]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: MMU: Explicitly set D-bit for writable spte.
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
6aa8b732 44
18552672
JR
45/*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
2f333bcb 52bool tdp_enabled = false;
18552672 53
8b1fe17c
XG
54enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
6903074c
XG
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
8b1fe17c 61};
37a7d8b0 62
8b1fe17c 63#undef MMU_DEBUG
37a7d8b0
AK
64
65#ifdef MMU_DEBUG
fa4a2c08
PB
66static bool dbg = 0;
67module_param(dbg, bool, 0644);
37a7d8b0
AK
68
69#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 71#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 72#else
37a7d8b0
AK
73#define pgprintk(x...) do { } while (0)
74#define rmap_printk(x...) do { } while (0)
fa4a2c08 75#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 76#endif
6aa8b732 77
957ed9ef
XG
78#define PTE_PREFETCH_NUM 8
79
00763e41 80#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
81#define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
6aa8b732
AK
83#define PT64_LEVEL_BITS 9
84
85#define PT64_LEVEL_SHIFT(level) \
d77c26fc 86 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 87
6aa8b732
AK
88#define PT64_INDEX(address, level)\
89 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92#define PT32_LEVEL_BITS 10
93
94#define PT32_LEVEL_SHIFT(level) \
d77c26fc 95 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 96
e04da980
JR
97#define PT32_LVL_OFFSET_MASK(level) \
98 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
100
101#define PT32_INDEX(address, level)\
102 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
27aba766 105#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
106#define PT64_DIR_BASE_ADDR_MASK \
107 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
108#define PT64_LVL_ADDR_MASK(level) \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 * PT64_LEVEL_BITS))) - 1))
111#define PT64_LVL_OFFSET_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
114
115#define PT32_BASE_ADDR_MASK PAGE_MASK
116#define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
118#define PT32_LVL_ADDR_MASK(level) \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT32_LEVEL_BITS))) - 1))
6aa8b732 121
53166229
GN
122#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 | shadow_x_mask | shadow_nx_mask)
6aa8b732 124
fe135d2c
AK
125#define ACC_EXEC_MASK 1
126#define ACC_WRITE_MASK PT_WRITABLE_MASK
127#define ACC_USER_MASK PT_USER_MASK
128#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
90bb6fc5
AK
130#include <trace/events/kvm.h>
131
07420171
AK
132#define CREATE_TRACE_POINTS
133#include "mmutrace.h"
134
49fde340
XG
135#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 137
135f8c2b
AK
138#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
220f773a
TY
140/* make pte_list_desc fit well in cache line */
141#define PTE_LIST_EXT 3
142
53c07b18
XG
143struct pte_list_desc {
144 u64 *sptes[PTE_LIST_EXT];
145 struct pte_list_desc *more;
cd4a4e53
AK
146};
147
2d11123a
AK
148struct kvm_shadow_walk_iterator {
149 u64 addr;
150 hpa_t shadow_addr;
2d11123a 151 u64 *sptep;
dd3bfd59 152 int level;
2d11123a
AK
153 unsigned index;
154};
155
156#define for_each_shadow_entry(_vcpu, _addr, _walker) \
157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
160
c2a2ac2b
XG
161#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)) && \
164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
165 __shadow_walk_next(&(_walker), spte))
166
53c07b18 167static struct kmem_cache *pte_list_desc_cache;
d3d25b04 168static struct kmem_cache *mmu_page_header_cache;
45221ab6 169static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 170
7b52345e
SY
171static u64 __read_mostly shadow_nx_mask;
172static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173static u64 __read_mostly shadow_user_mask;
174static u64 __read_mostly shadow_accessed_mask;
175static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
176static u64 __read_mostly shadow_mmio_mask;
177
178static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 179static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
180
181void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182{
183 shadow_mmio_mask = mmio_mask;
184}
185EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
f2fd125d 187/*
ee3d1570
DM
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates. The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
192 *
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 195 */
ee3d1570 196#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
197#define MMIO_SPTE_GEN_HIGH_SHIFT 52
198
ee3d1570
DM
199#define MMIO_GEN_SHIFT 20
200#define MMIO_GEN_LOW_SHIFT 10
201#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 202#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
203
204static u64 generation_mmio_spte_mask(unsigned int gen)
205{
206 u64 mask;
207
842bb26a 208 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
209
210 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212 return mask;
213}
214
215static unsigned int get_mmio_spte_generation(u64 spte)
216{
217 unsigned int gen;
218
219 spte &= ~shadow_mmio_mask;
220
221 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223 return gen;
224}
225
f8f55942
XG
226static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
227{
00f034a1 228 return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
f8f55942
XG
229}
230
f2fd125d
XG
231static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
232 unsigned access)
ce88decf 233{
f8f55942
XG
234 unsigned int gen = kvm_current_mmio_generation(kvm);
235 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 236
ce88decf 237 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 238 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 239
f8f55942 240 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 241 mmu_spte_set(sptep, mask);
ce88decf
XG
242}
243
244static bool is_mmio_spte(u64 spte)
245{
246 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247}
248
249static gfn_t get_mmio_spte_gfn(u64 spte)
250{
842bb26a 251 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 252 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
253}
254
255static unsigned get_mmio_spte_access(u64 spte)
256{
842bb26a 257 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 258 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
259}
260
f2fd125d
XG
261static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
262 pfn_t pfn, unsigned access)
ce88decf
XG
263{
264 if (unlikely(is_noslot_pfn(pfn))) {
f2fd125d 265 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
266 return true;
267 }
268
269 return false;
270}
c7addb90 271
f8f55942
XG
272static bool check_mmio_spte(struct kvm *kvm, u64 spte)
273{
089504c0
XG
274 unsigned int kvm_gen, spte_gen;
275
276 kvm_gen = kvm_current_mmio_generation(kvm);
277 spte_gen = get_mmio_spte_generation(spte);
278
279 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280 return likely(kvm_gen == spte_gen);
f8f55942
XG
281}
282
7b52345e 283void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 284 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
285{
286 shadow_user_mask = user_mask;
287 shadow_accessed_mask = accessed_mask;
288 shadow_dirty_mask = dirty_mask;
289 shadow_nx_mask = nx_mask;
290 shadow_x_mask = x_mask;
291}
292EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
6aa8b732
AK
294static int is_cpuid_PSE36(void)
295{
296 return 1;
297}
298
73b1087e
AK
299static int is_nx(struct kvm_vcpu *vcpu)
300{
f6801dff 301 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
302}
303
c7addb90
AK
304static int is_shadow_present_pte(u64 pte)
305{
ce88decf 306 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
307}
308
05da4558
MT
309static int is_large_pte(u64 pte)
310{
311 return pte & PT_PAGE_SIZE_MASK;
312}
313
43a3795a 314static int is_rmap_spte(u64 pte)
cd4a4e53 315{
4b1a80fa 316 return is_shadow_present_pte(pte);
cd4a4e53
AK
317}
318
776e6633
MT
319static int is_last_spte(u64 pte, int level)
320{
321 if (level == PT_PAGE_TABLE_LEVEL)
322 return 1;
852e3c19 323 if (is_large_pte(pte))
776e6633
MT
324 return 1;
325 return 0;
326}
327
35149e21 328static pfn_t spte_to_pfn(u64 pte)
0b49ea86 329{
35149e21 330 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
331}
332
da928521
AK
333static gfn_t pse36_gfn_delta(u32 gpte)
334{
335 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337 return (gpte & PT32_DIR_PSE36_MASK) << shift;
338}
339
603e0651 340#ifdef CONFIG_X86_64
d555c333 341static void __set_spte(u64 *sptep, u64 spte)
e663ee64 342{
603e0651 343 *sptep = spte;
e663ee64
AK
344}
345
603e0651 346static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 347{
603e0651
XG
348 *sptep = spte;
349}
350
351static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352{
353 return xchg(sptep, spte);
354}
c2a2ac2b
XG
355
356static u64 __get_spte_lockless(u64 *sptep)
357{
358 return ACCESS_ONCE(*sptep);
359}
ce88decf
XG
360
361static bool __check_direct_spte_mmio_pf(u64 spte)
362{
363 /* It is valid if the spte is zapped. */
364 return spte == 0ull;
365}
a9221dd5 366#else
603e0651
XG
367union split_spte {
368 struct {
369 u32 spte_low;
370 u32 spte_high;
371 };
372 u64 spte;
373};
a9221dd5 374
c2a2ac2b
XG
375static void count_spte_clear(u64 *sptep, u64 spte)
376{
377 struct kvm_mmu_page *sp = page_header(__pa(sptep));
378
379 if (is_shadow_present_pte(spte))
380 return;
381
382 /* Ensure the spte is completely set before we increase the count */
383 smp_wmb();
384 sp->clear_spte_count++;
385}
386
603e0651
XG
387static void __set_spte(u64 *sptep, u64 spte)
388{
389 union split_spte *ssptep, sspte;
a9221dd5 390
603e0651
XG
391 ssptep = (union split_spte *)sptep;
392 sspte = (union split_spte)spte;
393
394 ssptep->spte_high = sspte.spte_high;
395
396 /*
397 * If we map the spte from nonpresent to present, We should store
398 * the high bits firstly, then set present bit, so cpu can not
399 * fetch this spte while we are setting the spte.
400 */
401 smp_wmb();
402
403 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
404}
405
603e0651
XG
406static void __update_clear_spte_fast(u64 *sptep, u64 spte)
407{
408 union split_spte *ssptep, sspte;
409
410 ssptep = (union split_spte *)sptep;
411 sspte = (union split_spte)spte;
412
413 ssptep->spte_low = sspte.spte_low;
414
415 /*
416 * If we map the spte from present to nonpresent, we should clear
417 * present bit firstly to avoid vcpu fetch the old high bits.
418 */
419 smp_wmb();
420
421 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 422 count_spte_clear(sptep, spte);
603e0651
XG
423}
424
425static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
426{
427 union split_spte *ssptep, sspte, orig;
428
429 ssptep = (union split_spte *)sptep;
430 sspte = (union split_spte)spte;
431
432 /* xchg acts as a barrier before the setting of the high bits */
433 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
434 orig.spte_high = ssptep->spte_high;
435 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 436 count_spte_clear(sptep, spte);
603e0651
XG
437
438 return orig.spte;
439}
c2a2ac2b
XG
440
441/*
442 * The idea using the light way get the spte on x86_32 guest is from
443 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
444 *
445 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
446 * coalesces them and we are running out of the MMU lock. Therefore
447 * we need to protect against in-progress updates of the spte.
448 *
449 * Reading the spte while an update is in progress may get the old value
450 * for the high part of the spte. The race is fine for a present->non-present
451 * change (because the high part of the spte is ignored for non-present spte),
452 * but for a present->present change we must reread the spte.
453 *
454 * All such changes are done in two steps (present->non-present and
455 * non-present->present), hence it is enough to count the number of
456 * present->non-present updates: if it changed while reading the spte,
457 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
458 */
459static u64 __get_spte_lockless(u64 *sptep)
460{
461 struct kvm_mmu_page *sp = page_header(__pa(sptep));
462 union split_spte spte, *orig = (union split_spte *)sptep;
463 int count;
464
465retry:
466 count = sp->clear_spte_count;
467 smp_rmb();
468
469 spte.spte_low = orig->spte_low;
470 smp_rmb();
471
472 spte.spte_high = orig->spte_high;
473 smp_rmb();
474
475 if (unlikely(spte.spte_low != orig->spte_low ||
476 count != sp->clear_spte_count))
477 goto retry;
478
479 return spte.spte;
480}
ce88decf
XG
481
482static bool __check_direct_spte_mmio_pf(u64 spte)
483{
484 union split_spte sspte = (union split_spte)spte;
485 u32 high_mmio_mask = shadow_mmio_mask >> 32;
486
487 /* It is valid if the spte is zapped. */
488 if (spte == 0ull)
489 return true;
490
491 /* It is valid if the spte is being zapped. */
492 if (sspte.spte_low == 0ull &&
493 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
494 return true;
495
496 return false;
497}
603e0651
XG
498#endif
499
c7ba5b48
XG
500static bool spte_is_locklessly_modifiable(u64 spte)
501{
feb3eb70
GN
502 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
503 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
504}
505
8672b721
XG
506static bool spte_has_volatile_bits(u64 spte)
507{
c7ba5b48
XG
508 /*
509 * Always atomicly update spte if it can be updated
510 * out of mmu-lock, it can ensure dirty bit is not lost,
511 * also, it can help us to get a stable is_writable_pte()
512 * to ensure tlb flush is not missed.
513 */
514 if (spte_is_locklessly_modifiable(spte))
515 return true;
516
8672b721
XG
517 if (!shadow_accessed_mask)
518 return false;
519
520 if (!is_shadow_present_pte(spte))
521 return false;
522
4132779b
XG
523 if ((spte & shadow_accessed_mask) &&
524 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
525 return false;
526
527 return true;
528}
529
4132779b
XG
530static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
531{
532 return (old_spte & bit_mask) && !(new_spte & bit_mask);
533}
534
7e71a59b
KH
535static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
536{
537 return (old_spte & bit_mask) != (new_spte & bit_mask);
538}
539
1df9f2dc
XG
540/* Rules for using mmu_spte_set:
541 * Set the sptep from nonpresent to present.
542 * Note: the sptep being assigned *must* be either not present
543 * or in a state where the hardware will not attempt to update
544 * the spte.
545 */
546static void mmu_spte_set(u64 *sptep, u64 new_spte)
547{
548 WARN_ON(is_shadow_present_pte(*sptep));
549 __set_spte(sptep, new_spte);
550}
551
552/* Rules for using mmu_spte_update:
553 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
554 *
555 * Whenever we overwrite a writable spte with a read-only one we
556 * should flush remote TLBs. Otherwise rmap_write_protect
557 * will find a read-only spte, even though the writable spte
558 * might be cached on a CPU's TLB, the return value indicates this
559 * case.
1df9f2dc 560 */
6e7d0354 561static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 562{
c7ba5b48 563 u64 old_spte = *sptep;
6e7d0354 564 bool ret = false;
4132779b
XG
565
566 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 567
6e7d0354
XG
568 if (!is_shadow_present_pte(old_spte)) {
569 mmu_spte_set(sptep, new_spte);
570 return ret;
571 }
4132779b 572
c7ba5b48 573 if (!spte_has_volatile_bits(old_spte))
603e0651 574 __update_clear_spte_fast(sptep, new_spte);
4132779b 575 else
603e0651 576 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 577
c7ba5b48
XG
578 /*
579 * For the spte updated out of mmu-lock is safe, since
580 * we always atomicly update it, see the comments in
581 * spte_has_volatile_bits().
582 */
7f31c959
XG
583 if (spte_is_locklessly_modifiable(old_spte) &&
584 !is_writable_pte(new_spte))
6e7d0354
XG
585 ret = true;
586
4132779b 587 if (!shadow_accessed_mask)
6e7d0354 588 return ret;
4132779b 589
7e71a59b
KH
590 /*
591 * Flush TLB when accessed/dirty bits are changed in the page tables,
592 * to guarantee consistency between TLB and page tables.
593 */
594 if (spte_is_bit_changed(old_spte, new_spte,
595 shadow_accessed_mask | shadow_dirty_mask))
596 ret = true;
597
4132779b
XG
598 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
599 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
600 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
601 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
602
603 return ret;
b79b93f9
AK
604}
605
1df9f2dc
XG
606/*
607 * Rules for using mmu_spte_clear_track_bits:
608 * It sets the sptep from present to nonpresent, and track the
609 * state bits, it is used to clear the last level sptep.
610 */
611static int mmu_spte_clear_track_bits(u64 *sptep)
612{
613 pfn_t pfn;
614 u64 old_spte = *sptep;
615
616 if (!spte_has_volatile_bits(old_spte))
603e0651 617 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 618 else
603e0651 619 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
620
621 if (!is_rmap_spte(old_spte))
622 return 0;
623
624 pfn = spte_to_pfn(old_spte);
86fde74c
XG
625
626 /*
627 * KVM does not hold the refcount of the page used by
628 * kvm mmu, before reclaiming the page, we should
629 * unmap it from mmu first.
630 */
bf4bea8e 631 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 632
1df9f2dc
XG
633 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
634 kvm_set_pfn_accessed(pfn);
635 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
636 kvm_set_pfn_dirty(pfn);
637 return 1;
638}
639
640/*
641 * Rules for using mmu_spte_clear_no_track:
642 * Directly clear spte without caring the state bits of sptep,
643 * it is used to set the upper level spte.
644 */
645static void mmu_spte_clear_no_track(u64 *sptep)
646{
603e0651 647 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
648}
649
c2a2ac2b
XG
650static u64 mmu_spte_get_lockless(u64 *sptep)
651{
652 return __get_spte_lockless(sptep);
653}
654
655static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
656{
c142786c
AK
657 /*
658 * Prevent page table teardown by making any free-er wait during
659 * kvm_flush_remote_tlbs() IPI to all active vcpus.
660 */
661 local_irq_disable();
662 vcpu->mode = READING_SHADOW_PAGE_TABLES;
663 /*
664 * Make sure a following spte read is not reordered ahead of the write
665 * to vcpu->mode.
666 */
667 smp_mb();
c2a2ac2b
XG
668}
669
670static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
671{
c142786c
AK
672 /*
673 * Make sure the write to vcpu->mode is not reordered in front of
674 * reads to sptes. If it does, kvm_commit_zap_page() can see us
675 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
676 */
677 smp_mb();
678 vcpu->mode = OUTSIDE_GUEST_MODE;
679 local_irq_enable();
c2a2ac2b
XG
680}
681
e2dec939 682static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 683 struct kmem_cache *base_cache, int min)
714b93da
AK
684{
685 void *obj;
686
687 if (cache->nobjs >= min)
e2dec939 688 return 0;
714b93da 689 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 690 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 691 if (!obj)
e2dec939 692 return -ENOMEM;
714b93da
AK
693 cache->objects[cache->nobjs++] = obj;
694 }
e2dec939 695 return 0;
714b93da
AK
696}
697
f759e2b4
XG
698static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
699{
700 return cache->nobjs;
701}
702
e8ad9a70
XG
703static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
704 struct kmem_cache *cache)
714b93da
AK
705{
706 while (mc->nobjs)
e8ad9a70 707 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
708}
709
c1158e63 710static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 711 int min)
c1158e63 712{
842f22ed 713 void *page;
c1158e63
AK
714
715 if (cache->nobjs >= min)
716 return 0;
717 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 718 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
719 if (!page)
720 return -ENOMEM;
842f22ed 721 cache->objects[cache->nobjs++] = page;
c1158e63
AK
722 }
723 return 0;
724}
725
726static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
727{
728 while (mc->nobjs)
c4d198d5 729 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
730}
731
2e3e5882 732static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 733{
e2dec939
AK
734 int r;
735
53c07b18 736 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 737 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
738 if (r)
739 goto out;
ad312c7c 740 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
741 if (r)
742 goto out;
ad312c7c 743 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 744 mmu_page_header_cache, 4);
e2dec939
AK
745out:
746 return r;
714b93da
AK
747}
748
749static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
750{
53c07b18
XG
751 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
752 pte_list_desc_cache);
ad312c7c 753 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
754 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
755 mmu_page_header_cache);
714b93da
AK
756}
757
80feb89a 758static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
759{
760 void *p;
761
762 BUG_ON(!mc->nobjs);
763 p = mc->objects[--mc->nobjs];
714b93da
AK
764 return p;
765}
766
53c07b18 767static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 768{
80feb89a 769 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
770}
771
53c07b18 772static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 773{
53c07b18 774 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
775}
776
2032a93d
LJ
777static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
778{
779 if (!sp->role.direct)
780 return sp->gfns[index];
781
782 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
783}
784
785static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
786{
787 if (sp->role.direct)
788 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
789 else
790 sp->gfns[index] = gfn;
791}
792
05da4558 793/*
d4dbf470
TY
794 * Return the pointer to the large page information for a given gfn,
795 * handling slots that are not large page aligned.
05da4558 796 */
d4dbf470
TY
797static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
798 struct kvm_memory_slot *slot,
799 int level)
05da4558
MT
800{
801 unsigned long idx;
802
fb03cb6f 803 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 804 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
805}
806
807static void account_shadowed(struct kvm *kvm, gfn_t gfn)
808{
d25797b2 809 struct kvm_memory_slot *slot;
d4dbf470 810 struct kvm_lpage_info *linfo;
d25797b2 811 int i;
05da4558 812
a1f4d395 813 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
814 for (i = PT_DIRECTORY_LEVEL;
815 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
816 linfo = lpage_info_slot(gfn, slot, i);
817 linfo->write_count += 1;
d25797b2 818 }
332b207d 819 kvm->arch.indirect_shadow_pages++;
05da4558
MT
820}
821
822static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
823{
d25797b2 824 struct kvm_memory_slot *slot;
d4dbf470 825 struct kvm_lpage_info *linfo;
d25797b2 826 int i;
05da4558 827
a1f4d395 828 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
829 for (i = PT_DIRECTORY_LEVEL;
830 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
831 linfo = lpage_info_slot(gfn, slot, i);
832 linfo->write_count -= 1;
833 WARN_ON(linfo->write_count < 0);
d25797b2 834 }
332b207d 835 kvm->arch.indirect_shadow_pages--;
05da4558
MT
836}
837
d25797b2
JR
838static int has_wrprotected_page(struct kvm *kvm,
839 gfn_t gfn,
840 int level)
05da4558 841{
2843099f 842 struct kvm_memory_slot *slot;
d4dbf470 843 struct kvm_lpage_info *linfo;
05da4558 844
a1f4d395 845 slot = gfn_to_memslot(kvm, gfn);
05da4558 846 if (slot) {
d4dbf470
TY
847 linfo = lpage_info_slot(gfn, slot, level);
848 return linfo->write_count;
05da4558
MT
849 }
850
851 return 1;
852}
853
d25797b2 854static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 855{
8f0b1ab6 856 unsigned long page_size;
d25797b2 857 int i, ret = 0;
05da4558 858
8f0b1ab6 859 page_size = kvm_host_page_size(kvm, gfn);
05da4558 860
d25797b2
JR
861 for (i = PT_PAGE_TABLE_LEVEL;
862 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
863 if (page_size >= KVM_HPAGE_SIZE(i))
864 ret = i;
865 else
866 break;
867 }
868
4c2155ce 869 return ret;
05da4558
MT
870}
871
5d163b1c
XG
872static struct kvm_memory_slot *
873gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
874 bool no_dirty_log)
05da4558
MT
875{
876 struct kvm_memory_slot *slot;
5d163b1c
XG
877
878 slot = gfn_to_memslot(vcpu->kvm, gfn);
879 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
880 (no_dirty_log && slot->dirty_bitmap))
881 slot = NULL;
882
883 return slot;
884}
885
886static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
887{
a0a8eaba 888 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
889}
890
891static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
892{
893 int host_level, level, max_level;
05da4558 894
d25797b2
JR
895 host_level = host_mapping_level(vcpu->kvm, large_gfn);
896
897 if (host_level == PT_PAGE_TABLE_LEVEL)
898 return host_level;
899
55dd98c3 900 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
901
902 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
903 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
904 break;
d25797b2
JR
905
906 return level - 1;
05da4558
MT
907}
908
290fc38d 909/*
53c07b18 910 * Pte mapping structures:
cd4a4e53 911 *
53c07b18 912 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 913 *
53c07b18
XG
914 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
915 * pte_list_desc containing more mappings.
53a27b39 916 *
53c07b18 917 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
918 * the spte was not added.
919 *
cd4a4e53 920 */
53c07b18
XG
921static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
922 unsigned long *pte_list)
cd4a4e53 923{
53c07b18 924 struct pte_list_desc *desc;
53a27b39 925 int i, count = 0;
cd4a4e53 926
53c07b18
XG
927 if (!*pte_list) {
928 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
929 *pte_list = (unsigned long)spte;
930 } else if (!(*pte_list & 1)) {
931 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
932 desc = mmu_alloc_pte_list_desc(vcpu);
933 desc->sptes[0] = (u64 *)*pte_list;
d555c333 934 desc->sptes[1] = spte;
53c07b18 935 *pte_list = (unsigned long)desc | 1;
cb16a7b3 936 ++count;
cd4a4e53 937 } else {
53c07b18
XG
938 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
939 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
940 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 941 desc = desc->more;
53c07b18 942 count += PTE_LIST_EXT;
53a27b39 943 }
53c07b18
XG
944 if (desc->sptes[PTE_LIST_EXT-1]) {
945 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
946 desc = desc->more;
947 }
d555c333 948 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 949 ++count;
d555c333 950 desc->sptes[i] = spte;
cd4a4e53 951 }
53a27b39 952 return count;
cd4a4e53
AK
953}
954
53c07b18
XG
955static void
956pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
957 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
958{
959 int j;
960
53c07b18 961 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 962 ;
d555c333
AK
963 desc->sptes[i] = desc->sptes[j];
964 desc->sptes[j] = NULL;
cd4a4e53
AK
965 if (j != 0)
966 return;
967 if (!prev_desc && !desc->more)
53c07b18 968 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
969 else
970 if (prev_desc)
971 prev_desc->more = desc->more;
972 else
53c07b18
XG
973 *pte_list = (unsigned long)desc->more | 1;
974 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
975}
976
53c07b18 977static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 978{
53c07b18
XG
979 struct pte_list_desc *desc;
980 struct pte_list_desc *prev_desc;
cd4a4e53
AK
981 int i;
982
53c07b18
XG
983 if (!*pte_list) {
984 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 985 BUG();
53c07b18
XG
986 } else if (!(*pte_list & 1)) {
987 rmap_printk("pte_list_remove: %p 1->0\n", spte);
988 if ((u64 *)*pte_list != spte) {
989 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
990 BUG();
991 }
53c07b18 992 *pte_list = 0;
cd4a4e53 993 } else {
53c07b18
XG
994 rmap_printk("pte_list_remove: %p many->many\n", spte);
995 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
996 prev_desc = NULL;
997 while (desc) {
53c07b18 998 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 999 if (desc->sptes[i] == spte) {
53c07b18 1000 pte_list_desc_remove_entry(pte_list,
714b93da 1001 desc, i,
cd4a4e53
AK
1002 prev_desc);
1003 return;
1004 }
1005 prev_desc = desc;
1006 desc = desc->more;
1007 }
53c07b18 1008 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1009 BUG();
1010 }
1011}
1012
67052b35
XG
1013typedef void (*pte_list_walk_fn) (u64 *spte);
1014static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1015{
1016 struct pte_list_desc *desc;
1017 int i;
1018
1019 if (!*pte_list)
1020 return;
1021
1022 if (!(*pte_list & 1))
1023 return fn((u64 *)*pte_list);
1024
1025 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1026 while (desc) {
1027 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1028 fn(desc->sptes[i]);
1029 desc = desc->more;
1030 }
1031}
1032
9373e2c0 1033static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 1034 struct kvm_memory_slot *slot)
53c07b18 1035{
77d11309 1036 unsigned long idx;
53c07b18 1037
77d11309 1038 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1039 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1040}
1041
9b9b1492
TY
1042/*
1043 * Take gfn and return the reverse mapping to it.
1044 */
1045static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1046{
1047 struct kvm_memory_slot *slot;
1048
1049 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 1050 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
1051}
1052
f759e2b4
XG
1053static bool rmap_can_add(struct kvm_vcpu *vcpu)
1054{
1055 struct kvm_mmu_memory_cache *cache;
1056
1057 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1058 return mmu_memory_cache_free_objects(cache);
1059}
1060
53c07b18
XG
1061static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1062{
1063 struct kvm_mmu_page *sp;
1064 unsigned long *rmapp;
1065
53c07b18
XG
1066 sp = page_header(__pa(spte));
1067 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1068 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1069 return pte_list_add(vcpu, spte, rmapp);
1070}
1071
53c07b18
XG
1072static void rmap_remove(struct kvm *kvm, u64 *spte)
1073{
1074 struct kvm_mmu_page *sp;
1075 gfn_t gfn;
1076 unsigned long *rmapp;
1077
1078 sp = page_header(__pa(spte));
1079 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1080 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1081 pte_list_remove(spte, rmapp);
1082}
1083
1e3f42f0
TY
1084/*
1085 * Used by the following functions to iterate through the sptes linked by a
1086 * rmap. All fields are private and not assumed to be used outside.
1087 */
1088struct rmap_iterator {
1089 /* private fields */
1090 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1091 int pos; /* index of the sptep */
1092};
1093
1094/*
1095 * Iteration must be started by this function. This should also be used after
1096 * removing/dropping sptes from the rmap link because in such cases the
1097 * information in the itererator may not be valid.
1098 *
1099 * Returns sptep if found, NULL otherwise.
1100 */
1101static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1102{
1103 if (!rmap)
1104 return NULL;
1105
1106 if (!(rmap & 1)) {
1107 iter->desc = NULL;
1108 return (u64 *)rmap;
1109 }
1110
1111 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1112 iter->pos = 0;
1113 return iter->desc->sptes[iter->pos];
1114}
1115
1116/*
1117 * Must be used with a valid iterator: e.g. after rmap_get_first().
1118 *
1119 * Returns sptep if found, NULL otherwise.
1120 */
1121static u64 *rmap_get_next(struct rmap_iterator *iter)
1122{
1123 if (iter->desc) {
1124 if (iter->pos < PTE_LIST_EXT - 1) {
1125 u64 *sptep;
1126
1127 ++iter->pos;
1128 sptep = iter->desc->sptes[iter->pos];
1129 if (sptep)
1130 return sptep;
1131 }
1132
1133 iter->desc = iter->desc->more;
1134
1135 if (iter->desc) {
1136 iter->pos = 0;
1137 /* desc->sptes[0] cannot be NULL */
1138 return iter->desc->sptes[iter->pos];
1139 }
1140 }
1141
1142 return NULL;
1143}
1144
c3707958 1145static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1146{
1df9f2dc 1147 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1148 rmap_remove(kvm, sptep);
be38d276
AK
1149}
1150
8e22f955
XG
1151
1152static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1153{
1154 if (is_large_pte(*sptep)) {
1155 WARN_ON(page_header(__pa(sptep))->role.level ==
1156 PT_PAGE_TABLE_LEVEL);
1157 drop_spte(kvm, sptep);
1158 --kvm->stat.lpages;
1159 return true;
1160 }
1161
1162 return false;
1163}
1164
1165static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1166{
1167 if (__drop_large_spte(vcpu->kvm, sptep))
1168 kvm_flush_remote_tlbs(vcpu->kvm);
1169}
1170
1171/*
49fde340 1172 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1173 * spte write-protection is caused by protecting shadow page table.
49fde340 1174 *
b4619660 1175 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1176 * protection:
1177 * - for dirty logging, the spte can be set to writable at anytime if
1178 * its dirty bitmap is properly set.
1179 * - for spte protection, the spte can be writable only after unsync-ing
1180 * shadow page.
8e22f955 1181 *
c126d94f 1182 * Return true if tlb need be flushed.
8e22f955 1183 */
c126d94f 1184static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1185{
1186 u64 spte = *sptep;
1187
49fde340
XG
1188 if (!is_writable_pte(spte) &&
1189 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1190 return false;
1191
1192 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1193
49fde340
XG
1194 if (pt_protect)
1195 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1196 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1197
c126d94f 1198 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1199}
1200
49fde340 1201static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1202 bool pt_protect)
98348e95 1203{
1e3f42f0
TY
1204 u64 *sptep;
1205 struct rmap_iterator iter;
d13bc5b5 1206 bool flush = false;
374cbac0 1207
1e3f42f0
TY
1208 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1209 BUG_ON(!(*sptep & PT_PRESENT_MASK));
a0ed4607 1210
c126d94f 1211 flush |= spte_write_protect(kvm, sptep, pt_protect);
d13bc5b5 1212 sptep = rmap_get_next(&iter);
374cbac0 1213 }
855149aa 1214
d13bc5b5 1215 return flush;
a0ed4607
TY
1216}
1217
f4b4b180
KH
1218static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1219{
1220 u64 spte = *sptep;
1221
1222 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1223
1224 spte &= ~shadow_dirty_mask;
1225
1226 return mmu_spte_update(sptep, spte);
1227}
1228
1229static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1230{
1231 u64 *sptep;
1232 struct rmap_iterator iter;
1233 bool flush = false;
1234
1235 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1236 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1237
1238 flush |= spte_clear_dirty(kvm, sptep);
1239 sptep = rmap_get_next(&iter);
1240 }
1241
1242 return flush;
1243}
1244
1245static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1246{
1247 u64 spte = *sptep;
1248
1249 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1250
1251 spte |= shadow_dirty_mask;
1252
1253 return mmu_spte_update(sptep, spte);
1254}
1255
1256static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1257{
1258 u64 *sptep;
1259 struct rmap_iterator iter;
1260 bool flush = false;
1261
1262 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1263 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1264
1265 flush |= spte_set_dirty(kvm, sptep);
1266 sptep = rmap_get_next(&iter);
1267 }
1268
1269 return flush;
1270}
1271
5dc99b23 1272/**
3b0f1d01 1273 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1274 * @kvm: kvm instance
1275 * @slot: slot to protect
1276 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1277 * @mask: indicates which pages we should protect
1278 *
1279 * Used when we do not need to care about huge page mappings: e.g. during dirty
1280 * logging we do not have any such mappings.
1281 */
3b0f1d01 1282static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1283 struct kvm_memory_slot *slot,
1284 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1285{
1286 unsigned long *rmapp;
a0ed4607 1287
5dc99b23 1288 while (mask) {
65fbe37c
TY
1289 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1290 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1291 __rmap_write_protect(kvm, rmapp, false);
05da4558 1292
5dc99b23
TY
1293 /* clear the first set bit */
1294 mask &= mask - 1;
1295 }
374cbac0
AK
1296}
1297
f4b4b180
KH
1298/**
1299 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1300 * @kvm: kvm instance
1301 * @slot: slot to clear D-bit
1302 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1303 * @mask: indicates which pages we should clear D-bit
1304 *
1305 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1306 */
1307void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1308 struct kvm_memory_slot *slot,
1309 gfn_t gfn_offset, unsigned long mask)
1310{
1311 unsigned long *rmapp;
1312
1313 while (mask) {
1314 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1315 PT_PAGE_TABLE_LEVEL, slot);
1316 __rmap_clear_dirty(kvm, rmapp);
1317
1318 /* clear the first set bit */
1319 mask &= mask - 1;
1320 }
1321}
1322EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1323
3b0f1d01
KH
1324/**
1325 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1326 * PT level pages.
1327 *
1328 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1329 * enable dirty logging for them.
1330 *
1331 * Used when we do not need to care about huge page mappings: e.g. during dirty
1332 * logging we do not have any such mappings.
1333 */
1334void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1335 struct kvm_memory_slot *slot,
1336 gfn_t gfn_offset, unsigned long mask)
1337{
1338 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1339}
1340
2f84569f 1341static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1342{
1343 struct kvm_memory_slot *slot;
5dc99b23
TY
1344 unsigned long *rmapp;
1345 int i;
2f84569f 1346 bool write_protected = false;
95d4c16c
TY
1347
1348 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1349
1350 for (i = PT_PAGE_TABLE_LEVEL;
1351 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1352 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1353 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1354 }
1355
1356 return write_protected;
95d4c16c
TY
1357}
1358
8a8365c5 1359static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1360 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1361 unsigned long data)
e930bffe 1362{
1e3f42f0
TY
1363 u64 *sptep;
1364 struct rmap_iterator iter;
e930bffe
AA
1365 int need_tlb_flush = 0;
1366
1e3f42f0
TY
1367 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1368 BUG_ON(!(*sptep & PT_PRESENT_MASK));
8a9522d2
ALC
1369 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
1370 sptep, *sptep, gfn, level);
1e3f42f0
TY
1371
1372 drop_spte(kvm, sptep);
e930bffe
AA
1373 need_tlb_flush = 1;
1374 }
1e3f42f0 1375
e930bffe
AA
1376 return need_tlb_flush;
1377}
1378
8a8365c5 1379static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1380 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1381 unsigned long data)
3da0dd43 1382{
1e3f42f0
TY
1383 u64 *sptep;
1384 struct rmap_iterator iter;
3da0dd43 1385 int need_flush = 0;
1e3f42f0 1386 u64 new_spte;
3da0dd43
IE
1387 pte_t *ptep = (pte_t *)data;
1388 pfn_t new_pfn;
1389
1390 WARN_ON(pte_huge(*ptep));
1391 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1392
1393 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1394 BUG_ON(!is_shadow_present_pte(*sptep));
8a9522d2
ALC
1395 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1396 sptep, *sptep, gfn, level);
1e3f42f0 1397
3da0dd43 1398 need_flush = 1;
1e3f42f0 1399
3da0dd43 1400 if (pte_write(*ptep)) {
1e3f42f0
TY
1401 drop_spte(kvm, sptep);
1402 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1403 } else {
1e3f42f0 1404 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1405 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1406
1407 new_spte &= ~PT_WRITABLE_MASK;
1408 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1409 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1410
1411 mmu_spte_clear_track_bits(sptep);
1412 mmu_spte_set(sptep, new_spte);
1413 sptep = rmap_get_next(&iter);
3da0dd43
IE
1414 }
1415 }
1e3f42f0 1416
3da0dd43
IE
1417 if (need_flush)
1418 kvm_flush_remote_tlbs(kvm);
1419
1420 return 0;
1421}
1422
84504ef3
TY
1423static int kvm_handle_hva_range(struct kvm *kvm,
1424 unsigned long start,
1425 unsigned long end,
1426 unsigned long data,
1427 int (*handler)(struct kvm *kvm,
1428 unsigned long *rmapp,
048212d0 1429 struct kvm_memory_slot *slot,
8a9522d2
ALC
1430 gfn_t gfn,
1431 int level,
84504ef3 1432 unsigned long data))
e930bffe 1433{
be6ba0f0 1434 int j;
f395302e 1435 int ret = 0;
bc6678a3 1436 struct kvm_memslots *slots;
be6ba0f0 1437 struct kvm_memory_slot *memslot;
bc6678a3 1438
90d83dc3 1439 slots = kvm_memslots(kvm);
e930bffe 1440
be6ba0f0 1441 kvm_for_each_memslot(memslot, slots) {
84504ef3 1442 unsigned long hva_start, hva_end;
bcd3ef58 1443 gfn_t gfn_start, gfn_end;
e930bffe 1444
84504ef3
TY
1445 hva_start = max(start, memslot->userspace_addr);
1446 hva_end = min(end, memslot->userspace_addr +
1447 (memslot->npages << PAGE_SHIFT));
1448 if (hva_start >= hva_end)
1449 continue;
1450 /*
1451 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1452 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1453 */
bcd3ef58 1454 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1455 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1456
bcd3ef58
TY
1457 for (j = PT_PAGE_TABLE_LEVEL;
1458 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1459 unsigned long idx, idx_end;
1460 unsigned long *rmapp;
8a9522d2 1461 gfn_t gfn = gfn_start;
d4dbf470 1462
bcd3ef58
TY
1463 /*
1464 * {idx(page_j) | page_j intersects with
1465 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1466 */
1467 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1468 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1469
bcd3ef58 1470 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1471
8a9522d2
ALC
1472 for (; idx <= idx_end;
1473 ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
1474 ret |= handler(kvm, rmapp++, memslot,
1475 gfn, j, data);
e930bffe
AA
1476 }
1477 }
1478
f395302e 1479 return ret;
e930bffe
AA
1480}
1481
84504ef3
TY
1482static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1483 unsigned long data,
1484 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1485 struct kvm_memory_slot *slot,
8a9522d2 1486 gfn_t gfn, int level,
84504ef3
TY
1487 unsigned long data))
1488{
1489 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1490}
1491
1492int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1493{
3da0dd43
IE
1494 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1495}
1496
b3ae2096
TY
1497int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1498{
1499 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1500}
1501
3da0dd43
IE
1502void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1503{
8a8365c5 1504 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1505}
1506
8a8365c5 1507static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1508 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1509 unsigned long data)
e930bffe 1510{
1e3f42f0 1511 u64 *sptep;
79f702a6 1512 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1513 int young = 0;
1514
57128468 1515 BUG_ON(!shadow_accessed_mask);
534e38b4 1516
1e3f42f0
TY
1517 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1518 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1519 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1520
3f6d8c8a 1521 if (*sptep & shadow_accessed_mask) {
e930bffe 1522 young = 1;
3f6d8c8a
XH
1523 clear_bit((ffs(shadow_accessed_mask) - 1),
1524 (unsigned long *)sptep);
e930bffe 1525 }
e930bffe 1526 }
8a9522d2 1527 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1528 return young;
1529}
1530
8ee53820 1531static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1532 struct kvm_memory_slot *slot, gfn_t gfn,
1533 int level, unsigned long data)
8ee53820 1534{
1e3f42f0
TY
1535 u64 *sptep;
1536 struct rmap_iterator iter;
8ee53820
AA
1537 int young = 0;
1538
1539 /*
1540 * If there's no access bit in the secondary pte set by the
1541 * hardware it's up to gup-fast/gup to set the access bit in
1542 * the primary pte or in the page structure.
1543 */
1544 if (!shadow_accessed_mask)
1545 goto out;
1546
1e3f42f0
TY
1547 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1548 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1549 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1550
3f6d8c8a 1551 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1552 young = 1;
1553 break;
1554 }
8ee53820
AA
1555 }
1556out:
1557 return young;
1558}
1559
53a27b39
MT
1560#define RMAP_RECYCLE_THRESHOLD 1000
1561
852e3c19 1562static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1563{
1564 unsigned long *rmapp;
852e3c19
JR
1565 struct kvm_mmu_page *sp;
1566
1567 sp = page_header(__pa(spte));
53a27b39 1568
852e3c19 1569 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1570
8a9522d2 1571 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1572 kvm_flush_remote_tlbs(vcpu->kvm);
1573}
1574
57128468 1575int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1576{
57128468
ALC
1577 /*
1578 * In case of absence of EPT Access and Dirty Bits supports,
1579 * emulate the accessed bit for EPT, by checking if this page has
1580 * an EPT mapping, and clearing it if it does. On the next access,
1581 * a new EPT mapping will be established.
1582 * This has some overhead, but not as much as the cost of swapping
1583 * out actively used pages or breaking up actively used hugepages.
1584 */
1585 if (!shadow_accessed_mask) {
1586 /*
1587 * We are holding the kvm->mmu_lock, and we are blowing up
1588 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1589 * This is correct as long as we don't decouple the mmu_lock
1590 * protected regions (like invalidate_range_start|end does).
1591 */
1592 kvm->mmu_notifier_seq++;
1593 return kvm_handle_hva_range(kvm, start, end, 0,
1594 kvm_unmap_rmapp);
1595 }
1596
1597 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1598}
1599
8ee53820
AA
1600int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1601{
1602 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1603}
1604
d6c69ee9 1605#ifdef MMU_DEBUG
47ad8e68 1606static int is_empty_shadow_page(u64 *spt)
6aa8b732 1607{
139bdb2d
AK
1608 u64 *pos;
1609 u64 *end;
1610
47ad8e68 1611 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1612 if (is_shadow_present_pte(*pos)) {
b8688d51 1613 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1614 pos, *pos);
6aa8b732 1615 return 0;
139bdb2d 1616 }
6aa8b732
AK
1617 return 1;
1618}
d6c69ee9 1619#endif
6aa8b732 1620
45221ab6
DH
1621/*
1622 * This value is the sum of all of the kvm instances's
1623 * kvm->arch.n_used_mmu_pages values. We need a global,
1624 * aggregate version in order to make the slab shrinker
1625 * faster
1626 */
1627static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1628{
1629 kvm->arch.n_used_mmu_pages += nr;
1630 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1631}
1632
834be0d8 1633static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1634{
fa4a2c08 1635 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1636 hlist_del(&sp->hash_link);
bd4c86ea
XG
1637 list_del(&sp->link);
1638 free_page((unsigned long)sp->spt);
834be0d8
GN
1639 if (!sp->role.direct)
1640 free_page((unsigned long)sp->gfns);
e8ad9a70 1641 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1642}
1643
cea0f0e7
AK
1644static unsigned kvm_page_table_hashfn(gfn_t gfn)
1645{
1ae0a13d 1646 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1647}
1648
714b93da 1649static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1650 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1651{
cea0f0e7
AK
1652 if (!parent_pte)
1653 return;
cea0f0e7 1654
67052b35 1655 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1656}
1657
4db35314 1658static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1659 u64 *parent_pte)
1660{
67052b35 1661 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1662}
1663
bcdd9a93
XG
1664static void drop_parent_pte(struct kvm_mmu_page *sp,
1665 u64 *parent_pte)
1666{
1667 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1668 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1669}
1670
67052b35
XG
1671static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1672 u64 *parent_pte, int direct)
ad8cfbe3 1673{
67052b35 1674 struct kvm_mmu_page *sp;
7ddca7e4 1675
80feb89a
TY
1676 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1677 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1678 if (!direct)
80feb89a 1679 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1680 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1681
1682 /*
1683 * The active_mmu_pages list is the FIFO list, do not move the
1684 * page until it is zapped. kvm_zap_obsolete_pages depends on
1685 * this feature. See the comments in kvm_zap_obsolete_pages().
1686 */
67052b35 1687 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1688 sp->parent_ptes = 0;
1689 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1690 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1691 return sp;
ad8cfbe3
MT
1692}
1693
67052b35 1694static void mark_unsync(u64 *spte);
1047df1f 1695static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1696{
67052b35 1697 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1698}
1699
67052b35 1700static void mark_unsync(u64 *spte)
0074ff63 1701{
67052b35 1702 struct kvm_mmu_page *sp;
1047df1f 1703 unsigned int index;
0074ff63 1704
67052b35 1705 sp = page_header(__pa(spte));
1047df1f
XG
1706 index = spte - sp->spt;
1707 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1708 return;
1047df1f 1709 if (sp->unsync_children++)
0074ff63 1710 return;
1047df1f 1711 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1712}
1713
e8bc217a 1714static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1715 struct kvm_mmu_page *sp)
e8bc217a
MT
1716{
1717 return 1;
1718}
1719
a7052897
MT
1720static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1721{
1722}
1723
0f53b5b1
XG
1724static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1725 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1726 const void *pte)
0f53b5b1
XG
1727{
1728 WARN_ON(1);
1729}
1730
60c8aec6
MT
1731#define KVM_PAGE_ARRAY_NR 16
1732
1733struct kvm_mmu_pages {
1734 struct mmu_page_and_offset {
1735 struct kvm_mmu_page *sp;
1736 unsigned int idx;
1737 } page[KVM_PAGE_ARRAY_NR];
1738 unsigned int nr;
1739};
1740
cded19f3
HE
1741static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1742 int idx)
4731d4c7 1743{
60c8aec6 1744 int i;
4731d4c7 1745
60c8aec6
MT
1746 if (sp->unsync)
1747 for (i=0; i < pvec->nr; i++)
1748 if (pvec->page[i].sp == sp)
1749 return 0;
1750
1751 pvec->page[pvec->nr].sp = sp;
1752 pvec->page[pvec->nr].idx = idx;
1753 pvec->nr++;
1754 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1755}
1756
1757static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1758 struct kvm_mmu_pages *pvec)
1759{
1760 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1761
37178b8b 1762 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1763 struct kvm_mmu_page *child;
4731d4c7
MT
1764 u64 ent = sp->spt[i];
1765
7a8f1a74
XG
1766 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1767 goto clear_child_bitmap;
1768
1769 child = page_header(ent & PT64_BASE_ADDR_MASK);
1770
1771 if (child->unsync_children) {
1772 if (mmu_pages_add(pvec, child, i))
1773 return -ENOSPC;
1774
1775 ret = __mmu_unsync_walk(child, pvec);
1776 if (!ret)
1777 goto clear_child_bitmap;
1778 else if (ret > 0)
1779 nr_unsync_leaf += ret;
1780 else
1781 return ret;
1782 } else if (child->unsync) {
1783 nr_unsync_leaf++;
1784 if (mmu_pages_add(pvec, child, i))
1785 return -ENOSPC;
1786 } else
1787 goto clear_child_bitmap;
1788
1789 continue;
1790
1791clear_child_bitmap:
1792 __clear_bit(i, sp->unsync_child_bitmap);
1793 sp->unsync_children--;
1794 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1795 }
1796
4731d4c7 1797
60c8aec6
MT
1798 return nr_unsync_leaf;
1799}
1800
1801static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1802 struct kvm_mmu_pages *pvec)
1803{
1804 if (!sp->unsync_children)
1805 return 0;
1806
1807 mmu_pages_add(pvec, sp, 0);
1808 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1809}
1810
4731d4c7
MT
1811static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1812{
1813 WARN_ON(!sp->unsync);
5e1b3ddb 1814 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1815 sp->unsync = 0;
1816 --kvm->stat.mmu_unsync;
1817}
1818
7775834a
XG
1819static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1820 struct list_head *invalid_list);
1821static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1822 struct list_head *invalid_list);
4731d4c7 1823
f34d251d
XG
1824/*
1825 * NOTE: we should pay more attention on the zapped-obsolete page
1826 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1827 * since it has been deleted from active_mmu_pages but still can be found
1828 * at hast list.
1829 *
1830 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1831 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1832 * all the obsolete pages.
1833 */
1044b030
TY
1834#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1835 hlist_for_each_entry(_sp, \
1836 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1837 if ((_sp)->gfn != (_gfn)) {} else
1838
1839#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1840 for_each_gfn_sp(_kvm, _sp, _gfn) \
1841 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1842
f918b443 1843/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1844static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1845 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1846{
5b7e0102 1847 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1848 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1849 return 1;
1850 }
1851
f918b443 1852 if (clear_unsync)
1d9dc7e0 1853 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1854
a4a8e6f7 1855 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1856 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1857 return 1;
1858 }
1859
77c3913b 1860 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4731d4c7
MT
1861 return 0;
1862}
1863
1d9dc7e0
XG
1864static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1865 struct kvm_mmu_page *sp)
1866{
d98ba053 1867 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1868 int ret;
1869
d98ba053 1870 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1871 if (ret)
d98ba053
XG
1872 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1873
1d9dc7e0
XG
1874 return ret;
1875}
1876
e37fa785
XG
1877#ifdef CONFIG_KVM_MMU_AUDIT
1878#include "mmu_audit.c"
1879#else
1880static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1881static void mmu_audit_disable(void) { }
1882#endif
1883
d98ba053
XG
1884static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1885 struct list_head *invalid_list)
1d9dc7e0 1886{
d98ba053 1887 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1888}
1889
9f1a122f
XG
1890/* @gfn should be write-protected at the call site */
1891static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1892{
9f1a122f 1893 struct kvm_mmu_page *s;
d98ba053 1894 LIST_HEAD(invalid_list);
9f1a122f
XG
1895 bool flush = false;
1896
b67bfe0d 1897 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1898 if (!s->unsync)
9f1a122f
XG
1899 continue;
1900
1901 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1902 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1903 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1904 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1905 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1906 continue;
1907 }
9f1a122f
XG
1908 flush = true;
1909 }
1910
d98ba053 1911 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f 1912 if (flush)
77c3913b 1913 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
9f1a122f
XG
1914}
1915
60c8aec6
MT
1916struct mmu_page_path {
1917 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1918 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1919};
1920
60c8aec6
MT
1921#define for_each_sp(pvec, sp, parents, i) \
1922 for (i = mmu_pages_next(&pvec, &parents, -1), \
1923 sp = pvec.page[i].sp; \
1924 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1925 i = mmu_pages_next(&pvec, &parents, i))
1926
cded19f3
HE
1927static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1928 struct mmu_page_path *parents,
1929 int i)
60c8aec6
MT
1930{
1931 int n;
1932
1933 for (n = i+1; n < pvec->nr; n++) {
1934 struct kvm_mmu_page *sp = pvec->page[n].sp;
1935
1936 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1937 parents->idx[0] = pvec->page[n].idx;
1938 return n;
1939 }
1940
1941 parents->parent[sp->role.level-2] = sp;
1942 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1943 }
1944
1945 return n;
1946}
1947
cded19f3 1948static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1949{
60c8aec6
MT
1950 struct kvm_mmu_page *sp;
1951 unsigned int level = 0;
1952
1953 do {
1954 unsigned int idx = parents->idx[level];
4731d4c7 1955
60c8aec6
MT
1956 sp = parents->parent[level];
1957 if (!sp)
1958 return;
1959
1960 --sp->unsync_children;
1961 WARN_ON((int)sp->unsync_children < 0);
1962 __clear_bit(idx, sp->unsync_child_bitmap);
1963 level++;
1964 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1965}
1966
60c8aec6
MT
1967static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1968 struct mmu_page_path *parents,
1969 struct kvm_mmu_pages *pvec)
4731d4c7 1970{
60c8aec6
MT
1971 parents->parent[parent->role.level-1] = NULL;
1972 pvec->nr = 0;
1973}
4731d4c7 1974
60c8aec6
MT
1975static void mmu_sync_children(struct kvm_vcpu *vcpu,
1976 struct kvm_mmu_page *parent)
1977{
1978 int i;
1979 struct kvm_mmu_page *sp;
1980 struct mmu_page_path parents;
1981 struct kvm_mmu_pages pages;
d98ba053 1982 LIST_HEAD(invalid_list);
60c8aec6
MT
1983
1984 kvm_mmu_pages_init(parent, &parents, &pages);
1985 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1986 bool protected = false;
b1a36821
MT
1987
1988 for_each_sp(pages, sp, parents, i)
1989 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1990
1991 if (protected)
1992 kvm_flush_remote_tlbs(vcpu->kvm);
1993
60c8aec6 1994 for_each_sp(pages, sp, parents, i) {
d98ba053 1995 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1996 mmu_pages_clear_parents(&parents);
1997 }
d98ba053 1998 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1999 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
2000 kvm_mmu_pages_init(parent, &parents, &pages);
2001 }
4731d4c7
MT
2002}
2003
c3707958
XG
2004static void init_shadow_page_table(struct kvm_mmu_page *sp)
2005{
2006 int i;
2007
2008 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2009 sp->spt[i] = 0ull;
2010}
2011
a30f47cb
XG
2012static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2013{
2014 sp->write_flooding_count = 0;
2015}
2016
2017static void clear_sp_write_flooding_count(u64 *spte)
2018{
2019 struct kvm_mmu_page *sp = page_header(__pa(spte));
2020
2021 __clear_sp_write_flooding_count(sp);
2022}
2023
5304b8d3
XG
2024static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2025{
2026 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2027}
2028
cea0f0e7
AK
2029static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2030 gfn_t gfn,
2031 gva_t gaddr,
2032 unsigned level,
f6e2c02b 2033 int direct,
41074d07 2034 unsigned access,
f7d9c7b7 2035 u64 *parent_pte)
cea0f0e7
AK
2036{
2037 union kvm_mmu_page_role role;
cea0f0e7 2038 unsigned quadrant;
9f1a122f 2039 struct kvm_mmu_page *sp;
9f1a122f 2040 bool need_sync = false;
cea0f0e7 2041
a770f6f2 2042 role = vcpu->arch.mmu.base_role;
cea0f0e7 2043 role.level = level;
f6e2c02b 2044 role.direct = direct;
84b0c8c6 2045 if (role.direct)
5b7e0102 2046 role.cr4_pae = 0;
41074d07 2047 role.access = access;
c5a78f2b
JR
2048 if (!vcpu->arch.mmu.direct_map
2049 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2050 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2051 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2052 role.quadrant = quadrant;
2053 }
b67bfe0d 2054 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
2055 if (is_obsolete_sp(vcpu->kvm, sp))
2056 continue;
2057
7ae680eb
XG
2058 if (!need_sync && sp->unsync)
2059 need_sync = true;
4731d4c7 2060
7ae680eb
XG
2061 if (sp->role.word != role.word)
2062 continue;
4731d4c7 2063
7ae680eb
XG
2064 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2065 break;
e02aa901 2066
7ae680eb
XG
2067 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2068 if (sp->unsync_children) {
a8eeb04a 2069 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
2070 kvm_mmu_mark_parents_unsync(sp);
2071 } else if (sp->unsync)
2072 kvm_mmu_mark_parents_unsync(sp);
e02aa901 2073
a30f47cb 2074 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
2075 trace_kvm_mmu_get_page(sp, false);
2076 return sp;
2077 }
dfc5aa00 2078 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 2079 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
2080 if (!sp)
2081 return sp;
4db35314
AK
2082 sp->gfn = gfn;
2083 sp->role = role;
7ae680eb
XG
2084 hlist_add_head(&sp->hash_link,
2085 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2086 if (!direct) {
b1a36821
MT
2087 if (rmap_write_protect(vcpu->kvm, gfn))
2088 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
2089 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2090 kvm_sync_pages(vcpu, gfn);
2091
4731d4c7
MT
2092 account_shadowed(vcpu->kvm, gfn);
2093 }
5304b8d3 2094 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
c3707958 2095 init_shadow_page_table(sp);
f691fe1d 2096 trace_kvm_mmu_get_page(sp, true);
4db35314 2097 return sp;
cea0f0e7
AK
2098}
2099
2d11123a
AK
2100static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2101 struct kvm_vcpu *vcpu, u64 addr)
2102{
2103 iterator->addr = addr;
2104 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2105 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2106
2107 if (iterator->level == PT64_ROOT_LEVEL &&
2108 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2109 !vcpu->arch.mmu.direct_map)
2110 --iterator->level;
2111
2d11123a
AK
2112 if (iterator->level == PT32E_ROOT_LEVEL) {
2113 iterator->shadow_addr
2114 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2115 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2116 --iterator->level;
2117 if (!iterator->shadow_addr)
2118 iterator->level = 0;
2119 }
2120}
2121
2122static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2123{
2124 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2125 return false;
4d88954d 2126
2d11123a
AK
2127 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2128 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2129 return true;
2130}
2131
c2a2ac2b
XG
2132static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2133 u64 spte)
2d11123a 2134{
c2a2ac2b 2135 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2136 iterator->level = 0;
2137 return;
2138 }
2139
c2a2ac2b 2140 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2141 --iterator->level;
2142}
2143
c2a2ac2b
XG
2144static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2145{
2146 return __shadow_walk_next(iterator, *iterator->sptep);
2147}
2148
7a1638ce 2149static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
32ef26a3
AK
2150{
2151 u64 spte;
2152
7a1638ce
YZ
2153 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2154 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2155
24db2734 2156 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
7a1638ce
YZ
2157 shadow_user_mask | shadow_x_mask;
2158
2159 if (accessed)
2160 spte |= shadow_accessed_mask;
24db2734 2161
1df9f2dc 2162 mmu_spte_set(sptep, spte);
32ef26a3
AK
2163}
2164
a357bd22
AK
2165static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2166 unsigned direct_access)
2167{
2168 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2169 struct kvm_mmu_page *child;
2170
2171 /*
2172 * For the direct sp, if the guest pte's dirty bit
2173 * changed form clean to dirty, it will corrupt the
2174 * sp's access: allow writable in the read-only sp,
2175 * so we should update the spte at this point to get
2176 * a new sp with the correct access.
2177 */
2178 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2179 if (child->role.access == direct_access)
2180 return;
2181
bcdd9a93 2182 drop_parent_pte(child, sptep);
a357bd22
AK
2183 kvm_flush_remote_tlbs(vcpu->kvm);
2184 }
2185}
2186
505aef8f 2187static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2188 u64 *spte)
2189{
2190 u64 pte;
2191 struct kvm_mmu_page *child;
2192
2193 pte = *spte;
2194 if (is_shadow_present_pte(pte)) {
505aef8f 2195 if (is_last_spte(pte, sp->role.level)) {
c3707958 2196 drop_spte(kvm, spte);
505aef8f
XG
2197 if (is_large_pte(pte))
2198 --kvm->stat.lpages;
2199 } else {
38e3b2b2 2200 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2201 drop_parent_pte(child, spte);
38e3b2b2 2202 }
505aef8f
XG
2203 return true;
2204 }
2205
2206 if (is_mmio_spte(pte))
ce88decf 2207 mmu_spte_clear_no_track(spte);
c3707958 2208
505aef8f 2209 return false;
38e3b2b2
XG
2210}
2211
90cb0529 2212static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2213 struct kvm_mmu_page *sp)
a436036b 2214{
697fe2e2 2215 unsigned i;
697fe2e2 2216
38e3b2b2
XG
2217 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2218 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2219}
2220
4db35314 2221static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2222{
4db35314 2223 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2224}
2225
31aa2b44 2226static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2227{
1e3f42f0
TY
2228 u64 *sptep;
2229 struct rmap_iterator iter;
a436036b 2230
1e3f42f0
TY
2231 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2232 drop_parent_pte(sp, sptep);
31aa2b44
AK
2233}
2234
60c8aec6 2235static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2236 struct kvm_mmu_page *parent,
2237 struct list_head *invalid_list)
4731d4c7 2238{
60c8aec6
MT
2239 int i, zapped = 0;
2240 struct mmu_page_path parents;
2241 struct kvm_mmu_pages pages;
4731d4c7 2242
60c8aec6 2243 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2244 return 0;
60c8aec6
MT
2245
2246 kvm_mmu_pages_init(parent, &parents, &pages);
2247 while (mmu_unsync_walk(parent, &pages)) {
2248 struct kvm_mmu_page *sp;
2249
2250 for_each_sp(pages, sp, parents, i) {
7775834a 2251 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2252 mmu_pages_clear_parents(&parents);
77662e00 2253 zapped++;
60c8aec6 2254 }
60c8aec6
MT
2255 kvm_mmu_pages_init(parent, &parents, &pages);
2256 }
2257
2258 return zapped;
4731d4c7
MT
2259}
2260
7775834a
XG
2261static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2262 struct list_head *invalid_list)
31aa2b44 2263{
4731d4c7 2264 int ret;
f691fe1d 2265
7775834a 2266 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2267 ++kvm->stat.mmu_shadow_zapped;
7775834a 2268 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2269 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2270 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2271
f6e2c02b 2272 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2273 unaccount_shadowed(kvm, sp->gfn);
5304b8d3 2274
4731d4c7
MT
2275 if (sp->unsync)
2276 kvm_unlink_unsync_page(kvm, sp);
4db35314 2277 if (!sp->root_count) {
54a4f023
GJ
2278 /* Count self */
2279 ret++;
7775834a 2280 list_move(&sp->link, invalid_list);
aa6bd187 2281 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2282 } else {
5b5c6a5a 2283 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2284
2285 /*
2286 * The obsolete pages can not be used on any vcpus.
2287 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2288 */
2289 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2290 kvm_reload_remote_mmus(kvm);
2e53d63a 2291 }
7775834a
XG
2292
2293 sp->role.invalid = 1;
4731d4c7 2294 return ret;
a436036b
AK
2295}
2296
7775834a
XG
2297static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2298 struct list_head *invalid_list)
2299{
945315b9 2300 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2301
2302 if (list_empty(invalid_list))
2303 return;
2304
c142786c
AK
2305 /*
2306 * wmb: make sure everyone sees our modifications to the page tables
2307 * rmb: make sure we see changes to vcpu->mode
2308 */
2309 smp_mb();
4f022648 2310
c142786c
AK
2311 /*
2312 * Wait for all vcpus to exit guest mode and/or lockless shadow
2313 * page table walks.
2314 */
2315 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2316
945315b9 2317 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2318 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2319 kvm_mmu_free_page(sp);
945315b9 2320 }
7775834a
XG
2321}
2322
5da59607
TY
2323static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2324 struct list_head *invalid_list)
2325{
2326 struct kvm_mmu_page *sp;
2327
2328 if (list_empty(&kvm->arch.active_mmu_pages))
2329 return false;
2330
2331 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2332 struct kvm_mmu_page, link);
2333 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2334
2335 return true;
2336}
2337
82ce2c96
IE
2338/*
2339 * Changing the number of mmu pages allocated to the vm
49d5ca26 2340 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2341 */
49d5ca26 2342void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2343{
d98ba053 2344 LIST_HEAD(invalid_list);
82ce2c96 2345
b34cb590
TY
2346 spin_lock(&kvm->mmu_lock);
2347
49d5ca26 2348 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2349 /* Need to free some mmu pages to achieve the goal. */
2350 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2351 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2352 break;
82ce2c96 2353
aa6bd187 2354 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2355 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2356 }
82ce2c96 2357
49d5ca26 2358 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2359
2360 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2361}
2362
1cb3f3ae 2363int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2364{
4db35314 2365 struct kvm_mmu_page *sp;
d98ba053 2366 LIST_HEAD(invalid_list);
a436036b
AK
2367 int r;
2368
9ad17b10 2369 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2370 r = 0;
1cb3f3ae 2371 spin_lock(&kvm->mmu_lock);
b67bfe0d 2372 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2373 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2374 sp->role.word);
2375 r = 1;
f41d335a 2376 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2377 }
d98ba053 2378 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2379 spin_unlock(&kvm->mmu_lock);
2380
a436036b 2381 return r;
cea0f0e7 2382}
1cb3f3ae 2383EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2384
74be52e3
SY
2385/*
2386 * The function is based on mtrr_type_lookup() in
2387 * arch/x86/kernel/cpu/mtrr/generic.c
2388 */
2389static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2390 u64 start, u64 end)
2391{
2392 int i;
2393 u64 base, mask;
2394 u8 prev_match, curr_match;
2395 int num_var_ranges = KVM_NR_VAR_MTRR;
2396
2397 if (!mtrr_state->enabled)
2398 return 0xFF;
2399
2400 /* Make end inclusive end, instead of exclusive */
2401 end--;
2402
2403 /* Look in fixed ranges. Just return the type as per start */
2404 if (mtrr_state->have_fixed && (start < 0x100000)) {
2405 int idx;
2406
2407 if (start < 0x80000) {
2408 idx = 0;
2409 idx += (start >> 16);
2410 return mtrr_state->fixed_ranges[idx];
2411 } else if (start < 0xC0000) {
2412 idx = 1 * 8;
2413 idx += ((start - 0x80000) >> 14);
2414 return mtrr_state->fixed_ranges[idx];
2415 } else if (start < 0x1000000) {
2416 idx = 3 * 8;
2417 idx += ((start - 0xC0000) >> 12);
2418 return mtrr_state->fixed_ranges[idx];
2419 }
2420 }
2421
2422 /*
2423 * Look in variable ranges
2424 * Look of multiple ranges matching this address and pick type
2425 * as per MTRR precedence
2426 */
2427 if (!(mtrr_state->enabled & 2))
2428 return mtrr_state->def_type;
2429
2430 prev_match = 0xFF;
2431 for (i = 0; i < num_var_ranges; ++i) {
2432 unsigned short start_state, end_state;
2433
2434 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2435 continue;
2436
2437 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2438 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2439 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2440 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2441
2442 start_state = ((start & mask) == (base & mask));
2443 end_state = ((end & mask) == (base & mask));
2444 if (start_state != end_state)
2445 return 0xFE;
2446
2447 if ((start & mask) != (base & mask))
2448 continue;
2449
2450 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2451 if (prev_match == 0xFF) {
2452 prev_match = curr_match;
2453 continue;
2454 }
2455
2456 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2457 curr_match == MTRR_TYPE_UNCACHABLE)
2458 return MTRR_TYPE_UNCACHABLE;
2459
2460 if ((prev_match == MTRR_TYPE_WRBACK &&
2461 curr_match == MTRR_TYPE_WRTHROUGH) ||
2462 (prev_match == MTRR_TYPE_WRTHROUGH &&
2463 curr_match == MTRR_TYPE_WRBACK)) {
2464 prev_match = MTRR_TYPE_WRTHROUGH;
2465 curr_match = MTRR_TYPE_WRTHROUGH;
2466 }
2467
2468 if (prev_match != curr_match)
2469 return MTRR_TYPE_UNCACHABLE;
2470 }
2471
2472 if (prev_match != 0xFF)
2473 return prev_match;
2474
2475 return mtrr_state->def_type;
2476}
2477
4b12f0de 2478u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2479{
2480 u8 mtrr;
2481
2482 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2483 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2484 if (mtrr == 0xfe || mtrr == 0xff)
2485 mtrr = MTRR_TYPE_WRBACK;
2486 return mtrr;
2487}
4b12f0de 2488EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2489
9cf5cf5a
XG
2490static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2491{
2492 trace_kvm_mmu_unsync_page(sp);
2493 ++vcpu->kvm->stat.mmu_unsync;
2494 sp->unsync = 1;
2495
2496 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2497}
2498
2499static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2500{
4731d4c7 2501 struct kvm_mmu_page *s;
9cf5cf5a 2502
b67bfe0d 2503 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2504 if (s->unsync)
4731d4c7 2505 continue;
9cf5cf5a
XG
2506 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2507 __kvm_unsync_page(vcpu, s);
4731d4c7 2508 }
4731d4c7
MT
2509}
2510
2511static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2512 bool can_unsync)
2513{
9cf5cf5a 2514 struct kvm_mmu_page *s;
9cf5cf5a
XG
2515 bool need_unsync = false;
2516
b67bfe0d 2517 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2518 if (!can_unsync)
2519 return 1;
2520
9cf5cf5a 2521 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2522 return 1;
9cf5cf5a 2523
9bb4f6b1 2524 if (!s->unsync)
9cf5cf5a 2525 need_unsync = true;
4731d4c7 2526 }
9cf5cf5a
XG
2527 if (need_unsync)
2528 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2529 return 0;
2530}
2531
d555c333 2532static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2533 unsigned pte_access, int level,
c2d0ee46 2534 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2535 bool can_unsync, bool host_writable)
1c4f1fd6 2536{
6e7d0354 2537 u64 spte;
1e73f9dd 2538 int ret = 0;
64d4d521 2539
f2fd125d 2540 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
ce88decf
XG
2541 return 0;
2542
982c2565 2543 spte = PT_PRESENT_MASK;
947da538 2544 if (!speculative)
3201b5d9 2545 spte |= shadow_accessed_mask;
640d9b0d 2546
7b52345e
SY
2547 if (pte_access & ACC_EXEC_MASK)
2548 spte |= shadow_x_mask;
2549 else
2550 spte |= shadow_nx_mask;
49fde340 2551
1c4f1fd6 2552 if (pte_access & ACC_USER_MASK)
7b52345e 2553 spte |= shadow_user_mask;
49fde340 2554
852e3c19 2555 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2556 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2557 if (tdp_enabled)
4b12f0de 2558 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
bf4bea8e 2559 kvm_is_reserved_pfn(pfn));
1c4f1fd6 2560
9bdbba13 2561 if (host_writable)
1403283a 2562 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2563 else
2564 pte_access &= ~ACC_WRITE_MASK;
1403283a 2565
35149e21 2566 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2567
c2288505 2568 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2569
c2193463 2570 /*
7751babd
XG
2571 * Other vcpu creates new sp in the window between
2572 * mapping_level() and acquiring mmu-lock. We can
2573 * allow guest to retry the access, the mapping can
2574 * be fixed if guest refault.
c2193463 2575 */
852e3c19 2576 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2577 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2578 goto done;
38187c83 2579
49fde340 2580 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2581
ecc5589f
MT
2582 /*
2583 * Optimization: for pte sync, if spte was writable the hash
2584 * lookup is unnecessary (and expensive). Write protection
2585 * is responsibility of mmu_get_page / kvm_sync_page.
2586 * Same reasoning can be applied to dirty page accounting.
2587 */
8dae4445 2588 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2589 goto set_pte;
2590
4731d4c7 2591 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2592 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2593 __func__, gfn);
1e73f9dd 2594 ret = 1;
1c4f1fd6 2595 pte_access &= ~ACC_WRITE_MASK;
49fde340 2596 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2597 }
2598 }
2599
9b51a630 2600 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2601 mark_page_dirty(vcpu->kvm, gfn);
9b51a630
KH
2602 spte |= shadow_dirty_mask;
2603 }
1c4f1fd6 2604
38187c83 2605set_pte:
6e7d0354 2606 if (mmu_spte_update(sptep, spte))
b330aa0c 2607 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2608done:
1e73f9dd
MT
2609 return ret;
2610}
2611
d555c333 2612static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2613 unsigned pte_access, int write_fault, int *emulate,
2614 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2615 bool host_writable)
1e73f9dd
MT
2616{
2617 int was_rmapped = 0;
53a27b39 2618 int rmap_count;
1e73f9dd 2619
f7616203
XG
2620 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2621 *sptep, write_fault, gfn);
1e73f9dd 2622
d555c333 2623 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2624 /*
2625 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2626 * the parent of the now unreachable PTE.
2627 */
852e3c19
JR
2628 if (level > PT_PAGE_TABLE_LEVEL &&
2629 !is_large_pte(*sptep)) {
1e73f9dd 2630 struct kvm_mmu_page *child;
d555c333 2631 u64 pte = *sptep;
1e73f9dd
MT
2632
2633 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2634 drop_parent_pte(child, sptep);
3be2264b 2635 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2636 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2637 pgprintk("hfn old %llx new %llx\n",
d555c333 2638 spte_to_pfn(*sptep), pfn);
c3707958 2639 drop_spte(vcpu->kvm, sptep);
91546356 2640 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2641 } else
2642 was_rmapped = 1;
1e73f9dd 2643 }
852e3c19 2644
c2288505
XG
2645 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2646 true, host_writable)) {
1e73f9dd 2647 if (write_fault)
b90a0e6c 2648 *emulate = 1;
77c3913b 2649 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2650 }
1e73f9dd 2651
ce88decf
XG
2652 if (unlikely(is_mmio_spte(*sptep) && emulate))
2653 *emulate = 1;
2654
d555c333 2655 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2656 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2657 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2658 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2659 *sptep, sptep);
d555c333 2660 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2661 ++vcpu->kvm->stat.lpages;
2662
ffb61bb3 2663 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2664 if (!was_rmapped) {
2665 rmap_count = rmap_add(vcpu, sptep, gfn);
2666 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2667 rmap_recycle(vcpu, sptep, gfn);
2668 }
1c4f1fd6 2669 }
cb9aaa30 2670
f3ac1a4b 2671 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2672}
2673
957ed9ef
XG
2674static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2675 bool no_dirty_log)
2676{
2677 struct kvm_memory_slot *slot;
957ed9ef 2678
5d163b1c 2679 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2680 if (!slot)
6c8ee57b 2681 return KVM_PFN_ERR_FAULT;
957ed9ef 2682
037d92dc 2683 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2684}
2685
2686static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2687 struct kvm_mmu_page *sp,
2688 u64 *start, u64 *end)
2689{
2690 struct page *pages[PTE_PREFETCH_NUM];
2691 unsigned access = sp->role.access;
2692 int i, ret;
2693 gfn_t gfn;
2694
2695 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2696 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2697 return -1;
2698
2699 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2700 if (ret <= 0)
2701 return -1;
2702
2703 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2704 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2705 sp->role.level, gfn, page_to_pfn(pages[i]),
2706 true, true);
957ed9ef
XG
2707
2708 return 0;
2709}
2710
2711static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2712 struct kvm_mmu_page *sp, u64 *sptep)
2713{
2714 u64 *spte, *start = NULL;
2715 int i;
2716
2717 WARN_ON(!sp->role.direct);
2718
2719 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2720 spte = sp->spt + i;
2721
2722 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2723 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2724 if (!start)
2725 continue;
2726 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2727 break;
2728 start = NULL;
2729 } else if (!start)
2730 start = spte;
2731 }
2732}
2733
2734static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2735{
2736 struct kvm_mmu_page *sp;
2737
2738 /*
2739 * Since it's no accessed bit on EPT, it's no way to
2740 * distinguish between actually accessed translations
2741 * and prefetched, so disable pte prefetch if EPT is
2742 * enabled.
2743 */
2744 if (!shadow_accessed_mask)
2745 return;
2746
2747 sp = page_header(__pa(sptep));
2748 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2749 return;
2750
2751 __direct_pte_prefetch(vcpu, sp, sptep);
2752}
2753
9f652d21 2754static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2755 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2756 bool prefault)
140754bc 2757{
9f652d21 2758 struct kvm_shadow_walk_iterator iterator;
140754bc 2759 struct kvm_mmu_page *sp;
b90a0e6c 2760 int emulate = 0;
140754bc 2761 gfn_t pseudo_gfn;
6aa8b732 2762
989c6b34
MT
2763 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2764 return 0;
2765
9f652d21 2766 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2767 if (iterator.level == level) {
f7616203 2768 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2769 write, &emulate, level, gfn, pfn,
2770 prefault, map_writable);
957ed9ef 2771 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2772 ++vcpu->stat.pf_fixed;
2773 break;
6aa8b732
AK
2774 }
2775
404381c5 2776 drop_large_spte(vcpu, iterator.sptep);
c3707958 2777 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2778 u64 base_addr = iterator.addr;
2779
2780 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2781 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2782 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2783 iterator.level - 1,
2784 1, ACC_ALL, iterator.sptep);
140754bc 2785
7a1638ce 2786 link_shadow_page(iterator.sptep, sp, true);
9f652d21
AK
2787 }
2788 }
b90a0e6c 2789 return emulate;
6aa8b732
AK
2790}
2791
77db5cbd 2792static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2793{
77db5cbd
HY
2794 siginfo_t info;
2795
2796 info.si_signo = SIGBUS;
2797 info.si_errno = 0;
2798 info.si_code = BUS_MCEERR_AR;
2799 info.si_addr = (void __user *)address;
2800 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2801
77db5cbd 2802 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2803}
2804
d7c55201 2805static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2806{
4d8b81ab
XG
2807 /*
2808 * Do not cache the mmio info caused by writing the readonly gfn
2809 * into the spte otherwise read access on readonly gfn also can
2810 * caused mmio page fault and treat it as mmio access.
2811 * Return 1 to tell kvm to emulate it.
2812 */
2813 if (pfn == KVM_PFN_ERR_RO_FAULT)
2814 return 1;
2815
e6c1502b 2816 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2817 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2818 return 0;
d7c55201 2819 }
edba23e5 2820
d7c55201 2821 return -EFAULT;
bf998156
HY
2822}
2823
936a5fe6
AA
2824static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2825 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2826{
2827 pfn_t pfn = *pfnp;
2828 gfn_t gfn = *gfnp;
2829 int level = *levelp;
2830
2831 /*
2832 * Check if it's a transparent hugepage. If this would be an
2833 * hugetlbfs page, level wouldn't be set to
2834 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2835 * here.
2836 */
bf4bea8e 2837 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6
AA
2838 level == PT_PAGE_TABLE_LEVEL &&
2839 PageTransCompound(pfn_to_page(pfn)) &&
2840 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2841 unsigned long mask;
2842 /*
2843 * mmu_notifier_retry was successful and we hold the
2844 * mmu_lock here, so the pmd can't become splitting
2845 * from under us, and in turn
2846 * __split_huge_page_refcount() can't run from under
2847 * us and we can safely transfer the refcount from
2848 * PG_tail to PG_head as we switch the pfn to tail to
2849 * head.
2850 */
2851 *levelp = level = PT_DIRECTORY_LEVEL;
2852 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2853 VM_BUG_ON((gfn & mask) != (pfn & mask));
2854 if (pfn & mask) {
2855 gfn &= ~mask;
2856 *gfnp = gfn;
2857 kvm_release_pfn_clean(pfn);
2858 pfn &= ~mask;
c3586667 2859 kvm_get_pfn(pfn);
936a5fe6
AA
2860 *pfnp = pfn;
2861 }
2862 }
2863}
2864
d7c55201
XG
2865static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2866 pfn_t pfn, unsigned access, int *ret_val)
2867{
2868 bool ret = true;
2869
2870 /* The pfn is invalid, report the error! */
81c52c56 2871 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2872 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2873 goto exit;
2874 }
2875
ce88decf 2876 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2877 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2878
2879 ret = false;
2880exit:
2881 return ret;
2882}
2883
e5552fd2 2884static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2885{
1c118b82
XG
2886 /*
2887 * Do not fix the mmio spte with invalid generation number which
2888 * need to be updated by slow page fault path.
2889 */
2890 if (unlikely(error_code & PFERR_RSVD_MASK))
2891 return false;
2892
c7ba5b48
XG
2893 /*
2894 * #PF can be fast only if the shadow page table is present and it
2895 * is caused by write-protect, that means we just need change the
2896 * W bit of the spte which can be done out of mmu-lock.
2897 */
2898 if (!(error_code & PFERR_PRESENT_MASK) ||
2899 !(error_code & PFERR_WRITE_MASK))
2900 return false;
2901
2902 return true;
2903}
2904
2905static bool
92a476cb
XG
2906fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2907 u64 *sptep, u64 spte)
c7ba5b48 2908{
c7ba5b48
XG
2909 gfn_t gfn;
2910
2911 WARN_ON(!sp->role.direct);
2912
2913 /*
2914 * The gfn of direct spte is stable since it is calculated
2915 * by sp->gfn.
2916 */
2917 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2918
9b51a630
KH
2919 /*
2920 * Theoretically we could also set dirty bit (and flush TLB) here in
2921 * order to eliminate unnecessary PML logging. See comments in
2922 * set_spte. But fast_page_fault is very unlikely to happen with PML
2923 * enabled, so we do not do this. This might result in the same GPA
2924 * to be logged in PML buffer again when the write really happens, and
2925 * eventually to be called by mark_page_dirty twice. But it's also no
2926 * harm. This also avoids the TLB flush needed after setting dirty bit
2927 * so non-PML cases won't be impacted.
2928 *
2929 * Compare with set_spte where instead shadow_dirty_mask is set.
2930 */
c7ba5b48
XG
2931 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2932 mark_page_dirty(vcpu->kvm, gfn);
2933
2934 return true;
2935}
2936
2937/*
2938 * Return value:
2939 * - true: let the vcpu to access on the same address again.
2940 * - false: let the real page fault path to fix it.
2941 */
2942static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2943 u32 error_code)
2944{
2945 struct kvm_shadow_walk_iterator iterator;
92a476cb 2946 struct kvm_mmu_page *sp;
c7ba5b48
XG
2947 bool ret = false;
2948 u64 spte = 0ull;
2949
37f6a4e2
MT
2950 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2951 return false;
2952
e5552fd2 2953 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2954 return false;
2955
2956 walk_shadow_page_lockless_begin(vcpu);
2957 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2958 if (!is_shadow_present_pte(spte) || iterator.level < level)
2959 break;
2960
2961 /*
2962 * If the mapping has been changed, let the vcpu fault on the
2963 * same address again.
2964 */
2965 if (!is_rmap_spte(spte)) {
2966 ret = true;
2967 goto exit;
2968 }
2969
92a476cb
XG
2970 sp = page_header(__pa(iterator.sptep));
2971 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2972 goto exit;
2973
2974 /*
2975 * Check if it is a spurious fault caused by TLB lazily flushed.
2976 *
2977 * Need not check the access of upper level table entries since
2978 * they are always ACC_ALL.
2979 */
2980 if (is_writable_pte(spte)) {
2981 ret = true;
2982 goto exit;
2983 }
2984
2985 /*
2986 * Currently, to simplify the code, only the spte write-protected
2987 * by dirty-log can be fast fixed.
2988 */
2989 if (!spte_is_locklessly_modifiable(spte))
2990 goto exit;
2991
c126d94f
XG
2992 /*
2993 * Do not fix write-permission on the large spte since we only dirty
2994 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2995 * that means other pages are missed if its slot is dirty-logged.
2996 *
2997 * Instead, we let the slow page fault path create a normal spte to
2998 * fix the access.
2999 *
3000 * See the comments in kvm_arch_commit_memory_region().
3001 */
3002 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3003 goto exit;
3004
c7ba5b48
XG
3005 /*
3006 * Currently, fast page fault only works for direct mapping since
3007 * the gfn is not stable for indirect shadow page.
3008 * See Documentation/virtual/kvm/locking.txt to get more detail.
3009 */
92a476cb 3010 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 3011exit:
a72faf25
XG
3012 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3013 spte, ret);
c7ba5b48
XG
3014 walk_shadow_page_lockless_end(vcpu);
3015
3016 return ret;
3017}
3018
78b2c54a 3019static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 3020 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 3021static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3022
c7ba5b48
XG
3023static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3024 gfn_t gfn, bool prefault)
10589a46
MT
3025{
3026 int r;
852e3c19 3027 int level;
936a5fe6 3028 int force_pt_level;
35149e21 3029 pfn_t pfn;
e930bffe 3030 unsigned long mmu_seq;
c7ba5b48 3031 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3032
936a5fe6
AA
3033 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3034 if (likely(!force_pt_level)) {
3035 level = mapping_level(vcpu, gfn);
3036 /*
3037 * This path builds a PAE pagetable - so we can map
3038 * 2mb pages at maximum. Therefore check if the level
3039 * is larger than that.
3040 */
3041 if (level > PT_DIRECTORY_LEVEL)
3042 level = PT_DIRECTORY_LEVEL;
852e3c19 3043
936a5fe6
AA
3044 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3045 } else
3046 level = PT_PAGE_TABLE_LEVEL;
05da4558 3047
c7ba5b48
XG
3048 if (fast_page_fault(vcpu, v, level, error_code))
3049 return 0;
3050
e930bffe 3051 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3052 smp_rmb();
060c2abe 3053
78b2c54a 3054 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3055 return 0;
aaee2c94 3056
d7c55201
XG
3057 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3058 return r;
d196e343 3059
aaee2c94 3060 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3061 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3062 goto out_unlock;
450e0b41 3063 make_mmu_pages_available(vcpu);
936a5fe6
AA
3064 if (likely(!force_pt_level))
3065 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
3066 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3067 prefault);
aaee2c94
MT
3068 spin_unlock(&vcpu->kvm->mmu_lock);
3069
aaee2c94 3070
10589a46 3071 return r;
e930bffe
AA
3072
3073out_unlock:
3074 spin_unlock(&vcpu->kvm->mmu_lock);
3075 kvm_release_pfn_clean(pfn);
3076 return 0;
10589a46
MT
3077}
3078
3079
17ac10ad
AK
3080static void mmu_free_roots(struct kvm_vcpu *vcpu)
3081{
3082 int i;
4db35314 3083 struct kvm_mmu_page *sp;
d98ba053 3084 LIST_HEAD(invalid_list);
17ac10ad 3085
ad312c7c 3086 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3087 return;
35af577a 3088
81407ca5
JR
3089 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3090 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3091 vcpu->arch.mmu.direct_map)) {
ad312c7c 3092 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3093
35af577a 3094 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3095 sp = page_header(root);
3096 --sp->root_count;
d98ba053
XG
3097 if (!sp->root_count && sp->role.invalid) {
3098 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3099 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3100 }
aaee2c94 3101 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3102 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3103 return;
3104 }
35af577a
GN
3105
3106 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3107 for (i = 0; i < 4; ++i) {
ad312c7c 3108 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3109
417726a3 3110 if (root) {
417726a3 3111 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3112 sp = page_header(root);
3113 --sp->root_count;
2e53d63a 3114 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3115 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3116 &invalid_list);
417726a3 3117 }
ad312c7c 3118 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3119 }
d98ba053 3120 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3121 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3122 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3123}
3124
8986ecc0
MT
3125static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3126{
3127 int ret = 0;
3128
3129 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3130 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3131 ret = 1;
3132 }
3133
3134 return ret;
3135}
3136
651dd37a
JR
3137static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3138{
3139 struct kvm_mmu_page *sp;
7ebaf15e 3140 unsigned i;
651dd37a
JR
3141
3142 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3143 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3144 make_mmu_pages_available(vcpu);
651dd37a
JR
3145 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3146 1, ACC_ALL, NULL);
3147 ++sp->root_count;
3148 spin_unlock(&vcpu->kvm->mmu_lock);
3149 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3150 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3151 for (i = 0; i < 4; ++i) {
3152 hpa_t root = vcpu->arch.mmu.pae_root[i];
3153
fa4a2c08 3154 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3155 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3156 make_mmu_pages_available(vcpu);
649497d1
AK
3157 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3158 i << 30,
651dd37a
JR
3159 PT32_ROOT_LEVEL, 1, ACC_ALL,
3160 NULL);
3161 root = __pa(sp->spt);
3162 ++sp->root_count;
3163 spin_unlock(&vcpu->kvm->mmu_lock);
3164 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3165 }
6292757f 3166 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3167 } else
3168 BUG();
3169
3170 return 0;
3171}
3172
3173static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3174{
4db35314 3175 struct kvm_mmu_page *sp;
81407ca5
JR
3176 u64 pdptr, pm_mask;
3177 gfn_t root_gfn;
3178 int i;
3bb65a22 3179
5777ed34 3180 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3181
651dd37a
JR
3182 if (mmu_check_root(vcpu, root_gfn))
3183 return 1;
3184
3185 /*
3186 * Do we shadow a long mode page table? If so we need to
3187 * write-protect the guests page table root.
3188 */
3189 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3190 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3191
fa4a2c08 3192 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3193
8facbbff 3194 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3195 make_mmu_pages_available(vcpu);
651dd37a
JR
3196 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3197 0, ACC_ALL, NULL);
4db35314
AK
3198 root = __pa(sp->spt);
3199 ++sp->root_count;
8facbbff 3200 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3201 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3202 return 0;
17ac10ad 3203 }
f87f9288 3204
651dd37a
JR
3205 /*
3206 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3207 * or a PAE 3-level page table. In either case we need to be aware that
3208 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3209 */
81407ca5
JR
3210 pm_mask = PT_PRESENT_MASK;
3211 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3212 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3213
17ac10ad 3214 for (i = 0; i < 4; ++i) {
ad312c7c 3215 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3216
fa4a2c08 3217 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3218 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3219 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3220 if (!is_present_gpte(pdptr)) {
ad312c7c 3221 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3222 continue;
3223 }
6de4f3ad 3224 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3225 if (mmu_check_root(vcpu, root_gfn))
3226 return 1;
5a7388c2 3227 }
8facbbff 3228 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3229 make_mmu_pages_available(vcpu);
4db35314 3230 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3231 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3232 ACC_ALL, NULL);
4db35314
AK
3233 root = __pa(sp->spt);
3234 ++sp->root_count;
8facbbff
AK
3235 spin_unlock(&vcpu->kvm->mmu_lock);
3236
81407ca5 3237 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3238 }
6292757f 3239 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3240
3241 /*
3242 * If we shadow a 32 bit page table with a long mode page
3243 * table we enter this path.
3244 */
3245 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3246 if (vcpu->arch.mmu.lm_root == NULL) {
3247 /*
3248 * The additional page necessary for this is only
3249 * allocated on demand.
3250 */
3251
3252 u64 *lm_root;
3253
3254 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3255 if (lm_root == NULL)
3256 return 1;
3257
3258 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3259
3260 vcpu->arch.mmu.lm_root = lm_root;
3261 }
3262
3263 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3264 }
3265
8986ecc0 3266 return 0;
17ac10ad
AK
3267}
3268
651dd37a
JR
3269static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3270{
3271 if (vcpu->arch.mmu.direct_map)
3272 return mmu_alloc_direct_roots(vcpu);
3273 else
3274 return mmu_alloc_shadow_roots(vcpu);
3275}
3276
0ba73cda
MT
3277static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3278{
3279 int i;
3280 struct kvm_mmu_page *sp;
3281
81407ca5
JR
3282 if (vcpu->arch.mmu.direct_map)
3283 return;
3284
0ba73cda
MT
3285 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3286 return;
6903074c 3287
56f17dd3 3288 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3289 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3290 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3291 hpa_t root = vcpu->arch.mmu.root_hpa;
3292 sp = page_header(root);
3293 mmu_sync_children(vcpu, sp);
0375f7fa 3294 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3295 return;
3296 }
3297 for (i = 0; i < 4; ++i) {
3298 hpa_t root = vcpu->arch.mmu.pae_root[i];
3299
8986ecc0 3300 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3301 root &= PT64_BASE_ADDR_MASK;
3302 sp = page_header(root);
3303 mmu_sync_children(vcpu, sp);
3304 }
3305 }
0375f7fa 3306 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3307}
3308
3309void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3310{
3311 spin_lock(&vcpu->kvm->mmu_lock);
3312 mmu_sync_roots(vcpu);
6cffe8ca 3313 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3314}
bfd0a56b 3315EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3316
1871c602 3317static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3318 u32 access, struct x86_exception *exception)
6aa8b732 3319{
ab9ae313
AK
3320 if (exception)
3321 exception->error_code = 0;
6aa8b732
AK
3322 return vaddr;
3323}
3324
6539e738 3325static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3326 u32 access,
3327 struct x86_exception *exception)
6539e738 3328{
ab9ae313
AK
3329 if (exception)
3330 exception->error_code = 0;
54987b7a 3331 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3332}
3333
ce88decf
XG
3334static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3335{
3336 if (direct)
3337 return vcpu_match_mmio_gpa(vcpu, addr);
3338
3339 return vcpu_match_mmio_gva(vcpu, addr);
3340}
3341
3342
3343/*
3344 * On direct hosts, the last spte is only allows two states
3345 * for mmio page fault:
3346 * - It is the mmio spte
3347 * - It is zapped or it is being zapped.
3348 *
3349 * This function completely checks the spte when the last spte
3350 * is not the mmio spte.
3351 */
3352static bool check_direct_spte_mmio_pf(u64 spte)
3353{
3354 return __check_direct_spte_mmio_pf(spte);
3355}
3356
3357static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3358{
3359 struct kvm_shadow_walk_iterator iterator;
3360 u64 spte = 0ull;
3361
37f6a4e2
MT
3362 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3363 return spte;
3364
ce88decf
XG
3365 walk_shadow_page_lockless_begin(vcpu);
3366 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3367 if (!is_shadow_present_pte(spte))
3368 break;
3369 walk_shadow_page_lockless_end(vcpu);
3370
3371 return spte;
3372}
3373
ce88decf
XG
3374int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3375{
3376 u64 spte;
3377
3378 if (quickly_check_mmio_pf(vcpu, addr, direct))
b37fbea6 3379 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3380
3381 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3382
3383 if (is_mmio_spte(spte)) {
3384 gfn_t gfn = get_mmio_spte_gfn(spte);
3385 unsigned access = get_mmio_spte_access(spte);
3386
f8f55942
XG
3387 if (!check_mmio_spte(vcpu->kvm, spte))
3388 return RET_MMIO_PF_INVALID;
3389
ce88decf
XG
3390 if (direct)
3391 addr = 0;
4f022648
XG
3392
3393 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3394 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3395 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3396 }
3397
3398 /*
3399 * It's ok if the gva is remapped by other cpus on shadow guest,
3400 * it's a BUG if the gfn is not a mmio page.
3401 */
3402 if (direct && !check_direct_spte_mmio_pf(spte))
b37fbea6 3403 return RET_MMIO_PF_BUG;
ce88decf
XG
3404
3405 /*
3406 * If the page table is zapped by other cpus, let CPU fault again on
3407 * the address.
3408 */
b37fbea6 3409 return RET_MMIO_PF_RETRY;
ce88decf
XG
3410}
3411EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3412
3413static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3414 u32 error_code, bool direct)
3415{
3416 int ret;
3417
3418 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
b37fbea6 3419 WARN_ON(ret == RET_MMIO_PF_BUG);
ce88decf
XG
3420 return ret;
3421}
3422
6aa8b732 3423static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3424 u32 error_code, bool prefault)
6aa8b732 3425{
e833240f 3426 gfn_t gfn;
e2dec939 3427 int r;
6aa8b732 3428
b8688d51 3429 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3430
f8f55942
XG
3431 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3432 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3433
3434 if (likely(r != RET_MMIO_PF_INVALID))
3435 return r;
3436 }
ce88decf 3437
e2dec939
AK
3438 r = mmu_topup_memory_caches(vcpu);
3439 if (r)
3440 return r;
714b93da 3441
fa4a2c08 3442 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3443
e833240f 3444 gfn = gva >> PAGE_SHIFT;
6aa8b732 3445
e833240f 3446 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3447 error_code, gfn, prefault);
6aa8b732
AK
3448}
3449
7e1fbeac 3450static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3451{
3452 struct kvm_arch_async_pf arch;
fb67e14f 3453
7c90705b 3454 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3455 arch.gfn = gfn;
c4806acd 3456 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3457 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3458
e0ead41a 3459 return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
af585b92
GN
3460}
3461
3462static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3463{
3464 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3465 kvm_event_needs_reinjection(vcpu)))
3466 return false;
3467
3468 return kvm_x86_ops->interrupt_allowed(vcpu);
3469}
3470
78b2c54a 3471static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3472 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3473{
3474 bool async;
3475
612819c3 3476 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3477
3478 if (!async)
3479 return false; /* *pfn has correct page already */
3480
78b2c54a 3481 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3482 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3483 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3484 trace_kvm_async_pf_doublefault(gva, gfn);
3485 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3486 return true;
3487 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3488 return true;
3489 }
3490
612819c3 3491 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3492
3493 return false;
3494}
3495
56028d08 3496static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3497 bool prefault)
fb72d167 3498{
35149e21 3499 pfn_t pfn;
fb72d167 3500 int r;
852e3c19 3501 int level;
936a5fe6 3502 int force_pt_level;
05da4558 3503 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3504 unsigned long mmu_seq;
612819c3
MT
3505 int write = error_code & PFERR_WRITE_MASK;
3506 bool map_writable;
fb72d167 3507
fa4a2c08 3508 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3509
f8f55942
XG
3510 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3511 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3512
3513 if (likely(r != RET_MMIO_PF_INVALID))
3514 return r;
3515 }
ce88decf 3516
fb72d167
JR
3517 r = mmu_topup_memory_caches(vcpu);
3518 if (r)
3519 return r;
3520
936a5fe6
AA
3521 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3522 if (likely(!force_pt_level)) {
3523 level = mapping_level(vcpu, gfn);
3524 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3525 } else
3526 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3527
c7ba5b48
XG
3528 if (fast_page_fault(vcpu, gpa, level, error_code))
3529 return 0;
3530
e930bffe 3531 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3532 smp_rmb();
af585b92 3533
78b2c54a 3534 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3535 return 0;
3536
d7c55201
XG
3537 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3538 return r;
3539
fb72d167 3540 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3541 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3542 goto out_unlock;
450e0b41 3543 make_mmu_pages_available(vcpu);
936a5fe6
AA
3544 if (likely(!force_pt_level))
3545 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3546 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3547 level, gfn, pfn, prefault);
fb72d167 3548 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3549
3550 return r;
e930bffe
AA
3551
3552out_unlock:
3553 spin_unlock(&vcpu->kvm->mmu_lock);
3554 kvm_release_pfn_clean(pfn);
3555 return 0;
fb72d167
JR
3556}
3557
8a3c1a33
PB
3558static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3559 struct kvm_mmu *context)
6aa8b732 3560{
6aa8b732 3561 context->page_fault = nonpaging_page_fault;
6aa8b732 3562 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3563 context->sync_page = nonpaging_sync_page;
a7052897 3564 context->invlpg = nonpaging_invlpg;
0f53b5b1 3565 context->update_pte = nonpaging_update_pte;
cea0f0e7 3566 context->root_level = 0;
6aa8b732 3567 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3568 context->root_hpa = INVALID_PAGE;
c5a78f2b 3569 context->direct_map = true;
2d48a985 3570 context->nx = false;
6aa8b732
AK
3571}
3572
d8d173da 3573void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3574{
cea0f0e7 3575 mmu_free_roots(vcpu);
6aa8b732
AK
3576}
3577
5777ed34
JR
3578static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3579{
9f8fe504 3580 return kvm_read_cr3(vcpu);
5777ed34
JR
3581}
3582
6389ee94
AK
3583static void inject_page_fault(struct kvm_vcpu *vcpu,
3584 struct x86_exception *fault)
6aa8b732 3585{
6389ee94 3586 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3587}
3588
f2fd125d
XG
3589static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3590 unsigned access, int *nr_present)
ce88decf
XG
3591{
3592 if (unlikely(is_mmio_spte(*sptep))) {
3593 if (gfn != get_mmio_spte_gfn(*sptep)) {
3594 mmu_spte_clear_no_track(sptep);
3595 return true;
3596 }
3597
3598 (*nr_present)++;
f2fd125d 3599 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
3600 return true;
3601 }
3602
3603 return false;
3604}
3605
6fd01b71
AK
3606static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3607{
3608 unsigned index;
3609
3610 index = level - 1;
3611 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3612 return mmu->last_pte_bitmap & (1 << index);
3613}
3614
37406aaa
NHE
3615#define PTTYPE_EPT 18 /* arbitrary */
3616#define PTTYPE PTTYPE_EPT
3617#include "paging_tmpl.h"
3618#undef PTTYPE
3619
6aa8b732
AK
3620#define PTTYPE 64
3621#include "paging_tmpl.h"
3622#undef PTTYPE
3623
3624#define PTTYPE 32
3625#include "paging_tmpl.h"
3626#undef PTTYPE
3627
52fde8df 3628static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3629 struct kvm_mmu *context)
82725b20 3630{
82725b20
DE
3631 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3632 u64 exb_bit_rsvd = 0;
5f7dde7b 3633 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3634 u64 nonleaf_bit8_rsvd = 0;
82725b20 3635
25d92081
YZ
3636 context->bad_mt_xwr = 0;
3637
2d48a985 3638 if (!context->nx)
82725b20 3639 exb_bit_rsvd = rsvd_bits(63, 63);
5f7dde7b
NA
3640 if (!guest_cpuid_has_gbpages(vcpu))
3641 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3642
3643 /*
3644 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3645 * leaf entries) on AMD CPUs only.
3646 */
3647 if (guest_cpuid_is_amd(vcpu))
3648 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3649
4d6931c3 3650 switch (context->root_level) {
82725b20
DE
3651 case PT32_ROOT_LEVEL:
3652 /* no rsvd bits for 2 level 4K page table entries */
3653 context->rsvd_bits_mask[0][1] = 0;
3654 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3655 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3656
3657 if (!is_pse(vcpu)) {
3658 context->rsvd_bits_mask[1][1] = 0;
3659 break;
3660 }
3661
82725b20
DE
3662 if (is_cpuid_PSE36())
3663 /* 36bits PSE 4MB page */
3664 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3665 else
3666 /* 32 bits PSE 4MB page */
3667 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3668 break;
3669 case PT32E_ROOT_LEVEL:
20c466b5
DE
3670 context->rsvd_bits_mask[0][2] =
3671 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3672 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3673 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3674 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3675 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3676 rsvd_bits(maxphyaddr, 62); /* PTE */
3677 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3678 rsvd_bits(maxphyaddr, 62) |
3679 rsvd_bits(13, 20); /* large page */
f815bce8 3680 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3681 break;
3682 case PT64_ROOT_LEVEL:
3683 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
a0c0feb5 3684 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
82725b20 3685 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
a0c0feb5 3686 nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
82725b20 3687 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3688 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3689 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3690 rsvd_bits(maxphyaddr, 51);
3691 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980 3692 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3693 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3694 rsvd_bits(13, 29);
82725b20 3695 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3696 rsvd_bits(maxphyaddr, 51) |
3697 rsvd_bits(13, 20); /* large page */
f815bce8 3698 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3699 break;
3700 }
3701}
3702
25d92081
YZ
3703static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3704 struct kvm_mmu *context, bool execonly)
3705{
3706 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3707 int pte;
3708
3709 context->rsvd_bits_mask[0][3] =
3710 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3711 context->rsvd_bits_mask[0][2] =
3712 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3713 context->rsvd_bits_mask[0][1] =
3714 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3715 context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3716
3717 /* large page */
3718 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3719 context->rsvd_bits_mask[1][2] =
3720 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3721 context->rsvd_bits_mask[1][1] =
3722 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3723 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3724
3725 for (pte = 0; pte < 64; pte++) {
3726 int rwx_bits = pte & 7;
3727 int mt = pte >> 3;
3728 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3729 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3730 (rwx_bits == 0x4 && !execonly))
3731 context->bad_mt_xwr |= (1ull << pte);
3732 }
3733}
3734
97ec8c06 3735void update_permission_bitmask(struct kvm_vcpu *vcpu,
25d92081 3736 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3737{
3738 unsigned bit, byte, pfec;
3739 u8 map;
66386ade 3740 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3741
66386ade 3742 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3743 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3744 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3745 pfec = byte << 1;
3746 map = 0;
3747 wf = pfec & PFERR_WRITE_MASK;
3748 uf = pfec & PFERR_USER_MASK;
3749 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3750 /*
3751 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3752 * subject to SMAP restrictions, and cleared otherwise. The
3753 * bit is only meaningful if the SMAP bit is set in CR4.
3754 */
3755 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3756 for (bit = 0; bit < 8; ++bit) {
3757 x = bit & ACC_EXEC_MASK;
3758 w = bit & ACC_WRITE_MASK;
3759 u = bit & ACC_USER_MASK;
3760
25d92081
YZ
3761 if (!ept) {
3762 /* Not really needed: !nx will cause pte.nx to fault */
3763 x |= !mmu->nx;
3764 /* Allow supervisor writes if !cr0.wp */
3765 w |= !is_write_protection(vcpu) && !uf;
3766 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3767 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3768
3769 /*
3770 * SMAP:kernel-mode data accesses from user-mode
3771 * mappings should fault. A fault is considered
3772 * as a SMAP violation if all of the following
3773 * conditions are ture:
3774 * - X86_CR4_SMAP is set in CR4
3775 * - An user page is accessed
3776 * - Page fault in kernel mode
3777 * - if CPL = 3 or X86_EFLAGS_AC is clear
3778 *
3779 * Here, we cover the first three conditions.
3780 * The fourth is computed dynamically in
3781 * permission_fault() and is in smapf.
3782 *
3783 * Also, SMAP does not affect instruction
3784 * fetches, add the !ff check here to make it
3785 * clearer.
3786 */
3787 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3788 } else
3789 /* Not really needed: no U/S accesses on ept */
3790 u = 1;
97d64b78 3791
97ec8c06
FW
3792 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3793 (smapf && smap);
97d64b78
AK
3794 map |= fault << bit;
3795 }
3796 mmu->permissions[byte] = map;
3797 }
3798}
3799
6fd01b71
AK
3800static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3801{
3802 u8 map;
3803 unsigned level, root_level = mmu->root_level;
3804 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3805
3806 if (root_level == PT32E_ROOT_LEVEL)
3807 --root_level;
3808 /* PT_PAGE_TABLE_LEVEL always terminates */
3809 map = 1 | (1 << ps_set_index);
3810 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3811 if (level <= PT_PDPE_LEVEL
3812 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3813 map |= 1 << (ps_set_index | (level - 1));
3814 }
3815 mmu->last_pte_bitmap = map;
3816}
3817
8a3c1a33
PB
3818static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3819 struct kvm_mmu *context,
3820 int level)
6aa8b732 3821{
2d48a985 3822 context->nx = is_nx(vcpu);
4d6931c3 3823 context->root_level = level;
2d48a985 3824
4d6931c3 3825 reset_rsvds_bits_mask(vcpu, context);
25d92081 3826 update_permission_bitmask(vcpu, context, false);
6fd01b71 3827 update_last_pte_bitmap(vcpu, context);
6aa8b732 3828
fa4a2c08 3829 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 3830 context->page_fault = paging64_page_fault;
6aa8b732 3831 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3832 context->sync_page = paging64_sync_page;
a7052897 3833 context->invlpg = paging64_invlpg;
0f53b5b1 3834 context->update_pte = paging64_update_pte;
17ac10ad 3835 context->shadow_root_level = level;
17c3ba9d 3836 context->root_hpa = INVALID_PAGE;
c5a78f2b 3837 context->direct_map = false;
6aa8b732
AK
3838}
3839
8a3c1a33
PB
3840static void paging64_init_context(struct kvm_vcpu *vcpu,
3841 struct kvm_mmu *context)
17ac10ad 3842{
8a3c1a33 3843 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3844}
3845
8a3c1a33
PB
3846static void paging32_init_context(struct kvm_vcpu *vcpu,
3847 struct kvm_mmu *context)
6aa8b732 3848{
2d48a985 3849 context->nx = false;
4d6931c3 3850 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3851
4d6931c3 3852 reset_rsvds_bits_mask(vcpu, context);
25d92081 3853 update_permission_bitmask(vcpu, context, false);
6fd01b71 3854 update_last_pte_bitmap(vcpu, context);
6aa8b732 3855
6aa8b732 3856 context->page_fault = paging32_page_fault;
6aa8b732 3857 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3858 context->sync_page = paging32_sync_page;
a7052897 3859 context->invlpg = paging32_invlpg;
0f53b5b1 3860 context->update_pte = paging32_update_pte;
6aa8b732 3861 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3862 context->root_hpa = INVALID_PAGE;
c5a78f2b 3863 context->direct_map = false;
6aa8b732
AK
3864}
3865
8a3c1a33
PB
3866static void paging32E_init_context(struct kvm_vcpu *vcpu,
3867 struct kvm_mmu *context)
6aa8b732 3868{
8a3c1a33 3869 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3870}
3871
8a3c1a33 3872static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3873{
ad896af0 3874 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 3875
c445f8ef 3876 context->base_role.word = 0;
fb72d167 3877 context->page_fault = tdp_page_fault;
e8bc217a 3878 context->sync_page = nonpaging_sync_page;
a7052897 3879 context->invlpg = nonpaging_invlpg;
0f53b5b1 3880 context->update_pte = nonpaging_update_pte;
67253af5 3881 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3882 context->root_hpa = INVALID_PAGE;
c5a78f2b 3883 context->direct_map = true;
1c97f0a0 3884 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3885 context->get_cr3 = get_cr3;
e4e517b4 3886 context->get_pdptr = kvm_pdptr_read;
cb659db8 3887 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3888
3889 if (!is_paging(vcpu)) {
2d48a985 3890 context->nx = false;
fb72d167
JR
3891 context->gva_to_gpa = nonpaging_gva_to_gpa;
3892 context->root_level = 0;
3893 } else if (is_long_mode(vcpu)) {
2d48a985 3894 context->nx = is_nx(vcpu);
fb72d167 3895 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3896 reset_rsvds_bits_mask(vcpu, context);
3897 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3898 } else if (is_pae(vcpu)) {
2d48a985 3899 context->nx = is_nx(vcpu);
fb72d167 3900 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3901 reset_rsvds_bits_mask(vcpu, context);
3902 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3903 } else {
2d48a985 3904 context->nx = false;
fb72d167 3905 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3906 reset_rsvds_bits_mask(vcpu, context);
3907 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3908 }
3909
25d92081 3910 update_permission_bitmask(vcpu, context, false);
6fd01b71 3911 update_last_pte_bitmap(vcpu, context);
fb72d167
JR
3912}
3913
ad896af0 3914void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 3915{
411c588d 3916 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
ad896af0
PB
3917 struct kvm_mmu *context = &vcpu->arch.mmu;
3918
fa4a2c08 3919 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
3920
3921 if (!is_paging(vcpu))
8a3c1a33 3922 nonpaging_init_context(vcpu, context);
a9058ecd 3923 else if (is_long_mode(vcpu))
8a3c1a33 3924 paging64_init_context(vcpu, context);
6aa8b732 3925 else if (is_pae(vcpu))
8a3c1a33 3926 paging32E_init_context(vcpu, context);
6aa8b732 3927 else
8a3c1a33 3928 paging32_init_context(vcpu, context);
a770f6f2 3929
ad896af0
PB
3930 context->base_role.nxe = is_nx(vcpu);
3931 context->base_role.cr4_pae = !!is_pae(vcpu);
3932 context->base_role.cr0_wp = is_write_protection(vcpu);
3933 context->base_role.smep_andnot_wp
411c588d 3934 = smep && !is_write_protection(vcpu);
52fde8df
JR
3935}
3936EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3937
ad896af0 3938void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 3939{
ad896af0
PB
3940 struct kvm_mmu *context = &vcpu->arch.mmu;
3941
fa4a2c08 3942 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
3943
3944 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3945
3946 context->nx = true;
155a97a3
NHE
3947 context->page_fault = ept_page_fault;
3948 context->gva_to_gpa = ept_gva_to_gpa;
3949 context->sync_page = ept_sync_page;
3950 context->invlpg = ept_invlpg;
3951 context->update_pte = ept_update_pte;
155a97a3
NHE
3952 context->root_level = context->shadow_root_level;
3953 context->root_hpa = INVALID_PAGE;
3954 context->direct_map = false;
3955
3956 update_permission_bitmask(vcpu, context, true);
3957 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
155a97a3
NHE
3958}
3959EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3960
8a3c1a33 3961static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 3962{
ad896af0
PB
3963 struct kvm_mmu *context = &vcpu->arch.mmu;
3964
3965 kvm_init_shadow_mmu(vcpu);
3966 context->set_cr3 = kvm_x86_ops->set_cr3;
3967 context->get_cr3 = get_cr3;
3968 context->get_pdptr = kvm_pdptr_read;
3969 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
3970}
3971
8a3c1a33 3972static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
3973{
3974 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3975
3976 g_context->get_cr3 = get_cr3;
e4e517b4 3977 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3978 g_context->inject_page_fault = kvm_inject_page_fault;
3979
3980 /*
3981 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3982 * translation of l2_gpa to l1_gpa addresses is done using the
3983 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3984 * functions between mmu and nested_mmu are swapped.
3985 */
3986 if (!is_paging(vcpu)) {
2d48a985 3987 g_context->nx = false;
02f59dc9
JR
3988 g_context->root_level = 0;
3989 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3990 } else if (is_long_mode(vcpu)) {
2d48a985 3991 g_context->nx = is_nx(vcpu);
02f59dc9 3992 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3993 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3994 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3995 } else if (is_pae(vcpu)) {
2d48a985 3996 g_context->nx = is_nx(vcpu);
02f59dc9 3997 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3998 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3999 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4000 } else {
2d48a985 4001 g_context->nx = false;
02f59dc9 4002 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4003 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4004 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4005 }
4006
25d92081 4007 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 4008 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
4009}
4010
8a3c1a33 4011static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4012{
02f59dc9 4013 if (mmu_is_nested(vcpu))
e0c6db3e 4014 init_kvm_nested_mmu(vcpu);
02f59dc9 4015 else if (tdp_enabled)
e0c6db3e 4016 init_kvm_tdp_mmu(vcpu);
fb72d167 4017 else
e0c6db3e 4018 init_kvm_softmmu(vcpu);
fb72d167
JR
4019}
4020
8a3c1a33 4021void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4022{
95f93af4 4023 kvm_mmu_unload(vcpu);
8a3c1a33 4024 init_kvm_mmu(vcpu);
17c3ba9d 4025}
8668a3c4 4026EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4027
4028int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4029{
714b93da
AK
4030 int r;
4031
e2dec939 4032 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4033 if (r)
4034 goto out;
8986ecc0 4035 r = mmu_alloc_roots(vcpu);
e2858b4a 4036 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4037 if (r)
4038 goto out;
3662cb1c 4039 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4040 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4041out:
4042 return r;
6aa8b732 4043}
17c3ba9d
AK
4044EXPORT_SYMBOL_GPL(kvm_mmu_load);
4045
4046void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4047{
4048 mmu_free_roots(vcpu);
95f93af4 4049 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4050}
4b16184c 4051EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4052
0028425f 4053static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4054 struct kvm_mmu_page *sp, u64 *spte,
4055 const void *new)
0028425f 4056{
30945387 4057 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4058 ++vcpu->kvm->stat.mmu_pde_zapped;
4059 return;
30945387 4060 }
0028425f 4061
4cee5764 4062 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4063 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4064}
4065
79539cec
AK
4066static bool need_remote_flush(u64 old, u64 new)
4067{
4068 if (!is_shadow_present_pte(old))
4069 return false;
4070 if (!is_shadow_present_pte(new))
4071 return true;
4072 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4073 return true;
53166229
GN
4074 old ^= shadow_nx_mask;
4075 new ^= shadow_nx_mask;
79539cec
AK
4076 return (old & ~new & PT64_PERM_MASK) != 0;
4077}
4078
0671a8e7
XG
4079static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4080 bool remote_flush, bool local_flush)
79539cec 4081{
0671a8e7
XG
4082 if (zap_page)
4083 return;
4084
4085 if (remote_flush)
79539cec 4086 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 4087 else if (local_flush)
77c3913b 4088 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
79539cec
AK
4089}
4090
889e5cbc
XG
4091static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4092 const u8 *new, int *bytes)
da4a00f0 4093{
889e5cbc
XG
4094 u64 gentry;
4095 int r;
72016f3a 4096
72016f3a
AK
4097 /*
4098 * Assume that the pte write on a page table of the same type
49b26e26
XG
4099 * as the current vcpu paging mode since we update the sptes only
4100 * when they have the same mode.
72016f3a 4101 */
889e5cbc 4102 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4103 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4104 *gpa &= ~(gpa_t)7;
4105 *bytes = 8;
116eb3d3 4106 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
4107 if (r)
4108 gentry = 0;
08e850c6
AK
4109 new = (const u8 *)&gentry;
4110 }
4111
889e5cbc 4112 switch (*bytes) {
08e850c6
AK
4113 case 4:
4114 gentry = *(const u32 *)new;
4115 break;
4116 case 8:
4117 gentry = *(const u64 *)new;
4118 break;
4119 default:
4120 gentry = 0;
4121 break;
72016f3a
AK
4122 }
4123
889e5cbc
XG
4124 return gentry;
4125}
4126
4127/*
4128 * If we're seeing too many writes to a page, it may no longer be a page table,
4129 * or we may be forking, in which case it is better to unmap the page.
4130 */
a138fe75 4131static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4132{
a30f47cb
XG
4133 /*
4134 * Skip write-flooding detected for the sp whose level is 1, because
4135 * it can become unsync, then the guest page is not write-protected.
4136 */
f71fa31f 4137 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4138 return false;
3246af0e 4139
a30f47cb 4140 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
4141}
4142
4143/*
4144 * Misaligned accesses are too much trouble to fix up; also, they usually
4145 * indicate a page is not used as a page table.
4146 */
4147static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4148 int bytes)
4149{
4150 unsigned offset, pte_size, misaligned;
4151
4152 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4153 gpa, bytes, sp->role.word);
4154
4155 offset = offset_in_page(gpa);
4156 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4157
4158 /*
4159 * Sometimes, the OS only writes the last one bytes to update status
4160 * bits, for example, in linux, andb instruction is used in clear_bit().
4161 */
4162 if (!(offset & (pte_size - 1)) && bytes == 1)
4163 return false;
4164
889e5cbc
XG
4165 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4166 misaligned |= bytes < 4;
4167
4168 return misaligned;
4169}
4170
4171static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4172{
4173 unsigned page_offset, quadrant;
4174 u64 *spte;
4175 int level;
4176
4177 page_offset = offset_in_page(gpa);
4178 level = sp->role.level;
4179 *nspte = 1;
4180 if (!sp->role.cr4_pae) {
4181 page_offset <<= 1; /* 32->64 */
4182 /*
4183 * A 32-bit pde maps 4MB while the shadow pdes map
4184 * only 2MB. So we need to double the offset again
4185 * and zap two pdes instead of one.
4186 */
4187 if (level == PT32_ROOT_LEVEL) {
4188 page_offset &= ~7; /* kill rounding error */
4189 page_offset <<= 1;
4190 *nspte = 2;
4191 }
4192 quadrant = page_offset >> PAGE_SHIFT;
4193 page_offset &= ~PAGE_MASK;
4194 if (quadrant != sp->role.quadrant)
4195 return NULL;
4196 }
4197
4198 spte = &sp->spt[page_offset / sizeof(*spte)];
4199 return spte;
4200}
4201
4202void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4203 const u8 *new, int bytes)
4204{
4205 gfn_t gfn = gpa >> PAGE_SHIFT;
4206 union kvm_mmu_page_role mask = { .word = 0 };
4207 struct kvm_mmu_page *sp;
889e5cbc
XG
4208 LIST_HEAD(invalid_list);
4209 u64 entry, gentry, *spte;
4210 int npte;
a30f47cb 4211 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
4212
4213 /*
4214 * If we don't have indirect shadow pages, it means no page is
4215 * write-protected, so we can exit simply.
4216 */
4217 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4218 return;
4219
4220 zap_page = remote_flush = local_flush = false;
4221
4222 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4223
4224 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4225
4226 /*
4227 * No need to care whether allocation memory is successful
4228 * or not since pte prefetch is skiped if it does not have
4229 * enough objects in the cache.
4230 */
4231 mmu_topup_memory_caches(vcpu);
4232
4233 spin_lock(&vcpu->kvm->mmu_lock);
4234 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4235 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4236
fa1de2bf 4237 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
b67bfe0d 4238 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4239 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4240 detect_write_flooding(sp)) {
0671a8e7 4241 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4242 &invalid_list);
4cee5764 4243 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4244 continue;
4245 }
889e5cbc
XG
4246
4247 spte = get_written_sptes(sp, gpa, &npte);
4248 if (!spte)
4249 continue;
4250
0671a8e7 4251 local_flush = true;
ac1b714e 4252 while (npte--) {
79539cec 4253 entry = *spte;
38e3b2b2 4254 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4255 if (gentry &&
4256 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4257 & mask.word) && rmap_can_add(vcpu))
7c562522 4258 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4259 if (need_remote_flush(entry, *spte))
0671a8e7 4260 remote_flush = true;
ac1b714e 4261 ++spte;
9b7a0325 4262 }
9b7a0325 4263 }
0671a8e7 4264 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4265 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4266 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4267 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4268}
4269
a436036b
AK
4270int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4271{
10589a46
MT
4272 gpa_t gpa;
4273 int r;
a436036b 4274
c5a78f2b 4275 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4276 return 0;
4277
1871c602 4278 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4279
10589a46 4280 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4281
10589a46 4282 return r;
a436036b 4283}
577bdc49 4284EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4285
81f4f76b 4286static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4287{
d98ba053 4288 LIST_HEAD(invalid_list);
103ad25a 4289
81f4f76b
TY
4290 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4291 return;
4292
5da59607
TY
4293 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4294 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4295 break;
ebeace86 4296
4cee5764 4297 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4298 }
aa6bd187 4299 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4300}
ebeace86 4301
1cb3f3ae
XG
4302static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4303{
4304 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4305 return vcpu_match_mmio_gpa(vcpu, addr);
4306
4307 return vcpu_match_mmio_gva(vcpu, addr);
4308}
4309
dc25e89e
AP
4310int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4311 void *insn, int insn_len)
3067714c 4312{
1cb3f3ae 4313 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4314 enum emulation_result er;
4315
56028d08 4316 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4317 if (r < 0)
4318 goto out;
4319
4320 if (!r) {
4321 r = 1;
4322 goto out;
4323 }
4324
1cb3f3ae
XG
4325 if (is_mmio_page_fault(vcpu, cr2))
4326 emulation_type = 0;
4327
4328 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4329
4330 switch (er) {
4331 case EMULATE_DONE:
4332 return 1;
ac0a48c3 4333 case EMULATE_USER_EXIT:
3067714c 4334 ++vcpu->stat.mmio_exits;
6d77dbfc 4335 /* fall through */
3067714c 4336 case EMULATE_FAIL:
3f5d18a9 4337 return 0;
3067714c
AK
4338 default:
4339 BUG();
4340 }
4341out:
3067714c
AK
4342 return r;
4343}
4344EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4345
a7052897
MT
4346void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4347{
a7052897 4348 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4349 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4350 ++vcpu->stat.invlpg;
4351}
4352EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4353
18552672
JR
4354void kvm_enable_tdp(void)
4355{
4356 tdp_enabled = true;
4357}
4358EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4359
5f4cb662
JR
4360void kvm_disable_tdp(void)
4361{
4362 tdp_enabled = false;
4363}
4364EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4365
6aa8b732
AK
4366static void free_mmu_pages(struct kvm_vcpu *vcpu)
4367{
ad312c7c 4368 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4369 if (vcpu->arch.mmu.lm_root != NULL)
4370 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4371}
4372
4373static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4374{
17ac10ad 4375 struct page *page;
6aa8b732
AK
4376 int i;
4377
17ac10ad
AK
4378 /*
4379 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4380 * Therefore we need to allocate shadow page tables in the first
4381 * 4GB of memory, which happens to fit the DMA32 zone.
4382 */
4383 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4384 if (!page)
d7fa6ab2
WY
4385 return -ENOMEM;
4386
ad312c7c 4387 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4388 for (i = 0; i < 4; ++i)
ad312c7c 4389 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4390
6aa8b732 4391 return 0;
6aa8b732
AK
4392}
4393
8018c27b 4394int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4395{
e459e322
XG
4396 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4397 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4398 vcpu->arch.mmu.translate_gpa = translate_gpa;
4399 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4400
8018c27b
IM
4401 return alloc_mmu_pages(vcpu);
4402}
6aa8b732 4403
8a3c1a33 4404void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4405{
fa4a2c08 4406 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4407
8a3c1a33 4408 init_kvm_mmu(vcpu);
6aa8b732
AK
4409}
4410
90cb0529 4411void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4412{
b99db1d3
TY
4413 struct kvm_memory_slot *memslot;
4414 gfn_t last_gfn;
4415 int i;
d91ffee9 4416 bool flush = false;
6aa8b732 4417
b99db1d3
TY
4418 memslot = id_to_memslot(kvm->memslots, slot);
4419 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4420
9d1beefb
TY
4421 spin_lock(&kvm->mmu_lock);
4422
b99db1d3
TY
4423 for (i = PT_PAGE_TABLE_LEVEL;
4424 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4425 unsigned long *rmapp;
4426 unsigned long last_index, index;
6aa8b732 4427
b99db1d3
TY
4428 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4429 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4430
b99db1d3
TY
4431 for (index = 0; index <= last_index; ++index, ++rmapp) {
4432 if (*rmapp)
d91ffee9
KH
4433 flush |= __rmap_write_protect(kvm, rmapp,
4434 false);
6b81b05e 4435
198c74f4 4436 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
6b81b05e 4437 cond_resched_lock(&kvm->mmu_lock);
8234b22e 4438 }
6aa8b732 4439 }
b99db1d3 4440
9d1beefb 4441 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4442
4443 /*
4444 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4445 * which do tlb flush out of mmu-lock should be serialized by
4446 * kvm->slots_lock otherwise tlb flush would be missed.
4447 */
4448 lockdep_assert_held(&kvm->slots_lock);
4449
4450 /*
4451 * We can flush all the TLBs out of the mmu lock without TLB
4452 * corruption since we just change the spte from writable to
4453 * readonly so that we only need to care the case of changing
4454 * spte from present to present (changing the spte from present
4455 * to nonpresent will flush all the TLBs immediately), in other
4456 * words, the only case we care is mmu_spte_update() where we
4457 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4458 * instead of PT_WRITABLE_MASK, that means it does not depend
4459 * on PT_WRITABLE_MASK anymore.
4460 */
d91ffee9
KH
4461 if (flush)
4462 kvm_flush_remote_tlbs(kvm);
6aa8b732 4463}
37a7d8b0 4464
f4b4b180
KH
4465void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4466 struct kvm_memory_slot *memslot)
4467{
4468 gfn_t last_gfn;
4469 unsigned long *rmapp;
4470 unsigned long last_index, index;
4471 bool flush = false;
4472
4473 last_gfn = memslot->base_gfn + memslot->npages - 1;
4474
4475 spin_lock(&kvm->mmu_lock);
4476
4477 rmapp = memslot->arch.rmap[PT_PAGE_TABLE_LEVEL - 1];
4478 last_index = gfn_to_index(last_gfn, memslot->base_gfn,
4479 PT_PAGE_TABLE_LEVEL);
4480
4481 for (index = 0; index <= last_index; ++index, ++rmapp) {
4482 if (*rmapp)
4483 flush |= __rmap_clear_dirty(kvm, rmapp);
4484
4485 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4486 cond_resched_lock(&kvm->mmu_lock);
4487 }
4488
4489 spin_unlock(&kvm->mmu_lock);
4490
4491 lockdep_assert_held(&kvm->slots_lock);
4492
4493 /*
4494 * It's also safe to flush TLBs out of mmu lock here as currently this
4495 * function is only used for dirty logging, in which case flushing TLB
4496 * out of mmu lock also guarantees no dirty pages will be lost in
4497 * dirty_bitmap.
4498 */
4499 if (flush)
4500 kvm_flush_remote_tlbs(kvm);
4501}
4502EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4503
4504void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4505 struct kvm_memory_slot *memslot)
4506{
4507 gfn_t last_gfn;
4508 int i;
4509 bool flush = false;
4510
4511 last_gfn = memslot->base_gfn + memslot->npages - 1;
4512
4513 spin_lock(&kvm->mmu_lock);
4514
4515 for (i = PT_PAGE_TABLE_LEVEL + 1; /* skip rmap for 4K page */
4516 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4517 unsigned long *rmapp;
4518 unsigned long last_index, index;
4519
4520 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4521 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4522
4523 for (index = 0; index <= last_index; ++index, ++rmapp) {
4524 if (*rmapp)
4525 flush |= __rmap_write_protect(kvm, rmapp,
4526 false);
4527
4528 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4529 cond_resched_lock(&kvm->mmu_lock);
4530 }
4531 }
4532 spin_unlock(&kvm->mmu_lock);
4533
4534 /* see kvm_mmu_slot_remove_write_access */
4535 lockdep_assert_held(&kvm->slots_lock);
4536
4537 if (flush)
4538 kvm_flush_remote_tlbs(kvm);
4539}
4540EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4541
4542void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4543 struct kvm_memory_slot *memslot)
4544{
4545 gfn_t last_gfn;
4546 int i;
4547 bool flush = false;
4548
4549 last_gfn = memslot->base_gfn + memslot->npages - 1;
4550
4551 spin_lock(&kvm->mmu_lock);
4552
4553 for (i = PT_PAGE_TABLE_LEVEL;
4554 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4555 unsigned long *rmapp;
4556 unsigned long last_index, index;
4557
4558 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4559 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4560
4561 for (index = 0; index <= last_index; ++index, ++rmapp) {
4562 if (*rmapp)
4563 flush |= __rmap_set_dirty(kvm, rmapp);
4564
4565 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4566 cond_resched_lock(&kvm->mmu_lock);
4567 }
4568 }
4569
4570 spin_unlock(&kvm->mmu_lock);
4571
4572 lockdep_assert_held(&kvm->slots_lock);
4573
4574 /* see kvm_mmu_slot_leaf_clear_dirty */
4575 if (flush)
4576 kvm_flush_remote_tlbs(kvm);
4577}
4578EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4579
e7d11c7a 4580#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4581static void kvm_zap_obsolete_pages(struct kvm *kvm)
4582{
4583 struct kvm_mmu_page *sp, *node;
e7d11c7a 4584 int batch = 0;
5304b8d3
XG
4585
4586restart:
4587 list_for_each_entry_safe_reverse(sp, node,
4588 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4589 int ret;
4590
5304b8d3
XG
4591 /*
4592 * No obsolete page exists before new created page since
4593 * active_mmu_pages is the FIFO list.
4594 */
4595 if (!is_obsolete_sp(kvm, sp))
4596 break;
4597
4598 /*
5304b8d3
XG
4599 * Since we are reversely walking the list and the invalid
4600 * list will be moved to the head, skip the invalid page
4601 * can help us to avoid the infinity list walking.
4602 */
4603 if (sp->role.invalid)
4604 continue;
4605
f34d251d
XG
4606 /*
4607 * Need not flush tlb since we only zap the sp with invalid
4608 * generation number.
4609 */
e7d11c7a 4610 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4611 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4612 batch = 0;
5304b8d3
XG
4613 goto restart;
4614 }
4615
365c8868
XG
4616 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4617 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4618 batch += ret;
4619
4620 if (ret)
5304b8d3
XG
4621 goto restart;
4622 }
4623
f34d251d
XG
4624 /*
4625 * Should flush tlb before free page tables since lockless-walking
4626 * may use the pages.
4627 */
365c8868 4628 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4629}
4630
4631/*
4632 * Fast invalidate all shadow pages and use lock-break technique
4633 * to zap obsolete pages.
4634 *
4635 * It's required when memslot is being deleted or VM is being
4636 * destroyed, in these cases, we should ensure that KVM MMU does
4637 * not use any resource of the being-deleted slot or all slots
4638 * after calling the function.
4639 */
4640void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4641{
4642 spin_lock(&kvm->mmu_lock);
35006126 4643 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4644 kvm->arch.mmu_valid_gen++;
4645
f34d251d
XG
4646 /*
4647 * Notify all vcpus to reload its shadow page table
4648 * and flush TLB. Then all vcpus will switch to new
4649 * shadow page table with the new mmu_valid_gen.
4650 *
4651 * Note: we should do this under the protection of
4652 * mmu-lock, otherwise, vcpu would purge shadow page
4653 * but miss tlb flush.
4654 */
4655 kvm_reload_remote_mmus(kvm);
4656
5304b8d3
XG
4657 kvm_zap_obsolete_pages(kvm);
4658 spin_unlock(&kvm->mmu_lock);
4659}
4660
365c8868
XG
4661static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4662{
4663 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4664}
4665
f8f55942
XG
4666void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4667{
4668 /*
4669 * The very rare case: if the generation-number is round,
4670 * zap all shadow pages.
f8f55942 4671 */
ee3d1570 4672 if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
a629df7e 4673 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4674 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4675 }
f8f55942
XG
4676}
4677
70534a73
DC
4678static unsigned long
4679mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4680{
4681 struct kvm *kvm;
1495f230 4682 int nr_to_scan = sc->nr_to_scan;
70534a73 4683 unsigned long freed = 0;
3ee16c81 4684
2f303b74 4685 spin_lock(&kvm_lock);
3ee16c81
IE
4686
4687 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4688 int idx;
d98ba053 4689 LIST_HEAD(invalid_list);
3ee16c81 4690
35f2d16b
TY
4691 /*
4692 * Never scan more than sc->nr_to_scan VM instances.
4693 * Will not hit this condition practically since we do not try
4694 * to shrink more than one VM and it is very unlikely to see
4695 * !n_used_mmu_pages so many times.
4696 */
4697 if (!nr_to_scan--)
4698 break;
19526396
GN
4699 /*
4700 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4701 * here. We may skip a VM instance errorneosly, but we do not
4702 * want to shrink a VM that only started to populate its MMU
4703 * anyway.
4704 */
365c8868
XG
4705 if (!kvm->arch.n_used_mmu_pages &&
4706 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4707 continue;
19526396 4708
f656ce01 4709 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4710 spin_lock(&kvm->mmu_lock);
3ee16c81 4711
365c8868
XG
4712 if (kvm_has_zapped_obsolete_pages(kvm)) {
4713 kvm_mmu_commit_zap_page(kvm,
4714 &kvm->arch.zapped_obsolete_pages);
4715 goto unlock;
4716 }
4717
70534a73
DC
4718 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4719 freed++;
d98ba053 4720 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4721
365c8868 4722unlock:
3ee16c81 4723 spin_unlock(&kvm->mmu_lock);
f656ce01 4724 srcu_read_unlock(&kvm->srcu, idx);
19526396 4725
70534a73
DC
4726 /*
4727 * unfair on small ones
4728 * per-vm shrinkers cry out
4729 * sadness comes quickly
4730 */
19526396
GN
4731 list_move_tail(&kvm->vm_list, &vm_list);
4732 break;
3ee16c81 4733 }
3ee16c81 4734
2f303b74 4735 spin_unlock(&kvm_lock);
70534a73 4736 return freed;
70534a73
DC
4737}
4738
4739static unsigned long
4740mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4741{
45221ab6 4742 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4743}
4744
4745static struct shrinker mmu_shrinker = {
70534a73
DC
4746 .count_objects = mmu_shrink_count,
4747 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4748 .seeks = DEFAULT_SEEKS * 10,
4749};
4750
2ddfd20e 4751static void mmu_destroy_caches(void)
b5a33a75 4752{
53c07b18
XG
4753 if (pte_list_desc_cache)
4754 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4755 if (mmu_page_header_cache)
4756 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4757}
4758
4759int kvm_mmu_module_init(void)
4760{
53c07b18
XG
4761 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4762 sizeof(struct pte_list_desc),
20c2df83 4763 0, 0, NULL);
53c07b18 4764 if (!pte_list_desc_cache)
b5a33a75
AK
4765 goto nomem;
4766
d3d25b04
AK
4767 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4768 sizeof(struct kvm_mmu_page),
20c2df83 4769 0, 0, NULL);
d3d25b04
AK
4770 if (!mmu_page_header_cache)
4771 goto nomem;
4772
908c7f19 4773 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
4774 goto nomem;
4775
3ee16c81
IE
4776 register_shrinker(&mmu_shrinker);
4777
b5a33a75
AK
4778 return 0;
4779
4780nomem:
3ee16c81 4781 mmu_destroy_caches();
b5a33a75
AK
4782 return -ENOMEM;
4783}
4784
3ad82a7e
ZX
4785/*
4786 * Caculate mmu pages needed for kvm.
4787 */
4788unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4789{
3ad82a7e
ZX
4790 unsigned int nr_mmu_pages;
4791 unsigned int nr_pages = 0;
bc6678a3 4792 struct kvm_memslots *slots;
be6ba0f0 4793 struct kvm_memory_slot *memslot;
3ad82a7e 4794
90d83dc3
LJ
4795 slots = kvm_memslots(kvm);
4796
be6ba0f0
XG
4797 kvm_for_each_memslot(memslot, slots)
4798 nr_pages += memslot->npages;
3ad82a7e
ZX
4799
4800 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4801 nr_mmu_pages = max(nr_mmu_pages,
4802 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4803
4804 return nr_mmu_pages;
4805}
4806
94d8b056
MT
4807int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4808{
4809 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4810 u64 spte;
94d8b056
MT
4811 int nr_sptes = 0;
4812
37f6a4e2
MT
4813 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4814 return nr_sptes;
4815
c2a2ac2b
XG
4816 walk_shadow_page_lockless_begin(vcpu);
4817 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4818 sptes[iterator.level-1] = spte;
94d8b056 4819 nr_sptes++;
c2a2ac2b 4820 if (!is_shadow_present_pte(spte))
94d8b056
MT
4821 break;
4822 }
c2a2ac2b 4823 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4824
4825 return nr_sptes;
4826}
4827EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4828
c42fffe3
XG
4829void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4830{
95f93af4 4831 kvm_mmu_unload(vcpu);
c42fffe3
XG
4832 free_mmu_pages(vcpu);
4833 mmu_free_memory_caches(vcpu);
b034cf01
XG
4834}
4835
b034cf01
XG
4836void kvm_mmu_module_exit(void)
4837{
4838 mmu_destroy_caches();
4839 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4840 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4841 mmu_audit_disable();
4842}