]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: MMU: improve write flooding detected
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c
XG
62char *audit_point_name[] = {
63 "pre page fault",
64 "post page fault",
65 "pre pte write",
6903074c
XG
66 "post pte write",
67 "pre sync",
68 "post sync"
8b1fe17c 69};
37a7d8b0 70
8b1fe17c 71#undef MMU_DEBUG
37a7d8b0
AK
72
73#ifdef MMU_DEBUG
74
75#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
76#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
77
78#else
79
80#define pgprintk(x...) do { } while (0)
81#define rmap_printk(x...) do { } while (0)
82
83#endif
84
8b1fe17c 85#ifdef MMU_DEBUG
6ada8cca
AK
86static int dbg = 0;
87module_param(dbg, bool, 0644);
37a7d8b0 88#endif
6aa8b732 89
582801a9
MT
90static int oos_shadow = 1;
91module_param(oos_shadow, bool, 0644);
92
d6c69ee9
YD
93#ifndef MMU_DEBUG
94#define ASSERT(x) do { } while (0)
95#else
6aa8b732
AK
96#define ASSERT(x) \
97 if (!(x)) { \
98 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
99 __FILE__, __LINE__, #x); \
100 }
d6c69ee9 101#endif
6aa8b732 102
957ed9ef
XG
103#define PTE_PREFETCH_NUM 8
104
6aa8b732
AK
105#define PT_FIRST_AVAIL_BITS_SHIFT 9
106#define PT64_SECOND_AVAIL_BITS_SHIFT 52
107
6aa8b732
AK
108#define PT64_LEVEL_BITS 9
109
110#define PT64_LEVEL_SHIFT(level) \
d77c26fc 111 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 112
6aa8b732
AK
113#define PT64_INDEX(address, level)\
114 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
115
116
117#define PT32_LEVEL_BITS 10
118
119#define PT32_LEVEL_SHIFT(level) \
d77c26fc 120 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 121
e04da980
JR
122#define PT32_LVL_OFFSET_MASK(level) \
123 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
125
126#define PT32_INDEX(address, level)\
127 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
128
129
27aba766 130#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
131#define PT64_DIR_BASE_ADDR_MASK \
132 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
133#define PT64_LVL_ADDR_MASK(level) \
134 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
135 * PT64_LEVEL_BITS))) - 1))
136#define PT64_LVL_OFFSET_MASK(level) \
137 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
138 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
139
140#define PT32_BASE_ADDR_MASK PAGE_MASK
141#define PT32_DIR_BASE_ADDR_MASK \
142 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
143#define PT32_LVL_ADDR_MASK(level) \
144 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
145 * PT32_LEVEL_BITS))) - 1))
6aa8b732 146
79539cec
AK
147#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
148 | PT64_NX_MASK)
6aa8b732 149
53c07b18 150#define PTE_LIST_EXT 4
cd4a4e53 151
fe135d2c
AK
152#define ACC_EXEC_MASK 1
153#define ACC_WRITE_MASK PT_WRITABLE_MASK
154#define ACC_USER_MASK PT_USER_MASK
155#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
156
90bb6fc5
AK
157#include <trace/events/kvm.h>
158
07420171
AK
159#define CREATE_TRACE_POINTS
160#include "mmutrace.h"
161
1403283a
IE
162#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
163
135f8c2b
AK
164#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
165
53c07b18
XG
166struct pte_list_desc {
167 u64 *sptes[PTE_LIST_EXT];
168 struct pte_list_desc *more;
cd4a4e53
AK
169};
170
2d11123a
AK
171struct kvm_shadow_walk_iterator {
172 u64 addr;
173 hpa_t shadow_addr;
2d11123a 174 u64 *sptep;
dd3bfd59 175 int level;
2d11123a
AK
176 unsigned index;
177};
178
179#define for_each_shadow_entry(_vcpu, _addr, _walker) \
180 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
181 shadow_walk_okay(&(_walker)); \
182 shadow_walk_next(&(_walker)))
183
c2a2ac2b
XG
184#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
185 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
186 shadow_walk_okay(&(_walker)) && \
187 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
188 __shadow_walk_next(&(_walker), spte))
189
53c07b18 190static struct kmem_cache *pte_list_desc_cache;
d3d25b04 191static struct kmem_cache *mmu_page_header_cache;
45221ab6 192static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 193
7b52345e
SY
194static u64 __read_mostly shadow_nx_mask;
195static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
196static u64 __read_mostly shadow_user_mask;
197static u64 __read_mostly shadow_accessed_mask;
198static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
199static u64 __read_mostly shadow_mmio_mask;
200
201static void mmu_spte_set(u64 *sptep, u64 spte);
202
203void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
204{
205 shadow_mmio_mask = mmio_mask;
206}
207EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
208
209static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
210{
211 access &= ACC_WRITE_MASK | ACC_USER_MASK;
212
4f022648 213 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
214 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
215}
216
217static bool is_mmio_spte(u64 spte)
218{
219 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
220}
221
222static gfn_t get_mmio_spte_gfn(u64 spte)
223{
224 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
225}
226
227static unsigned get_mmio_spte_access(u64 spte)
228{
229 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
230}
231
232static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
233{
234 if (unlikely(is_noslot_pfn(pfn))) {
235 mark_mmio_spte(sptep, gfn, access);
236 return true;
237 }
238
239 return false;
240}
c7addb90 241
82725b20
DE
242static inline u64 rsvd_bits(int s, int e)
243{
244 return ((1ULL << (e - s + 1)) - 1) << s;
245}
246
7b52345e 247void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 248 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
249{
250 shadow_user_mask = user_mask;
251 shadow_accessed_mask = accessed_mask;
252 shadow_dirty_mask = dirty_mask;
253 shadow_nx_mask = nx_mask;
254 shadow_x_mask = x_mask;
255}
256EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
257
6aa8b732
AK
258static int is_cpuid_PSE36(void)
259{
260 return 1;
261}
262
73b1087e
AK
263static int is_nx(struct kvm_vcpu *vcpu)
264{
f6801dff 265 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
266}
267
c7addb90
AK
268static int is_shadow_present_pte(u64 pte)
269{
ce88decf 270 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
271}
272
05da4558
MT
273static int is_large_pte(u64 pte)
274{
275 return pte & PT_PAGE_SIZE_MASK;
276}
277
43a3795a 278static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 279{
439e218a 280 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
281}
282
43a3795a 283static int is_rmap_spte(u64 pte)
cd4a4e53 284{
4b1a80fa 285 return is_shadow_present_pte(pte);
cd4a4e53
AK
286}
287
776e6633
MT
288static int is_last_spte(u64 pte, int level)
289{
290 if (level == PT_PAGE_TABLE_LEVEL)
291 return 1;
852e3c19 292 if (is_large_pte(pte))
776e6633
MT
293 return 1;
294 return 0;
295}
296
35149e21 297static pfn_t spte_to_pfn(u64 pte)
0b49ea86 298{
35149e21 299 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
300}
301
da928521
AK
302static gfn_t pse36_gfn_delta(u32 gpte)
303{
304 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
305
306 return (gpte & PT32_DIR_PSE36_MASK) << shift;
307}
308
603e0651 309#ifdef CONFIG_X86_64
d555c333 310static void __set_spte(u64 *sptep, u64 spte)
e663ee64 311{
603e0651 312 *sptep = spte;
e663ee64
AK
313}
314
603e0651 315static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 316{
603e0651
XG
317 *sptep = spte;
318}
319
320static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
321{
322 return xchg(sptep, spte);
323}
c2a2ac2b
XG
324
325static u64 __get_spte_lockless(u64 *sptep)
326{
327 return ACCESS_ONCE(*sptep);
328}
ce88decf
XG
329
330static bool __check_direct_spte_mmio_pf(u64 spte)
331{
332 /* It is valid if the spte is zapped. */
333 return spte == 0ull;
334}
a9221dd5 335#else
603e0651
XG
336union split_spte {
337 struct {
338 u32 spte_low;
339 u32 spte_high;
340 };
341 u64 spte;
342};
a9221dd5 343
c2a2ac2b
XG
344static void count_spte_clear(u64 *sptep, u64 spte)
345{
346 struct kvm_mmu_page *sp = page_header(__pa(sptep));
347
348 if (is_shadow_present_pte(spte))
349 return;
350
351 /* Ensure the spte is completely set before we increase the count */
352 smp_wmb();
353 sp->clear_spte_count++;
354}
355
603e0651
XG
356static void __set_spte(u64 *sptep, u64 spte)
357{
358 union split_spte *ssptep, sspte;
a9221dd5 359
603e0651
XG
360 ssptep = (union split_spte *)sptep;
361 sspte = (union split_spte)spte;
362
363 ssptep->spte_high = sspte.spte_high;
364
365 /*
366 * If we map the spte from nonpresent to present, We should store
367 * the high bits firstly, then set present bit, so cpu can not
368 * fetch this spte while we are setting the spte.
369 */
370 smp_wmb();
371
372 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
373}
374
603e0651
XG
375static void __update_clear_spte_fast(u64 *sptep, u64 spte)
376{
377 union split_spte *ssptep, sspte;
378
379 ssptep = (union split_spte *)sptep;
380 sspte = (union split_spte)spte;
381
382 ssptep->spte_low = sspte.spte_low;
383
384 /*
385 * If we map the spte from present to nonpresent, we should clear
386 * present bit firstly to avoid vcpu fetch the old high bits.
387 */
388 smp_wmb();
389
390 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 391 count_spte_clear(sptep, spte);
603e0651
XG
392}
393
394static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
395{
396 union split_spte *ssptep, sspte, orig;
397
398 ssptep = (union split_spte *)sptep;
399 sspte = (union split_spte)spte;
400
401 /* xchg acts as a barrier before the setting of the high bits */
402 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
403 orig.spte_high = ssptep->spte_high;
404 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 405 count_spte_clear(sptep, spte);
603e0651
XG
406
407 return orig.spte;
408}
c2a2ac2b
XG
409
410/*
411 * The idea using the light way get the spte on x86_32 guest is from
412 * gup_get_pte(arch/x86/mm/gup.c).
413 * The difference is we can not catch the spte tlb flush if we leave
414 * guest mode, so we emulate it by increase clear_spte_count when spte
415 * is cleared.
416 */
417static u64 __get_spte_lockless(u64 *sptep)
418{
419 struct kvm_mmu_page *sp = page_header(__pa(sptep));
420 union split_spte spte, *orig = (union split_spte *)sptep;
421 int count;
422
423retry:
424 count = sp->clear_spte_count;
425 smp_rmb();
426
427 spte.spte_low = orig->spte_low;
428 smp_rmb();
429
430 spte.spte_high = orig->spte_high;
431 smp_rmb();
432
433 if (unlikely(spte.spte_low != orig->spte_low ||
434 count != sp->clear_spte_count))
435 goto retry;
436
437 return spte.spte;
438}
ce88decf
XG
439
440static bool __check_direct_spte_mmio_pf(u64 spte)
441{
442 union split_spte sspte = (union split_spte)spte;
443 u32 high_mmio_mask = shadow_mmio_mask >> 32;
444
445 /* It is valid if the spte is zapped. */
446 if (spte == 0ull)
447 return true;
448
449 /* It is valid if the spte is being zapped. */
450 if (sspte.spte_low == 0ull &&
451 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
452 return true;
453
454 return false;
455}
603e0651
XG
456#endif
457
8672b721
XG
458static bool spte_has_volatile_bits(u64 spte)
459{
460 if (!shadow_accessed_mask)
461 return false;
462
463 if (!is_shadow_present_pte(spte))
464 return false;
465
4132779b
XG
466 if ((spte & shadow_accessed_mask) &&
467 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
468 return false;
469
470 return true;
471}
472
4132779b
XG
473static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
474{
475 return (old_spte & bit_mask) && !(new_spte & bit_mask);
476}
477
1df9f2dc
XG
478/* Rules for using mmu_spte_set:
479 * Set the sptep from nonpresent to present.
480 * Note: the sptep being assigned *must* be either not present
481 * or in a state where the hardware will not attempt to update
482 * the spte.
483 */
484static void mmu_spte_set(u64 *sptep, u64 new_spte)
485{
486 WARN_ON(is_shadow_present_pte(*sptep));
487 __set_spte(sptep, new_spte);
488}
489
490/* Rules for using mmu_spte_update:
491 * Update the state bits, it means the mapped pfn is not changged.
492 */
493static void mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 494{
4132779b
XG
495 u64 mask, old_spte = *sptep;
496
497 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 498
1df9f2dc
XG
499 if (!is_shadow_present_pte(old_spte))
500 return mmu_spte_set(sptep, new_spte);
501
4132779b
XG
502 new_spte |= old_spte & shadow_dirty_mask;
503
504 mask = shadow_accessed_mask;
505 if (is_writable_pte(old_spte))
506 mask |= shadow_dirty_mask;
507
508 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
603e0651 509 __update_clear_spte_fast(sptep, new_spte);
4132779b 510 else
603e0651 511 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b
XG
512
513 if (!shadow_accessed_mask)
514 return;
515
516 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
517 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
518 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
519 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
b79b93f9
AK
520}
521
1df9f2dc
XG
522/*
523 * Rules for using mmu_spte_clear_track_bits:
524 * It sets the sptep from present to nonpresent, and track the
525 * state bits, it is used to clear the last level sptep.
526 */
527static int mmu_spte_clear_track_bits(u64 *sptep)
528{
529 pfn_t pfn;
530 u64 old_spte = *sptep;
531
532 if (!spte_has_volatile_bits(old_spte))
603e0651 533 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 534 else
603e0651 535 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
536
537 if (!is_rmap_spte(old_spte))
538 return 0;
539
540 pfn = spte_to_pfn(old_spte);
541 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
542 kvm_set_pfn_accessed(pfn);
543 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
544 kvm_set_pfn_dirty(pfn);
545 return 1;
546}
547
548/*
549 * Rules for using mmu_spte_clear_no_track:
550 * Directly clear spte without caring the state bits of sptep,
551 * it is used to set the upper level spte.
552 */
553static void mmu_spte_clear_no_track(u64 *sptep)
554{
603e0651 555 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
556}
557
c2a2ac2b
XG
558static u64 mmu_spte_get_lockless(u64 *sptep)
559{
560 return __get_spte_lockless(sptep);
561}
562
563static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
564{
565 rcu_read_lock();
566 atomic_inc(&vcpu->kvm->arch.reader_counter);
567
568 /* Increase the counter before walking shadow page table */
569 smp_mb__after_atomic_inc();
570}
571
572static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
573{
574 /* Decrease the counter after walking shadow page table finished */
575 smp_mb__before_atomic_dec();
576 atomic_dec(&vcpu->kvm->arch.reader_counter);
577 rcu_read_unlock();
578}
579
e2dec939 580static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 581 struct kmem_cache *base_cache, int min)
714b93da
AK
582{
583 void *obj;
584
585 if (cache->nobjs >= min)
e2dec939 586 return 0;
714b93da 587 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 588 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 589 if (!obj)
e2dec939 590 return -ENOMEM;
714b93da
AK
591 cache->objects[cache->nobjs++] = obj;
592 }
e2dec939 593 return 0;
714b93da
AK
594}
595
f759e2b4
XG
596static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
597{
598 return cache->nobjs;
599}
600
e8ad9a70
XG
601static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
602 struct kmem_cache *cache)
714b93da
AK
603{
604 while (mc->nobjs)
e8ad9a70 605 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
606}
607
c1158e63 608static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 609 int min)
c1158e63 610{
842f22ed 611 void *page;
c1158e63
AK
612
613 if (cache->nobjs >= min)
614 return 0;
615 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 616 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
617 if (!page)
618 return -ENOMEM;
842f22ed 619 cache->objects[cache->nobjs++] = page;
c1158e63
AK
620 }
621 return 0;
622}
623
624static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
625{
626 while (mc->nobjs)
c4d198d5 627 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
628}
629
2e3e5882 630static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 631{
e2dec939
AK
632 int r;
633
53c07b18 634 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 635 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
636 if (r)
637 goto out;
ad312c7c 638 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
639 if (r)
640 goto out;
ad312c7c 641 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 642 mmu_page_header_cache, 4);
e2dec939
AK
643out:
644 return r;
714b93da
AK
645}
646
647static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
648{
53c07b18
XG
649 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
650 pte_list_desc_cache);
ad312c7c 651 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
652 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
653 mmu_page_header_cache);
714b93da
AK
654}
655
656static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
657 size_t size)
658{
659 void *p;
660
661 BUG_ON(!mc->nobjs);
662 p = mc->objects[--mc->nobjs];
714b93da
AK
663 return p;
664}
665
53c07b18 666static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 667{
53c07b18
XG
668 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
669 sizeof(struct pte_list_desc));
714b93da
AK
670}
671
53c07b18 672static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 673{
53c07b18 674 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
675}
676
2032a93d
LJ
677static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
678{
679 if (!sp->role.direct)
680 return sp->gfns[index];
681
682 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
683}
684
685static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
686{
687 if (sp->role.direct)
688 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
689 else
690 sp->gfns[index] = gfn;
691}
692
05da4558 693/*
d4dbf470
TY
694 * Return the pointer to the large page information for a given gfn,
695 * handling slots that are not large page aligned.
05da4558 696 */
d4dbf470
TY
697static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
698 struct kvm_memory_slot *slot,
699 int level)
05da4558
MT
700{
701 unsigned long idx;
702
82855413
JR
703 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
704 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
d4dbf470 705 return &slot->lpage_info[level - 2][idx];
05da4558
MT
706}
707
708static void account_shadowed(struct kvm *kvm, gfn_t gfn)
709{
d25797b2 710 struct kvm_memory_slot *slot;
d4dbf470 711 struct kvm_lpage_info *linfo;
d25797b2 712 int i;
05da4558 713
a1f4d395 714 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
715 for (i = PT_DIRECTORY_LEVEL;
716 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
717 linfo = lpage_info_slot(gfn, slot, i);
718 linfo->write_count += 1;
d25797b2 719 }
332b207d 720 kvm->arch.indirect_shadow_pages++;
05da4558
MT
721}
722
723static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
724{
d25797b2 725 struct kvm_memory_slot *slot;
d4dbf470 726 struct kvm_lpage_info *linfo;
d25797b2 727 int i;
05da4558 728
a1f4d395 729 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
730 for (i = PT_DIRECTORY_LEVEL;
731 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
732 linfo = lpage_info_slot(gfn, slot, i);
733 linfo->write_count -= 1;
734 WARN_ON(linfo->write_count < 0);
d25797b2 735 }
332b207d 736 kvm->arch.indirect_shadow_pages--;
05da4558
MT
737}
738
d25797b2
JR
739static int has_wrprotected_page(struct kvm *kvm,
740 gfn_t gfn,
741 int level)
05da4558 742{
2843099f 743 struct kvm_memory_slot *slot;
d4dbf470 744 struct kvm_lpage_info *linfo;
05da4558 745
a1f4d395 746 slot = gfn_to_memslot(kvm, gfn);
05da4558 747 if (slot) {
d4dbf470
TY
748 linfo = lpage_info_slot(gfn, slot, level);
749 return linfo->write_count;
05da4558
MT
750 }
751
752 return 1;
753}
754
d25797b2 755static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 756{
8f0b1ab6 757 unsigned long page_size;
d25797b2 758 int i, ret = 0;
05da4558 759
8f0b1ab6 760 page_size = kvm_host_page_size(kvm, gfn);
05da4558 761
d25797b2
JR
762 for (i = PT_PAGE_TABLE_LEVEL;
763 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
764 if (page_size >= KVM_HPAGE_SIZE(i))
765 ret = i;
766 else
767 break;
768 }
769
4c2155ce 770 return ret;
05da4558
MT
771}
772
5d163b1c
XG
773static struct kvm_memory_slot *
774gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
775 bool no_dirty_log)
05da4558
MT
776{
777 struct kvm_memory_slot *slot;
5d163b1c
XG
778
779 slot = gfn_to_memslot(vcpu->kvm, gfn);
780 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
781 (no_dirty_log && slot->dirty_bitmap))
782 slot = NULL;
783
784 return slot;
785}
786
787static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
788{
a0a8eaba 789 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
790}
791
792static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
793{
794 int host_level, level, max_level;
05da4558 795
d25797b2
JR
796 host_level = host_mapping_level(vcpu->kvm, large_gfn);
797
798 if (host_level == PT_PAGE_TABLE_LEVEL)
799 return host_level;
800
878403b7
SY
801 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
802 kvm_x86_ops->get_lpage_level() : host_level;
803
804 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
805 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
806 break;
d25797b2
JR
807
808 return level - 1;
05da4558
MT
809}
810
290fc38d 811/*
53c07b18 812 * Pte mapping structures:
cd4a4e53 813 *
53c07b18 814 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 815 *
53c07b18
XG
816 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
817 * pte_list_desc containing more mappings.
53a27b39 818 *
53c07b18 819 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
820 * the spte was not added.
821 *
cd4a4e53 822 */
53c07b18
XG
823static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
824 unsigned long *pte_list)
cd4a4e53 825{
53c07b18 826 struct pte_list_desc *desc;
53a27b39 827 int i, count = 0;
cd4a4e53 828
53c07b18
XG
829 if (!*pte_list) {
830 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
831 *pte_list = (unsigned long)spte;
832 } else if (!(*pte_list & 1)) {
833 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
834 desc = mmu_alloc_pte_list_desc(vcpu);
835 desc->sptes[0] = (u64 *)*pte_list;
d555c333 836 desc->sptes[1] = spte;
53c07b18 837 *pte_list = (unsigned long)desc | 1;
cb16a7b3 838 ++count;
cd4a4e53 839 } else {
53c07b18
XG
840 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
841 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
842 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 843 desc = desc->more;
53c07b18 844 count += PTE_LIST_EXT;
53a27b39 845 }
53c07b18
XG
846 if (desc->sptes[PTE_LIST_EXT-1]) {
847 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
848 desc = desc->more;
849 }
d555c333 850 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 851 ++count;
d555c333 852 desc->sptes[i] = spte;
cd4a4e53 853 }
53a27b39 854 return count;
cd4a4e53
AK
855}
856
53c07b18
XG
857static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
858{
859 struct pte_list_desc *desc;
860 u64 *prev_spte;
861 int i;
862
863 if (!*pte_list)
864 return NULL;
865 else if (!(*pte_list & 1)) {
866 if (!spte)
867 return (u64 *)*pte_list;
868 return NULL;
869 }
870 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
871 prev_spte = NULL;
872 while (desc) {
873 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
874 if (prev_spte == spte)
875 return desc->sptes[i];
876 prev_spte = desc->sptes[i];
877 }
878 desc = desc->more;
879 }
880 return NULL;
881}
882
883static void
884pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
885 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
886{
887 int j;
888
53c07b18 889 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 890 ;
d555c333
AK
891 desc->sptes[i] = desc->sptes[j];
892 desc->sptes[j] = NULL;
cd4a4e53
AK
893 if (j != 0)
894 return;
895 if (!prev_desc && !desc->more)
53c07b18 896 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
897 else
898 if (prev_desc)
899 prev_desc->more = desc->more;
900 else
53c07b18
XG
901 *pte_list = (unsigned long)desc->more | 1;
902 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
903}
904
53c07b18 905static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 906{
53c07b18
XG
907 struct pte_list_desc *desc;
908 struct pte_list_desc *prev_desc;
cd4a4e53
AK
909 int i;
910
53c07b18
XG
911 if (!*pte_list) {
912 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 913 BUG();
53c07b18
XG
914 } else if (!(*pte_list & 1)) {
915 rmap_printk("pte_list_remove: %p 1->0\n", spte);
916 if ((u64 *)*pte_list != spte) {
917 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
918 BUG();
919 }
53c07b18 920 *pte_list = 0;
cd4a4e53 921 } else {
53c07b18
XG
922 rmap_printk("pte_list_remove: %p many->many\n", spte);
923 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
924 prev_desc = NULL;
925 while (desc) {
53c07b18 926 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 927 if (desc->sptes[i] == spte) {
53c07b18 928 pte_list_desc_remove_entry(pte_list,
714b93da 929 desc, i,
cd4a4e53
AK
930 prev_desc);
931 return;
932 }
933 prev_desc = desc;
934 desc = desc->more;
935 }
53c07b18 936 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
937 BUG();
938 }
939}
940
67052b35
XG
941typedef void (*pte_list_walk_fn) (u64 *spte);
942static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
943{
944 struct pte_list_desc *desc;
945 int i;
946
947 if (!*pte_list)
948 return;
949
950 if (!(*pte_list & 1))
951 return fn((u64 *)*pte_list);
952
953 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
954 while (desc) {
955 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
956 fn(desc->sptes[i]);
957 desc = desc->more;
958 }
959}
960
53c07b18
XG
961/*
962 * Take gfn and return the reverse mapping to it.
963 */
964static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
965{
966 struct kvm_memory_slot *slot;
967 struct kvm_lpage_info *linfo;
968
969 slot = gfn_to_memslot(kvm, gfn);
970 if (likely(level == PT_PAGE_TABLE_LEVEL))
971 return &slot->rmap[gfn - slot->base_gfn];
972
973 linfo = lpage_info_slot(gfn, slot, level);
974
975 return &linfo->rmap_pde;
976}
977
f759e2b4
XG
978static bool rmap_can_add(struct kvm_vcpu *vcpu)
979{
980 struct kvm_mmu_memory_cache *cache;
981
982 cache = &vcpu->arch.mmu_pte_list_desc_cache;
983 return mmu_memory_cache_free_objects(cache);
984}
985
53c07b18
XG
986static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
987{
988 struct kvm_mmu_page *sp;
989 unsigned long *rmapp;
990
53c07b18
XG
991 sp = page_header(__pa(spte));
992 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
993 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
994 return pte_list_add(vcpu, spte, rmapp);
995}
996
997static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
998{
999 return pte_list_next(rmapp, spte);
1000}
1001
1002static void rmap_remove(struct kvm *kvm, u64 *spte)
1003{
1004 struct kvm_mmu_page *sp;
1005 gfn_t gfn;
1006 unsigned long *rmapp;
1007
1008 sp = page_header(__pa(spte));
1009 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1010 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1011 pte_list_remove(spte, rmapp);
1012}
1013
c3707958 1014static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1015{
1df9f2dc 1016 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1017 rmap_remove(kvm, sptep);
be38d276
AK
1018}
1019
b1a36821 1020static int rmap_write_protect(struct kvm *kvm, u64 gfn)
98348e95 1021{
290fc38d 1022 unsigned long *rmapp;
374cbac0 1023 u64 *spte;
44ad9944 1024 int i, write_protected = 0;
374cbac0 1025
44ad9944 1026 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
374cbac0 1027
98348e95
IE
1028 spte = rmap_next(kvm, rmapp, NULL);
1029 while (spte) {
374cbac0 1030 BUG_ON(!spte);
374cbac0 1031 BUG_ON(!(*spte & PT_PRESENT_MASK));
374cbac0 1032 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
8dae4445 1033 if (is_writable_pte(*spte)) {
1df9f2dc 1034 mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
caa5b8a5
ED
1035 write_protected = 1;
1036 }
9647c14c 1037 spte = rmap_next(kvm, rmapp, spte);
374cbac0 1038 }
855149aa 1039
05da4558 1040 /* check for huge page mappings */
44ad9944
JR
1041 for (i = PT_DIRECTORY_LEVEL;
1042 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1043 rmapp = gfn_to_rmap(kvm, gfn, i);
1044 spte = rmap_next(kvm, rmapp, NULL);
1045 while (spte) {
1046 BUG_ON(!spte);
1047 BUG_ON(!(*spte & PT_PRESENT_MASK));
1048 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
1049 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
8dae4445 1050 if (is_writable_pte(*spte)) {
c3707958 1051 drop_spte(kvm, spte);
44ad9944 1052 --kvm->stat.lpages;
44ad9944
JR
1053 spte = NULL;
1054 write_protected = 1;
1055 }
1056 spte = rmap_next(kvm, rmapp, spte);
05da4558 1057 }
05da4558
MT
1058 }
1059
b1a36821 1060 return write_protected;
374cbac0
AK
1061}
1062
8a8365c5
FD
1063static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1064 unsigned long data)
e930bffe
AA
1065{
1066 u64 *spte;
1067 int need_tlb_flush = 0;
1068
1069 while ((spte = rmap_next(kvm, rmapp, NULL))) {
1070 BUG_ON(!(*spte & PT_PRESENT_MASK));
1071 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
c3707958 1072 drop_spte(kvm, spte);
e930bffe
AA
1073 need_tlb_flush = 1;
1074 }
1075 return need_tlb_flush;
1076}
1077
8a8365c5
FD
1078static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1079 unsigned long data)
3da0dd43
IE
1080{
1081 int need_flush = 0;
e4b502ea 1082 u64 *spte, new_spte;
3da0dd43
IE
1083 pte_t *ptep = (pte_t *)data;
1084 pfn_t new_pfn;
1085
1086 WARN_ON(pte_huge(*ptep));
1087 new_pfn = pte_pfn(*ptep);
1088 spte = rmap_next(kvm, rmapp, NULL);
1089 while (spte) {
1090 BUG_ON(!is_shadow_present_pte(*spte));
1091 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
1092 need_flush = 1;
1093 if (pte_write(*ptep)) {
c3707958 1094 drop_spte(kvm, spte);
3da0dd43
IE
1095 spte = rmap_next(kvm, rmapp, NULL);
1096 } else {
1097 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
1098 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1099
1100 new_spte &= ~PT_WRITABLE_MASK;
1101 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1102 new_spte &= ~shadow_accessed_mask;
1df9f2dc
XG
1103 mmu_spte_clear_track_bits(spte);
1104 mmu_spte_set(spte, new_spte);
3da0dd43
IE
1105 spte = rmap_next(kvm, rmapp, spte);
1106 }
1107 }
1108 if (need_flush)
1109 kvm_flush_remote_tlbs(kvm);
1110
1111 return 0;
1112}
1113
8a8365c5
FD
1114static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1115 unsigned long data,
3da0dd43 1116 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
8a8365c5 1117 unsigned long data))
e930bffe 1118{
852e3c19 1119 int i, j;
90bb6fc5 1120 int ret;
e930bffe 1121 int retval = 0;
bc6678a3
MT
1122 struct kvm_memslots *slots;
1123
90d83dc3 1124 slots = kvm_memslots(kvm);
e930bffe 1125
46a26bf5
MT
1126 for (i = 0; i < slots->nmemslots; i++) {
1127 struct kvm_memory_slot *memslot = &slots->memslots[i];
e930bffe
AA
1128 unsigned long start = memslot->userspace_addr;
1129 unsigned long end;
1130
e930bffe
AA
1131 end = start + (memslot->npages << PAGE_SHIFT);
1132 if (hva >= start && hva < end) {
1133 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
d4dbf470 1134 gfn_t gfn = memslot->base_gfn + gfn_offset;
852e3c19 1135
90bb6fc5 1136 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
852e3c19
JR
1137
1138 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
d4dbf470
TY
1139 struct kvm_lpage_info *linfo;
1140
1141 linfo = lpage_info_slot(gfn, memslot,
1142 PT_DIRECTORY_LEVEL + j);
1143 ret |= handler(kvm, &linfo->rmap_pde, data);
852e3c19 1144 }
90bb6fc5
AK
1145 trace_kvm_age_page(hva, memslot, ret);
1146 retval |= ret;
e930bffe
AA
1147 }
1148 }
1149
1150 return retval;
1151}
1152
1153int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1154{
3da0dd43
IE
1155 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1156}
1157
1158void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1159{
8a8365c5 1160 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1161}
1162
8a8365c5
FD
1163static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1164 unsigned long data)
e930bffe
AA
1165{
1166 u64 *spte;
1167 int young = 0;
1168
6316e1c8
RR
1169 /*
1170 * Emulate the accessed bit for EPT, by checking if this page has
1171 * an EPT mapping, and clearing it if it does. On the next access,
1172 * a new EPT mapping will be established.
1173 * This has some overhead, but not as much as the cost of swapping
1174 * out actively used pages or breaking up actively used hugepages.
1175 */
534e38b4 1176 if (!shadow_accessed_mask)
6316e1c8 1177 return kvm_unmap_rmapp(kvm, rmapp, data);
534e38b4 1178
e930bffe
AA
1179 spte = rmap_next(kvm, rmapp, NULL);
1180 while (spte) {
1181 int _young;
1182 u64 _spte = *spte;
1183 BUG_ON(!(_spte & PT_PRESENT_MASK));
1184 _young = _spte & PT_ACCESSED_MASK;
1185 if (_young) {
1186 young = 1;
1187 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1188 }
1189 spte = rmap_next(kvm, rmapp, spte);
1190 }
1191 return young;
1192}
1193
8ee53820
AA
1194static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1195 unsigned long data)
1196{
1197 u64 *spte;
1198 int young = 0;
1199
1200 /*
1201 * If there's no access bit in the secondary pte set by the
1202 * hardware it's up to gup-fast/gup to set the access bit in
1203 * the primary pte or in the page structure.
1204 */
1205 if (!shadow_accessed_mask)
1206 goto out;
1207
1208 spte = rmap_next(kvm, rmapp, NULL);
1209 while (spte) {
1210 u64 _spte = *spte;
1211 BUG_ON(!(_spte & PT_PRESENT_MASK));
1212 young = _spte & PT_ACCESSED_MASK;
1213 if (young) {
1214 young = 1;
1215 break;
1216 }
1217 spte = rmap_next(kvm, rmapp, spte);
1218 }
1219out:
1220 return young;
1221}
1222
53a27b39
MT
1223#define RMAP_RECYCLE_THRESHOLD 1000
1224
852e3c19 1225static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1226{
1227 unsigned long *rmapp;
852e3c19
JR
1228 struct kvm_mmu_page *sp;
1229
1230 sp = page_header(__pa(spte));
53a27b39 1231
852e3c19 1232 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1233
3da0dd43 1234 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
53a27b39
MT
1235 kvm_flush_remote_tlbs(vcpu->kvm);
1236}
1237
e930bffe
AA
1238int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1239{
3da0dd43 1240 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
e930bffe
AA
1241}
1242
8ee53820
AA
1243int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1244{
1245 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1246}
1247
d6c69ee9 1248#ifdef MMU_DEBUG
47ad8e68 1249static int is_empty_shadow_page(u64 *spt)
6aa8b732 1250{
139bdb2d
AK
1251 u64 *pos;
1252 u64 *end;
1253
47ad8e68 1254 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1255 if (is_shadow_present_pte(*pos)) {
b8688d51 1256 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1257 pos, *pos);
6aa8b732 1258 return 0;
139bdb2d 1259 }
6aa8b732
AK
1260 return 1;
1261}
d6c69ee9 1262#endif
6aa8b732 1263
45221ab6
DH
1264/*
1265 * This value is the sum of all of the kvm instances's
1266 * kvm->arch.n_used_mmu_pages values. We need a global,
1267 * aggregate version in order to make the slab shrinker
1268 * faster
1269 */
1270static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1271{
1272 kvm->arch.n_used_mmu_pages += nr;
1273 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1274}
1275
bd4c86ea
XG
1276/*
1277 * Remove the sp from shadow page cache, after call it,
1278 * we can not find this sp from the cache, and the shadow
1279 * page table is still valid.
1280 * It should be under the protection of mmu lock.
1281 */
1282static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1283{
4db35314 1284 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1285 hlist_del(&sp->hash_link);
2032a93d 1286 if (!sp->role.direct)
842f22ed 1287 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1288}
1289
1290/*
1291 * Free the shadow page table and the sp, we can do it
1292 * out of the protection of mmu lock.
1293 */
1294static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1295{
1296 list_del(&sp->link);
1297 free_page((unsigned long)sp->spt);
e8ad9a70 1298 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1299}
1300
cea0f0e7
AK
1301static unsigned kvm_page_table_hashfn(gfn_t gfn)
1302{
1ae0a13d 1303 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1304}
1305
714b93da 1306static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1307 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1308{
cea0f0e7
AK
1309 if (!parent_pte)
1310 return;
cea0f0e7 1311
67052b35 1312 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1313}
1314
4db35314 1315static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1316 u64 *parent_pte)
1317{
67052b35 1318 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1319}
1320
bcdd9a93
XG
1321static void drop_parent_pte(struct kvm_mmu_page *sp,
1322 u64 *parent_pte)
1323{
1324 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1325 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1326}
1327
67052b35
XG
1328static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1329 u64 *parent_pte, int direct)
ad8cfbe3 1330{
67052b35
XG
1331 struct kvm_mmu_page *sp;
1332 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1333 sizeof *sp);
1334 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1335 if (!direct)
1336 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1337 PAGE_SIZE);
1338 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1339 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1340 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1341 sp->parent_ptes = 0;
1342 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1343 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1344 return sp;
ad8cfbe3
MT
1345}
1346
67052b35 1347static void mark_unsync(u64 *spte);
1047df1f 1348static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1349{
67052b35 1350 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1351}
1352
67052b35 1353static void mark_unsync(u64 *spte)
0074ff63 1354{
67052b35 1355 struct kvm_mmu_page *sp;
1047df1f 1356 unsigned int index;
0074ff63 1357
67052b35 1358 sp = page_header(__pa(spte));
1047df1f
XG
1359 index = spte - sp->spt;
1360 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1361 return;
1047df1f 1362 if (sp->unsync_children++)
0074ff63 1363 return;
1047df1f 1364 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1365}
1366
e8bc217a 1367static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1368 struct kvm_mmu_page *sp)
e8bc217a
MT
1369{
1370 return 1;
1371}
1372
a7052897
MT
1373static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1374{
1375}
1376
0f53b5b1
XG
1377static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1378 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1379 const void *pte)
0f53b5b1
XG
1380{
1381 WARN_ON(1);
1382}
1383
60c8aec6
MT
1384#define KVM_PAGE_ARRAY_NR 16
1385
1386struct kvm_mmu_pages {
1387 struct mmu_page_and_offset {
1388 struct kvm_mmu_page *sp;
1389 unsigned int idx;
1390 } page[KVM_PAGE_ARRAY_NR];
1391 unsigned int nr;
1392};
1393
0074ff63
MT
1394#define for_each_unsync_children(bitmap, idx) \
1395 for (idx = find_first_bit(bitmap, 512); \
1396 idx < 512; \
1397 idx = find_next_bit(bitmap, 512, idx+1))
1398
cded19f3
HE
1399static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1400 int idx)
4731d4c7 1401{
60c8aec6 1402 int i;
4731d4c7 1403
60c8aec6
MT
1404 if (sp->unsync)
1405 for (i=0; i < pvec->nr; i++)
1406 if (pvec->page[i].sp == sp)
1407 return 0;
1408
1409 pvec->page[pvec->nr].sp = sp;
1410 pvec->page[pvec->nr].idx = idx;
1411 pvec->nr++;
1412 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1413}
1414
1415static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1416 struct kvm_mmu_pages *pvec)
1417{
1418 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1419
0074ff63 1420 for_each_unsync_children(sp->unsync_child_bitmap, i) {
7a8f1a74 1421 struct kvm_mmu_page *child;
4731d4c7
MT
1422 u64 ent = sp->spt[i];
1423
7a8f1a74
XG
1424 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1425 goto clear_child_bitmap;
1426
1427 child = page_header(ent & PT64_BASE_ADDR_MASK);
1428
1429 if (child->unsync_children) {
1430 if (mmu_pages_add(pvec, child, i))
1431 return -ENOSPC;
1432
1433 ret = __mmu_unsync_walk(child, pvec);
1434 if (!ret)
1435 goto clear_child_bitmap;
1436 else if (ret > 0)
1437 nr_unsync_leaf += ret;
1438 else
1439 return ret;
1440 } else if (child->unsync) {
1441 nr_unsync_leaf++;
1442 if (mmu_pages_add(pvec, child, i))
1443 return -ENOSPC;
1444 } else
1445 goto clear_child_bitmap;
1446
1447 continue;
1448
1449clear_child_bitmap:
1450 __clear_bit(i, sp->unsync_child_bitmap);
1451 sp->unsync_children--;
1452 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1453 }
1454
4731d4c7 1455
60c8aec6
MT
1456 return nr_unsync_leaf;
1457}
1458
1459static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1460 struct kvm_mmu_pages *pvec)
1461{
1462 if (!sp->unsync_children)
1463 return 0;
1464
1465 mmu_pages_add(pvec, sp, 0);
1466 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1467}
1468
4731d4c7
MT
1469static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1470{
1471 WARN_ON(!sp->unsync);
5e1b3ddb 1472 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1473 sp->unsync = 0;
1474 --kvm->stat.mmu_unsync;
1475}
1476
7775834a
XG
1477static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1478 struct list_head *invalid_list);
1479static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1480 struct list_head *invalid_list);
4731d4c7 1481
f41d335a
XG
1482#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1483 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1484 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1485 if ((sp)->gfn != (gfn)) {} else
1486
f41d335a
XG
1487#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1488 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1489 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1490 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1491 (sp)->role.invalid) {} else
1492
f918b443 1493/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1494static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1495 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1496{
5b7e0102 1497 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1498 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1499 return 1;
1500 }
1501
f918b443 1502 if (clear_unsync)
1d9dc7e0 1503 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1504
a4a8e6f7 1505 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1506 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1507 return 1;
1508 }
1509
1510 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1511 return 0;
1512}
1513
1d9dc7e0
XG
1514static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1515 struct kvm_mmu_page *sp)
1516{
d98ba053 1517 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1518 int ret;
1519
d98ba053 1520 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1521 if (ret)
d98ba053
XG
1522 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1523
1d9dc7e0
XG
1524 return ret;
1525}
1526
d98ba053
XG
1527static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1528 struct list_head *invalid_list)
1d9dc7e0 1529{
d98ba053 1530 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1531}
1532
9f1a122f
XG
1533/* @gfn should be write-protected at the call site */
1534static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1535{
9f1a122f 1536 struct kvm_mmu_page *s;
f41d335a 1537 struct hlist_node *node;
d98ba053 1538 LIST_HEAD(invalid_list);
9f1a122f
XG
1539 bool flush = false;
1540
f41d335a 1541 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1542 if (!s->unsync)
9f1a122f
XG
1543 continue;
1544
1545 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1546 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1547 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1548 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1549 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1550 continue;
1551 }
9f1a122f
XG
1552 flush = true;
1553 }
1554
d98ba053 1555 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1556 if (flush)
1557 kvm_mmu_flush_tlb(vcpu);
1558}
1559
60c8aec6
MT
1560struct mmu_page_path {
1561 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1562 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1563};
1564
60c8aec6
MT
1565#define for_each_sp(pvec, sp, parents, i) \
1566 for (i = mmu_pages_next(&pvec, &parents, -1), \
1567 sp = pvec.page[i].sp; \
1568 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1569 i = mmu_pages_next(&pvec, &parents, i))
1570
cded19f3
HE
1571static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1572 struct mmu_page_path *parents,
1573 int i)
60c8aec6
MT
1574{
1575 int n;
1576
1577 for (n = i+1; n < pvec->nr; n++) {
1578 struct kvm_mmu_page *sp = pvec->page[n].sp;
1579
1580 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1581 parents->idx[0] = pvec->page[n].idx;
1582 return n;
1583 }
1584
1585 parents->parent[sp->role.level-2] = sp;
1586 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1587 }
1588
1589 return n;
1590}
1591
cded19f3 1592static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1593{
60c8aec6
MT
1594 struct kvm_mmu_page *sp;
1595 unsigned int level = 0;
1596
1597 do {
1598 unsigned int idx = parents->idx[level];
4731d4c7 1599
60c8aec6
MT
1600 sp = parents->parent[level];
1601 if (!sp)
1602 return;
1603
1604 --sp->unsync_children;
1605 WARN_ON((int)sp->unsync_children < 0);
1606 __clear_bit(idx, sp->unsync_child_bitmap);
1607 level++;
1608 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1609}
1610
60c8aec6
MT
1611static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1612 struct mmu_page_path *parents,
1613 struct kvm_mmu_pages *pvec)
4731d4c7 1614{
60c8aec6
MT
1615 parents->parent[parent->role.level-1] = NULL;
1616 pvec->nr = 0;
1617}
4731d4c7 1618
60c8aec6
MT
1619static void mmu_sync_children(struct kvm_vcpu *vcpu,
1620 struct kvm_mmu_page *parent)
1621{
1622 int i;
1623 struct kvm_mmu_page *sp;
1624 struct mmu_page_path parents;
1625 struct kvm_mmu_pages pages;
d98ba053 1626 LIST_HEAD(invalid_list);
60c8aec6
MT
1627
1628 kvm_mmu_pages_init(parent, &parents, &pages);
1629 while (mmu_unsync_walk(parent, &pages)) {
b1a36821
MT
1630 int protected = 0;
1631
1632 for_each_sp(pages, sp, parents, i)
1633 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1634
1635 if (protected)
1636 kvm_flush_remote_tlbs(vcpu->kvm);
1637
60c8aec6 1638 for_each_sp(pages, sp, parents, i) {
d98ba053 1639 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1640 mmu_pages_clear_parents(&parents);
1641 }
d98ba053 1642 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1643 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1644 kvm_mmu_pages_init(parent, &parents, &pages);
1645 }
4731d4c7
MT
1646}
1647
c3707958
XG
1648static void init_shadow_page_table(struct kvm_mmu_page *sp)
1649{
1650 int i;
1651
1652 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1653 sp->spt[i] = 0ull;
1654}
1655
a30f47cb
XG
1656static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1657{
1658 sp->write_flooding_count = 0;
1659}
1660
1661static void clear_sp_write_flooding_count(u64 *spte)
1662{
1663 struct kvm_mmu_page *sp = page_header(__pa(spte));
1664
1665 __clear_sp_write_flooding_count(sp);
1666}
1667
cea0f0e7
AK
1668static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1669 gfn_t gfn,
1670 gva_t gaddr,
1671 unsigned level,
f6e2c02b 1672 int direct,
41074d07 1673 unsigned access,
f7d9c7b7 1674 u64 *parent_pte)
cea0f0e7
AK
1675{
1676 union kvm_mmu_page_role role;
cea0f0e7 1677 unsigned quadrant;
9f1a122f 1678 struct kvm_mmu_page *sp;
f41d335a 1679 struct hlist_node *node;
9f1a122f 1680 bool need_sync = false;
cea0f0e7 1681
a770f6f2 1682 role = vcpu->arch.mmu.base_role;
cea0f0e7 1683 role.level = level;
f6e2c02b 1684 role.direct = direct;
84b0c8c6 1685 if (role.direct)
5b7e0102 1686 role.cr4_pae = 0;
41074d07 1687 role.access = access;
c5a78f2b
JR
1688 if (!vcpu->arch.mmu.direct_map
1689 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1690 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1691 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1692 role.quadrant = quadrant;
1693 }
f41d335a 1694 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1695 if (!need_sync && sp->unsync)
1696 need_sync = true;
4731d4c7 1697
7ae680eb
XG
1698 if (sp->role.word != role.word)
1699 continue;
4731d4c7 1700
7ae680eb
XG
1701 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1702 break;
e02aa901 1703
7ae680eb
XG
1704 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1705 if (sp->unsync_children) {
a8eeb04a 1706 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1707 kvm_mmu_mark_parents_unsync(sp);
1708 } else if (sp->unsync)
1709 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1710
a30f47cb 1711 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1712 trace_kvm_mmu_get_page(sp, false);
1713 return sp;
1714 }
dfc5aa00 1715 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1716 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1717 if (!sp)
1718 return sp;
4db35314
AK
1719 sp->gfn = gfn;
1720 sp->role = role;
7ae680eb
XG
1721 hlist_add_head(&sp->hash_link,
1722 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1723 if (!direct) {
b1a36821
MT
1724 if (rmap_write_protect(vcpu->kvm, gfn))
1725 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1726 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1727 kvm_sync_pages(vcpu, gfn);
1728
4731d4c7
MT
1729 account_shadowed(vcpu->kvm, gfn);
1730 }
c3707958 1731 init_shadow_page_table(sp);
f691fe1d 1732 trace_kvm_mmu_get_page(sp, true);
4db35314 1733 return sp;
cea0f0e7
AK
1734}
1735
2d11123a
AK
1736static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1737 struct kvm_vcpu *vcpu, u64 addr)
1738{
1739 iterator->addr = addr;
1740 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1741 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1742
1743 if (iterator->level == PT64_ROOT_LEVEL &&
1744 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1745 !vcpu->arch.mmu.direct_map)
1746 --iterator->level;
1747
2d11123a
AK
1748 if (iterator->level == PT32E_ROOT_LEVEL) {
1749 iterator->shadow_addr
1750 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1751 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1752 --iterator->level;
1753 if (!iterator->shadow_addr)
1754 iterator->level = 0;
1755 }
1756}
1757
1758static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1759{
1760 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1761 return false;
4d88954d 1762
2d11123a
AK
1763 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1764 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1765 return true;
1766}
1767
c2a2ac2b
XG
1768static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1769 u64 spte)
2d11123a 1770{
c2a2ac2b 1771 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1772 iterator->level = 0;
1773 return;
1774 }
1775
c2a2ac2b 1776 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1777 --iterator->level;
1778}
1779
c2a2ac2b
XG
1780static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1781{
1782 return __shadow_walk_next(iterator, *iterator->sptep);
1783}
1784
32ef26a3
AK
1785static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1786{
1787 u64 spte;
1788
1789 spte = __pa(sp->spt)
1790 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1791 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1792 mmu_spte_set(sptep, spte);
32ef26a3
AK
1793}
1794
a3aa51cf
AK
1795static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1796{
1797 if (is_large_pte(*sptep)) {
c3707958 1798 drop_spte(vcpu->kvm, sptep);
a3aa51cf
AK
1799 kvm_flush_remote_tlbs(vcpu->kvm);
1800 }
1801}
1802
a357bd22
AK
1803static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1804 unsigned direct_access)
1805{
1806 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1807 struct kvm_mmu_page *child;
1808
1809 /*
1810 * For the direct sp, if the guest pte's dirty bit
1811 * changed form clean to dirty, it will corrupt the
1812 * sp's access: allow writable in the read-only sp,
1813 * so we should update the spte at this point to get
1814 * a new sp with the correct access.
1815 */
1816 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1817 if (child->role.access == direct_access)
1818 return;
1819
bcdd9a93 1820 drop_parent_pte(child, sptep);
a357bd22
AK
1821 kvm_flush_remote_tlbs(vcpu->kvm);
1822 }
1823}
1824
505aef8f 1825static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1826 u64 *spte)
1827{
1828 u64 pte;
1829 struct kvm_mmu_page *child;
1830
1831 pte = *spte;
1832 if (is_shadow_present_pte(pte)) {
505aef8f 1833 if (is_last_spte(pte, sp->role.level)) {
c3707958 1834 drop_spte(kvm, spte);
505aef8f
XG
1835 if (is_large_pte(pte))
1836 --kvm->stat.lpages;
1837 } else {
38e3b2b2 1838 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 1839 drop_parent_pte(child, spte);
38e3b2b2 1840 }
505aef8f
XG
1841 return true;
1842 }
1843
1844 if (is_mmio_spte(pte))
ce88decf 1845 mmu_spte_clear_no_track(spte);
c3707958 1846
505aef8f 1847 return false;
38e3b2b2
XG
1848}
1849
90cb0529 1850static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 1851 struct kvm_mmu_page *sp)
a436036b 1852{
697fe2e2 1853 unsigned i;
697fe2e2 1854
38e3b2b2
XG
1855 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1856 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
1857}
1858
4db35314 1859static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1860{
4db35314 1861 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
1862}
1863
31aa2b44 1864static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b
AK
1865{
1866 u64 *parent_pte;
1867
bcdd9a93
XG
1868 while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1869 drop_parent_pte(sp, parent_pte);
31aa2b44
AK
1870}
1871
60c8aec6 1872static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
1873 struct kvm_mmu_page *parent,
1874 struct list_head *invalid_list)
4731d4c7 1875{
60c8aec6
MT
1876 int i, zapped = 0;
1877 struct mmu_page_path parents;
1878 struct kvm_mmu_pages pages;
4731d4c7 1879
60c8aec6 1880 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 1881 return 0;
60c8aec6
MT
1882
1883 kvm_mmu_pages_init(parent, &parents, &pages);
1884 while (mmu_unsync_walk(parent, &pages)) {
1885 struct kvm_mmu_page *sp;
1886
1887 for_each_sp(pages, sp, parents, i) {
7775834a 1888 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 1889 mmu_pages_clear_parents(&parents);
77662e00 1890 zapped++;
60c8aec6 1891 }
60c8aec6
MT
1892 kvm_mmu_pages_init(parent, &parents, &pages);
1893 }
1894
1895 return zapped;
4731d4c7
MT
1896}
1897
7775834a
XG
1898static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1899 struct list_head *invalid_list)
31aa2b44 1900{
4731d4c7 1901 int ret;
f691fe1d 1902
7775834a 1903 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 1904 ++kvm->stat.mmu_shadow_zapped;
7775834a 1905 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 1906 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 1907 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 1908 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 1909 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
1910 if (sp->unsync)
1911 kvm_unlink_unsync_page(kvm, sp);
4db35314 1912 if (!sp->root_count) {
54a4f023
GJ
1913 /* Count self */
1914 ret++;
7775834a 1915 list_move(&sp->link, invalid_list);
aa6bd187 1916 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 1917 } else {
5b5c6a5a 1918 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
1919 kvm_reload_remote_mmus(kvm);
1920 }
7775834a
XG
1921
1922 sp->role.invalid = 1;
4731d4c7 1923 return ret;
a436036b
AK
1924}
1925
c2a2ac2b
XG
1926static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1927{
1928 struct kvm_mmu_page *sp;
1929
1930 list_for_each_entry(sp, invalid_list, link)
1931 kvm_mmu_isolate_page(sp);
1932}
1933
1934static void free_pages_rcu(struct rcu_head *head)
1935{
1936 struct kvm_mmu_page *next, *sp;
1937
1938 sp = container_of(head, struct kvm_mmu_page, rcu);
1939 while (sp) {
1940 if (!list_empty(&sp->link))
1941 next = list_first_entry(&sp->link,
1942 struct kvm_mmu_page, link);
1943 else
1944 next = NULL;
1945 kvm_mmu_free_page(sp);
1946 sp = next;
1947 }
1948}
1949
7775834a
XG
1950static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1951 struct list_head *invalid_list)
1952{
1953 struct kvm_mmu_page *sp;
1954
1955 if (list_empty(invalid_list))
1956 return;
1957
1958 kvm_flush_remote_tlbs(kvm);
1959
c2a2ac2b
XG
1960 if (atomic_read(&kvm->arch.reader_counter)) {
1961 kvm_mmu_isolate_pages(invalid_list);
1962 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1963 list_del_init(invalid_list);
4f022648
XG
1964
1965 trace_kvm_mmu_delay_free_pages(sp);
c2a2ac2b
XG
1966 call_rcu(&sp->rcu, free_pages_rcu);
1967 return;
1968 }
1969
7775834a
XG
1970 do {
1971 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1972 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 1973 kvm_mmu_isolate_page(sp);
aa6bd187 1974 kvm_mmu_free_page(sp);
7775834a
XG
1975 } while (!list_empty(invalid_list));
1976
1977}
1978
82ce2c96
IE
1979/*
1980 * Changing the number of mmu pages allocated to the vm
49d5ca26 1981 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 1982 */
49d5ca26 1983void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 1984{
d98ba053 1985 LIST_HEAD(invalid_list);
82ce2c96
IE
1986 /*
1987 * If we set the number of mmu pages to be smaller be than the
1988 * number of actived pages , we must to free some mmu pages before we
1989 * change the value
1990 */
1991
49d5ca26
DH
1992 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1993 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 1994 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
1995 struct kvm_mmu_page *page;
1996
f05e70ac 1997 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 1998 struct kvm_mmu_page, link);
80b63faf 1999 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2000 }
aa6bd187 2001 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2002 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2003 }
82ce2c96 2004
49d5ca26 2005 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
2006}
2007
1cb3f3ae 2008int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2009{
4db35314 2010 struct kvm_mmu_page *sp;
f41d335a 2011 struct hlist_node *node;
d98ba053 2012 LIST_HEAD(invalid_list);
a436036b
AK
2013 int r;
2014
9ad17b10 2015 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2016 r = 0;
1cb3f3ae 2017 spin_lock(&kvm->mmu_lock);
f41d335a 2018 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2019 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2020 sp->role.word);
2021 r = 1;
f41d335a 2022 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2023 }
d98ba053 2024 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2025 spin_unlock(&kvm->mmu_lock);
2026
a436036b 2027 return r;
cea0f0e7 2028}
1cb3f3ae 2029EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2030
f67a46f4 2031static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
97a0a01e 2032{
4db35314 2033 struct kvm_mmu_page *sp;
f41d335a 2034 struct hlist_node *node;
d98ba053 2035 LIST_HEAD(invalid_list);
97a0a01e 2036
f41d335a 2037 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2038 pgprintk("%s: zap %llx %x\n",
7ae680eb 2039 __func__, gfn, sp->role.word);
f41d335a 2040 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
97a0a01e 2041 }
d98ba053 2042 kvm_mmu_commit_zap_page(kvm, &invalid_list);
97a0a01e
AK
2043}
2044
38c335f1 2045static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
6aa8b732 2046{
bc6678a3 2047 int slot = memslot_id(kvm, gfn);
4db35314 2048 struct kvm_mmu_page *sp = page_header(__pa(pte));
6aa8b732 2049
291f26bc 2050 __set_bit(slot, sp->slot_bitmap);
6aa8b732
AK
2051}
2052
74be52e3
SY
2053/*
2054 * The function is based on mtrr_type_lookup() in
2055 * arch/x86/kernel/cpu/mtrr/generic.c
2056 */
2057static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2058 u64 start, u64 end)
2059{
2060 int i;
2061 u64 base, mask;
2062 u8 prev_match, curr_match;
2063 int num_var_ranges = KVM_NR_VAR_MTRR;
2064
2065 if (!mtrr_state->enabled)
2066 return 0xFF;
2067
2068 /* Make end inclusive end, instead of exclusive */
2069 end--;
2070
2071 /* Look in fixed ranges. Just return the type as per start */
2072 if (mtrr_state->have_fixed && (start < 0x100000)) {
2073 int idx;
2074
2075 if (start < 0x80000) {
2076 idx = 0;
2077 idx += (start >> 16);
2078 return mtrr_state->fixed_ranges[idx];
2079 } else if (start < 0xC0000) {
2080 idx = 1 * 8;
2081 idx += ((start - 0x80000) >> 14);
2082 return mtrr_state->fixed_ranges[idx];
2083 } else if (start < 0x1000000) {
2084 idx = 3 * 8;
2085 idx += ((start - 0xC0000) >> 12);
2086 return mtrr_state->fixed_ranges[idx];
2087 }
2088 }
2089
2090 /*
2091 * Look in variable ranges
2092 * Look of multiple ranges matching this address and pick type
2093 * as per MTRR precedence
2094 */
2095 if (!(mtrr_state->enabled & 2))
2096 return mtrr_state->def_type;
2097
2098 prev_match = 0xFF;
2099 for (i = 0; i < num_var_ranges; ++i) {
2100 unsigned short start_state, end_state;
2101
2102 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2103 continue;
2104
2105 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2106 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2107 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2108 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2109
2110 start_state = ((start & mask) == (base & mask));
2111 end_state = ((end & mask) == (base & mask));
2112 if (start_state != end_state)
2113 return 0xFE;
2114
2115 if ((start & mask) != (base & mask))
2116 continue;
2117
2118 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2119 if (prev_match == 0xFF) {
2120 prev_match = curr_match;
2121 continue;
2122 }
2123
2124 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2125 curr_match == MTRR_TYPE_UNCACHABLE)
2126 return MTRR_TYPE_UNCACHABLE;
2127
2128 if ((prev_match == MTRR_TYPE_WRBACK &&
2129 curr_match == MTRR_TYPE_WRTHROUGH) ||
2130 (prev_match == MTRR_TYPE_WRTHROUGH &&
2131 curr_match == MTRR_TYPE_WRBACK)) {
2132 prev_match = MTRR_TYPE_WRTHROUGH;
2133 curr_match = MTRR_TYPE_WRTHROUGH;
2134 }
2135
2136 if (prev_match != curr_match)
2137 return MTRR_TYPE_UNCACHABLE;
2138 }
2139
2140 if (prev_match != 0xFF)
2141 return prev_match;
2142
2143 return mtrr_state->def_type;
2144}
2145
4b12f0de 2146u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2147{
2148 u8 mtrr;
2149
2150 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2151 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2152 if (mtrr == 0xfe || mtrr == 0xff)
2153 mtrr = MTRR_TYPE_WRBACK;
2154 return mtrr;
2155}
4b12f0de 2156EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2157
9cf5cf5a
XG
2158static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2159{
2160 trace_kvm_mmu_unsync_page(sp);
2161 ++vcpu->kvm->stat.mmu_unsync;
2162 sp->unsync = 1;
2163
2164 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2165}
2166
2167static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2168{
4731d4c7 2169 struct kvm_mmu_page *s;
f41d335a 2170 struct hlist_node *node;
9cf5cf5a 2171
f41d335a 2172 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2173 if (s->unsync)
4731d4c7 2174 continue;
9cf5cf5a
XG
2175 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2176 __kvm_unsync_page(vcpu, s);
4731d4c7 2177 }
4731d4c7
MT
2178}
2179
2180static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2181 bool can_unsync)
2182{
9cf5cf5a 2183 struct kvm_mmu_page *s;
f41d335a 2184 struct hlist_node *node;
9cf5cf5a
XG
2185 bool need_unsync = false;
2186
f41d335a 2187 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2188 if (!can_unsync)
2189 return 1;
2190
9cf5cf5a 2191 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2192 return 1;
9cf5cf5a
XG
2193
2194 if (!need_unsync && !s->unsync) {
36a2e677 2195 if (!oos_shadow)
9cf5cf5a
XG
2196 return 1;
2197 need_unsync = true;
2198 }
4731d4c7 2199 }
9cf5cf5a
XG
2200 if (need_unsync)
2201 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2202 return 0;
2203}
2204
d555c333 2205static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2206 unsigned pte_access, int user_fault,
640d9b0d 2207 int write_fault, int level,
c2d0ee46 2208 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2209 bool can_unsync, bool host_writable)
1c4f1fd6 2210{
b330aa0c 2211 u64 spte, entry = *sptep;
1e73f9dd 2212 int ret = 0;
64d4d521 2213
ce88decf
XG
2214 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2215 return 0;
2216
982c2565 2217 spte = PT_PRESENT_MASK;
947da538 2218 if (!speculative)
3201b5d9 2219 spte |= shadow_accessed_mask;
640d9b0d 2220
7b52345e
SY
2221 if (pte_access & ACC_EXEC_MASK)
2222 spte |= shadow_x_mask;
2223 else
2224 spte |= shadow_nx_mask;
1c4f1fd6 2225 if (pte_access & ACC_USER_MASK)
7b52345e 2226 spte |= shadow_user_mask;
852e3c19 2227 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2228 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2229 if (tdp_enabled)
4b12f0de
SY
2230 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2231 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2232
9bdbba13 2233 if (host_writable)
1403283a 2234 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2235 else
2236 pte_access &= ~ACC_WRITE_MASK;
1403283a 2237
35149e21 2238 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6
AK
2239
2240 if ((pte_access & ACC_WRITE_MASK)
c5a78f2b
JR
2241 || (!vcpu->arch.mmu.direct_map && write_fault
2242 && !is_write_protection(vcpu) && !user_fault)) {
1c4f1fd6 2243
852e3c19
JR
2244 if (level > PT_PAGE_TABLE_LEVEL &&
2245 has_wrprotected_page(vcpu->kvm, gfn, level)) {
38187c83 2246 ret = 1;
c3707958 2247 drop_spte(vcpu->kvm, sptep);
be38d276 2248 goto done;
38187c83
MT
2249 }
2250
1c4f1fd6 2251 spte |= PT_WRITABLE_MASK;
1c4f1fd6 2252
c5a78f2b 2253 if (!vcpu->arch.mmu.direct_map
411c588d 2254 && !(pte_access & ACC_WRITE_MASK)) {
69325a12 2255 spte &= ~PT_USER_MASK;
411c588d
AK
2256 /*
2257 * If we converted a user page to a kernel page,
2258 * so that the kernel can write to it when cr0.wp=0,
2259 * then we should prevent the kernel from executing it
2260 * if SMEP is enabled.
2261 */
2262 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2263 spte |= PT64_NX_MASK;
2264 }
69325a12 2265
ecc5589f
MT
2266 /*
2267 * Optimization: for pte sync, if spte was writable the hash
2268 * lookup is unnecessary (and expensive). Write protection
2269 * is responsibility of mmu_get_page / kvm_sync_page.
2270 * Same reasoning can be applied to dirty page accounting.
2271 */
8dae4445 2272 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2273 goto set_pte;
2274
4731d4c7 2275 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2276 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2277 __func__, gfn);
1e73f9dd 2278 ret = 1;
1c4f1fd6 2279 pte_access &= ~ACC_WRITE_MASK;
8dae4445 2280 if (is_writable_pte(spte))
1c4f1fd6 2281 spte &= ~PT_WRITABLE_MASK;
1c4f1fd6
AK
2282 }
2283 }
2284
1c4f1fd6
AK
2285 if (pte_access & ACC_WRITE_MASK)
2286 mark_page_dirty(vcpu->kvm, gfn);
2287
38187c83 2288set_pte:
1df9f2dc 2289 mmu_spte_update(sptep, spte);
b330aa0c
XG
2290 /*
2291 * If we overwrite a writable spte with a read-only one we
2292 * should flush remote TLBs. Otherwise rmap_write_protect
2293 * will find a read-only spte, even though the writable spte
2294 * might be cached on a CPU's TLB.
2295 */
2296 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2297 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2298done:
1e73f9dd
MT
2299 return ret;
2300}
2301
d555c333 2302static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2303 unsigned pt_access, unsigned pte_access,
640d9b0d 2304 int user_fault, int write_fault,
b90a0e6c 2305 int *emulate, int level, gfn_t gfn,
1403283a 2306 pfn_t pfn, bool speculative,
9bdbba13 2307 bool host_writable)
1e73f9dd
MT
2308{
2309 int was_rmapped = 0;
53a27b39 2310 int rmap_count;
1e73f9dd
MT
2311
2312 pgprintk("%s: spte %llx access %x write_fault %d"
9ad17b10 2313 " user_fault %d gfn %llx\n",
d555c333 2314 __func__, *sptep, pt_access,
1e73f9dd
MT
2315 write_fault, user_fault, gfn);
2316
d555c333 2317 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2318 /*
2319 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2320 * the parent of the now unreachable PTE.
2321 */
852e3c19
JR
2322 if (level > PT_PAGE_TABLE_LEVEL &&
2323 !is_large_pte(*sptep)) {
1e73f9dd 2324 struct kvm_mmu_page *child;
d555c333 2325 u64 pte = *sptep;
1e73f9dd
MT
2326
2327 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2328 drop_parent_pte(child, sptep);
3be2264b 2329 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2330 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2331 pgprintk("hfn old %llx new %llx\n",
d555c333 2332 spte_to_pfn(*sptep), pfn);
c3707958 2333 drop_spte(vcpu->kvm, sptep);
91546356 2334 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2335 } else
2336 was_rmapped = 1;
1e73f9dd 2337 }
852e3c19 2338
d555c333 2339 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
640d9b0d 2340 level, gfn, pfn, speculative, true,
9bdbba13 2341 host_writable)) {
1e73f9dd 2342 if (write_fault)
b90a0e6c 2343 *emulate = 1;
5304efde 2344 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2345 }
1e73f9dd 2346
ce88decf
XG
2347 if (unlikely(is_mmio_spte(*sptep) && emulate))
2348 *emulate = 1;
2349
d555c333 2350 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2351 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2352 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2353 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2354 *sptep, sptep);
d555c333 2355 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2356 ++vcpu->kvm->stat.lpages;
2357
ffb61bb3
XG
2358 if (is_shadow_present_pte(*sptep)) {
2359 page_header_update_slot(vcpu->kvm, sptep, gfn);
2360 if (!was_rmapped) {
2361 rmap_count = rmap_add(vcpu, sptep, gfn);
2362 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2363 rmap_recycle(vcpu, sptep, gfn);
2364 }
1c4f1fd6 2365 }
9ed5520d 2366 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2367}
2368
6aa8b732
AK
2369static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2370{
2371}
2372
957ed9ef
XG
2373static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2374 bool no_dirty_log)
2375{
2376 struct kvm_memory_slot *slot;
2377 unsigned long hva;
2378
5d163b1c 2379 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
957ed9ef 2380 if (!slot) {
fce92dce
XG
2381 get_page(fault_page);
2382 return page_to_pfn(fault_page);
957ed9ef
XG
2383 }
2384
2385 hva = gfn_to_hva_memslot(slot, gfn);
2386
2387 return hva_to_pfn_atomic(vcpu->kvm, hva);
2388}
2389
2390static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2391 struct kvm_mmu_page *sp,
2392 u64 *start, u64 *end)
2393{
2394 struct page *pages[PTE_PREFETCH_NUM];
2395 unsigned access = sp->role.access;
2396 int i, ret;
2397 gfn_t gfn;
2398
2399 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2400 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2401 return -1;
2402
2403 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2404 if (ret <= 0)
2405 return -1;
2406
2407 for (i = 0; i < ret; i++, gfn++, start++)
2408 mmu_set_spte(vcpu, start, ACC_ALL,
640d9b0d 2409 access, 0, 0, NULL,
957ed9ef
XG
2410 sp->role.level, gfn,
2411 page_to_pfn(pages[i]), true, true);
2412
2413 return 0;
2414}
2415
2416static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2417 struct kvm_mmu_page *sp, u64 *sptep)
2418{
2419 u64 *spte, *start = NULL;
2420 int i;
2421
2422 WARN_ON(!sp->role.direct);
2423
2424 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2425 spte = sp->spt + i;
2426
2427 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2428 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2429 if (!start)
2430 continue;
2431 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2432 break;
2433 start = NULL;
2434 } else if (!start)
2435 start = spte;
2436 }
2437}
2438
2439static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2440{
2441 struct kvm_mmu_page *sp;
2442
2443 /*
2444 * Since it's no accessed bit on EPT, it's no way to
2445 * distinguish between actually accessed translations
2446 * and prefetched, so disable pte prefetch if EPT is
2447 * enabled.
2448 */
2449 if (!shadow_accessed_mask)
2450 return;
2451
2452 sp = page_header(__pa(sptep));
2453 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2454 return;
2455
2456 __direct_pte_prefetch(vcpu, sp, sptep);
2457}
2458
9f652d21 2459static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2460 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2461 bool prefault)
140754bc 2462{
9f652d21 2463 struct kvm_shadow_walk_iterator iterator;
140754bc 2464 struct kvm_mmu_page *sp;
b90a0e6c 2465 int emulate = 0;
140754bc 2466 gfn_t pseudo_gfn;
6aa8b732 2467
9f652d21 2468 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2469 if (iterator.level == level) {
612819c3
MT
2470 unsigned pte_access = ACC_ALL;
2471
612819c3 2472 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
b90a0e6c 2473 0, write, &emulate,
2ec4739d 2474 level, gfn, pfn, prefault, map_writable);
957ed9ef 2475 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2476 ++vcpu->stat.pf_fixed;
2477 break;
6aa8b732
AK
2478 }
2479
c3707958 2480 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2481 u64 base_addr = iterator.addr;
2482
2483 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2484 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2485 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2486 iterator.level - 1,
2487 1, ACC_ALL, iterator.sptep);
2488 if (!sp) {
2489 pgprintk("nonpaging_map: ENOMEM\n");
2490 kvm_release_pfn_clean(pfn);
2491 return -ENOMEM;
2492 }
140754bc 2493
1df9f2dc
XG
2494 mmu_spte_set(iterator.sptep,
2495 __pa(sp->spt)
2496 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2497 | shadow_user_mask | shadow_x_mask
2498 | shadow_accessed_mask);
9f652d21
AK
2499 }
2500 }
b90a0e6c 2501 return emulate;
6aa8b732
AK
2502}
2503
77db5cbd 2504static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2505{
77db5cbd
HY
2506 siginfo_t info;
2507
2508 info.si_signo = SIGBUS;
2509 info.si_errno = 0;
2510 info.si_code = BUS_MCEERR_AR;
2511 info.si_addr = (void __user *)address;
2512 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2513
77db5cbd 2514 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2515}
2516
d7c55201 2517static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156
HY
2518{
2519 kvm_release_pfn_clean(pfn);
2520 if (is_hwpoison_pfn(pfn)) {
bebb106a 2521 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2522 return 0;
d7c55201 2523 }
edba23e5 2524
d7c55201 2525 return -EFAULT;
bf998156
HY
2526}
2527
936a5fe6
AA
2528static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2529 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2530{
2531 pfn_t pfn = *pfnp;
2532 gfn_t gfn = *gfnp;
2533 int level = *levelp;
2534
2535 /*
2536 * Check if it's a transparent hugepage. If this would be an
2537 * hugetlbfs page, level wouldn't be set to
2538 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2539 * here.
2540 */
2541 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2542 level == PT_PAGE_TABLE_LEVEL &&
2543 PageTransCompound(pfn_to_page(pfn)) &&
2544 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2545 unsigned long mask;
2546 /*
2547 * mmu_notifier_retry was successful and we hold the
2548 * mmu_lock here, so the pmd can't become splitting
2549 * from under us, and in turn
2550 * __split_huge_page_refcount() can't run from under
2551 * us and we can safely transfer the refcount from
2552 * PG_tail to PG_head as we switch the pfn to tail to
2553 * head.
2554 */
2555 *levelp = level = PT_DIRECTORY_LEVEL;
2556 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2557 VM_BUG_ON((gfn & mask) != (pfn & mask));
2558 if (pfn & mask) {
2559 gfn &= ~mask;
2560 *gfnp = gfn;
2561 kvm_release_pfn_clean(pfn);
2562 pfn &= ~mask;
2563 if (!get_page_unless_zero(pfn_to_page(pfn)))
2564 BUG();
2565 *pfnp = pfn;
2566 }
2567 }
2568}
2569
d7c55201
XG
2570static bool mmu_invalid_pfn(pfn_t pfn)
2571{
ce88decf 2572 return unlikely(is_invalid_pfn(pfn));
d7c55201
XG
2573}
2574
2575static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2576 pfn_t pfn, unsigned access, int *ret_val)
2577{
2578 bool ret = true;
2579
2580 /* The pfn is invalid, report the error! */
2581 if (unlikely(is_invalid_pfn(pfn))) {
2582 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2583 goto exit;
2584 }
2585
ce88decf 2586 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2587 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2588
2589 ret = false;
2590exit:
2591 return ret;
2592}
2593
78b2c54a 2594static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2595 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2596
2597static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
78b2c54a 2598 bool prefault)
10589a46
MT
2599{
2600 int r;
852e3c19 2601 int level;
936a5fe6 2602 int force_pt_level;
35149e21 2603 pfn_t pfn;
e930bffe 2604 unsigned long mmu_seq;
612819c3 2605 bool map_writable;
aaee2c94 2606
936a5fe6
AA
2607 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2608 if (likely(!force_pt_level)) {
2609 level = mapping_level(vcpu, gfn);
2610 /*
2611 * This path builds a PAE pagetable - so we can map
2612 * 2mb pages at maximum. Therefore check if the level
2613 * is larger than that.
2614 */
2615 if (level > PT_DIRECTORY_LEVEL)
2616 level = PT_DIRECTORY_LEVEL;
852e3c19 2617
936a5fe6
AA
2618 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2619 } else
2620 level = PT_PAGE_TABLE_LEVEL;
05da4558 2621
e930bffe 2622 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2623 smp_rmb();
060c2abe 2624
78b2c54a 2625 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2626 return 0;
aaee2c94 2627
d7c55201
XG
2628 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2629 return r;
d196e343 2630
aaee2c94 2631 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
2632 if (mmu_notifier_retry(vcpu, mmu_seq))
2633 goto out_unlock;
eb787d10 2634 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2635 if (likely(!force_pt_level))
2636 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2637 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2638 prefault);
aaee2c94
MT
2639 spin_unlock(&vcpu->kvm->mmu_lock);
2640
aaee2c94 2641
10589a46 2642 return r;
e930bffe
AA
2643
2644out_unlock:
2645 spin_unlock(&vcpu->kvm->mmu_lock);
2646 kvm_release_pfn_clean(pfn);
2647 return 0;
10589a46
MT
2648}
2649
2650
17ac10ad
AK
2651static void mmu_free_roots(struct kvm_vcpu *vcpu)
2652{
2653 int i;
4db35314 2654 struct kvm_mmu_page *sp;
d98ba053 2655 LIST_HEAD(invalid_list);
17ac10ad 2656
ad312c7c 2657 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2658 return;
aaee2c94 2659 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2660 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2661 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2662 vcpu->arch.mmu.direct_map)) {
ad312c7c 2663 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2664
4db35314
AK
2665 sp = page_header(root);
2666 --sp->root_count;
d98ba053
XG
2667 if (!sp->root_count && sp->role.invalid) {
2668 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2669 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2670 }
ad312c7c 2671 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2672 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2673 return;
2674 }
17ac10ad 2675 for (i = 0; i < 4; ++i) {
ad312c7c 2676 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2677
417726a3 2678 if (root) {
417726a3 2679 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2680 sp = page_header(root);
2681 --sp->root_count;
2e53d63a 2682 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2683 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2684 &invalid_list);
417726a3 2685 }
ad312c7c 2686 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2687 }
d98ba053 2688 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2689 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2690 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2691}
2692
8986ecc0
MT
2693static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2694{
2695 int ret = 0;
2696
2697 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2698 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2699 ret = 1;
2700 }
2701
2702 return ret;
2703}
2704
651dd37a
JR
2705static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2706{
2707 struct kvm_mmu_page *sp;
7ebaf15e 2708 unsigned i;
651dd37a
JR
2709
2710 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2711 spin_lock(&vcpu->kvm->mmu_lock);
2712 kvm_mmu_free_some_pages(vcpu);
2713 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2714 1, ACC_ALL, NULL);
2715 ++sp->root_count;
2716 spin_unlock(&vcpu->kvm->mmu_lock);
2717 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2718 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2719 for (i = 0; i < 4; ++i) {
2720 hpa_t root = vcpu->arch.mmu.pae_root[i];
2721
2722 ASSERT(!VALID_PAGE(root));
2723 spin_lock(&vcpu->kvm->mmu_lock);
2724 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2725 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2726 i << 30,
651dd37a
JR
2727 PT32_ROOT_LEVEL, 1, ACC_ALL,
2728 NULL);
2729 root = __pa(sp->spt);
2730 ++sp->root_count;
2731 spin_unlock(&vcpu->kvm->mmu_lock);
2732 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2733 }
6292757f 2734 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2735 } else
2736 BUG();
2737
2738 return 0;
2739}
2740
2741static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2742{
4db35314 2743 struct kvm_mmu_page *sp;
81407ca5
JR
2744 u64 pdptr, pm_mask;
2745 gfn_t root_gfn;
2746 int i;
3bb65a22 2747
5777ed34 2748 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2749
651dd37a
JR
2750 if (mmu_check_root(vcpu, root_gfn))
2751 return 1;
2752
2753 /*
2754 * Do we shadow a long mode page table? If so we need to
2755 * write-protect the guests page table root.
2756 */
2757 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2758 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2759
2760 ASSERT(!VALID_PAGE(root));
651dd37a 2761
8facbbff 2762 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2763 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2764 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2765 0, ACC_ALL, NULL);
4db35314
AK
2766 root = __pa(sp->spt);
2767 ++sp->root_count;
8facbbff 2768 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2769 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2770 return 0;
17ac10ad 2771 }
f87f9288 2772
651dd37a
JR
2773 /*
2774 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2775 * or a PAE 3-level page table. In either case we need to be aware that
2776 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2777 */
81407ca5
JR
2778 pm_mask = PT_PRESENT_MASK;
2779 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2780 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2781
17ac10ad 2782 for (i = 0; i < 4; ++i) {
ad312c7c 2783 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2784
2785 ASSERT(!VALID_PAGE(root));
ad312c7c 2786 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 2787 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 2788 if (!is_present_gpte(pdptr)) {
ad312c7c 2789 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
2790 continue;
2791 }
6de4f3ad 2792 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
2793 if (mmu_check_root(vcpu, root_gfn))
2794 return 1;
5a7388c2 2795 }
8facbbff 2796 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2797 kvm_mmu_free_some_pages(vcpu);
4db35314 2798 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 2799 PT32_ROOT_LEVEL, 0,
f7d9c7b7 2800 ACC_ALL, NULL);
4db35314
AK
2801 root = __pa(sp->spt);
2802 ++sp->root_count;
8facbbff
AK
2803 spin_unlock(&vcpu->kvm->mmu_lock);
2804
81407ca5 2805 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 2806 }
6292757f 2807 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
2808
2809 /*
2810 * If we shadow a 32 bit page table with a long mode page
2811 * table we enter this path.
2812 */
2813 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2814 if (vcpu->arch.mmu.lm_root == NULL) {
2815 /*
2816 * The additional page necessary for this is only
2817 * allocated on demand.
2818 */
2819
2820 u64 *lm_root;
2821
2822 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2823 if (lm_root == NULL)
2824 return 1;
2825
2826 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2827
2828 vcpu->arch.mmu.lm_root = lm_root;
2829 }
2830
2831 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2832 }
2833
8986ecc0 2834 return 0;
17ac10ad
AK
2835}
2836
651dd37a
JR
2837static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2838{
2839 if (vcpu->arch.mmu.direct_map)
2840 return mmu_alloc_direct_roots(vcpu);
2841 else
2842 return mmu_alloc_shadow_roots(vcpu);
2843}
2844
0ba73cda
MT
2845static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2846{
2847 int i;
2848 struct kvm_mmu_page *sp;
2849
81407ca5
JR
2850 if (vcpu->arch.mmu.direct_map)
2851 return;
2852
0ba73cda
MT
2853 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2854 return;
6903074c 2855
bebb106a 2856 vcpu_clear_mmio_info(vcpu, ~0ul);
6903074c 2857 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 2858 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
2859 hpa_t root = vcpu->arch.mmu.root_hpa;
2860 sp = page_header(root);
2861 mmu_sync_children(vcpu, sp);
5054c0de 2862 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2863 return;
2864 }
2865 for (i = 0; i < 4; ++i) {
2866 hpa_t root = vcpu->arch.mmu.pae_root[i];
2867
8986ecc0 2868 if (root && VALID_PAGE(root)) {
0ba73cda
MT
2869 root &= PT64_BASE_ADDR_MASK;
2870 sp = page_header(root);
2871 mmu_sync_children(vcpu, sp);
2872 }
2873 }
6903074c 2874 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2875}
2876
2877void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2878{
2879 spin_lock(&vcpu->kvm->mmu_lock);
2880 mmu_sync_roots(vcpu);
6cffe8ca 2881 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
2882}
2883
1871c602 2884static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 2885 u32 access, struct x86_exception *exception)
6aa8b732 2886{
ab9ae313
AK
2887 if (exception)
2888 exception->error_code = 0;
6aa8b732
AK
2889 return vaddr;
2890}
2891
6539e738 2892static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
2893 u32 access,
2894 struct x86_exception *exception)
6539e738 2895{
ab9ae313
AK
2896 if (exception)
2897 exception->error_code = 0;
6539e738
JR
2898 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2899}
2900
ce88decf
XG
2901static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2902{
2903 if (direct)
2904 return vcpu_match_mmio_gpa(vcpu, addr);
2905
2906 return vcpu_match_mmio_gva(vcpu, addr);
2907}
2908
2909
2910/*
2911 * On direct hosts, the last spte is only allows two states
2912 * for mmio page fault:
2913 * - It is the mmio spte
2914 * - It is zapped or it is being zapped.
2915 *
2916 * This function completely checks the spte when the last spte
2917 * is not the mmio spte.
2918 */
2919static bool check_direct_spte_mmio_pf(u64 spte)
2920{
2921 return __check_direct_spte_mmio_pf(spte);
2922}
2923
2924static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2925{
2926 struct kvm_shadow_walk_iterator iterator;
2927 u64 spte = 0ull;
2928
2929 walk_shadow_page_lockless_begin(vcpu);
2930 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2931 if (!is_shadow_present_pte(spte))
2932 break;
2933 walk_shadow_page_lockless_end(vcpu);
2934
2935 return spte;
2936}
2937
2938/*
2939 * If it is a real mmio page fault, return 1 and emulat the instruction
2940 * directly, return 0 to let CPU fault again on the address, -1 is
2941 * returned if bug is detected.
2942 */
2943int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2944{
2945 u64 spte;
2946
2947 if (quickly_check_mmio_pf(vcpu, addr, direct))
2948 return 1;
2949
2950 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2951
2952 if (is_mmio_spte(spte)) {
2953 gfn_t gfn = get_mmio_spte_gfn(spte);
2954 unsigned access = get_mmio_spte_access(spte);
2955
2956 if (direct)
2957 addr = 0;
4f022648
XG
2958
2959 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
2960 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2961 return 1;
2962 }
2963
2964 /*
2965 * It's ok if the gva is remapped by other cpus on shadow guest,
2966 * it's a BUG if the gfn is not a mmio page.
2967 */
2968 if (direct && !check_direct_spte_mmio_pf(spte))
2969 return -1;
2970
2971 /*
2972 * If the page table is zapped by other cpus, let CPU fault again on
2973 * the address.
2974 */
2975 return 0;
2976}
2977EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
2978
2979static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
2980 u32 error_code, bool direct)
2981{
2982 int ret;
2983
2984 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
2985 WARN_ON(ret < 0);
2986 return ret;
2987}
2988
6aa8b732 2989static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 2990 u32 error_code, bool prefault)
6aa8b732 2991{
e833240f 2992 gfn_t gfn;
e2dec939 2993 int r;
6aa8b732 2994
b8688d51 2995 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
2996
2997 if (unlikely(error_code & PFERR_RSVD_MASK))
2998 return handle_mmio_page_fault(vcpu, gva, error_code, true);
2999
e2dec939
AK
3000 r = mmu_topup_memory_caches(vcpu);
3001 if (r)
3002 return r;
714b93da 3003
6aa8b732 3004 ASSERT(vcpu);
ad312c7c 3005 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3006
e833240f 3007 gfn = gva >> PAGE_SHIFT;
6aa8b732 3008
e833240f 3009 return nonpaging_map(vcpu, gva & PAGE_MASK,
78b2c54a 3010 error_code & PFERR_WRITE_MASK, gfn, prefault);
6aa8b732
AK
3011}
3012
7e1fbeac 3013static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3014{
3015 struct kvm_arch_async_pf arch;
fb67e14f 3016
7c90705b 3017 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3018 arch.gfn = gfn;
c4806acd 3019 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3020 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3021
3022 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3023}
3024
3025static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3026{
3027 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3028 kvm_event_needs_reinjection(vcpu)))
3029 return false;
3030
3031 return kvm_x86_ops->interrupt_allowed(vcpu);
3032}
3033
78b2c54a 3034static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3035 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3036{
3037 bool async;
3038
612819c3 3039 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3040
3041 if (!async)
3042 return false; /* *pfn has correct page already */
3043
3044 put_page(pfn_to_page(*pfn));
3045
78b2c54a 3046 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3047 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3048 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3049 trace_kvm_async_pf_doublefault(gva, gfn);
3050 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3051 return true;
3052 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3053 return true;
3054 }
3055
612819c3 3056 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3057
3058 return false;
3059}
3060
56028d08 3061static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3062 bool prefault)
fb72d167 3063{
35149e21 3064 pfn_t pfn;
fb72d167 3065 int r;
852e3c19 3066 int level;
936a5fe6 3067 int force_pt_level;
05da4558 3068 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3069 unsigned long mmu_seq;
612819c3
MT
3070 int write = error_code & PFERR_WRITE_MASK;
3071 bool map_writable;
fb72d167
JR
3072
3073 ASSERT(vcpu);
3074 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3075
ce88decf
XG
3076 if (unlikely(error_code & PFERR_RSVD_MASK))
3077 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3078
fb72d167
JR
3079 r = mmu_topup_memory_caches(vcpu);
3080 if (r)
3081 return r;
3082
936a5fe6
AA
3083 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3084 if (likely(!force_pt_level)) {
3085 level = mapping_level(vcpu, gfn);
3086 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3087 } else
3088 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3089
e930bffe 3090 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3091 smp_rmb();
af585b92 3092
78b2c54a 3093 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3094 return 0;
3095
d7c55201
XG
3096 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3097 return r;
3098
fb72d167 3099 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
3100 if (mmu_notifier_retry(vcpu, mmu_seq))
3101 goto out_unlock;
fb72d167 3102 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3103 if (likely(!force_pt_level))
3104 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3105 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3106 level, gfn, pfn, prefault);
fb72d167 3107 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3108
3109 return r;
e930bffe
AA
3110
3111out_unlock:
3112 spin_unlock(&vcpu->kvm->mmu_lock);
3113 kvm_release_pfn_clean(pfn);
3114 return 0;
fb72d167
JR
3115}
3116
6aa8b732
AK
3117static void nonpaging_free(struct kvm_vcpu *vcpu)
3118{
17ac10ad 3119 mmu_free_roots(vcpu);
6aa8b732
AK
3120}
3121
52fde8df
JR
3122static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3123 struct kvm_mmu *context)
6aa8b732 3124{
6aa8b732
AK
3125 context->new_cr3 = nonpaging_new_cr3;
3126 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3127 context->gva_to_gpa = nonpaging_gva_to_gpa;
3128 context->free = nonpaging_free;
e8bc217a 3129 context->sync_page = nonpaging_sync_page;
a7052897 3130 context->invlpg = nonpaging_invlpg;
0f53b5b1 3131 context->update_pte = nonpaging_update_pte;
cea0f0e7 3132 context->root_level = 0;
6aa8b732 3133 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3134 context->root_hpa = INVALID_PAGE;
c5a78f2b 3135 context->direct_map = true;
2d48a985 3136 context->nx = false;
6aa8b732
AK
3137 return 0;
3138}
3139
d835dfec 3140void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3141{
1165f5fe 3142 ++vcpu->stat.tlb_flush;
a8eeb04a 3143 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3144}
3145
3146static void paging_new_cr3(struct kvm_vcpu *vcpu)
3147{
9f8fe504 3148 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3149 mmu_free_roots(vcpu);
6aa8b732
AK
3150}
3151
5777ed34
JR
3152static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3153{
9f8fe504 3154 return kvm_read_cr3(vcpu);
5777ed34
JR
3155}
3156
6389ee94
AK
3157static void inject_page_fault(struct kvm_vcpu *vcpu,
3158 struct x86_exception *fault)
6aa8b732 3159{
6389ee94 3160 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3161}
3162
6aa8b732
AK
3163static void paging_free(struct kvm_vcpu *vcpu)
3164{
3165 nonpaging_free(vcpu);
3166}
3167
3241f22d 3168static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
82725b20
DE
3169{
3170 int bit7;
3171
3172 bit7 = (gpte >> 7) & 1;
3241f22d 3173 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
82725b20
DE
3174}
3175
ce88decf
XG
3176static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3177 int *nr_present)
3178{
3179 if (unlikely(is_mmio_spte(*sptep))) {
3180 if (gfn != get_mmio_spte_gfn(*sptep)) {
3181 mmu_spte_clear_no_track(sptep);
3182 return true;
3183 }
3184
3185 (*nr_present)++;
3186 mark_mmio_spte(sptep, gfn, access);
3187 return true;
3188 }
3189
3190 return false;
3191}
3192
6aa8b732
AK
3193#define PTTYPE 64
3194#include "paging_tmpl.h"
3195#undef PTTYPE
3196
3197#define PTTYPE 32
3198#include "paging_tmpl.h"
3199#undef PTTYPE
3200
52fde8df
JR
3201static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3202 struct kvm_mmu *context,
3203 int level)
82725b20 3204{
82725b20
DE
3205 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3206 u64 exb_bit_rsvd = 0;
3207
2d48a985 3208 if (!context->nx)
82725b20
DE
3209 exb_bit_rsvd = rsvd_bits(63, 63);
3210 switch (level) {
3211 case PT32_ROOT_LEVEL:
3212 /* no rsvd bits for 2 level 4K page table entries */
3213 context->rsvd_bits_mask[0][1] = 0;
3214 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3215 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3216
3217 if (!is_pse(vcpu)) {
3218 context->rsvd_bits_mask[1][1] = 0;
3219 break;
3220 }
3221
82725b20
DE
3222 if (is_cpuid_PSE36())
3223 /* 36bits PSE 4MB page */
3224 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3225 else
3226 /* 32 bits PSE 4MB page */
3227 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3228 break;
3229 case PT32E_ROOT_LEVEL:
20c466b5
DE
3230 context->rsvd_bits_mask[0][2] =
3231 rsvd_bits(maxphyaddr, 63) |
3232 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3233 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3234 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3235 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3236 rsvd_bits(maxphyaddr, 62); /* PTE */
3237 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3238 rsvd_bits(maxphyaddr, 62) |
3239 rsvd_bits(13, 20); /* large page */
f815bce8 3240 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3241 break;
3242 case PT64_ROOT_LEVEL:
3243 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3244 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3245 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3246 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3247 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3248 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3249 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3250 rsvd_bits(maxphyaddr, 51);
3251 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3252 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3253 rsvd_bits(maxphyaddr, 51) |
3254 rsvd_bits(13, 29);
82725b20 3255 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3256 rsvd_bits(maxphyaddr, 51) |
3257 rsvd_bits(13, 20); /* large page */
f815bce8 3258 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3259 break;
3260 }
3261}
3262
52fde8df
JR
3263static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3264 struct kvm_mmu *context,
3265 int level)
6aa8b732 3266{
2d48a985
JR
3267 context->nx = is_nx(vcpu);
3268
52fde8df 3269 reset_rsvds_bits_mask(vcpu, context, level);
6aa8b732
AK
3270
3271 ASSERT(is_pae(vcpu));
3272 context->new_cr3 = paging_new_cr3;
3273 context->page_fault = paging64_page_fault;
6aa8b732 3274 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3275 context->sync_page = paging64_sync_page;
a7052897 3276 context->invlpg = paging64_invlpg;
0f53b5b1 3277 context->update_pte = paging64_update_pte;
6aa8b732 3278 context->free = paging_free;
17ac10ad
AK
3279 context->root_level = level;
3280 context->shadow_root_level = level;
17c3ba9d 3281 context->root_hpa = INVALID_PAGE;
c5a78f2b 3282 context->direct_map = false;
6aa8b732
AK
3283 return 0;
3284}
3285
52fde8df
JR
3286static int paging64_init_context(struct kvm_vcpu *vcpu,
3287 struct kvm_mmu *context)
17ac10ad 3288{
52fde8df 3289 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3290}
3291
52fde8df
JR
3292static int paging32_init_context(struct kvm_vcpu *vcpu,
3293 struct kvm_mmu *context)
6aa8b732 3294{
2d48a985
JR
3295 context->nx = false;
3296
52fde8df 3297 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
6aa8b732
AK
3298
3299 context->new_cr3 = paging_new_cr3;
3300 context->page_fault = paging32_page_fault;
6aa8b732
AK
3301 context->gva_to_gpa = paging32_gva_to_gpa;
3302 context->free = paging_free;
e8bc217a 3303 context->sync_page = paging32_sync_page;
a7052897 3304 context->invlpg = paging32_invlpg;
0f53b5b1 3305 context->update_pte = paging32_update_pte;
6aa8b732
AK
3306 context->root_level = PT32_ROOT_LEVEL;
3307 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3308 context->root_hpa = INVALID_PAGE;
c5a78f2b 3309 context->direct_map = false;
6aa8b732
AK
3310 return 0;
3311}
3312
52fde8df
JR
3313static int paging32E_init_context(struct kvm_vcpu *vcpu,
3314 struct kvm_mmu *context)
6aa8b732 3315{
52fde8df 3316 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3317}
3318
fb72d167
JR
3319static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3320{
14dfe855 3321 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3322
c445f8ef 3323 context->base_role.word = 0;
fb72d167
JR
3324 context->new_cr3 = nonpaging_new_cr3;
3325 context->page_fault = tdp_page_fault;
3326 context->free = nonpaging_free;
e8bc217a 3327 context->sync_page = nonpaging_sync_page;
a7052897 3328 context->invlpg = nonpaging_invlpg;
0f53b5b1 3329 context->update_pte = nonpaging_update_pte;
67253af5 3330 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3331 context->root_hpa = INVALID_PAGE;
c5a78f2b 3332 context->direct_map = true;
1c97f0a0 3333 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3334 context->get_cr3 = get_cr3;
e4e517b4 3335 context->get_pdptr = kvm_pdptr_read;
cb659db8 3336 context->inject_page_fault = kvm_inject_page_fault;
2d48a985 3337 context->nx = is_nx(vcpu);
fb72d167
JR
3338
3339 if (!is_paging(vcpu)) {
2d48a985 3340 context->nx = false;
fb72d167
JR
3341 context->gva_to_gpa = nonpaging_gva_to_gpa;
3342 context->root_level = 0;
3343 } else if (is_long_mode(vcpu)) {
2d48a985 3344 context->nx = is_nx(vcpu);
52fde8df 3345 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
fb72d167
JR
3346 context->gva_to_gpa = paging64_gva_to_gpa;
3347 context->root_level = PT64_ROOT_LEVEL;
3348 } else if (is_pae(vcpu)) {
2d48a985 3349 context->nx = is_nx(vcpu);
52fde8df 3350 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
fb72d167
JR
3351 context->gva_to_gpa = paging64_gva_to_gpa;
3352 context->root_level = PT32E_ROOT_LEVEL;
3353 } else {
2d48a985 3354 context->nx = false;
52fde8df 3355 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
fb72d167
JR
3356 context->gva_to_gpa = paging32_gva_to_gpa;
3357 context->root_level = PT32_ROOT_LEVEL;
3358 }
3359
3360 return 0;
3361}
3362
52fde8df 3363int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3364{
a770f6f2 3365 int r;
411c588d 3366 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3367 ASSERT(vcpu);
ad312c7c 3368 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3369
3370 if (!is_paging(vcpu))
52fde8df 3371 r = nonpaging_init_context(vcpu, context);
a9058ecd 3372 else if (is_long_mode(vcpu))
52fde8df 3373 r = paging64_init_context(vcpu, context);
6aa8b732 3374 else if (is_pae(vcpu))
52fde8df 3375 r = paging32E_init_context(vcpu, context);
6aa8b732 3376 else
52fde8df 3377 r = paging32_init_context(vcpu, context);
a770f6f2 3378
5b7e0102 3379 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3380 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3381 vcpu->arch.mmu.base_role.smep_andnot_wp
3382 = smep && !is_write_protection(vcpu);
52fde8df
JR
3383
3384 return r;
3385}
3386EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3387
3388static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3389{
14dfe855 3390 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3391
14dfe855
JR
3392 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3393 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3394 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3395 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3396
3397 return r;
6aa8b732
AK
3398}
3399
02f59dc9
JR
3400static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3401{
3402 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3403
3404 g_context->get_cr3 = get_cr3;
e4e517b4 3405 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3406 g_context->inject_page_fault = kvm_inject_page_fault;
3407
3408 /*
3409 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3410 * translation of l2_gpa to l1_gpa addresses is done using the
3411 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3412 * functions between mmu and nested_mmu are swapped.
3413 */
3414 if (!is_paging(vcpu)) {
2d48a985 3415 g_context->nx = false;
02f59dc9
JR
3416 g_context->root_level = 0;
3417 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3418 } else if (is_long_mode(vcpu)) {
2d48a985 3419 g_context->nx = is_nx(vcpu);
02f59dc9
JR
3420 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3421 g_context->root_level = PT64_ROOT_LEVEL;
3422 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3423 } else if (is_pae(vcpu)) {
2d48a985 3424 g_context->nx = is_nx(vcpu);
02f59dc9
JR
3425 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3426 g_context->root_level = PT32E_ROOT_LEVEL;
3427 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3428 } else {
2d48a985 3429 g_context->nx = false;
02f59dc9
JR
3430 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3431 g_context->root_level = PT32_ROOT_LEVEL;
3432 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3433 }
3434
3435 return 0;
3436}
3437
fb72d167
JR
3438static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3439{
02f59dc9
JR
3440 if (mmu_is_nested(vcpu))
3441 return init_kvm_nested_mmu(vcpu);
3442 else if (tdp_enabled)
fb72d167
JR
3443 return init_kvm_tdp_mmu(vcpu);
3444 else
3445 return init_kvm_softmmu(vcpu);
3446}
3447
6aa8b732
AK
3448static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3449{
3450 ASSERT(vcpu);
62ad0755
SY
3451 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3452 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3453 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3454}
3455
3456int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3457{
3458 destroy_kvm_mmu(vcpu);
f8f7e5ee 3459 return init_kvm_mmu(vcpu);
17c3ba9d 3460}
8668a3c4 3461EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3462
3463int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3464{
714b93da
AK
3465 int r;
3466
e2dec939 3467 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3468 if (r)
3469 goto out;
8986ecc0 3470 r = mmu_alloc_roots(vcpu);
8facbbff 3471 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3472 mmu_sync_roots(vcpu);
aaee2c94 3473 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3474 if (r)
3475 goto out;
3662cb1c 3476 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3477 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3478out:
3479 return r;
6aa8b732 3480}
17c3ba9d
AK
3481EXPORT_SYMBOL_GPL(kvm_mmu_load);
3482
3483void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3484{
3485 mmu_free_roots(vcpu);
3486}
4b16184c 3487EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3488
0028425f 3489static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3490 struct kvm_mmu_page *sp, u64 *spte,
3491 const void *new)
0028425f 3492{
30945387 3493 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3494 ++vcpu->kvm->stat.mmu_pde_zapped;
3495 return;
30945387 3496 }
0028425f 3497
4cee5764 3498 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3499 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3500}
3501
79539cec
AK
3502static bool need_remote_flush(u64 old, u64 new)
3503{
3504 if (!is_shadow_present_pte(old))
3505 return false;
3506 if (!is_shadow_present_pte(new))
3507 return true;
3508 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3509 return true;
3510 old ^= PT64_NX_MASK;
3511 new ^= PT64_NX_MASK;
3512 return (old & ~new & PT64_PERM_MASK) != 0;
3513}
3514
0671a8e7
XG
3515static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3516 bool remote_flush, bool local_flush)
79539cec 3517{
0671a8e7
XG
3518 if (zap_page)
3519 return;
3520
3521 if (remote_flush)
79539cec 3522 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3523 else if (local_flush)
79539cec
AK
3524 kvm_mmu_flush_tlb(vcpu);
3525}
3526
889e5cbc
XG
3527static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3528 const u8 *new, int *bytes)
da4a00f0 3529{
889e5cbc
XG
3530 u64 gentry;
3531 int r;
72016f3a 3532
72016f3a
AK
3533 /*
3534 * Assume that the pte write on a page table of the same type
49b26e26
XG
3535 * as the current vcpu paging mode since we update the sptes only
3536 * when they have the same mode.
72016f3a 3537 */
889e5cbc 3538 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3539 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3540 *gpa &= ~(gpa_t)7;
3541 *bytes = 8;
3542 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
72016f3a
AK
3543 if (r)
3544 gentry = 0;
08e850c6
AK
3545 new = (const u8 *)&gentry;
3546 }
3547
889e5cbc 3548 switch (*bytes) {
08e850c6
AK
3549 case 4:
3550 gentry = *(const u32 *)new;
3551 break;
3552 case 8:
3553 gentry = *(const u64 *)new;
3554 break;
3555 default:
3556 gentry = 0;
3557 break;
72016f3a
AK
3558 }
3559
889e5cbc
XG
3560 return gentry;
3561}
3562
3563/*
3564 * If we're seeing too many writes to a page, it may no longer be a page table,
3565 * or we may be forking, in which case it is better to unmap the page.
3566 */
a30f47cb 3567static bool detect_write_flooding(struct kvm_mmu_page *sp, u64 *spte)
889e5cbc 3568{
a30f47cb
XG
3569 /*
3570 * Skip write-flooding detected for the sp whose level is 1, because
3571 * it can become unsync, then the guest page is not write-protected.
3572 */
3573 if (sp->role.level == 1)
3574 return false;
3246af0e 3575
a30f47cb 3576 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3577}
3578
3579/*
3580 * Misaligned accesses are too much trouble to fix up; also, they usually
3581 * indicate a page is not used as a page table.
3582 */
3583static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3584 int bytes)
3585{
3586 unsigned offset, pte_size, misaligned;
3587
3588 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3589 gpa, bytes, sp->role.word);
3590
3591 offset = offset_in_page(gpa);
3592 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3593
3594 /*
3595 * Sometimes, the OS only writes the last one bytes to update status
3596 * bits, for example, in linux, andb instruction is used in clear_bit().
3597 */
3598 if (!(offset & (pte_size - 1)) && bytes == 1)
3599 return false;
3600
889e5cbc
XG
3601 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3602 misaligned |= bytes < 4;
3603
3604 return misaligned;
3605}
3606
3607static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3608{
3609 unsigned page_offset, quadrant;
3610 u64 *spte;
3611 int level;
3612
3613 page_offset = offset_in_page(gpa);
3614 level = sp->role.level;
3615 *nspte = 1;
3616 if (!sp->role.cr4_pae) {
3617 page_offset <<= 1; /* 32->64 */
3618 /*
3619 * A 32-bit pde maps 4MB while the shadow pdes map
3620 * only 2MB. So we need to double the offset again
3621 * and zap two pdes instead of one.
3622 */
3623 if (level == PT32_ROOT_LEVEL) {
3624 page_offset &= ~7; /* kill rounding error */
3625 page_offset <<= 1;
3626 *nspte = 2;
3627 }
3628 quadrant = page_offset >> PAGE_SHIFT;
3629 page_offset &= ~PAGE_MASK;
3630 if (quadrant != sp->role.quadrant)
3631 return NULL;
3632 }
3633
3634 spte = &sp->spt[page_offset / sizeof(*spte)];
3635 return spte;
3636}
3637
3638void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3639 const u8 *new, int bytes)
3640{
3641 gfn_t gfn = gpa >> PAGE_SHIFT;
3642 union kvm_mmu_page_role mask = { .word = 0 };
3643 struct kvm_mmu_page *sp;
3644 struct hlist_node *node;
3645 LIST_HEAD(invalid_list);
3646 u64 entry, gentry, *spte;
3647 int npte;
a30f47cb 3648 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3649
3650 /*
3651 * If we don't have indirect shadow pages, it means no page is
3652 * write-protected, so we can exit simply.
3653 */
3654 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3655 return;
3656
3657 zap_page = remote_flush = local_flush = false;
3658
3659 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3660
3661 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3662
3663 /*
3664 * No need to care whether allocation memory is successful
3665 * or not since pte prefetch is skiped if it does not have
3666 * enough objects in the cache.
3667 */
3668 mmu_topup_memory_caches(vcpu);
3669
3670 spin_lock(&vcpu->kvm->mmu_lock);
3671 ++vcpu->kvm->stat.mmu_pte_write;
3672 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3673
fa1de2bf 3674 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3675 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3676 spte = get_written_sptes(sp, gpa, &npte);
889e5cbc 3677
a30f47cb
XG
3678 if (detect_write_misaligned(sp, gpa, bytes) ||
3679 detect_write_flooding(sp, spte)) {
0671a8e7 3680 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3681 &invalid_list);
4cee5764 3682 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3683 continue;
3684 }
889e5cbc
XG
3685
3686 spte = get_written_sptes(sp, gpa, &npte);
3687 if (!spte)
3688 continue;
3689
0671a8e7 3690 local_flush = true;
ac1b714e 3691 while (npte--) {
79539cec 3692 entry = *spte;
38e3b2b2 3693 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3694 if (gentry &&
3695 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3696 & mask.word) && rmap_can_add(vcpu))
7c562522 3697 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
3698 if (!remote_flush && need_remote_flush(entry, *spte))
3699 remote_flush = true;
ac1b714e 3700 ++spte;
9b7a0325 3701 }
9b7a0325 3702 }
0671a8e7 3703 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3704 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
8b1fe17c 3705 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3706 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3707}
3708
a436036b
AK
3709int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3710{
10589a46
MT
3711 gpa_t gpa;
3712 int r;
a436036b 3713
c5a78f2b 3714 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3715 return 0;
3716
1871c602 3717 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 3718
10589a46 3719 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 3720
10589a46 3721 return r;
a436036b 3722}
577bdc49 3723EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 3724
22d95b12 3725void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 3726{
d98ba053 3727 LIST_HEAD(invalid_list);
103ad25a 3728
e0df7b9f 3729 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 3730 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 3731 struct kvm_mmu_page *sp;
ebeace86 3732
f05e70ac 3733 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 3734 struct kvm_mmu_page, link);
e0df7b9f 3735 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 3736 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 3737 }
aa6bd187 3738 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 3739}
ebeace86 3740
1cb3f3ae
XG
3741static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3742{
3743 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3744 return vcpu_match_mmio_gpa(vcpu, addr);
3745
3746 return vcpu_match_mmio_gva(vcpu, addr);
3747}
3748
dc25e89e
AP
3749int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3750 void *insn, int insn_len)
3067714c 3751{
1cb3f3ae 3752 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
3753 enum emulation_result er;
3754
56028d08 3755 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
3756 if (r < 0)
3757 goto out;
3758
3759 if (!r) {
3760 r = 1;
3761 goto out;
3762 }
3763
1cb3f3ae
XG
3764 if (is_mmio_page_fault(vcpu, cr2))
3765 emulation_type = 0;
3766
3767 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
3768
3769 switch (er) {
3770 case EMULATE_DONE:
3771 return 1;
3772 case EMULATE_DO_MMIO:
3773 ++vcpu->stat.mmio_exits;
6d77dbfc 3774 /* fall through */
3067714c 3775 case EMULATE_FAIL:
3f5d18a9 3776 return 0;
3067714c
AK
3777 default:
3778 BUG();
3779 }
3780out:
3067714c
AK
3781 return r;
3782}
3783EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3784
a7052897
MT
3785void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3786{
a7052897 3787 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
3788 kvm_mmu_flush_tlb(vcpu);
3789 ++vcpu->stat.invlpg;
3790}
3791EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3792
18552672
JR
3793void kvm_enable_tdp(void)
3794{
3795 tdp_enabled = true;
3796}
3797EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3798
5f4cb662
JR
3799void kvm_disable_tdp(void)
3800{
3801 tdp_enabled = false;
3802}
3803EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3804
6aa8b732
AK
3805static void free_mmu_pages(struct kvm_vcpu *vcpu)
3806{
ad312c7c 3807 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
3808 if (vcpu->arch.mmu.lm_root != NULL)
3809 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
3810}
3811
3812static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3813{
17ac10ad 3814 struct page *page;
6aa8b732
AK
3815 int i;
3816
3817 ASSERT(vcpu);
3818
17ac10ad
AK
3819 /*
3820 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3821 * Therefore we need to allocate shadow page tables in the first
3822 * 4GB of memory, which happens to fit the DMA32 zone.
3823 */
3824 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3825 if (!page)
d7fa6ab2
WY
3826 return -ENOMEM;
3827
ad312c7c 3828 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 3829 for (i = 0; i < 4; ++i)
ad312c7c 3830 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3831
6aa8b732 3832 return 0;
6aa8b732
AK
3833}
3834
8018c27b 3835int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 3836{
6aa8b732 3837 ASSERT(vcpu);
ad312c7c 3838 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3839
8018c27b
IM
3840 return alloc_mmu_pages(vcpu);
3841}
6aa8b732 3842
8018c27b
IM
3843int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3844{
3845 ASSERT(vcpu);
ad312c7c 3846 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 3847
8018c27b 3848 return init_kvm_mmu(vcpu);
6aa8b732
AK
3849}
3850
90cb0529 3851void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 3852{
4db35314 3853 struct kvm_mmu_page *sp;
6aa8b732 3854
f05e70ac 3855 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
6aa8b732
AK
3856 int i;
3857 u64 *pt;
3858
291f26bc 3859 if (!test_bit(slot, sp->slot_bitmap))
6aa8b732
AK
3860 continue;
3861
4db35314 3862 pt = sp->spt;
8234b22e 3863 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
da8dc75f
XG
3864 if (!is_shadow_present_pte(pt[i]) ||
3865 !is_last_spte(pt[i], sp->role.level))
3866 continue;
3867
3868 if (is_large_pte(pt[i])) {
c3707958 3869 drop_spte(kvm, &pt[i]);
8234b22e 3870 --kvm->stat.lpages;
da8dc75f 3871 continue;
8234b22e 3872 }
da8dc75f 3873
6aa8b732 3874 /* avoid RMW */
01c168ac 3875 if (is_writable_pte(pt[i]))
1df9f2dc
XG
3876 mmu_spte_update(&pt[i],
3877 pt[i] & ~PT_WRITABLE_MASK);
8234b22e 3878 }
6aa8b732 3879 }
171d595d 3880 kvm_flush_remote_tlbs(kvm);
6aa8b732 3881}
37a7d8b0 3882
90cb0529 3883void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 3884{
4db35314 3885 struct kvm_mmu_page *sp, *node;
d98ba053 3886 LIST_HEAD(invalid_list);
e0fa826f 3887
aaee2c94 3888 spin_lock(&kvm->mmu_lock);
3246af0e 3889restart:
f05e70ac 3890 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 3891 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
3892 goto restart;
3893
d98ba053 3894 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 3895 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
3896}
3897
d98ba053
XG
3898static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3899 struct list_head *invalid_list)
3ee16c81
IE
3900{
3901 struct kvm_mmu_page *page;
3902
3903 page = container_of(kvm->arch.active_mmu_pages.prev,
3904 struct kvm_mmu_page, link);
d98ba053 3905 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
3906}
3907
1495f230 3908static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
3909{
3910 struct kvm *kvm;
3911 struct kvm *kvm_freed = NULL;
1495f230 3912 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
3913
3914 if (nr_to_scan == 0)
3915 goto out;
3ee16c81 3916
e935b837 3917 raw_spin_lock(&kvm_lock);
3ee16c81
IE
3918
3919 list_for_each_entry(kvm, &vm_list, vm_list) {
45221ab6 3920 int idx, freed_pages;
d98ba053 3921 LIST_HEAD(invalid_list);
3ee16c81 3922
f656ce01 3923 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 3924 spin_lock(&kvm->mmu_lock);
45221ab6
DH
3925 if (!kvm_freed && nr_to_scan > 0 &&
3926 kvm->arch.n_used_mmu_pages > 0) {
d98ba053
XG
3927 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3928 &invalid_list);
3ee16c81
IE
3929 kvm_freed = kvm;
3930 }
3931 nr_to_scan--;
3932
d98ba053 3933 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3ee16c81 3934 spin_unlock(&kvm->mmu_lock);
f656ce01 3935 srcu_read_unlock(&kvm->srcu, idx);
3ee16c81
IE
3936 }
3937 if (kvm_freed)
3938 list_move_tail(&kvm_freed->vm_list, &vm_list);
3939
e935b837 3940 raw_spin_unlock(&kvm_lock);
3ee16c81 3941
45221ab6
DH
3942out:
3943 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
3944}
3945
3946static struct shrinker mmu_shrinker = {
3947 .shrink = mmu_shrink,
3948 .seeks = DEFAULT_SEEKS * 10,
3949};
3950
2ddfd20e 3951static void mmu_destroy_caches(void)
b5a33a75 3952{
53c07b18
XG
3953 if (pte_list_desc_cache)
3954 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
3955 if (mmu_page_header_cache)
3956 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
3957}
3958
3959int kvm_mmu_module_init(void)
3960{
53c07b18
XG
3961 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3962 sizeof(struct pte_list_desc),
20c2df83 3963 0, 0, NULL);
53c07b18 3964 if (!pte_list_desc_cache)
b5a33a75
AK
3965 goto nomem;
3966
d3d25b04
AK
3967 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3968 sizeof(struct kvm_mmu_page),
20c2df83 3969 0, 0, NULL);
d3d25b04
AK
3970 if (!mmu_page_header_cache)
3971 goto nomem;
3972
45bf21a8
WY
3973 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3974 goto nomem;
3975
3ee16c81
IE
3976 register_shrinker(&mmu_shrinker);
3977
b5a33a75
AK
3978 return 0;
3979
3980nomem:
3ee16c81 3981 mmu_destroy_caches();
b5a33a75
AK
3982 return -ENOMEM;
3983}
3984
3ad82a7e
ZX
3985/*
3986 * Caculate mmu pages needed for kvm.
3987 */
3988unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3989{
3990 int i;
3991 unsigned int nr_mmu_pages;
3992 unsigned int nr_pages = 0;
bc6678a3 3993 struct kvm_memslots *slots;
3ad82a7e 3994
90d83dc3
LJ
3995 slots = kvm_memslots(kvm);
3996
bc6678a3
MT
3997 for (i = 0; i < slots->nmemslots; i++)
3998 nr_pages += slots->memslots[i].npages;
3ad82a7e
ZX
3999
4000 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4001 nr_mmu_pages = max(nr_mmu_pages,
4002 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4003
4004 return nr_mmu_pages;
4005}
4006
2f333bcb
MT
4007static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
4008 unsigned len)
4009{
4010 if (len > buffer->len)
4011 return NULL;
4012 return buffer->ptr;
4013}
4014
4015static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
4016 unsigned len)
4017{
4018 void *ret;
4019
4020 ret = pv_mmu_peek_buffer(buffer, len);
4021 if (!ret)
4022 return ret;
4023 buffer->ptr += len;
4024 buffer->len -= len;
4025 buffer->processed += len;
4026 return ret;
4027}
4028
4029static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
4030 gpa_t addr, gpa_t value)
4031{
4032 int bytes = 8;
4033 int r;
4034
4035 if (!is_long_mode(vcpu) && !is_pae(vcpu))
4036 bytes = 4;
4037
4038 r = mmu_topup_memory_caches(vcpu);
4039 if (r)
4040 return r;
4041
3200f405 4042 if (!emulator_write_phys(vcpu, addr, &value, bytes))
2f333bcb
MT
4043 return -EFAULT;
4044
4045 return 1;
4046}
4047
4048static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
4049{
9f8fe504 4050 (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
2f333bcb
MT
4051 return 1;
4052}
4053
4054static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
4055{
4056 spin_lock(&vcpu->kvm->mmu_lock);
4057 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
4058 spin_unlock(&vcpu->kvm->mmu_lock);
4059 return 1;
4060}
4061
4062static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
4063 struct kvm_pv_mmu_op_buffer *buffer)
4064{
4065 struct kvm_mmu_op_header *header;
4066
4067 header = pv_mmu_peek_buffer(buffer, sizeof *header);
4068 if (!header)
4069 return 0;
4070 switch (header->op) {
4071 case KVM_MMU_OP_WRITE_PTE: {
4072 struct kvm_mmu_op_write_pte *wpte;
4073
4074 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
4075 if (!wpte)
4076 return 0;
4077 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
4078 wpte->pte_val);
4079 }
4080 case KVM_MMU_OP_FLUSH_TLB: {
4081 struct kvm_mmu_op_flush_tlb *ftlb;
4082
4083 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
4084 if (!ftlb)
4085 return 0;
4086 return kvm_pv_mmu_flush_tlb(vcpu);
4087 }
4088 case KVM_MMU_OP_RELEASE_PT: {
4089 struct kvm_mmu_op_release_pt *rpt;
4090
4091 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
4092 if (!rpt)
4093 return 0;
4094 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
4095 }
4096 default: return 0;
4097 }
4098}
4099
4100int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
4101 gpa_t addr, unsigned long *ret)
4102{
4103 int r;
6ad18fba 4104 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
2f333bcb 4105
6ad18fba
DH
4106 buffer->ptr = buffer->buf;
4107 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
4108 buffer->processed = 0;
2f333bcb 4109
6ad18fba 4110 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
2f333bcb
MT
4111 if (r)
4112 goto out;
4113
6ad18fba
DH
4114 while (buffer->len) {
4115 r = kvm_pv_mmu_op_one(vcpu, buffer);
2f333bcb
MT
4116 if (r < 0)
4117 goto out;
4118 if (r == 0)
4119 break;
4120 }
4121
4122 r = 1;
4123out:
6ad18fba 4124 *ret = buffer->processed;
2f333bcb
MT
4125 return r;
4126}
4127
94d8b056
MT
4128int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4129{
4130 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4131 u64 spte;
94d8b056
MT
4132 int nr_sptes = 0;
4133
c2a2ac2b
XG
4134 walk_shadow_page_lockless_begin(vcpu);
4135 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4136 sptes[iterator.level-1] = spte;
94d8b056 4137 nr_sptes++;
c2a2ac2b 4138 if (!is_shadow_present_pte(spte))
94d8b056
MT
4139 break;
4140 }
c2a2ac2b 4141 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4142
4143 return nr_sptes;
4144}
4145EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4146
c42fffe3
XG
4147void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4148{
4149 ASSERT(vcpu);
4150
4151 destroy_kvm_mmu(vcpu);
4152 free_mmu_pages(vcpu);
4153 mmu_free_memory_caches(vcpu);
b034cf01
XG
4154}
4155
4156#ifdef CONFIG_KVM_MMU_AUDIT
4157#include "mmu_audit.c"
4158#else
4159static void mmu_audit_disable(void) { }
4160#endif
4161
4162void kvm_mmu_module_exit(void)
4163{
4164 mmu_destroy_caches();
4165 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4166 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4167 mmu_audit_disable();
4168}