]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu.c
x86/kvm/nVMX: introduce source data cache for kvm_init_shadow_ept_mmu()
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
1767e931
PG
32#include <linux/moduleparam.h>
33#include <linux/export.h>
448353ca 34#include <linux/swap.h>
05da4558 35#include <linux/hugetlb.h>
2f333bcb 36#include <linux/compiler.h>
bc6678a3 37#include <linux/srcu.h>
5a0e3ad6 38#include <linux/slab.h>
3f07c014 39#include <linux/sched/signal.h>
bf998156 40#include <linux/uaccess.h>
114df303 41#include <linux/hash.h>
f160c7b7 42#include <linux/kern_levels.h>
6aa8b732 43
e495606d 44#include <asm/page.h>
aa2e063a 45#include <asm/pat.h>
e495606d 46#include <asm/cmpxchg.h>
4e542370 47#include <asm/io.h>
13673a90 48#include <asm/vmx.h>
3d0c27ad 49#include <asm/kvm_page_track.h>
1261bfa3 50#include "trace.h"
6aa8b732 51
18552672
JR
52/*
53 * When setting this variable to true it enables Two-Dimensional-Paging
54 * where the hardware walks 2 page tables:
55 * 1. the guest-virtual to guest-physical
56 * 2. while doing 1. it walks guest-physical to host-physical
57 * If the hardware supports that we don't need to do shadow paging.
58 */
2f333bcb 59bool tdp_enabled = false;
18552672 60
8b1fe17c
XG
61enum {
62 AUDIT_PRE_PAGE_FAULT,
63 AUDIT_POST_PAGE_FAULT,
64 AUDIT_PRE_PTE_WRITE,
6903074c
XG
65 AUDIT_POST_PTE_WRITE,
66 AUDIT_PRE_SYNC,
67 AUDIT_POST_SYNC
8b1fe17c 68};
37a7d8b0 69
8b1fe17c 70#undef MMU_DEBUG
37a7d8b0
AK
71
72#ifdef MMU_DEBUG
fa4a2c08
PB
73static bool dbg = 0;
74module_param(dbg, bool, 0644);
37a7d8b0
AK
75
76#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 78#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 79#else
37a7d8b0
AK
80#define pgprintk(x...) do { } while (0)
81#define rmap_printk(x...) do { } while (0)
fa4a2c08 82#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 83#endif
6aa8b732 84
957ed9ef
XG
85#define PTE_PREFETCH_NUM 8
86
00763e41 87#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
88#define PT64_SECOND_AVAIL_BITS_SHIFT 52
89
6aa8b732
AK
90#define PT64_LEVEL_BITS 9
91
92#define PT64_LEVEL_SHIFT(level) \
d77c26fc 93 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 94
6aa8b732
AK
95#define PT64_INDEX(address, level)\
96 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99#define PT32_LEVEL_BITS 10
100
101#define PT32_LEVEL_SHIFT(level) \
d77c26fc 102 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 103
e04da980
JR
104#define PT32_LVL_OFFSET_MASK(level) \
105 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
106 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
107
108#define PT32_INDEX(address, level)\
109 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
d0ec49d4 112#define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
6aa8b732
AK
113#define PT64_DIR_BASE_ADDR_MASK \
114 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
115#define PT64_LVL_ADDR_MASK(level) \
116 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
117 * PT64_LEVEL_BITS))) - 1))
118#define PT64_LVL_OFFSET_MASK(level) \
119 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
121
122#define PT32_BASE_ADDR_MASK PAGE_MASK
123#define PT32_DIR_BASE_ADDR_MASK \
124 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
125#define PT32_LVL_ADDR_MASK(level) \
126 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT32_LEVEL_BITS))) - 1))
6aa8b732 128
53166229 129#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 130 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 131
fe135d2c
AK
132#define ACC_EXEC_MASK 1
133#define ACC_WRITE_MASK PT_WRITABLE_MASK
134#define ACC_USER_MASK PT_USER_MASK
135#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
136
f160c7b7
JS
137/* The mask for the R/X bits in EPT PTEs */
138#define PT64_EPT_READABLE_MASK 0x1ull
139#define PT64_EPT_EXECUTABLE_MASK 0x4ull
140
90bb6fc5
AK
141#include <trace/events/kvm.h>
142
07420171
AK
143#define CREATE_TRACE_POINTS
144#include "mmutrace.h"
145
49fde340
XG
146#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
147#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 148
135f8c2b
AK
149#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
150
220f773a
TY
151/* make pte_list_desc fit well in cache line */
152#define PTE_LIST_EXT 3
153
9b8ebbdb
PB
154/*
155 * Return values of handle_mmio_page_fault and mmu.page_fault:
156 * RET_PF_RETRY: let CPU fault again on the address.
157 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
158 *
159 * For handle_mmio_page_fault only:
160 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
161 */
162enum {
163 RET_PF_RETRY = 0,
164 RET_PF_EMULATE = 1,
165 RET_PF_INVALID = 2,
166};
167
53c07b18
XG
168struct pte_list_desc {
169 u64 *sptes[PTE_LIST_EXT];
170 struct pte_list_desc *more;
cd4a4e53
AK
171};
172
2d11123a
AK
173struct kvm_shadow_walk_iterator {
174 u64 addr;
175 hpa_t shadow_addr;
2d11123a 176 u64 *sptep;
dd3bfd59 177 int level;
2d11123a
AK
178 unsigned index;
179};
180
9fa72119
JS
181static const union kvm_mmu_page_role mmu_base_role_mask = {
182 .cr0_wp = 1,
183 .cr4_pae = 1,
184 .nxe = 1,
185 .smep_andnot_wp = 1,
186 .smap_andnot_wp = 1,
187 .smm = 1,
188 .guest_mode = 1,
189 .ad_disabled = 1,
190};
191
7eb77e9f
JS
192#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
193 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
194 (_root), (_addr)); \
195 shadow_walk_okay(&(_walker)); \
196 shadow_walk_next(&(_walker)))
197
198#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
199 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
200 shadow_walk_okay(&(_walker)); \
201 shadow_walk_next(&(_walker)))
202
c2a2ac2b
XG
203#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
204 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
205 shadow_walk_okay(&(_walker)) && \
206 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
207 __shadow_walk_next(&(_walker), spte))
208
53c07b18 209static struct kmem_cache *pte_list_desc_cache;
d3d25b04 210static struct kmem_cache *mmu_page_header_cache;
45221ab6 211static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 212
7b52345e
SY
213static u64 __read_mostly shadow_nx_mask;
214static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
215static u64 __read_mostly shadow_user_mask;
216static u64 __read_mostly shadow_accessed_mask;
217static u64 __read_mostly shadow_dirty_mask;
ce88decf 218static u64 __read_mostly shadow_mmio_mask;
dcdca5fe 219static u64 __read_mostly shadow_mmio_value;
ffb128c8 220static u64 __read_mostly shadow_present_mask;
d0ec49d4 221static u64 __read_mostly shadow_me_mask;
ce88decf 222
f160c7b7 223/*
ac8d57e5
PF
224 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
225 * Non-present SPTEs with shadow_acc_track_value set are in place for access
226 * tracking.
f160c7b7
JS
227 */
228static u64 __read_mostly shadow_acc_track_mask;
229static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
230
231/*
232 * The mask/shift to use for saving the original R/X bits when marking the PTE
233 * as not-present for access tracking purposes. We do not save the W bit as the
234 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
235 * restored only when a write is attempted to the page.
236 */
237static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
238 PT64_EPT_EXECUTABLE_MASK;
239static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
240
28a1f3ac
JS
241/*
242 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
243 * to guard against L1TF attacks.
244 */
245static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
246
247/*
248 * The number of high-order 1 bits to use in the mask above.
249 */
250static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
251
daa07cbc
SC
252/*
253 * In some cases, we need to preserve the GFN of a non-present or reserved
254 * SPTE when we usurp the upper five bits of the physical address space to
255 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
256 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
257 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
258 * high and low parts. This mask covers the lower bits of the GFN.
259 */
260static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
261
262
ce88decf 263static void mmu_spte_set(u64 *sptep, u64 spte);
9fa72119
JS
264static union kvm_mmu_page_role
265kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 266
dcdca5fe 267void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
ce88decf 268{
dcdca5fe
PF
269 BUG_ON((mmio_mask & mmio_value) != mmio_value);
270 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
312b616b 271 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
ce88decf
XG
272}
273EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
274
ac8d57e5
PF
275static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
276{
277 return sp->role.ad_disabled;
278}
279
280static inline bool spte_ad_enabled(u64 spte)
281{
282 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
283 return !(spte & shadow_acc_track_value);
284}
285
286static inline u64 spte_shadow_accessed_mask(u64 spte)
287{
288 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
289 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
290}
291
292static inline u64 spte_shadow_dirty_mask(u64 spte)
293{
294 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
295 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
296}
297
f160c7b7
JS
298static inline bool is_access_track_spte(u64 spte)
299{
ac8d57e5 300 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
301}
302
f2fd125d 303/*
ee3d1570
DM
304 * the low bit of the generation number is always presumed to be zero.
305 * This disables mmio caching during memslot updates. The concept is
306 * similar to a seqcount but instead of retrying the access we just punt
307 * and ignore the cache.
308 *
309 * spte bits 3-11 are used as bits 1-9 of the generation number,
310 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 311 */
ee3d1570 312#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
313#define MMIO_SPTE_GEN_HIGH_SHIFT 52
314
ee3d1570
DM
315#define MMIO_GEN_SHIFT 20
316#define MMIO_GEN_LOW_SHIFT 10
317#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 318#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
319
320static u64 generation_mmio_spte_mask(unsigned int gen)
321{
322 u64 mask;
323
842bb26a 324 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
325
326 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
327 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
328 return mask;
329}
330
331static unsigned int get_mmio_spte_generation(u64 spte)
332{
333 unsigned int gen;
334
335 spte &= ~shadow_mmio_mask;
336
337 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
338 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
339 return gen;
340}
341
54bf36aa 342static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 343{
54bf36aa 344 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
345}
346
54bf36aa 347static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 348 unsigned access)
ce88decf 349{
54bf36aa 350 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 351 u64 mask = generation_mmio_spte_mask(gen);
28a1f3ac 352 u64 gpa = gfn << PAGE_SHIFT;
95b0430d 353
ce88decf 354 access &= ACC_WRITE_MASK | ACC_USER_MASK;
28a1f3ac
JS
355 mask |= shadow_mmio_value | access;
356 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
357 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
358 << shadow_nonpresent_or_rsvd_mask_len;
f2fd125d 359
f8f55942 360 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 361 mmu_spte_set(sptep, mask);
ce88decf
XG
362}
363
364static bool is_mmio_spte(u64 spte)
365{
dcdca5fe 366 return (spte & shadow_mmio_mask) == shadow_mmio_value;
ce88decf
XG
367}
368
369static gfn_t get_mmio_spte_gfn(u64 spte)
370{
daa07cbc 371 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac
JS
372
373 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
374 & shadow_nonpresent_or_rsvd_mask;
375
376 return gpa >> PAGE_SHIFT;
ce88decf
XG
377}
378
379static unsigned get_mmio_spte_access(u64 spte)
380{
842bb26a 381 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 382 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
383}
384
54bf36aa 385static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 386 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
387{
388 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 389 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
390 return true;
391 }
392
393 return false;
394}
c7addb90 395
54bf36aa 396static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 397{
089504c0
XG
398 unsigned int kvm_gen, spte_gen;
399
54bf36aa 400 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
401 spte_gen = get_mmio_spte_generation(spte);
402
403 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
404 return likely(kvm_gen == spte_gen);
f8f55942
XG
405}
406
ce00053b
PF
407/*
408 * Sets the shadow PTE masks used by the MMU.
409 *
410 * Assumptions:
411 * - Setting either @accessed_mask or @dirty_mask requires setting both
412 * - At least one of @accessed_mask or @acc_track_mask must be set
413 */
7b52345e 414void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 415 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 416 u64 acc_track_mask, u64 me_mask)
7b52345e 417{
ce00053b
PF
418 BUG_ON(!dirty_mask != !accessed_mask);
419 BUG_ON(!accessed_mask && !acc_track_mask);
ac8d57e5 420 BUG_ON(acc_track_mask & shadow_acc_track_value);
312b616b 421
7b52345e
SY
422 shadow_user_mask = user_mask;
423 shadow_accessed_mask = accessed_mask;
424 shadow_dirty_mask = dirty_mask;
425 shadow_nx_mask = nx_mask;
426 shadow_x_mask = x_mask;
ffb128c8 427 shadow_present_mask = p_mask;
f160c7b7 428 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 429 shadow_me_mask = me_mask;
7b52345e
SY
430}
431EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
432
28a1f3ac 433static void kvm_mmu_reset_all_pte_masks(void)
f160c7b7 434{
daa07cbc
SC
435 u8 low_phys_bits;
436
f160c7b7
JS
437 shadow_user_mask = 0;
438 shadow_accessed_mask = 0;
439 shadow_dirty_mask = 0;
440 shadow_nx_mask = 0;
441 shadow_x_mask = 0;
442 shadow_mmio_mask = 0;
443 shadow_present_mask = 0;
444 shadow_acc_track_mask = 0;
28a1f3ac
JS
445
446 /*
447 * If the CPU has 46 or less physical address bits, then set an
448 * appropriate mask to guard against L1TF attacks. Otherwise, it is
449 * assumed that the CPU is not vulnerable to L1TF.
450 */
daa07cbc 451 low_phys_bits = boot_cpu_data.x86_phys_bits;
28a1f3ac 452 if (boot_cpu_data.x86_phys_bits <
daa07cbc 453 52 - shadow_nonpresent_or_rsvd_mask_len) {
28a1f3ac
JS
454 shadow_nonpresent_or_rsvd_mask =
455 rsvd_bits(boot_cpu_data.x86_phys_bits -
456 shadow_nonpresent_or_rsvd_mask_len,
457 boot_cpu_data.x86_phys_bits - 1);
daa07cbc
SC
458 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
459 }
460 shadow_nonpresent_or_rsvd_lower_gfn_mask =
461 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
f160c7b7
JS
462}
463
6aa8b732
AK
464static int is_cpuid_PSE36(void)
465{
466 return 1;
467}
468
73b1087e
AK
469static int is_nx(struct kvm_vcpu *vcpu)
470{
f6801dff 471 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
472}
473
c7addb90
AK
474static int is_shadow_present_pte(u64 pte)
475{
f160c7b7 476 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
477}
478
05da4558
MT
479static int is_large_pte(u64 pte)
480{
481 return pte & PT_PAGE_SIZE_MASK;
482}
483
776e6633
MT
484static int is_last_spte(u64 pte, int level)
485{
486 if (level == PT_PAGE_TABLE_LEVEL)
487 return 1;
852e3c19 488 if (is_large_pte(pte))
776e6633
MT
489 return 1;
490 return 0;
491}
492
d3e328f2
JS
493static bool is_executable_pte(u64 spte)
494{
495 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
496}
497
ba049e93 498static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 499{
35149e21 500 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
501}
502
da928521
AK
503static gfn_t pse36_gfn_delta(u32 gpte)
504{
505 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
506
507 return (gpte & PT32_DIR_PSE36_MASK) << shift;
508}
509
603e0651 510#ifdef CONFIG_X86_64
d555c333 511static void __set_spte(u64 *sptep, u64 spte)
e663ee64 512{
b19ee2ff 513 WRITE_ONCE(*sptep, spte);
e663ee64
AK
514}
515
603e0651 516static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 517{
b19ee2ff 518 WRITE_ONCE(*sptep, spte);
603e0651
XG
519}
520
521static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
522{
523 return xchg(sptep, spte);
524}
c2a2ac2b
XG
525
526static u64 __get_spte_lockless(u64 *sptep)
527{
6aa7de05 528 return READ_ONCE(*sptep);
c2a2ac2b 529}
a9221dd5 530#else
603e0651
XG
531union split_spte {
532 struct {
533 u32 spte_low;
534 u32 spte_high;
535 };
536 u64 spte;
537};
a9221dd5 538
c2a2ac2b
XG
539static void count_spte_clear(u64 *sptep, u64 spte)
540{
541 struct kvm_mmu_page *sp = page_header(__pa(sptep));
542
543 if (is_shadow_present_pte(spte))
544 return;
545
546 /* Ensure the spte is completely set before we increase the count */
547 smp_wmb();
548 sp->clear_spte_count++;
549}
550
603e0651
XG
551static void __set_spte(u64 *sptep, u64 spte)
552{
553 union split_spte *ssptep, sspte;
a9221dd5 554
603e0651
XG
555 ssptep = (union split_spte *)sptep;
556 sspte = (union split_spte)spte;
557
558 ssptep->spte_high = sspte.spte_high;
559
560 /*
561 * If we map the spte from nonpresent to present, We should store
562 * the high bits firstly, then set present bit, so cpu can not
563 * fetch this spte while we are setting the spte.
564 */
565 smp_wmb();
566
b19ee2ff 567 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
568}
569
603e0651
XG
570static void __update_clear_spte_fast(u64 *sptep, u64 spte)
571{
572 union split_spte *ssptep, sspte;
573
574 ssptep = (union split_spte *)sptep;
575 sspte = (union split_spte)spte;
576
b19ee2ff 577 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
578
579 /*
580 * If we map the spte from present to nonpresent, we should clear
581 * present bit firstly to avoid vcpu fetch the old high bits.
582 */
583 smp_wmb();
584
585 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 586 count_spte_clear(sptep, spte);
603e0651
XG
587}
588
589static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
590{
591 union split_spte *ssptep, sspte, orig;
592
593 ssptep = (union split_spte *)sptep;
594 sspte = (union split_spte)spte;
595
596 /* xchg acts as a barrier before the setting of the high bits */
597 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
598 orig.spte_high = ssptep->spte_high;
599 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 600 count_spte_clear(sptep, spte);
603e0651
XG
601
602 return orig.spte;
603}
c2a2ac2b
XG
604
605/*
606 * The idea using the light way get the spte on x86_32 guest is from
607 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
608 *
609 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
610 * coalesces them and we are running out of the MMU lock. Therefore
611 * we need to protect against in-progress updates of the spte.
612 *
613 * Reading the spte while an update is in progress may get the old value
614 * for the high part of the spte. The race is fine for a present->non-present
615 * change (because the high part of the spte is ignored for non-present spte),
616 * but for a present->present change we must reread the spte.
617 *
618 * All such changes are done in two steps (present->non-present and
619 * non-present->present), hence it is enough to count the number of
620 * present->non-present updates: if it changed while reading the spte,
621 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
622 */
623static u64 __get_spte_lockless(u64 *sptep)
624{
625 struct kvm_mmu_page *sp = page_header(__pa(sptep));
626 union split_spte spte, *orig = (union split_spte *)sptep;
627 int count;
628
629retry:
630 count = sp->clear_spte_count;
631 smp_rmb();
632
633 spte.spte_low = orig->spte_low;
634 smp_rmb();
635
636 spte.spte_high = orig->spte_high;
637 smp_rmb();
638
639 if (unlikely(spte.spte_low != orig->spte_low ||
640 count != sp->clear_spte_count))
641 goto retry;
642
643 return spte.spte;
644}
603e0651
XG
645#endif
646
ea4114bc 647static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 648{
feb3eb70
GN
649 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
650 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
651}
652
8672b721
XG
653static bool spte_has_volatile_bits(u64 spte)
654{
f160c7b7
JS
655 if (!is_shadow_present_pte(spte))
656 return false;
657
c7ba5b48 658 /*
6a6256f9 659 * Always atomically update spte if it can be updated
c7ba5b48
XG
660 * out of mmu-lock, it can ensure dirty bit is not lost,
661 * also, it can help us to get a stable is_writable_pte()
662 * to ensure tlb flush is not missed.
663 */
f160c7b7
JS
664 if (spte_can_locklessly_be_made_writable(spte) ||
665 is_access_track_spte(spte))
c7ba5b48
XG
666 return true;
667
ac8d57e5 668 if (spte_ad_enabled(spte)) {
f160c7b7
JS
669 if ((spte & shadow_accessed_mask) == 0 ||
670 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
671 return true;
672 }
8672b721 673
f160c7b7 674 return false;
8672b721
XG
675}
676
83ef6c81 677static bool is_accessed_spte(u64 spte)
4132779b 678{
ac8d57e5
PF
679 u64 accessed_mask = spte_shadow_accessed_mask(spte);
680
681 return accessed_mask ? spte & accessed_mask
682 : !is_access_track_spte(spte);
4132779b
XG
683}
684
83ef6c81 685static bool is_dirty_spte(u64 spte)
7e71a59b 686{
ac8d57e5
PF
687 u64 dirty_mask = spte_shadow_dirty_mask(spte);
688
689 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
690}
691
1df9f2dc
XG
692/* Rules for using mmu_spte_set:
693 * Set the sptep from nonpresent to present.
694 * Note: the sptep being assigned *must* be either not present
695 * or in a state where the hardware will not attempt to update
696 * the spte.
697 */
698static void mmu_spte_set(u64 *sptep, u64 new_spte)
699{
700 WARN_ON(is_shadow_present_pte(*sptep));
701 __set_spte(sptep, new_spte);
702}
703
f39a058d
JS
704/*
705 * Update the SPTE (excluding the PFN), but do not track changes in its
706 * accessed/dirty status.
1df9f2dc 707 */
f39a058d 708static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 709{
c7ba5b48 710 u64 old_spte = *sptep;
4132779b 711
afd28fe1 712 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 713
6e7d0354
XG
714 if (!is_shadow_present_pte(old_spte)) {
715 mmu_spte_set(sptep, new_spte);
f39a058d 716 return old_spte;
6e7d0354 717 }
4132779b 718
c7ba5b48 719 if (!spte_has_volatile_bits(old_spte))
603e0651 720 __update_clear_spte_fast(sptep, new_spte);
4132779b 721 else
603e0651 722 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 723
83ef6c81
JS
724 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
725
f39a058d
JS
726 return old_spte;
727}
728
729/* Rules for using mmu_spte_update:
730 * Update the state bits, it means the mapped pfn is not changed.
731 *
732 * Whenever we overwrite a writable spte with a read-only one we
733 * should flush remote TLBs. Otherwise rmap_write_protect
734 * will find a read-only spte, even though the writable spte
735 * might be cached on a CPU's TLB, the return value indicates this
736 * case.
737 *
738 * Returns true if the TLB needs to be flushed
739 */
740static bool mmu_spte_update(u64 *sptep, u64 new_spte)
741{
742 bool flush = false;
743 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
744
745 if (!is_shadow_present_pte(old_spte))
746 return false;
747
c7ba5b48
XG
748 /*
749 * For the spte updated out of mmu-lock is safe, since
6a6256f9 750 * we always atomically update it, see the comments in
c7ba5b48
XG
751 * spte_has_volatile_bits().
752 */
ea4114bc 753 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 754 !is_writable_pte(new_spte))
83ef6c81 755 flush = true;
4132779b 756
7e71a59b 757 /*
83ef6c81 758 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
759 * to guarantee consistency between TLB and page tables.
760 */
7e71a59b 761
83ef6c81
JS
762 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
763 flush = true;
4132779b 764 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
765 }
766
767 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
768 flush = true;
4132779b 769 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 770 }
6e7d0354 771
83ef6c81 772 return flush;
b79b93f9
AK
773}
774
1df9f2dc
XG
775/*
776 * Rules for using mmu_spte_clear_track_bits:
777 * It sets the sptep from present to nonpresent, and track the
778 * state bits, it is used to clear the last level sptep.
83ef6c81 779 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
780 */
781static int mmu_spte_clear_track_bits(u64 *sptep)
782{
ba049e93 783 kvm_pfn_t pfn;
1df9f2dc
XG
784 u64 old_spte = *sptep;
785
786 if (!spte_has_volatile_bits(old_spte))
603e0651 787 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 788 else
603e0651 789 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 790
afd28fe1 791 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
792 return 0;
793
794 pfn = spte_to_pfn(old_spte);
86fde74c
XG
795
796 /*
797 * KVM does not hold the refcount of the page used by
798 * kvm mmu, before reclaiming the page, we should
799 * unmap it from mmu first.
800 */
bf4bea8e 801 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 802
83ef6c81 803 if (is_accessed_spte(old_spte))
1df9f2dc 804 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
805
806 if (is_dirty_spte(old_spte))
1df9f2dc 807 kvm_set_pfn_dirty(pfn);
83ef6c81 808
1df9f2dc
XG
809 return 1;
810}
811
812/*
813 * Rules for using mmu_spte_clear_no_track:
814 * Directly clear spte without caring the state bits of sptep,
815 * it is used to set the upper level spte.
816 */
817static void mmu_spte_clear_no_track(u64 *sptep)
818{
603e0651 819 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
820}
821
c2a2ac2b
XG
822static u64 mmu_spte_get_lockless(u64 *sptep)
823{
824 return __get_spte_lockless(sptep);
825}
826
f160c7b7
JS
827static u64 mark_spte_for_access_track(u64 spte)
828{
ac8d57e5 829 if (spte_ad_enabled(spte))
f160c7b7
JS
830 return spte & ~shadow_accessed_mask;
831
ac8d57e5 832 if (is_access_track_spte(spte))
f160c7b7
JS
833 return spte;
834
835 /*
20d65236
JS
836 * Making an Access Tracking PTE will result in removal of write access
837 * from the PTE. So, verify that we will be able to restore the write
838 * access in the fast page fault path later on.
f160c7b7
JS
839 */
840 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
841 !spte_can_locklessly_be_made_writable(spte),
842 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
843
844 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
845 shadow_acc_track_saved_bits_shift),
846 "kvm: Access Tracking saved bit locations are not zero\n");
847
848 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
849 shadow_acc_track_saved_bits_shift;
850 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
851
852 return spte;
853}
854
d3e328f2
JS
855/* Restore an acc-track PTE back to a regular PTE */
856static u64 restore_acc_track_spte(u64 spte)
857{
858 u64 new_spte = spte;
859 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
860 & shadow_acc_track_saved_bits_mask;
861
ac8d57e5 862 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
863 WARN_ON_ONCE(!is_access_track_spte(spte));
864
865 new_spte &= ~shadow_acc_track_mask;
866 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
867 shadow_acc_track_saved_bits_shift);
868 new_spte |= saved_bits;
869
870 return new_spte;
871}
872
f160c7b7
JS
873/* Returns the Accessed status of the PTE and resets it at the same time. */
874static bool mmu_spte_age(u64 *sptep)
875{
876 u64 spte = mmu_spte_get_lockless(sptep);
877
878 if (!is_accessed_spte(spte))
879 return false;
880
ac8d57e5 881 if (spte_ad_enabled(spte)) {
f160c7b7
JS
882 clear_bit((ffs(shadow_accessed_mask) - 1),
883 (unsigned long *)sptep);
884 } else {
885 /*
886 * Capture the dirty status of the page, so that it doesn't get
887 * lost when the SPTE is marked for access tracking.
888 */
889 if (is_writable_pte(spte))
890 kvm_set_pfn_dirty(spte_to_pfn(spte));
891
892 spte = mark_spte_for_access_track(spte);
893 mmu_spte_update_no_track(sptep, spte);
894 }
895
896 return true;
897}
898
c2a2ac2b
XG
899static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
900{
c142786c
AK
901 /*
902 * Prevent page table teardown by making any free-er wait during
903 * kvm_flush_remote_tlbs() IPI to all active vcpus.
904 */
905 local_irq_disable();
36ca7e0a 906
c142786c
AK
907 /*
908 * Make sure a following spte read is not reordered ahead of the write
909 * to vcpu->mode.
910 */
36ca7e0a 911 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
912}
913
914static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
915{
c142786c
AK
916 /*
917 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 918 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
919 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
920 */
36ca7e0a 921 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 922 local_irq_enable();
c2a2ac2b
XG
923}
924
e2dec939 925static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 926 struct kmem_cache *base_cache, int min)
714b93da
AK
927{
928 void *obj;
929
930 if (cache->nobjs >= min)
e2dec939 931 return 0;
714b93da 932 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 933 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 934 if (!obj)
daefb794 935 return cache->nobjs >= min ? 0 : -ENOMEM;
714b93da
AK
936 cache->objects[cache->nobjs++] = obj;
937 }
e2dec939 938 return 0;
714b93da
AK
939}
940
f759e2b4
XG
941static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
942{
943 return cache->nobjs;
944}
945
e8ad9a70
XG
946static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
947 struct kmem_cache *cache)
714b93da
AK
948{
949 while (mc->nobjs)
e8ad9a70 950 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
951}
952
c1158e63 953static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 954 int min)
c1158e63 955{
842f22ed 956 void *page;
c1158e63
AK
957
958 if (cache->nobjs >= min)
959 return 0;
960 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
d97e5e61 961 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
c1158e63 962 if (!page)
daefb794 963 return cache->nobjs >= min ? 0 : -ENOMEM;
842f22ed 964 cache->objects[cache->nobjs++] = page;
c1158e63
AK
965 }
966 return 0;
967}
968
969static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
970{
971 while (mc->nobjs)
c4d198d5 972 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
973}
974
2e3e5882 975static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 976{
e2dec939
AK
977 int r;
978
53c07b18 979 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 980 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
981 if (r)
982 goto out;
ad312c7c 983 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
984 if (r)
985 goto out;
ad312c7c 986 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 987 mmu_page_header_cache, 4);
e2dec939
AK
988out:
989 return r;
714b93da
AK
990}
991
992static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
993{
53c07b18
XG
994 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
995 pte_list_desc_cache);
ad312c7c 996 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
997 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
998 mmu_page_header_cache);
714b93da
AK
999}
1000
80feb89a 1001static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
1002{
1003 void *p;
1004
1005 BUG_ON(!mc->nobjs);
1006 p = mc->objects[--mc->nobjs];
714b93da
AK
1007 return p;
1008}
1009
53c07b18 1010static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 1011{
80feb89a 1012 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
1013}
1014
53c07b18 1015static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 1016{
53c07b18 1017 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
1018}
1019
2032a93d
LJ
1020static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1021{
1022 if (!sp->role.direct)
1023 return sp->gfns[index];
1024
1025 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1026}
1027
1028static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1029{
1030 if (sp->role.direct)
1031 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
1032 else
1033 sp->gfns[index] = gfn;
1034}
1035
05da4558 1036/*
d4dbf470
TY
1037 * Return the pointer to the large page information for a given gfn,
1038 * handling slots that are not large page aligned.
05da4558 1039 */
d4dbf470
TY
1040static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1041 struct kvm_memory_slot *slot,
1042 int level)
05da4558
MT
1043{
1044 unsigned long idx;
1045
fb03cb6f 1046 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 1047 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
1048}
1049
547ffaed
XG
1050static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1051 gfn_t gfn, int count)
1052{
1053 struct kvm_lpage_info *linfo;
1054 int i;
1055
1056 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1057 linfo = lpage_info_slot(gfn, slot, i);
1058 linfo->disallow_lpage += count;
1059 WARN_ON(linfo->disallow_lpage < 0);
1060 }
1061}
1062
1063void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1064{
1065 update_gfn_disallow_lpage_count(slot, gfn, 1);
1066}
1067
1068void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1069{
1070 update_gfn_disallow_lpage_count(slot, gfn, -1);
1071}
1072
3ed1a478 1073static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1074{
699023e2 1075 struct kvm_memslots *slots;
d25797b2 1076 struct kvm_memory_slot *slot;
3ed1a478 1077 gfn_t gfn;
05da4558 1078
56ca57f9 1079 kvm->arch.indirect_shadow_pages++;
3ed1a478 1080 gfn = sp->gfn;
699023e2
PB
1081 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1082 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1083
1084 /* the non-leaf shadow pages are keeping readonly. */
1085 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1086 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1087 KVM_PAGE_TRACK_WRITE);
1088
547ffaed 1089 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1090}
1091
3ed1a478 1092static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1093{
699023e2 1094 struct kvm_memslots *slots;
d25797b2 1095 struct kvm_memory_slot *slot;
3ed1a478 1096 gfn_t gfn;
05da4558 1097
56ca57f9 1098 kvm->arch.indirect_shadow_pages--;
3ed1a478 1099 gfn = sp->gfn;
699023e2
PB
1100 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1101 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1102 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1103 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1104 KVM_PAGE_TRACK_WRITE);
1105
547ffaed 1106 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1107}
1108
92f94f1e
XG
1109static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1110 struct kvm_memory_slot *slot)
05da4558 1111{
d4dbf470 1112 struct kvm_lpage_info *linfo;
05da4558
MT
1113
1114 if (slot) {
d4dbf470 1115 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 1116 return !!linfo->disallow_lpage;
05da4558
MT
1117 }
1118
92f94f1e 1119 return true;
05da4558
MT
1120}
1121
92f94f1e
XG
1122static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1123 int level)
5225fdf8
TY
1124{
1125 struct kvm_memory_slot *slot;
1126
1127 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 1128 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
1129}
1130
d25797b2 1131static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 1132{
8f0b1ab6 1133 unsigned long page_size;
d25797b2 1134 int i, ret = 0;
05da4558 1135
8f0b1ab6 1136 page_size = kvm_host_page_size(kvm, gfn);
05da4558 1137
8a3d08f1 1138 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
1139 if (page_size >= KVM_HPAGE_SIZE(i))
1140 ret = i;
1141 else
1142 break;
1143 }
1144
4c2155ce 1145 return ret;
05da4558
MT
1146}
1147
d8aacf5d
TY
1148static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1149 bool no_dirty_log)
1150{
1151 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1152 return false;
1153 if (no_dirty_log && slot->dirty_bitmap)
1154 return false;
1155
1156 return true;
1157}
1158
5d163b1c
XG
1159static struct kvm_memory_slot *
1160gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1161 bool no_dirty_log)
05da4558
MT
1162{
1163 struct kvm_memory_slot *slot;
5d163b1c 1164
54bf36aa 1165 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 1166 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
1167 slot = NULL;
1168
1169 return slot;
1170}
1171
fd136902
TY
1172static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1173 bool *force_pt_level)
936a5fe6
AA
1174{
1175 int host_level, level, max_level;
d8aacf5d
TY
1176 struct kvm_memory_slot *slot;
1177
8c85ac1c
TY
1178 if (unlikely(*force_pt_level))
1179 return PT_PAGE_TABLE_LEVEL;
05da4558 1180
8c85ac1c
TY
1181 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1182 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
1183 if (unlikely(*force_pt_level))
1184 return PT_PAGE_TABLE_LEVEL;
1185
d25797b2
JR
1186 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1187
1188 if (host_level == PT_PAGE_TABLE_LEVEL)
1189 return host_level;
1190
55dd98c3 1191 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
1192
1193 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 1194 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 1195 break;
d25797b2
JR
1196
1197 return level - 1;
05da4558
MT
1198}
1199
290fc38d 1200/*
018aabb5 1201 * About rmap_head encoding:
cd4a4e53 1202 *
018aabb5
TY
1203 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1204 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1205 * pte_list_desc containing more mappings.
018aabb5
TY
1206 */
1207
1208/*
1209 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1210 */
53c07b18 1211static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1212 struct kvm_rmap_head *rmap_head)
cd4a4e53 1213{
53c07b18 1214 struct pte_list_desc *desc;
53a27b39 1215 int i, count = 0;
cd4a4e53 1216
018aabb5 1217 if (!rmap_head->val) {
53c07b18 1218 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1219 rmap_head->val = (unsigned long)spte;
1220 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1221 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1222 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1223 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1224 desc->sptes[1] = spte;
018aabb5 1225 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1226 ++count;
cd4a4e53 1227 } else {
53c07b18 1228 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1229 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1230 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1231 desc = desc->more;
53c07b18 1232 count += PTE_LIST_EXT;
53a27b39 1233 }
53c07b18
XG
1234 if (desc->sptes[PTE_LIST_EXT-1]) {
1235 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1236 desc = desc->more;
1237 }
d555c333 1238 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1239 ++count;
d555c333 1240 desc->sptes[i] = spte;
cd4a4e53 1241 }
53a27b39 1242 return count;
cd4a4e53
AK
1243}
1244
53c07b18 1245static void
018aabb5
TY
1246pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1247 struct pte_list_desc *desc, int i,
1248 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1249{
1250 int j;
1251
53c07b18 1252 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1253 ;
d555c333
AK
1254 desc->sptes[i] = desc->sptes[j];
1255 desc->sptes[j] = NULL;
cd4a4e53
AK
1256 if (j != 0)
1257 return;
1258 if (!prev_desc && !desc->more)
018aabb5 1259 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
1260 else
1261 if (prev_desc)
1262 prev_desc->more = desc->more;
1263 else
018aabb5 1264 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1265 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1266}
1267
018aabb5 1268static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1269{
53c07b18
XG
1270 struct pte_list_desc *desc;
1271 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1272 int i;
1273
018aabb5 1274 if (!rmap_head->val) {
53c07b18 1275 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 1276 BUG();
018aabb5 1277 } else if (!(rmap_head->val & 1)) {
53c07b18 1278 rmap_printk("pte_list_remove: %p 1->0\n", spte);
018aabb5 1279 if ((u64 *)rmap_head->val != spte) {
53c07b18 1280 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
1281 BUG();
1282 }
018aabb5 1283 rmap_head->val = 0;
cd4a4e53 1284 } else {
53c07b18 1285 rmap_printk("pte_list_remove: %p many->many\n", spte);
018aabb5 1286 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1287 prev_desc = NULL;
1288 while (desc) {
018aabb5 1289 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1290 if (desc->sptes[i] == spte) {
018aabb5
TY
1291 pte_list_desc_remove_entry(rmap_head,
1292 desc, i, prev_desc);
cd4a4e53
AK
1293 return;
1294 }
018aabb5 1295 }
cd4a4e53
AK
1296 prev_desc = desc;
1297 desc = desc->more;
1298 }
53c07b18 1299 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1300 BUG();
1301 }
1302}
1303
018aabb5
TY
1304static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1305 struct kvm_memory_slot *slot)
53c07b18 1306{
77d11309 1307 unsigned long idx;
53c07b18 1308
77d11309 1309 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1310 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1311}
1312
018aabb5
TY
1313static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1314 struct kvm_mmu_page *sp)
9b9b1492 1315{
699023e2 1316 struct kvm_memslots *slots;
9b9b1492
TY
1317 struct kvm_memory_slot *slot;
1318
699023e2
PB
1319 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1320 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1321 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1322}
1323
f759e2b4
XG
1324static bool rmap_can_add(struct kvm_vcpu *vcpu)
1325{
1326 struct kvm_mmu_memory_cache *cache;
1327
1328 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1329 return mmu_memory_cache_free_objects(cache);
1330}
1331
53c07b18
XG
1332static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1333{
1334 struct kvm_mmu_page *sp;
018aabb5 1335 struct kvm_rmap_head *rmap_head;
53c07b18 1336
53c07b18
XG
1337 sp = page_header(__pa(spte));
1338 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1339 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1340 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1341}
1342
53c07b18
XG
1343static void rmap_remove(struct kvm *kvm, u64 *spte)
1344{
1345 struct kvm_mmu_page *sp;
1346 gfn_t gfn;
018aabb5 1347 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1348
1349 sp = page_header(__pa(spte));
1350 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5
TY
1351 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1352 pte_list_remove(spte, rmap_head);
53c07b18
XG
1353}
1354
1e3f42f0
TY
1355/*
1356 * Used by the following functions to iterate through the sptes linked by a
1357 * rmap. All fields are private and not assumed to be used outside.
1358 */
1359struct rmap_iterator {
1360 /* private fields */
1361 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1362 int pos; /* index of the sptep */
1363};
1364
1365/*
1366 * Iteration must be started by this function. This should also be used after
1367 * removing/dropping sptes from the rmap link because in such cases the
1368 * information in the itererator may not be valid.
1369 *
1370 * Returns sptep if found, NULL otherwise.
1371 */
018aabb5
TY
1372static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1373 struct rmap_iterator *iter)
1e3f42f0 1374{
77fbbbd2
TY
1375 u64 *sptep;
1376
018aabb5 1377 if (!rmap_head->val)
1e3f42f0
TY
1378 return NULL;
1379
018aabb5 1380 if (!(rmap_head->val & 1)) {
1e3f42f0 1381 iter->desc = NULL;
77fbbbd2
TY
1382 sptep = (u64 *)rmap_head->val;
1383 goto out;
1e3f42f0
TY
1384 }
1385
018aabb5 1386 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1387 iter->pos = 0;
77fbbbd2
TY
1388 sptep = iter->desc->sptes[iter->pos];
1389out:
1390 BUG_ON(!is_shadow_present_pte(*sptep));
1391 return sptep;
1e3f42f0
TY
1392}
1393
1394/*
1395 * Must be used with a valid iterator: e.g. after rmap_get_first().
1396 *
1397 * Returns sptep if found, NULL otherwise.
1398 */
1399static u64 *rmap_get_next(struct rmap_iterator *iter)
1400{
77fbbbd2
TY
1401 u64 *sptep;
1402
1e3f42f0
TY
1403 if (iter->desc) {
1404 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1405 ++iter->pos;
1406 sptep = iter->desc->sptes[iter->pos];
1407 if (sptep)
77fbbbd2 1408 goto out;
1e3f42f0
TY
1409 }
1410
1411 iter->desc = iter->desc->more;
1412
1413 if (iter->desc) {
1414 iter->pos = 0;
1415 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1416 sptep = iter->desc->sptes[iter->pos];
1417 goto out;
1e3f42f0
TY
1418 }
1419 }
1420
1421 return NULL;
77fbbbd2
TY
1422out:
1423 BUG_ON(!is_shadow_present_pte(*sptep));
1424 return sptep;
1e3f42f0
TY
1425}
1426
018aabb5
TY
1427#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1428 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1429 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1430
c3707958 1431static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1432{
1df9f2dc 1433 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1434 rmap_remove(kvm, sptep);
be38d276
AK
1435}
1436
8e22f955
XG
1437
1438static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1439{
1440 if (is_large_pte(*sptep)) {
1441 WARN_ON(page_header(__pa(sptep))->role.level ==
1442 PT_PAGE_TABLE_LEVEL);
1443 drop_spte(kvm, sptep);
1444 --kvm->stat.lpages;
1445 return true;
1446 }
1447
1448 return false;
1449}
1450
1451static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1452{
1453 if (__drop_large_spte(vcpu->kvm, sptep))
1454 kvm_flush_remote_tlbs(vcpu->kvm);
1455}
1456
1457/*
49fde340 1458 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1459 * spte write-protection is caused by protecting shadow page table.
49fde340 1460 *
b4619660 1461 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1462 * protection:
1463 * - for dirty logging, the spte can be set to writable at anytime if
1464 * its dirty bitmap is properly set.
1465 * - for spte protection, the spte can be writable only after unsync-ing
1466 * shadow page.
8e22f955 1467 *
c126d94f 1468 * Return true if tlb need be flushed.
8e22f955 1469 */
c4f138b4 1470static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1471{
1472 u64 spte = *sptep;
1473
49fde340 1474 if (!is_writable_pte(spte) &&
ea4114bc 1475 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1476 return false;
1477
1478 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1479
49fde340
XG
1480 if (pt_protect)
1481 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1482 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1483
c126d94f 1484 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1485}
1486
018aabb5
TY
1487static bool __rmap_write_protect(struct kvm *kvm,
1488 struct kvm_rmap_head *rmap_head,
245c3912 1489 bool pt_protect)
98348e95 1490{
1e3f42f0
TY
1491 u64 *sptep;
1492 struct rmap_iterator iter;
d13bc5b5 1493 bool flush = false;
374cbac0 1494
018aabb5 1495 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1496 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1497
d13bc5b5 1498 return flush;
a0ed4607
TY
1499}
1500
c4f138b4 1501static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1502{
1503 u64 spte = *sptep;
1504
1505 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1506
1507 spte &= ~shadow_dirty_mask;
1508
1509 return mmu_spte_update(sptep, spte);
1510}
1511
ac8d57e5
PF
1512static bool wrprot_ad_disabled_spte(u64 *sptep)
1513{
1514 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1515 (unsigned long *)sptep);
1516 if (was_writable)
1517 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1518
1519 return was_writable;
1520}
1521
1522/*
1523 * Gets the GFN ready for another round of dirty logging by clearing the
1524 * - D bit on ad-enabled SPTEs, and
1525 * - W bit on ad-disabled SPTEs.
1526 * Returns true iff any D or W bits were cleared.
1527 */
018aabb5 1528static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1529{
1530 u64 *sptep;
1531 struct rmap_iterator iter;
1532 bool flush = false;
1533
018aabb5 1534 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1535 if (spte_ad_enabled(*sptep))
1536 flush |= spte_clear_dirty(sptep);
1537 else
1538 flush |= wrprot_ad_disabled_spte(sptep);
f4b4b180
KH
1539
1540 return flush;
1541}
1542
c4f138b4 1543static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1544{
1545 u64 spte = *sptep;
1546
1547 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1548
1549 spte |= shadow_dirty_mask;
1550
1551 return mmu_spte_update(sptep, spte);
1552}
1553
018aabb5 1554static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1555{
1556 u64 *sptep;
1557 struct rmap_iterator iter;
1558 bool flush = false;
1559
018aabb5 1560 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1561 if (spte_ad_enabled(*sptep))
1562 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1563
1564 return flush;
1565}
1566
5dc99b23 1567/**
3b0f1d01 1568 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1569 * @kvm: kvm instance
1570 * @slot: slot to protect
1571 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1572 * @mask: indicates which pages we should protect
1573 *
1574 * Used when we do not need to care about huge page mappings: e.g. during dirty
1575 * logging we do not have any such mappings.
1576 */
3b0f1d01 1577static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1578 struct kvm_memory_slot *slot,
1579 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1580{
018aabb5 1581 struct kvm_rmap_head *rmap_head;
a0ed4607 1582
5dc99b23 1583 while (mask) {
018aabb5
TY
1584 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1585 PT_PAGE_TABLE_LEVEL, slot);
1586 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1587
5dc99b23
TY
1588 /* clear the first set bit */
1589 mask &= mask - 1;
1590 }
374cbac0
AK
1591}
1592
f4b4b180 1593/**
ac8d57e5
PF
1594 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1595 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1596 * @kvm: kvm instance
1597 * @slot: slot to clear D-bit
1598 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1599 * @mask: indicates which pages we should clear D-bit
1600 *
1601 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1602 */
1603void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1604 struct kvm_memory_slot *slot,
1605 gfn_t gfn_offset, unsigned long mask)
1606{
018aabb5 1607 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1608
1609 while (mask) {
018aabb5
TY
1610 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1611 PT_PAGE_TABLE_LEVEL, slot);
1612 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1613
1614 /* clear the first set bit */
1615 mask &= mask - 1;
1616 }
1617}
1618EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1619
3b0f1d01
KH
1620/**
1621 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1622 * PT level pages.
1623 *
1624 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1625 * enable dirty logging for them.
1626 *
1627 * Used when we do not need to care about huge page mappings: e.g. during dirty
1628 * logging we do not have any such mappings.
1629 */
1630void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1631 struct kvm_memory_slot *slot,
1632 gfn_t gfn_offset, unsigned long mask)
1633{
88178fd4
KH
1634 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1635 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1636 mask);
1637 else
1638 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1639}
1640
bab4165e
BD
1641/**
1642 * kvm_arch_write_log_dirty - emulate dirty page logging
1643 * @vcpu: Guest mode vcpu
1644 *
1645 * Emulate arch specific page modification logging for the
1646 * nested hypervisor
1647 */
1648int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1649{
1650 if (kvm_x86_ops->write_log_dirty)
1651 return kvm_x86_ops->write_log_dirty(vcpu);
1652
1653 return 0;
1654}
1655
aeecee2e
XG
1656bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1657 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1658{
018aabb5 1659 struct kvm_rmap_head *rmap_head;
5dc99b23 1660 int i;
2f84569f 1661 bool write_protected = false;
95d4c16c 1662
8a3d08f1 1663 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1664 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1665 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1666 }
1667
1668 return write_protected;
95d4c16c
TY
1669}
1670
aeecee2e
XG
1671static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1672{
1673 struct kvm_memory_slot *slot;
1674
1675 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1676 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1677}
1678
018aabb5 1679static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1680{
1e3f42f0
TY
1681 u64 *sptep;
1682 struct rmap_iterator iter;
6a49f85c 1683 bool flush = false;
e930bffe 1684
018aabb5 1685 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1686 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1687
1688 drop_spte(kvm, sptep);
6a49f85c 1689 flush = true;
e930bffe 1690 }
1e3f42f0 1691
6a49f85c
XG
1692 return flush;
1693}
1694
018aabb5 1695static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1696 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1697 unsigned long data)
1698{
018aabb5 1699 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1700}
1701
018aabb5 1702static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1703 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1704 unsigned long data)
3da0dd43 1705{
1e3f42f0
TY
1706 u64 *sptep;
1707 struct rmap_iterator iter;
3da0dd43 1708 int need_flush = 0;
1e3f42f0 1709 u64 new_spte;
3da0dd43 1710 pte_t *ptep = (pte_t *)data;
ba049e93 1711 kvm_pfn_t new_pfn;
3da0dd43
IE
1712
1713 WARN_ON(pte_huge(*ptep));
1714 new_pfn = pte_pfn(*ptep);
1e3f42f0 1715
0d536790 1716restart:
018aabb5 1717 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1718 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1719 sptep, *sptep, gfn, level);
1e3f42f0 1720
3da0dd43 1721 need_flush = 1;
1e3f42f0 1722
3da0dd43 1723 if (pte_write(*ptep)) {
1e3f42f0 1724 drop_spte(kvm, sptep);
0d536790 1725 goto restart;
3da0dd43 1726 } else {
1e3f42f0 1727 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1728 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1729
1730 new_spte &= ~PT_WRITABLE_MASK;
1731 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1732
1733 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1734
1735 mmu_spte_clear_track_bits(sptep);
1736 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1737 }
1738 }
1e3f42f0 1739
3da0dd43
IE
1740 if (need_flush)
1741 kvm_flush_remote_tlbs(kvm);
1742
1743 return 0;
1744}
1745
6ce1f4e2
XG
1746struct slot_rmap_walk_iterator {
1747 /* input fields. */
1748 struct kvm_memory_slot *slot;
1749 gfn_t start_gfn;
1750 gfn_t end_gfn;
1751 int start_level;
1752 int end_level;
1753
1754 /* output fields. */
1755 gfn_t gfn;
018aabb5 1756 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1757 int level;
1758
1759 /* private field. */
018aabb5 1760 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1761};
1762
1763static void
1764rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1765{
1766 iterator->level = level;
1767 iterator->gfn = iterator->start_gfn;
1768 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1769 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1770 iterator->slot);
1771}
1772
1773static void
1774slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1775 struct kvm_memory_slot *slot, int start_level,
1776 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1777{
1778 iterator->slot = slot;
1779 iterator->start_level = start_level;
1780 iterator->end_level = end_level;
1781 iterator->start_gfn = start_gfn;
1782 iterator->end_gfn = end_gfn;
1783
1784 rmap_walk_init_level(iterator, iterator->start_level);
1785}
1786
1787static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1788{
1789 return !!iterator->rmap;
1790}
1791
1792static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1793{
1794 if (++iterator->rmap <= iterator->end_rmap) {
1795 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1796 return;
1797 }
1798
1799 if (++iterator->level > iterator->end_level) {
1800 iterator->rmap = NULL;
1801 return;
1802 }
1803
1804 rmap_walk_init_level(iterator, iterator->level);
1805}
1806
1807#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1808 _start_gfn, _end_gfn, _iter_) \
1809 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1810 _end_level_, _start_gfn, _end_gfn); \
1811 slot_rmap_walk_okay(_iter_); \
1812 slot_rmap_walk_next(_iter_))
1813
84504ef3
TY
1814static int kvm_handle_hva_range(struct kvm *kvm,
1815 unsigned long start,
1816 unsigned long end,
1817 unsigned long data,
1818 int (*handler)(struct kvm *kvm,
018aabb5 1819 struct kvm_rmap_head *rmap_head,
048212d0 1820 struct kvm_memory_slot *slot,
8a9522d2
ALC
1821 gfn_t gfn,
1822 int level,
84504ef3 1823 unsigned long data))
e930bffe 1824{
bc6678a3 1825 struct kvm_memslots *slots;
be6ba0f0 1826 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1827 struct slot_rmap_walk_iterator iterator;
1828 int ret = 0;
9da0e4d5 1829 int i;
bc6678a3 1830
9da0e4d5
PB
1831 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1832 slots = __kvm_memslots(kvm, i);
1833 kvm_for_each_memslot(memslot, slots) {
1834 unsigned long hva_start, hva_end;
1835 gfn_t gfn_start, gfn_end;
e930bffe 1836
9da0e4d5
PB
1837 hva_start = max(start, memslot->userspace_addr);
1838 hva_end = min(end, memslot->userspace_addr +
1839 (memslot->npages << PAGE_SHIFT));
1840 if (hva_start >= hva_end)
1841 continue;
1842 /*
1843 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1844 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1845 */
1846 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1847 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1848
1849 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1850 PT_MAX_HUGEPAGE_LEVEL,
1851 gfn_start, gfn_end - 1,
1852 &iterator)
1853 ret |= handler(kvm, iterator.rmap, memslot,
1854 iterator.gfn, iterator.level, data);
1855 }
e930bffe
AA
1856 }
1857
f395302e 1858 return ret;
e930bffe
AA
1859}
1860
84504ef3
TY
1861static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1862 unsigned long data,
018aabb5
TY
1863 int (*handler)(struct kvm *kvm,
1864 struct kvm_rmap_head *rmap_head,
048212d0 1865 struct kvm_memory_slot *slot,
8a9522d2 1866 gfn_t gfn, int level,
84504ef3
TY
1867 unsigned long data))
1868{
1869 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1870}
1871
b3ae2096
TY
1872int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1873{
1874 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1875}
1876
3da0dd43
IE
1877void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1878{
8a8365c5 1879 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1880}
1881
018aabb5 1882static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1883 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1884 unsigned long data)
e930bffe 1885{
1e3f42f0 1886 u64 *sptep;
79f702a6 1887 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1888 int young = 0;
1889
f160c7b7
JS
1890 for_each_rmap_spte(rmap_head, &iter, sptep)
1891 young |= mmu_spte_age(sptep);
0d536790 1892
8a9522d2 1893 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1894 return young;
1895}
1896
018aabb5 1897static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1898 struct kvm_memory_slot *slot, gfn_t gfn,
1899 int level, unsigned long data)
8ee53820 1900{
1e3f42f0
TY
1901 u64 *sptep;
1902 struct rmap_iterator iter;
8ee53820 1903
83ef6c81
JS
1904 for_each_rmap_spte(rmap_head, &iter, sptep)
1905 if (is_accessed_spte(*sptep))
1906 return 1;
83ef6c81 1907 return 0;
8ee53820
AA
1908}
1909
53a27b39
MT
1910#define RMAP_RECYCLE_THRESHOLD 1000
1911
852e3c19 1912static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1913{
018aabb5 1914 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1915 struct kvm_mmu_page *sp;
1916
1917 sp = page_header(__pa(spte));
53a27b39 1918
018aabb5 1919 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1920
018aabb5 1921 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1922 kvm_flush_remote_tlbs(vcpu->kvm);
1923}
1924
57128468 1925int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1926{
57128468 1927 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1928}
1929
8ee53820
AA
1930int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1931{
1932 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1933}
1934
d6c69ee9 1935#ifdef MMU_DEBUG
47ad8e68 1936static int is_empty_shadow_page(u64 *spt)
6aa8b732 1937{
139bdb2d
AK
1938 u64 *pos;
1939 u64 *end;
1940
47ad8e68 1941 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1942 if (is_shadow_present_pte(*pos)) {
b8688d51 1943 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1944 pos, *pos);
6aa8b732 1945 return 0;
139bdb2d 1946 }
6aa8b732
AK
1947 return 1;
1948}
d6c69ee9 1949#endif
6aa8b732 1950
45221ab6
DH
1951/*
1952 * This value is the sum of all of the kvm instances's
1953 * kvm->arch.n_used_mmu_pages values. We need a global,
1954 * aggregate version in order to make the slab shrinker
1955 * faster
1956 */
1957static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1958{
1959 kvm->arch.n_used_mmu_pages += nr;
1960 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1961}
1962
834be0d8 1963static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1964{
fa4a2c08 1965 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1966 hlist_del(&sp->hash_link);
bd4c86ea
XG
1967 list_del(&sp->link);
1968 free_page((unsigned long)sp->spt);
834be0d8
GN
1969 if (!sp->role.direct)
1970 free_page((unsigned long)sp->gfns);
e8ad9a70 1971 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1972}
1973
cea0f0e7
AK
1974static unsigned kvm_page_table_hashfn(gfn_t gfn)
1975{
114df303 1976 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1977}
1978
714b93da 1979static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1980 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1981{
cea0f0e7
AK
1982 if (!parent_pte)
1983 return;
cea0f0e7 1984
67052b35 1985 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1986}
1987
4db35314 1988static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1989 u64 *parent_pte)
1990{
67052b35 1991 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1992}
1993
bcdd9a93
XG
1994static void drop_parent_pte(struct kvm_mmu_page *sp,
1995 u64 *parent_pte)
1996{
1997 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1998 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1999}
2000
47005792 2001static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 2002{
67052b35 2003 struct kvm_mmu_page *sp;
7ddca7e4 2004
80feb89a
TY
2005 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2006 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2007 if (!direct)
80feb89a 2008 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2009 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
2010
2011 /*
2012 * The active_mmu_pages list is the FIFO list, do not move the
2013 * page until it is zapped. kvm_zap_obsolete_pages depends on
2014 * this feature. See the comments in kvm_zap_obsolete_pages().
2015 */
67052b35 2016 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
2017 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2018 return sp;
ad8cfbe3
MT
2019}
2020
67052b35 2021static void mark_unsync(u64 *spte);
1047df1f 2022static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 2023{
74c4e63a
TY
2024 u64 *sptep;
2025 struct rmap_iterator iter;
2026
2027 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2028 mark_unsync(sptep);
2029 }
0074ff63
MT
2030}
2031
67052b35 2032static void mark_unsync(u64 *spte)
0074ff63 2033{
67052b35 2034 struct kvm_mmu_page *sp;
1047df1f 2035 unsigned int index;
0074ff63 2036
67052b35 2037 sp = page_header(__pa(spte));
1047df1f
XG
2038 index = spte - sp->spt;
2039 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 2040 return;
1047df1f 2041 if (sp->unsync_children++)
0074ff63 2042 return;
1047df1f 2043 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
2044}
2045
e8bc217a 2046static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 2047 struct kvm_mmu_page *sp)
e8bc217a 2048{
1f50f1b3 2049 return 0;
e8bc217a
MT
2050}
2051
7eb77e9f 2052static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
a7052897
MT
2053{
2054}
2055
0f53b5b1
XG
2056static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2057 struct kvm_mmu_page *sp, u64 *spte,
7c562522 2058 const void *pte)
0f53b5b1
XG
2059{
2060 WARN_ON(1);
2061}
2062
60c8aec6
MT
2063#define KVM_PAGE_ARRAY_NR 16
2064
2065struct kvm_mmu_pages {
2066 struct mmu_page_and_offset {
2067 struct kvm_mmu_page *sp;
2068 unsigned int idx;
2069 } page[KVM_PAGE_ARRAY_NR];
2070 unsigned int nr;
2071};
2072
cded19f3
HE
2073static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2074 int idx)
4731d4c7 2075{
60c8aec6 2076 int i;
4731d4c7 2077
60c8aec6
MT
2078 if (sp->unsync)
2079 for (i=0; i < pvec->nr; i++)
2080 if (pvec->page[i].sp == sp)
2081 return 0;
2082
2083 pvec->page[pvec->nr].sp = sp;
2084 pvec->page[pvec->nr].idx = idx;
2085 pvec->nr++;
2086 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2087}
2088
fd951457
TY
2089static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2090{
2091 --sp->unsync_children;
2092 WARN_ON((int)sp->unsync_children < 0);
2093 __clear_bit(idx, sp->unsync_child_bitmap);
2094}
2095
60c8aec6
MT
2096static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2097 struct kvm_mmu_pages *pvec)
2098{
2099 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2100
37178b8b 2101 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2102 struct kvm_mmu_page *child;
4731d4c7
MT
2103 u64 ent = sp->spt[i];
2104
fd951457
TY
2105 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2106 clear_unsync_child_bit(sp, i);
2107 continue;
2108 }
7a8f1a74
XG
2109
2110 child = page_header(ent & PT64_BASE_ADDR_MASK);
2111
2112 if (child->unsync_children) {
2113 if (mmu_pages_add(pvec, child, i))
2114 return -ENOSPC;
2115
2116 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2117 if (!ret) {
2118 clear_unsync_child_bit(sp, i);
2119 continue;
2120 } else if (ret > 0) {
7a8f1a74 2121 nr_unsync_leaf += ret;
fd951457 2122 } else
7a8f1a74
XG
2123 return ret;
2124 } else if (child->unsync) {
2125 nr_unsync_leaf++;
2126 if (mmu_pages_add(pvec, child, i))
2127 return -ENOSPC;
2128 } else
fd951457 2129 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2130 }
2131
60c8aec6
MT
2132 return nr_unsync_leaf;
2133}
2134
e23d3fef
XG
2135#define INVALID_INDEX (-1)
2136
60c8aec6
MT
2137static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2138 struct kvm_mmu_pages *pvec)
2139{
0a47cd85 2140 pvec->nr = 0;
60c8aec6
MT
2141 if (!sp->unsync_children)
2142 return 0;
2143
e23d3fef 2144 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2145 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2146}
2147
4731d4c7
MT
2148static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2149{
2150 WARN_ON(!sp->unsync);
5e1b3ddb 2151 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2152 sp->unsync = 0;
2153 --kvm->stat.mmu_unsync;
2154}
2155
7775834a
XG
2156static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2157 struct list_head *invalid_list);
2158static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2159 struct list_head *invalid_list);
4731d4c7 2160
f34d251d
XG
2161/*
2162 * NOTE: we should pay more attention on the zapped-obsolete page
2163 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2164 * since it has been deleted from active_mmu_pages but still can be found
2165 * at hast list.
2166 *
f3414bc7 2167 * for_each_valid_sp() has skipped that kind of pages.
f34d251d 2168 */
f3414bc7 2169#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2170 hlist_for_each_entry(_sp, \
2171 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
f3414bc7
DM
2172 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2173 } else
1044b030
TY
2174
2175#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2176 for_each_valid_sp(_kvm, _sp, _gfn) \
2177 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2178
f918b443 2179/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2180static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2181 struct list_head *invalid_list)
4731d4c7 2182{
450917b6 2183 if (sp->role.cr4_pae != !!is_pae(vcpu)
44dd3ffa 2184 || vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 2185 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2186 return false;
4731d4c7
MT
2187 }
2188
1f50f1b3 2189 return true;
4731d4c7
MT
2190}
2191
35a70510
PB
2192static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2193 struct list_head *invalid_list,
2194 bool remote_flush, bool local_flush)
1d9dc7e0 2195{
35a70510
PB
2196 if (!list_empty(invalid_list)) {
2197 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2198 return;
2199 }
d98ba053 2200
35a70510
PB
2201 if (remote_flush)
2202 kvm_flush_remote_tlbs(vcpu->kvm);
2203 else if (local_flush)
2204 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2205}
2206
e37fa785
XG
2207#ifdef CONFIG_KVM_MMU_AUDIT
2208#include "mmu_audit.c"
2209#else
2210static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2211static void mmu_audit_disable(void) { }
2212#endif
2213
46971a2f
XG
2214static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2215{
2216 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2217}
2218
1f50f1b3 2219static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2220 struct list_head *invalid_list)
1d9dc7e0 2221{
9a43c5d9
PB
2222 kvm_unlink_unsync_page(vcpu->kvm, sp);
2223 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2224}
2225
9f1a122f 2226/* @gfn should be write-protected at the call site */
2a74003a
PB
2227static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2228 struct list_head *invalid_list)
9f1a122f 2229{
9f1a122f 2230 struct kvm_mmu_page *s;
2a74003a 2231 bool ret = false;
9f1a122f 2232
b67bfe0d 2233 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2234 if (!s->unsync)
9f1a122f
XG
2235 continue;
2236
2237 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2238 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2239 }
2240
2a74003a 2241 return ret;
9f1a122f
XG
2242}
2243
60c8aec6 2244struct mmu_page_path {
2a7266a8
YZ
2245 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2246 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
2247};
2248
60c8aec6 2249#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2250 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2251 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2252 i = mmu_pages_next(&pvec, &parents, i))
2253
cded19f3
HE
2254static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2255 struct mmu_page_path *parents,
2256 int i)
60c8aec6
MT
2257{
2258 int n;
2259
2260 for (n = i+1; n < pvec->nr; n++) {
2261 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2262 unsigned idx = pvec->page[n].idx;
2263 int level = sp->role.level;
60c8aec6 2264
0a47cd85
PB
2265 parents->idx[level-1] = idx;
2266 if (level == PT_PAGE_TABLE_LEVEL)
2267 break;
60c8aec6 2268
0a47cd85 2269 parents->parent[level-2] = sp;
60c8aec6
MT
2270 }
2271
2272 return n;
2273}
2274
0a47cd85
PB
2275static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2276 struct mmu_page_path *parents)
2277{
2278 struct kvm_mmu_page *sp;
2279 int level;
2280
2281 if (pvec->nr == 0)
2282 return 0;
2283
e23d3fef
XG
2284 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2285
0a47cd85
PB
2286 sp = pvec->page[0].sp;
2287 level = sp->role.level;
2288 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2289
2290 parents->parent[level-2] = sp;
2291
2292 /* Also set up a sentinel. Further entries in pvec are all
2293 * children of sp, so this element is never overwritten.
2294 */
2295 parents->parent[level-1] = NULL;
2296 return mmu_pages_next(pvec, parents, 0);
2297}
2298
cded19f3 2299static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2300{
60c8aec6
MT
2301 struct kvm_mmu_page *sp;
2302 unsigned int level = 0;
2303
2304 do {
2305 unsigned int idx = parents->idx[level];
60c8aec6
MT
2306 sp = parents->parent[level];
2307 if (!sp)
2308 return;
2309
e23d3fef 2310 WARN_ON(idx == INVALID_INDEX);
fd951457 2311 clear_unsync_child_bit(sp, idx);
60c8aec6 2312 level++;
0a47cd85 2313 } while (!sp->unsync_children);
60c8aec6 2314}
4731d4c7 2315
60c8aec6
MT
2316static void mmu_sync_children(struct kvm_vcpu *vcpu,
2317 struct kvm_mmu_page *parent)
2318{
2319 int i;
2320 struct kvm_mmu_page *sp;
2321 struct mmu_page_path parents;
2322 struct kvm_mmu_pages pages;
d98ba053 2323 LIST_HEAD(invalid_list);
50c9e6f3 2324 bool flush = false;
60c8aec6 2325
60c8aec6 2326 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2327 bool protected = false;
b1a36821
MT
2328
2329 for_each_sp(pages, sp, parents, i)
54bf36aa 2330 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2331
50c9e6f3 2332 if (protected) {
b1a36821 2333 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2334 flush = false;
2335 }
b1a36821 2336
60c8aec6 2337 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2338 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2339 mmu_pages_clear_parents(&parents);
2340 }
50c9e6f3
PB
2341 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2342 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2343 cond_resched_lock(&vcpu->kvm->mmu_lock);
2344 flush = false;
2345 }
60c8aec6 2346 }
50c9e6f3
PB
2347
2348 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2349}
2350
a30f47cb
XG
2351static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2352{
e5691a81 2353 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2354}
2355
2356static void clear_sp_write_flooding_count(u64 *spte)
2357{
2358 struct kvm_mmu_page *sp = page_header(__pa(spte));
2359
2360 __clear_sp_write_flooding_count(sp);
2361}
2362
cea0f0e7
AK
2363static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2364 gfn_t gfn,
2365 gva_t gaddr,
2366 unsigned level,
f6e2c02b 2367 int direct,
bb11c6c9 2368 unsigned access)
cea0f0e7
AK
2369{
2370 union kvm_mmu_page_role role;
cea0f0e7 2371 unsigned quadrant;
9f1a122f 2372 struct kvm_mmu_page *sp;
9f1a122f 2373 bool need_sync = false;
2a74003a 2374 bool flush = false;
f3414bc7 2375 int collisions = 0;
2a74003a 2376 LIST_HEAD(invalid_list);
cea0f0e7 2377
36d9594d 2378 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2379 role.level = level;
f6e2c02b 2380 role.direct = direct;
84b0c8c6 2381 if (role.direct)
5b7e0102 2382 role.cr4_pae = 0;
41074d07 2383 role.access = access;
44dd3ffa
VK
2384 if (!vcpu->arch.mmu->direct_map
2385 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2386 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2387 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2388 role.quadrant = quadrant;
2389 }
f3414bc7
DM
2390 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2391 if (sp->gfn != gfn) {
2392 collisions++;
2393 continue;
2394 }
2395
7ae680eb
XG
2396 if (!need_sync && sp->unsync)
2397 need_sync = true;
4731d4c7 2398
7ae680eb
XG
2399 if (sp->role.word != role.word)
2400 continue;
4731d4c7 2401
2a74003a
PB
2402 if (sp->unsync) {
2403 /* The page is good, but __kvm_sync_page might still end
2404 * up zapping it. If so, break in order to rebuild it.
2405 */
2406 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2407 break;
2408
2409 WARN_ON(!list_empty(&invalid_list));
2410 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2411 }
e02aa901 2412
98bba238 2413 if (sp->unsync_children)
a8eeb04a 2414 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2415
a30f47cb 2416 __clear_sp_write_flooding_count(sp);
7ae680eb 2417 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2418 goto out;
7ae680eb 2419 }
47005792 2420
dfc5aa00 2421 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2422
2423 sp = kvm_mmu_alloc_page(vcpu, direct);
2424
4db35314
AK
2425 sp->gfn = gfn;
2426 sp->role = role;
7ae680eb
XG
2427 hlist_add_head(&sp->hash_link,
2428 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2429 if (!direct) {
56ca57f9
XG
2430 /*
2431 * we should do write protection before syncing pages
2432 * otherwise the content of the synced shadow page may
2433 * be inconsistent with guest page table.
2434 */
2435 account_shadowed(vcpu->kvm, sp);
2436 if (level == PT_PAGE_TABLE_LEVEL &&
2437 rmap_write_protect(vcpu, gfn))
b1a36821 2438 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f 2439
9f1a122f 2440 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2441 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2442 }
5304b8d3 2443 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2444 clear_page(sp->spt);
f691fe1d 2445 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2446
2447 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2448out:
2449 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2450 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2451 return sp;
cea0f0e7
AK
2452}
2453
7eb77e9f
JS
2454static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2455 struct kvm_vcpu *vcpu, hpa_t root,
2456 u64 addr)
2d11123a
AK
2457{
2458 iterator->addr = addr;
7eb77e9f 2459 iterator->shadow_addr = root;
44dd3ffa 2460 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2461
2a7266a8 2462 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2463 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2464 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2465 --iterator->level;
2466
2d11123a 2467 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2468 /*
2469 * prev_root is currently only used for 64-bit hosts. So only
2470 * the active root_hpa is valid here.
2471 */
44dd3ffa 2472 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2473
2d11123a 2474 iterator->shadow_addr
44dd3ffa 2475 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2476 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2477 --iterator->level;
2478 if (!iterator->shadow_addr)
2479 iterator->level = 0;
2480 }
2481}
2482
7eb77e9f
JS
2483static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2484 struct kvm_vcpu *vcpu, u64 addr)
2485{
44dd3ffa 2486 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2487 addr);
2488}
2489
2d11123a
AK
2490static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2491{
2492 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2493 return false;
4d88954d 2494
2d11123a
AK
2495 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2496 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2497 return true;
2498}
2499
c2a2ac2b
XG
2500static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2501 u64 spte)
2d11123a 2502{
c2a2ac2b 2503 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2504 iterator->level = 0;
2505 return;
2506 }
2507
c2a2ac2b 2508 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2509 --iterator->level;
2510}
2511
c2a2ac2b
XG
2512static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2513{
bb606a9b 2514 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2515}
2516
98bba238
TY
2517static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2518 struct kvm_mmu_page *sp)
32ef26a3
AK
2519{
2520 u64 spte;
2521
ffb128c8 2522 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2523
ffb128c8 2524 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2525 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2526
2527 if (sp_ad_disabled(sp))
2528 spte |= shadow_acc_track_value;
2529 else
2530 spte |= shadow_accessed_mask;
24db2734 2531
1df9f2dc 2532 mmu_spte_set(sptep, spte);
98bba238
TY
2533
2534 mmu_page_add_parent_pte(vcpu, sp, sptep);
2535
2536 if (sp->unsync_children || sp->unsync)
2537 mark_unsync(sptep);
32ef26a3
AK
2538}
2539
a357bd22
AK
2540static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2541 unsigned direct_access)
2542{
2543 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2544 struct kvm_mmu_page *child;
2545
2546 /*
2547 * For the direct sp, if the guest pte's dirty bit
2548 * changed form clean to dirty, it will corrupt the
2549 * sp's access: allow writable in the read-only sp,
2550 * so we should update the spte at this point to get
2551 * a new sp with the correct access.
2552 */
2553 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2554 if (child->role.access == direct_access)
2555 return;
2556
bcdd9a93 2557 drop_parent_pte(child, sptep);
a357bd22
AK
2558 kvm_flush_remote_tlbs(vcpu->kvm);
2559 }
2560}
2561
505aef8f 2562static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2563 u64 *spte)
2564{
2565 u64 pte;
2566 struct kvm_mmu_page *child;
2567
2568 pte = *spte;
2569 if (is_shadow_present_pte(pte)) {
505aef8f 2570 if (is_last_spte(pte, sp->role.level)) {
c3707958 2571 drop_spte(kvm, spte);
505aef8f
XG
2572 if (is_large_pte(pte))
2573 --kvm->stat.lpages;
2574 } else {
38e3b2b2 2575 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2576 drop_parent_pte(child, spte);
38e3b2b2 2577 }
505aef8f
XG
2578 return true;
2579 }
2580
2581 if (is_mmio_spte(pte))
ce88decf 2582 mmu_spte_clear_no_track(spte);
c3707958 2583
505aef8f 2584 return false;
38e3b2b2
XG
2585}
2586
90cb0529 2587static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2588 struct kvm_mmu_page *sp)
a436036b 2589{
697fe2e2 2590 unsigned i;
697fe2e2 2591
38e3b2b2
XG
2592 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2593 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2594}
2595
31aa2b44 2596static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2597{
1e3f42f0
TY
2598 u64 *sptep;
2599 struct rmap_iterator iter;
a436036b 2600
018aabb5 2601 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2602 drop_parent_pte(sp, sptep);
31aa2b44
AK
2603}
2604
60c8aec6 2605static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2606 struct kvm_mmu_page *parent,
2607 struct list_head *invalid_list)
4731d4c7 2608{
60c8aec6
MT
2609 int i, zapped = 0;
2610 struct mmu_page_path parents;
2611 struct kvm_mmu_pages pages;
4731d4c7 2612
60c8aec6 2613 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2614 return 0;
60c8aec6 2615
60c8aec6
MT
2616 while (mmu_unsync_walk(parent, &pages)) {
2617 struct kvm_mmu_page *sp;
2618
2619 for_each_sp(pages, sp, parents, i) {
7775834a 2620 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2621 mmu_pages_clear_parents(&parents);
77662e00 2622 zapped++;
60c8aec6 2623 }
60c8aec6
MT
2624 }
2625
2626 return zapped;
4731d4c7
MT
2627}
2628
7775834a
XG
2629static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2630 struct list_head *invalid_list)
31aa2b44 2631{
4731d4c7 2632 int ret;
f691fe1d 2633
7775834a 2634 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2635 ++kvm->stat.mmu_shadow_zapped;
7775834a 2636 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2637 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2638 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2639
f6e2c02b 2640 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2641 unaccount_shadowed(kvm, sp);
5304b8d3 2642
4731d4c7
MT
2643 if (sp->unsync)
2644 kvm_unlink_unsync_page(kvm, sp);
4db35314 2645 if (!sp->root_count) {
54a4f023
GJ
2646 /* Count self */
2647 ret++;
7775834a 2648 list_move(&sp->link, invalid_list);
aa6bd187 2649 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2650 } else {
5b5c6a5a 2651 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2652
2653 /*
2654 * The obsolete pages can not be used on any vcpus.
2655 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2656 */
2657 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2658 kvm_reload_remote_mmus(kvm);
2e53d63a 2659 }
7775834a
XG
2660
2661 sp->role.invalid = 1;
4731d4c7 2662 return ret;
a436036b
AK
2663}
2664
7775834a
XG
2665static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2666 struct list_head *invalid_list)
2667{
945315b9 2668 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2669
2670 if (list_empty(invalid_list))
2671 return;
2672
c142786c 2673 /*
9753f529
LT
2674 * We need to make sure everyone sees our modifications to
2675 * the page tables and see changes to vcpu->mode here. The barrier
2676 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2677 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2678 *
2679 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2680 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2681 */
2682 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2683
945315b9 2684 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2685 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2686 kvm_mmu_free_page(sp);
945315b9 2687 }
7775834a
XG
2688}
2689
5da59607
TY
2690static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2691 struct list_head *invalid_list)
2692{
2693 struct kvm_mmu_page *sp;
2694
2695 if (list_empty(&kvm->arch.active_mmu_pages))
2696 return false;
2697
d74c0e6b
GT
2698 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2699 struct kvm_mmu_page, link);
42bcbebf 2700 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
5da59607
TY
2701}
2702
82ce2c96
IE
2703/*
2704 * Changing the number of mmu pages allocated to the vm
49d5ca26 2705 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2706 */
49d5ca26 2707void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2708{
d98ba053 2709 LIST_HEAD(invalid_list);
82ce2c96 2710
b34cb590
TY
2711 spin_lock(&kvm->mmu_lock);
2712
49d5ca26 2713 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2714 /* Need to free some mmu pages to achieve the goal. */
2715 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2716 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2717 break;
82ce2c96 2718
aa6bd187 2719 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2720 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2721 }
82ce2c96 2722
49d5ca26 2723 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2724
2725 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2726}
2727
1cb3f3ae 2728int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2729{
4db35314 2730 struct kvm_mmu_page *sp;
d98ba053 2731 LIST_HEAD(invalid_list);
a436036b
AK
2732 int r;
2733
9ad17b10 2734 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2735 r = 0;
1cb3f3ae 2736 spin_lock(&kvm->mmu_lock);
b67bfe0d 2737 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2738 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2739 sp->role.word);
2740 r = 1;
f41d335a 2741 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2742 }
d98ba053 2743 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2744 spin_unlock(&kvm->mmu_lock);
2745
a436036b 2746 return r;
cea0f0e7 2747}
1cb3f3ae 2748EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2749
5c520e90 2750static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2751{
2752 trace_kvm_mmu_unsync_page(sp);
2753 ++vcpu->kvm->stat.mmu_unsync;
2754 sp->unsync = 1;
2755
2756 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2757}
2758
3d0c27ad
XG
2759static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2760 bool can_unsync)
4731d4c7 2761{
5c520e90 2762 struct kvm_mmu_page *sp;
4731d4c7 2763
3d0c27ad
XG
2764 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2765 return true;
9cf5cf5a 2766
5c520e90 2767 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2768 if (!can_unsync)
3d0c27ad 2769 return true;
36a2e677 2770
5c520e90
XG
2771 if (sp->unsync)
2772 continue;
9cf5cf5a 2773
5c520e90
XG
2774 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2775 kvm_unsync_page(vcpu, sp);
4731d4c7 2776 }
3d0c27ad 2777
578e1c4d
JS
2778 /*
2779 * We need to ensure that the marking of unsync pages is visible
2780 * before the SPTE is updated to allow writes because
2781 * kvm_mmu_sync_roots() checks the unsync flags without holding
2782 * the MMU lock and so can race with this. If the SPTE was updated
2783 * before the page had been marked as unsync-ed, something like the
2784 * following could happen:
2785 *
2786 * CPU 1 CPU 2
2787 * ---------------------------------------------------------------------
2788 * 1.2 Host updates SPTE
2789 * to be writable
2790 * 2.1 Guest writes a GPTE for GVA X.
2791 * (GPTE being in the guest page table shadowed
2792 * by the SP from CPU 1.)
2793 * This reads SPTE during the page table walk.
2794 * Since SPTE.W is read as 1, there is no
2795 * fault.
2796 *
2797 * 2.2 Guest issues TLB flush.
2798 * That causes a VM Exit.
2799 *
2800 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2801 * Since it is false, so it just returns.
2802 *
2803 * 2.4 Guest accesses GVA X.
2804 * Since the mapping in the SP was not updated,
2805 * so the old mapping for GVA X incorrectly
2806 * gets used.
2807 * 1.1 Host marks SP
2808 * as unsync
2809 * (sp->unsync = true)
2810 *
2811 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2812 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2813 * pairs with this write barrier.
2814 */
2815 smp_wmb();
2816
3d0c27ad 2817 return false;
4731d4c7
MT
2818}
2819
ba049e93 2820static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2821{
2822 if (pfn_valid(pfn))
aa2e063a
HZ
2823 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2824 /*
2825 * Some reserved pages, such as those from NVDIMM
2826 * DAX devices, are not for MMIO, and can be mapped
2827 * with cached memory type for better performance.
2828 * However, the above check misconceives those pages
2829 * as MMIO, and results in KVM mapping them with UC
2830 * memory type, which would hurt the performance.
2831 * Therefore, we check the host memory type in addition
2832 * and only treat UC/UC-/WC pages as MMIO.
2833 */
2834 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
d1fe9219
PB
2835
2836 return true;
2837}
2838
5ce4786f
JS
2839/* Bits which may be returned by set_spte() */
2840#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2841#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2842
d555c333 2843static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2844 unsigned pte_access, int level,
ba049e93 2845 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2846 bool can_unsync, bool host_writable)
1c4f1fd6 2847{
ffb128c8 2848 u64 spte = 0;
1e73f9dd 2849 int ret = 0;
ac8d57e5 2850 struct kvm_mmu_page *sp;
64d4d521 2851
54bf36aa 2852 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2853 return 0;
2854
ac8d57e5
PF
2855 sp = page_header(__pa(sptep));
2856 if (sp_ad_disabled(sp))
2857 spte |= shadow_acc_track_value;
2858
d95c5568
BD
2859 /*
2860 * For the EPT case, shadow_present_mask is 0 if hardware
2861 * supports exec-only page table entries. In that case,
2862 * ACC_USER_MASK and shadow_user_mask are used to represent
2863 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2864 */
ffb128c8 2865 spte |= shadow_present_mask;
947da538 2866 if (!speculative)
ac8d57e5 2867 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 2868
7b52345e
SY
2869 if (pte_access & ACC_EXEC_MASK)
2870 spte |= shadow_x_mask;
2871 else
2872 spte |= shadow_nx_mask;
49fde340 2873
1c4f1fd6 2874 if (pte_access & ACC_USER_MASK)
7b52345e 2875 spte |= shadow_user_mask;
49fde340 2876
852e3c19 2877 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2878 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2879 if (tdp_enabled)
4b12f0de 2880 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2881 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2882
9bdbba13 2883 if (host_writable)
1403283a 2884 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2885 else
2886 pte_access &= ~ACC_WRITE_MASK;
1403283a 2887
daaf216c
TL
2888 if (!kvm_is_mmio_pfn(pfn))
2889 spte |= shadow_me_mask;
2890
35149e21 2891 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2892
c2288505 2893 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2894
c2193463 2895 /*
7751babd
XG
2896 * Other vcpu creates new sp in the window between
2897 * mapping_level() and acquiring mmu-lock. We can
2898 * allow guest to retry the access, the mapping can
2899 * be fixed if guest refault.
c2193463 2900 */
852e3c19 2901 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2902 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2903 goto done;
38187c83 2904
49fde340 2905 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2906
ecc5589f
MT
2907 /*
2908 * Optimization: for pte sync, if spte was writable the hash
2909 * lookup is unnecessary (and expensive). Write protection
2910 * is responsibility of mmu_get_page / kvm_sync_page.
2911 * Same reasoning can be applied to dirty page accounting.
2912 */
8dae4445 2913 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2914 goto set_pte;
2915
4731d4c7 2916 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2917 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2918 __func__, gfn);
5ce4786f 2919 ret |= SET_SPTE_WRITE_PROTECTED_PT;
1c4f1fd6 2920 pte_access &= ~ACC_WRITE_MASK;
49fde340 2921 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2922 }
2923 }
2924
9b51a630 2925 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2926 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 2927 spte |= spte_shadow_dirty_mask(spte);
9b51a630 2928 }
1c4f1fd6 2929
f160c7b7
JS
2930 if (speculative)
2931 spte = mark_spte_for_access_track(spte);
2932
38187c83 2933set_pte:
6e7d0354 2934 if (mmu_spte_update(sptep, spte))
5ce4786f 2935 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
be38d276 2936done:
1e73f9dd
MT
2937 return ret;
2938}
2939
9b8ebbdb
PB
2940static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2941 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2942 bool speculative, bool host_writable)
1e73f9dd
MT
2943{
2944 int was_rmapped = 0;
53a27b39 2945 int rmap_count;
5ce4786f 2946 int set_spte_ret;
9b8ebbdb 2947 int ret = RET_PF_RETRY;
c2a4eadf 2948 bool flush = false;
1e73f9dd 2949
f7616203
XG
2950 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2951 *sptep, write_fault, gfn);
1e73f9dd 2952
afd28fe1 2953 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2954 /*
2955 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2956 * the parent of the now unreachable PTE.
2957 */
852e3c19
JR
2958 if (level > PT_PAGE_TABLE_LEVEL &&
2959 !is_large_pte(*sptep)) {
1e73f9dd 2960 struct kvm_mmu_page *child;
d555c333 2961 u64 pte = *sptep;
1e73f9dd
MT
2962
2963 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2964 drop_parent_pte(child, sptep);
c2a4eadf 2965 flush = true;
d555c333 2966 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2967 pgprintk("hfn old %llx new %llx\n",
d555c333 2968 spte_to_pfn(*sptep), pfn);
c3707958 2969 drop_spte(vcpu->kvm, sptep);
c2a4eadf 2970 flush = true;
6bed6b9e
JR
2971 } else
2972 was_rmapped = 1;
1e73f9dd 2973 }
852e3c19 2974
5ce4786f
JS
2975 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2976 speculative, true, host_writable);
2977 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 2978 if (write_fault)
9b8ebbdb 2979 ret = RET_PF_EMULATE;
77c3913b 2980 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2981 }
c2a4eadf 2982 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
5ce4786f 2983 kvm_flush_remote_tlbs(vcpu->kvm);
1e73f9dd 2984
029499b4 2985 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 2986 ret = RET_PF_EMULATE;
ce88decf 2987
d555c333 2988 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2989 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2990 is_large_pte(*sptep)? "2MB" : "4kB",
f160c7b7 2991 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
a205bc19 2992 *sptep, sptep);
d555c333 2993 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2994 ++vcpu->kvm->stat.lpages;
2995
ffb61bb3 2996 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2997 if (!was_rmapped) {
2998 rmap_count = rmap_add(vcpu, sptep, gfn);
2999 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3000 rmap_recycle(vcpu, sptep, gfn);
3001 }
1c4f1fd6 3002 }
cb9aaa30 3003
f3ac1a4b 3004 kvm_release_pfn_clean(pfn);
029499b4 3005
9b8ebbdb 3006 return ret;
1c4f1fd6
AK
3007}
3008
ba049e93 3009static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
3010 bool no_dirty_log)
3011{
3012 struct kvm_memory_slot *slot;
957ed9ef 3013
5d163b1c 3014 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 3015 if (!slot)
6c8ee57b 3016 return KVM_PFN_ERR_FAULT;
957ed9ef 3017
037d92dc 3018 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
3019}
3020
3021static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3022 struct kvm_mmu_page *sp,
3023 u64 *start, u64 *end)
3024{
3025 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 3026 struct kvm_memory_slot *slot;
957ed9ef
XG
3027 unsigned access = sp->role.access;
3028 int i, ret;
3029 gfn_t gfn;
3030
3031 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
3032 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3033 if (!slot)
957ed9ef
XG
3034 return -1;
3035
d9ef13c2 3036 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
3037 if (ret <= 0)
3038 return -1;
3039
3040 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
3041 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3042 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
3043
3044 return 0;
3045}
3046
3047static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3048 struct kvm_mmu_page *sp, u64 *sptep)
3049{
3050 u64 *spte, *start = NULL;
3051 int i;
3052
3053 WARN_ON(!sp->role.direct);
3054
3055 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3056 spte = sp->spt + i;
3057
3058 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 3059 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
3060 if (!start)
3061 continue;
3062 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3063 break;
3064 start = NULL;
3065 } else if (!start)
3066 start = spte;
3067 }
3068}
3069
3070static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3071{
3072 struct kvm_mmu_page *sp;
3073
ac8d57e5
PF
3074 sp = page_header(__pa(sptep));
3075
957ed9ef 3076 /*
ac8d57e5
PF
3077 * Without accessed bits, there's no way to distinguish between
3078 * actually accessed translations and prefetched, so disable pte
3079 * prefetch if accessed bits aren't available.
957ed9ef 3080 */
ac8d57e5 3081 if (sp_ad_disabled(sp))
957ed9ef
XG
3082 return;
3083
957ed9ef
XG
3084 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3085 return;
3086
3087 __direct_pte_prefetch(vcpu, sp, sptep);
3088}
3089
7ee0e5b2 3090static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 3091 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 3092{
9f652d21 3093 struct kvm_shadow_walk_iterator iterator;
140754bc 3094 struct kvm_mmu_page *sp;
b90a0e6c 3095 int emulate = 0;
140754bc 3096 gfn_t pseudo_gfn;
6aa8b732 3097
44dd3ffa 3098 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
989c6b34
MT
3099 return 0;
3100
9f652d21 3101 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 3102 if (iterator.level == level) {
029499b4
TY
3103 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
3104 write, level, gfn, pfn, prefault,
3105 map_writable);
957ed9ef 3106 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
3107 ++vcpu->stat.pf_fixed;
3108 break;
6aa8b732
AK
3109 }
3110
404381c5 3111 drop_large_spte(vcpu, iterator.sptep);
c3707958 3112 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
3113 u64 base_addr = iterator.addr;
3114
3115 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
3116 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 3117 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 3118 iterator.level - 1, 1, ACC_ALL);
140754bc 3119
98bba238 3120 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
3121 }
3122 }
b90a0e6c 3123 return emulate;
6aa8b732
AK
3124}
3125
77db5cbd 3126static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 3127{
77db5cbd
HY
3128 siginfo_t info;
3129
3eb0f519 3130 clear_siginfo(&info);
77db5cbd
HY
3131 info.si_signo = SIGBUS;
3132 info.si_errno = 0;
3133 info.si_code = BUS_MCEERR_AR;
3134 info.si_addr = (void __user *)address;
3135 info.si_addr_lsb = PAGE_SHIFT;
bf998156 3136
77db5cbd 3137 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
3138}
3139
ba049e93 3140static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 3141{
4d8b81ab
XG
3142 /*
3143 * Do not cache the mmio info caused by writing the readonly gfn
3144 * into the spte otherwise read access on readonly gfn also can
3145 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
3146 */
3147 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 3148 return RET_PF_EMULATE;
4d8b81ab 3149
e6c1502b 3150 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3151 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 3152 return RET_PF_RETRY;
d7c55201 3153 }
edba23e5 3154
2c151b25 3155 return -EFAULT;
bf998156
HY
3156}
3157
936a5fe6 3158static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
3159 gfn_t *gfnp, kvm_pfn_t *pfnp,
3160 int *levelp)
936a5fe6 3161{
ba049e93 3162 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
3163 gfn_t gfn = *gfnp;
3164 int level = *levelp;
3165
3166 /*
3167 * Check if it's a transparent hugepage. If this would be an
3168 * hugetlbfs page, level wouldn't be set to
3169 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3170 * here.
3171 */
bf4bea8e 3172 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6 3173 level == PT_PAGE_TABLE_LEVEL &&
127393fb 3174 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 3175 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
3176 unsigned long mask;
3177 /*
3178 * mmu_notifier_retry was successful and we hold the
3179 * mmu_lock here, so the pmd can't become splitting
3180 * from under us, and in turn
3181 * __split_huge_page_refcount() can't run from under
3182 * us and we can safely transfer the refcount from
3183 * PG_tail to PG_head as we switch the pfn to tail to
3184 * head.
3185 */
3186 *levelp = level = PT_DIRECTORY_LEVEL;
3187 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3188 VM_BUG_ON((gfn & mask) != (pfn & mask));
3189 if (pfn & mask) {
3190 gfn &= ~mask;
3191 *gfnp = gfn;
3192 kvm_release_pfn_clean(pfn);
3193 pfn &= ~mask;
c3586667 3194 kvm_get_pfn(pfn);
936a5fe6
AA
3195 *pfnp = pfn;
3196 }
3197 }
3198}
3199
d7c55201 3200static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 3201 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 3202{
d7c55201 3203 /* The pfn is invalid, report the error! */
81c52c56 3204 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3205 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3206 return true;
d7c55201
XG
3207 }
3208
ce88decf 3209 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 3210 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 3211
798e88b3 3212 return false;
d7c55201
XG
3213}
3214
e5552fd2 3215static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3216{
1c118b82
XG
3217 /*
3218 * Do not fix the mmio spte with invalid generation number which
3219 * need to be updated by slow page fault path.
3220 */
3221 if (unlikely(error_code & PFERR_RSVD_MASK))
3222 return false;
3223
f160c7b7
JS
3224 /* See if the page fault is due to an NX violation */
3225 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3226 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3227 return false;
3228
c7ba5b48 3229 /*
f160c7b7
JS
3230 * #PF can be fast if:
3231 * 1. The shadow page table entry is not present, which could mean that
3232 * the fault is potentially caused by access tracking (if enabled).
3233 * 2. The shadow page table entry is present and the fault
3234 * is caused by write-protect, that means we just need change the W
3235 * bit of the spte which can be done out of mmu-lock.
3236 *
3237 * However, if access tracking is disabled we know that a non-present
3238 * page must be a genuine page fault where we have to create a new SPTE.
3239 * So, if access tracking is disabled, we return true only for write
3240 * accesses to a present page.
c7ba5b48 3241 */
c7ba5b48 3242
f160c7b7
JS
3243 return shadow_acc_track_mask != 0 ||
3244 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3245 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3246}
3247
97dceba2
JS
3248/*
3249 * Returns true if the SPTE was fixed successfully. Otherwise,
3250 * someone else modified the SPTE from its original value.
3251 */
c7ba5b48 3252static bool
92a476cb 3253fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3254 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3255{
c7ba5b48
XG
3256 gfn_t gfn;
3257
3258 WARN_ON(!sp->role.direct);
3259
9b51a630
KH
3260 /*
3261 * Theoretically we could also set dirty bit (and flush TLB) here in
3262 * order to eliminate unnecessary PML logging. See comments in
3263 * set_spte. But fast_page_fault is very unlikely to happen with PML
3264 * enabled, so we do not do this. This might result in the same GPA
3265 * to be logged in PML buffer again when the write really happens, and
3266 * eventually to be called by mark_page_dirty twice. But it's also no
3267 * harm. This also avoids the TLB flush needed after setting dirty bit
3268 * so non-PML cases won't be impacted.
3269 *
3270 * Compare with set_spte where instead shadow_dirty_mask is set.
3271 */
f160c7b7 3272 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3273 return false;
3274
d3e328f2 3275 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3276 /*
3277 * The gfn of direct spte is stable since it is
3278 * calculated by sp->gfn.
3279 */
3280 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3281 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3282 }
c7ba5b48
XG
3283
3284 return true;
3285}
3286
d3e328f2
JS
3287static bool is_access_allowed(u32 fault_err_code, u64 spte)
3288{
3289 if (fault_err_code & PFERR_FETCH_MASK)
3290 return is_executable_pte(spte);
3291
3292 if (fault_err_code & PFERR_WRITE_MASK)
3293 return is_writable_pte(spte);
3294
3295 /* Fault was on Read access */
3296 return spte & PT_PRESENT_MASK;
3297}
3298
c7ba5b48
XG
3299/*
3300 * Return value:
3301 * - true: let the vcpu to access on the same address again.
3302 * - false: let the real page fault path to fix it.
3303 */
3304static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3305 u32 error_code)
3306{
3307 struct kvm_shadow_walk_iterator iterator;
92a476cb 3308 struct kvm_mmu_page *sp;
97dceba2 3309 bool fault_handled = false;
c7ba5b48 3310 u64 spte = 0ull;
97dceba2 3311 uint retry_count = 0;
c7ba5b48 3312
44dd3ffa 3313 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
37f6a4e2
MT
3314 return false;
3315
e5552fd2 3316 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3317 return false;
3318
3319 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3320
97dceba2 3321 do {
d3e328f2 3322 u64 new_spte;
c7ba5b48 3323
d162f30a
JS
3324 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3325 if (!is_shadow_present_pte(spte) ||
3326 iterator.level < level)
3327 break;
3328
97dceba2
JS
3329 sp = page_header(__pa(iterator.sptep));
3330 if (!is_last_spte(spte, sp->role.level))
3331 break;
c7ba5b48 3332
97dceba2 3333 /*
f160c7b7
JS
3334 * Check whether the memory access that caused the fault would
3335 * still cause it if it were to be performed right now. If not,
3336 * then this is a spurious fault caused by TLB lazily flushed,
3337 * or some other CPU has already fixed the PTE after the
3338 * current CPU took the fault.
97dceba2
JS
3339 *
3340 * Need not check the access of upper level table entries since
3341 * they are always ACC_ALL.
3342 */
d3e328f2
JS
3343 if (is_access_allowed(error_code, spte)) {
3344 fault_handled = true;
3345 break;
3346 }
f160c7b7 3347
d3e328f2
JS
3348 new_spte = spte;
3349
3350 if (is_access_track_spte(spte))
3351 new_spte = restore_acc_track_spte(new_spte);
3352
3353 /*
3354 * Currently, to simplify the code, write-protection can
3355 * be removed in the fast path only if the SPTE was
3356 * write-protected for dirty-logging or access tracking.
3357 */
3358 if ((error_code & PFERR_WRITE_MASK) &&
3359 spte_can_locklessly_be_made_writable(spte))
3360 {
3361 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3362
3363 /*
d3e328f2
JS
3364 * Do not fix write-permission on the large spte. Since
3365 * we only dirty the first page into the dirty-bitmap in
3366 * fast_pf_fix_direct_spte(), other pages are missed
3367 * if its slot has dirty logging enabled.
3368 *
3369 * Instead, we let the slow page fault path create a
3370 * normal spte to fix the access.
3371 *
3372 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3373 */
d3e328f2 3374 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3375 break;
97dceba2 3376 }
c7ba5b48 3377
f160c7b7 3378 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3379 if (new_spte == spte ||
3380 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3381 break;
3382
3383 /*
3384 * Currently, fast page fault only works for direct mapping
3385 * since the gfn is not stable for indirect shadow page. See
3386 * Documentation/virtual/kvm/locking.txt to get more detail.
3387 */
3388 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3389 iterator.sptep, spte,
d3e328f2 3390 new_spte);
97dceba2
JS
3391 if (fault_handled)
3392 break;
3393
3394 if (++retry_count > 4) {
3395 printk_once(KERN_WARNING
3396 "kvm: Fast #PF retrying more than 4 times.\n");
3397 break;
3398 }
3399
97dceba2 3400 } while (true);
c126d94f 3401
a72faf25 3402 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
97dceba2 3403 spte, fault_handled);
c7ba5b48
XG
3404 walk_shadow_page_lockless_end(vcpu);
3405
97dceba2 3406 return fault_handled;
c7ba5b48
XG
3407}
3408
78b2c54a 3409static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3410 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
26eeb53c 3411static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3412
c7ba5b48
XG
3413static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3414 gfn_t gfn, bool prefault)
10589a46
MT
3415{
3416 int r;
852e3c19 3417 int level;
fd136902 3418 bool force_pt_level = false;
ba049e93 3419 kvm_pfn_t pfn;
e930bffe 3420 unsigned long mmu_seq;
c7ba5b48 3421 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3422
fd136902 3423 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3424 if (likely(!force_pt_level)) {
936a5fe6
AA
3425 /*
3426 * This path builds a PAE pagetable - so we can map
3427 * 2mb pages at maximum. Therefore check if the level
3428 * is larger than that.
3429 */
3430 if (level > PT_DIRECTORY_LEVEL)
3431 level = PT_DIRECTORY_LEVEL;
852e3c19 3432
936a5fe6 3433 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3434 }
05da4558 3435
c7ba5b48 3436 if (fast_page_fault(vcpu, v, level, error_code))
9b8ebbdb 3437 return RET_PF_RETRY;
c7ba5b48 3438
e930bffe 3439 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3440 smp_rmb();
060c2abe 3441
78b2c54a 3442 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
9b8ebbdb 3443 return RET_PF_RETRY;
aaee2c94 3444
d7c55201
XG
3445 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3446 return r;
d196e343 3447
aaee2c94 3448 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3449 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3450 goto out_unlock;
26eeb53c
WL
3451 if (make_mmu_pages_available(vcpu) < 0)
3452 goto out_unlock;
936a5fe6
AA
3453 if (likely(!force_pt_level))
3454 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3455 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3456 spin_unlock(&vcpu->kvm->mmu_lock);
3457
10589a46 3458 return r;
e930bffe
AA
3459
3460out_unlock:
3461 spin_unlock(&vcpu->kvm->mmu_lock);
3462 kvm_release_pfn_clean(pfn);
9b8ebbdb 3463 return RET_PF_RETRY;
10589a46
MT
3464}
3465
74b566e6
JS
3466static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3467 struct list_head *invalid_list)
17ac10ad 3468{
4db35314 3469 struct kvm_mmu_page *sp;
17ac10ad 3470
74b566e6 3471 if (!VALID_PAGE(*root_hpa))
7b53aa56 3472 return;
35af577a 3473
74b566e6
JS
3474 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3475 --sp->root_count;
3476 if (!sp->root_count && sp->role.invalid)
3477 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
17ac10ad 3478
74b566e6
JS
3479 *root_hpa = INVALID_PAGE;
3480}
3481
08fb59d8 3482/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3483void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3484 ulong roots_to_free)
74b566e6
JS
3485{
3486 int i;
3487 LIST_HEAD(invalid_list);
08fb59d8 3488 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3489
b94742c9 3490 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3491
08fb59d8 3492 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3493 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3494 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3495 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3496 VALID_PAGE(mmu->prev_roots[i].hpa))
3497 break;
3498
3499 if (i == KVM_MMU_NUM_PREV_ROOTS)
3500 return;
3501 }
35af577a
GN
3502
3503 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3504
b94742c9
JS
3505 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3506 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3507 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3508 &invalid_list);
7c390d35 3509
08fb59d8
JS
3510 if (free_active_root) {
3511 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3512 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3513 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3514 &invalid_list);
3515 } else {
3516 for (i = 0; i < 4; ++i)
3517 if (mmu->pae_root[i] != 0)
3518 mmu_free_root_page(vcpu->kvm,
3519 &mmu->pae_root[i],
3520 &invalid_list);
3521 mmu->root_hpa = INVALID_PAGE;
3522 }
17ac10ad 3523 }
74b566e6 3524
d98ba053 3525 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3526 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad 3527}
74b566e6 3528EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3529
8986ecc0
MT
3530static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3531{
3532 int ret = 0;
3533
3534 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3535 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3536 ret = 1;
3537 }
3538
3539 return ret;
3540}
3541
651dd37a
JR
3542static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3543{
3544 struct kvm_mmu_page *sp;
7ebaf15e 3545 unsigned i;
651dd37a 3546
44dd3ffa 3547 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
651dd37a 3548 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3549 if(make_mmu_pages_available(vcpu) < 0) {
3550 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3551 return -ENOSPC;
26eeb53c 3552 }
855feb67 3553 sp = kvm_mmu_get_page(vcpu, 0, 0,
44dd3ffa 3554 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
651dd37a
JR
3555 ++sp->root_count;
3556 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa
VK
3557 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3558 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3559 for (i = 0; i < 4; ++i) {
44dd3ffa 3560 hpa_t root = vcpu->arch.mmu->pae_root[i];
651dd37a 3561
fa4a2c08 3562 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3563 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3564 if (make_mmu_pages_available(vcpu) < 0) {
3565 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3566 return -ENOSPC;
26eeb53c 3567 }
649497d1 3568 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3569 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3570 root = __pa(sp->spt);
3571 ++sp->root_count;
3572 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3573 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3574 }
44dd3ffa 3575 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3576 } else
3577 BUG();
3578
3579 return 0;
3580}
3581
3582static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3583{
4db35314 3584 struct kvm_mmu_page *sp;
81407ca5
JR
3585 u64 pdptr, pm_mask;
3586 gfn_t root_gfn;
3587 int i;
3bb65a22 3588
44dd3ffa 3589 root_gfn = vcpu->arch.mmu->get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3590
651dd37a
JR
3591 if (mmu_check_root(vcpu, root_gfn))
3592 return 1;
3593
3594 /*
3595 * Do we shadow a long mode page table? If so we need to
3596 * write-protect the guests page table root.
3597 */
44dd3ffa
VK
3598 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3599 hpa_t root = vcpu->arch.mmu->root_hpa;
17ac10ad 3600
fa4a2c08 3601 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3602
8facbbff 3603 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3604 if (make_mmu_pages_available(vcpu) < 0) {
3605 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3606 return -ENOSPC;
26eeb53c 3607 }
855feb67 3608 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
44dd3ffa 3609 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
4db35314
AK
3610 root = __pa(sp->spt);
3611 ++sp->root_count;
8facbbff 3612 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3613 vcpu->arch.mmu->root_hpa = root;
8986ecc0 3614 return 0;
17ac10ad 3615 }
f87f9288 3616
651dd37a
JR
3617 /*
3618 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3619 * or a PAE 3-level page table. In either case we need to be aware that
3620 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3621 */
81407ca5 3622 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3623 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3624 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3625
17ac10ad 3626 for (i = 0; i < 4; ++i) {
44dd3ffa 3627 hpa_t root = vcpu->arch.mmu->pae_root[i];
17ac10ad 3628
fa4a2c08 3629 MMU_WARN_ON(VALID_PAGE(root));
44dd3ffa
VK
3630 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3631 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3632 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3633 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3634 continue;
3635 }
6de4f3ad 3636 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3637 if (mmu_check_root(vcpu, root_gfn))
3638 return 1;
5a7388c2 3639 }
8facbbff 3640 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3641 if (make_mmu_pages_available(vcpu) < 0) {
3642 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3643 return -ENOSPC;
26eeb53c 3644 }
bb11c6c9
TY
3645 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3646 0, ACC_ALL);
4db35314
AK
3647 root = __pa(sp->spt);
3648 ++sp->root_count;
8facbbff
AK
3649 spin_unlock(&vcpu->kvm->mmu_lock);
3650
44dd3ffa 3651 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3652 }
44dd3ffa 3653 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3654
3655 /*
3656 * If we shadow a 32 bit page table with a long mode page
3657 * table we enter this path.
3658 */
44dd3ffa
VK
3659 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3660 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3661 /*
3662 * The additional page necessary for this is only
3663 * allocated on demand.
3664 */
3665
3666 u64 *lm_root;
3667
3668 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3669 if (lm_root == NULL)
3670 return 1;
3671
44dd3ffa 3672 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3673
44dd3ffa 3674 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3675 }
3676
44dd3ffa 3677 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3678 }
3679
8986ecc0 3680 return 0;
17ac10ad
AK
3681}
3682
651dd37a
JR
3683static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3684{
44dd3ffa 3685 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3686 return mmu_alloc_direct_roots(vcpu);
3687 else
3688 return mmu_alloc_shadow_roots(vcpu);
3689}
3690
578e1c4d 3691void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3692{
3693 int i;
3694 struct kvm_mmu_page *sp;
3695
44dd3ffa 3696 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3697 return;
3698
44dd3ffa 3699 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3700 return;
6903074c 3701
56f17dd3 3702 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3703
44dd3ffa
VK
3704 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3705 hpa_t root = vcpu->arch.mmu->root_hpa;
0ba73cda 3706 sp = page_header(root);
578e1c4d
JS
3707
3708 /*
3709 * Even if another CPU was marking the SP as unsync-ed
3710 * simultaneously, any guest page table changes are not
3711 * guaranteed to be visible anyway until this VCPU issues a TLB
3712 * flush strictly after those changes are made. We only need to
3713 * ensure that the other CPU sets these flags before any actual
3714 * changes to the page tables are made. The comments in
3715 * mmu_need_write_protect() describe what could go wrong if this
3716 * requirement isn't satisfied.
3717 */
3718 if (!smp_load_acquire(&sp->unsync) &&
3719 !smp_load_acquire(&sp->unsync_children))
3720 return;
3721
3722 spin_lock(&vcpu->kvm->mmu_lock);
3723 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3724
0ba73cda 3725 mmu_sync_children(vcpu, sp);
578e1c4d 3726
0375f7fa 3727 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3728 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3729 return;
3730 }
578e1c4d
JS
3731
3732 spin_lock(&vcpu->kvm->mmu_lock);
3733 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3734
0ba73cda 3735 for (i = 0; i < 4; ++i) {
44dd3ffa 3736 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3737
8986ecc0 3738 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3739 root &= PT64_BASE_ADDR_MASK;
3740 sp = page_header(root);
3741 mmu_sync_children(vcpu, sp);
3742 }
3743 }
0ba73cda 3744
578e1c4d 3745 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3746 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3747}
bfd0a56b 3748EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3749
1871c602 3750static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3751 u32 access, struct x86_exception *exception)
6aa8b732 3752{
ab9ae313
AK
3753 if (exception)
3754 exception->error_code = 0;
6aa8b732
AK
3755 return vaddr;
3756}
3757
6539e738 3758static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3759 u32 access,
3760 struct x86_exception *exception)
6539e738 3761{
ab9ae313
AK
3762 if (exception)
3763 exception->error_code = 0;
54987b7a 3764 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3765}
3766
d625b155
XG
3767static bool
3768__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3769{
3770 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3771
3772 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3773 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3774}
3775
3776static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3777{
3778 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3779}
3780
3781static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3782{
3783 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3784}
3785
ded58749 3786static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3787{
9034e6e8
PB
3788 /*
3789 * A nested guest cannot use the MMIO cache if it is using nested
3790 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3791 */
3792 if (mmu_is_nested(vcpu))
3793 return false;
3794
ce88decf
XG
3795 if (direct)
3796 return vcpu_match_mmio_gpa(vcpu, addr);
3797
3798 return vcpu_match_mmio_gva(vcpu, addr);
3799}
3800
47ab8751
XG
3801/* return true if reserved bit is detected on spte. */
3802static bool
3803walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3804{
3805 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3806 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
47ab8751
XG
3807 int root, leaf;
3808 bool reserved = false;
ce88decf 3809
44dd3ffa 3810 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
47ab8751 3811 goto exit;
37f6a4e2 3812
ce88decf 3813 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3814
29ecd660
PB
3815 for (shadow_walk_init(&iterator, vcpu, addr),
3816 leaf = root = iterator.level;
47ab8751
XG
3817 shadow_walk_okay(&iterator);
3818 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3819 spte = mmu_spte_get_lockless(iterator.sptep);
3820
3821 sptes[leaf - 1] = spte;
29ecd660 3822 leaf--;
47ab8751 3823
ce88decf
XG
3824 if (!is_shadow_present_pte(spte))
3825 break;
47ab8751 3826
44dd3ffa 3827 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
58c95070 3828 iterator.level);
47ab8751
XG
3829 }
3830
ce88decf
XG
3831 walk_shadow_page_lockless_end(vcpu);
3832
47ab8751
XG
3833 if (reserved) {
3834 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3835 __func__, addr);
29ecd660 3836 while (root > leaf) {
47ab8751
XG
3837 pr_err("------ spte 0x%llx level %d.\n",
3838 sptes[root - 1], root);
3839 root--;
3840 }
3841 }
3842exit:
3843 *sptep = spte;
3844 return reserved;
ce88decf
XG
3845}
3846
e08d26f0 3847static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3848{
3849 u64 spte;
47ab8751 3850 bool reserved;
ce88decf 3851
ded58749 3852 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3853 return RET_PF_EMULATE;
ce88decf 3854
47ab8751 3855 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3856 if (WARN_ON(reserved))
9b8ebbdb 3857 return -EINVAL;
ce88decf
XG
3858
3859 if (is_mmio_spte(spte)) {
3860 gfn_t gfn = get_mmio_spte_gfn(spte);
3861 unsigned access = get_mmio_spte_access(spte);
3862
54bf36aa 3863 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3864 return RET_PF_INVALID;
f8f55942 3865
ce88decf
XG
3866 if (direct)
3867 addr = 0;
4f022648
XG
3868
3869 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3870 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3871 return RET_PF_EMULATE;
ce88decf
XG
3872 }
3873
ce88decf
XG
3874 /*
3875 * If the page table is zapped by other cpus, let CPU fault again on
3876 * the address.
3877 */
9b8ebbdb 3878 return RET_PF_RETRY;
ce88decf 3879}
ce88decf 3880
3d0c27ad
XG
3881static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3882 u32 error_code, gfn_t gfn)
3883{
3884 if (unlikely(error_code & PFERR_RSVD_MASK))
3885 return false;
3886
3887 if (!(error_code & PFERR_PRESENT_MASK) ||
3888 !(error_code & PFERR_WRITE_MASK))
3889 return false;
3890
3891 /*
3892 * guest is writing the page which is write tracked which can
3893 * not be fixed by page fault handler.
3894 */
3895 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3896 return true;
3897
3898 return false;
3899}
3900
e5691a81
XG
3901static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3902{
3903 struct kvm_shadow_walk_iterator iterator;
3904 u64 spte;
3905
44dd3ffa 3906 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
e5691a81
XG
3907 return;
3908
3909 walk_shadow_page_lockless_begin(vcpu);
3910 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3911 clear_sp_write_flooding_count(iterator.sptep);
3912 if (!is_shadow_present_pte(spte))
3913 break;
3914 }
3915 walk_shadow_page_lockless_end(vcpu);
3916}
3917
6aa8b732 3918static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3919 u32 error_code, bool prefault)
6aa8b732 3920{
3d0c27ad 3921 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3922 int r;
6aa8b732 3923
b8688d51 3924 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3925
3d0c27ad 3926 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3927 return RET_PF_EMULATE;
ce88decf 3928
e2dec939
AK
3929 r = mmu_topup_memory_caches(vcpu);
3930 if (r)
3931 return r;
714b93da 3932
44dd3ffa 3933 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
6aa8b732 3934
6aa8b732 3935
e833240f 3936 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3937 error_code, gfn, prefault);
6aa8b732
AK
3938}
3939
7e1fbeac 3940static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3941{
3942 struct kvm_arch_async_pf arch;
fb67e14f 3943
7c90705b 3944 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3945 arch.gfn = gfn;
44dd3ffa
VK
3946 arch.direct_map = vcpu->arch.mmu->direct_map;
3947 arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
af585b92 3948
54bf36aa 3949 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3950}
3951
9bc1f09f 3952bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
af585b92 3953{
35754c98 3954 if (unlikely(!lapic_in_kernel(vcpu) ||
2a266f23
HZ
3955 kvm_event_needs_reinjection(vcpu) ||
3956 vcpu->arch.exception.pending))
af585b92
GN
3957 return false;
3958
52a5c155 3959 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
9bc1f09f
WL
3960 return false;
3961
af585b92
GN
3962 return kvm_x86_ops->interrupt_allowed(vcpu);
3963}
3964
78b2c54a 3965static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3966 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 3967{
3520469d 3968 struct kvm_memory_slot *slot;
af585b92
GN
3969 bool async;
3970
3a2936de
JM
3971 /*
3972 * Don't expose private memslots to L2.
3973 */
3974 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
3975 *pfn = KVM_PFN_NOSLOT;
3976 return false;
3977 }
3978
54bf36aa 3979 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3980 async = false;
3981 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3982 if (!async)
3983 return false; /* *pfn has correct page already */
3984
9bc1f09f 3985 if (!prefault && kvm_can_do_async_pf(vcpu)) {
c9b263d2 3986 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3987 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3988 trace_kvm_async_pf_doublefault(gva, gfn);
3989 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3990 return true;
3991 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3992 return true;
3993 }
3994
3520469d 3995 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3996 return false;
3997}
3998
1261bfa3 3999int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 4000 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
4001{
4002 int r = 1;
4003
c595ceee 4004 vcpu->arch.l1tf_flush_l1d = true;
1261bfa3
WL
4005 switch (vcpu->arch.apf.host_apf_reason) {
4006 default:
4007 trace_kvm_page_fault(fault_address, error_code);
4008
d0006530 4009 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
4010 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4011 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4012 insn_len);
4013 break;
4014 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4015 vcpu->arch.apf.host_apf_reason = 0;
4016 local_irq_disable();
a2b7861b 4017 kvm_async_pf_task_wait(fault_address, 0);
1261bfa3
WL
4018 local_irq_enable();
4019 break;
4020 case KVM_PV_REASON_PAGE_READY:
4021 vcpu->arch.apf.host_apf_reason = 0;
4022 local_irq_disable();
4023 kvm_async_pf_task_wake(fault_address);
4024 local_irq_enable();
4025 break;
4026 }
4027 return r;
4028}
4029EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4030
6a39bbc5
XG
4031static bool
4032check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4033{
4034 int page_num = KVM_PAGES_PER_HPAGE(level);
4035
4036 gfn &= ~(page_num - 1);
4037
4038 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4039}
4040
56028d08 4041static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 4042 bool prefault)
fb72d167 4043{
ba049e93 4044 kvm_pfn_t pfn;
fb72d167 4045 int r;
852e3c19 4046 int level;
cd1872f0 4047 bool force_pt_level;
05da4558 4048 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 4049 unsigned long mmu_seq;
612819c3
MT
4050 int write = error_code & PFERR_WRITE_MASK;
4051 bool map_writable;
fb72d167 4052
44dd3ffa 4053 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
fb72d167 4054
3d0c27ad 4055 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 4056 return RET_PF_EMULATE;
ce88decf 4057
fb72d167
JR
4058 r = mmu_topup_memory_caches(vcpu);
4059 if (r)
4060 return r;
4061
fd136902
TY
4062 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4063 PT_DIRECTORY_LEVEL);
4064 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 4065 if (likely(!force_pt_level)) {
6a39bbc5
XG
4066 if (level > PT_DIRECTORY_LEVEL &&
4067 !check_hugepage_cache_consistency(vcpu, gfn, level))
4068 level = PT_DIRECTORY_LEVEL;
936a5fe6 4069 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 4070 }
852e3c19 4071
c7ba5b48 4072 if (fast_page_fault(vcpu, gpa, level, error_code))
9b8ebbdb 4073 return RET_PF_RETRY;
c7ba5b48 4074
e930bffe 4075 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 4076 smp_rmb();
af585b92 4077
78b2c54a 4078 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
9b8ebbdb 4079 return RET_PF_RETRY;
af585b92 4080
d7c55201
XG
4081 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4082 return r;
4083
fb72d167 4084 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 4085 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 4086 goto out_unlock;
26eeb53c
WL
4087 if (make_mmu_pages_available(vcpu) < 0)
4088 goto out_unlock;
936a5fe6
AA
4089 if (likely(!force_pt_level))
4090 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 4091 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 4092 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
4093
4094 return r;
e930bffe
AA
4095
4096out_unlock:
4097 spin_unlock(&vcpu->kvm->mmu_lock);
4098 kvm_release_pfn_clean(pfn);
9b8ebbdb 4099 return RET_PF_RETRY;
fb72d167
JR
4100}
4101
8a3c1a33
PB
4102static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4103 struct kvm_mmu *context)
6aa8b732 4104{
6aa8b732 4105 context->page_fault = nonpaging_page_fault;
6aa8b732 4106 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 4107 context->sync_page = nonpaging_sync_page;
a7052897 4108 context->invlpg = nonpaging_invlpg;
0f53b5b1 4109 context->update_pte = nonpaging_update_pte;
cea0f0e7 4110 context->root_level = 0;
6aa8b732 4111 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4112 context->direct_map = true;
2d48a985 4113 context->nx = false;
6aa8b732
AK
4114}
4115
b94742c9
JS
4116/*
4117 * Find out if a previously cached root matching the new CR3/role is available.
4118 * The current root is also inserted into the cache.
4119 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4120 * returned.
4121 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4122 * false is returned. This root should now be freed by the caller.
4123 */
4124static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4125 union kvm_mmu_page_role new_role)
4126{
4127 uint i;
4128 struct kvm_mmu_root_info root;
44dd3ffa 4129 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9
JS
4130
4131 root.cr3 = mmu->get_cr3(vcpu);
4132 root.hpa = mmu->root_hpa;
4133
4134 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4135 swap(root, mmu->prev_roots[i]);
4136
4137 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4138 page_header(root.hpa) != NULL &&
4139 new_role.word == page_header(root.hpa)->role.word)
4140 break;
4141 }
4142
4143 mmu->root_hpa = root.hpa;
4144
4145 return i < KVM_MMU_NUM_PREV_ROOTS;
4146}
4147
0aab33e4 4148static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4149 union kvm_mmu_page_role new_role,
4150 bool skip_tlb_flush)
6aa8b732 4151{
44dd3ffa 4152 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
4153
4154 /*
4155 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4156 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4157 * later if necessary.
4158 */
4159 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4160 mmu->root_level >= PT64_ROOT_4LEVEL) {
7c390d35
JS
4161 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4162 return false;
4163
b94742c9 4164 if (cached_root_available(vcpu, new_cr3, new_role)) {
7c390d35
JS
4165 /*
4166 * It is possible that the cached previous root page is
4167 * obsolete because of a change in the MMU
4168 * generation number. However, that is accompanied by
4169 * KVM_REQ_MMU_RELOAD, which will free the root that we
4170 * have set here and allocate a new one.
4171 */
4172
0aab33e4 4173 kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
956bf353
JS
4174 if (!skip_tlb_flush) {
4175 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
ade61e28 4176 kvm_x86_ops->tlb_flush(vcpu, true);
956bf353
JS
4177 }
4178
4179 /*
4180 * The last MMIO access's GVA and GPA are cached in the
4181 * VCPU. When switching to a new CR3, that GVA->GPA
4182 * mapping may no longer be valid. So clear any cached
4183 * MMIO info even when we don't need to sync the shadow
4184 * page tables.
4185 */
4186 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
ade61e28 4187
7c390d35
JS
4188 __clear_sp_write_flooding_count(
4189 page_header(mmu->root_hpa));
4190
7c390d35
JS
4191 return true;
4192 }
4193 }
4194
4195 return false;
6aa8b732
AK
4196}
4197
0aab33e4 4198static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4199 union kvm_mmu_page_role new_role,
4200 bool skip_tlb_flush)
6aa8b732 4201{
ade61e28 4202 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
6a82cd1c
VK
4203 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4204 KVM_MMU_ROOT_CURRENT);
6aa8b732
AK
4205}
4206
ade61e28 4207void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
0aab33e4 4208{
ade61e28
JS
4209 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4210 skip_tlb_flush);
0aab33e4 4211}
50c28f21 4212EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
0aab33e4 4213
5777ed34
JR
4214static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4215{
9f8fe504 4216 return kvm_read_cr3(vcpu);
5777ed34
JR
4217}
4218
6389ee94
AK
4219static void inject_page_fault(struct kvm_vcpu *vcpu,
4220 struct x86_exception *fault)
6aa8b732 4221{
44dd3ffa 4222 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
6aa8b732
AK
4223}
4224
54bf36aa 4225static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 4226 unsigned access, int *nr_present)
ce88decf
XG
4227{
4228 if (unlikely(is_mmio_spte(*sptep))) {
4229 if (gfn != get_mmio_spte_gfn(*sptep)) {
4230 mmu_spte_clear_no_track(sptep);
4231 return true;
4232 }
4233
4234 (*nr_present)++;
54bf36aa 4235 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
4236 return true;
4237 }
4238
4239 return false;
4240}
4241
6bb69c9b
PB
4242static inline bool is_last_gpte(struct kvm_mmu *mmu,
4243 unsigned level, unsigned gpte)
6fd01b71 4244{
6bb69c9b
PB
4245 /*
4246 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4247 * If it is clear, there are no large pages at this level, so clear
4248 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4249 */
4250 gpte &= level - mmu->last_nonleaf_level;
4251
829ee279
LP
4252 /*
4253 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4254 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4255 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4256 */
4257 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4258
6bb69c9b 4259 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4260}
4261
37406aaa
NHE
4262#define PTTYPE_EPT 18 /* arbitrary */
4263#define PTTYPE PTTYPE_EPT
4264#include "paging_tmpl.h"
4265#undef PTTYPE
4266
6aa8b732
AK
4267#define PTTYPE 64
4268#include "paging_tmpl.h"
4269#undef PTTYPE
4270
4271#define PTTYPE 32
4272#include "paging_tmpl.h"
4273#undef PTTYPE
4274
6dc98b86
XG
4275static void
4276__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4277 struct rsvd_bits_validate *rsvd_check,
4278 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 4279 bool pse, bool amd)
82725b20 4280{
82725b20 4281 u64 exb_bit_rsvd = 0;
5f7dde7b 4282 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4283 u64 nonleaf_bit8_rsvd = 0;
82725b20 4284
a0a64f50 4285 rsvd_check->bad_mt_xwr = 0;
25d92081 4286
6dc98b86 4287 if (!nx)
82725b20 4288 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 4289 if (!gbpages)
5f7dde7b 4290 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4291
4292 /*
4293 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4294 * leaf entries) on AMD CPUs only.
4295 */
6fec2144 4296 if (amd)
a0c0feb5
PB
4297 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4298
6dc98b86 4299 switch (level) {
82725b20
DE
4300 case PT32_ROOT_LEVEL:
4301 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4302 rsvd_check->rsvd_bits_mask[0][1] = 0;
4303 rsvd_check->rsvd_bits_mask[0][0] = 0;
4304 rsvd_check->rsvd_bits_mask[1][0] =
4305 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4306
6dc98b86 4307 if (!pse) {
a0a64f50 4308 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4309 break;
4310 }
4311
82725b20
DE
4312 if (is_cpuid_PSE36())
4313 /* 36bits PSE 4MB page */
a0a64f50 4314 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4315 else
4316 /* 32 bits PSE 4MB page */
a0a64f50 4317 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4318 break;
4319 case PT32E_ROOT_LEVEL:
a0a64f50 4320 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4321 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4322 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4323 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4324 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4325 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4326 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4327 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4328 rsvd_bits(maxphyaddr, 62) |
4329 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4330 rsvd_check->rsvd_bits_mask[1][0] =
4331 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4332 break;
855feb67
YZ
4333 case PT64_ROOT_5LEVEL:
4334 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4335 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4336 rsvd_bits(maxphyaddr, 51);
4337 rsvd_check->rsvd_bits_mask[1][4] =
4338 rsvd_check->rsvd_bits_mask[0][4];
2a7266a8 4339 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4340 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4341 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4342 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4343 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4344 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 4345 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4346 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4347 rsvd_bits(maxphyaddr, 51);
4348 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4349 rsvd_bits(maxphyaddr, 51);
4350 rsvd_check->rsvd_bits_mask[1][3] =
4351 rsvd_check->rsvd_bits_mask[0][3];
4352 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4353 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4354 rsvd_bits(13, 29);
a0a64f50 4355 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4356 rsvd_bits(maxphyaddr, 51) |
4357 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4358 rsvd_check->rsvd_bits_mask[1][0] =
4359 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4360 break;
4361 }
4362}
4363
6dc98b86
XG
4364static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4365 struct kvm_mmu *context)
4366{
4367 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4368 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4369 context->nx,
4370 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
6fec2144 4371 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
4372}
4373
81b8eebb
XG
4374static void
4375__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4376 int maxphyaddr, bool execonly)
25d92081 4377{
951f9fd7 4378 u64 bad_mt_xwr;
25d92081 4379
855feb67
YZ
4380 rsvd_check->rsvd_bits_mask[0][4] =
4381 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4382 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4383 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4384 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4385 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4386 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4387 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4388 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4389
4390 /* large page */
855feb67 4391 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4392 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4393 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4394 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4395 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4396 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4397 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4398
951f9fd7
PB
4399 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4400 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4401 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4402 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4403 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4404 if (!execonly) {
4405 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4406 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4407 }
951f9fd7 4408 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4409}
4410
81b8eebb
XG
4411static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4412 struct kvm_mmu *context, bool execonly)
4413{
4414 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4415 cpuid_maxphyaddr(vcpu), execonly);
4416}
4417
c258b62b
XG
4418/*
4419 * the page table on host is the shadow page table for the page
4420 * table in guest or amd nested guest, its mmu features completely
4421 * follow the features in guest.
4422 */
4423void
4424reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4425{
36d9594d
VK
4426 bool uses_nx = context->nx ||
4427 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4428 struct rsvd_bits_validate *shadow_zero_check;
4429 int i;
5f0b8199 4430
6fec2144
PB
4431 /*
4432 * Passing "true" to the last argument is okay; it adds a check
4433 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4434 */
ea2800dd
BS
4435 shadow_zero_check = &context->shadow_zero_check;
4436 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
c258b62b 4437 boot_cpu_data.x86_phys_bits,
5f0b8199 4438 context->shadow_root_level, uses_nx,
d6321d49
RK
4439 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4440 is_pse(vcpu), true);
ea2800dd
BS
4441
4442 if (!shadow_me_mask)
4443 return;
4444
4445 for (i = context->shadow_root_level; --i >= 0;) {
4446 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4447 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4448 }
4449
c258b62b
XG
4450}
4451EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4452
6fec2144
PB
4453static inline bool boot_cpu_is_amd(void)
4454{
4455 WARN_ON_ONCE(!tdp_enabled);
4456 return shadow_x_mask == 0;
4457}
4458
c258b62b
XG
4459/*
4460 * the direct page table on host, use as much mmu features as
4461 * possible, however, kvm currently does not do execution-protection.
4462 */
4463static void
4464reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4465 struct kvm_mmu *context)
4466{
ea2800dd
BS
4467 struct rsvd_bits_validate *shadow_zero_check;
4468 int i;
4469
4470 shadow_zero_check = &context->shadow_zero_check;
4471
6fec2144 4472 if (boot_cpu_is_amd())
ea2800dd 4473 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
c258b62b
XG
4474 boot_cpu_data.x86_phys_bits,
4475 context->shadow_root_level, false,
b8291adc
BP
4476 boot_cpu_has(X86_FEATURE_GBPAGES),
4477 true, true);
c258b62b 4478 else
ea2800dd 4479 __reset_rsvds_bits_mask_ept(shadow_zero_check,
c258b62b
XG
4480 boot_cpu_data.x86_phys_bits,
4481 false);
4482
ea2800dd
BS
4483 if (!shadow_me_mask)
4484 return;
4485
4486 for (i = context->shadow_root_level; --i >= 0;) {
4487 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4488 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4489 }
c258b62b
XG
4490}
4491
4492/*
4493 * as the comments in reset_shadow_zero_bits_mask() except it
4494 * is the shadow page table for intel nested guest.
4495 */
4496static void
4497reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4498 struct kvm_mmu *context, bool execonly)
4499{
4500 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4501 boot_cpu_data.x86_phys_bits, execonly);
4502}
4503
09f037aa
PB
4504#define BYTE_MASK(access) \
4505 ((1 & (access) ? 2 : 0) | \
4506 (2 & (access) ? 4 : 0) | \
4507 (3 & (access) ? 8 : 0) | \
4508 (4 & (access) ? 16 : 0) | \
4509 (5 & (access) ? 32 : 0) | \
4510 (6 & (access) ? 64 : 0) | \
4511 (7 & (access) ? 128 : 0))
4512
4513
edc90b7d
XG
4514static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4515 struct kvm_mmu *mmu, bool ept)
97d64b78 4516{
09f037aa
PB
4517 unsigned byte;
4518
4519 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4520 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4521 const u8 u = BYTE_MASK(ACC_USER_MASK);
4522
4523 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4524 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4525 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4526
97d64b78 4527 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4528 unsigned pfec = byte << 1;
4529
97ec8c06 4530 /*
09f037aa
PB
4531 * Each "*f" variable has a 1 bit for each UWX value
4532 * that causes a fault with the given PFEC.
97ec8c06 4533 */
97d64b78 4534
09f037aa
PB
4535 /* Faults from writes to non-writable pages */
4536 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4537 /* Faults from user mode accesses to supervisor pages */
4538 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4539 /* Faults from fetches of non-executable pages*/
4540 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4541 /* Faults from kernel mode fetches of user pages */
4542 u8 smepf = 0;
4543 /* Faults from kernel mode accesses of user pages */
4544 u8 smapf = 0;
4545
4546 if (!ept) {
4547 /* Faults from kernel mode accesses to user pages */
4548 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4549
4550 /* Not really needed: !nx will cause pte.nx to fault */
4551 if (!mmu->nx)
4552 ff = 0;
4553
4554 /* Allow supervisor writes if !cr0.wp */
4555 if (!cr0_wp)
4556 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4557
4558 /* Disallow supervisor fetches of user code if cr4.smep */
4559 if (cr4_smep)
4560 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4561
4562 /*
4563 * SMAP:kernel-mode data accesses from user-mode
4564 * mappings should fault. A fault is considered
4565 * as a SMAP violation if all of the following
4566 * conditions are ture:
4567 * - X86_CR4_SMAP is set in CR4
4568 * - A user page is accessed
4569 * - The access is not a fetch
4570 * - Page fault in kernel mode
4571 * - if CPL = 3 or X86_EFLAGS_AC is clear
4572 *
4573 * Here, we cover the first three conditions.
4574 * The fourth is computed dynamically in permission_fault();
4575 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4576 * *not* subject to SMAP restrictions.
4577 */
4578 if (cr4_smap)
4579 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4580 }
09f037aa
PB
4581
4582 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4583 }
4584}
4585
2d344105
HH
4586/*
4587* PKU is an additional mechanism by which the paging controls access to
4588* user-mode addresses based on the value in the PKRU register. Protection
4589* key violations are reported through a bit in the page fault error code.
4590* Unlike other bits of the error code, the PK bit is not known at the
4591* call site of e.g. gva_to_gpa; it must be computed directly in
4592* permission_fault based on two bits of PKRU, on some machine state (CR4,
4593* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4594*
4595* In particular the following conditions come from the error code, the
4596* page tables and the machine state:
4597* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4598* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4599* - PK is always zero if U=0 in the page tables
4600* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4601*
4602* The PKRU bitmask caches the result of these four conditions. The error
4603* code (minus the P bit) and the page table's U bit form an index into the
4604* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4605* with the two bits of the PKRU register corresponding to the protection key.
4606* For the first three conditions above the bits will be 00, thus masking
4607* away both AD and WD. For all reads or if the last condition holds, WD
4608* only will be masked away.
4609*/
4610static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4611 bool ept)
4612{
4613 unsigned bit;
4614 bool wp;
4615
4616 if (ept) {
4617 mmu->pkru_mask = 0;
4618 return;
4619 }
4620
4621 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4622 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4623 mmu->pkru_mask = 0;
4624 return;
4625 }
4626
4627 wp = is_write_protection(vcpu);
4628
4629 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4630 unsigned pfec, pkey_bits;
4631 bool check_pkey, check_write, ff, uf, wf, pte_user;
4632
4633 pfec = bit << 1;
4634 ff = pfec & PFERR_FETCH_MASK;
4635 uf = pfec & PFERR_USER_MASK;
4636 wf = pfec & PFERR_WRITE_MASK;
4637
4638 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4639 pte_user = pfec & PFERR_RSVD_MASK;
4640
4641 /*
4642 * Only need to check the access which is not an
4643 * instruction fetch and is to a user page.
4644 */
4645 check_pkey = (!ff && pte_user);
4646 /*
4647 * write access is controlled by PKRU if it is a
4648 * user access or CR0.WP = 1.
4649 */
4650 check_write = check_pkey && wf && (uf || wp);
4651
4652 /* PKRU.AD stops both read and write access. */
4653 pkey_bits = !!check_pkey;
4654 /* PKRU.WD stops write access. */
4655 pkey_bits |= (!!check_write) << 1;
4656
4657 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4658 }
4659}
4660
6bb69c9b 4661static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4662{
6bb69c9b
PB
4663 unsigned root_level = mmu->root_level;
4664
4665 mmu->last_nonleaf_level = root_level;
4666 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4667 mmu->last_nonleaf_level++;
6fd01b71
AK
4668}
4669
8a3c1a33
PB
4670static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4671 struct kvm_mmu *context,
4672 int level)
6aa8b732 4673{
2d48a985 4674 context->nx = is_nx(vcpu);
4d6931c3 4675 context->root_level = level;
2d48a985 4676
4d6931c3 4677 reset_rsvds_bits_mask(vcpu, context);
25d92081 4678 update_permission_bitmask(vcpu, context, false);
2d344105 4679 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4680 update_last_nonleaf_level(vcpu, context);
6aa8b732 4681
fa4a2c08 4682 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4683 context->page_fault = paging64_page_fault;
6aa8b732 4684 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4685 context->sync_page = paging64_sync_page;
a7052897 4686 context->invlpg = paging64_invlpg;
0f53b5b1 4687 context->update_pte = paging64_update_pte;
17ac10ad 4688 context->shadow_root_level = level;
c5a78f2b 4689 context->direct_map = false;
6aa8b732
AK
4690}
4691
8a3c1a33
PB
4692static void paging64_init_context(struct kvm_vcpu *vcpu,
4693 struct kvm_mmu *context)
17ac10ad 4694{
855feb67
YZ
4695 int root_level = is_la57_mode(vcpu) ?
4696 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4697
4698 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4699}
4700
8a3c1a33
PB
4701static void paging32_init_context(struct kvm_vcpu *vcpu,
4702 struct kvm_mmu *context)
6aa8b732 4703{
2d48a985 4704 context->nx = false;
4d6931c3 4705 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4706
4d6931c3 4707 reset_rsvds_bits_mask(vcpu, context);
25d92081 4708 update_permission_bitmask(vcpu, context, false);
2d344105 4709 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4710 update_last_nonleaf_level(vcpu, context);
6aa8b732 4711
6aa8b732 4712 context->page_fault = paging32_page_fault;
6aa8b732 4713 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4714 context->sync_page = paging32_sync_page;
a7052897 4715 context->invlpg = paging32_invlpg;
0f53b5b1 4716 context->update_pte = paging32_update_pte;
6aa8b732 4717 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4718 context->direct_map = false;
6aa8b732
AK
4719}
4720
8a3c1a33
PB
4721static void paging32E_init_context(struct kvm_vcpu *vcpu,
4722 struct kvm_mmu *context)
6aa8b732 4723{
8a3c1a33 4724 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4725}
4726
a336282d
VK
4727static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4728{
4729 union kvm_mmu_extended_role ext = {0};
4730
4731 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4732 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4733 ext.cr4_pse = !!is_pse(vcpu);
4734 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4735
4736 ext.valid = 1;
4737
4738 return ext;
4739}
4740
9fa72119
JS
4741static union kvm_mmu_page_role
4742kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu)
4743{
4744 union kvm_mmu_page_role role = {0};
4745
4746 role.guest_mode = is_guest_mode(vcpu);
4747 role.smm = is_smm(vcpu);
4748 role.ad_disabled = (shadow_accessed_mask == 0);
4749 role.level = kvm_x86_ops->get_tdp_level(vcpu);
4750 role.direct = true;
4751 role.access = ACC_ALL;
4752
4753 return role;
4754}
4755
8a3c1a33 4756static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4757{
44dd3ffa 4758 struct kvm_mmu *context = vcpu->arch.mmu;
fb72d167 4759
36d9594d 4760 context->mmu_role.base.word = mmu_base_role_mask.word &
9fa72119 4761 kvm_calc_tdp_mmu_root_page_role(vcpu).word;
fb72d167 4762 context->page_fault = tdp_page_fault;
e8bc217a 4763 context->sync_page = nonpaging_sync_page;
a7052897 4764 context->invlpg = nonpaging_invlpg;
0f53b5b1 4765 context->update_pte = nonpaging_update_pte;
855feb67 4766 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
c5a78f2b 4767 context->direct_map = true;
1c97f0a0 4768 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4769 context->get_cr3 = get_cr3;
e4e517b4 4770 context->get_pdptr = kvm_pdptr_read;
cb659db8 4771 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4772
4773 if (!is_paging(vcpu)) {
2d48a985 4774 context->nx = false;
fb72d167
JR
4775 context->gva_to_gpa = nonpaging_gva_to_gpa;
4776 context->root_level = 0;
4777 } else if (is_long_mode(vcpu)) {
2d48a985 4778 context->nx = is_nx(vcpu);
855feb67
YZ
4779 context->root_level = is_la57_mode(vcpu) ?
4780 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4781 reset_rsvds_bits_mask(vcpu, context);
4782 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4783 } else if (is_pae(vcpu)) {
2d48a985 4784 context->nx = is_nx(vcpu);
fb72d167 4785 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4786 reset_rsvds_bits_mask(vcpu, context);
4787 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4788 } else {
2d48a985 4789 context->nx = false;
fb72d167 4790 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4791 reset_rsvds_bits_mask(vcpu, context);
4792 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4793 }
4794
25d92081 4795 update_permission_bitmask(vcpu, context, false);
2d344105 4796 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4797 update_last_nonleaf_level(vcpu, context);
c258b62b 4798 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4799}
4800
9fa72119
JS
4801static union kvm_mmu_page_role
4802kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu)
6aa8b732 4803{
9fa72119 4804 union kvm_mmu_page_role role = {0};
411c588d 4805 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 4806 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0 4807
9fa72119
JS
4808 role.nxe = is_nx(vcpu);
4809 role.cr4_pae = !!is_pae(vcpu);
4810 role.cr0_wp = is_write_protection(vcpu);
4811 role.smep_andnot_wp = smep && !is_write_protection(vcpu);
4812 role.smap_andnot_wp = smap && !is_write_protection(vcpu);
4813 role.guest_mode = is_guest_mode(vcpu);
4814 role.smm = is_smm(vcpu);
4815 role.direct = !is_paging(vcpu);
4816 role.access = ACC_ALL;
4817
4818 if (!is_long_mode(vcpu))
4819 role.level = PT32E_ROOT_LEVEL;
4820 else if (is_la57_mode(vcpu))
4821 role.level = PT64_ROOT_5LEVEL;
4822 else
4823 role.level = PT64_ROOT_4LEVEL;
4824
4825 return role;
4826}
4827
4828void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4829{
44dd3ffa 4830 struct kvm_mmu *context = vcpu->arch.mmu;
6aa8b732
AK
4831
4832 if (!is_paging(vcpu))
8a3c1a33 4833 nonpaging_init_context(vcpu, context);
a9058ecd 4834 else if (is_long_mode(vcpu))
8a3c1a33 4835 paging64_init_context(vcpu, context);
6aa8b732 4836 else if (is_pae(vcpu))
8a3c1a33 4837 paging32E_init_context(vcpu, context);
6aa8b732 4838 else
8a3c1a33 4839 paging32_init_context(vcpu, context);
a770f6f2 4840
36d9594d 4841 context->mmu_role.base.word = mmu_base_role_mask.word &
9fa72119 4842 kvm_calc_shadow_mmu_root_page_role(vcpu).word;
c258b62b 4843 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4844}
4845EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4846
a336282d
VK
4847static union kvm_mmu_role
4848kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4849 bool execonly)
9fa72119 4850{
a336282d 4851 union kvm_mmu_role role;
14c07ad8 4852
a336282d
VK
4853 /* Base role is inherited from root_mmu */
4854 role.base.word = vcpu->arch.root_mmu.mmu_role.base.word;
4855 role.ext = kvm_calc_mmu_role_ext(vcpu);
9fa72119 4856
a336282d
VK
4857 role.base.level = PT64_ROOT_4LEVEL;
4858 role.base.direct = false;
4859 role.base.ad_disabled = !accessed_dirty;
4860 role.base.guest_mode = true;
4861 role.base.access = ACC_ALL;
4862
4863 role.ext.execonly = execonly;
9fa72119
JS
4864
4865 return role;
4866}
4867
ae1e2d10 4868void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4869 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4870{
44dd3ffa 4871 struct kvm_mmu *context = vcpu->arch.mmu;
a336282d
VK
4872 union kvm_mmu_role new_role =
4873 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4874 execonly);
4875
4876 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
4877
4878 new_role.base.word &= mmu_base_role_mask.word;
4879 if (new_role.as_u64 == context->mmu_role.as_u64)
4880 return;
ad896af0 4881
855feb67 4882 context->shadow_root_level = PT64_ROOT_4LEVEL;
155a97a3
NHE
4883
4884 context->nx = true;
ae1e2d10 4885 context->ept_ad = accessed_dirty;
155a97a3
NHE
4886 context->page_fault = ept_page_fault;
4887 context->gva_to_gpa = ept_gva_to_gpa;
4888 context->sync_page = ept_sync_page;
4889 context->invlpg = ept_invlpg;
4890 context->update_pte = ept_update_pte;
855feb67 4891 context->root_level = PT64_ROOT_4LEVEL;
155a97a3 4892 context->direct_map = false;
a336282d 4893 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4894
155a97a3 4895 update_permission_bitmask(vcpu, context, true);
2d344105 4896 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4897 update_last_nonleaf_level(vcpu, context);
155a97a3 4898 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4899 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4900}
4901EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4902
8a3c1a33 4903static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4904{
44dd3ffa 4905 struct kvm_mmu *context = vcpu->arch.mmu;
ad896af0
PB
4906
4907 kvm_init_shadow_mmu(vcpu);
4908 context->set_cr3 = kvm_x86_ops->set_cr3;
4909 context->get_cr3 = get_cr3;
4910 context->get_pdptr = kvm_pdptr_read;
4911 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4912}
4913
8a3c1a33 4914static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4915{
4916 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4917
4918 g_context->get_cr3 = get_cr3;
e4e517b4 4919 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4920 g_context->inject_page_fault = kvm_inject_page_fault;
4921
4922 /*
44dd3ffa 4923 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
4924 * L1's nested page tables (e.g. EPT12). The nested translation
4925 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4926 * L2's page tables as the first level of translation and L1's
4927 * nested page tables as the second level of translation. Basically
4928 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4929 */
4930 if (!is_paging(vcpu)) {
2d48a985 4931 g_context->nx = false;
02f59dc9
JR
4932 g_context->root_level = 0;
4933 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4934 } else if (is_long_mode(vcpu)) {
2d48a985 4935 g_context->nx = is_nx(vcpu);
855feb67
YZ
4936 g_context->root_level = is_la57_mode(vcpu) ?
4937 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 4938 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4939 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4940 } else if (is_pae(vcpu)) {
2d48a985 4941 g_context->nx = is_nx(vcpu);
02f59dc9 4942 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4943 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4944 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4945 } else {
2d48a985 4946 g_context->nx = false;
02f59dc9 4947 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4948 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4949 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4950 }
4951
25d92081 4952 update_permission_bitmask(vcpu, g_context, false);
2d344105 4953 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4954 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4955}
4956
1c53da3f 4957void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 4958{
1c53da3f 4959 if (reset_roots) {
b94742c9
JS
4960 uint i;
4961
44dd3ffa 4962 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
4963
4964 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 4965 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
4966 }
4967
02f59dc9 4968 if (mmu_is_nested(vcpu))
e0c6db3e 4969 init_kvm_nested_mmu(vcpu);
02f59dc9 4970 else if (tdp_enabled)
e0c6db3e 4971 init_kvm_tdp_mmu(vcpu);
fb72d167 4972 else
e0c6db3e 4973 init_kvm_softmmu(vcpu);
fb72d167 4974}
1c53da3f 4975EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 4976
9fa72119
JS
4977static union kvm_mmu_page_role
4978kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4979{
4980 if (tdp_enabled)
4981 return kvm_calc_tdp_mmu_root_page_role(vcpu);
4982 else
4983 return kvm_calc_shadow_mmu_root_page_role(vcpu);
4984}
fb72d167 4985
8a3c1a33 4986void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4987{
95f93af4 4988 kvm_mmu_unload(vcpu);
1c53da3f 4989 kvm_init_mmu(vcpu, true);
17c3ba9d 4990}
8668a3c4 4991EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4992
4993int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4994{
714b93da
AK
4995 int r;
4996
e2dec939 4997 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4998 if (r)
4999 goto out;
8986ecc0 5000 r = mmu_alloc_roots(vcpu);
e2858b4a 5001 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
5002 if (r)
5003 goto out;
6e42782f 5004 kvm_mmu_load_cr3(vcpu);
afe828d1 5005 kvm_x86_ops->tlb_flush(vcpu, true);
714b93da
AK
5006out:
5007 return r;
6aa8b732 5008}
17c3ba9d
AK
5009EXPORT_SYMBOL_GPL(kvm_mmu_load);
5010
5011void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5012{
14c07ad8
VK
5013 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5014 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5015 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5016 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 5017}
4b16184c 5018EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 5019
0028425f 5020static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
5021 struct kvm_mmu_page *sp, u64 *spte,
5022 const void *new)
0028425f 5023{
30945387 5024 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
5025 ++vcpu->kvm->stat.mmu_pde_zapped;
5026 return;
30945387 5027 }
0028425f 5028
4cee5764 5029 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 5030 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
5031}
5032
79539cec
AK
5033static bool need_remote_flush(u64 old, u64 new)
5034{
5035 if (!is_shadow_present_pte(old))
5036 return false;
5037 if (!is_shadow_present_pte(new))
5038 return true;
5039 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5040 return true;
53166229
GN
5041 old ^= shadow_nx_mask;
5042 new ^= shadow_nx_mask;
79539cec
AK
5043 return (old & ~new & PT64_PERM_MASK) != 0;
5044}
5045
889e5cbc
XG
5046static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5047 const u8 *new, int *bytes)
da4a00f0 5048{
889e5cbc
XG
5049 u64 gentry;
5050 int r;
72016f3a 5051
72016f3a
AK
5052 /*
5053 * Assume that the pte write on a page table of the same type
49b26e26
XG
5054 * as the current vcpu paging mode since we update the sptes only
5055 * when they have the same mode.
72016f3a 5056 */
889e5cbc 5057 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 5058 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
5059 *gpa &= ~(gpa_t)7;
5060 *bytes = 8;
54bf36aa 5061 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
5062 if (r)
5063 gentry = 0;
08e850c6
AK
5064 new = (const u8 *)&gentry;
5065 }
5066
889e5cbc 5067 switch (*bytes) {
08e850c6
AK
5068 case 4:
5069 gentry = *(const u32 *)new;
5070 break;
5071 case 8:
5072 gentry = *(const u64 *)new;
5073 break;
5074 default:
5075 gentry = 0;
5076 break;
72016f3a
AK
5077 }
5078
889e5cbc
XG
5079 return gentry;
5080}
5081
5082/*
5083 * If we're seeing too many writes to a page, it may no longer be a page table,
5084 * or we may be forking, in which case it is better to unmap the page.
5085 */
a138fe75 5086static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 5087{
a30f47cb
XG
5088 /*
5089 * Skip write-flooding detected for the sp whose level is 1, because
5090 * it can become unsync, then the guest page is not write-protected.
5091 */
f71fa31f 5092 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 5093 return false;
3246af0e 5094
e5691a81
XG
5095 atomic_inc(&sp->write_flooding_count);
5096 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
5097}
5098
5099/*
5100 * Misaligned accesses are too much trouble to fix up; also, they usually
5101 * indicate a page is not used as a page table.
5102 */
5103static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5104 int bytes)
5105{
5106 unsigned offset, pte_size, misaligned;
5107
5108 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5109 gpa, bytes, sp->role.word);
5110
5111 offset = offset_in_page(gpa);
5112 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
5113
5114 /*
5115 * Sometimes, the OS only writes the last one bytes to update status
5116 * bits, for example, in linux, andb instruction is used in clear_bit().
5117 */
5118 if (!(offset & (pte_size - 1)) && bytes == 1)
5119 return false;
5120
889e5cbc
XG
5121 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5122 misaligned |= bytes < 4;
5123
5124 return misaligned;
5125}
5126
5127static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5128{
5129 unsigned page_offset, quadrant;
5130 u64 *spte;
5131 int level;
5132
5133 page_offset = offset_in_page(gpa);
5134 level = sp->role.level;
5135 *nspte = 1;
5136 if (!sp->role.cr4_pae) {
5137 page_offset <<= 1; /* 32->64 */
5138 /*
5139 * A 32-bit pde maps 4MB while the shadow pdes map
5140 * only 2MB. So we need to double the offset again
5141 * and zap two pdes instead of one.
5142 */
5143 if (level == PT32_ROOT_LEVEL) {
5144 page_offset &= ~7; /* kill rounding error */
5145 page_offset <<= 1;
5146 *nspte = 2;
5147 }
5148 quadrant = page_offset >> PAGE_SHIFT;
5149 page_offset &= ~PAGE_MASK;
5150 if (quadrant != sp->role.quadrant)
5151 return NULL;
5152 }
5153
5154 spte = &sp->spt[page_offset / sizeof(*spte)];
5155 return spte;
5156}
5157
13d268ca 5158static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
5159 const u8 *new, int bytes,
5160 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
5161{
5162 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 5163 struct kvm_mmu_page *sp;
889e5cbc
XG
5164 LIST_HEAD(invalid_list);
5165 u64 entry, gentry, *spte;
5166 int npte;
b8c67b7a 5167 bool remote_flush, local_flush;
889e5cbc
XG
5168
5169 /*
5170 * If we don't have indirect shadow pages, it means no page is
5171 * write-protected, so we can exit simply.
5172 */
6aa7de05 5173 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
5174 return;
5175
b8c67b7a 5176 remote_flush = local_flush = false;
889e5cbc
XG
5177
5178 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5179
5180 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
5181
5182 /*
5183 * No need to care whether allocation memory is successful
5184 * or not since pte prefetch is skiped if it does not have
5185 * enough objects in the cache.
5186 */
5187 mmu_topup_memory_caches(vcpu);
5188
5189 spin_lock(&vcpu->kvm->mmu_lock);
5190 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5191 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5192
b67bfe0d 5193 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5194 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5195 detect_write_flooding(sp)) {
b8c67b7a 5196 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5197 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5198 continue;
5199 }
889e5cbc
XG
5200
5201 spte = get_written_sptes(sp, gpa, &npte);
5202 if (!spte)
5203 continue;
5204
0671a8e7 5205 local_flush = true;
ac1b714e 5206 while (npte--) {
36d9594d
VK
5207 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5208
79539cec 5209 entry = *spte;
38e3b2b2 5210 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf 5211 if (gentry &&
36d9594d 5212 !((sp->role.word ^ base_role)
9fa72119 5213 & mmu_base_role_mask.word) && rmap_can_add(vcpu))
7c562522 5214 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 5215 if (need_remote_flush(entry, *spte))
0671a8e7 5216 remote_flush = true;
ac1b714e 5217 ++spte;
9b7a0325 5218 }
9b7a0325 5219 }
b8c67b7a 5220 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5221 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 5222 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5223}
5224
a436036b
AK
5225int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5226{
10589a46
MT
5227 gpa_t gpa;
5228 int r;
a436036b 5229
44dd3ffa 5230 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5231 return 0;
5232
1871c602 5233 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5234
10589a46 5235 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5236
10589a46 5237 return r;
a436036b 5238}
577bdc49 5239EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5240
26eeb53c 5241static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 5242{
d98ba053 5243 LIST_HEAD(invalid_list);
103ad25a 5244
81f4f76b 5245 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
26eeb53c 5246 return 0;
81f4f76b 5247
5da59607
TY
5248 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5249 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5250 break;
ebeace86 5251
4cee5764 5252 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 5253 }
aa6bd187 5254 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
26eeb53c
WL
5255
5256 if (!kvm_mmu_available_pages(vcpu->kvm))
5257 return -ENOSPC;
5258 return 0;
ebeace86 5259}
ebeace86 5260
14727754 5261int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
dc25e89e 5262 void *insn, int insn_len)
3067714c 5263{
472faffa 5264 int r, emulation_type = 0;
3067714c 5265 enum emulation_result er;
44dd3ffa 5266 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5267
618232e2 5268 /* With shadow page tables, fault_address contains a GVA or nGPA. */
44dd3ffa 5269 if (vcpu->arch.mmu->direct_map) {
618232e2
BS
5270 vcpu->arch.gpa_available = true;
5271 vcpu->arch.gpa_val = cr2;
5272 }
3067714c 5273
9b8ebbdb 5274 r = RET_PF_INVALID;
e9ee956e
TY
5275 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5276 r = handle_mmio_page_fault(vcpu, cr2, direct);
472faffa 5277 if (r == RET_PF_EMULATE)
e9ee956e 5278 goto emulate;
e9ee956e 5279 }
3067714c 5280
9b8ebbdb 5281 if (r == RET_PF_INVALID) {
44dd3ffa
VK
5282 r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5283 lower_32_bits(error_code),
5284 false);
9b8ebbdb
PB
5285 WARN_ON(r == RET_PF_INVALID);
5286 }
5287
5288 if (r == RET_PF_RETRY)
5289 return 1;
3067714c 5290 if (r < 0)
e9ee956e 5291 return r;
3067714c 5292
14727754
TL
5293 /*
5294 * Before emulating the instruction, check if the error code
5295 * was due to a RO violation while translating the guest page.
5296 * This can occur when using nested virtualization with nested
5297 * paging in both guests. If true, we simply unprotect the page
5298 * and resume the guest.
14727754 5299 */
44dd3ffa 5300 if (vcpu->arch.mmu->direct_map &&
eebed243 5301 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
14727754
TL
5302 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5303 return 1;
5304 }
5305
472faffa
SC
5306 /*
5307 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5308 * optimistically try to just unprotect the page and let the processor
5309 * re-execute the instruction that caused the page fault. Do not allow
5310 * retrying MMIO emulation, as it's not only pointless but could also
5311 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5312 * faulting on the non-existent MMIO address. Retrying an instruction
5313 * from a nested guest is also pointless and dangerous as we are only
5314 * explicitly shadowing L1's page tables, i.e. unprotecting something
5315 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5316 */
6c3dfeb6 5317 if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
472faffa 5318 emulation_type = EMULTYPE_ALLOW_RETRY;
e9ee956e 5319emulate:
00b10fe1
BS
5320 /*
5321 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5322 * This can happen if a guest gets a page-fault on data access but the HW
5323 * table walker is not able to read the instruction page (e.g instruction
5324 * page is not present in memory). In those cases we simply restart the
5325 * guest.
5326 */
5327 if (unlikely(insn && !insn_len))
5328 return 1;
5329
1cb3f3ae 5330 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
5331
5332 switch (er) {
5333 case EMULATE_DONE:
5334 return 1;
ac0a48c3 5335 case EMULATE_USER_EXIT:
3067714c 5336 ++vcpu->stat.mmio_exits;
6d77dbfc 5337 /* fall through */
3067714c 5338 case EMULATE_FAIL:
3f5d18a9 5339 return 0;
3067714c
AK
5340 default:
5341 BUG();
5342 }
3067714c
AK
5343}
5344EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5345
a7052897
MT
5346void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5347{
44dd3ffa 5348 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 5349 int i;
7eb77e9f 5350
faff8758
JS
5351 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
5352 if (is_noncanonical_address(gva, vcpu))
5353 return;
5354
7eb77e9f 5355 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353
JS
5356
5357 /*
5358 * INVLPG is required to invalidate any global mappings for the VA,
5359 * irrespective of PCID. Since it would take us roughly similar amount
b94742c9
JS
5360 * of work to determine whether any of the prev_root mappings of the VA
5361 * is marked global, or to just sync it blindly, so we might as well
5362 * just always sync it.
956bf353 5363 *
b94742c9
JS
5364 * Mappings not reachable via the current cr3 or the prev_roots will be
5365 * synced when switching to that cr3, so nothing needs to be done here
5366 * for them.
956bf353 5367 */
b94742c9
JS
5368 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5369 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5370 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
956bf353 5371
faff8758 5372 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
a7052897
MT
5373 ++vcpu->stat.invlpg;
5374}
5375EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5376
eb4b248e
JS
5377void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5378{
44dd3ffa 5379 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5380 bool tlb_flush = false;
b94742c9 5381 uint i;
eb4b248e
JS
5382
5383 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5384 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5385 tlb_flush = true;
eb4b248e
JS
5386 }
5387
b94742c9
JS
5388 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5389 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5390 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5391 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5392 tlb_flush = true;
5393 }
956bf353 5394 }
ade61e28 5395
faff8758
JS
5396 if (tlb_flush)
5397 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5398
eb4b248e
JS
5399 ++vcpu->stat.invlpg;
5400
5401 /*
b94742c9
JS
5402 * Mappings not reachable via the current cr3 or the prev_roots will be
5403 * synced when switching to that cr3, so nothing needs to be done here
5404 * for them.
eb4b248e
JS
5405 */
5406}
5407EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5408
18552672
JR
5409void kvm_enable_tdp(void)
5410{
5411 tdp_enabled = true;
5412}
5413EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5414
5f4cb662
JR
5415void kvm_disable_tdp(void)
5416{
5417 tdp_enabled = false;
5418}
5419EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5420
6aa8b732
AK
5421static void free_mmu_pages(struct kvm_vcpu *vcpu)
5422{
44dd3ffa
VK
5423 free_page((unsigned long)vcpu->arch.mmu->pae_root);
5424 free_page((unsigned long)vcpu->arch.mmu->lm_root);
6aa8b732
AK
5425}
5426
5427static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5428{
17ac10ad 5429 struct page *page;
6aa8b732
AK
5430 int i;
5431
ee6268ba
LC
5432 if (tdp_enabled)
5433 return 0;
5434
17ac10ad
AK
5435 /*
5436 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5437 * Therefore we need to allocate shadow page tables in the first
5438 * 4GB of memory, which happens to fit the DMA32 zone.
5439 */
5440 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5441 if (!page)
d7fa6ab2
WY
5442 return -ENOMEM;
5443
44dd3ffa 5444 vcpu->arch.mmu->pae_root = page_address(page);
17ac10ad 5445 for (i = 0; i < 4; ++i)
44dd3ffa 5446 vcpu->arch.mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5447
6aa8b732 5448 return 0;
6aa8b732
AK
5449}
5450
8018c27b 5451int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5452{
b94742c9
JS
5453 uint i;
5454
44dd3ffa
VK
5455 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5456 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
14c07ad8 5457
44dd3ffa
VK
5458 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5459 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
b94742c9 5460 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5461 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
b94742c9 5462
14c07ad8
VK
5463 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5464 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5465 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5466 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5467
5468 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
8018c27b
IM
5469 return alloc_mmu_pages(vcpu);
5470}
6aa8b732 5471
b5f5fdca 5472static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5473 struct kvm_memory_slot *slot,
5474 struct kvm_page_track_notifier_node *node)
b5f5fdca
XC
5475{
5476 kvm_mmu_invalidate_zap_all_pages(kvm);
5477}
5478
13d268ca
XG
5479void kvm_mmu_init_vm(struct kvm *kvm)
5480{
5481 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5482
5483 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5484 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca
XG
5485 kvm_page_track_register_notifier(kvm, node);
5486}
5487
5488void kvm_mmu_uninit_vm(struct kvm *kvm)
5489{
5490 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5491
5492 kvm_page_track_unregister_notifier(kvm, node);
5493}
5494
1bad2b2a 5495/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 5496typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
5497
5498/* The caller should hold mmu-lock before calling this function. */
928a4c39 5499static __always_inline bool
1bad2b2a
XG
5500slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5501 slot_level_handler fn, int start_level, int end_level,
5502 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5503{
5504 struct slot_rmap_walk_iterator iterator;
5505 bool flush = false;
5506
5507 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5508 end_gfn, &iterator) {
5509 if (iterator.rmap)
5510 flush |= fn(kvm, iterator.rmap);
5511
5512 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5513 if (flush && lock_flush_tlb) {
5514 kvm_flush_remote_tlbs(kvm);
5515 flush = false;
5516 }
5517 cond_resched_lock(&kvm->mmu_lock);
5518 }
5519 }
5520
5521 if (flush && lock_flush_tlb) {
5522 kvm_flush_remote_tlbs(kvm);
5523 flush = false;
5524 }
5525
5526 return flush;
5527}
5528
928a4c39 5529static __always_inline bool
1bad2b2a
XG
5530slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5531 slot_level_handler fn, int start_level, int end_level,
5532 bool lock_flush_tlb)
5533{
5534 return slot_handle_level_range(kvm, memslot, fn, start_level,
5535 end_level, memslot->base_gfn,
5536 memslot->base_gfn + memslot->npages - 1,
5537 lock_flush_tlb);
5538}
5539
928a4c39 5540static __always_inline bool
1bad2b2a
XG
5541slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5542 slot_level_handler fn, bool lock_flush_tlb)
5543{
5544 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5545 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5546}
5547
928a4c39 5548static __always_inline bool
1bad2b2a
XG
5549slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5550 slot_level_handler fn, bool lock_flush_tlb)
5551{
5552 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5553 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5554}
5555
928a4c39 5556static __always_inline bool
1bad2b2a
XG
5557slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5558 slot_level_handler fn, bool lock_flush_tlb)
5559{
5560 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5561 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5562}
5563
efdfe536
XG
5564void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5565{
5566 struct kvm_memslots *slots;
5567 struct kvm_memory_slot *memslot;
9da0e4d5 5568 int i;
efdfe536
XG
5569
5570 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5571 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5572 slots = __kvm_memslots(kvm, i);
5573 kvm_for_each_memslot(memslot, slots) {
5574 gfn_t start, end;
5575
5576 start = max(gfn_start, memslot->base_gfn);
5577 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5578 if (start >= end)
5579 continue;
efdfe536 5580
9da0e4d5
PB
5581 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5582 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5583 start, end - 1, true);
5584 }
efdfe536
XG
5585 }
5586
5587 spin_unlock(&kvm->mmu_lock);
5588}
5589
018aabb5
TY
5590static bool slot_rmap_write_protect(struct kvm *kvm,
5591 struct kvm_rmap_head *rmap_head)
d77aa73c 5592{
018aabb5 5593 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5594}
5595
1c91cad4
KH
5596void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5597 struct kvm_memory_slot *memslot)
6aa8b732 5598{
d77aa73c 5599 bool flush;
6aa8b732 5600
9d1beefb 5601 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5602 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5603 false);
9d1beefb 5604 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
5605
5606 /*
5607 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5608 * which do tlb flush out of mmu-lock should be serialized by
5609 * kvm->slots_lock otherwise tlb flush would be missed.
5610 */
5611 lockdep_assert_held(&kvm->slots_lock);
5612
5613 /*
5614 * We can flush all the TLBs out of the mmu lock without TLB
5615 * corruption since we just change the spte from writable to
5616 * readonly so that we only need to care the case of changing
5617 * spte from present to present (changing the spte from present
5618 * to nonpresent will flush all the TLBs immediately), in other
5619 * words, the only case we care is mmu_spte_update() where we
5620 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5621 * instead of PT_WRITABLE_MASK, that means it does not depend
5622 * on PT_WRITABLE_MASK anymore.
5623 */
d91ffee9
KH
5624 if (flush)
5625 kvm_flush_remote_tlbs(kvm);
6aa8b732 5626}
37a7d8b0 5627
3ea3b7fa 5628static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5629 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5630{
5631 u64 *sptep;
5632 struct rmap_iterator iter;
5633 int need_tlb_flush = 0;
ba049e93 5634 kvm_pfn_t pfn;
3ea3b7fa
WL
5635 struct kvm_mmu_page *sp;
5636
0d536790 5637restart:
018aabb5 5638 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
5639 sp = page_header(__pa(sptep));
5640 pfn = spte_to_pfn(*sptep);
5641
5642 /*
decf6333
XG
5643 * We cannot do huge page mapping for indirect shadow pages,
5644 * which are found on the last rmap (level = 1) when not using
5645 * tdp; such shadow pages are synced with the page table in
5646 * the guest, and the guest page table is using 4K page size
5647 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
5648 */
5649 if (sp->role.direct &&
5650 !kvm_is_reserved_pfn(pfn) &&
127393fb 5651 PageTransCompoundMap(pfn_to_page(pfn))) {
3ea3b7fa 5652 drop_spte(kvm, sptep);
3ea3b7fa 5653 need_tlb_flush = 1;
0d536790
XG
5654 goto restart;
5655 }
3ea3b7fa
WL
5656 }
5657
5658 return need_tlb_flush;
5659}
5660
5661void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5662 const struct kvm_memory_slot *memslot)
3ea3b7fa 5663{
f36f3f28 5664 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5665 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5666 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5667 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5668 spin_unlock(&kvm->mmu_lock);
5669}
5670
f4b4b180
KH
5671void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5672 struct kvm_memory_slot *memslot)
5673{
d77aa73c 5674 bool flush;
f4b4b180
KH
5675
5676 spin_lock(&kvm->mmu_lock);
d77aa73c 5677 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5678 spin_unlock(&kvm->mmu_lock);
5679
5680 lockdep_assert_held(&kvm->slots_lock);
5681
5682 /*
5683 * It's also safe to flush TLBs out of mmu lock here as currently this
5684 * function is only used for dirty logging, in which case flushing TLB
5685 * out of mmu lock also guarantees no dirty pages will be lost in
5686 * dirty_bitmap.
5687 */
5688 if (flush)
5689 kvm_flush_remote_tlbs(kvm);
5690}
5691EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5692
5693void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5694 struct kvm_memory_slot *memslot)
5695{
d77aa73c 5696 bool flush;
f4b4b180
KH
5697
5698 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5699 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5700 false);
f4b4b180
KH
5701 spin_unlock(&kvm->mmu_lock);
5702
5703 /* see kvm_mmu_slot_remove_write_access */
5704 lockdep_assert_held(&kvm->slots_lock);
5705
5706 if (flush)
5707 kvm_flush_remote_tlbs(kvm);
5708}
5709EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5710
5711void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5712 struct kvm_memory_slot *memslot)
5713{
d77aa73c 5714 bool flush;
f4b4b180
KH
5715
5716 spin_lock(&kvm->mmu_lock);
d77aa73c 5717 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
5718 spin_unlock(&kvm->mmu_lock);
5719
5720 lockdep_assert_held(&kvm->slots_lock);
5721
5722 /* see kvm_mmu_slot_leaf_clear_dirty */
5723 if (flush)
5724 kvm_flush_remote_tlbs(kvm);
5725}
5726EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5727
e7d11c7a 5728#define BATCH_ZAP_PAGES 10
5304b8d3
XG
5729static void kvm_zap_obsolete_pages(struct kvm *kvm)
5730{
5731 struct kvm_mmu_page *sp, *node;
e7d11c7a 5732 int batch = 0;
5304b8d3
XG
5733
5734restart:
5735 list_for_each_entry_safe_reverse(sp, node,
5736 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
5737 int ret;
5738
5304b8d3
XG
5739 /*
5740 * No obsolete page exists before new created page since
5741 * active_mmu_pages is the FIFO list.
5742 */
5743 if (!is_obsolete_sp(kvm, sp))
5744 break;
5745
5746 /*
5304b8d3
XG
5747 * Since we are reversely walking the list and the invalid
5748 * list will be moved to the head, skip the invalid page
5749 * can help us to avoid the infinity list walking.
5750 */
5751 if (sp->role.invalid)
5752 continue;
5753
f34d251d
XG
5754 /*
5755 * Need not flush tlb since we only zap the sp with invalid
5756 * generation number.
5757 */
e7d11c7a 5758 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 5759 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 5760 batch = 0;
5304b8d3
XG
5761 goto restart;
5762 }
5763
365c8868
XG
5764 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5765 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
5766 batch += ret;
5767
5768 if (ret)
5304b8d3
XG
5769 goto restart;
5770 }
5771
f34d251d
XG
5772 /*
5773 * Should flush tlb before free page tables since lockless-walking
5774 * may use the pages.
5775 */
365c8868 5776 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
5777}
5778
5779/*
5780 * Fast invalidate all shadow pages and use lock-break technique
5781 * to zap obsolete pages.
5782 *
5783 * It's required when memslot is being deleted or VM is being
5784 * destroyed, in these cases, we should ensure that KVM MMU does
5785 * not use any resource of the being-deleted slot or all slots
5786 * after calling the function.
5787 */
5788void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5789{
5790 spin_lock(&kvm->mmu_lock);
35006126 5791 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
5792 kvm->arch.mmu_valid_gen++;
5793
f34d251d
XG
5794 /*
5795 * Notify all vcpus to reload its shadow page table
5796 * and flush TLB. Then all vcpus will switch to new
5797 * shadow page table with the new mmu_valid_gen.
5798 *
5799 * Note: we should do this under the protection of
5800 * mmu-lock, otherwise, vcpu would purge shadow page
5801 * but miss tlb flush.
5802 */
5803 kvm_reload_remote_mmus(kvm);
5804
5304b8d3
XG
5805 kvm_zap_obsolete_pages(kvm);
5806 spin_unlock(&kvm->mmu_lock);
5807}
5808
365c8868
XG
5809static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5810{
5811 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5812}
5813
54bf36aa 5814void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
5815{
5816 /*
5817 * The very rare case: if the generation-number is round,
5818 * zap all shadow pages.
f8f55942 5819 */
54bf36aa 5820 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
ae0f5499 5821 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 5822 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 5823 }
f8f55942
XG
5824}
5825
70534a73
DC
5826static unsigned long
5827mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5828{
5829 struct kvm *kvm;
1495f230 5830 int nr_to_scan = sc->nr_to_scan;
70534a73 5831 unsigned long freed = 0;
3ee16c81 5832
2f303b74 5833 spin_lock(&kvm_lock);
3ee16c81
IE
5834
5835 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5836 int idx;
d98ba053 5837 LIST_HEAD(invalid_list);
3ee16c81 5838
35f2d16b
TY
5839 /*
5840 * Never scan more than sc->nr_to_scan VM instances.
5841 * Will not hit this condition practically since we do not try
5842 * to shrink more than one VM and it is very unlikely to see
5843 * !n_used_mmu_pages so many times.
5844 */
5845 if (!nr_to_scan--)
5846 break;
19526396
GN
5847 /*
5848 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5849 * here. We may skip a VM instance errorneosly, but we do not
5850 * want to shrink a VM that only started to populate its MMU
5851 * anyway.
5852 */
365c8868
XG
5853 if (!kvm->arch.n_used_mmu_pages &&
5854 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5855 continue;
19526396 5856
f656ce01 5857 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5858 spin_lock(&kvm->mmu_lock);
3ee16c81 5859
365c8868
XG
5860 if (kvm_has_zapped_obsolete_pages(kvm)) {
5861 kvm_mmu_commit_zap_page(kvm,
5862 &kvm->arch.zapped_obsolete_pages);
5863 goto unlock;
5864 }
5865
70534a73
DC
5866 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5867 freed++;
d98ba053 5868 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 5869
365c8868 5870unlock:
3ee16c81 5871 spin_unlock(&kvm->mmu_lock);
f656ce01 5872 srcu_read_unlock(&kvm->srcu, idx);
19526396 5873
70534a73
DC
5874 /*
5875 * unfair on small ones
5876 * per-vm shrinkers cry out
5877 * sadness comes quickly
5878 */
19526396
GN
5879 list_move_tail(&kvm->vm_list, &vm_list);
5880 break;
3ee16c81 5881 }
3ee16c81 5882
2f303b74 5883 spin_unlock(&kvm_lock);
70534a73 5884 return freed;
70534a73
DC
5885}
5886
5887static unsigned long
5888mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5889{
45221ab6 5890 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5891}
5892
5893static struct shrinker mmu_shrinker = {
70534a73
DC
5894 .count_objects = mmu_shrink_count,
5895 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5896 .seeks = DEFAULT_SEEKS * 10,
5897};
5898
2ddfd20e 5899static void mmu_destroy_caches(void)
b5a33a75 5900{
c1bd743e
TH
5901 kmem_cache_destroy(pte_list_desc_cache);
5902 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5903}
5904
5905int kvm_mmu_module_init(void)
5906{
ab271bd4
AB
5907 int ret = -ENOMEM;
5908
36d9594d
VK
5909 /*
5910 * MMU roles use union aliasing which is, generally speaking, an
5911 * undefined behavior. However, we supposedly know how compilers behave
5912 * and the current status quo is unlikely to change. Guardians below are
5913 * supposed to let us know if the assumption becomes false.
5914 */
5915 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5916 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5917 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5918
28a1f3ac 5919 kvm_mmu_reset_all_pte_masks();
f160c7b7 5920
53c07b18
XG
5921 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5922 sizeof(struct pte_list_desc),
46bea48a 5923 0, SLAB_ACCOUNT, NULL);
53c07b18 5924 if (!pte_list_desc_cache)
ab271bd4 5925 goto out;
b5a33a75 5926
d3d25b04
AK
5927 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5928 sizeof(struct kvm_mmu_page),
46bea48a 5929 0, SLAB_ACCOUNT, NULL);
d3d25b04 5930 if (!mmu_page_header_cache)
ab271bd4 5931 goto out;
d3d25b04 5932
908c7f19 5933 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 5934 goto out;
45bf21a8 5935
ab271bd4
AB
5936 ret = register_shrinker(&mmu_shrinker);
5937 if (ret)
5938 goto out;
3ee16c81 5939
b5a33a75
AK
5940 return 0;
5941
ab271bd4 5942out:
3ee16c81 5943 mmu_destroy_caches();
ab271bd4 5944 return ret;
b5a33a75
AK
5945}
5946
3ad82a7e
ZX
5947/*
5948 * Caculate mmu pages needed for kvm.
5949 */
5950unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5951{
3ad82a7e
ZX
5952 unsigned int nr_mmu_pages;
5953 unsigned int nr_pages = 0;
bc6678a3 5954 struct kvm_memslots *slots;
be6ba0f0 5955 struct kvm_memory_slot *memslot;
9da0e4d5 5956 int i;
3ad82a7e 5957
9da0e4d5
PB
5958 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5959 slots = __kvm_memslots(kvm, i);
90d83dc3 5960
9da0e4d5
PB
5961 kvm_for_each_memslot(memslot, slots)
5962 nr_pages += memslot->npages;
5963 }
3ad82a7e
ZX
5964
5965 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5966 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 5967 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5968
5969 return nr_mmu_pages;
5970}
5971
c42fffe3
XG
5972void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5973{
95f93af4 5974 kvm_mmu_unload(vcpu);
c42fffe3
XG
5975 free_mmu_pages(vcpu);
5976 mmu_free_memory_caches(vcpu);
b034cf01
XG
5977}
5978
b034cf01
XG
5979void kvm_mmu_module_exit(void)
5980{
5981 mmu_destroy_caches();
5982 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5983 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5984 mmu_audit_disable();
5985}