]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: x86: count actual tlb flushes
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
6aa8b732 44
18552672
JR
45/*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
2f333bcb 52bool tdp_enabled = false;
18552672 53
8b1fe17c
XG
54enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
6903074c
XG
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
8b1fe17c 61};
37a7d8b0 62
8b1fe17c 63#undef MMU_DEBUG
37a7d8b0
AK
64
65#ifdef MMU_DEBUG
66
67#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
68#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
69
70#else
71
72#define pgprintk(x...) do { } while (0)
73#define rmap_printk(x...) do { } while (0)
74
75#endif
76
8b1fe17c 77#ifdef MMU_DEBUG
476bc001 78static bool dbg = 0;
6ada8cca 79module_param(dbg, bool, 0644);
37a7d8b0 80#endif
6aa8b732 81
d6c69ee9
YD
82#ifndef MMU_DEBUG
83#define ASSERT(x) do { } while (0)
84#else
6aa8b732
AK
85#define ASSERT(x) \
86 if (!(x)) { \
87 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
88 __FILE__, __LINE__, #x); \
89 }
d6c69ee9 90#endif
6aa8b732 91
957ed9ef
XG
92#define PTE_PREFETCH_NUM 8
93
00763e41 94#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
95#define PT64_SECOND_AVAIL_BITS_SHIFT 52
96
6aa8b732
AK
97#define PT64_LEVEL_BITS 9
98
99#define PT64_LEVEL_SHIFT(level) \
d77c26fc 100 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 101
6aa8b732
AK
102#define PT64_INDEX(address, level)\
103 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
104
105
106#define PT32_LEVEL_BITS 10
107
108#define PT32_LEVEL_SHIFT(level) \
d77c26fc 109 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 110
e04da980
JR
111#define PT32_LVL_OFFSET_MASK(level) \
112 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
114
115#define PT32_INDEX(address, level)\
116 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
117
118
27aba766 119#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
120#define PT64_DIR_BASE_ADDR_MASK \
121 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
122#define PT64_LVL_ADDR_MASK(level) \
123 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT64_LEVEL_BITS))) - 1))
125#define PT64_LVL_OFFSET_MASK(level) \
126 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
128
129#define PT32_BASE_ADDR_MASK PAGE_MASK
130#define PT32_DIR_BASE_ADDR_MASK \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
132#define PT32_LVL_ADDR_MASK(level) \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 * PT32_LEVEL_BITS))) - 1))
6aa8b732 135
53166229
GN
136#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
137 | shadow_x_mask | shadow_nx_mask)
6aa8b732 138
fe135d2c
AK
139#define ACC_EXEC_MASK 1
140#define ACC_WRITE_MASK PT_WRITABLE_MASK
141#define ACC_USER_MASK PT_USER_MASK
142#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
143
90bb6fc5
AK
144#include <trace/events/kvm.h>
145
07420171
AK
146#define CREATE_TRACE_POINTS
147#include "mmutrace.h"
148
49fde340
XG
149#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
150#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 151
135f8c2b
AK
152#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153
220f773a
TY
154/* make pte_list_desc fit well in cache line */
155#define PTE_LIST_EXT 3
156
53c07b18
XG
157struct pte_list_desc {
158 u64 *sptes[PTE_LIST_EXT];
159 struct pte_list_desc *more;
cd4a4e53
AK
160};
161
2d11123a
AK
162struct kvm_shadow_walk_iterator {
163 u64 addr;
164 hpa_t shadow_addr;
2d11123a 165 u64 *sptep;
dd3bfd59 166 int level;
2d11123a
AK
167 unsigned index;
168};
169
170#define for_each_shadow_entry(_vcpu, _addr, _walker) \
171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
172 shadow_walk_okay(&(_walker)); \
173 shadow_walk_next(&(_walker)))
174
c2a2ac2b
XG
175#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
176 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
177 shadow_walk_okay(&(_walker)) && \
178 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
179 __shadow_walk_next(&(_walker), spte))
180
53c07b18 181static struct kmem_cache *pte_list_desc_cache;
d3d25b04 182static struct kmem_cache *mmu_page_header_cache;
45221ab6 183static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 184
7b52345e
SY
185static u64 __read_mostly shadow_nx_mask;
186static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
187static u64 __read_mostly shadow_user_mask;
188static u64 __read_mostly shadow_accessed_mask;
189static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
190static u64 __read_mostly shadow_mmio_mask;
191
192static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 193static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
194
195void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
196{
197 shadow_mmio_mask = mmio_mask;
198}
199EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
200
f2fd125d 201/*
ee3d1570
DM
202 * the low bit of the generation number is always presumed to be zero.
203 * This disables mmio caching during memslot updates. The concept is
204 * similar to a seqcount but instead of retrying the access we just punt
205 * and ignore the cache.
206 *
207 * spte bits 3-11 are used as bits 1-9 of the generation number,
208 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 209 */
ee3d1570 210#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
211#define MMIO_SPTE_GEN_HIGH_SHIFT 52
212
ee3d1570
DM
213#define MMIO_GEN_SHIFT 20
214#define MMIO_GEN_LOW_SHIFT 10
215#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942
XG
216#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
217#define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
218
219static u64 generation_mmio_spte_mask(unsigned int gen)
220{
221 u64 mask;
222
223 WARN_ON(gen > MMIO_MAX_GEN);
224
225 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
226 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
227 return mask;
228}
229
230static unsigned int get_mmio_spte_generation(u64 spte)
231{
232 unsigned int gen;
233
234 spte &= ~shadow_mmio_mask;
235
236 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
237 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
238 return gen;
239}
240
f8f55942
XG
241static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
242{
00f034a1 243 return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
f8f55942
XG
244}
245
f2fd125d
XG
246static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
247 unsigned access)
ce88decf 248{
f8f55942
XG
249 unsigned int gen = kvm_current_mmio_generation(kvm);
250 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 251
ce88decf 252 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 253 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 254
f8f55942 255 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 256 mmu_spte_set(sptep, mask);
ce88decf
XG
257}
258
259static bool is_mmio_spte(u64 spte)
260{
261 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
262}
263
264static gfn_t get_mmio_spte_gfn(u64 spte)
265{
f2fd125d
XG
266 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
267 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
268}
269
270static unsigned get_mmio_spte_access(u64 spte)
271{
f2fd125d
XG
272 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
273 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
274}
275
f2fd125d
XG
276static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
277 pfn_t pfn, unsigned access)
ce88decf
XG
278{
279 if (unlikely(is_noslot_pfn(pfn))) {
f2fd125d 280 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
281 return true;
282 }
283
284 return false;
285}
c7addb90 286
f8f55942
XG
287static bool check_mmio_spte(struct kvm *kvm, u64 spte)
288{
089504c0
XG
289 unsigned int kvm_gen, spte_gen;
290
291 kvm_gen = kvm_current_mmio_generation(kvm);
292 spte_gen = get_mmio_spte_generation(spte);
293
294 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
295 return likely(kvm_gen == spte_gen);
f8f55942
XG
296}
297
7b52345e 298void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 299 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
300{
301 shadow_user_mask = user_mask;
302 shadow_accessed_mask = accessed_mask;
303 shadow_dirty_mask = dirty_mask;
304 shadow_nx_mask = nx_mask;
305 shadow_x_mask = x_mask;
306}
307EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
308
6aa8b732
AK
309static int is_cpuid_PSE36(void)
310{
311 return 1;
312}
313
73b1087e
AK
314static int is_nx(struct kvm_vcpu *vcpu)
315{
f6801dff 316 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
317}
318
c7addb90
AK
319static int is_shadow_present_pte(u64 pte)
320{
ce88decf 321 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
322}
323
05da4558
MT
324static int is_large_pte(u64 pte)
325{
326 return pte & PT_PAGE_SIZE_MASK;
327}
328
43a3795a 329static int is_rmap_spte(u64 pte)
cd4a4e53 330{
4b1a80fa 331 return is_shadow_present_pte(pte);
cd4a4e53
AK
332}
333
776e6633
MT
334static int is_last_spte(u64 pte, int level)
335{
336 if (level == PT_PAGE_TABLE_LEVEL)
337 return 1;
852e3c19 338 if (is_large_pte(pte))
776e6633
MT
339 return 1;
340 return 0;
341}
342
35149e21 343static pfn_t spte_to_pfn(u64 pte)
0b49ea86 344{
35149e21 345 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
346}
347
da928521
AK
348static gfn_t pse36_gfn_delta(u32 gpte)
349{
350 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
351
352 return (gpte & PT32_DIR_PSE36_MASK) << shift;
353}
354
603e0651 355#ifdef CONFIG_X86_64
d555c333 356static void __set_spte(u64 *sptep, u64 spte)
e663ee64 357{
603e0651 358 *sptep = spte;
e663ee64
AK
359}
360
603e0651 361static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 362{
603e0651
XG
363 *sptep = spte;
364}
365
366static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
367{
368 return xchg(sptep, spte);
369}
c2a2ac2b
XG
370
371static u64 __get_spte_lockless(u64 *sptep)
372{
373 return ACCESS_ONCE(*sptep);
374}
ce88decf
XG
375
376static bool __check_direct_spte_mmio_pf(u64 spte)
377{
378 /* It is valid if the spte is zapped. */
379 return spte == 0ull;
380}
a9221dd5 381#else
603e0651
XG
382union split_spte {
383 struct {
384 u32 spte_low;
385 u32 spte_high;
386 };
387 u64 spte;
388};
a9221dd5 389
c2a2ac2b
XG
390static void count_spte_clear(u64 *sptep, u64 spte)
391{
392 struct kvm_mmu_page *sp = page_header(__pa(sptep));
393
394 if (is_shadow_present_pte(spte))
395 return;
396
397 /* Ensure the spte is completely set before we increase the count */
398 smp_wmb();
399 sp->clear_spte_count++;
400}
401
603e0651
XG
402static void __set_spte(u64 *sptep, u64 spte)
403{
404 union split_spte *ssptep, sspte;
a9221dd5 405
603e0651
XG
406 ssptep = (union split_spte *)sptep;
407 sspte = (union split_spte)spte;
408
409 ssptep->spte_high = sspte.spte_high;
410
411 /*
412 * If we map the spte from nonpresent to present, We should store
413 * the high bits firstly, then set present bit, so cpu can not
414 * fetch this spte while we are setting the spte.
415 */
416 smp_wmb();
417
418 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
419}
420
603e0651
XG
421static void __update_clear_spte_fast(u64 *sptep, u64 spte)
422{
423 union split_spte *ssptep, sspte;
424
425 ssptep = (union split_spte *)sptep;
426 sspte = (union split_spte)spte;
427
428 ssptep->spte_low = sspte.spte_low;
429
430 /*
431 * If we map the spte from present to nonpresent, we should clear
432 * present bit firstly to avoid vcpu fetch the old high bits.
433 */
434 smp_wmb();
435
436 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 437 count_spte_clear(sptep, spte);
603e0651
XG
438}
439
440static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
441{
442 union split_spte *ssptep, sspte, orig;
443
444 ssptep = (union split_spte *)sptep;
445 sspte = (union split_spte)spte;
446
447 /* xchg acts as a barrier before the setting of the high bits */
448 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
449 orig.spte_high = ssptep->spte_high;
450 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 451 count_spte_clear(sptep, spte);
603e0651
XG
452
453 return orig.spte;
454}
c2a2ac2b
XG
455
456/*
457 * The idea using the light way get the spte on x86_32 guest is from
458 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
459 *
460 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
461 * coalesces them and we are running out of the MMU lock. Therefore
462 * we need to protect against in-progress updates of the spte.
463 *
464 * Reading the spte while an update is in progress may get the old value
465 * for the high part of the spte. The race is fine for a present->non-present
466 * change (because the high part of the spte is ignored for non-present spte),
467 * but for a present->present change we must reread the spte.
468 *
469 * All such changes are done in two steps (present->non-present and
470 * non-present->present), hence it is enough to count the number of
471 * present->non-present updates: if it changed while reading the spte,
472 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
473 */
474static u64 __get_spte_lockless(u64 *sptep)
475{
476 struct kvm_mmu_page *sp = page_header(__pa(sptep));
477 union split_spte spte, *orig = (union split_spte *)sptep;
478 int count;
479
480retry:
481 count = sp->clear_spte_count;
482 smp_rmb();
483
484 spte.spte_low = orig->spte_low;
485 smp_rmb();
486
487 spte.spte_high = orig->spte_high;
488 smp_rmb();
489
490 if (unlikely(spte.spte_low != orig->spte_low ||
491 count != sp->clear_spte_count))
492 goto retry;
493
494 return spte.spte;
495}
ce88decf
XG
496
497static bool __check_direct_spte_mmio_pf(u64 spte)
498{
499 union split_spte sspte = (union split_spte)spte;
500 u32 high_mmio_mask = shadow_mmio_mask >> 32;
501
502 /* It is valid if the spte is zapped. */
503 if (spte == 0ull)
504 return true;
505
506 /* It is valid if the spte is being zapped. */
507 if (sspte.spte_low == 0ull &&
508 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
509 return true;
510
511 return false;
512}
603e0651
XG
513#endif
514
c7ba5b48
XG
515static bool spte_is_locklessly_modifiable(u64 spte)
516{
feb3eb70
GN
517 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
518 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
519}
520
8672b721
XG
521static bool spte_has_volatile_bits(u64 spte)
522{
c7ba5b48
XG
523 /*
524 * Always atomicly update spte if it can be updated
525 * out of mmu-lock, it can ensure dirty bit is not lost,
526 * also, it can help us to get a stable is_writable_pte()
527 * to ensure tlb flush is not missed.
528 */
529 if (spte_is_locklessly_modifiable(spte))
530 return true;
531
8672b721
XG
532 if (!shadow_accessed_mask)
533 return false;
534
535 if (!is_shadow_present_pte(spte))
536 return false;
537
4132779b
XG
538 if ((spte & shadow_accessed_mask) &&
539 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
540 return false;
541
542 return true;
543}
544
4132779b
XG
545static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
546{
547 return (old_spte & bit_mask) && !(new_spte & bit_mask);
548}
549
1df9f2dc
XG
550/* Rules for using mmu_spte_set:
551 * Set the sptep from nonpresent to present.
552 * Note: the sptep being assigned *must* be either not present
553 * or in a state where the hardware will not attempt to update
554 * the spte.
555 */
556static void mmu_spte_set(u64 *sptep, u64 new_spte)
557{
558 WARN_ON(is_shadow_present_pte(*sptep));
559 __set_spte(sptep, new_spte);
560}
561
562/* Rules for using mmu_spte_update:
563 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
564 *
565 * Whenever we overwrite a writable spte with a read-only one we
566 * should flush remote TLBs. Otherwise rmap_write_protect
567 * will find a read-only spte, even though the writable spte
568 * might be cached on a CPU's TLB, the return value indicates this
569 * case.
1df9f2dc 570 */
6e7d0354 571static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 572{
c7ba5b48 573 u64 old_spte = *sptep;
6e7d0354 574 bool ret = false;
4132779b
XG
575
576 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 577
6e7d0354
XG
578 if (!is_shadow_present_pte(old_spte)) {
579 mmu_spte_set(sptep, new_spte);
580 return ret;
581 }
4132779b 582
c7ba5b48 583 if (!spte_has_volatile_bits(old_spte))
603e0651 584 __update_clear_spte_fast(sptep, new_spte);
4132779b 585 else
603e0651 586 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 587
c7ba5b48
XG
588 /*
589 * For the spte updated out of mmu-lock is safe, since
590 * we always atomicly update it, see the comments in
591 * spte_has_volatile_bits().
592 */
7f31c959
XG
593 if (spte_is_locklessly_modifiable(old_spte) &&
594 !is_writable_pte(new_spte))
6e7d0354
XG
595 ret = true;
596
4132779b 597 if (!shadow_accessed_mask)
6e7d0354 598 return ret;
4132779b
XG
599
600 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
601 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
602 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
603 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
604
605 return ret;
b79b93f9
AK
606}
607
1df9f2dc
XG
608/*
609 * Rules for using mmu_spte_clear_track_bits:
610 * It sets the sptep from present to nonpresent, and track the
611 * state bits, it is used to clear the last level sptep.
612 */
613static int mmu_spte_clear_track_bits(u64 *sptep)
614{
615 pfn_t pfn;
616 u64 old_spte = *sptep;
617
618 if (!spte_has_volatile_bits(old_spte))
603e0651 619 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 620 else
603e0651 621 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
622
623 if (!is_rmap_spte(old_spte))
624 return 0;
625
626 pfn = spte_to_pfn(old_spte);
86fde74c
XG
627
628 /*
629 * KVM does not hold the refcount of the page used by
630 * kvm mmu, before reclaiming the page, we should
631 * unmap it from mmu first.
632 */
633 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
634
1df9f2dc
XG
635 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
636 kvm_set_pfn_accessed(pfn);
637 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
638 kvm_set_pfn_dirty(pfn);
639 return 1;
640}
641
642/*
643 * Rules for using mmu_spte_clear_no_track:
644 * Directly clear spte without caring the state bits of sptep,
645 * it is used to set the upper level spte.
646 */
647static void mmu_spte_clear_no_track(u64 *sptep)
648{
603e0651 649 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
650}
651
c2a2ac2b
XG
652static u64 mmu_spte_get_lockless(u64 *sptep)
653{
654 return __get_spte_lockless(sptep);
655}
656
657static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
658{
c142786c
AK
659 /*
660 * Prevent page table teardown by making any free-er wait during
661 * kvm_flush_remote_tlbs() IPI to all active vcpus.
662 */
663 local_irq_disable();
664 vcpu->mode = READING_SHADOW_PAGE_TABLES;
665 /*
666 * Make sure a following spte read is not reordered ahead of the write
667 * to vcpu->mode.
668 */
669 smp_mb();
c2a2ac2b
XG
670}
671
672static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
673{
c142786c
AK
674 /*
675 * Make sure the write to vcpu->mode is not reordered in front of
676 * reads to sptes. If it does, kvm_commit_zap_page() can see us
677 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
678 */
679 smp_mb();
680 vcpu->mode = OUTSIDE_GUEST_MODE;
681 local_irq_enable();
c2a2ac2b
XG
682}
683
e2dec939 684static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 685 struct kmem_cache *base_cache, int min)
714b93da
AK
686{
687 void *obj;
688
689 if (cache->nobjs >= min)
e2dec939 690 return 0;
714b93da 691 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 692 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 693 if (!obj)
e2dec939 694 return -ENOMEM;
714b93da
AK
695 cache->objects[cache->nobjs++] = obj;
696 }
e2dec939 697 return 0;
714b93da
AK
698}
699
f759e2b4
XG
700static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
701{
702 return cache->nobjs;
703}
704
e8ad9a70
XG
705static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
706 struct kmem_cache *cache)
714b93da
AK
707{
708 while (mc->nobjs)
e8ad9a70 709 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
710}
711
c1158e63 712static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 713 int min)
c1158e63 714{
842f22ed 715 void *page;
c1158e63
AK
716
717 if (cache->nobjs >= min)
718 return 0;
719 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 720 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
721 if (!page)
722 return -ENOMEM;
842f22ed 723 cache->objects[cache->nobjs++] = page;
c1158e63
AK
724 }
725 return 0;
726}
727
728static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
729{
730 while (mc->nobjs)
c4d198d5 731 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
732}
733
2e3e5882 734static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 735{
e2dec939
AK
736 int r;
737
53c07b18 738 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 739 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
740 if (r)
741 goto out;
ad312c7c 742 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
743 if (r)
744 goto out;
ad312c7c 745 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 746 mmu_page_header_cache, 4);
e2dec939
AK
747out:
748 return r;
714b93da
AK
749}
750
751static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
752{
53c07b18
XG
753 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
754 pte_list_desc_cache);
ad312c7c 755 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
756 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
757 mmu_page_header_cache);
714b93da
AK
758}
759
80feb89a 760static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
761{
762 void *p;
763
764 BUG_ON(!mc->nobjs);
765 p = mc->objects[--mc->nobjs];
714b93da
AK
766 return p;
767}
768
53c07b18 769static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 770{
80feb89a 771 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
772}
773
53c07b18 774static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 775{
53c07b18 776 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
777}
778
2032a93d
LJ
779static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
780{
781 if (!sp->role.direct)
782 return sp->gfns[index];
783
784 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
785}
786
787static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
788{
789 if (sp->role.direct)
790 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
791 else
792 sp->gfns[index] = gfn;
793}
794
05da4558 795/*
d4dbf470
TY
796 * Return the pointer to the large page information for a given gfn,
797 * handling slots that are not large page aligned.
05da4558 798 */
d4dbf470
TY
799static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
800 struct kvm_memory_slot *slot,
801 int level)
05da4558
MT
802{
803 unsigned long idx;
804
fb03cb6f 805 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 806 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
807}
808
809static void account_shadowed(struct kvm *kvm, gfn_t gfn)
810{
d25797b2 811 struct kvm_memory_slot *slot;
d4dbf470 812 struct kvm_lpage_info *linfo;
d25797b2 813 int i;
05da4558 814
a1f4d395 815 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
816 for (i = PT_DIRECTORY_LEVEL;
817 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
818 linfo = lpage_info_slot(gfn, slot, i);
819 linfo->write_count += 1;
d25797b2 820 }
332b207d 821 kvm->arch.indirect_shadow_pages++;
05da4558
MT
822}
823
824static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
825{
d25797b2 826 struct kvm_memory_slot *slot;
d4dbf470 827 struct kvm_lpage_info *linfo;
d25797b2 828 int i;
05da4558 829
a1f4d395 830 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
831 for (i = PT_DIRECTORY_LEVEL;
832 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
833 linfo = lpage_info_slot(gfn, slot, i);
834 linfo->write_count -= 1;
835 WARN_ON(linfo->write_count < 0);
d25797b2 836 }
332b207d 837 kvm->arch.indirect_shadow_pages--;
05da4558
MT
838}
839
d25797b2
JR
840static int has_wrprotected_page(struct kvm *kvm,
841 gfn_t gfn,
842 int level)
05da4558 843{
2843099f 844 struct kvm_memory_slot *slot;
d4dbf470 845 struct kvm_lpage_info *linfo;
05da4558 846
a1f4d395 847 slot = gfn_to_memslot(kvm, gfn);
05da4558 848 if (slot) {
d4dbf470
TY
849 linfo = lpage_info_slot(gfn, slot, level);
850 return linfo->write_count;
05da4558
MT
851 }
852
853 return 1;
854}
855
d25797b2 856static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 857{
8f0b1ab6 858 unsigned long page_size;
d25797b2 859 int i, ret = 0;
05da4558 860
8f0b1ab6 861 page_size = kvm_host_page_size(kvm, gfn);
05da4558 862
d25797b2
JR
863 for (i = PT_PAGE_TABLE_LEVEL;
864 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
865 if (page_size >= KVM_HPAGE_SIZE(i))
866 ret = i;
867 else
868 break;
869 }
870
4c2155ce 871 return ret;
05da4558
MT
872}
873
5d163b1c
XG
874static struct kvm_memory_slot *
875gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
876 bool no_dirty_log)
05da4558
MT
877{
878 struct kvm_memory_slot *slot;
5d163b1c
XG
879
880 slot = gfn_to_memslot(vcpu->kvm, gfn);
881 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
882 (no_dirty_log && slot->dirty_bitmap))
883 slot = NULL;
884
885 return slot;
886}
887
888static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
889{
a0a8eaba 890 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
891}
892
893static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
894{
895 int host_level, level, max_level;
05da4558 896
d25797b2
JR
897 host_level = host_mapping_level(vcpu->kvm, large_gfn);
898
899 if (host_level == PT_PAGE_TABLE_LEVEL)
900 return host_level;
901
55dd98c3 902 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
903
904 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
905 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
906 break;
d25797b2
JR
907
908 return level - 1;
05da4558
MT
909}
910
290fc38d 911/*
53c07b18 912 * Pte mapping structures:
cd4a4e53 913 *
53c07b18 914 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 915 *
53c07b18
XG
916 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
917 * pte_list_desc containing more mappings.
53a27b39 918 *
53c07b18 919 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
920 * the spte was not added.
921 *
cd4a4e53 922 */
53c07b18
XG
923static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
924 unsigned long *pte_list)
cd4a4e53 925{
53c07b18 926 struct pte_list_desc *desc;
53a27b39 927 int i, count = 0;
cd4a4e53 928
53c07b18
XG
929 if (!*pte_list) {
930 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
931 *pte_list = (unsigned long)spte;
932 } else if (!(*pte_list & 1)) {
933 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
934 desc = mmu_alloc_pte_list_desc(vcpu);
935 desc->sptes[0] = (u64 *)*pte_list;
d555c333 936 desc->sptes[1] = spte;
53c07b18 937 *pte_list = (unsigned long)desc | 1;
cb16a7b3 938 ++count;
cd4a4e53 939 } else {
53c07b18
XG
940 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
941 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
942 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 943 desc = desc->more;
53c07b18 944 count += PTE_LIST_EXT;
53a27b39 945 }
53c07b18
XG
946 if (desc->sptes[PTE_LIST_EXT-1]) {
947 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
948 desc = desc->more;
949 }
d555c333 950 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 951 ++count;
d555c333 952 desc->sptes[i] = spte;
cd4a4e53 953 }
53a27b39 954 return count;
cd4a4e53
AK
955}
956
53c07b18
XG
957static void
958pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
959 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
960{
961 int j;
962
53c07b18 963 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 964 ;
d555c333
AK
965 desc->sptes[i] = desc->sptes[j];
966 desc->sptes[j] = NULL;
cd4a4e53
AK
967 if (j != 0)
968 return;
969 if (!prev_desc && !desc->more)
53c07b18 970 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
971 else
972 if (prev_desc)
973 prev_desc->more = desc->more;
974 else
53c07b18
XG
975 *pte_list = (unsigned long)desc->more | 1;
976 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
977}
978
53c07b18 979static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 980{
53c07b18
XG
981 struct pte_list_desc *desc;
982 struct pte_list_desc *prev_desc;
cd4a4e53
AK
983 int i;
984
53c07b18
XG
985 if (!*pte_list) {
986 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 987 BUG();
53c07b18
XG
988 } else if (!(*pte_list & 1)) {
989 rmap_printk("pte_list_remove: %p 1->0\n", spte);
990 if ((u64 *)*pte_list != spte) {
991 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
992 BUG();
993 }
53c07b18 994 *pte_list = 0;
cd4a4e53 995 } else {
53c07b18
XG
996 rmap_printk("pte_list_remove: %p many->many\n", spte);
997 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
998 prev_desc = NULL;
999 while (desc) {
53c07b18 1000 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 1001 if (desc->sptes[i] == spte) {
53c07b18 1002 pte_list_desc_remove_entry(pte_list,
714b93da 1003 desc, i,
cd4a4e53
AK
1004 prev_desc);
1005 return;
1006 }
1007 prev_desc = desc;
1008 desc = desc->more;
1009 }
53c07b18 1010 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1011 BUG();
1012 }
1013}
1014
67052b35
XG
1015typedef void (*pte_list_walk_fn) (u64 *spte);
1016static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1017{
1018 struct pte_list_desc *desc;
1019 int i;
1020
1021 if (!*pte_list)
1022 return;
1023
1024 if (!(*pte_list & 1))
1025 return fn((u64 *)*pte_list);
1026
1027 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1028 while (desc) {
1029 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1030 fn(desc->sptes[i]);
1031 desc = desc->more;
1032 }
1033}
1034
9373e2c0 1035static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 1036 struct kvm_memory_slot *slot)
53c07b18 1037{
77d11309 1038 unsigned long idx;
53c07b18 1039
77d11309 1040 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1041 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1042}
1043
9b9b1492
TY
1044/*
1045 * Take gfn and return the reverse mapping to it.
1046 */
1047static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1048{
1049 struct kvm_memory_slot *slot;
1050
1051 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 1052 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
1053}
1054
f759e2b4
XG
1055static bool rmap_can_add(struct kvm_vcpu *vcpu)
1056{
1057 struct kvm_mmu_memory_cache *cache;
1058
1059 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1060 return mmu_memory_cache_free_objects(cache);
1061}
1062
53c07b18
XG
1063static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1064{
1065 struct kvm_mmu_page *sp;
1066 unsigned long *rmapp;
1067
53c07b18
XG
1068 sp = page_header(__pa(spte));
1069 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1070 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1071 return pte_list_add(vcpu, spte, rmapp);
1072}
1073
53c07b18
XG
1074static void rmap_remove(struct kvm *kvm, u64 *spte)
1075{
1076 struct kvm_mmu_page *sp;
1077 gfn_t gfn;
1078 unsigned long *rmapp;
1079
1080 sp = page_header(__pa(spte));
1081 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1082 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1083 pte_list_remove(spte, rmapp);
1084}
1085
1e3f42f0
TY
1086/*
1087 * Used by the following functions to iterate through the sptes linked by a
1088 * rmap. All fields are private and not assumed to be used outside.
1089 */
1090struct rmap_iterator {
1091 /* private fields */
1092 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1093 int pos; /* index of the sptep */
1094};
1095
1096/*
1097 * Iteration must be started by this function. This should also be used after
1098 * removing/dropping sptes from the rmap link because in such cases the
1099 * information in the itererator may not be valid.
1100 *
1101 * Returns sptep if found, NULL otherwise.
1102 */
1103static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1104{
1105 if (!rmap)
1106 return NULL;
1107
1108 if (!(rmap & 1)) {
1109 iter->desc = NULL;
1110 return (u64 *)rmap;
1111 }
1112
1113 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1114 iter->pos = 0;
1115 return iter->desc->sptes[iter->pos];
1116}
1117
1118/*
1119 * Must be used with a valid iterator: e.g. after rmap_get_first().
1120 *
1121 * Returns sptep if found, NULL otherwise.
1122 */
1123static u64 *rmap_get_next(struct rmap_iterator *iter)
1124{
1125 if (iter->desc) {
1126 if (iter->pos < PTE_LIST_EXT - 1) {
1127 u64 *sptep;
1128
1129 ++iter->pos;
1130 sptep = iter->desc->sptes[iter->pos];
1131 if (sptep)
1132 return sptep;
1133 }
1134
1135 iter->desc = iter->desc->more;
1136
1137 if (iter->desc) {
1138 iter->pos = 0;
1139 /* desc->sptes[0] cannot be NULL */
1140 return iter->desc->sptes[iter->pos];
1141 }
1142 }
1143
1144 return NULL;
1145}
1146
c3707958 1147static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1148{
1df9f2dc 1149 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1150 rmap_remove(kvm, sptep);
be38d276
AK
1151}
1152
8e22f955
XG
1153
1154static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1155{
1156 if (is_large_pte(*sptep)) {
1157 WARN_ON(page_header(__pa(sptep))->role.level ==
1158 PT_PAGE_TABLE_LEVEL);
1159 drop_spte(kvm, sptep);
1160 --kvm->stat.lpages;
1161 return true;
1162 }
1163
1164 return false;
1165}
1166
1167static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1168{
1169 if (__drop_large_spte(vcpu->kvm, sptep))
1170 kvm_flush_remote_tlbs(vcpu->kvm);
1171}
1172
1173/*
49fde340 1174 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1175 * spte write-protection is caused by protecting shadow page table.
49fde340
XG
1176 *
1177 * Note: write protection is difference between drity logging and spte
1178 * protection:
1179 * - for dirty logging, the spte can be set to writable at anytime if
1180 * its dirty bitmap is properly set.
1181 * - for spte protection, the spte can be writable only after unsync-ing
1182 * shadow page.
8e22f955 1183 *
c126d94f 1184 * Return true if tlb need be flushed.
8e22f955 1185 */
c126d94f 1186static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1187{
1188 u64 spte = *sptep;
1189
49fde340
XG
1190 if (!is_writable_pte(spte) &&
1191 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1192 return false;
1193
1194 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1195
49fde340
XG
1196 if (pt_protect)
1197 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1198 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1199
c126d94f 1200 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1201}
1202
49fde340 1203static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1204 bool pt_protect)
98348e95 1205{
1e3f42f0
TY
1206 u64 *sptep;
1207 struct rmap_iterator iter;
d13bc5b5 1208 bool flush = false;
374cbac0 1209
1e3f42f0
TY
1210 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1211 BUG_ON(!(*sptep & PT_PRESENT_MASK));
a0ed4607 1212
c126d94f 1213 flush |= spte_write_protect(kvm, sptep, pt_protect);
d13bc5b5 1214 sptep = rmap_get_next(&iter);
374cbac0 1215 }
855149aa 1216
d13bc5b5 1217 return flush;
a0ed4607
TY
1218}
1219
5dc99b23
TY
1220/**
1221 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1222 * @kvm: kvm instance
1223 * @slot: slot to protect
1224 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1225 * @mask: indicates which pages we should protect
1226 *
1227 * Used when we do not need to care about huge page mappings: e.g. during dirty
1228 * logging we do not have any such mappings.
1229 */
1230void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1231 struct kvm_memory_slot *slot,
1232 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1233{
1234 unsigned long *rmapp;
a0ed4607 1235
5dc99b23 1236 while (mask) {
65fbe37c
TY
1237 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1238 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1239 __rmap_write_protect(kvm, rmapp, false);
05da4558 1240
5dc99b23
TY
1241 /* clear the first set bit */
1242 mask &= mask - 1;
1243 }
374cbac0
AK
1244}
1245
2f84569f 1246static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1247{
1248 struct kvm_memory_slot *slot;
5dc99b23
TY
1249 unsigned long *rmapp;
1250 int i;
2f84569f 1251 bool write_protected = false;
95d4c16c
TY
1252
1253 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1254
1255 for (i = PT_PAGE_TABLE_LEVEL;
1256 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1257 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1258 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1259 }
1260
1261 return write_protected;
95d4c16c
TY
1262}
1263
8a8365c5 1264static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1265 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1266{
1e3f42f0
TY
1267 u64 *sptep;
1268 struct rmap_iterator iter;
e930bffe
AA
1269 int need_tlb_flush = 0;
1270
1e3f42f0
TY
1271 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1272 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1273 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1274
1275 drop_spte(kvm, sptep);
e930bffe
AA
1276 need_tlb_flush = 1;
1277 }
1e3f42f0 1278
e930bffe
AA
1279 return need_tlb_flush;
1280}
1281
8a8365c5 1282static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1283 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1284{
1e3f42f0
TY
1285 u64 *sptep;
1286 struct rmap_iterator iter;
3da0dd43 1287 int need_flush = 0;
1e3f42f0 1288 u64 new_spte;
3da0dd43
IE
1289 pte_t *ptep = (pte_t *)data;
1290 pfn_t new_pfn;
1291
1292 WARN_ON(pte_huge(*ptep));
1293 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1294
1295 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1296 BUG_ON(!is_shadow_present_pte(*sptep));
1297 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1298
3da0dd43 1299 need_flush = 1;
1e3f42f0 1300
3da0dd43 1301 if (pte_write(*ptep)) {
1e3f42f0
TY
1302 drop_spte(kvm, sptep);
1303 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1304 } else {
1e3f42f0 1305 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1306 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1307
1308 new_spte &= ~PT_WRITABLE_MASK;
1309 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1310 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1311
1312 mmu_spte_clear_track_bits(sptep);
1313 mmu_spte_set(sptep, new_spte);
1314 sptep = rmap_get_next(&iter);
3da0dd43
IE
1315 }
1316 }
1e3f42f0 1317
3da0dd43
IE
1318 if (need_flush)
1319 kvm_flush_remote_tlbs(kvm);
1320
1321 return 0;
1322}
1323
84504ef3
TY
1324static int kvm_handle_hva_range(struct kvm *kvm,
1325 unsigned long start,
1326 unsigned long end,
1327 unsigned long data,
1328 int (*handler)(struct kvm *kvm,
1329 unsigned long *rmapp,
048212d0 1330 struct kvm_memory_slot *slot,
84504ef3 1331 unsigned long data))
e930bffe 1332{
be6ba0f0 1333 int j;
f395302e 1334 int ret = 0;
bc6678a3 1335 struct kvm_memslots *slots;
be6ba0f0 1336 struct kvm_memory_slot *memslot;
bc6678a3 1337
90d83dc3 1338 slots = kvm_memslots(kvm);
e930bffe 1339
be6ba0f0 1340 kvm_for_each_memslot(memslot, slots) {
84504ef3 1341 unsigned long hva_start, hva_end;
bcd3ef58 1342 gfn_t gfn_start, gfn_end;
e930bffe 1343
84504ef3
TY
1344 hva_start = max(start, memslot->userspace_addr);
1345 hva_end = min(end, memslot->userspace_addr +
1346 (memslot->npages << PAGE_SHIFT));
1347 if (hva_start >= hva_end)
1348 continue;
1349 /*
1350 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1351 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1352 */
bcd3ef58 1353 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1354 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1355
bcd3ef58
TY
1356 for (j = PT_PAGE_TABLE_LEVEL;
1357 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1358 unsigned long idx, idx_end;
1359 unsigned long *rmapp;
d4dbf470 1360
bcd3ef58
TY
1361 /*
1362 * {idx(page_j) | page_j intersects with
1363 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1364 */
1365 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1366 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1367
bcd3ef58 1368 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1369
bcd3ef58
TY
1370 for (; idx <= idx_end; ++idx)
1371 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1372 }
1373 }
1374
f395302e 1375 return ret;
e930bffe
AA
1376}
1377
84504ef3
TY
1378static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1379 unsigned long data,
1380 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1381 struct kvm_memory_slot *slot,
84504ef3
TY
1382 unsigned long data))
1383{
1384 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1385}
1386
1387int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1388{
3da0dd43
IE
1389 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1390}
1391
b3ae2096
TY
1392int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1393{
1394 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1395}
1396
3da0dd43
IE
1397void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1398{
8a8365c5 1399 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1400}
1401
8a8365c5 1402static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1403 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1404{
1e3f42f0 1405 u64 *sptep;
79f702a6 1406 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1407 int young = 0;
1408
6316e1c8 1409 /*
3f6d8c8a
XH
1410 * In case of absence of EPT Access and Dirty Bits supports,
1411 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1412 * an EPT mapping, and clearing it if it does. On the next access,
1413 * a new EPT mapping will be established.
1414 * This has some overhead, but not as much as the cost of swapping
1415 * out actively used pages or breaking up actively used hugepages.
1416 */
f395302e
TY
1417 if (!shadow_accessed_mask) {
1418 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1419 goto out;
1420 }
534e38b4 1421
1e3f42f0
TY
1422 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1423 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1424 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1425
3f6d8c8a 1426 if (*sptep & shadow_accessed_mask) {
e930bffe 1427 young = 1;
3f6d8c8a
XH
1428 clear_bit((ffs(shadow_accessed_mask) - 1),
1429 (unsigned long *)sptep);
e930bffe 1430 }
e930bffe 1431 }
f395302e
TY
1432out:
1433 /* @data has hva passed to kvm_age_hva(). */
1434 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1435 return young;
1436}
1437
8ee53820 1438static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1439 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1440{
1e3f42f0
TY
1441 u64 *sptep;
1442 struct rmap_iterator iter;
8ee53820
AA
1443 int young = 0;
1444
1445 /*
1446 * If there's no access bit in the secondary pte set by the
1447 * hardware it's up to gup-fast/gup to set the access bit in
1448 * the primary pte or in the page structure.
1449 */
1450 if (!shadow_accessed_mask)
1451 goto out;
1452
1e3f42f0
TY
1453 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1454 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1455 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1456
3f6d8c8a 1457 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1458 young = 1;
1459 break;
1460 }
8ee53820
AA
1461 }
1462out:
1463 return young;
1464}
1465
53a27b39
MT
1466#define RMAP_RECYCLE_THRESHOLD 1000
1467
852e3c19 1468static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1469{
1470 unsigned long *rmapp;
852e3c19
JR
1471 struct kvm_mmu_page *sp;
1472
1473 sp = page_header(__pa(spte));
53a27b39 1474
852e3c19 1475 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1476
048212d0 1477 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1478 kvm_flush_remote_tlbs(vcpu->kvm);
1479}
1480
e930bffe
AA
1481int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1482{
f395302e 1483 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1484}
1485
8ee53820
AA
1486int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1487{
1488 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1489}
1490
d6c69ee9 1491#ifdef MMU_DEBUG
47ad8e68 1492static int is_empty_shadow_page(u64 *spt)
6aa8b732 1493{
139bdb2d
AK
1494 u64 *pos;
1495 u64 *end;
1496
47ad8e68 1497 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1498 if (is_shadow_present_pte(*pos)) {
b8688d51 1499 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1500 pos, *pos);
6aa8b732 1501 return 0;
139bdb2d 1502 }
6aa8b732
AK
1503 return 1;
1504}
d6c69ee9 1505#endif
6aa8b732 1506
45221ab6
DH
1507/*
1508 * This value is the sum of all of the kvm instances's
1509 * kvm->arch.n_used_mmu_pages values. We need a global,
1510 * aggregate version in order to make the slab shrinker
1511 * faster
1512 */
1513static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1514{
1515 kvm->arch.n_used_mmu_pages += nr;
1516 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1517}
1518
834be0d8 1519static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1520{
4db35314 1521 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1522 hlist_del(&sp->hash_link);
bd4c86ea
XG
1523 list_del(&sp->link);
1524 free_page((unsigned long)sp->spt);
834be0d8
GN
1525 if (!sp->role.direct)
1526 free_page((unsigned long)sp->gfns);
e8ad9a70 1527 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1528}
1529
cea0f0e7
AK
1530static unsigned kvm_page_table_hashfn(gfn_t gfn)
1531{
1ae0a13d 1532 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1533}
1534
714b93da 1535static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1536 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1537{
cea0f0e7
AK
1538 if (!parent_pte)
1539 return;
cea0f0e7 1540
67052b35 1541 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1542}
1543
4db35314 1544static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1545 u64 *parent_pte)
1546{
67052b35 1547 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1548}
1549
bcdd9a93
XG
1550static void drop_parent_pte(struct kvm_mmu_page *sp,
1551 u64 *parent_pte)
1552{
1553 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1554 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1555}
1556
67052b35
XG
1557static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1558 u64 *parent_pte, int direct)
ad8cfbe3 1559{
67052b35 1560 struct kvm_mmu_page *sp;
7ddca7e4 1561
80feb89a
TY
1562 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1563 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1564 if (!direct)
80feb89a 1565 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1566 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1567
1568 /*
1569 * The active_mmu_pages list is the FIFO list, do not move the
1570 * page until it is zapped. kvm_zap_obsolete_pages depends on
1571 * this feature. See the comments in kvm_zap_obsolete_pages().
1572 */
67052b35 1573 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1574 sp->parent_ptes = 0;
1575 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1576 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1577 return sp;
ad8cfbe3
MT
1578}
1579
67052b35 1580static void mark_unsync(u64 *spte);
1047df1f 1581static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1582{
67052b35 1583 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1584}
1585
67052b35 1586static void mark_unsync(u64 *spte)
0074ff63 1587{
67052b35 1588 struct kvm_mmu_page *sp;
1047df1f 1589 unsigned int index;
0074ff63 1590
67052b35 1591 sp = page_header(__pa(spte));
1047df1f
XG
1592 index = spte - sp->spt;
1593 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1594 return;
1047df1f 1595 if (sp->unsync_children++)
0074ff63 1596 return;
1047df1f 1597 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1598}
1599
e8bc217a 1600static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1601 struct kvm_mmu_page *sp)
e8bc217a
MT
1602{
1603 return 1;
1604}
1605
a7052897
MT
1606static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1607{
1608}
1609
0f53b5b1
XG
1610static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1611 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1612 const void *pte)
0f53b5b1
XG
1613{
1614 WARN_ON(1);
1615}
1616
60c8aec6
MT
1617#define KVM_PAGE_ARRAY_NR 16
1618
1619struct kvm_mmu_pages {
1620 struct mmu_page_and_offset {
1621 struct kvm_mmu_page *sp;
1622 unsigned int idx;
1623 } page[KVM_PAGE_ARRAY_NR];
1624 unsigned int nr;
1625};
1626
cded19f3
HE
1627static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1628 int idx)
4731d4c7 1629{
60c8aec6 1630 int i;
4731d4c7 1631
60c8aec6
MT
1632 if (sp->unsync)
1633 for (i=0; i < pvec->nr; i++)
1634 if (pvec->page[i].sp == sp)
1635 return 0;
1636
1637 pvec->page[pvec->nr].sp = sp;
1638 pvec->page[pvec->nr].idx = idx;
1639 pvec->nr++;
1640 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1641}
1642
1643static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1644 struct kvm_mmu_pages *pvec)
1645{
1646 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1647
37178b8b 1648 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1649 struct kvm_mmu_page *child;
4731d4c7
MT
1650 u64 ent = sp->spt[i];
1651
7a8f1a74
XG
1652 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1653 goto clear_child_bitmap;
1654
1655 child = page_header(ent & PT64_BASE_ADDR_MASK);
1656
1657 if (child->unsync_children) {
1658 if (mmu_pages_add(pvec, child, i))
1659 return -ENOSPC;
1660
1661 ret = __mmu_unsync_walk(child, pvec);
1662 if (!ret)
1663 goto clear_child_bitmap;
1664 else if (ret > 0)
1665 nr_unsync_leaf += ret;
1666 else
1667 return ret;
1668 } else if (child->unsync) {
1669 nr_unsync_leaf++;
1670 if (mmu_pages_add(pvec, child, i))
1671 return -ENOSPC;
1672 } else
1673 goto clear_child_bitmap;
1674
1675 continue;
1676
1677clear_child_bitmap:
1678 __clear_bit(i, sp->unsync_child_bitmap);
1679 sp->unsync_children--;
1680 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1681 }
1682
4731d4c7 1683
60c8aec6
MT
1684 return nr_unsync_leaf;
1685}
1686
1687static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1688 struct kvm_mmu_pages *pvec)
1689{
1690 if (!sp->unsync_children)
1691 return 0;
1692
1693 mmu_pages_add(pvec, sp, 0);
1694 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1695}
1696
4731d4c7
MT
1697static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1698{
1699 WARN_ON(!sp->unsync);
5e1b3ddb 1700 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1701 sp->unsync = 0;
1702 --kvm->stat.mmu_unsync;
1703}
1704
7775834a
XG
1705static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1706 struct list_head *invalid_list);
1707static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1708 struct list_head *invalid_list);
4731d4c7 1709
f34d251d
XG
1710/*
1711 * NOTE: we should pay more attention on the zapped-obsolete page
1712 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1713 * since it has been deleted from active_mmu_pages but still can be found
1714 * at hast list.
1715 *
1716 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1717 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1718 * all the obsolete pages.
1719 */
1044b030
TY
1720#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1721 hlist_for_each_entry(_sp, \
1722 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1723 if ((_sp)->gfn != (_gfn)) {} else
1724
1725#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1726 for_each_gfn_sp(_kvm, _sp, _gfn) \
1727 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1728
f918b443 1729/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1730static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1731 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1732{
5b7e0102 1733 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1734 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1735 return 1;
1736 }
1737
f918b443 1738 if (clear_unsync)
1d9dc7e0 1739 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1740
a4a8e6f7 1741 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1742 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1743 return 1;
1744 }
1745
1746 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1747 return 0;
1748}
1749
1d9dc7e0
XG
1750static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1751 struct kvm_mmu_page *sp)
1752{
d98ba053 1753 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1754 int ret;
1755
d98ba053 1756 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1757 if (ret)
d98ba053
XG
1758 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1759
1d9dc7e0
XG
1760 return ret;
1761}
1762
e37fa785
XG
1763#ifdef CONFIG_KVM_MMU_AUDIT
1764#include "mmu_audit.c"
1765#else
1766static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1767static void mmu_audit_disable(void) { }
1768#endif
1769
d98ba053
XG
1770static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1771 struct list_head *invalid_list)
1d9dc7e0 1772{
d98ba053 1773 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1774}
1775
9f1a122f
XG
1776/* @gfn should be write-protected at the call site */
1777static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1778{
9f1a122f 1779 struct kvm_mmu_page *s;
d98ba053 1780 LIST_HEAD(invalid_list);
9f1a122f
XG
1781 bool flush = false;
1782
b67bfe0d 1783 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1784 if (!s->unsync)
9f1a122f
XG
1785 continue;
1786
1787 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1788 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1789 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1790 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1791 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1792 continue;
1793 }
9f1a122f
XG
1794 flush = true;
1795 }
1796
d98ba053 1797 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1798 if (flush)
1799 kvm_mmu_flush_tlb(vcpu);
1800}
1801
60c8aec6
MT
1802struct mmu_page_path {
1803 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1804 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1805};
1806
60c8aec6
MT
1807#define for_each_sp(pvec, sp, parents, i) \
1808 for (i = mmu_pages_next(&pvec, &parents, -1), \
1809 sp = pvec.page[i].sp; \
1810 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1811 i = mmu_pages_next(&pvec, &parents, i))
1812
cded19f3
HE
1813static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1814 struct mmu_page_path *parents,
1815 int i)
60c8aec6
MT
1816{
1817 int n;
1818
1819 for (n = i+1; n < pvec->nr; n++) {
1820 struct kvm_mmu_page *sp = pvec->page[n].sp;
1821
1822 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1823 parents->idx[0] = pvec->page[n].idx;
1824 return n;
1825 }
1826
1827 parents->parent[sp->role.level-2] = sp;
1828 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1829 }
1830
1831 return n;
1832}
1833
cded19f3 1834static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1835{
60c8aec6
MT
1836 struct kvm_mmu_page *sp;
1837 unsigned int level = 0;
1838
1839 do {
1840 unsigned int idx = parents->idx[level];
4731d4c7 1841
60c8aec6
MT
1842 sp = parents->parent[level];
1843 if (!sp)
1844 return;
1845
1846 --sp->unsync_children;
1847 WARN_ON((int)sp->unsync_children < 0);
1848 __clear_bit(idx, sp->unsync_child_bitmap);
1849 level++;
1850 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1851}
1852
60c8aec6
MT
1853static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1854 struct mmu_page_path *parents,
1855 struct kvm_mmu_pages *pvec)
4731d4c7 1856{
60c8aec6
MT
1857 parents->parent[parent->role.level-1] = NULL;
1858 pvec->nr = 0;
1859}
4731d4c7 1860
60c8aec6
MT
1861static void mmu_sync_children(struct kvm_vcpu *vcpu,
1862 struct kvm_mmu_page *parent)
1863{
1864 int i;
1865 struct kvm_mmu_page *sp;
1866 struct mmu_page_path parents;
1867 struct kvm_mmu_pages pages;
d98ba053 1868 LIST_HEAD(invalid_list);
60c8aec6
MT
1869
1870 kvm_mmu_pages_init(parent, &parents, &pages);
1871 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1872 bool protected = false;
b1a36821
MT
1873
1874 for_each_sp(pages, sp, parents, i)
1875 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1876
1877 if (protected)
1878 kvm_flush_remote_tlbs(vcpu->kvm);
1879
60c8aec6 1880 for_each_sp(pages, sp, parents, i) {
d98ba053 1881 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1882 mmu_pages_clear_parents(&parents);
1883 }
d98ba053 1884 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1885 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1886 kvm_mmu_pages_init(parent, &parents, &pages);
1887 }
4731d4c7
MT
1888}
1889
c3707958
XG
1890static void init_shadow_page_table(struct kvm_mmu_page *sp)
1891{
1892 int i;
1893
1894 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1895 sp->spt[i] = 0ull;
1896}
1897
a30f47cb
XG
1898static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1899{
1900 sp->write_flooding_count = 0;
1901}
1902
1903static void clear_sp_write_flooding_count(u64 *spte)
1904{
1905 struct kvm_mmu_page *sp = page_header(__pa(spte));
1906
1907 __clear_sp_write_flooding_count(sp);
1908}
1909
5304b8d3
XG
1910static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1911{
1912 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1913}
1914
cea0f0e7
AK
1915static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1916 gfn_t gfn,
1917 gva_t gaddr,
1918 unsigned level,
f6e2c02b 1919 int direct,
41074d07 1920 unsigned access,
f7d9c7b7 1921 u64 *parent_pte)
cea0f0e7
AK
1922{
1923 union kvm_mmu_page_role role;
cea0f0e7 1924 unsigned quadrant;
9f1a122f 1925 struct kvm_mmu_page *sp;
9f1a122f 1926 bool need_sync = false;
cea0f0e7 1927
a770f6f2 1928 role = vcpu->arch.mmu.base_role;
cea0f0e7 1929 role.level = level;
f6e2c02b 1930 role.direct = direct;
84b0c8c6 1931 if (role.direct)
5b7e0102 1932 role.cr4_pae = 0;
41074d07 1933 role.access = access;
c5a78f2b
JR
1934 if (!vcpu->arch.mmu.direct_map
1935 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1936 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1937 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1938 role.quadrant = quadrant;
1939 }
b67bfe0d 1940 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
1941 if (is_obsolete_sp(vcpu->kvm, sp))
1942 continue;
1943
7ae680eb
XG
1944 if (!need_sync && sp->unsync)
1945 need_sync = true;
4731d4c7 1946
7ae680eb
XG
1947 if (sp->role.word != role.word)
1948 continue;
4731d4c7 1949
7ae680eb
XG
1950 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1951 break;
e02aa901 1952
7ae680eb
XG
1953 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1954 if (sp->unsync_children) {
a8eeb04a 1955 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1956 kvm_mmu_mark_parents_unsync(sp);
1957 } else if (sp->unsync)
1958 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1959
a30f47cb 1960 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1961 trace_kvm_mmu_get_page(sp, false);
1962 return sp;
1963 }
dfc5aa00 1964 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1965 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1966 if (!sp)
1967 return sp;
4db35314
AK
1968 sp->gfn = gfn;
1969 sp->role = role;
7ae680eb
XG
1970 hlist_add_head(&sp->hash_link,
1971 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1972 if (!direct) {
b1a36821
MT
1973 if (rmap_write_protect(vcpu->kvm, gfn))
1974 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1975 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1976 kvm_sync_pages(vcpu, gfn);
1977
4731d4c7
MT
1978 account_shadowed(vcpu->kvm, gfn);
1979 }
5304b8d3 1980 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
c3707958 1981 init_shadow_page_table(sp);
f691fe1d 1982 trace_kvm_mmu_get_page(sp, true);
4db35314 1983 return sp;
cea0f0e7
AK
1984}
1985
2d11123a
AK
1986static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1987 struct kvm_vcpu *vcpu, u64 addr)
1988{
1989 iterator->addr = addr;
1990 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1991 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1992
1993 if (iterator->level == PT64_ROOT_LEVEL &&
1994 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1995 !vcpu->arch.mmu.direct_map)
1996 --iterator->level;
1997
2d11123a
AK
1998 if (iterator->level == PT32E_ROOT_LEVEL) {
1999 iterator->shadow_addr
2000 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2001 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2002 --iterator->level;
2003 if (!iterator->shadow_addr)
2004 iterator->level = 0;
2005 }
2006}
2007
2008static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2009{
2010 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2011 return false;
4d88954d 2012
2d11123a
AK
2013 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2014 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2015 return true;
2016}
2017
c2a2ac2b
XG
2018static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2019 u64 spte)
2d11123a 2020{
c2a2ac2b 2021 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2022 iterator->level = 0;
2023 return;
2024 }
2025
c2a2ac2b 2026 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2027 --iterator->level;
2028}
2029
c2a2ac2b
XG
2030static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2031{
2032 return __shadow_walk_next(iterator, *iterator->sptep);
2033}
2034
7a1638ce 2035static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
32ef26a3
AK
2036{
2037 u64 spte;
2038
7a1638ce
YZ
2039 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2040 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2041
24db2734 2042 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
7a1638ce
YZ
2043 shadow_user_mask | shadow_x_mask;
2044
2045 if (accessed)
2046 spte |= shadow_accessed_mask;
24db2734 2047
1df9f2dc 2048 mmu_spte_set(sptep, spte);
32ef26a3
AK
2049}
2050
a357bd22
AK
2051static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2052 unsigned direct_access)
2053{
2054 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2055 struct kvm_mmu_page *child;
2056
2057 /*
2058 * For the direct sp, if the guest pte's dirty bit
2059 * changed form clean to dirty, it will corrupt the
2060 * sp's access: allow writable in the read-only sp,
2061 * so we should update the spte at this point to get
2062 * a new sp with the correct access.
2063 */
2064 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2065 if (child->role.access == direct_access)
2066 return;
2067
bcdd9a93 2068 drop_parent_pte(child, sptep);
a357bd22
AK
2069 kvm_flush_remote_tlbs(vcpu->kvm);
2070 }
2071}
2072
505aef8f 2073static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2074 u64 *spte)
2075{
2076 u64 pte;
2077 struct kvm_mmu_page *child;
2078
2079 pte = *spte;
2080 if (is_shadow_present_pte(pte)) {
505aef8f 2081 if (is_last_spte(pte, sp->role.level)) {
c3707958 2082 drop_spte(kvm, spte);
505aef8f
XG
2083 if (is_large_pte(pte))
2084 --kvm->stat.lpages;
2085 } else {
38e3b2b2 2086 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2087 drop_parent_pte(child, spte);
38e3b2b2 2088 }
505aef8f
XG
2089 return true;
2090 }
2091
2092 if (is_mmio_spte(pte))
ce88decf 2093 mmu_spte_clear_no_track(spte);
c3707958 2094
505aef8f 2095 return false;
38e3b2b2
XG
2096}
2097
90cb0529 2098static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2099 struct kvm_mmu_page *sp)
a436036b 2100{
697fe2e2 2101 unsigned i;
697fe2e2 2102
38e3b2b2
XG
2103 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2104 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2105}
2106
4db35314 2107static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2108{
4db35314 2109 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2110}
2111
31aa2b44 2112static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2113{
1e3f42f0
TY
2114 u64 *sptep;
2115 struct rmap_iterator iter;
a436036b 2116
1e3f42f0
TY
2117 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2118 drop_parent_pte(sp, sptep);
31aa2b44
AK
2119}
2120
60c8aec6 2121static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2122 struct kvm_mmu_page *parent,
2123 struct list_head *invalid_list)
4731d4c7 2124{
60c8aec6
MT
2125 int i, zapped = 0;
2126 struct mmu_page_path parents;
2127 struct kvm_mmu_pages pages;
4731d4c7 2128
60c8aec6 2129 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2130 return 0;
60c8aec6
MT
2131
2132 kvm_mmu_pages_init(parent, &parents, &pages);
2133 while (mmu_unsync_walk(parent, &pages)) {
2134 struct kvm_mmu_page *sp;
2135
2136 for_each_sp(pages, sp, parents, i) {
7775834a 2137 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2138 mmu_pages_clear_parents(&parents);
77662e00 2139 zapped++;
60c8aec6 2140 }
60c8aec6
MT
2141 kvm_mmu_pages_init(parent, &parents, &pages);
2142 }
2143
2144 return zapped;
4731d4c7
MT
2145}
2146
7775834a
XG
2147static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2148 struct list_head *invalid_list)
31aa2b44 2149{
4731d4c7 2150 int ret;
f691fe1d 2151
7775834a 2152 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2153 ++kvm->stat.mmu_shadow_zapped;
7775834a 2154 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2155 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2156 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2157
f6e2c02b 2158 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2159 unaccount_shadowed(kvm, sp->gfn);
5304b8d3 2160
4731d4c7
MT
2161 if (sp->unsync)
2162 kvm_unlink_unsync_page(kvm, sp);
4db35314 2163 if (!sp->root_count) {
54a4f023
GJ
2164 /* Count self */
2165 ret++;
7775834a 2166 list_move(&sp->link, invalid_list);
aa6bd187 2167 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2168 } else {
5b5c6a5a 2169 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2170
2171 /*
2172 * The obsolete pages can not be used on any vcpus.
2173 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2174 */
2175 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2176 kvm_reload_remote_mmus(kvm);
2e53d63a 2177 }
7775834a
XG
2178
2179 sp->role.invalid = 1;
4731d4c7 2180 return ret;
a436036b
AK
2181}
2182
7775834a
XG
2183static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2184 struct list_head *invalid_list)
2185{
945315b9 2186 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2187
2188 if (list_empty(invalid_list))
2189 return;
2190
c142786c
AK
2191 /*
2192 * wmb: make sure everyone sees our modifications to the page tables
2193 * rmb: make sure we see changes to vcpu->mode
2194 */
2195 smp_mb();
4f022648 2196
c142786c
AK
2197 /*
2198 * Wait for all vcpus to exit guest mode and/or lockless shadow
2199 * page table walks.
2200 */
2201 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2202
945315b9 2203 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2204 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2205 kvm_mmu_free_page(sp);
945315b9 2206 }
7775834a
XG
2207}
2208
5da59607
TY
2209static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2210 struct list_head *invalid_list)
2211{
2212 struct kvm_mmu_page *sp;
2213
2214 if (list_empty(&kvm->arch.active_mmu_pages))
2215 return false;
2216
2217 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2218 struct kvm_mmu_page, link);
2219 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2220
2221 return true;
2222}
2223
82ce2c96
IE
2224/*
2225 * Changing the number of mmu pages allocated to the vm
49d5ca26 2226 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2227 */
49d5ca26 2228void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2229{
d98ba053 2230 LIST_HEAD(invalid_list);
82ce2c96 2231
b34cb590
TY
2232 spin_lock(&kvm->mmu_lock);
2233
49d5ca26 2234 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2235 /* Need to free some mmu pages to achieve the goal. */
2236 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2237 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2238 break;
82ce2c96 2239
aa6bd187 2240 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2241 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2242 }
82ce2c96 2243
49d5ca26 2244 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2245
2246 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2247}
2248
1cb3f3ae 2249int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2250{
4db35314 2251 struct kvm_mmu_page *sp;
d98ba053 2252 LIST_HEAD(invalid_list);
a436036b
AK
2253 int r;
2254
9ad17b10 2255 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2256 r = 0;
1cb3f3ae 2257 spin_lock(&kvm->mmu_lock);
b67bfe0d 2258 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2259 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2260 sp->role.word);
2261 r = 1;
f41d335a 2262 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2263 }
d98ba053 2264 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2265 spin_unlock(&kvm->mmu_lock);
2266
a436036b 2267 return r;
cea0f0e7 2268}
1cb3f3ae 2269EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2270
74be52e3
SY
2271/*
2272 * The function is based on mtrr_type_lookup() in
2273 * arch/x86/kernel/cpu/mtrr/generic.c
2274 */
2275static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2276 u64 start, u64 end)
2277{
2278 int i;
2279 u64 base, mask;
2280 u8 prev_match, curr_match;
2281 int num_var_ranges = KVM_NR_VAR_MTRR;
2282
2283 if (!mtrr_state->enabled)
2284 return 0xFF;
2285
2286 /* Make end inclusive end, instead of exclusive */
2287 end--;
2288
2289 /* Look in fixed ranges. Just return the type as per start */
2290 if (mtrr_state->have_fixed && (start < 0x100000)) {
2291 int idx;
2292
2293 if (start < 0x80000) {
2294 idx = 0;
2295 idx += (start >> 16);
2296 return mtrr_state->fixed_ranges[idx];
2297 } else if (start < 0xC0000) {
2298 idx = 1 * 8;
2299 idx += ((start - 0x80000) >> 14);
2300 return mtrr_state->fixed_ranges[idx];
2301 } else if (start < 0x1000000) {
2302 idx = 3 * 8;
2303 idx += ((start - 0xC0000) >> 12);
2304 return mtrr_state->fixed_ranges[idx];
2305 }
2306 }
2307
2308 /*
2309 * Look in variable ranges
2310 * Look of multiple ranges matching this address and pick type
2311 * as per MTRR precedence
2312 */
2313 if (!(mtrr_state->enabled & 2))
2314 return mtrr_state->def_type;
2315
2316 prev_match = 0xFF;
2317 for (i = 0; i < num_var_ranges; ++i) {
2318 unsigned short start_state, end_state;
2319
2320 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2321 continue;
2322
2323 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2324 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2325 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2326 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2327
2328 start_state = ((start & mask) == (base & mask));
2329 end_state = ((end & mask) == (base & mask));
2330 if (start_state != end_state)
2331 return 0xFE;
2332
2333 if ((start & mask) != (base & mask))
2334 continue;
2335
2336 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2337 if (prev_match == 0xFF) {
2338 prev_match = curr_match;
2339 continue;
2340 }
2341
2342 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2343 curr_match == MTRR_TYPE_UNCACHABLE)
2344 return MTRR_TYPE_UNCACHABLE;
2345
2346 if ((prev_match == MTRR_TYPE_WRBACK &&
2347 curr_match == MTRR_TYPE_WRTHROUGH) ||
2348 (prev_match == MTRR_TYPE_WRTHROUGH &&
2349 curr_match == MTRR_TYPE_WRBACK)) {
2350 prev_match = MTRR_TYPE_WRTHROUGH;
2351 curr_match = MTRR_TYPE_WRTHROUGH;
2352 }
2353
2354 if (prev_match != curr_match)
2355 return MTRR_TYPE_UNCACHABLE;
2356 }
2357
2358 if (prev_match != 0xFF)
2359 return prev_match;
2360
2361 return mtrr_state->def_type;
2362}
2363
4b12f0de 2364u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2365{
2366 u8 mtrr;
2367
2368 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2369 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2370 if (mtrr == 0xfe || mtrr == 0xff)
2371 mtrr = MTRR_TYPE_WRBACK;
2372 return mtrr;
2373}
4b12f0de 2374EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2375
9cf5cf5a
XG
2376static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2377{
2378 trace_kvm_mmu_unsync_page(sp);
2379 ++vcpu->kvm->stat.mmu_unsync;
2380 sp->unsync = 1;
2381
2382 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2383}
2384
2385static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2386{
4731d4c7 2387 struct kvm_mmu_page *s;
9cf5cf5a 2388
b67bfe0d 2389 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2390 if (s->unsync)
4731d4c7 2391 continue;
9cf5cf5a
XG
2392 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2393 __kvm_unsync_page(vcpu, s);
4731d4c7 2394 }
4731d4c7
MT
2395}
2396
2397static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2398 bool can_unsync)
2399{
9cf5cf5a 2400 struct kvm_mmu_page *s;
9cf5cf5a
XG
2401 bool need_unsync = false;
2402
b67bfe0d 2403 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2404 if (!can_unsync)
2405 return 1;
2406
9cf5cf5a 2407 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2408 return 1;
9cf5cf5a 2409
9bb4f6b1 2410 if (!s->unsync)
9cf5cf5a 2411 need_unsync = true;
4731d4c7 2412 }
9cf5cf5a
XG
2413 if (need_unsync)
2414 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2415 return 0;
2416}
2417
d555c333 2418static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2419 unsigned pte_access, int level,
c2d0ee46 2420 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2421 bool can_unsync, bool host_writable)
1c4f1fd6 2422{
6e7d0354 2423 u64 spte;
1e73f9dd 2424 int ret = 0;
64d4d521 2425
f2fd125d 2426 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
ce88decf
XG
2427 return 0;
2428
982c2565 2429 spte = PT_PRESENT_MASK;
947da538 2430 if (!speculative)
3201b5d9 2431 spte |= shadow_accessed_mask;
640d9b0d 2432
7b52345e
SY
2433 if (pte_access & ACC_EXEC_MASK)
2434 spte |= shadow_x_mask;
2435 else
2436 spte |= shadow_nx_mask;
49fde340 2437
1c4f1fd6 2438 if (pte_access & ACC_USER_MASK)
7b52345e 2439 spte |= shadow_user_mask;
49fde340 2440
852e3c19 2441 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2442 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2443 if (tdp_enabled)
4b12f0de
SY
2444 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2445 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2446
9bdbba13 2447 if (host_writable)
1403283a 2448 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2449 else
2450 pte_access &= ~ACC_WRITE_MASK;
1403283a 2451
35149e21 2452 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2453
c2288505 2454 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2455
c2193463 2456 /*
7751babd
XG
2457 * Other vcpu creates new sp in the window between
2458 * mapping_level() and acquiring mmu-lock. We can
2459 * allow guest to retry the access, the mapping can
2460 * be fixed if guest refault.
c2193463 2461 */
852e3c19 2462 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2463 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2464 goto done;
38187c83 2465
49fde340 2466 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2467
ecc5589f
MT
2468 /*
2469 * Optimization: for pte sync, if spte was writable the hash
2470 * lookup is unnecessary (and expensive). Write protection
2471 * is responsibility of mmu_get_page / kvm_sync_page.
2472 * Same reasoning can be applied to dirty page accounting.
2473 */
8dae4445 2474 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2475 goto set_pte;
2476
4731d4c7 2477 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2478 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2479 __func__, gfn);
1e73f9dd 2480 ret = 1;
1c4f1fd6 2481 pte_access &= ~ACC_WRITE_MASK;
49fde340 2482 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2483 }
2484 }
2485
1c4f1fd6
AK
2486 if (pte_access & ACC_WRITE_MASK)
2487 mark_page_dirty(vcpu->kvm, gfn);
2488
38187c83 2489set_pte:
6e7d0354 2490 if (mmu_spte_update(sptep, spte))
b330aa0c 2491 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2492done:
1e73f9dd
MT
2493 return ret;
2494}
2495
d555c333 2496static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2497 unsigned pte_access, int write_fault, int *emulate,
2498 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2499 bool host_writable)
1e73f9dd
MT
2500{
2501 int was_rmapped = 0;
53a27b39 2502 int rmap_count;
1e73f9dd 2503
f7616203
XG
2504 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2505 *sptep, write_fault, gfn);
1e73f9dd 2506
d555c333 2507 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2508 /*
2509 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2510 * the parent of the now unreachable PTE.
2511 */
852e3c19
JR
2512 if (level > PT_PAGE_TABLE_LEVEL &&
2513 !is_large_pte(*sptep)) {
1e73f9dd 2514 struct kvm_mmu_page *child;
d555c333 2515 u64 pte = *sptep;
1e73f9dd
MT
2516
2517 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2518 drop_parent_pte(child, sptep);
3be2264b 2519 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2520 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2521 pgprintk("hfn old %llx new %llx\n",
d555c333 2522 spte_to_pfn(*sptep), pfn);
c3707958 2523 drop_spte(vcpu->kvm, sptep);
91546356 2524 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2525 } else
2526 was_rmapped = 1;
1e73f9dd 2527 }
852e3c19 2528
c2288505
XG
2529 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2530 true, host_writable)) {
1e73f9dd 2531 if (write_fault)
b90a0e6c 2532 *emulate = 1;
5304efde 2533 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2534 }
1e73f9dd 2535
ce88decf
XG
2536 if (unlikely(is_mmio_spte(*sptep) && emulate))
2537 *emulate = 1;
2538
d555c333 2539 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2540 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2541 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2542 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2543 *sptep, sptep);
d555c333 2544 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2545 ++vcpu->kvm->stat.lpages;
2546
ffb61bb3 2547 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2548 if (!was_rmapped) {
2549 rmap_count = rmap_add(vcpu, sptep, gfn);
2550 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2551 rmap_recycle(vcpu, sptep, gfn);
2552 }
1c4f1fd6 2553 }
cb9aaa30 2554
f3ac1a4b 2555 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2556}
2557
957ed9ef
XG
2558static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2559 bool no_dirty_log)
2560{
2561 struct kvm_memory_slot *slot;
957ed9ef 2562
5d163b1c 2563 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2564 if (!slot)
6c8ee57b 2565 return KVM_PFN_ERR_FAULT;
957ed9ef 2566
037d92dc 2567 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2568}
2569
2570static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2571 struct kvm_mmu_page *sp,
2572 u64 *start, u64 *end)
2573{
2574 struct page *pages[PTE_PREFETCH_NUM];
2575 unsigned access = sp->role.access;
2576 int i, ret;
2577 gfn_t gfn;
2578
2579 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2580 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2581 return -1;
2582
2583 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2584 if (ret <= 0)
2585 return -1;
2586
2587 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2588 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2589 sp->role.level, gfn, page_to_pfn(pages[i]),
2590 true, true);
957ed9ef
XG
2591
2592 return 0;
2593}
2594
2595static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2596 struct kvm_mmu_page *sp, u64 *sptep)
2597{
2598 u64 *spte, *start = NULL;
2599 int i;
2600
2601 WARN_ON(!sp->role.direct);
2602
2603 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2604 spte = sp->spt + i;
2605
2606 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2607 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2608 if (!start)
2609 continue;
2610 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2611 break;
2612 start = NULL;
2613 } else if (!start)
2614 start = spte;
2615 }
2616}
2617
2618static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2619{
2620 struct kvm_mmu_page *sp;
2621
2622 /*
2623 * Since it's no accessed bit on EPT, it's no way to
2624 * distinguish between actually accessed translations
2625 * and prefetched, so disable pte prefetch if EPT is
2626 * enabled.
2627 */
2628 if (!shadow_accessed_mask)
2629 return;
2630
2631 sp = page_header(__pa(sptep));
2632 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2633 return;
2634
2635 __direct_pte_prefetch(vcpu, sp, sptep);
2636}
2637
9f652d21 2638static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2639 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2640 bool prefault)
140754bc 2641{
9f652d21 2642 struct kvm_shadow_walk_iterator iterator;
140754bc 2643 struct kvm_mmu_page *sp;
b90a0e6c 2644 int emulate = 0;
140754bc 2645 gfn_t pseudo_gfn;
6aa8b732 2646
989c6b34
MT
2647 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2648 return 0;
2649
9f652d21 2650 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2651 if (iterator.level == level) {
f7616203 2652 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2653 write, &emulate, level, gfn, pfn,
2654 prefault, map_writable);
957ed9ef 2655 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2656 ++vcpu->stat.pf_fixed;
2657 break;
6aa8b732
AK
2658 }
2659
404381c5 2660 drop_large_spte(vcpu, iterator.sptep);
c3707958 2661 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2662 u64 base_addr = iterator.addr;
2663
2664 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2665 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2666 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2667 iterator.level - 1,
2668 1, ACC_ALL, iterator.sptep);
140754bc 2669
7a1638ce 2670 link_shadow_page(iterator.sptep, sp, true);
9f652d21
AK
2671 }
2672 }
b90a0e6c 2673 return emulate;
6aa8b732
AK
2674}
2675
77db5cbd 2676static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2677{
77db5cbd
HY
2678 siginfo_t info;
2679
2680 info.si_signo = SIGBUS;
2681 info.si_errno = 0;
2682 info.si_code = BUS_MCEERR_AR;
2683 info.si_addr = (void __user *)address;
2684 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2685
77db5cbd 2686 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2687}
2688
d7c55201 2689static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2690{
4d8b81ab
XG
2691 /*
2692 * Do not cache the mmio info caused by writing the readonly gfn
2693 * into the spte otherwise read access on readonly gfn also can
2694 * caused mmio page fault and treat it as mmio access.
2695 * Return 1 to tell kvm to emulate it.
2696 */
2697 if (pfn == KVM_PFN_ERR_RO_FAULT)
2698 return 1;
2699
e6c1502b 2700 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2701 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2702 return 0;
d7c55201 2703 }
edba23e5 2704
d7c55201 2705 return -EFAULT;
bf998156
HY
2706}
2707
936a5fe6
AA
2708static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2709 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2710{
2711 pfn_t pfn = *pfnp;
2712 gfn_t gfn = *gfnp;
2713 int level = *levelp;
2714
2715 /*
2716 * Check if it's a transparent hugepage. If this would be an
2717 * hugetlbfs page, level wouldn't be set to
2718 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2719 * here.
2720 */
81c52c56 2721 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
936a5fe6
AA
2722 level == PT_PAGE_TABLE_LEVEL &&
2723 PageTransCompound(pfn_to_page(pfn)) &&
2724 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2725 unsigned long mask;
2726 /*
2727 * mmu_notifier_retry was successful and we hold the
2728 * mmu_lock here, so the pmd can't become splitting
2729 * from under us, and in turn
2730 * __split_huge_page_refcount() can't run from under
2731 * us and we can safely transfer the refcount from
2732 * PG_tail to PG_head as we switch the pfn to tail to
2733 * head.
2734 */
2735 *levelp = level = PT_DIRECTORY_LEVEL;
2736 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2737 VM_BUG_ON((gfn & mask) != (pfn & mask));
2738 if (pfn & mask) {
2739 gfn &= ~mask;
2740 *gfnp = gfn;
2741 kvm_release_pfn_clean(pfn);
2742 pfn &= ~mask;
c3586667 2743 kvm_get_pfn(pfn);
936a5fe6
AA
2744 *pfnp = pfn;
2745 }
2746 }
2747}
2748
d7c55201
XG
2749static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2750 pfn_t pfn, unsigned access, int *ret_val)
2751{
2752 bool ret = true;
2753
2754 /* The pfn is invalid, report the error! */
81c52c56 2755 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2756 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2757 goto exit;
2758 }
2759
ce88decf 2760 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2761 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2762
2763 ret = false;
2764exit:
2765 return ret;
2766}
2767
e5552fd2 2768static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2769{
1c118b82
XG
2770 /*
2771 * Do not fix the mmio spte with invalid generation number which
2772 * need to be updated by slow page fault path.
2773 */
2774 if (unlikely(error_code & PFERR_RSVD_MASK))
2775 return false;
2776
c7ba5b48
XG
2777 /*
2778 * #PF can be fast only if the shadow page table is present and it
2779 * is caused by write-protect, that means we just need change the
2780 * W bit of the spte which can be done out of mmu-lock.
2781 */
2782 if (!(error_code & PFERR_PRESENT_MASK) ||
2783 !(error_code & PFERR_WRITE_MASK))
2784 return false;
2785
2786 return true;
2787}
2788
2789static bool
92a476cb
XG
2790fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2791 u64 *sptep, u64 spte)
c7ba5b48 2792{
c7ba5b48
XG
2793 gfn_t gfn;
2794
2795 WARN_ON(!sp->role.direct);
2796
2797 /*
2798 * The gfn of direct spte is stable since it is calculated
2799 * by sp->gfn.
2800 */
2801 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2802
2803 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2804 mark_page_dirty(vcpu->kvm, gfn);
2805
2806 return true;
2807}
2808
2809/*
2810 * Return value:
2811 * - true: let the vcpu to access on the same address again.
2812 * - false: let the real page fault path to fix it.
2813 */
2814static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2815 u32 error_code)
2816{
2817 struct kvm_shadow_walk_iterator iterator;
92a476cb 2818 struct kvm_mmu_page *sp;
c7ba5b48
XG
2819 bool ret = false;
2820 u64 spte = 0ull;
2821
37f6a4e2
MT
2822 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2823 return false;
2824
e5552fd2 2825 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2826 return false;
2827
2828 walk_shadow_page_lockless_begin(vcpu);
2829 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2830 if (!is_shadow_present_pte(spte) || iterator.level < level)
2831 break;
2832
2833 /*
2834 * If the mapping has been changed, let the vcpu fault on the
2835 * same address again.
2836 */
2837 if (!is_rmap_spte(spte)) {
2838 ret = true;
2839 goto exit;
2840 }
2841
92a476cb
XG
2842 sp = page_header(__pa(iterator.sptep));
2843 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2844 goto exit;
2845
2846 /*
2847 * Check if it is a spurious fault caused by TLB lazily flushed.
2848 *
2849 * Need not check the access of upper level table entries since
2850 * they are always ACC_ALL.
2851 */
2852 if (is_writable_pte(spte)) {
2853 ret = true;
2854 goto exit;
2855 }
2856
2857 /*
2858 * Currently, to simplify the code, only the spte write-protected
2859 * by dirty-log can be fast fixed.
2860 */
2861 if (!spte_is_locklessly_modifiable(spte))
2862 goto exit;
2863
c126d94f
XG
2864 /*
2865 * Do not fix write-permission on the large spte since we only dirty
2866 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2867 * that means other pages are missed if its slot is dirty-logged.
2868 *
2869 * Instead, we let the slow page fault path create a normal spte to
2870 * fix the access.
2871 *
2872 * See the comments in kvm_arch_commit_memory_region().
2873 */
2874 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2875 goto exit;
2876
c7ba5b48
XG
2877 /*
2878 * Currently, fast page fault only works for direct mapping since
2879 * the gfn is not stable for indirect shadow page.
2880 * See Documentation/virtual/kvm/locking.txt to get more detail.
2881 */
92a476cb 2882 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 2883exit:
a72faf25
XG
2884 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2885 spte, ret);
c7ba5b48
XG
2886 walk_shadow_page_lockless_end(vcpu);
2887
2888 return ret;
2889}
2890
78b2c54a 2891static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 2892 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 2893static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2894
c7ba5b48
XG
2895static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2896 gfn_t gfn, bool prefault)
10589a46
MT
2897{
2898 int r;
852e3c19 2899 int level;
936a5fe6 2900 int force_pt_level;
35149e21 2901 pfn_t pfn;
e930bffe 2902 unsigned long mmu_seq;
c7ba5b48 2903 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2904
936a5fe6
AA
2905 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2906 if (likely(!force_pt_level)) {
2907 level = mapping_level(vcpu, gfn);
2908 /*
2909 * This path builds a PAE pagetable - so we can map
2910 * 2mb pages at maximum. Therefore check if the level
2911 * is larger than that.
2912 */
2913 if (level > PT_DIRECTORY_LEVEL)
2914 level = PT_DIRECTORY_LEVEL;
852e3c19 2915
936a5fe6
AA
2916 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2917 } else
2918 level = PT_PAGE_TABLE_LEVEL;
05da4558 2919
c7ba5b48
XG
2920 if (fast_page_fault(vcpu, v, level, error_code))
2921 return 0;
2922
e930bffe 2923 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2924 smp_rmb();
060c2abe 2925
78b2c54a 2926 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2927 return 0;
aaee2c94 2928
d7c55201
XG
2929 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2930 return r;
d196e343 2931
aaee2c94 2932 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2933 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2934 goto out_unlock;
450e0b41 2935 make_mmu_pages_available(vcpu);
936a5fe6
AA
2936 if (likely(!force_pt_level))
2937 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2938 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2939 prefault);
aaee2c94
MT
2940 spin_unlock(&vcpu->kvm->mmu_lock);
2941
aaee2c94 2942
10589a46 2943 return r;
e930bffe
AA
2944
2945out_unlock:
2946 spin_unlock(&vcpu->kvm->mmu_lock);
2947 kvm_release_pfn_clean(pfn);
2948 return 0;
10589a46
MT
2949}
2950
2951
17ac10ad
AK
2952static void mmu_free_roots(struct kvm_vcpu *vcpu)
2953{
2954 int i;
4db35314 2955 struct kvm_mmu_page *sp;
d98ba053 2956 LIST_HEAD(invalid_list);
17ac10ad 2957
ad312c7c 2958 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2959 return;
35af577a 2960
81407ca5
JR
2961 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2962 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2963 vcpu->arch.mmu.direct_map)) {
ad312c7c 2964 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2965
35af577a 2966 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
2967 sp = page_header(root);
2968 --sp->root_count;
d98ba053
XG
2969 if (!sp->root_count && sp->role.invalid) {
2970 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2971 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2972 }
aaee2c94 2973 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 2974 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2975 return;
2976 }
35af577a
GN
2977
2978 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 2979 for (i = 0; i < 4; ++i) {
ad312c7c 2980 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2981
417726a3 2982 if (root) {
417726a3 2983 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2984 sp = page_header(root);
2985 --sp->root_count;
2e53d63a 2986 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2987 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2988 &invalid_list);
417726a3 2989 }
ad312c7c 2990 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2991 }
d98ba053 2992 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2993 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2994 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2995}
2996
8986ecc0
MT
2997static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2998{
2999 int ret = 0;
3000
3001 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3002 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3003 ret = 1;
3004 }
3005
3006 return ret;
3007}
3008
651dd37a
JR
3009static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3010{
3011 struct kvm_mmu_page *sp;
7ebaf15e 3012 unsigned i;
651dd37a
JR
3013
3014 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3015 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3016 make_mmu_pages_available(vcpu);
651dd37a
JR
3017 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3018 1, ACC_ALL, NULL);
3019 ++sp->root_count;
3020 spin_unlock(&vcpu->kvm->mmu_lock);
3021 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3022 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3023 for (i = 0; i < 4; ++i) {
3024 hpa_t root = vcpu->arch.mmu.pae_root[i];
3025
3026 ASSERT(!VALID_PAGE(root));
3027 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3028 make_mmu_pages_available(vcpu);
649497d1
AK
3029 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3030 i << 30,
651dd37a
JR
3031 PT32_ROOT_LEVEL, 1, ACC_ALL,
3032 NULL);
3033 root = __pa(sp->spt);
3034 ++sp->root_count;
3035 spin_unlock(&vcpu->kvm->mmu_lock);
3036 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3037 }
6292757f 3038 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3039 } else
3040 BUG();
3041
3042 return 0;
3043}
3044
3045static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3046{
4db35314 3047 struct kvm_mmu_page *sp;
81407ca5
JR
3048 u64 pdptr, pm_mask;
3049 gfn_t root_gfn;
3050 int i;
3bb65a22 3051
5777ed34 3052 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3053
651dd37a
JR
3054 if (mmu_check_root(vcpu, root_gfn))
3055 return 1;
3056
3057 /*
3058 * Do we shadow a long mode page table? If so we need to
3059 * write-protect the guests page table root.
3060 */
3061 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3062 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
3063
3064 ASSERT(!VALID_PAGE(root));
651dd37a 3065
8facbbff 3066 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3067 make_mmu_pages_available(vcpu);
651dd37a
JR
3068 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3069 0, ACC_ALL, NULL);
4db35314
AK
3070 root = __pa(sp->spt);
3071 ++sp->root_count;
8facbbff 3072 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3073 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3074 return 0;
17ac10ad 3075 }
f87f9288 3076
651dd37a
JR
3077 /*
3078 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3079 * or a PAE 3-level page table. In either case we need to be aware that
3080 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3081 */
81407ca5
JR
3082 pm_mask = PT_PRESENT_MASK;
3083 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3084 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3085
17ac10ad 3086 for (i = 0; i < 4; ++i) {
ad312c7c 3087 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
3088
3089 ASSERT(!VALID_PAGE(root));
ad312c7c 3090 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3091 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3092 if (!is_present_gpte(pdptr)) {
ad312c7c 3093 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3094 continue;
3095 }
6de4f3ad 3096 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3097 if (mmu_check_root(vcpu, root_gfn))
3098 return 1;
5a7388c2 3099 }
8facbbff 3100 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3101 make_mmu_pages_available(vcpu);
4db35314 3102 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3103 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3104 ACC_ALL, NULL);
4db35314
AK
3105 root = __pa(sp->spt);
3106 ++sp->root_count;
8facbbff
AK
3107 spin_unlock(&vcpu->kvm->mmu_lock);
3108
81407ca5 3109 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3110 }
6292757f 3111 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3112
3113 /*
3114 * If we shadow a 32 bit page table with a long mode page
3115 * table we enter this path.
3116 */
3117 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3118 if (vcpu->arch.mmu.lm_root == NULL) {
3119 /*
3120 * The additional page necessary for this is only
3121 * allocated on demand.
3122 */
3123
3124 u64 *lm_root;
3125
3126 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3127 if (lm_root == NULL)
3128 return 1;
3129
3130 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3131
3132 vcpu->arch.mmu.lm_root = lm_root;
3133 }
3134
3135 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3136 }
3137
8986ecc0 3138 return 0;
17ac10ad
AK
3139}
3140
651dd37a
JR
3141static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3142{
3143 if (vcpu->arch.mmu.direct_map)
3144 return mmu_alloc_direct_roots(vcpu);
3145 else
3146 return mmu_alloc_shadow_roots(vcpu);
3147}
3148
0ba73cda
MT
3149static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3150{
3151 int i;
3152 struct kvm_mmu_page *sp;
3153
81407ca5
JR
3154 if (vcpu->arch.mmu.direct_map)
3155 return;
3156
0ba73cda
MT
3157 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3158 return;
6903074c 3159
56f17dd3 3160 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3161 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3162 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3163 hpa_t root = vcpu->arch.mmu.root_hpa;
3164 sp = page_header(root);
3165 mmu_sync_children(vcpu, sp);
0375f7fa 3166 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3167 return;
3168 }
3169 for (i = 0; i < 4; ++i) {
3170 hpa_t root = vcpu->arch.mmu.pae_root[i];
3171
8986ecc0 3172 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3173 root &= PT64_BASE_ADDR_MASK;
3174 sp = page_header(root);
3175 mmu_sync_children(vcpu, sp);
3176 }
3177 }
0375f7fa 3178 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3179}
3180
3181void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3182{
3183 spin_lock(&vcpu->kvm->mmu_lock);
3184 mmu_sync_roots(vcpu);
6cffe8ca 3185 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3186}
bfd0a56b 3187EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3188
1871c602 3189static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3190 u32 access, struct x86_exception *exception)
6aa8b732 3191{
ab9ae313
AK
3192 if (exception)
3193 exception->error_code = 0;
6aa8b732
AK
3194 return vaddr;
3195}
3196
6539e738 3197static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3198 u32 access,
3199 struct x86_exception *exception)
6539e738 3200{
ab9ae313
AK
3201 if (exception)
3202 exception->error_code = 0;
54987b7a 3203 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3204}
3205
ce88decf
XG
3206static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3207{
3208 if (direct)
3209 return vcpu_match_mmio_gpa(vcpu, addr);
3210
3211 return vcpu_match_mmio_gva(vcpu, addr);
3212}
3213
3214
3215/*
3216 * On direct hosts, the last spte is only allows two states
3217 * for mmio page fault:
3218 * - It is the mmio spte
3219 * - It is zapped or it is being zapped.
3220 *
3221 * This function completely checks the spte when the last spte
3222 * is not the mmio spte.
3223 */
3224static bool check_direct_spte_mmio_pf(u64 spte)
3225{
3226 return __check_direct_spte_mmio_pf(spte);
3227}
3228
3229static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3230{
3231 struct kvm_shadow_walk_iterator iterator;
3232 u64 spte = 0ull;
3233
37f6a4e2
MT
3234 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3235 return spte;
3236
ce88decf
XG
3237 walk_shadow_page_lockless_begin(vcpu);
3238 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3239 if (!is_shadow_present_pte(spte))
3240 break;
3241 walk_shadow_page_lockless_end(vcpu);
3242
3243 return spte;
3244}
3245
ce88decf
XG
3246int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3247{
3248 u64 spte;
3249
3250 if (quickly_check_mmio_pf(vcpu, addr, direct))
b37fbea6 3251 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3252
3253 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3254
3255 if (is_mmio_spte(spte)) {
3256 gfn_t gfn = get_mmio_spte_gfn(spte);
3257 unsigned access = get_mmio_spte_access(spte);
3258
f8f55942
XG
3259 if (!check_mmio_spte(vcpu->kvm, spte))
3260 return RET_MMIO_PF_INVALID;
3261
ce88decf
XG
3262 if (direct)
3263 addr = 0;
4f022648
XG
3264
3265 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3266 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3267 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3268 }
3269
3270 /*
3271 * It's ok if the gva is remapped by other cpus on shadow guest,
3272 * it's a BUG if the gfn is not a mmio page.
3273 */
3274 if (direct && !check_direct_spte_mmio_pf(spte))
b37fbea6 3275 return RET_MMIO_PF_BUG;
ce88decf
XG
3276
3277 /*
3278 * If the page table is zapped by other cpus, let CPU fault again on
3279 * the address.
3280 */
b37fbea6 3281 return RET_MMIO_PF_RETRY;
ce88decf
XG
3282}
3283EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3284
3285static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3286 u32 error_code, bool direct)
3287{
3288 int ret;
3289
3290 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
b37fbea6 3291 WARN_ON(ret == RET_MMIO_PF_BUG);
ce88decf
XG
3292 return ret;
3293}
3294
6aa8b732 3295static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3296 u32 error_code, bool prefault)
6aa8b732 3297{
e833240f 3298 gfn_t gfn;
e2dec939 3299 int r;
6aa8b732 3300
b8688d51 3301 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3302
f8f55942
XG
3303 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3304 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3305
3306 if (likely(r != RET_MMIO_PF_INVALID))
3307 return r;
3308 }
ce88decf 3309
e2dec939
AK
3310 r = mmu_topup_memory_caches(vcpu);
3311 if (r)
3312 return r;
714b93da 3313
6aa8b732 3314 ASSERT(vcpu);
ad312c7c 3315 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3316
e833240f 3317 gfn = gva >> PAGE_SHIFT;
6aa8b732 3318
e833240f 3319 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3320 error_code, gfn, prefault);
6aa8b732
AK
3321}
3322
7e1fbeac 3323static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3324{
3325 struct kvm_arch_async_pf arch;
fb67e14f 3326
7c90705b 3327 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3328 arch.gfn = gfn;
c4806acd 3329 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3330 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3331
e0ead41a 3332 return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
af585b92
GN
3333}
3334
3335static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3336{
3337 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3338 kvm_event_needs_reinjection(vcpu)))
3339 return false;
3340
3341 return kvm_x86_ops->interrupt_allowed(vcpu);
3342}
3343
78b2c54a 3344static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3345 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3346{
3347 bool async;
3348
612819c3 3349 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3350
3351 if (!async)
3352 return false; /* *pfn has correct page already */
3353
78b2c54a 3354 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3355 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3356 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3357 trace_kvm_async_pf_doublefault(gva, gfn);
3358 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3359 return true;
3360 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3361 return true;
3362 }
3363
612819c3 3364 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3365
3366 return false;
3367}
3368
56028d08 3369static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3370 bool prefault)
fb72d167 3371{
35149e21 3372 pfn_t pfn;
fb72d167 3373 int r;
852e3c19 3374 int level;
936a5fe6 3375 int force_pt_level;
05da4558 3376 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3377 unsigned long mmu_seq;
612819c3
MT
3378 int write = error_code & PFERR_WRITE_MASK;
3379 bool map_writable;
fb72d167
JR
3380
3381 ASSERT(vcpu);
3382 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3383
f8f55942
XG
3384 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3385 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3386
3387 if (likely(r != RET_MMIO_PF_INVALID))
3388 return r;
3389 }
ce88decf 3390
fb72d167
JR
3391 r = mmu_topup_memory_caches(vcpu);
3392 if (r)
3393 return r;
3394
936a5fe6
AA
3395 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3396 if (likely(!force_pt_level)) {
3397 level = mapping_level(vcpu, gfn);
3398 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3399 } else
3400 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3401
c7ba5b48
XG
3402 if (fast_page_fault(vcpu, gpa, level, error_code))
3403 return 0;
3404
e930bffe 3405 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3406 smp_rmb();
af585b92 3407
78b2c54a 3408 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3409 return 0;
3410
d7c55201
XG
3411 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3412 return r;
3413
fb72d167 3414 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3415 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3416 goto out_unlock;
450e0b41 3417 make_mmu_pages_available(vcpu);
936a5fe6
AA
3418 if (likely(!force_pt_level))
3419 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3420 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3421 level, gfn, pfn, prefault);
fb72d167 3422 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3423
3424 return r;
e930bffe
AA
3425
3426out_unlock:
3427 spin_unlock(&vcpu->kvm->mmu_lock);
3428 kvm_release_pfn_clean(pfn);
3429 return 0;
fb72d167
JR
3430}
3431
8a3c1a33
PB
3432static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3433 struct kvm_mmu *context)
6aa8b732 3434{
6aa8b732 3435 context->page_fault = nonpaging_page_fault;
6aa8b732 3436 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3437 context->sync_page = nonpaging_sync_page;
a7052897 3438 context->invlpg = nonpaging_invlpg;
0f53b5b1 3439 context->update_pte = nonpaging_update_pte;
cea0f0e7 3440 context->root_level = 0;
6aa8b732 3441 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3442 context->root_hpa = INVALID_PAGE;
c5a78f2b 3443 context->direct_map = true;
2d48a985 3444 context->nx = false;
6aa8b732
AK
3445}
3446
d835dfec 3447void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3448{
a8eeb04a 3449 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732 3450}
bfd0a56b 3451EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
6aa8b732 3452
d8d173da 3453void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3454{
cea0f0e7 3455 mmu_free_roots(vcpu);
6aa8b732
AK
3456}
3457
5777ed34
JR
3458static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3459{
9f8fe504 3460 return kvm_read_cr3(vcpu);
5777ed34
JR
3461}
3462
6389ee94
AK
3463static void inject_page_fault(struct kvm_vcpu *vcpu,
3464 struct x86_exception *fault)
6aa8b732 3465{
6389ee94 3466 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3467}
3468
f2fd125d
XG
3469static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3470 unsigned access, int *nr_present)
ce88decf
XG
3471{
3472 if (unlikely(is_mmio_spte(*sptep))) {
3473 if (gfn != get_mmio_spte_gfn(*sptep)) {
3474 mmu_spte_clear_no_track(sptep);
3475 return true;
3476 }
3477
3478 (*nr_present)++;
f2fd125d 3479 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
3480 return true;
3481 }
3482
3483 return false;
3484}
3485
6fd01b71
AK
3486static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3487{
3488 unsigned index;
3489
3490 index = level - 1;
3491 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3492 return mmu->last_pte_bitmap & (1 << index);
3493}
3494
37406aaa
NHE
3495#define PTTYPE_EPT 18 /* arbitrary */
3496#define PTTYPE PTTYPE_EPT
3497#include "paging_tmpl.h"
3498#undef PTTYPE
3499
6aa8b732
AK
3500#define PTTYPE 64
3501#include "paging_tmpl.h"
3502#undef PTTYPE
3503
3504#define PTTYPE 32
3505#include "paging_tmpl.h"
3506#undef PTTYPE
3507
52fde8df 3508static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3509 struct kvm_mmu *context)
82725b20 3510{
82725b20
DE
3511 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3512 u64 exb_bit_rsvd = 0;
5f7dde7b 3513 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3514 u64 nonleaf_bit8_rsvd = 0;
82725b20 3515
25d92081
YZ
3516 context->bad_mt_xwr = 0;
3517
2d48a985 3518 if (!context->nx)
82725b20 3519 exb_bit_rsvd = rsvd_bits(63, 63);
5f7dde7b
NA
3520 if (!guest_cpuid_has_gbpages(vcpu))
3521 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3522
3523 /*
3524 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3525 * leaf entries) on AMD CPUs only.
3526 */
3527 if (guest_cpuid_is_amd(vcpu))
3528 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3529
4d6931c3 3530 switch (context->root_level) {
82725b20
DE
3531 case PT32_ROOT_LEVEL:
3532 /* no rsvd bits for 2 level 4K page table entries */
3533 context->rsvd_bits_mask[0][1] = 0;
3534 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3535 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3536
3537 if (!is_pse(vcpu)) {
3538 context->rsvd_bits_mask[1][1] = 0;
3539 break;
3540 }
3541
82725b20
DE
3542 if (is_cpuid_PSE36())
3543 /* 36bits PSE 4MB page */
3544 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3545 else
3546 /* 32 bits PSE 4MB page */
3547 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3548 break;
3549 case PT32E_ROOT_LEVEL:
20c466b5
DE
3550 context->rsvd_bits_mask[0][2] =
3551 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3552 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3553 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3554 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3555 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3556 rsvd_bits(maxphyaddr, 62); /* PTE */
3557 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3558 rsvd_bits(maxphyaddr, 62) |
3559 rsvd_bits(13, 20); /* large page */
f815bce8 3560 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3561 break;
3562 case PT64_ROOT_LEVEL:
3563 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
a0c0feb5 3564 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
82725b20 3565 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
a0c0feb5 3566 nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
82725b20 3567 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3568 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3569 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3570 rsvd_bits(maxphyaddr, 51);
3571 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980 3572 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3573 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3574 rsvd_bits(13, 29);
82725b20 3575 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3576 rsvd_bits(maxphyaddr, 51) |
3577 rsvd_bits(13, 20); /* large page */
f815bce8 3578 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3579 break;
3580 }
3581}
3582
25d92081
YZ
3583static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3584 struct kvm_mmu *context, bool execonly)
3585{
3586 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3587 int pte;
3588
3589 context->rsvd_bits_mask[0][3] =
3590 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3591 context->rsvd_bits_mask[0][2] =
3592 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3593 context->rsvd_bits_mask[0][1] =
3594 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3595 context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3596
3597 /* large page */
3598 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3599 context->rsvd_bits_mask[1][2] =
3600 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3601 context->rsvd_bits_mask[1][1] =
3602 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3603 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3604
3605 for (pte = 0; pte < 64; pte++) {
3606 int rwx_bits = pte & 7;
3607 int mt = pte >> 3;
3608 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3609 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3610 (rwx_bits == 0x4 && !execonly))
3611 context->bad_mt_xwr |= (1ull << pte);
3612 }
3613}
3614
97ec8c06 3615void update_permission_bitmask(struct kvm_vcpu *vcpu,
25d92081 3616 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3617{
3618 unsigned bit, byte, pfec;
3619 u8 map;
66386ade 3620 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3621
66386ade 3622 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3623 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3624 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3625 pfec = byte << 1;
3626 map = 0;
3627 wf = pfec & PFERR_WRITE_MASK;
3628 uf = pfec & PFERR_USER_MASK;
3629 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3630 /*
3631 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3632 * subject to SMAP restrictions, and cleared otherwise. The
3633 * bit is only meaningful if the SMAP bit is set in CR4.
3634 */
3635 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3636 for (bit = 0; bit < 8; ++bit) {
3637 x = bit & ACC_EXEC_MASK;
3638 w = bit & ACC_WRITE_MASK;
3639 u = bit & ACC_USER_MASK;
3640
25d92081
YZ
3641 if (!ept) {
3642 /* Not really needed: !nx will cause pte.nx to fault */
3643 x |= !mmu->nx;
3644 /* Allow supervisor writes if !cr0.wp */
3645 w |= !is_write_protection(vcpu) && !uf;
3646 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3647 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3648
3649 /*
3650 * SMAP:kernel-mode data accesses from user-mode
3651 * mappings should fault. A fault is considered
3652 * as a SMAP violation if all of the following
3653 * conditions are ture:
3654 * - X86_CR4_SMAP is set in CR4
3655 * - An user page is accessed
3656 * - Page fault in kernel mode
3657 * - if CPL = 3 or X86_EFLAGS_AC is clear
3658 *
3659 * Here, we cover the first three conditions.
3660 * The fourth is computed dynamically in
3661 * permission_fault() and is in smapf.
3662 *
3663 * Also, SMAP does not affect instruction
3664 * fetches, add the !ff check here to make it
3665 * clearer.
3666 */
3667 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3668 } else
3669 /* Not really needed: no U/S accesses on ept */
3670 u = 1;
97d64b78 3671
97ec8c06
FW
3672 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3673 (smapf && smap);
97d64b78
AK
3674 map |= fault << bit;
3675 }
3676 mmu->permissions[byte] = map;
3677 }
3678}
3679
6fd01b71
AK
3680static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3681{
3682 u8 map;
3683 unsigned level, root_level = mmu->root_level;
3684 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3685
3686 if (root_level == PT32E_ROOT_LEVEL)
3687 --root_level;
3688 /* PT_PAGE_TABLE_LEVEL always terminates */
3689 map = 1 | (1 << ps_set_index);
3690 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3691 if (level <= PT_PDPE_LEVEL
3692 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3693 map |= 1 << (ps_set_index | (level - 1));
3694 }
3695 mmu->last_pte_bitmap = map;
3696}
3697
8a3c1a33
PB
3698static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3699 struct kvm_mmu *context,
3700 int level)
6aa8b732 3701{
2d48a985 3702 context->nx = is_nx(vcpu);
4d6931c3 3703 context->root_level = level;
2d48a985 3704
4d6931c3 3705 reset_rsvds_bits_mask(vcpu, context);
25d92081 3706 update_permission_bitmask(vcpu, context, false);
6fd01b71 3707 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3708
3709 ASSERT(is_pae(vcpu));
6aa8b732 3710 context->page_fault = paging64_page_fault;
6aa8b732 3711 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3712 context->sync_page = paging64_sync_page;
a7052897 3713 context->invlpg = paging64_invlpg;
0f53b5b1 3714 context->update_pte = paging64_update_pte;
17ac10ad 3715 context->shadow_root_level = level;
17c3ba9d 3716 context->root_hpa = INVALID_PAGE;
c5a78f2b 3717 context->direct_map = false;
6aa8b732
AK
3718}
3719
8a3c1a33
PB
3720static void paging64_init_context(struct kvm_vcpu *vcpu,
3721 struct kvm_mmu *context)
17ac10ad 3722{
8a3c1a33 3723 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3724}
3725
8a3c1a33
PB
3726static void paging32_init_context(struct kvm_vcpu *vcpu,
3727 struct kvm_mmu *context)
6aa8b732 3728{
2d48a985 3729 context->nx = false;
4d6931c3 3730 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3731
4d6931c3 3732 reset_rsvds_bits_mask(vcpu, context);
25d92081 3733 update_permission_bitmask(vcpu, context, false);
6fd01b71 3734 update_last_pte_bitmap(vcpu, context);
6aa8b732 3735
6aa8b732 3736 context->page_fault = paging32_page_fault;
6aa8b732 3737 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3738 context->sync_page = paging32_sync_page;
a7052897 3739 context->invlpg = paging32_invlpg;
0f53b5b1 3740 context->update_pte = paging32_update_pte;
6aa8b732 3741 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3742 context->root_hpa = INVALID_PAGE;
c5a78f2b 3743 context->direct_map = false;
6aa8b732
AK
3744}
3745
8a3c1a33
PB
3746static void paging32E_init_context(struct kvm_vcpu *vcpu,
3747 struct kvm_mmu *context)
6aa8b732 3748{
8a3c1a33 3749 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3750}
3751
8a3c1a33 3752static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3753{
14dfe855 3754 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3755
c445f8ef 3756 context->base_role.word = 0;
fb72d167 3757 context->page_fault = tdp_page_fault;
e8bc217a 3758 context->sync_page = nonpaging_sync_page;
a7052897 3759 context->invlpg = nonpaging_invlpg;
0f53b5b1 3760 context->update_pte = nonpaging_update_pte;
67253af5 3761 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3762 context->root_hpa = INVALID_PAGE;
c5a78f2b 3763 context->direct_map = true;
1c97f0a0 3764 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3765 context->get_cr3 = get_cr3;
e4e517b4 3766 context->get_pdptr = kvm_pdptr_read;
cb659db8 3767 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3768
3769 if (!is_paging(vcpu)) {
2d48a985 3770 context->nx = false;
fb72d167
JR
3771 context->gva_to_gpa = nonpaging_gva_to_gpa;
3772 context->root_level = 0;
3773 } else if (is_long_mode(vcpu)) {
2d48a985 3774 context->nx = is_nx(vcpu);
fb72d167 3775 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3776 reset_rsvds_bits_mask(vcpu, context);
3777 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3778 } else if (is_pae(vcpu)) {
2d48a985 3779 context->nx = is_nx(vcpu);
fb72d167 3780 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3781 reset_rsvds_bits_mask(vcpu, context);
3782 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3783 } else {
2d48a985 3784 context->nx = false;
fb72d167 3785 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3786 reset_rsvds_bits_mask(vcpu, context);
3787 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3788 }
3789
25d92081 3790 update_permission_bitmask(vcpu, context, false);
6fd01b71 3791 update_last_pte_bitmap(vcpu, context);
fb72d167
JR
3792}
3793
8a3c1a33 3794void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3795{
411c588d 3796 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3797 ASSERT(vcpu);
ad312c7c 3798 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3799
3800 if (!is_paging(vcpu))
8a3c1a33 3801 nonpaging_init_context(vcpu, context);
a9058ecd 3802 else if (is_long_mode(vcpu))
8a3c1a33 3803 paging64_init_context(vcpu, context);
6aa8b732 3804 else if (is_pae(vcpu))
8a3c1a33 3805 paging32E_init_context(vcpu, context);
6aa8b732 3806 else
8a3c1a33 3807 paging32_init_context(vcpu, context);
a770f6f2 3808
2c9afa52 3809 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
5b7e0102 3810 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3811 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3812 vcpu->arch.mmu.base_role.smep_andnot_wp
3813 = smep && !is_write_protection(vcpu);
52fde8df
JR
3814}
3815EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3816
8a3c1a33 3817void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
155a97a3
NHE
3818 bool execonly)
3819{
3820 ASSERT(vcpu);
3821 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3822
3823 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3824
3825 context->nx = true;
155a97a3
NHE
3826 context->page_fault = ept_page_fault;
3827 context->gva_to_gpa = ept_gva_to_gpa;
3828 context->sync_page = ept_sync_page;
3829 context->invlpg = ept_invlpg;
3830 context->update_pte = ept_update_pte;
155a97a3
NHE
3831 context->root_level = context->shadow_root_level;
3832 context->root_hpa = INVALID_PAGE;
3833 context->direct_map = false;
3834
3835 update_permission_bitmask(vcpu, context, true);
3836 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
155a97a3
NHE
3837}
3838EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3839
8a3c1a33 3840static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 3841{
8a3c1a33 3842 kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
14dfe855
JR
3843 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3844 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3845 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3846 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
3847}
3848
8a3c1a33 3849static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
3850{
3851 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3852
3853 g_context->get_cr3 = get_cr3;
e4e517b4 3854 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3855 g_context->inject_page_fault = kvm_inject_page_fault;
3856
3857 /*
3858 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3859 * translation of l2_gpa to l1_gpa addresses is done using the
3860 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3861 * functions between mmu and nested_mmu are swapped.
3862 */
3863 if (!is_paging(vcpu)) {
2d48a985 3864 g_context->nx = false;
02f59dc9
JR
3865 g_context->root_level = 0;
3866 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3867 } else if (is_long_mode(vcpu)) {
2d48a985 3868 g_context->nx = is_nx(vcpu);
02f59dc9 3869 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3870 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3871 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3872 } else if (is_pae(vcpu)) {
2d48a985 3873 g_context->nx = is_nx(vcpu);
02f59dc9 3874 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3875 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3876 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3877 } else {
2d48a985 3878 g_context->nx = false;
02f59dc9 3879 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3880 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3881 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3882 }
3883
25d92081 3884 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 3885 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
3886}
3887
8a3c1a33 3888static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 3889{
02f59dc9
JR
3890 if (mmu_is_nested(vcpu))
3891 return init_kvm_nested_mmu(vcpu);
3892 else if (tdp_enabled)
fb72d167
JR
3893 return init_kvm_tdp_mmu(vcpu);
3894 else
3895 return init_kvm_softmmu(vcpu);
3896}
3897
8a3c1a33 3898void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732
AK
3899{
3900 ASSERT(vcpu);
6aa8b732 3901
95f93af4 3902 kvm_mmu_unload(vcpu);
8a3c1a33 3903 init_kvm_mmu(vcpu);
17c3ba9d 3904}
8668a3c4 3905EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3906
3907int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3908{
714b93da
AK
3909 int r;
3910
e2dec939 3911 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3912 if (r)
3913 goto out;
8986ecc0 3914 r = mmu_alloc_roots(vcpu);
e2858b4a 3915 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
3916 if (r)
3917 goto out;
3662cb1c 3918 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3919 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3920out:
3921 return r;
6aa8b732 3922}
17c3ba9d
AK
3923EXPORT_SYMBOL_GPL(kvm_mmu_load);
3924
3925void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3926{
3927 mmu_free_roots(vcpu);
95f93af4 3928 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 3929}
4b16184c 3930EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3931
0028425f 3932static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3933 struct kvm_mmu_page *sp, u64 *spte,
3934 const void *new)
0028425f 3935{
30945387 3936 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3937 ++vcpu->kvm->stat.mmu_pde_zapped;
3938 return;
30945387 3939 }
0028425f 3940
4cee5764 3941 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3942 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3943}
3944
79539cec
AK
3945static bool need_remote_flush(u64 old, u64 new)
3946{
3947 if (!is_shadow_present_pte(old))
3948 return false;
3949 if (!is_shadow_present_pte(new))
3950 return true;
3951 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3952 return true;
53166229
GN
3953 old ^= shadow_nx_mask;
3954 new ^= shadow_nx_mask;
79539cec
AK
3955 return (old & ~new & PT64_PERM_MASK) != 0;
3956}
3957
0671a8e7
XG
3958static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3959 bool remote_flush, bool local_flush)
79539cec 3960{
0671a8e7
XG
3961 if (zap_page)
3962 return;
3963
3964 if (remote_flush)
79539cec 3965 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3966 else if (local_flush)
79539cec
AK
3967 kvm_mmu_flush_tlb(vcpu);
3968}
3969
889e5cbc
XG
3970static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3971 const u8 *new, int *bytes)
da4a00f0 3972{
889e5cbc
XG
3973 u64 gentry;
3974 int r;
72016f3a 3975
72016f3a
AK
3976 /*
3977 * Assume that the pte write on a page table of the same type
49b26e26
XG
3978 * as the current vcpu paging mode since we update the sptes only
3979 * when they have the same mode.
72016f3a 3980 */
889e5cbc 3981 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3982 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3983 *gpa &= ~(gpa_t)7;
3984 *bytes = 8;
116eb3d3 3985 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
3986 if (r)
3987 gentry = 0;
08e850c6
AK
3988 new = (const u8 *)&gentry;
3989 }
3990
889e5cbc 3991 switch (*bytes) {
08e850c6
AK
3992 case 4:
3993 gentry = *(const u32 *)new;
3994 break;
3995 case 8:
3996 gentry = *(const u64 *)new;
3997 break;
3998 default:
3999 gentry = 0;
4000 break;
72016f3a
AK
4001 }
4002
889e5cbc
XG
4003 return gentry;
4004}
4005
4006/*
4007 * If we're seeing too many writes to a page, it may no longer be a page table,
4008 * or we may be forking, in which case it is better to unmap the page.
4009 */
a138fe75 4010static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4011{
a30f47cb
XG
4012 /*
4013 * Skip write-flooding detected for the sp whose level is 1, because
4014 * it can become unsync, then the guest page is not write-protected.
4015 */
f71fa31f 4016 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4017 return false;
3246af0e 4018
a30f47cb 4019 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
4020}
4021
4022/*
4023 * Misaligned accesses are too much trouble to fix up; also, they usually
4024 * indicate a page is not used as a page table.
4025 */
4026static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4027 int bytes)
4028{
4029 unsigned offset, pte_size, misaligned;
4030
4031 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4032 gpa, bytes, sp->role.word);
4033
4034 offset = offset_in_page(gpa);
4035 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4036
4037 /*
4038 * Sometimes, the OS only writes the last one bytes to update status
4039 * bits, for example, in linux, andb instruction is used in clear_bit().
4040 */
4041 if (!(offset & (pte_size - 1)) && bytes == 1)
4042 return false;
4043
889e5cbc
XG
4044 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4045 misaligned |= bytes < 4;
4046
4047 return misaligned;
4048}
4049
4050static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4051{
4052 unsigned page_offset, quadrant;
4053 u64 *spte;
4054 int level;
4055
4056 page_offset = offset_in_page(gpa);
4057 level = sp->role.level;
4058 *nspte = 1;
4059 if (!sp->role.cr4_pae) {
4060 page_offset <<= 1; /* 32->64 */
4061 /*
4062 * A 32-bit pde maps 4MB while the shadow pdes map
4063 * only 2MB. So we need to double the offset again
4064 * and zap two pdes instead of one.
4065 */
4066 if (level == PT32_ROOT_LEVEL) {
4067 page_offset &= ~7; /* kill rounding error */
4068 page_offset <<= 1;
4069 *nspte = 2;
4070 }
4071 quadrant = page_offset >> PAGE_SHIFT;
4072 page_offset &= ~PAGE_MASK;
4073 if (quadrant != sp->role.quadrant)
4074 return NULL;
4075 }
4076
4077 spte = &sp->spt[page_offset / sizeof(*spte)];
4078 return spte;
4079}
4080
4081void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4082 const u8 *new, int bytes)
4083{
4084 gfn_t gfn = gpa >> PAGE_SHIFT;
4085 union kvm_mmu_page_role mask = { .word = 0 };
4086 struct kvm_mmu_page *sp;
889e5cbc
XG
4087 LIST_HEAD(invalid_list);
4088 u64 entry, gentry, *spte;
4089 int npte;
a30f47cb 4090 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
4091
4092 /*
4093 * If we don't have indirect shadow pages, it means no page is
4094 * write-protected, so we can exit simply.
4095 */
4096 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4097 return;
4098
4099 zap_page = remote_flush = local_flush = false;
4100
4101 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4102
4103 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4104
4105 /*
4106 * No need to care whether allocation memory is successful
4107 * or not since pte prefetch is skiped if it does not have
4108 * enough objects in the cache.
4109 */
4110 mmu_topup_memory_caches(vcpu);
4111
4112 spin_lock(&vcpu->kvm->mmu_lock);
4113 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4114 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4115
fa1de2bf 4116 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
b67bfe0d 4117 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4118 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4119 detect_write_flooding(sp)) {
0671a8e7 4120 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4121 &invalid_list);
4cee5764 4122 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4123 continue;
4124 }
889e5cbc
XG
4125
4126 spte = get_written_sptes(sp, gpa, &npte);
4127 if (!spte)
4128 continue;
4129
0671a8e7 4130 local_flush = true;
ac1b714e 4131 while (npte--) {
79539cec 4132 entry = *spte;
38e3b2b2 4133 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4134 if (gentry &&
4135 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4136 & mask.word) && rmap_can_add(vcpu))
7c562522 4137 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4138 if (need_remote_flush(entry, *spte))
0671a8e7 4139 remote_flush = true;
ac1b714e 4140 ++spte;
9b7a0325 4141 }
9b7a0325 4142 }
0671a8e7 4143 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4144 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4145 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4146 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4147}
4148
a436036b
AK
4149int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4150{
10589a46
MT
4151 gpa_t gpa;
4152 int r;
a436036b 4153
c5a78f2b 4154 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4155 return 0;
4156
1871c602 4157 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4158
10589a46 4159 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4160
10589a46 4161 return r;
a436036b 4162}
577bdc49 4163EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4164
81f4f76b 4165static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4166{
d98ba053 4167 LIST_HEAD(invalid_list);
103ad25a 4168
81f4f76b
TY
4169 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4170 return;
4171
5da59607
TY
4172 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4173 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4174 break;
ebeace86 4175
4cee5764 4176 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4177 }
aa6bd187 4178 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4179}
ebeace86 4180
1cb3f3ae
XG
4181static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4182{
4183 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4184 return vcpu_match_mmio_gpa(vcpu, addr);
4185
4186 return vcpu_match_mmio_gva(vcpu, addr);
4187}
4188
dc25e89e
AP
4189int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4190 void *insn, int insn_len)
3067714c 4191{
1cb3f3ae 4192 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4193 enum emulation_result er;
4194
56028d08 4195 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4196 if (r < 0)
4197 goto out;
4198
4199 if (!r) {
4200 r = 1;
4201 goto out;
4202 }
4203
1cb3f3ae
XG
4204 if (is_mmio_page_fault(vcpu, cr2))
4205 emulation_type = 0;
4206
4207 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4208
4209 switch (er) {
4210 case EMULATE_DONE:
4211 return 1;
ac0a48c3 4212 case EMULATE_USER_EXIT:
3067714c 4213 ++vcpu->stat.mmio_exits;
6d77dbfc 4214 /* fall through */
3067714c 4215 case EMULATE_FAIL:
3f5d18a9 4216 return 0;
3067714c
AK
4217 default:
4218 BUG();
4219 }
4220out:
3067714c
AK
4221 return r;
4222}
4223EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4224
a7052897
MT
4225void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4226{
a7052897 4227 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4228 kvm_mmu_flush_tlb(vcpu);
4229 ++vcpu->stat.invlpg;
4230}
4231EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4232
18552672
JR
4233void kvm_enable_tdp(void)
4234{
4235 tdp_enabled = true;
4236}
4237EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4238
5f4cb662
JR
4239void kvm_disable_tdp(void)
4240{
4241 tdp_enabled = false;
4242}
4243EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4244
6aa8b732
AK
4245static void free_mmu_pages(struct kvm_vcpu *vcpu)
4246{
ad312c7c 4247 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4248 if (vcpu->arch.mmu.lm_root != NULL)
4249 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4250}
4251
4252static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4253{
17ac10ad 4254 struct page *page;
6aa8b732
AK
4255 int i;
4256
4257 ASSERT(vcpu);
4258
17ac10ad
AK
4259 /*
4260 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4261 * Therefore we need to allocate shadow page tables in the first
4262 * 4GB of memory, which happens to fit the DMA32 zone.
4263 */
4264 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4265 if (!page)
d7fa6ab2
WY
4266 return -ENOMEM;
4267
ad312c7c 4268 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4269 for (i = 0; i < 4; ++i)
ad312c7c 4270 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4271
6aa8b732 4272 return 0;
6aa8b732
AK
4273}
4274
8018c27b 4275int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4276{
6aa8b732 4277 ASSERT(vcpu);
e459e322
XG
4278
4279 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4280 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4281 vcpu->arch.mmu.translate_gpa = translate_gpa;
4282 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4283
8018c27b
IM
4284 return alloc_mmu_pages(vcpu);
4285}
6aa8b732 4286
8a3c1a33 4287void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b
IM
4288{
4289 ASSERT(vcpu);
ad312c7c 4290 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4291
8a3c1a33 4292 init_kvm_mmu(vcpu);
6aa8b732
AK
4293}
4294
90cb0529 4295void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4296{
b99db1d3
TY
4297 struct kvm_memory_slot *memslot;
4298 gfn_t last_gfn;
4299 int i;
6aa8b732 4300
b99db1d3
TY
4301 memslot = id_to_memslot(kvm->memslots, slot);
4302 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4303
9d1beefb
TY
4304 spin_lock(&kvm->mmu_lock);
4305
b99db1d3
TY
4306 for (i = PT_PAGE_TABLE_LEVEL;
4307 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4308 unsigned long *rmapp;
4309 unsigned long last_index, index;
6aa8b732 4310
b99db1d3
TY
4311 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4312 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4313
b99db1d3
TY
4314 for (index = 0; index <= last_index; ++index, ++rmapp) {
4315 if (*rmapp)
4316 __rmap_write_protect(kvm, rmapp, false);
6b81b05e 4317
198c74f4 4318 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
6b81b05e 4319 cond_resched_lock(&kvm->mmu_lock);
8234b22e 4320 }
6aa8b732 4321 }
b99db1d3 4322
9d1beefb 4323 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4324
4325 /*
4326 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4327 * which do tlb flush out of mmu-lock should be serialized by
4328 * kvm->slots_lock otherwise tlb flush would be missed.
4329 */
4330 lockdep_assert_held(&kvm->slots_lock);
4331
4332 /*
4333 * We can flush all the TLBs out of the mmu lock without TLB
4334 * corruption since we just change the spte from writable to
4335 * readonly so that we only need to care the case of changing
4336 * spte from present to present (changing the spte from present
4337 * to nonpresent will flush all the TLBs immediately), in other
4338 * words, the only case we care is mmu_spte_update() where we
4339 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4340 * instead of PT_WRITABLE_MASK, that means it does not depend
4341 * on PT_WRITABLE_MASK anymore.
4342 */
4343 kvm_flush_remote_tlbs(kvm);
6aa8b732 4344}
37a7d8b0 4345
e7d11c7a 4346#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4347static void kvm_zap_obsolete_pages(struct kvm *kvm)
4348{
4349 struct kvm_mmu_page *sp, *node;
e7d11c7a 4350 int batch = 0;
5304b8d3
XG
4351
4352restart:
4353 list_for_each_entry_safe_reverse(sp, node,
4354 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4355 int ret;
4356
5304b8d3
XG
4357 /*
4358 * No obsolete page exists before new created page since
4359 * active_mmu_pages is the FIFO list.
4360 */
4361 if (!is_obsolete_sp(kvm, sp))
4362 break;
4363
4364 /*
5304b8d3
XG
4365 * Since we are reversely walking the list and the invalid
4366 * list will be moved to the head, skip the invalid page
4367 * can help us to avoid the infinity list walking.
4368 */
4369 if (sp->role.invalid)
4370 continue;
4371
f34d251d
XG
4372 /*
4373 * Need not flush tlb since we only zap the sp with invalid
4374 * generation number.
4375 */
e7d11c7a 4376 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4377 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4378 batch = 0;
5304b8d3
XG
4379 goto restart;
4380 }
4381
365c8868
XG
4382 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4383 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4384 batch += ret;
4385
4386 if (ret)
5304b8d3
XG
4387 goto restart;
4388 }
4389
f34d251d
XG
4390 /*
4391 * Should flush tlb before free page tables since lockless-walking
4392 * may use the pages.
4393 */
365c8868 4394 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4395}
4396
4397/*
4398 * Fast invalidate all shadow pages and use lock-break technique
4399 * to zap obsolete pages.
4400 *
4401 * It's required when memslot is being deleted or VM is being
4402 * destroyed, in these cases, we should ensure that KVM MMU does
4403 * not use any resource of the being-deleted slot or all slots
4404 * after calling the function.
4405 */
4406void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4407{
4408 spin_lock(&kvm->mmu_lock);
35006126 4409 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4410 kvm->arch.mmu_valid_gen++;
4411
f34d251d
XG
4412 /*
4413 * Notify all vcpus to reload its shadow page table
4414 * and flush TLB. Then all vcpus will switch to new
4415 * shadow page table with the new mmu_valid_gen.
4416 *
4417 * Note: we should do this under the protection of
4418 * mmu-lock, otherwise, vcpu would purge shadow page
4419 * but miss tlb flush.
4420 */
4421 kvm_reload_remote_mmus(kvm);
4422
5304b8d3
XG
4423 kvm_zap_obsolete_pages(kvm);
4424 spin_unlock(&kvm->mmu_lock);
4425}
4426
365c8868
XG
4427static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4428{
4429 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4430}
4431
f8f55942
XG
4432void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4433{
4434 /*
4435 * The very rare case: if the generation-number is round,
4436 * zap all shadow pages.
f8f55942 4437 */
ee3d1570 4438 if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
7a2e8aaf 4439 printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4440 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4441 }
f8f55942
XG
4442}
4443
70534a73
DC
4444static unsigned long
4445mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4446{
4447 struct kvm *kvm;
1495f230 4448 int nr_to_scan = sc->nr_to_scan;
70534a73 4449 unsigned long freed = 0;
3ee16c81 4450
2f303b74 4451 spin_lock(&kvm_lock);
3ee16c81
IE
4452
4453 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4454 int idx;
d98ba053 4455 LIST_HEAD(invalid_list);
3ee16c81 4456
35f2d16b
TY
4457 /*
4458 * Never scan more than sc->nr_to_scan VM instances.
4459 * Will not hit this condition practically since we do not try
4460 * to shrink more than one VM and it is very unlikely to see
4461 * !n_used_mmu_pages so many times.
4462 */
4463 if (!nr_to_scan--)
4464 break;
19526396
GN
4465 /*
4466 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4467 * here. We may skip a VM instance errorneosly, but we do not
4468 * want to shrink a VM that only started to populate its MMU
4469 * anyway.
4470 */
365c8868
XG
4471 if (!kvm->arch.n_used_mmu_pages &&
4472 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4473 continue;
19526396 4474
f656ce01 4475 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4476 spin_lock(&kvm->mmu_lock);
3ee16c81 4477
365c8868
XG
4478 if (kvm_has_zapped_obsolete_pages(kvm)) {
4479 kvm_mmu_commit_zap_page(kvm,
4480 &kvm->arch.zapped_obsolete_pages);
4481 goto unlock;
4482 }
4483
70534a73
DC
4484 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4485 freed++;
d98ba053 4486 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4487
365c8868 4488unlock:
3ee16c81 4489 spin_unlock(&kvm->mmu_lock);
f656ce01 4490 srcu_read_unlock(&kvm->srcu, idx);
19526396 4491
70534a73
DC
4492 /*
4493 * unfair on small ones
4494 * per-vm shrinkers cry out
4495 * sadness comes quickly
4496 */
19526396
GN
4497 list_move_tail(&kvm->vm_list, &vm_list);
4498 break;
3ee16c81 4499 }
3ee16c81 4500
2f303b74 4501 spin_unlock(&kvm_lock);
70534a73 4502 return freed;
70534a73
DC
4503}
4504
4505static unsigned long
4506mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4507{
45221ab6 4508 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4509}
4510
4511static struct shrinker mmu_shrinker = {
70534a73
DC
4512 .count_objects = mmu_shrink_count,
4513 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4514 .seeks = DEFAULT_SEEKS * 10,
4515};
4516
2ddfd20e 4517static void mmu_destroy_caches(void)
b5a33a75 4518{
53c07b18
XG
4519 if (pte_list_desc_cache)
4520 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4521 if (mmu_page_header_cache)
4522 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4523}
4524
4525int kvm_mmu_module_init(void)
4526{
53c07b18
XG
4527 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4528 sizeof(struct pte_list_desc),
20c2df83 4529 0, 0, NULL);
53c07b18 4530 if (!pte_list_desc_cache)
b5a33a75
AK
4531 goto nomem;
4532
d3d25b04
AK
4533 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4534 sizeof(struct kvm_mmu_page),
20c2df83 4535 0, 0, NULL);
d3d25b04
AK
4536 if (!mmu_page_header_cache)
4537 goto nomem;
4538
45bf21a8
WY
4539 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4540 goto nomem;
4541
3ee16c81
IE
4542 register_shrinker(&mmu_shrinker);
4543
b5a33a75
AK
4544 return 0;
4545
4546nomem:
3ee16c81 4547 mmu_destroy_caches();
b5a33a75
AK
4548 return -ENOMEM;
4549}
4550
3ad82a7e
ZX
4551/*
4552 * Caculate mmu pages needed for kvm.
4553 */
4554unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4555{
3ad82a7e
ZX
4556 unsigned int nr_mmu_pages;
4557 unsigned int nr_pages = 0;
bc6678a3 4558 struct kvm_memslots *slots;
be6ba0f0 4559 struct kvm_memory_slot *memslot;
3ad82a7e 4560
90d83dc3
LJ
4561 slots = kvm_memslots(kvm);
4562
be6ba0f0
XG
4563 kvm_for_each_memslot(memslot, slots)
4564 nr_pages += memslot->npages;
3ad82a7e
ZX
4565
4566 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4567 nr_mmu_pages = max(nr_mmu_pages,
4568 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4569
4570 return nr_mmu_pages;
4571}
4572
94d8b056
MT
4573int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4574{
4575 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4576 u64 spte;
94d8b056
MT
4577 int nr_sptes = 0;
4578
37f6a4e2
MT
4579 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4580 return nr_sptes;
4581
c2a2ac2b
XG
4582 walk_shadow_page_lockless_begin(vcpu);
4583 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4584 sptes[iterator.level-1] = spte;
94d8b056 4585 nr_sptes++;
c2a2ac2b 4586 if (!is_shadow_present_pte(spte))
94d8b056
MT
4587 break;
4588 }
c2a2ac2b 4589 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4590
4591 return nr_sptes;
4592}
4593EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4594
c42fffe3
XG
4595void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4596{
4597 ASSERT(vcpu);
4598
95f93af4 4599 kvm_mmu_unload(vcpu);
c42fffe3
XG
4600 free_mmu_pages(vcpu);
4601 mmu_free_memory_caches(vcpu);
b034cf01
XG
4602}
4603
b034cf01
XG
4604void kvm_mmu_module_exit(void)
4605{
4606 mmu_destroy_caches();
4607 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4608 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4609 mmu_audit_disable();
4610}