release_pfn_clean(pfn);
3083 return 0;
10589a46
MT
3084}
3085
3086
17ac10ad
AK
3087static void mmu_free_roots(struct kvm_vcpu *vcpu)
3088{
3089 int i;
4db35314 3090 struct kvm_mmu_page *sp;
d98ba053 3091 LIST_HEAD(invalid_list);
17ac10ad 3092
ad312c7c 3093 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3094 return;
35af577a 3095
81407ca5
JR
3096 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3097 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3098 vcpu->arch.mmu.direct_map)) {
ad312c7c 3099 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3100
35af577a 3101 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3102 sp = page_header(root);
3103 --sp->root_count;
d98ba053
XG
3104 if (!sp->root_count && sp->role.invalid) {
3105 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3106 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3107 }
aaee2c94 3108 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3109 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3110 return;
3111 }
35af577a
GN
3112
3113 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3114 for (i = 0; i < 4; ++i) {
ad312c7c 3115 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3116
417726a3 3117 if (root) {
417726a3 3118 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3119 sp = page_header(root);
3120 --sp->root_count;
2e53d63a 3121 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3122 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3123 &invalid_list);
417726a3 3124 }
ad312c7c 3125 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3126 }
d98ba053 3127 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3128 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3129 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3130}
3131
8986ecc0
MT
3132static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3133{
3134 int ret = 0;
3135
3136 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3137 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3138 ret = 1;
3139 }
3140
3141 return ret;
3142}
3143
651dd37a
JR
3144static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3145{
3146 struct kvm_mmu_page *sp;
7ebaf15e 3147 unsigned i;
651dd37a
JR
3148
3149 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3150 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3151 make_mmu_pages_available(vcpu);
bb11c6c9 3152 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3153 ++sp->root_count;
3154 spin_unlock(&vcpu->kvm->mmu_lock);
3155 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3156 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3157 for (i = 0; i < 4; ++i) {
3158 hpa_t root = vcpu->arch.mmu.pae_root[i];
3159
fa4a2c08 3160 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3161 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3162 make_mmu_pages_available(vcpu);
649497d1 3163 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3164 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3165 root = __pa(sp->spt);
3166 ++sp->root_count;
3167 spin_unlock(&vcpu->kvm->mmu_lock);
3168 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3169 }
6292757f 3170 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3171 } else
3172 BUG();
3173
3174 return 0;
3175}
3176
3177static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3178{
4db35314 3179 struct kvm_mmu_page *sp;
81407ca5
JR
3180 u64 pdptr, pm_mask;
3181 gfn_t root_gfn;
3182 int i;
3bb65a22 3183
5777ed34 3184 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3185
651dd37a
JR
3186 if (mmu_check_root(vcpu, root_gfn))
3187 return 1;
3188
3189 /*
3190 * Do we shadow a long mode page table? If so we need to
3191 * write-protect the guests page table root.
3192 */
3193 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3194 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3195
fa4a2c08 3196 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3197
8facbbff 3198 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3199 make_mmu_pages_available(vcpu);
651dd37a 3200 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
bb11c6c9 3201 0, ACC_ALL);
4db35314
AK
3202 root = __pa(sp->spt);
3203 ++sp->root_count;
8facbbff 3204 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3205 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3206 return 0;
17ac10ad 3207 }
f87f9288 3208
651dd37a
JR
3209 /*
3210 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3211 * or a PAE 3-level page table. In either case we need to be aware that
3212 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3213 */
81407ca5
JR
3214 pm_mask = PT_PRESENT_MASK;
3215 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3216 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3217
17ac10ad 3218 for (i = 0; i < 4; ++i) {
ad312c7c 3219 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3220
fa4a2c08 3221 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3222 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3223 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
812f30b2 3224 if (!(pdptr & PT_PRESENT_MASK)) {
ad312c7c 3225 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3226 continue;
3227 }
6de4f3ad 3228 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3229 if (mmu_check_root(vcpu, root_gfn))
3230 return 1;
5a7388c2 3231 }
8facbbff 3232 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3233 make_mmu_pages_available(vcpu);
bb11c6c9
TY
3234 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3235 0, ACC_ALL);
4db35314
AK
3236 root = __pa(sp->spt);
3237 ++sp->root_count;
8facbbff
AK
3238 spin_unlock(&vcpu->kvm->mmu_lock);
3239
81407ca5 3240 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3241 }
6292757f 3242 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3243
3244 /*
3245 * If we shadow a 32 bit page table with a long mode page
3246 * table we enter this path.
3247 */
3248 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3249 if (vcpu->arch.mmu.lm_root == NULL) {
3250 /*
3251 * The additional page necessary for this is only
3252 * allocated on demand.
3253 */
3254
3255 u64 *lm_root;
3256
3257 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3258 if (lm_root == NULL)
3259 return 1;
3260
3261 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3262
3263 vcpu->arch.mmu.lm_root = lm_root;
3264 }
3265
3266 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3267 }
3268
8986ecc0 3269 return 0;
17ac10ad
AK
3270}
3271
651dd37a
JR
3272static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3273{
3274 if (vcpu->arch.mmu.direct_map)
3275 return mmu_alloc_direct_roots(vcpu);
3276 else
3277 return mmu_alloc_shadow_roots(vcpu);
3278}
3279
0ba73cda
MT
3280static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3281{
3282 int i;
3283 struct kvm_mmu_page *sp;
3284
81407ca5
JR
3285 if (vcpu->arch.mmu.direct_map)
3286 return;
3287
0ba73cda
MT
3288 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3289 return;
6903074c 3290
56f17dd3 3291 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3292 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3293 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3294 hpa_t root = vcpu->arch.mmu.root_hpa;
3295 sp = page_header(root);
3296 mmu_sync_children(vcpu, sp);
0375f7fa 3297 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3298 return;
3299 }
3300 for (i = 0; i < 4; ++i) {
3301 hpa_t root = vcpu->arch.mmu.pae_root[i];
3302
8986ecc0 3303 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3304 root &= PT64_BASE_ADDR_MASK;
3305 sp = page_header(root);
3306 mmu_sync_children(vcpu, sp);
3307 }
3308 }
0375f7fa 3309 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3310}
3311
3312void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3313{
3314 spin_lock(&vcpu->kvm->mmu_lock);
3315 mmu_sync_roots(vcpu);
6cffe8ca 3316 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3317}
bfd0a56b 3318EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3319
1871c602 3320static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3321 u32 access, struct x86_exception *exception)
6aa8b732 3322{
ab9ae313
AK
3323 if (exception)
3324 exception->error_code = 0;
6aa8b732
AK
3325 return vaddr;
3326}
3327
6539e738 3328static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3329 u32 access,
3330 struct x86_exception *exception)
6539e738 3331{
ab9ae313
AK
3332 if (exception)
3333 exception->error_code = 0;
54987b7a 3334 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3335}
3336
d625b155
XG
3337static bool
3338__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3339{
3340 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3341
3342 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3343 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3344}
3345
3346static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3347{
3348 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3349}
3350
3351static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3352{
3353 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3354}
3355
ded58749 3356static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3357{
3358 if (direct)
3359 return vcpu_match_mmio_gpa(vcpu, addr);
3360
3361 return vcpu_match_mmio_gva(vcpu, addr);
3362}
3363
47ab8751
XG
3364/* return true if reserved bit is detected on spte. */
3365static bool
3366walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3367{
3368 struct kvm_shadow_walk_iterator iterator;
47ab8751
XG
3369 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3370 int root, leaf;
3371 bool reserved = false;
ce88decf 3372
37f6a4e2 3373 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3374 goto exit;
37f6a4e2 3375
ce88decf 3376 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3377
29ecd660
PB
3378 for (shadow_walk_init(&iterator, vcpu, addr),
3379 leaf = root = iterator.level;
47ab8751
XG
3380 shadow_walk_okay(&iterator);
3381 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3382 spte = mmu_spte_get_lockless(iterator.sptep);
3383
3384 sptes[leaf - 1] = spte;
29ecd660 3385 leaf--;
47ab8751 3386
ce88decf
XG
3387 if (!is_shadow_present_pte(spte))
3388 break;
47ab8751
XG
3389
3390 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
58c95070 3391 iterator.level);
47ab8751
XG
3392 }
3393
ce88decf
XG
3394 walk_shadow_page_lockless_end(vcpu);
3395
47ab8751
XG
3396 if (reserved) {
3397 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3398 __func__, addr);
29ecd660 3399 while (root > leaf) {
47ab8751
XG
3400 pr_err("------ spte 0x%llx level %d.\n",
3401 sptes[root - 1], root);
3402 root--;
3403 }
3404 }
3405exit:
3406 *sptep = spte;
3407 return reserved;
ce88decf
XG
3408}
3409
450869d6 3410int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3411{
3412 u64 spte;
47ab8751 3413 bool reserved;
ce88decf 3414
ded58749 3415 if (mmio_info_in_cache(vcpu, addr, direct))
b37fbea6 3416 return RET_MMIO_PF_EMULATE;
ce88decf 3417
47ab8751 3418 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3419 if (WARN_ON(reserved))
47ab8751 3420 return RET_MMIO_PF_BUG;
ce88decf
XG
3421
3422 if (is_mmio_spte(spte)) {
3423 gfn_t gfn = get_mmio_spte_gfn(spte);
3424 unsigned access = get_mmio_spte_access(spte);
3425
54bf36aa 3426 if (!check_mmio_spte(vcpu, spte))
f8f55942
XG
3427 return RET_MMIO_PF_INVALID;
3428
ce88decf
XG
3429 if (direct)
3430 addr = 0;
4f022648
XG
3431
3432 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3433 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3434 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3435 }
3436
ce88decf
XG
3437 /*
3438 * If the page table is zapped by other cpus, let CPU fault again on
3439 * the address.
3440 */
b37fbea6 3441 return RET_MMIO_PF_RETRY;
ce88decf 3442}
450869d6 3443EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
ce88decf 3444
3d0c27ad
XG
3445static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3446 u32 error_code, gfn_t gfn)
3447{
3448 if (unlikely(error_code & PFERR_RSVD_MASK))
3449 return false;
3450
3451 if (!(error_code & PFERR_PRESENT_MASK) ||
3452 !(error_code & PFERR_WRITE_MASK))
3453 return false;
3454
3455 /*
3456 * guest is writing the page which is write tracked which can
3457 * not be fixed by page fault handler.
3458 */
3459 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3460 return true;
3461
3462 return false;
3463}
3464
e5691a81
XG
3465static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3466{
3467 struct kvm_shadow_walk_iterator iterator;
3468 u64 spte;
3469
3470 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3471 return;
3472
3473 walk_shadow_page_lockless_begin(vcpu);
3474 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3475 clear_sp_write_flooding_count(iterator.sptep);
3476 if (!is_shadow_present_pte(spte))
3477 break;
3478 }
3479 walk_shadow_page_lockless_end(vcpu);
3480}
3481
6aa8b732 3482static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3483 u32 error_code, bool prefault)
6aa8b732 3484{
3d0c27ad 3485 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3486 int r;
6aa8b732 3487
b8688d51 3488 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3489
3d0c27ad
XG
3490 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3491 return 1;
ce88decf 3492
e2dec939
AK
3493 r = mmu_topup_memory_caches(vcpu);
3494 if (r)
3495 return r;
714b93da 3496
fa4a2c08 3497 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3498
6aa8b732 3499
e833240f 3500 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3501 error_code, gfn, prefault);
6aa8b732
AK
3502}
3503
7e1fbeac 3504static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3505{
3506 struct kvm_arch_async_pf arch;
fb67e14f 3507
7c90705b 3508 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3509 arch.gfn = gfn;
c4806acd 3510 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3511 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3512
54bf36aa 3513 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3514}
3515
3516static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3517{
35754c98 3518 if (unlikely(!lapic_in_kernel(vcpu) ||
af585b92
GN
3519 kvm_event_needs_reinjection(vcpu)))
3520 return false;
3521
3522 return kvm_x86_ops->interrupt_allowed(vcpu);
3523}
3524
78b2c54a 3525static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3526 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 3527{
3520469d 3528 struct kvm_memory_slot *slot;
af585b92
GN
3529 bool async;
3530
54bf36aa 3531 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3532 async = false;
3533 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3534 if (!async)
3535 return false; /* *pfn has correct page already */
3536
78b2c54a 3537 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3538 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3539 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3540 trace_kvm_async_pf_doublefault(gva, gfn);
3541 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3542 return true;
3543 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3544 return true;
3545 }
3546
3520469d 3547 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3548 return false;
3549}
3550
6a39bbc5
XG
3551static bool
3552check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3553{
3554 int page_num = KVM_PAGES_PER_HPAGE(level);
3555
3556 gfn &= ~(page_num - 1);
3557
3558 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3559}
3560
56028d08 3561static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3562 bool prefault)
fb72d167 3563{
ba049e93 3564 kvm_pfn_t pfn;
fb72d167 3565 int r;
852e3c19 3566 int level;
cd1872f0 3567 bool force_pt_level;
05da4558 3568 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3569 unsigned long mmu_seq;
612819c3
MT
3570 int write = error_code & PFERR_WRITE_MASK;
3571 bool map_writable;
fb72d167 3572
fa4a2c08 3573 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3574
3d0c27ad
XG
3575 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3576 return 1;
ce88decf 3577
fb72d167
JR
3578 r = mmu_topup_memory_caches(vcpu);
3579 if (r)
3580 return r;
3581
fd136902
TY
3582 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3583 PT_DIRECTORY_LEVEL);
3584 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3585 if (likely(!force_pt_level)) {
6a39bbc5
XG
3586 if (level > PT_DIRECTORY_LEVEL &&
3587 !check_hugepage_cache_consistency(vcpu, gfn, level))
3588 level = PT_DIRECTORY_LEVEL;
936a5fe6 3589 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3590 }
852e3c19 3591
c7ba5b48
XG
3592 if (fast_page_fault(vcpu, gpa, level, error_code))
3593 return 0;
3594
e930bffe 3595 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3596 smp_rmb();
af585b92 3597
78b2c54a 3598 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3599 return 0;
3600
d7c55201
XG
3601 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3602 return r;
3603
fb72d167 3604 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3605 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3606 goto out_unlock;
450e0b41 3607 make_mmu_pages_available(vcpu);
936a5fe6
AA
3608 if (likely(!force_pt_level))
3609 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3610 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 3611 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3612
3613 return r;
e930bffe
AA
3614
3615out_unlock:
3616 spin_unlock(&vcpu->kvm->mmu_lock);
3617 kvm_release_pfn_clean(pfn);
3618 return 0;
fb72d167
JR
3619}
3620
8a3c1a33
PB
3621static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3622 struct kvm_mmu *context)
6aa8b732 3623{
6aa8b732 3624 context->page_fault = nonpaging_page_fault;
6aa8b732 3625 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3626 context->sync_page = nonpaging_sync_page;
a7052897 3627 context->invlpg = nonpaging_invlpg;
0f53b5b1 3628 context->update_pte = nonpaging_update_pte;
cea0f0e7 3629 context->root_level = 0;
6aa8b732 3630 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3631 context->root_hpa = INVALID_PAGE;
c5a78f2b 3632 context->direct_map = true;
2d48a985 3633 context->nx = false;
6aa8b732
AK
3634}
3635
d8d173da 3636void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3637{
cea0f0e7 3638 mmu_free_roots(vcpu);
6aa8b732
AK
3639}
3640
5777ed34
JR
3641static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3642{
9f8fe504 3643 return kvm_read_cr3(vcpu);
5777ed34
JR
3644}
3645
6389ee94
AK
3646static void inject_page_fault(struct kvm_vcpu *vcpu,
3647 struct x86_exception *fault)
6aa8b732 3648{
6389ee94 3649 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3650}
3651
54bf36aa 3652static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3653 unsigned access, int *nr_present)
ce88decf
XG
3654{
3655 if (unlikely(is_mmio_spte(*sptep))) {
3656 if (gfn != get_mmio_spte_gfn(*sptep)) {
3657 mmu_spte_clear_no_track(sptep);
3658 return true;
3659 }
3660
3661 (*nr_present)++;
54bf36aa 3662 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3663 return true;
3664 }
3665
3666 return false;
3667}
3668
6bb69c9b
PB
3669static inline bool is_last_gpte(struct kvm_mmu *mmu,
3670 unsigned level, unsigned gpte)
6fd01b71 3671{
6bb69c9b
PB
3672 /*
3673 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3674 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3675 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3676 */
3677 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
6fd01b71 3678
6bb69c9b
PB
3679 /*
3680 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3681 * If it is clear, there are no large pages at this level, so clear
3682 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3683 */
3684 gpte &= level - mmu->last_nonleaf_level;
3685
3686 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
3687}
3688
37406aaa
NHE
3689#define PTTYPE_EPT 18 /* arbitrary */
3690#define PTTYPE PTTYPE_EPT
3691#include "paging_tmpl.h"
3692#undef PTTYPE
3693
6aa8b732
AK
3694#define PTTYPE 64
3695#include "paging_tmpl.h"
3696#undef PTTYPE
3697
3698#define PTTYPE 32
3699#include "paging_tmpl.h"
3700#undef PTTYPE
3701
6dc98b86
XG
3702static void
3703__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3704 struct rsvd_bits_validate *rsvd_check,
3705 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3706 bool pse, bool amd)
82725b20 3707{
82725b20 3708 u64 exb_bit_rsvd = 0;
5f7dde7b 3709 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3710 u64 nonleaf_bit8_rsvd = 0;
82725b20 3711
a0a64f50 3712 rsvd_check->bad_mt_xwr = 0;
25d92081 3713
6dc98b86 3714 if (!nx)
82725b20 3715 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3716 if (!gbpages)
5f7dde7b 3717 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3718
3719 /*
3720 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3721 * leaf entries) on AMD CPUs only.
3722 */
6fec2144 3723 if (amd)
a0c0feb5
PB
3724 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3725
6dc98b86 3726 switch (level) {
82725b20
DE
3727 case PT32_ROOT_LEVEL:
3728 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3729 rsvd_check->rsvd_bits_mask[0][1] = 0;
3730 rsvd_check->rsvd_bits_mask[0][0] = 0;
3731 rsvd_check->rsvd_bits_mask[1][0] =
3732 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 3733
6dc98b86 3734 if (!pse) {
a0a64f50 3735 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
3736 break;
3737 }
3738
82725b20
DE
3739 if (is_cpuid_PSE36())
3740 /* 36bits PSE 4MB page */
a0a64f50 3741 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
3742 else
3743 /* 32 bits PSE 4MB page */
a0a64f50 3744 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3745 break;
3746 case PT32E_ROOT_LEVEL:
a0a64f50 3747 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 3748 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3749 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 3750 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3751 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 3752 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 3753 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 3754 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
3755 rsvd_bits(maxphyaddr, 62) |
3756 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3757 rsvd_check->rsvd_bits_mask[1][0] =
3758 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3759 break;
3760 case PT64_ROOT_LEVEL:
a0a64f50
XG
3761 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3762 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 3763 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3764 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3765 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 3766 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3767 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3768 rsvd_bits(maxphyaddr, 51);
3769 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3770 rsvd_bits(maxphyaddr, 51);
3771 rsvd_check->rsvd_bits_mask[1][3] =
3772 rsvd_check->rsvd_bits_mask[0][3];
3773 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3774 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3775 rsvd_bits(13, 29);
a0a64f50 3776 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3777 rsvd_bits(maxphyaddr, 51) |
3778 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3779 rsvd_check->rsvd_bits_mask[1][0] =
3780 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3781 break;
3782 }
3783}
3784
6dc98b86
XG
3785static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3786 struct kvm_mmu *context)
3787{
3788 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3789 cpuid_maxphyaddr(vcpu), context->root_level,
3790 context->nx, guest_cpuid_has_gbpages(vcpu),
6fec2144 3791 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
3792}
3793
81b8eebb
XG
3794static void
3795__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3796 int maxphyaddr, bool execonly)
25d92081 3797{
951f9fd7 3798 u64 bad_mt_xwr;
25d92081 3799
a0a64f50 3800 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 3801 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 3802 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 3803 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3804 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 3805 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3806 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
3807
3808 /* large page */
a0a64f50
XG
3809 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3810 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 3811 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 3812 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 3813 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 3814 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 3815
951f9fd7
PB
3816 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3817 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3818 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3819 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3820 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3821 if (!execonly) {
3822 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3823 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 3824 }
951f9fd7 3825 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
3826}
3827
81b8eebb
XG
3828static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3829 struct kvm_mmu *context, bool execonly)
3830{
3831 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3832 cpuid_maxphyaddr(vcpu), execonly);
3833}
3834
c258b62b
XG
3835/*
3836 * the page table on host is the shadow page table for the page
3837 * table in guest or amd nested guest, its mmu features completely
3838 * follow the features in guest.
3839 */
3840void
3841reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3842{
5f0b8199
PB
3843 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3844
6fec2144
PB
3845 /*
3846 * Passing "true" to the last argument is okay; it adds a check
3847 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3848 */
c258b62b
XG
3849 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3850 boot_cpu_data.x86_phys_bits,
5f0b8199 3851 context->shadow_root_level, uses_nx,
6fec2144
PB
3852 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3853 true);
c258b62b
XG
3854}
3855EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3856
6fec2144
PB
3857static inline bool boot_cpu_is_amd(void)
3858{
3859 WARN_ON_ONCE(!tdp_enabled);
3860 return shadow_x_mask == 0;
3861}
3862
c258b62b
XG
3863/*
3864 * the direct page table on host, use as much mmu features as
3865 * possible, however, kvm currently does not do execution-protection.
3866 */
3867static void
3868reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3869 struct kvm_mmu *context)
3870{
6fec2144 3871 if (boot_cpu_is_amd())
c258b62b
XG
3872 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3873 boot_cpu_data.x86_phys_bits,
3874 context->shadow_root_level, false,
b8291adc
BP
3875 boot_cpu_has(X86_FEATURE_GBPAGES),
3876 true, true);
c258b62b
XG
3877 else
3878 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3879 boot_cpu_data.x86_phys_bits,
3880 false);
3881
3882}
3883
3884/*
3885 * as the comments in reset_shadow_zero_bits_mask() except it
3886 * is the shadow page table for intel nested guest.
3887 */
3888static void
3889reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3890 struct kvm_mmu *context, bool execonly)
3891{
3892 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3893 boot_cpu_data.x86_phys_bits, execonly);
3894}
3895
edc90b7d
XG
3896static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3897 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3898{
3899 unsigned bit, byte, pfec;
3900 u8 map;
66386ade 3901 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3902
66386ade 3903 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3904 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3905 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3906 pfec = byte << 1;
3907 map = 0;
3908 wf = pfec & PFERR_WRITE_MASK;
3909 uf = pfec & PFERR_USER_MASK;
3910 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3911 /*
3912 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3913 * subject to SMAP restrictions, and cleared otherwise. The
3914 * bit is only meaningful if the SMAP bit is set in CR4.
3915 */
3916 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3917 for (bit = 0; bit < 8; ++bit) {
3918 x = bit & ACC_EXEC_MASK;
3919 w = bit & ACC_WRITE_MASK;
3920 u = bit & ACC_USER_MASK;
3921
25d92081
YZ
3922 if (!ept) {
3923 /* Not really needed: !nx will cause pte.nx to fault */
3924 x |= !mmu->nx;
3925 /* Allow supervisor writes if !cr0.wp */
3926 w |= !is_write_protection(vcpu) && !uf;
3927 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3928 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3929
3930 /*
3931 * SMAP:kernel-mode data accesses from user-mode
3932 * mappings should fault. A fault is considered
3933 * as a SMAP violation if all of the following
3934 * conditions are ture:
3935 * - X86_CR4_SMAP is set in CR4
3936 * - An user page is accessed
3937 * - Page fault in kernel mode
3938 * - if CPL = 3 or X86_EFLAGS_AC is clear
3939 *
3940 * Here, we cover the first three conditions.
3941 * The fourth is computed dynamically in
3942 * permission_fault() and is in smapf.
3943 *
3944 * Also, SMAP does not affect instruction
3945 * fetches, add the !ff check here to make it
3946 * clearer.
3947 */
3948 smap = cr4_smap && u && !uf && !ff;
d95c5568 3949 }
97d64b78 3950
97ec8c06
FW
3951 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3952 (smapf && smap);
97d64b78
AK
3953 map |= fault << bit;
3954 }
3955 mmu->permissions[byte] = map;
3956 }
3957}
3958
2d344105
HH
3959/*
3960* PKU is an additional mechanism by which the paging controls access to
3961* user-mode addresses based on the value in the PKRU register. Protection
3962* key violations are reported through a bit in the page fault error code.
3963* Unlike other bits of the error code, the PK bit is not known at the
3964* call site of e.g. gva_to_gpa; it must be computed directly in
3965* permission_fault based on two bits of PKRU, on some machine state (CR4,
3966* CR0, EFER, CPL), and on other bits of the error code and the page tables.
3967*
3968* In particular the following conditions come from the error code, the
3969* page tables and the machine state:
3970* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
3971* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
3972* - PK is always zero if U=0 in the page tables
3973* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
3974*
3975* The PKRU bitmask caches the result of these four conditions. The error
3976* code (minus the P bit) and the page table's U bit form an index into the
3977* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
3978* with the two bits of the PKRU register corresponding to the protection key.
3979* For the first three conditions above the bits will be 00, thus masking
3980* away both AD and WD. For all reads or if the last condition holds, WD
3981* only will be masked away.
3982*/
3983static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3984 bool ept)
3985{
3986 unsigned bit;
3987 bool wp;
3988
3989 if (ept) {
3990 mmu->pkru_mask = 0;
3991 return;
3992 }
3993
3994 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
3995 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
3996 mmu->pkru_mask = 0;
3997 return;
3998 }
3999
4000 wp = is_write_protection(vcpu);
4001
4002 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4003 unsigned pfec, pkey_bits;
4004 bool check_pkey, check_write, ff, uf, wf, pte_user;
4005
4006 pfec = bit << 1;
4007 ff = pfec & PFERR_FETCH_MASK;
4008 uf = pfec & PFERR_USER_MASK;
4009 wf = pfec & PFERR_WRITE_MASK;
4010
4011 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4012 pte_user = pfec & PFERR_RSVD_MASK;
4013
4014 /*
4015 * Only need to check the access which is not an
4016 * instruction fetch and is to a user page.
4017 */
4018 check_pkey = (!ff && pte_user);
4019 /*
4020 * write access is controlled by PKRU if it is a
4021 * user access or CR0.WP = 1.
4022 */
4023 check_write = check_pkey && wf && (uf || wp);
4024
4025 /* PKRU.AD stops both read and write access. */
4026 pkey_bits = !!check_pkey;
4027 /* PKRU.WD stops write access. */
4028 pkey_bits |= (!!check_write) << 1;
4029
4030 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4031 }
4032}
4033
6bb69c9b 4034static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4035{
6bb69c9b
PB
4036 unsigned root_level = mmu->root_level;
4037
4038 mmu->last_nonleaf_level = root_level;
4039 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4040 mmu->last_nonleaf_level++;
6fd01b71
AK
4041}
4042
8a3c1a33
PB
4043static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4044 struct kvm_mmu *context,
4045 int level)
6aa8b732 4046{
2d48a985 4047 context->nx = is_nx(vcpu);
4d6931c3 4048 context->root_level = level;
2d48a985 4049
4d6931c3 4050 reset_rsvds_bits_mask(vcpu, context);
25d92081 4051 update_permission_bitmask(vcpu, context, false);
2d344105 4052 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4053 update_last_nonleaf_level(vcpu, context);
6aa8b732 4054
fa4a2c08 4055 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4056 context->page_fault = paging64_page_fault;
6aa8b732 4057 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4058 context->sync_page = paging64_sync_page;
a7052897 4059 context->invlpg = paging64_invlpg;
0f53b5b1 4060 context->update_pte = paging64_update_pte;
17ac10ad 4061 context->shadow_root_level = level;
17c3ba9d 4062 context->root_hpa = INVALID_PAGE;
c5a78f2b 4063 context->direct_map = false;
6aa8b732
AK
4064}
4065
8a3c1a33
PB
4066static void paging64_init_context(struct kvm_vcpu *vcpu,
4067 struct kvm_mmu *context)
17ac10ad 4068{
8a3c1a33 4069 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
4070}
4071
8a3c1a33
PB
4072static void paging32_init_context(struct kvm_vcpu *vcpu,
4073 struct kvm_mmu *context)
6aa8b732 4074{
2d48a985 4075 context->nx = false;
4d6931c3 4076 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4077
4d6931c3 4078 reset_rsvds_bits_mask(vcpu, context);
25d92081 4079 update_permission_bitmask(vcpu, context, false);
2d344105 4080 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4081 update_last_nonleaf_level(vcpu, context);
6aa8b732 4082
6aa8b732 4083 context->page_fault = paging32_page_fault;
6aa8b732 4084 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4085 context->sync_page = paging32_sync_page;
a7052897 4086 context->invlpg = paging32_invlpg;
0f53b5b1 4087 context->update_pte = paging32_update_pte;
6aa8b732 4088 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 4089 context->root_hpa = INVALID_PAGE;
c5a78f2b 4090 context->direct_map = false;
6aa8b732
AK
4091}
4092
8a3c1a33
PB
4093static void paging32E_init_context(struct kvm_vcpu *vcpu,
4094 struct kvm_mmu *context)
6aa8b732 4095{
8a3c1a33 4096 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4097}
4098
8a3c1a33 4099static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4100{
ad896af0 4101 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 4102
c445f8ef 4103 context->base_role.word = 0;
699023e2 4104 context->base_role.smm = is_smm(vcpu);
fb72d167 4105 context->page_fault = tdp_page_fault;
e8bc217a 4106 context->sync_page = nonpaging_sync_page;
a7052897 4107 context->invlpg = nonpaging_invlpg;
0f53b5b1 4108 context->update_pte = nonpaging_update_pte;
67253af5 4109 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 4110 context->root_hpa = INVALID_PAGE;
c5a78f2b 4111 context->direct_map = true;
1c97f0a0 4112 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4113 context->get_cr3 = get_cr3;
e4e517b4 4114 context->get_pdptr = kvm_pdptr_read;
cb659db8 4115 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4116
4117 if (!is_paging(vcpu)) {
2d48a985 4118 context->nx = false;
fb72d167
JR
4119 context->gva_to_gpa = nonpaging_gva_to_gpa;
4120 context->root_level = 0;
4121 } else if (is_long_mode(vcpu)) {
2d48a985 4122 context->nx = is_nx(vcpu);
fb72d167 4123 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
4124 reset_rsvds_bits_mask(vcpu, context);
4125 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4126 } else if (is_pae(vcpu)) {
2d48a985 4127 context->nx = is_nx(vcpu);
fb72d167 4128 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4129 reset_rsvds_bits_mask(vcpu, context);
4130 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4131 } else {
2d48a985 4132 context->nx = false;
fb72d167 4133 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4134 reset_rsvds_bits_mask(vcpu, context);
4135 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4136 }
4137
25d92081 4138 update_permission_bitmask(vcpu, context, false);
2d344105 4139 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4140 update_last_nonleaf_level(vcpu, context);
c258b62b 4141 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4142}
4143
ad896af0 4144void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 4145{
411c588d 4146 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 4147 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
4148 struct kvm_mmu *context = &vcpu->arch.mmu;
4149
fa4a2c08 4150 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
4151
4152 if (!is_paging(vcpu))
8a3c1a33 4153 nonpaging_init_context(vcpu, context);
a9058ecd 4154 else if (is_long_mode(vcpu))
8a3c1a33 4155 paging64_init_context(vcpu, context);
6aa8b732 4156 else if (is_pae(vcpu))
8a3c1a33 4157 paging32E_init_context(vcpu, context);
6aa8b732 4158 else
8a3c1a33 4159 paging32_init_context(vcpu, context);
a770f6f2 4160
ad896af0
PB
4161 context->base_role.nxe = is_nx(vcpu);
4162 context->base_role.cr4_pae = !!is_pae(vcpu);
4163 context->base_role.cr0_wp = is_write_protection(vcpu);
4164 context->base_role.smep_andnot_wp
411c588d 4165 = smep && !is_write_protection(vcpu);
edc90b7d
XG
4166 context->base_role.smap_andnot_wp
4167 = smap && !is_write_protection(vcpu);
699023e2 4168 context->base_role.smm = is_smm(vcpu);
c258b62b 4169 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4170}
4171EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4172
ad896af0 4173void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 4174{
ad896af0
PB
4175 struct kvm_mmu *context = &vcpu->arch.mmu;
4176
fa4a2c08 4177 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
4178
4179 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4180
4181 context->nx = true;
155a97a3
NHE
4182 context->page_fault = ept_page_fault;
4183 context->gva_to_gpa = ept_gva_to_gpa;
4184 context->sync_page = ept_sync_page;
4185 context->invlpg = ept_invlpg;
4186 context->update_pte = ept_update_pte;
155a97a3
NHE
4187 context->root_level = context->shadow_root_level;
4188 context->root_hpa = INVALID_PAGE;
4189 context->direct_map = false;
4190
4191 update_permission_bitmask(vcpu, context, true);
2d344105 4192 update_pkru_bitmask(vcpu, context, true);
155a97a3 4193 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4194 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4195}
4196EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4197
8a3c1a33 4198static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4199{
ad896af0
PB
4200 struct kvm_mmu *context = &vcpu->arch.mmu;
4201
4202 kvm_init_shadow_mmu(vcpu);
4203 context->set_cr3 = kvm_x86_ops->set_cr3;
4204 context->get_cr3 = get_cr3;
4205 context->get_pdptr = kvm_pdptr_read;
4206 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4207}
4208
8a3c1a33 4209static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4210{
4211 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4212
4213 g_context->get_cr3 = get_cr3;
e4e517b4 4214 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4215 g_context->inject_page_fault = kvm_inject_page_fault;
4216
4217 /*
0af2593b
DM
4218 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4219 * L1's nested page tables (e.g. EPT12). The nested translation
4220 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4221 * L2's page tables as the first level of translation and L1's
4222 * nested page tables as the second level of translation. Basically
4223 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4224 */
4225 if (!is_paging(vcpu)) {
2d48a985 4226 g_context->nx = false;
02f59dc9
JR
4227 g_context->root_level = 0;
4228 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4229 } else if (is_long_mode(vcpu)) {
2d48a985 4230 g_context->nx = is_nx(vcpu);
02f59dc9 4231 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4232 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4233 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4234 } else if (is_pae(vcpu)) {
2d48a985 4235 g_context->nx = is_nx(vcpu);
02f59dc9 4236 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4237 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4238 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4239 } else {
2d48a985 4240 g_context->nx = false;
02f59dc9 4241 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4242 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4243 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4244 }
4245
25d92081 4246 update_permission_bitmask(vcpu, g_context, false);
2d344105 4247 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4248 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4249}
4250
8a3c1a33 4251static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4252{
02f59dc9 4253 if (mmu_is_nested(vcpu))
e0c6db3e 4254 init_kvm_nested_mmu(vcpu);
02f59dc9 4255 else if (tdp_enabled)
e0c6db3e 4256 init_kvm_tdp_mmu(vcpu);
fb72d167 4257 else
e0c6db3e 4258 init_kvm_softmmu(vcpu);
fb72d167
JR
4259}
4260
8a3c1a33 4261void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4262{
95f93af4 4263 kvm_mmu_unload(vcpu);
8a3c1a33 4264 init_kvm_mmu(vcpu);
17c3ba9d 4265}
8668a3c4 4266EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4267
4268int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4269{
714b93da
AK
4270 int r;
4271
e2dec939 4272 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4273 if (r)
4274 goto out;
8986ecc0 4275 r = mmu_alloc_roots(vcpu);
e2858b4a 4276 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4277 if (r)
4278 goto out;
3662cb1c 4279 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4280 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4281out:
4282 return r;
6aa8b732 4283}
17c3ba9d
AK
4284EXPORT_SYMBOL_GPL(kvm_mmu_load);
4285
4286void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4287{
4288 mmu_free_roots(vcpu);
95f93af4 4289 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4290}
4b16184c 4291EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4292
0028425f 4293static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4294 struct kvm_mmu_page *sp, u64 *spte,
4295 const void *new)
0028425f 4296{
30945387 4297 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4298 ++vcpu->kvm->stat.mmu_pde_zapped;
4299 return;
30945387 4300 }
0028425f 4301
4cee5764 4302 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4303 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4304}
4305
79539cec
AK
4306static bool need_remote_flush(u64 old, u64 new)
4307{
4308 if (!is_shadow_present_pte(old))
4309 return false;
4310 if (!is_shadow_present_pte(new))
4311 return true;
4312 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4313 return true;
53166229
GN
4314 old ^= shadow_nx_mask;
4315 new ^= shadow_nx_mask;
79539cec
AK
4316 return (old & ~new & PT64_PERM_MASK) != 0;
4317}
4318
889e5cbc
XG
4319static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4320 const u8 *new, int *bytes)
da4a00f0 4321{
889e5cbc
XG
4322 u64 gentry;
4323 int r;
72016f3a 4324
72016f3a
AK
4325 /*
4326 * Assume that the pte write on a page table of the same type
49b26e26
XG
4327 * as the current vcpu paging mode since we update the sptes only
4328 * when they have the same mode.
72016f3a 4329 */
889e5cbc 4330 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4331 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4332 *gpa &= ~(gpa_t)7;
4333 *bytes = 8;
54bf36aa 4334 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4335 if (r)
4336 gentry = 0;
08e850c6
AK
4337 new = (const u8 *)&gentry;
4338 }
4339
889e5cbc 4340 switch (*bytes) {
08e850c6
AK
4341 case 4:
4342 gentry = *(const u32 *)new;
4343 break;
4344 case 8:
4345 gentry = *(const u64 *)new;
4346 break;
4347 default:
4348 gentry = 0;
4349 break;
72016f3a
AK
4350 }
4351
889e5cbc
XG
4352 return gentry;
4353}
4354
4355/*
4356 * If we're seeing too many writes to a page, it may no longer be a page table,
4357 * or we may be forking, in which case it is better to unmap the page.
4358 */
a138fe75 4359static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4360{
a30f47cb
XG
4361 /*
4362 * Skip write-flooding detected for the sp whose level is 1, because
4363 * it can become unsync, then the guest page is not write-protected.
4364 */
f71fa31f 4365 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4366 return false;
3246af0e 4367
e5691a81
XG
4368 atomic_inc(&sp->write_flooding_count);
4369 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4370}
4371
4372/*
4373 * Misaligned accesses are too much trouble to fix up; also, they usually
4374 * indicate a page is not used as a page table.
4375 */
4376static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4377 int bytes)
4378{
4379 unsigned offset, pte_size, misaligned;
4380
4381 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4382 gpa, bytes, sp->role.word);
4383
4384 offset = offset_in_page(gpa);
4385 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4386
4387 /*
4388 * Sometimes, the OS only writes the last one bytes to update status
4389 * bits, for example, in linux, andb instruction is used in clear_bit().
4390 */
4391 if (!(offset & (pte_size - 1)) && bytes == 1)
4392 return false;
4393
889e5cbc
XG
4394 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4395 misaligned |= bytes < 4;
4396
4397 return misaligned;
4398}
4399
4400static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4401{
4402 unsigned page_offset, quadrant;
4403 u64 *spte;
4404 int level;
4405
4406 page_offset = offset_in_page(gpa);
4407 level = sp->role.level;
4408 *nspte = 1;
4409 if (!sp->role.cr4_pae) {
4410 page_offset <<= 1; /* 32->64 */
4411 /*
4412 * A 32-bit pde maps 4MB while the shadow pdes map
4413 * only 2MB. So we need to double the offset again
4414 * and zap two pdes instead of one.
4415 */
4416 if (level == PT32_ROOT_LEVEL) {
4417 page_offset &= ~7; /* kill rounding error */
4418 page_offset <<= 1;
4419 *nspte = 2;
4420 }
4421 quadrant = page_offset >> PAGE_SHIFT;
4422 page_offset &= ~PAGE_MASK;
4423 if (quadrant != sp->role.quadrant)
4424 return NULL;
4425 }
4426
4427 spte = &sp->spt[page_offset / sizeof(*spte)];
4428 return spte;
4429}
4430
13d268ca 4431static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
4432 const u8 *new, int bytes,
4433 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
4434{
4435 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4436 struct kvm_mmu_page *sp;
889e5cbc
XG
4437 LIST_HEAD(invalid_list);
4438 u64 entry, gentry, *spte;
4439 int npte;
b8c67b7a 4440 bool remote_flush, local_flush;
4141259b
AM
4441 union kvm_mmu_page_role mask = { };
4442
4443 mask.cr0_wp = 1;
4444 mask.cr4_pae = 1;
4445 mask.nxe = 1;
4446 mask.smep_andnot_wp = 1;
4447 mask.smap_andnot_wp = 1;
699023e2 4448 mask.smm = 1;
889e5cbc
XG
4449
4450 /*
4451 * If we don't have indirect shadow pages, it means no page is
4452 * write-protected, so we can exit simply.
4453 */
4454 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4455 return;
4456
b8c67b7a 4457 remote_flush = local_flush = false;
889e5cbc
XG
4458
4459 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4460
4461 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4462
4463 /*
4464 * No need to care whether allocation memory is successful
4465 * or not since pte prefetch is skiped if it does not have
4466 * enough objects in the cache.
4467 */
4468 mmu_topup_memory_caches(vcpu);
4469
4470 spin_lock(&vcpu->kvm->mmu_lock);
4471 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4472 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4473
b67bfe0d 4474 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4475 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4476 detect_write_flooding(sp)) {
b8c67b7a 4477 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4478 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4479 continue;
4480 }
889e5cbc
XG
4481
4482 spte = get_written_sptes(sp, gpa, &npte);
4483 if (!spte)
4484 continue;
4485
0671a8e7 4486 local_flush = true;
ac1b714e 4487 while (npte--) {
79539cec 4488 entry = *spte;
38e3b2b2 4489 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4490 if (gentry &&
4491 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4492 & mask.word) && rmap_can_add(vcpu))
7c562522 4493 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4494 if (need_remote_flush(entry, *spte))
0671a8e7 4495 remote_flush = true;
ac1b714e 4496 ++spte;
9b7a0325 4497 }
9b7a0325 4498 }
b8c67b7a 4499 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 4500 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4501 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4502}
4503
a436036b
AK
4504int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4505{
10589a46
MT
4506 gpa_t gpa;
4507 int r;
a436036b 4508
c5a78f2b 4509 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4510 return 0;
4511
1871c602 4512 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4513
10589a46 4514 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4515
10589a46 4516 return r;
a436036b 4517}
577bdc49 4518EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4519
81f4f76b 4520static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4521{
d98ba053 4522 LIST_HEAD(invalid_list);
103ad25a 4523
81f4f76b
TY
4524 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4525 return;
4526
5da59607
TY
4527 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4528 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4529 break;
ebeace86 4530
4cee5764 4531 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4532 }
aa6bd187 4533 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4534}
ebeace86 4535
14727754 4536int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
dc25e89e 4537 void *insn, int insn_len)
3067714c 4538{
1cb3f3ae 4539 int r, emulation_type = EMULTYPE_RETRY;
3067714c 4540 enum emulation_result er;
ded58749 4541 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
3067714c 4542
e9ee956e
TY
4543 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4544 r = handle_mmio_page_fault(vcpu, cr2, direct);
4545 if (r == RET_MMIO_PF_EMULATE) {
4546 emulation_type = 0;
4547 goto emulate;
4548 }
4549 if (r == RET_MMIO_PF_RETRY)
4550 return 1;
4551 if (r < 0)
4552 return r;
4553 }
3067714c 4554
14727754
TL
4555 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4556 false);
3067714c 4557 if (r < 0)
e9ee956e
TY
4558 return r;
4559 if (!r)
4560 return 1;
3067714c 4561
14727754
TL
4562 /*
4563 * Before emulating the instruction, check if the error code
4564 * was due to a RO violation while translating the guest page.
4565 * This can occur when using nested virtualization with nested
4566 * paging in both guests. If true, we simply unprotect the page
4567 * and resume the guest.
4568 *
4569 * Note: AMD only (since it supports the PFERR_GUEST_PAGE_MASK used
4570 * in PFERR_NEXT_GUEST_PAGE)
4571 */
4572 if (error_code == PFERR_NESTED_GUEST_PAGE) {
4573 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4574 return 1;
4575 }
4576
ded58749 4577 if (mmio_info_in_cache(vcpu, cr2, direct))
1cb3f3ae 4578 emulation_type = 0;
e9ee956e 4579emulate:
1cb3f3ae 4580 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4581
4582 switch (er) {
4583 case EMULATE_DONE:
4584 return 1;
ac0a48c3 4585 case EMULATE_USER_EXIT:
3067714c 4586 ++vcpu->stat.mmio_exits;
6d77dbfc 4587 /* fall through */
3067714c 4588 case EMULATE_FAIL:
3f5d18a9 4589 return 0;
3067714c
AK
4590 default:
4591 BUG();
4592 }
3067714c
AK
4593}
4594EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4595
a7052897
MT
4596void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4597{
a7052897 4598 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4599 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4600 ++vcpu->stat.invlpg;
4601}
4602EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4603
18552672
JR
4604void kvm_enable_tdp(void)
4605{
4606 tdp_enabled = true;
4607}
4608EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4609
5f4cb662
JR
4610void kvm_disable_tdp(void)
4611{
4612 tdp_enabled = false;
4613}
4614EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4615
6aa8b732
AK
4616static void free_mmu_pages(struct kvm_vcpu *vcpu)
4617{
ad312c7c 4618 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4619 if (vcpu->arch.mmu.lm_root != NULL)
4620 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4621}
4622
4623static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4624{
17ac10ad 4625 struct page *page;
6aa8b732
AK
4626 int i;
4627
17ac10ad
AK
4628 /*
4629 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4630 * Therefore we need to allocate shadow page tables in the first
4631 * 4GB of memory, which happens to fit the DMA32 zone.
4632 */
4633 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4634 if (!page)
d7fa6ab2
WY
4635 return -ENOMEM;
4636
ad312c7c 4637 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4638 for (i = 0; i < 4; ++i)
ad312c7c 4639 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4640
6aa8b732 4641 return 0;
6aa8b732
AK
4642}
4643
8018c27b 4644int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4645{
e459e322
XG
4646 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4647 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4648 vcpu->arch.mmu.translate_gpa = translate_gpa;
4649 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4650
8018c27b
IM
4651 return alloc_mmu_pages(vcpu);
4652}
6aa8b732 4653
8a3c1a33 4654void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4655{
fa4a2c08 4656 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4657
8a3c1a33 4658 init_kvm_mmu(vcpu);
6aa8b732
AK
4659}
4660
b5f5fdca 4661static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
4662 struct kvm_memory_slot *slot,
4663 struct kvm_page_track_notifier_node *node)
b5f5fdca
XC
4664{
4665 kvm_mmu_invalidate_zap_all_pages(kvm);
4666}
4667
13d268ca
XG
4668void kvm_mmu_init_vm(struct kvm *kvm)
4669{
4670 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4671
4672 node->track_write = kvm_mmu_pte_write;
b5f5fdca 4673 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca
XG
4674 kvm_page_track_register_notifier(kvm, node);
4675}
4676
4677void kvm_mmu_uninit_vm(struct kvm *kvm)
4678{
4679 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4680
4681 kvm_page_track_unregister_notifier(kvm, node);
4682}
4683
1bad2b2a 4684/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 4685typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
4686
4687/* The caller should hold mmu-lock before calling this function. */
4688static bool
4689slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4690 slot_level_handler fn, int start_level, int end_level,
4691 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4692{
4693 struct slot_rmap_walk_iterator iterator;
4694 bool flush = false;
4695
4696 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4697 end_gfn, &iterator) {
4698 if (iterator.rmap)
4699 flush |= fn(kvm, iterator.rmap);
4700
4701 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4702 if (flush && lock_flush_tlb) {
4703 kvm_flush_remote_tlbs(kvm);
4704 flush = false;
4705 }
4706 cond_resched_lock(&kvm->mmu_lock);
4707 }
4708 }
4709
4710 if (flush && lock_flush_tlb) {
4711 kvm_flush_remote_tlbs(kvm);
4712 flush = false;
4713 }
4714
4715 return flush;
4716}
4717
4718static bool
4719slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4720 slot_level_handler fn, int start_level, int end_level,
4721 bool lock_flush_tlb)
4722{
4723 return slot_handle_level_range(kvm, memslot, fn, start_level,
4724 end_level, memslot->base_gfn,
4725 memslot->base_gfn + memslot->npages - 1,
4726 lock_flush_tlb);
4727}
4728
4729static bool
4730slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4731 slot_level_handler fn, bool lock_flush_tlb)
4732{
4733 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4734 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4735}
4736
4737static bool
4738slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4739 slot_level_handler fn, bool lock_flush_tlb)
4740{
4741 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4742 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4743}
4744
4745static bool
4746slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4747 slot_level_handler fn, bool lock_flush_tlb)
4748{
4749 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4750 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4751}
4752
efdfe536
XG
4753void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4754{
4755 struct kvm_memslots *slots;
4756 struct kvm_memory_slot *memslot;
9da0e4d5 4757 int i;
efdfe536
XG
4758
4759 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
4760 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4761 slots = __kvm_memslots(kvm, i);
4762 kvm_for_each_memslot(memslot, slots) {
4763 gfn_t start, end;
4764
4765 start = max(gfn_start, memslot->base_gfn);
4766 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4767 if (start >= end)
4768 continue;
efdfe536 4769
9da0e4d5
PB
4770 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4771 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4772 start, end - 1, true);
4773 }
efdfe536
XG
4774 }
4775
4776 spin_unlock(&kvm->mmu_lock);
4777}
4778
018aabb5
TY
4779static bool slot_rmap_write_protect(struct kvm *kvm,
4780 struct kvm_rmap_head *rmap_head)
d77aa73c 4781{
018aabb5 4782 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
4783}
4784
1c91cad4
KH
4785void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4786 struct kvm_memory_slot *memslot)
6aa8b732 4787{
d77aa73c 4788 bool flush;
6aa8b732 4789
9d1beefb 4790 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4791 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4792 false);
9d1beefb 4793 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4794
4795 /*
4796 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4797 * which do tlb flush out of mmu-lock should be serialized by
4798 * kvm->slots_lock otherwise tlb flush would be missed.
4799 */
4800 lockdep_assert_held(&kvm->slots_lock);
4801
4802 /*
4803 * We can flush all the TLBs out of the mmu lock without TLB
4804 * corruption since we just change the spte from writable to
4805 * readonly so that we only need to care the case of changing
4806 * spte from present to present (changing the spte from present
4807 * to nonpresent will flush all the TLBs immediately), in other
4808 * words, the only case we care is mmu_spte_update() where we
4809 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4810 * instead of PT_WRITABLE_MASK, that means it does not depend
4811 * on PT_WRITABLE_MASK anymore.
4812 */
d91ffee9
KH
4813 if (flush)
4814 kvm_flush_remote_tlbs(kvm);
6aa8b732 4815}
37a7d8b0 4816
3ea3b7fa 4817static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 4818 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
4819{
4820 u64 *sptep;
4821 struct rmap_iterator iter;
4822 int need_tlb_flush = 0;
ba049e93 4823 kvm_pfn_t pfn;
3ea3b7fa
WL
4824 struct kvm_mmu_page *sp;
4825
0d536790 4826restart:
018aabb5 4827 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
4828 sp = page_header(__pa(sptep));
4829 pfn = spte_to_pfn(*sptep);
4830
4831 /*
decf6333
XG
4832 * We cannot do huge page mapping for indirect shadow pages,
4833 * which are found on the last rmap (level = 1) when not using
4834 * tdp; such shadow pages are synced with the page table in
4835 * the guest, and the guest page table is using 4K page size
4836 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
4837 */
4838 if (sp->role.direct &&
4839 !kvm_is_reserved_pfn(pfn) &&
127393fb 4840 PageTransCompoundMap(pfn_to_page(pfn))) {
3ea3b7fa 4841 drop_spte(kvm, sptep);
3ea3b7fa 4842 need_tlb_flush = 1;
0d536790
XG
4843 goto restart;
4844 }
3ea3b7fa
WL
4845 }
4846
4847 return need_tlb_flush;
4848}
4849
4850void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 4851 const struct kvm_memory_slot *memslot)
3ea3b7fa 4852{
f36f3f28 4853 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 4854 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
4855 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4856 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
4857 spin_unlock(&kvm->mmu_lock);
4858}
4859
f4b4b180
KH
4860void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4861 struct kvm_memory_slot *memslot)
4862{
d77aa73c 4863 bool flush;
f4b4b180
KH
4864
4865 spin_lock(&kvm->mmu_lock);
d77aa73c 4866 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
4867 spin_unlock(&kvm->mmu_lock);
4868
4869 lockdep_assert_held(&kvm->slots_lock);
4870
4871 /*
4872 * It's also safe to flush TLBs out of mmu lock here as currently this
4873 * function is only used for dirty logging, in which case flushing TLB
4874 * out of mmu lock also guarantees no dirty pages will be lost in
4875 * dirty_bitmap.
4876 */
4877 if (flush)
4878 kvm_flush_remote_tlbs(kvm);
4879}
4880EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4881
4882void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4883 struct kvm_memory_slot *memslot)
4884{
d77aa73c 4885 bool flush;
f4b4b180
KH
4886
4887 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4888 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4889 false);
f4b4b180
KH
4890 spin_unlock(&kvm->mmu_lock);
4891
4892 /* see kvm_mmu_slot_remove_write_access */
4893 lockdep_assert_held(&kvm->slots_lock);
4894
4895 if (flush)
4896 kvm_flush_remote_tlbs(kvm);
4897}
4898EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4899
4900void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4901 struct kvm_memory_slot *memslot)
4902{
d77aa73c 4903 bool flush;
f4b4b180
KH
4904
4905 spin_lock(&kvm->mmu_lock);
d77aa73c 4906 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
4907 spin_unlock(&kvm->mmu_lock);
4908
4909 lockdep_assert_held(&kvm->slots_lock);
4910
4911 /* see kvm_mmu_slot_leaf_clear_dirty */
4912 if (flush)
4913 kvm_flush_remote_tlbs(kvm);
4914}
4915EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4916
e7d11c7a 4917#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4918static void kvm_zap_obsolete_pages(struct kvm *kvm)
4919{
4920 struct kvm_mmu_page *sp, *node;
e7d11c7a 4921 int batch = 0;
5304b8d3
XG
4922
4923restart:
4924 list_for_each_entry_safe_reverse(sp, node,
4925 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4926 int ret;
4927
5304b8d3
XG
4928 /*
4929 * No obsolete page exists before new created page since
4930 * active_mmu_pages is the FIFO list.
4931 */
4932 if (!is_obsolete_sp(kvm, sp))
4933 break;
4934
4935 /*
5304b8d3
XG
4936 * Since we are reversely walking the list and the invalid
4937 * list will be moved to the head, skip the invalid page
4938 * can help us to avoid the infinity list walking.
4939 */
4940 if (sp->role.invalid)
4941 continue;
4942
f34d251d
XG
4943 /*
4944 * Need not flush tlb since we only zap the sp with invalid
4945 * generation number.
4946 */
e7d11c7a 4947 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4948 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4949 batch = 0;
5304b8d3
XG
4950 goto restart;
4951 }
4952
365c8868
XG
4953 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4954 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4955 batch += ret;
4956
4957 if (ret)
5304b8d3
XG
4958 goto restart;
4959 }
4960
f34d251d
XG
4961 /*
4962 * Should flush tlb before free page tables since lockless-walking
4963 * may use the pages.
4964 */
365c8868 4965 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4966}
4967
4968/*
4969 * Fast invalidate all shadow pages and use lock-break technique
4970 * to zap obsolete pages.
4971 *
4972 * It's required when memslot is being deleted or VM is being
4973 * destroyed, in these cases, we should ensure that KVM MMU does
4974 * not use any resource of the being-deleted slot or all slots
4975 * after calling the function.
4976 */
4977void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4978{
4979 spin_lock(&kvm->mmu_lock);
35006126 4980 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4981 kvm->arch.mmu_valid_gen++;
4982
f34d251d
XG
4983 /*
4984 * Notify all vcpus to reload its shadow page table
4985 * and flush TLB. Then all vcpus will switch to new
4986 * shadow page table with the new mmu_valid_gen.
4987 *
4988 * Note: we should do this under the protection of
4989 * mmu-lock, otherwise, vcpu would purge shadow page
4990 * but miss tlb flush.
4991 */
4992 kvm_reload_remote_mmus(kvm);
4993
5304b8d3
XG
4994 kvm_zap_obsolete_pages(kvm);
4995 spin_unlock(&kvm->mmu_lock);
4996}
4997
365c8868
XG
4998static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4999{
5000 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5001}
5002
54bf36aa 5003void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
5004{
5005 /*
5006 * The very rare case: if the generation-number is round,
5007 * zap all shadow pages.
f8f55942 5008 */
54bf36aa 5009 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
ae0f5499 5010 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 5011 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 5012 }
f8f55942
XG
5013}
5014
70534a73
DC
5015static unsigned long
5016mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5017{
5018 struct kvm *kvm;
1495f230 5019 int nr_to_scan = sc->nr_to_scan;
70534a73 5020 unsigned long freed = 0;
3ee16c81 5021
2f303b74 5022 spin_lock(&kvm_lock);
3ee16c81
IE
5023
5024 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5025 int idx;
d98ba053 5026 LIST_HEAD(invalid_list);
3ee16c81 5027
35f2d16b
TY
5028 /*
5029 * Never scan more than sc->nr_to_scan VM instances.
5030 * Will not hit this condition practically since we do not try
5031 * to shrink more than one VM and it is very unlikely to see
5032 * !n_used_mmu_pages so many times.
5033 */
5034 if (!nr_to_scan--)
5035 break;
19526396
GN
5036 /*
5037 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5038 * here. We may skip a VM instance errorneosly, but we do not
5039 * want to shrink a VM that only started to populate its MMU
5040 * anyway.
5041 */
365c8868
XG
5042 if (!kvm->arch.n_used_mmu_pages &&
5043 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5044 continue;
19526396 5045
f656ce01 5046 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5047 spin_lock(&kvm->mmu_lock);
3ee16c81 5048
365c8868
XG
5049 if (kvm_has_zapped_obsolete_pages(kvm)) {
5050 kvm_mmu_commit_zap_page(kvm,
5051 &kvm->arch.zapped_obsolete_pages);
5052 goto unlock;
5053 }
5054
70534a73
DC
5055 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5056 freed++;
d98ba053 5057 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 5058
365c8868 5059unlock:
3ee16c81 5060 spin_unlock(&kvm->mmu_lock);
f656ce01 5061 srcu_read_unlock(&kvm->srcu, idx);
19526396 5062
70534a73
DC
5063 /*
5064 * unfair on small ones
5065 * per-vm shrinkers cry out
5066 * sadness comes quickly
5067 */
19526396
GN
5068 list_move_tail(&kvm->vm_list, &vm_list);
5069 break;
3ee16c81 5070 }
3ee16c81 5071
2f303b74 5072 spin_unlock(&kvm_lock);
70534a73 5073 return freed;
70534a73
DC
5074}
5075
5076static unsigned long
5077mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5078{
45221ab6 5079 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5080}
5081
5082static struct shrinker mmu_shrinker = {
70534a73
DC
5083 .count_objects = mmu_shrink_count,
5084 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5085 .seeks = DEFAULT_SEEKS * 10,
5086};
5087
2ddfd20e 5088static void mmu_destroy_caches(void)
b5a33a75 5089{
53c07b18
XG
5090 if (pte_list_desc_cache)
5091 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
5092 if (mmu_page_header_cache)
5093 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5094}
5095
5096int kvm_mmu_module_init(void)
5097{
53c07b18
XG
5098 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5099 sizeof(struct pte_list_desc),
20c2df83 5100 0, 0, NULL);
53c07b18 5101 if (!pte_list_desc_cache)
b5a33a75
AK
5102 goto nomem;
5103
d3d25b04
AK
5104 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5105 sizeof(struct kvm_mmu_page),
20c2df83 5106 0, 0, NULL);
d3d25b04
AK
5107 if (!mmu_page_header_cache)
5108 goto nomem;
5109
908c7f19 5110 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
5111 goto nomem;
5112
3ee16c81
IE
5113 register_shrinker(&mmu_shrinker);
5114
b5a33a75
AK
5115 return 0;
5116
5117nomem:
3ee16c81 5118 mmu_destroy_caches();
b5a33a75
AK
5119 return -ENOMEM;
5120}
5121
3ad82a7e
ZX
5122/*
5123 * Caculate mmu pages needed for kvm.
5124 */
5125unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5126{
3ad82a7e
ZX
5127 unsigned int nr_mmu_pages;
5128 unsigned int nr_pages = 0;
bc6678a3 5129 struct kvm_memslots *slots;
be6ba0f0 5130 struct kvm_memory_slot *memslot;
9da0e4d5 5131 int i;
3ad82a7e 5132
9da0e4d5
PB
5133 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5134 slots = __kvm_memslots(kvm, i);
90d83dc3 5135
9da0e4d5
PB
5136 kvm_for_each_memslot(memslot, slots)
5137 nr_pages += memslot->npages;
5138 }
3ad82a7e
ZX
5139
5140 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5141 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 5142 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5143
5144 return nr_mmu_pages;
5145}
5146
c42fffe3
XG
5147void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5148{
95f93af4 5149 kvm_mmu_unload(vcpu);
c42fffe3
XG
5150 free_mmu_pages(vcpu);
5151 mmu_free_memory_caches(vcpu);
b034cf01
XG
5152}
5153
b034cf01
XG
5154void kvm_mmu_module_exit(void)
5155{
5156 mmu_destroy_caches();
5157 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5158 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5159 mmu_audit_disable();
5160}