]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu.c
kvm: x86: don't print warning messages for unimplemented msrs
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
1767e931
PG
32#include <linux/moduleparam.h>
33#include <linux/export.h>
448353ca 34#include <linux/swap.h>
05da4558 35#include <linux/hugetlb.h>
2f333bcb 36#include <linux/compiler.h>
bc6678a3 37#include <linux/srcu.h>
5a0e3ad6 38#include <linux/slab.h>
bf998156 39#include <linux/uaccess.h>
6aa8b732 40
e495606d
AK
41#include <asm/page.h>
42#include <asm/cmpxchg.h>
4e542370 43#include <asm/io.h>
13673a90 44#include <asm/vmx.h>
3d0c27ad 45#include <asm/kvm_page_track.h>
6aa8b732 46
18552672
JR
47/*
48 * When setting this variable to true it enables Two-Dimensional-Paging
49 * where the hardware walks 2 page tables:
50 * 1. the guest-virtual to guest-physical
51 * 2. while doing 1. it walks guest-physical to host-physical
52 * If the hardware supports that we don't need to do shadow paging.
53 */
2f333bcb 54bool tdp_enabled = false;
18552672 55
8b1fe17c
XG
56enum {
57 AUDIT_PRE_PAGE_FAULT,
58 AUDIT_POST_PAGE_FAULT,
59 AUDIT_PRE_PTE_WRITE,
6903074c
XG
60 AUDIT_POST_PTE_WRITE,
61 AUDIT_PRE_SYNC,
62 AUDIT_POST_SYNC
8b1fe17c 63};
37a7d8b0 64
8b1fe17c 65#undef MMU_DEBUG
37a7d8b0
AK
66
67#ifdef MMU_DEBUG
fa4a2c08
PB
68static bool dbg = 0;
69module_param(dbg, bool, 0644);
37a7d8b0
AK
70
71#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
72#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 73#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 74#else
37a7d8b0
AK
75#define pgprintk(x...) do { } while (0)
76#define rmap_printk(x...) do { } while (0)
fa4a2c08 77#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 78#endif
6aa8b732 79
957ed9ef
XG
80#define PTE_PREFETCH_NUM 8
81
00763e41 82#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
83#define PT64_SECOND_AVAIL_BITS_SHIFT 52
84
6aa8b732
AK
85#define PT64_LEVEL_BITS 9
86
87#define PT64_LEVEL_SHIFT(level) \
d77c26fc 88 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 89
6aa8b732
AK
90#define PT64_INDEX(address, level)\
91 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
92
93
94#define PT32_LEVEL_BITS 10
95
96#define PT32_LEVEL_SHIFT(level) \
d77c26fc 97 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 98
e04da980
JR
99#define PT32_LVL_OFFSET_MASK(level) \
100 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
101 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
102
103#define PT32_INDEX(address, level)\
104 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
105
106
27aba766 107#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
108#define PT64_DIR_BASE_ADDR_MASK \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
110#define PT64_LVL_ADDR_MASK(level) \
111 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT64_LEVEL_BITS))) - 1))
113#define PT64_LVL_OFFSET_MASK(level) \
114 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
115 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
116
117#define PT32_BASE_ADDR_MASK PAGE_MASK
118#define PT32_DIR_BASE_ADDR_MASK \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
120#define PT32_LVL_ADDR_MASK(level) \
121 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 * PT32_LEVEL_BITS))) - 1))
6aa8b732 123
53166229
GN
124#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
125 | shadow_x_mask | shadow_nx_mask)
6aa8b732 126
fe135d2c
AK
127#define ACC_EXEC_MASK 1
128#define ACC_WRITE_MASK PT_WRITABLE_MASK
129#define ACC_USER_MASK PT_USER_MASK
130#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
131
90bb6fc5
AK
132#include <trace/events/kvm.h>
133
07420171
AK
134#define CREATE_TRACE_POINTS
135#include "mmutrace.h"
136
49fde340
XG
137#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
138#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 139
135f8c2b
AK
140#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
141
220f773a
TY
142/* make pte_list_desc fit well in cache line */
143#define PTE_LIST_EXT 3
144
53c07b18
XG
145struct pte_list_desc {
146 u64 *sptes[PTE_LIST_EXT];
147 struct pte_list_desc *more;
cd4a4e53
AK
148};
149
2d11123a
AK
150struct kvm_shadow_walk_iterator {
151 u64 addr;
152 hpa_t shadow_addr;
2d11123a 153 u64 *sptep;
dd3bfd59 154 int level;
2d11123a
AK
155 unsigned index;
156};
157
158#define for_each_shadow_entry(_vcpu, _addr, _walker) \
159 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
160 shadow_walk_okay(&(_walker)); \
161 shadow_walk_next(&(_walker)))
162
c2a2ac2b
XG
163#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
164 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
165 shadow_walk_okay(&(_walker)) && \
166 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
167 __shadow_walk_next(&(_walker), spte))
168
53c07b18 169static struct kmem_cache *pte_list_desc_cache;
d3d25b04 170static struct kmem_cache *mmu_page_header_cache;
45221ab6 171static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 172
7b52345e
SY
173static u64 __read_mostly shadow_nx_mask;
174static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
175static u64 __read_mostly shadow_user_mask;
176static u64 __read_mostly shadow_accessed_mask;
177static u64 __read_mostly shadow_dirty_mask;
ce88decf 178static u64 __read_mostly shadow_mmio_mask;
ffb128c8 179static u64 __read_mostly shadow_present_mask;
ce88decf
XG
180
181static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 182static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
183
184void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
185{
186 shadow_mmio_mask = mmio_mask;
187}
188EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
189
f2fd125d 190/*
ee3d1570
DM
191 * the low bit of the generation number is always presumed to be zero.
192 * This disables mmio caching during memslot updates. The concept is
193 * similar to a seqcount but instead of retrying the access we just punt
194 * and ignore the cache.
195 *
196 * spte bits 3-11 are used as bits 1-9 of the generation number,
197 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 198 */
ee3d1570 199#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
200#define MMIO_SPTE_GEN_HIGH_SHIFT 52
201
ee3d1570
DM
202#define MMIO_GEN_SHIFT 20
203#define MMIO_GEN_LOW_SHIFT 10
204#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 205#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
206
207static u64 generation_mmio_spte_mask(unsigned int gen)
208{
209 u64 mask;
210
842bb26a 211 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
212
213 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
214 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
215 return mask;
216}
217
218static unsigned int get_mmio_spte_generation(u64 spte)
219{
220 unsigned int gen;
221
222 spte &= ~shadow_mmio_mask;
223
224 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
225 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
226 return gen;
227}
228
54bf36aa 229static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 230{
54bf36aa 231 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
232}
233
54bf36aa 234static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 235 unsigned access)
ce88decf 236{
54bf36aa 237 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 238 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 239
ce88decf 240 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 241 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 242
f8f55942 243 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 244 mmu_spte_set(sptep, mask);
ce88decf
XG
245}
246
247static bool is_mmio_spte(u64 spte)
248{
249 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
250}
251
252static gfn_t get_mmio_spte_gfn(u64 spte)
253{
842bb26a 254 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 255 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
256}
257
258static unsigned get_mmio_spte_access(u64 spte)
259{
842bb26a 260 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 261 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
262}
263
54bf36aa 264static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 265 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
266{
267 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 268 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
269 return true;
270 }
271
272 return false;
273}
c7addb90 274
54bf36aa 275static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 276{
089504c0
XG
277 unsigned int kvm_gen, spte_gen;
278
54bf36aa 279 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
280 spte_gen = get_mmio_spte_generation(spte);
281
282 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
283 return likely(kvm_gen == spte_gen);
f8f55942
XG
284}
285
7b52345e 286void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
ffb128c8 287 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask)
7b52345e
SY
288{
289 shadow_user_mask = user_mask;
290 shadow_accessed_mask = accessed_mask;
291 shadow_dirty_mask = dirty_mask;
292 shadow_nx_mask = nx_mask;
293 shadow_x_mask = x_mask;
ffb128c8 294 shadow_present_mask = p_mask;
7b52345e
SY
295}
296EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
297
6aa8b732
AK
298static int is_cpuid_PSE36(void)
299{
300 return 1;
301}
302
73b1087e
AK
303static int is_nx(struct kvm_vcpu *vcpu)
304{
f6801dff 305 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
306}
307
c7addb90
AK
308static int is_shadow_present_pte(u64 pte)
309{
8d5cf161 310 return (pte & 0xFFFFFFFFull) && !is_mmio_spte(pte);
c7addb90
AK
311}
312
05da4558
MT
313static int is_large_pte(u64 pte)
314{
315 return pte & PT_PAGE_SIZE_MASK;
316}
317
776e6633
MT
318static int is_last_spte(u64 pte, int level)
319{
320 if (level == PT_PAGE_TABLE_LEVEL)
321 return 1;
852e3c19 322 if (is_large_pte(pte))
776e6633
MT
323 return 1;
324 return 0;
325}
326
ba049e93 327static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 328{
35149e21 329 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
330}
331
da928521
AK
332static gfn_t pse36_gfn_delta(u32 gpte)
333{
334 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
335
336 return (gpte & PT32_DIR_PSE36_MASK) << shift;
337}
338
603e0651 339#ifdef CONFIG_X86_64
d555c333 340static void __set_spte(u64 *sptep, u64 spte)
e663ee64 341{
b19ee2ff 342 WRITE_ONCE(*sptep, spte);
e663ee64
AK
343}
344
603e0651 345static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 346{
b19ee2ff 347 WRITE_ONCE(*sptep, spte);
603e0651
XG
348}
349
350static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
351{
352 return xchg(sptep, spte);
353}
c2a2ac2b
XG
354
355static u64 __get_spte_lockless(u64 *sptep)
356{
357 return ACCESS_ONCE(*sptep);
358}
a9221dd5 359#else
603e0651
XG
360union split_spte {
361 struct {
362 u32 spte_low;
363 u32 spte_high;
364 };
365 u64 spte;
366};
a9221dd5 367
c2a2ac2b
XG
368static void count_spte_clear(u64 *sptep, u64 spte)
369{
370 struct kvm_mmu_page *sp = page_header(__pa(sptep));
371
372 if (is_shadow_present_pte(spte))
373 return;
374
375 /* Ensure the spte is completely set before we increase the count */
376 smp_wmb();
377 sp->clear_spte_count++;
378}
379
603e0651
XG
380static void __set_spte(u64 *sptep, u64 spte)
381{
382 union split_spte *ssptep, sspte;
a9221dd5 383
603e0651
XG
384 ssptep = (union split_spte *)sptep;
385 sspte = (union split_spte)spte;
386
387 ssptep->spte_high = sspte.spte_high;
388
389 /*
390 * If we map the spte from nonpresent to present, We should store
391 * the high bits firstly, then set present bit, so cpu can not
392 * fetch this spte while we are setting the spte.
393 */
394 smp_wmb();
395
b19ee2ff 396 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
397}
398
603e0651
XG
399static void __update_clear_spte_fast(u64 *sptep, u64 spte)
400{
401 union split_spte *ssptep, sspte;
402
403 ssptep = (union split_spte *)sptep;
404 sspte = (union split_spte)spte;
405
b19ee2ff 406 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
407
408 /*
409 * If we map the spte from present to nonpresent, we should clear
410 * present bit firstly to avoid vcpu fetch the old high bits.
411 */
412 smp_wmb();
413
414 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 415 count_spte_clear(sptep, spte);
603e0651
XG
416}
417
418static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
419{
420 union split_spte *ssptep, sspte, orig;
421
422 ssptep = (union split_spte *)sptep;
423 sspte = (union split_spte)spte;
424
425 /* xchg acts as a barrier before the setting of the high bits */
426 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
427 orig.spte_high = ssptep->spte_high;
428 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 429 count_spte_clear(sptep, spte);
603e0651
XG
430
431 return orig.spte;
432}
c2a2ac2b
XG
433
434/*
435 * The idea using the light way get the spte on x86_32 guest is from
436 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
437 *
438 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
439 * coalesces them and we are running out of the MMU lock. Therefore
440 * we need to protect against in-progress updates of the spte.
441 *
442 * Reading the spte while an update is in progress may get the old value
443 * for the high part of the spte. The race is fine for a present->non-present
444 * change (because the high part of the spte is ignored for non-present spte),
445 * but for a present->present change we must reread the spte.
446 *
447 * All such changes are done in two steps (present->non-present and
448 * non-present->present), hence it is enough to count the number of
449 * present->non-present updates: if it changed while reading the spte,
450 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
451 */
452static u64 __get_spte_lockless(u64 *sptep)
453{
454 struct kvm_mmu_page *sp = page_header(__pa(sptep));
455 union split_spte spte, *orig = (union split_spte *)sptep;
456 int count;
457
458retry:
459 count = sp->clear_spte_count;
460 smp_rmb();
461
462 spte.spte_low = orig->spte_low;
463 smp_rmb();
464
465 spte.spte_high = orig->spte_high;
466 smp_rmb();
467
468 if (unlikely(spte.spte_low != orig->spte_low ||
469 count != sp->clear_spte_count))
470 goto retry;
471
472 return spte.spte;
473}
603e0651
XG
474#endif
475
c7ba5b48
XG
476static bool spte_is_locklessly_modifiable(u64 spte)
477{
feb3eb70
GN
478 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
479 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
480}
481
8672b721
XG
482static bool spte_has_volatile_bits(u64 spte)
483{
c7ba5b48 484 /*
6a6256f9 485 * Always atomically update spte if it can be updated
c7ba5b48
XG
486 * out of mmu-lock, it can ensure dirty bit is not lost,
487 * also, it can help us to get a stable is_writable_pte()
488 * to ensure tlb flush is not missed.
489 */
490 if (spte_is_locklessly_modifiable(spte))
491 return true;
492
8672b721
XG
493 if (!shadow_accessed_mask)
494 return false;
495
496 if (!is_shadow_present_pte(spte))
497 return false;
498
4132779b
XG
499 if ((spte & shadow_accessed_mask) &&
500 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
501 return false;
502
503 return true;
504}
505
4132779b
XG
506static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
507{
508 return (old_spte & bit_mask) && !(new_spte & bit_mask);
509}
510
7e71a59b
KH
511static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
512{
513 return (old_spte & bit_mask) != (new_spte & bit_mask);
514}
515
1df9f2dc
XG
516/* Rules for using mmu_spte_set:
517 * Set the sptep from nonpresent to present.
518 * Note: the sptep being assigned *must* be either not present
519 * or in a state where the hardware will not attempt to update
520 * the spte.
521 */
522static void mmu_spte_set(u64 *sptep, u64 new_spte)
523{
524 WARN_ON(is_shadow_present_pte(*sptep));
525 __set_spte(sptep, new_spte);
526}
527
528/* Rules for using mmu_spte_update:
bb3541f1 529 * Update the state bits, it means the mapped pfn is not changed.
6e7d0354
XG
530 *
531 * Whenever we overwrite a writable spte with a read-only one we
532 * should flush remote TLBs. Otherwise rmap_write_protect
533 * will find a read-only spte, even though the writable spte
534 * might be cached on a CPU's TLB, the return value indicates this
535 * case.
1df9f2dc 536 */
6e7d0354 537static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 538{
c7ba5b48 539 u64 old_spte = *sptep;
6e7d0354 540 bool ret = false;
4132779b 541
afd28fe1 542 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 543
6e7d0354
XG
544 if (!is_shadow_present_pte(old_spte)) {
545 mmu_spte_set(sptep, new_spte);
546 return ret;
547 }
4132779b 548
c7ba5b48 549 if (!spte_has_volatile_bits(old_spte))
603e0651 550 __update_clear_spte_fast(sptep, new_spte);
4132779b 551 else
603e0651 552 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 553
c7ba5b48
XG
554 /*
555 * For the spte updated out of mmu-lock is safe, since
6a6256f9 556 * we always atomically update it, see the comments in
c7ba5b48
XG
557 * spte_has_volatile_bits().
558 */
7f31c959
XG
559 if (spte_is_locklessly_modifiable(old_spte) &&
560 !is_writable_pte(new_spte))
6e7d0354
XG
561 ret = true;
562
14f47605
YZ
563 if (!shadow_accessed_mask) {
564 /*
565 * We don't set page dirty when dropping non-writable spte.
566 * So do it now if the new spte is becoming non-writable.
567 */
568 if (ret)
569 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354 570 return ret;
14f47605 571 }
4132779b 572
7e71a59b
KH
573 /*
574 * Flush TLB when accessed/dirty bits are changed in the page tables,
575 * to guarantee consistency between TLB and page tables.
576 */
577 if (spte_is_bit_changed(old_spte, new_spte,
578 shadow_accessed_mask | shadow_dirty_mask))
579 ret = true;
580
4132779b
XG
581 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
582 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
583 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
584 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
585
586 return ret;
b79b93f9
AK
587}
588
1df9f2dc
XG
589/*
590 * Rules for using mmu_spte_clear_track_bits:
591 * It sets the sptep from present to nonpresent, and track the
592 * state bits, it is used to clear the last level sptep.
593 */
594static int mmu_spte_clear_track_bits(u64 *sptep)
595{
ba049e93 596 kvm_pfn_t pfn;
1df9f2dc
XG
597 u64 old_spte = *sptep;
598
599 if (!spte_has_volatile_bits(old_spte))
603e0651 600 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 601 else
603e0651 602 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 603
afd28fe1 604 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
605 return 0;
606
607 pfn = spte_to_pfn(old_spte);
86fde74c
XG
608
609 /*
610 * KVM does not hold the refcount of the page used by
611 * kvm mmu, before reclaiming the page, we should
612 * unmap it from mmu first.
613 */
bf4bea8e 614 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 615
1df9f2dc
XG
616 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
617 kvm_set_pfn_accessed(pfn);
14f47605
YZ
618 if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask :
619 PT_WRITABLE_MASK))
1df9f2dc
XG
620 kvm_set_pfn_dirty(pfn);
621 return 1;
622}
623
624/*
625 * Rules for using mmu_spte_clear_no_track:
626 * Directly clear spte without caring the state bits of sptep,
627 * it is used to set the upper level spte.
628 */
629static void mmu_spte_clear_no_track(u64 *sptep)
630{
603e0651 631 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
632}
633
c2a2ac2b
XG
634static u64 mmu_spte_get_lockless(u64 *sptep)
635{
636 return __get_spte_lockless(sptep);
637}
638
639static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
640{
c142786c
AK
641 /*
642 * Prevent page table teardown by making any free-er wait during
643 * kvm_flush_remote_tlbs() IPI to all active vcpus.
644 */
645 local_irq_disable();
36ca7e0a 646
c142786c
AK
647 /*
648 * Make sure a following spte read is not reordered ahead of the write
649 * to vcpu->mode.
650 */
36ca7e0a 651 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
652}
653
654static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
655{
c142786c
AK
656 /*
657 * Make sure the write to vcpu->mode is not reordered in front of
658 * reads to sptes. If it does, kvm_commit_zap_page() can see us
659 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
660 */
36ca7e0a 661 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 662 local_irq_enable();
c2a2ac2b
XG
663}
664
e2dec939 665static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 666 struct kmem_cache *base_cache, int min)
714b93da
AK
667{
668 void *obj;
669
670 if (cache->nobjs >= min)
e2dec939 671 return 0;
714b93da 672 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 673 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 674 if (!obj)
e2dec939 675 return -ENOMEM;
714b93da
AK
676 cache->objects[cache->nobjs++] = obj;
677 }
e2dec939 678 return 0;
714b93da
AK
679}
680
f759e2b4
XG
681static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
682{
683 return cache->nobjs;
684}
685
e8ad9a70
XG
686static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
687 struct kmem_cache *cache)
714b93da
AK
688{
689 while (mc->nobjs)
e8ad9a70 690 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
691}
692
c1158e63 693static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 694 int min)
c1158e63 695{
842f22ed 696 void *page;
c1158e63
AK
697
698 if (cache->nobjs >= min)
699 return 0;
700 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 701 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
702 if (!page)
703 return -ENOMEM;
842f22ed 704 cache->objects[cache->nobjs++] = page;
c1158e63
AK
705 }
706 return 0;
707}
708
709static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
710{
711 while (mc->nobjs)
c4d198d5 712 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
713}
714
2e3e5882 715static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 716{
e2dec939
AK
717 int r;
718
53c07b18 719 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 720 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
721 if (r)
722 goto out;
ad312c7c 723 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
724 if (r)
725 goto out;
ad312c7c 726 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 727 mmu_page_header_cache, 4);
e2dec939
AK
728out:
729 return r;
714b93da
AK
730}
731
732static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
733{
53c07b18
XG
734 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
735 pte_list_desc_cache);
ad312c7c 736 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
737 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
738 mmu_page_header_cache);
714b93da
AK
739}
740
80feb89a 741static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
742{
743 void *p;
744
745 BUG_ON(!mc->nobjs);
746 p = mc->objects[--mc->nobjs];
714b93da
AK
747 return p;
748}
749
53c07b18 750static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 751{
80feb89a 752 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
753}
754
53c07b18 755static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 756{
53c07b18 757 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
758}
759
2032a93d
LJ
760static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
761{
762 if (!sp->role.direct)
763 return sp->gfns[index];
764
765 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
766}
767
768static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
769{
770 if (sp->role.direct)
771 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
772 else
773 sp->gfns[index] = gfn;
774}
775
05da4558 776/*
d4dbf470
TY
777 * Return the pointer to the large page information for a given gfn,
778 * handling slots that are not large page aligned.
05da4558 779 */
d4dbf470
TY
780static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
781 struct kvm_memory_slot *slot,
782 int level)
05da4558
MT
783{
784 unsigned long idx;
785
fb03cb6f 786 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 787 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
788}
789
547ffaed
XG
790static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
791 gfn_t gfn, int count)
792{
793 struct kvm_lpage_info *linfo;
794 int i;
795
796 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
797 linfo = lpage_info_slot(gfn, slot, i);
798 linfo->disallow_lpage += count;
799 WARN_ON(linfo->disallow_lpage < 0);
800 }
801}
802
803void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
804{
805 update_gfn_disallow_lpage_count(slot, gfn, 1);
806}
807
808void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
809{
810 update_gfn_disallow_lpage_count(slot, gfn, -1);
811}
812
3ed1a478 813static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 814{
699023e2 815 struct kvm_memslots *slots;
d25797b2 816 struct kvm_memory_slot *slot;
3ed1a478 817 gfn_t gfn;
05da4558 818
56ca57f9 819 kvm->arch.indirect_shadow_pages++;
3ed1a478 820 gfn = sp->gfn;
699023e2
PB
821 slots = kvm_memslots_for_spte_role(kvm, sp->role);
822 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
823
824 /* the non-leaf shadow pages are keeping readonly. */
825 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
826 return kvm_slot_page_track_add_page(kvm, slot, gfn,
827 KVM_PAGE_TRACK_WRITE);
828
547ffaed 829 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
830}
831
3ed1a478 832static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 833{
699023e2 834 struct kvm_memslots *slots;
d25797b2 835 struct kvm_memory_slot *slot;
3ed1a478 836 gfn_t gfn;
05da4558 837
56ca57f9 838 kvm->arch.indirect_shadow_pages--;
3ed1a478 839 gfn = sp->gfn;
699023e2
PB
840 slots = kvm_memslots_for_spte_role(kvm, sp->role);
841 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
842 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
843 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
844 KVM_PAGE_TRACK_WRITE);
845
547ffaed 846 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
847}
848
92f94f1e
XG
849static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
850 struct kvm_memory_slot *slot)
05da4558 851{
d4dbf470 852 struct kvm_lpage_info *linfo;
05da4558
MT
853
854 if (slot) {
d4dbf470 855 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 856 return !!linfo->disallow_lpage;
05da4558
MT
857 }
858
92f94f1e 859 return true;
05da4558
MT
860}
861
92f94f1e
XG
862static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
863 int level)
5225fdf8
TY
864{
865 struct kvm_memory_slot *slot;
866
867 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 868 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
869}
870
d25797b2 871static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 872{
8f0b1ab6 873 unsigned long page_size;
d25797b2 874 int i, ret = 0;
05da4558 875
8f0b1ab6 876 page_size = kvm_host_page_size(kvm, gfn);
05da4558 877
8a3d08f1 878 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
879 if (page_size >= KVM_HPAGE_SIZE(i))
880 ret = i;
881 else
882 break;
883 }
884
4c2155ce 885 return ret;
05da4558
MT
886}
887
d8aacf5d
TY
888static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
889 bool no_dirty_log)
890{
891 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
892 return false;
893 if (no_dirty_log && slot->dirty_bitmap)
894 return false;
895
896 return true;
897}
898
5d163b1c
XG
899static struct kvm_memory_slot *
900gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
901 bool no_dirty_log)
05da4558
MT
902{
903 struct kvm_memory_slot *slot;
5d163b1c 904
54bf36aa 905 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 906 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
907 slot = NULL;
908
909 return slot;
910}
911
fd136902
TY
912static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
913 bool *force_pt_level)
936a5fe6
AA
914{
915 int host_level, level, max_level;
d8aacf5d
TY
916 struct kvm_memory_slot *slot;
917
8c85ac1c
TY
918 if (unlikely(*force_pt_level))
919 return PT_PAGE_TABLE_LEVEL;
05da4558 920
8c85ac1c
TY
921 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
922 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
923 if (unlikely(*force_pt_level))
924 return PT_PAGE_TABLE_LEVEL;
925
d25797b2
JR
926 host_level = host_mapping_level(vcpu->kvm, large_gfn);
927
928 if (host_level == PT_PAGE_TABLE_LEVEL)
929 return host_level;
930
55dd98c3 931 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
932
933 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 934 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 935 break;
d25797b2
JR
936
937 return level - 1;
05da4558
MT
938}
939
290fc38d 940/*
018aabb5 941 * About rmap_head encoding:
cd4a4e53 942 *
018aabb5
TY
943 * If the bit zero of rmap_head->val is clear, then it points to the only spte
944 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 945 * pte_list_desc containing more mappings.
018aabb5
TY
946 */
947
948/*
949 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 950 */
53c07b18 951static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 952 struct kvm_rmap_head *rmap_head)
cd4a4e53 953{
53c07b18 954 struct pte_list_desc *desc;
53a27b39 955 int i, count = 0;
cd4a4e53 956
018aabb5 957 if (!rmap_head->val) {
53c07b18 958 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
959 rmap_head->val = (unsigned long)spte;
960 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
961 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
962 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 963 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 964 desc->sptes[1] = spte;
018aabb5 965 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 966 ++count;
cd4a4e53 967 } else {
53c07b18 968 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 969 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 970 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 971 desc = desc->more;
53c07b18 972 count += PTE_LIST_EXT;
53a27b39 973 }
53c07b18
XG
974 if (desc->sptes[PTE_LIST_EXT-1]) {
975 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
976 desc = desc->more;
977 }
d555c333 978 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 979 ++count;
d555c333 980 desc->sptes[i] = spte;
cd4a4e53 981 }
53a27b39 982 return count;
cd4a4e53
AK
983}
984
53c07b18 985static void
018aabb5
TY
986pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
987 struct pte_list_desc *desc, int i,
988 struct pte_list_desc *prev_desc)
cd4a4e53
AK
989{
990 int j;
991
53c07b18 992 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 993 ;
d555c333
AK
994 desc->sptes[i] = desc->sptes[j];
995 desc->sptes[j] = NULL;
cd4a4e53
AK
996 if (j != 0)
997 return;
998 if (!prev_desc && !desc->more)
018aabb5 999 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
1000 else
1001 if (prev_desc)
1002 prev_desc->more = desc->more;
1003 else
018aabb5 1004 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1005 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1006}
1007
018aabb5 1008static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1009{
53c07b18
XG
1010 struct pte_list_desc *desc;
1011 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1012 int i;
1013
018aabb5 1014 if (!rmap_head->val) {
53c07b18 1015 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 1016 BUG();
018aabb5 1017 } else if (!(rmap_head->val & 1)) {
53c07b18 1018 rmap_printk("pte_list_remove: %p 1->0\n", spte);
018aabb5 1019 if ((u64 *)rmap_head->val != spte) {
53c07b18 1020 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
1021 BUG();
1022 }
018aabb5 1023 rmap_head->val = 0;
cd4a4e53 1024 } else {
53c07b18 1025 rmap_printk("pte_list_remove: %p many->many\n", spte);
018aabb5 1026 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1027 prev_desc = NULL;
1028 while (desc) {
018aabb5 1029 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1030 if (desc->sptes[i] == spte) {
018aabb5
TY
1031 pte_list_desc_remove_entry(rmap_head,
1032 desc, i, prev_desc);
cd4a4e53
AK
1033 return;
1034 }
018aabb5 1035 }
cd4a4e53
AK
1036 prev_desc = desc;
1037 desc = desc->more;
1038 }
53c07b18 1039 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1040 BUG();
1041 }
1042}
1043
018aabb5
TY
1044static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1045 struct kvm_memory_slot *slot)
53c07b18 1046{
77d11309 1047 unsigned long idx;
53c07b18 1048
77d11309 1049 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1050 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1051}
1052
018aabb5
TY
1053static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1054 struct kvm_mmu_page *sp)
9b9b1492 1055{
699023e2 1056 struct kvm_memslots *slots;
9b9b1492
TY
1057 struct kvm_memory_slot *slot;
1058
699023e2
PB
1059 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1060 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1061 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1062}
1063
f759e2b4
XG
1064static bool rmap_can_add(struct kvm_vcpu *vcpu)
1065{
1066 struct kvm_mmu_memory_cache *cache;
1067
1068 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1069 return mmu_memory_cache_free_objects(cache);
1070}
1071
53c07b18
XG
1072static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1073{
1074 struct kvm_mmu_page *sp;
018aabb5 1075 struct kvm_rmap_head *rmap_head;
53c07b18 1076
53c07b18
XG
1077 sp = page_header(__pa(spte));
1078 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1079 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1080 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1081}
1082
53c07b18
XG
1083static void rmap_remove(struct kvm *kvm, u64 *spte)
1084{
1085 struct kvm_mmu_page *sp;
1086 gfn_t gfn;
018aabb5 1087 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1088
1089 sp = page_header(__pa(spte));
1090 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5
TY
1091 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1092 pte_list_remove(spte, rmap_head);
53c07b18
XG
1093}
1094
1e3f42f0
TY
1095/*
1096 * Used by the following functions to iterate through the sptes linked by a
1097 * rmap. All fields are private and not assumed to be used outside.
1098 */
1099struct rmap_iterator {
1100 /* private fields */
1101 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1102 int pos; /* index of the sptep */
1103};
1104
1105/*
1106 * Iteration must be started by this function. This should also be used after
1107 * removing/dropping sptes from the rmap link because in such cases the
1108 * information in the itererator may not be valid.
1109 *
1110 * Returns sptep if found, NULL otherwise.
1111 */
018aabb5
TY
1112static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1113 struct rmap_iterator *iter)
1e3f42f0 1114{
77fbbbd2
TY
1115 u64 *sptep;
1116
018aabb5 1117 if (!rmap_head->val)
1e3f42f0
TY
1118 return NULL;
1119
018aabb5 1120 if (!(rmap_head->val & 1)) {
1e3f42f0 1121 iter->desc = NULL;
77fbbbd2
TY
1122 sptep = (u64 *)rmap_head->val;
1123 goto out;
1e3f42f0
TY
1124 }
1125
018aabb5 1126 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1127 iter->pos = 0;
77fbbbd2
TY
1128 sptep = iter->desc->sptes[iter->pos];
1129out:
1130 BUG_ON(!is_shadow_present_pte(*sptep));
1131 return sptep;
1e3f42f0
TY
1132}
1133
1134/*
1135 * Must be used with a valid iterator: e.g. after rmap_get_first().
1136 *
1137 * Returns sptep if found, NULL otherwise.
1138 */
1139static u64 *rmap_get_next(struct rmap_iterator *iter)
1140{
77fbbbd2
TY
1141 u64 *sptep;
1142
1e3f42f0
TY
1143 if (iter->desc) {
1144 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1145 ++iter->pos;
1146 sptep = iter->desc->sptes[iter->pos];
1147 if (sptep)
77fbbbd2 1148 goto out;
1e3f42f0
TY
1149 }
1150
1151 iter->desc = iter->desc->more;
1152
1153 if (iter->desc) {
1154 iter->pos = 0;
1155 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1156 sptep = iter->desc->sptes[iter->pos];
1157 goto out;
1e3f42f0
TY
1158 }
1159 }
1160
1161 return NULL;
77fbbbd2
TY
1162out:
1163 BUG_ON(!is_shadow_present_pte(*sptep));
1164 return sptep;
1e3f42f0
TY
1165}
1166
018aabb5
TY
1167#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1168 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1169 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1170
c3707958 1171static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1172{
1df9f2dc 1173 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1174 rmap_remove(kvm, sptep);
be38d276
AK
1175}
1176
8e22f955
XG
1177
1178static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1179{
1180 if (is_large_pte(*sptep)) {
1181 WARN_ON(page_header(__pa(sptep))->role.level ==
1182 PT_PAGE_TABLE_LEVEL);
1183 drop_spte(kvm, sptep);
1184 --kvm->stat.lpages;
1185 return true;
1186 }
1187
1188 return false;
1189}
1190
1191static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1192{
1193 if (__drop_large_spte(vcpu->kvm, sptep))
1194 kvm_flush_remote_tlbs(vcpu->kvm);
1195}
1196
1197/*
49fde340 1198 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1199 * spte write-protection is caused by protecting shadow page table.
49fde340 1200 *
b4619660 1201 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1202 * protection:
1203 * - for dirty logging, the spte can be set to writable at anytime if
1204 * its dirty bitmap is properly set.
1205 * - for spte protection, the spte can be writable only after unsync-ing
1206 * shadow page.
8e22f955 1207 *
c126d94f 1208 * Return true if tlb need be flushed.
8e22f955 1209 */
c4f138b4 1210static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1211{
1212 u64 spte = *sptep;
1213
49fde340
XG
1214 if (!is_writable_pte(spte) &&
1215 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1216 return false;
1217
1218 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1219
49fde340
XG
1220 if (pt_protect)
1221 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1222 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1223
c126d94f 1224 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1225}
1226
018aabb5
TY
1227static bool __rmap_write_protect(struct kvm *kvm,
1228 struct kvm_rmap_head *rmap_head,
245c3912 1229 bool pt_protect)
98348e95 1230{
1e3f42f0
TY
1231 u64 *sptep;
1232 struct rmap_iterator iter;
d13bc5b5 1233 bool flush = false;
374cbac0 1234
018aabb5 1235 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1236 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1237
d13bc5b5 1238 return flush;
a0ed4607
TY
1239}
1240
c4f138b4 1241static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1242{
1243 u64 spte = *sptep;
1244
1245 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1246
1247 spte &= ~shadow_dirty_mask;
1248
1249 return mmu_spte_update(sptep, spte);
1250}
1251
018aabb5 1252static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1253{
1254 u64 *sptep;
1255 struct rmap_iterator iter;
1256 bool flush = false;
1257
018aabb5 1258 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1259 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1260
1261 return flush;
1262}
1263
c4f138b4 1264static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1265{
1266 u64 spte = *sptep;
1267
1268 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1269
1270 spte |= shadow_dirty_mask;
1271
1272 return mmu_spte_update(sptep, spte);
1273}
1274
018aabb5 1275static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1276{
1277 u64 *sptep;
1278 struct rmap_iterator iter;
1279 bool flush = false;
1280
018aabb5 1281 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1282 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1283
1284 return flush;
1285}
1286
5dc99b23 1287/**
3b0f1d01 1288 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1289 * @kvm: kvm instance
1290 * @slot: slot to protect
1291 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1292 * @mask: indicates which pages we should protect
1293 *
1294 * Used when we do not need to care about huge page mappings: e.g. during dirty
1295 * logging we do not have any such mappings.
1296 */
3b0f1d01 1297static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1298 struct kvm_memory_slot *slot,
1299 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1300{
018aabb5 1301 struct kvm_rmap_head *rmap_head;
a0ed4607 1302
5dc99b23 1303 while (mask) {
018aabb5
TY
1304 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1305 PT_PAGE_TABLE_LEVEL, slot);
1306 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1307
5dc99b23
TY
1308 /* clear the first set bit */
1309 mask &= mask - 1;
1310 }
374cbac0
AK
1311}
1312
f4b4b180
KH
1313/**
1314 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1315 * @kvm: kvm instance
1316 * @slot: slot to clear D-bit
1317 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1318 * @mask: indicates which pages we should clear D-bit
1319 *
1320 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1321 */
1322void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1323 struct kvm_memory_slot *slot,
1324 gfn_t gfn_offset, unsigned long mask)
1325{
018aabb5 1326 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1327
1328 while (mask) {
018aabb5
TY
1329 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1330 PT_PAGE_TABLE_LEVEL, slot);
1331 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1332
1333 /* clear the first set bit */
1334 mask &= mask - 1;
1335 }
1336}
1337EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1338
3b0f1d01
KH
1339/**
1340 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1341 * PT level pages.
1342 *
1343 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1344 * enable dirty logging for them.
1345 *
1346 * Used when we do not need to care about huge page mappings: e.g. during dirty
1347 * logging we do not have any such mappings.
1348 */
1349void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1350 struct kvm_memory_slot *slot,
1351 gfn_t gfn_offset, unsigned long mask)
1352{
88178fd4
KH
1353 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1354 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1355 mask);
1356 else
1357 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1358}
1359
aeecee2e
XG
1360bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1361 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1362{
018aabb5 1363 struct kvm_rmap_head *rmap_head;
5dc99b23 1364 int i;
2f84569f 1365 bool write_protected = false;
95d4c16c 1366
8a3d08f1 1367 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1368 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1369 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1370 }
1371
1372 return write_protected;
95d4c16c
TY
1373}
1374
aeecee2e
XG
1375static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1376{
1377 struct kvm_memory_slot *slot;
1378
1379 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1380 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1381}
1382
018aabb5 1383static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1384{
1e3f42f0
TY
1385 u64 *sptep;
1386 struct rmap_iterator iter;
6a49f85c 1387 bool flush = false;
e930bffe 1388
018aabb5 1389 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1390 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1391
1392 drop_spte(kvm, sptep);
6a49f85c 1393 flush = true;
e930bffe 1394 }
1e3f42f0 1395
6a49f85c
XG
1396 return flush;
1397}
1398
018aabb5 1399static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1400 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1401 unsigned long data)
1402{
018aabb5 1403 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1404}
1405
018aabb5 1406static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1407 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1408 unsigned long data)
3da0dd43 1409{
1e3f42f0
TY
1410 u64 *sptep;
1411 struct rmap_iterator iter;
3da0dd43 1412 int need_flush = 0;
1e3f42f0 1413 u64 new_spte;
3da0dd43 1414 pte_t *ptep = (pte_t *)data;
ba049e93 1415 kvm_pfn_t new_pfn;
3da0dd43
IE
1416
1417 WARN_ON(pte_huge(*ptep));
1418 new_pfn = pte_pfn(*ptep);
1e3f42f0 1419
0d536790 1420restart:
018aabb5 1421 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2
ALC
1422 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1423 sptep, *sptep, gfn, level);
1e3f42f0 1424
3da0dd43 1425 need_flush = 1;
1e3f42f0 1426
3da0dd43 1427 if (pte_write(*ptep)) {
1e3f42f0 1428 drop_spte(kvm, sptep);
0d536790 1429 goto restart;
3da0dd43 1430 } else {
1e3f42f0 1431 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1432 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1433
1434 new_spte &= ~PT_WRITABLE_MASK;
1435 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1436 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1437
1438 mmu_spte_clear_track_bits(sptep);
1439 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1440 }
1441 }
1e3f42f0 1442
3da0dd43
IE
1443 if (need_flush)
1444 kvm_flush_remote_tlbs(kvm);
1445
1446 return 0;
1447}
1448
6ce1f4e2
XG
1449struct slot_rmap_walk_iterator {
1450 /* input fields. */
1451 struct kvm_memory_slot *slot;
1452 gfn_t start_gfn;
1453 gfn_t end_gfn;
1454 int start_level;
1455 int end_level;
1456
1457 /* output fields. */
1458 gfn_t gfn;
018aabb5 1459 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1460 int level;
1461
1462 /* private field. */
018aabb5 1463 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1464};
1465
1466static void
1467rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1468{
1469 iterator->level = level;
1470 iterator->gfn = iterator->start_gfn;
1471 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1472 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1473 iterator->slot);
1474}
1475
1476static void
1477slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1478 struct kvm_memory_slot *slot, int start_level,
1479 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1480{
1481 iterator->slot = slot;
1482 iterator->start_level = start_level;
1483 iterator->end_level = end_level;
1484 iterator->start_gfn = start_gfn;
1485 iterator->end_gfn = end_gfn;
1486
1487 rmap_walk_init_level(iterator, iterator->start_level);
1488}
1489
1490static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1491{
1492 return !!iterator->rmap;
1493}
1494
1495static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1496{
1497 if (++iterator->rmap <= iterator->end_rmap) {
1498 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1499 return;
1500 }
1501
1502 if (++iterator->level > iterator->end_level) {
1503 iterator->rmap = NULL;
1504 return;
1505 }
1506
1507 rmap_walk_init_level(iterator, iterator->level);
1508}
1509
1510#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1511 _start_gfn, _end_gfn, _iter_) \
1512 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1513 _end_level_, _start_gfn, _end_gfn); \
1514 slot_rmap_walk_okay(_iter_); \
1515 slot_rmap_walk_next(_iter_))
1516
84504ef3
TY
1517static int kvm_handle_hva_range(struct kvm *kvm,
1518 unsigned long start,
1519 unsigned long end,
1520 unsigned long data,
1521 int (*handler)(struct kvm *kvm,
018aabb5 1522 struct kvm_rmap_head *rmap_head,
048212d0 1523 struct kvm_memory_slot *slot,
8a9522d2
ALC
1524 gfn_t gfn,
1525 int level,
84504ef3 1526 unsigned long data))
e930bffe 1527{
bc6678a3 1528 struct kvm_memslots *slots;
be6ba0f0 1529 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1530 struct slot_rmap_walk_iterator iterator;
1531 int ret = 0;
9da0e4d5 1532 int i;
bc6678a3 1533
9da0e4d5
PB
1534 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1535 slots = __kvm_memslots(kvm, i);
1536 kvm_for_each_memslot(memslot, slots) {
1537 unsigned long hva_start, hva_end;
1538 gfn_t gfn_start, gfn_end;
e930bffe 1539
9da0e4d5
PB
1540 hva_start = max(start, memslot->userspace_addr);
1541 hva_end = min(end, memslot->userspace_addr +
1542 (memslot->npages << PAGE_SHIFT));
1543 if (hva_start >= hva_end)
1544 continue;
1545 /*
1546 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1547 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1548 */
1549 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1550 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1551
1552 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1553 PT_MAX_HUGEPAGE_LEVEL,
1554 gfn_start, gfn_end - 1,
1555 &iterator)
1556 ret |= handler(kvm, iterator.rmap, memslot,
1557 iterator.gfn, iterator.level, data);
1558 }
e930bffe
AA
1559 }
1560
f395302e 1561 return ret;
e930bffe
AA
1562}
1563
84504ef3
TY
1564static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1565 unsigned long data,
018aabb5
TY
1566 int (*handler)(struct kvm *kvm,
1567 struct kvm_rmap_head *rmap_head,
048212d0 1568 struct kvm_memory_slot *slot,
8a9522d2 1569 gfn_t gfn, int level,
84504ef3
TY
1570 unsigned long data))
1571{
1572 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1573}
1574
1575int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1576{
3da0dd43
IE
1577 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1578}
1579
b3ae2096
TY
1580int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1581{
1582 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1583}
1584
3da0dd43
IE
1585void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1586{
8a8365c5 1587 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1588}
1589
018aabb5 1590static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1591 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1592 unsigned long data)
e930bffe 1593{
1e3f42f0 1594 u64 *sptep;
79f702a6 1595 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1596 int young = 0;
1597
57128468 1598 BUG_ON(!shadow_accessed_mask);
534e38b4 1599
018aabb5 1600 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1601 if (*sptep & shadow_accessed_mask) {
e930bffe 1602 young = 1;
3f6d8c8a
XH
1603 clear_bit((ffs(shadow_accessed_mask) - 1),
1604 (unsigned long *)sptep);
e930bffe 1605 }
018aabb5 1606 }
0d536790 1607
8a9522d2 1608 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1609 return young;
1610}
1611
018aabb5 1612static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1613 struct kvm_memory_slot *slot, gfn_t gfn,
1614 int level, unsigned long data)
8ee53820 1615{
1e3f42f0
TY
1616 u64 *sptep;
1617 struct rmap_iterator iter;
8ee53820
AA
1618 int young = 0;
1619
1620 /*
1621 * If there's no access bit in the secondary pte set by the
1622 * hardware it's up to gup-fast/gup to set the access bit in
1623 * the primary pte or in the page structure.
1624 */
1625 if (!shadow_accessed_mask)
1626 goto out;
1627
018aabb5 1628 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1629 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1630 young = 1;
1631 break;
1632 }
018aabb5 1633 }
8ee53820
AA
1634out:
1635 return young;
1636}
1637
53a27b39
MT
1638#define RMAP_RECYCLE_THRESHOLD 1000
1639
852e3c19 1640static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1641{
018aabb5 1642 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1643 struct kvm_mmu_page *sp;
1644
1645 sp = page_header(__pa(spte));
53a27b39 1646
018aabb5 1647 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1648
018aabb5 1649 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1650 kvm_flush_remote_tlbs(vcpu->kvm);
1651}
1652
57128468 1653int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1654{
57128468
ALC
1655 /*
1656 * In case of absence of EPT Access and Dirty Bits supports,
1657 * emulate the accessed bit for EPT, by checking if this page has
1658 * an EPT mapping, and clearing it if it does. On the next access,
1659 * a new EPT mapping will be established.
1660 * This has some overhead, but not as much as the cost of swapping
1661 * out actively used pages or breaking up actively used hugepages.
1662 */
66d73e12 1663 if (!shadow_accessed_mask)
57128468
ALC
1664 return kvm_handle_hva_range(kvm, start, end, 0,
1665 kvm_unmap_rmapp);
57128468
ALC
1666
1667 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1668}
1669
8ee53820
AA
1670int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1671{
1672 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1673}
1674
d6c69ee9 1675#ifdef MMU_DEBUG
47ad8e68 1676static int is_empty_shadow_page(u64 *spt)
6aa8b732 1677{
139bdb2d
AK
1678 u64 *pos;
1679 u64 *end;
1680
47ad8e68 1681 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1682 if (is_shadow_present_pte(*pos)) {
b8688d51 1683 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1684 pos, *pos);
6aa8b732 1685 return 0;
139bdb2d 1686 }
6aa8b732
AK
1687 return 1;
1688}
d6c69ee9 1689#endif
6aa8b732 1690
45221ab6
DH
1691/*
1692 * This value is the sum of all of the kvm instances's
1693 * kvm->arch.n_used_mmu_pages values. We need a global,
1694 * aggregate version in order to make the slab shrinker
1695 * faster
1696 */
1697static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1698{
1699 kvm->arch.n_used_mmu_pages += nr;
1700 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1701}
1702
834be0d8 1703static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1704{
fa4a2c08 1705 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1706 hlist_del(&sp->hash_link);
bd4c86ea
XG
1707 list_del(&sp->link);
1708 free_page((unsigned long)sp->spt);
834be0d8
GN
1709 if (!sp->role.direct)
1710 free_page((unsigned long)sp->gfns);
e8ad9a70 1711 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1712}
1713
cea0f0e7
AK
1714static unsigned kvm_page_table_hashfn(gfn_t gfn)
1715{
1ae0a13d 1716 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1717}
1718
714b93da 1719static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1720 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1721{
cea0f0e7
AK
1722 if (!parent_pte)
1723 return;
cea0f0e7 1724
67052b35 1725 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1726}
1727
4db35314 1728static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1729 u64 *parent_pte)
1730{
67052b35 1731 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1732}
1733
bcdd9a93
XG
1734static void drop_parent_pte(struct kvm_mmu_page *sp,
1735 u64 *parent_pte)
1736{
1737 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1738 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1739}
1740
47005792 1741static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1742{
67052b35 1743 struct kvm_mmu_page *sp;
7ddca7e4 1744
80feb89a
TY
1745 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1746 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1747 if (!direct)
80feb89a 1748 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1749 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1750
1751 /*
1752 * The active_mmu_pages list is the FIFO list, do not move the
1753 * page until it is zapped. kvm_zap_obsolete_pages depends on
1754 * this feature. See the comments in kvm_zap_obsolete_pages().
1755 */
67052b35 1756 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1757 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1758 return sp;
ad8cfbe3
MT
1759}
1760
67052b35 1761static void mark_unsync(u64 *spte);
1047df1f 1762static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1763{
74c4e63a
TY
1764 u64 *sptep;
1765 struct rmap_iterator iter;
1766
1767 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1768 mark_unsync(sptep);
1769 }
0074ff63
MT
1770}
1771
67052b35 1772static void mark_unsync(u64 *spte)
0074ff63 1773{
67052b35 1774 struct kvm_mmu_page *sp;
1047df1f 1775 unsigned int index;
0074ff63 1776
67052b35 1777 sp = page_header(__pa(spte));
1047df1f
XG
1778 index = spte - sp->spt;
1779 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1780 return;
1047df1f 1781 if (sp->unsync_children++)
0074ff63 1782 return;
1047df1f 1783 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1784}
1785
e8bc217a 1786static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1787 struct kvm_mmu_page *sp)
e8bc217a 1788{
1f50f1b3 1789 return 0;
e8bc217a
MT
1790}
1791
a7052897
MT
1792static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1793{
1794}
1795
0f53b5b1
XG
1796static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1797 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1798 const void *pte)
0f53b5b1
XG
1799{
1800 WARN_ON(1);
1801}
1802
60c8aec6
MT
1803#define KVM_PAGE_ARRAY_NR 16
1804
1805struct kvm_mmu_pages {
1806 struct mmu_page_and_offset {
1807 struct kvm_mmu_page *sp;
1808 unsigned int idx;
1809 } page[KVM_PAGE_ARRAY_NR];
1810 unsigned int nr;
1811};
1812
cded19f3
HE
1813static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1814 int idx)
4731d4c7 1815{
60c8aec6 1816 int i;
4731d4c7 1817
60c8aec6
MT
1818 if (sp->unsync)
1819 for (i=0; i < pvec->nr; i++)
1820 if (pvec->page[i].sp == sp)
1821 return 0;
1822
1823 pvec->page[pvec->nr].sp = sp;
1824 pvec->page[pvec->nr].idx = idx;
1825 pvec->nr++;
1826 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1827}
1828
fd951457
TY
1829static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1830{
1831 --sp->unsync_children;
1832 WARN_ON((int)sp->unsync_children < 0);
1833 __clear_bit(idx, sp->unsync_child_bitmap);
1834}
1835
60c8aec6
MT
1836static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1837 struct kvm_mmu_pages *pvec)
1838{
1839 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1840
37178b8b 1841 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1842 struct kvm_mmu_page *child;
4731d4c7
MT
1843 u64 ent = sp->spt[i];
1844
fd951457
TY
1845 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1846 clear_unsync_child_bit(sp, i);
1847 continue;
1848 }
7a8f1a74
XG
1849
1850 child = page_header(ent & PT64_BASE_ADDR_MASK);
1851
1852 if (child->unsync_children) {
1853 if (mmu_pages_add(pvec, child, i))
1854 return -ENOSPC;
1855
1856 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1857 if (!ret) {
1858 clear_unsync_child_bit(sp, i);
1859 continue;
1860 } else if (ret > 0) {
7a8f1a74 1861 nr_unsync_leaf += ret;
fd951457 1862 } else
7a8f1a74
XG
1863 return ret;
1864 } else if (child->unsync) {
1865 nr_unsync_leaf++;
1866 if (mmu_pages_add(pvec, child, i))
1867 return -ENOSPC;
1868 } else
fd951457 1869 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1870 }
1871
60c8aec6
MT
1872 return nr_unsync_leaf;
1873}
1874
e23d3fef
XG
1875#define INVALID_INDEX (-1)
1876
60c8aec6
MT
1877static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1878 struct kvm_mmu_pages *pvec)
1879{
0a47cd85 1880 pvec->nr = 0;
60c8aec6
MT
1881 if (!sp->unsync_children)
1882 return 0;
1883
e23d3fef 1884 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 1885 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1886}
1887
4731d4c7
MT
1888static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1889{
1890 WARN_ON(!sp->unsync);
5e1b3ddb 1891 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1892 sp->unsync = 0;
1893 --kvm->stat.mmu_unsync;
1894}
1895
7775834a
XG
1896static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1897 struct list_head *invalid_list);
1898static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1899 struct list_head *invalid_list);
4731d4c7 1900
f34d251d
XG
1901/*
1902 * NOTE: we should pay more attention on the zapped-obsolete page
1903 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1904 * since it has been deleted from active_mmu_pages but still can be found
1905 * at hast list.
1906 *
46971a2f 1907 * for_each_gfn_valid_sp() has skipped that kind of pages.
f34d251d 1908 */
46971a2f 1909#define for_each_gfn_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
1910 hlist_for_each_entry(_sp, \
1911 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
46971a2f
XG
1912 if ((_sp)->gfn != (_gfn) || is_obsolete_sp((_kvm), (_sp)) \
1913 || (_sp)->role.invalid) {} else
1044b030
TY
1914
1915#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
46971a2f
XG
1916 for_each_gfn_valid_sp(_kvm, _sp, _gfn) \
1917 if ((_sp)->role.direct) {} else
7ae680eb 1918
f918b443 1919/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
1920static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1921 struct list_head *invalid_list)
4731d4c7 1922{
5b7e0102 1923 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1924 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1925 return false;
4731d4c7
MT
1926 }
1927
1f50f1b3 1928 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
d98ba053 1929 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1930 return false;
4731d4c7
MT
1931 }
1932
1f50f1b3 1933 return true;
4731d4c7
MT
1934}
1935
35a70510
PB
1936static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1937 struct list_head *invalid_list,
1938 bool remote_flush, bool local_flush)
1d9dc7e0 1939{
35a70510
PB
1940 if (!list_empty(invalid_list)) {
1941 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1942 return;
1943 }
d98ba053 1944
35a70510
PB
1945 if (remote_flush)
1946 kvm_flush_remote_tlbs(vcpu->kvm);
1947 else if (local_flush)
1948 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
1949}
1950
e37fa785
XG
1951#ifdef CONFIG_KVM_MMU_AUDIT
1952#include "mmu_audit.c"
1953#else
1954static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1955static void mmu_audit_disable(void) { }
1956#endif
1957
46971a2f
XG
1958static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1959{
1960 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1961}
1962
1f50f1b3 1963static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1964 struct list_head *invalid_list)
1d9dc7e0 1965{
9a43c5d9
PB
1966 kvm_unlink_unsync_page(vcpu->kvm, sp);
1967 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
1968}
1969
9f1a122f 1970/* @gfn should be write-protected at the call site */
2a74003a
PB
1971static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1972 struct list_head *invalid_list)
9f1a122f 1973{
9f1a122f 1974 struct kvm_mmu_page *s;
2a74003a 1975 bool ret = false;
9f1a122f 1976
b67bfe0d 1977 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1978 if (!s->unsync)
9f1a122f
XG
1979 continue;
1980
1981 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 1982 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
1983 }
1984
2a74003a 1985 return ret;
9f1a122f
XG
1986}
1987
60c8aec6 1988struct mmu_page_path {
0a47cd85
PB
1989 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1990 unsigned int idx[PT64_ROOT_LEVEL];
4731d4c7
MT
1991};
1992
60c8aec6 1993#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 1994 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
1995 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1996 i = mmu_pages_next(&pvec, &parents, i))
1997
cded19f3
HE
1998static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1999 struct mmu_page_path *parents,
2000 int i)
60c8aec6
MT
2001{
2002 int n;
2003
2004 for (n = i+1; n < pvec->nr; n++) {
2005 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2006 unsigned idx = pvec->page[n].idx;
2007 int level = sp->role.level;
60c8aec6 2008
0a47cd85
PB
2009 parents->idx[level-1] = idx;
2010 if (level == PT_PAGE_TABLE_LEVEL)
2011 break;
60c8aec6 2012
0a47cd85 2013 parents->parent[level-2] = sp;
60c8aec6
MT
2014 }
2015
2016 return n;
2017}
2018
0a47cd85
PB
2019static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2020 struct mmu_page_path *parents)
2021{
2022 struct kvm_mmu_page *sp;
2023 int level;
2024
2025 if (pvec->nr == 0)
2026 return 0;
2027
e23d3fef
XG
2028 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2029
0a47cd85
PB
2030 sp = pvec->page[0].sp;
2031 level = sp->role.level;
2032 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2033
2034 parents->parent[level-2] = sp;
2035
2036 /* Also set up a sentinel. Further entries in pvec are all
2037 * children of sp, so this element is never overwritten.
2038 */
2039 parents->parent[level-1] = NULL;
2040 return mmu_pages_next(pvec, parents, 0);
2041}
2042
cded19f3 2043static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2044{
60c8aec6
MT
2045 struct kvm_mmu_page *sp;
2046 unsigned int level = 0;
2047
2048 do {
2049 unsigned int idx = parents->idx[level];
60c8aec6
MT
2050 sp = parents->parent[level];
2051 if (!sp)
2052 return;
2053
e23d3fef 2054 WARN_ON(idx == INVALID_INDEX);
fd951457 2055 clear_unsync_child_bit(sp, idx);
60c8aec6 2056 level++;
0a47cd85 2057 } while (!sp->unsync_children);
60c8aec6 2058}
4731d4c7 2059
60c8aec6
MT
2060static void mmu_sync_children(struct kvm_vcpu *vcpu,
2061 struct kvm_mmu_page *parent)
2062{
2063 int i;
2064 struct kvm_mmu_page *sp;
2065 struct mmu_page_path parents;
2066 struct kvm_mmu_pages pages;
d98ba053 2067 LIST_HEAD(invalid_list);
50c9e6f3 2068 bool flush = false;
60c8aec6 2069
60c8aec6 2070 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2071 bool protected = false;
b1a36821
MT
2072
2073 for_each_sp(pages, sp, parents, i)
54bf36aa 2074 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2075
50c9e6f3 2076 if (protected) {
b1a36821 2077 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2078 flush = false;
2079 }
b1a36821 2080
60c8aec6 2081 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2082 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2083 mmu_pages_clear_parents(&parents);
2084 }
50c9e6f3
PB
2085 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2086 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2087 cond_resched_lock(&vcpu->kvm->mmu_lock);
2088 flush = false;
2089 }
60c8aec6 2090 }
50c9e6f3
PB
2091
2092 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2093}
2094
a30f47cb
XG
2095static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2096{
e5691a81 2097 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2098}
2099
2100static void clear_sp_write_flooding_count(u64 *spte)
2101{
2102 struct kvm_mmu_page *sp = page_header(__pa(spte));
2103
2104 __clear_sp_write_flooding_count(sp);
2105}
2106
cea0f0e7
AK
2107static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2108 gfn_t gfn,
2109 gva_t gaddr,
2110 unsigned level,
f6e2c02b 2111 int direct,
bb11c6c9 2112 unsigned access)
cea0f0e7
AK
2113{
2114 union kvm_mmu_page_role role;
cea0f0e7 2115 unsigned quadrant;
9f1a122f 2116 struct kvm_mmu_page *sp;
9f1a122f 2117 bool need_sync = false;
2a74003a
PB
2118 bool flush = false;
2119 LIST_HEAD(invalid_list);
cea0f0e7 2120
a770f6f2 2121 role = vcpu->arch.mmu.base_role;
cea0f0e7 2122 role.level = level;
f6e2c02b 2123 role.direct = direct;
84b0c8c6 2124 if (role.direct)
5b7e0102 2125 role.cr4_pae = 0;
41074d07 2126 role.access = access;
c5a78f2b
JR
2127 if (!vcpu->arch.mmu.direct_map
2128 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2129 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2130 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2131 role.quadrant = quadrant;
2132 }
46971a2f 2133 for_each_gfn_valid_sp(vcpu->kvm, sp, gfn) {
7ae680eb
XG
2134 if (!need_sync && sp->unsync)
2135 need_sync = true;
4731d4c7 2136
7ae680eb
XG
2137 if (sp->role.word != role.word)
2138 continue;
4731d4c7 2139
2a74003a
PB
2140 if (sp->unsync) {
2141 /* The page is good, but __kvm_sync_page might still end
2142 * up zapping it. If so, break in order to rebuild it.
2143 */
2144 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2145 break;
2146
2147 WARN_ON(!list_empty(&invalid_list));
2148 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2149 }
e02aa901 2150
98bba238 2151 if (sp->unsync_children)
a8eeb04a 2152 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2153
a30f47cb 2154 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
2155 trace_kvm_mmu_get_page(sp, false);
2156 return sp;
2157 }
47005792 2158
dfc5aa00 2159 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2160
2161 sp = kvm_mmu_alloc_page(vcpu, direct);
2162
4db35314
AK
2163 sp->gfn = gfn;
2164 sp->role = role;
7ae680eb
XG
2165 hlist_add_head(&sp->hash_link,
2166 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2167 if (!direct) {
56ca57f9
XG
2168 /*
2169 * we should do write protection before syncing pages
2170 * otherwise the content of the synced shadow page may
2171 * be inconsistent with guest page table.
2172 */
2173 account_shadowed(vcpu->kvm, sp);
2174 if (level == PT_PAGE_TABLE_LEVEL &&
2175 rmap_write_protect(vcpu, gfn))
b1a36821 2176 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f 2177
9f1a122f 2178 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2179 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2180 }
5304b8d3 2181 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2182 clear_page(sp->spt);
f691fe1d 2183 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2184
2185 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4db35314 2186 return sp;
cea0f0e7
AK
2187}
2188
2d11123a
AK
2189static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2190 struct kvm_vcpu *vcpu, u64 addr)
2191{
2192 iterator->addr = addr;
2193 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2194 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2195
2196 if (iterator->level == PT64_ROOT_LEVEL &&
2197 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2198 !vcpu->arch.mmu.direct_map)
2199 --iterator->level;
2200
2d11123a
AK
2201 if (iterator->level == PT32E_ROOT_LEVEL) {
2202 iterator->shadow_addr
2203 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2204 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2205 --iterator->level;
2206 if (!iterator->shadow_addr)
2207 iterator->level = 0;
2208 }
2209}
2210
2211static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2212{
2213 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2214 return false;
4d88954d 2215
2d11123a
AK
2216 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2217 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2218 return true;
2219}
2220
c2a2ac2b
XG
2221static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2222 u64 spte)
2d11123a 2223{
c2a2ac2b 2224 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2225 iterator->level = 0;
2226 return;
2227 }
2228
c2a2ac2b 2229 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2230 --iterator->level;
2231}
2232
c2a2ac2b
XG
2233static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2234{
2235 return __shadow_walk_next(iterator, *iterator->sptep);
2236}
2237
98bba238
TY
2238static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2239 struct kvm_mmu_page *sp)
32ef26a3
AK
2240{
2241 u64 spte;
2242
ffb128c8 2243 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2244
ffb128c8 2245 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
0e3d0648 2246 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
24db2734 2247
1df9f2dc 2248 mmu_spte_set(sptep, spte);
98bba238
TY
2249
2250 mmu_page_add_parent_pte(vcpu, sp, sptep);
2251
2252 if (sp->unsync_children || sp->unsync)
2253 mark_unsync(sptep);
32ef26a3
AK
2254}
2255
a357bd22
AK
2256static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2257 unsigned direct_access)
2258{
2259 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2260 struct kvm_mmu_page *child;
2261
2262 /*
2263 * For the direct sp, if the guest pte's dirty bit
2264 * changed form clean to dirty, it will corrupt the
2265 * sp's access: allow writable in the read-only sp,
2266 * so we should update the spte at this point to get
2267 * a new sp with the correct access.
2268 */
2269 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2270 if (child->role.access == direct_access)
2271 return;
2272
bcdd9a93 2273 drop_parent_pte(child, sptep);
a357bd22
AK
2274 kvm_flush_remote_tlbs(vcpu->kvm);
2275 }
2276}
2277
505aef8f 2278static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2279 u64 *spte)
2280{
2281 u64 pte;
2282 struct kvm_mmu_page *child;
2283
2284 pte = *spte;
2285 if (is_shadow_present_pte(pte)) {
505aef8f 2286 if (is_last_spte(pte, sp->role.level)) {
c3707958 2287 drop_spte(kvm, spte);
505aef8f
XG
2288 if (is_large_pte(pte))
2289 --kvm->stat.lpages;
2290 } else {
38e3b2b2 2291 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2292 drop_parent_pte(child, spte);
38e3b2b2 2293 }
505aef8f
XG
2294 return true;
2295 }
2296
2297 if (is_mmio_spte(pte))
ce88decf 2298 mmu_spte_clear_no_track(spte);
c3707958 2299
505aef8f 2300 return false;
38e3b2b2
XG
2301}
2302
90cb0529 2303static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2304 struct kvm_mmu_page *sp)
a436036b 2305{
697fe2e2 2306 unsigned i;
697fe2e2 2307
38e3b2b2
XG
2308 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2309 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2310}
2311
31aa2b44 2312static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2313{
1e3f42f0
TY
2314 u64 *sptep;
2315 struct rmap_iterator iter;
a436036b 2316
018aabb5 2317 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2318 drop_parent_pte(sp, sptep);
31aa2b44
AK
2319}
2320
60c8aec6 2321static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2322 struct kvm_mmu_page *parent,
2323 struct list_head *invalid_list)
4731d4c7 2324{
60c8aec6
MT
2325 int i, zapped = 0;
2326 struct mmu_page_path parents;
2327 struct kvm_mmu_pages pages;
4731d4c7 2328
60c8aec6 2329 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2330 return 0;
60c8aec6 2331
60c8aec6
MT
2332 while (mmu_unsync_walk(parent, &pages)) {
2333 struct kvm_mmu_page *sp;
2334
2335 for_each_sp(pages, sp, parents, i) {
7775834a 2336 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2337 mmu_pages_clear_parents(&parents);
77662e00 2338 zapped++;
60c8aec6 2339 }
60c8aec6
MT
2340 }
2341
2342 return zapped;
4731d4c7
MT
2343}
2344
7775834a
XG
2345static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2346 struct list_head *invalid_list)
31aa2b44 2347{
4731d4c7 2348 int ret;
f691fe1d 2349
7775834a 2350 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2351 ++kvm->stat.mmu_shadow_zapped;
7775834a 2352 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2353 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2354 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2355
f6e2c02b 2356 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2357 unaccount_shadowed(kvm, sp);
5304b8d3 2358
4731d4c7
MT
2359 if (sp->unsync)
2360 kvm_unlink_unsync_page(kvm, sp);
4db35314 2361 if (!sp->root_count) {
54a4f023
GJ
2362 /* Count self */
2363 ret++;
7775834a 2364 list_move(&sp->link, invalid_list);
aa6bd187 2365 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2366 } else {
5b5c6a5a 2367 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2368
2369 /*
2370 * The obsolete pages can not be used on any vcpus.
2371 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2372 */
2373 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2374 kvm_reload_remote_mmus(kvm);
2e53d63a 2375 }
7775834a
XG
2376
2377 sp->role.invalid = 1;
4731d4c7 2378 return ret;
a436036b
AK
2379}
2380
7775834a
XG
2381static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2382 struct list_head *invalid_list)
2383{
945315b9 2384 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2385
2386 if (list_empty(invalid_list))
2387 return;
2388
c142786c 2389 /*
9753f529
LT
2390 * We need to make sure everyone sees our modifications to
2391 * the page tables and see changes to vcpu->mode here. The barrier
2392 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2393 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2394 *
2395 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2396 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2397 */
2398 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2399
945315b9 2400 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2401 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2402 kvm_mmu_free_page(sp);
945315b9 2403 }
7775834a
XG
2404}
2405
5da59607
TY
2406static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2407 struct list_head *invalid_list)
2408{
2409 struct kvm_mmu_page *sp;
2410
2411 if (list_empty(&kvm->arch.active_mmu_pages))
2412 return false;
2413
d74c0e6b
GT
2414 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2415 struct kvm_mmu_page, link);
5da59607
TY
2416 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2417
2418 return true;
2419}
2420
82ce2c96
IE
2421/*
2422 * Changing the number of mmu pages allocated to the vm
49d5ca26 2423 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2424 */
49d5ca26 2425void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2426{
d98ba053 2427 LIST_HEAD(invalid_list);
82ce2c96 2428
b34cb590
TY
2429 spin_lock(&kvm->mmu_lock);
2430
49d5ca26 2431 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2432 /* Need to free some mmu pages to achieve the goal. */
2433 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2434 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2435 break;
82ce2c96 2436
aa6bd187 2437 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2438 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2439 }
82ce2c96 2440
49d5ca26 2441 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2442
2443 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2444}
2445
1cb3f3ae 2446int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2447{
4db35314 2448 struct kvm_mmu_page *sp;
d98ba053 2449 LIST_HEAD(invalid_list);
a436036b
AK
2450 int r;
2451
9ad17b10 2452 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2453 r = 0;
1cb3f3ae 2454 spin_lock(&kvm->mmu_lock);
b67bfe0d 2455 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2456 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2457 sp->role.word);
2458 r = 1;
f41d335a 2459 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2460 }
d98ba053 2461 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2462 spin_unlock(&kvm->mmu_lock);
2463
a436036b 2464 return r;
cea0f0e7 2465}
1cb3f3ae 2466EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2467
5c520e90 2468static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2469{
2470 trace_kvm_mmu_unsync_page(sp);
2471 ++vcpu->kvm->stat.mmu_unsync;
2472 sp->unsync = 1;
2473
2474 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2475}
2476
3d0c27ad
XG
2477static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2478 bool can_unsync)
4731d4c7 2479{
5c520e90 2480 struct kvm_mmu_page *sp;
4731d4c7 2481
3d0c27ad
XG
2482 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2483 return true;
9cf5cf5a 2484
5c520e90 2485 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2486 if (!can_unsync)
3d0c27ad 2487 return true;
36a2e677 2488
5c520e90
XG
2489 if (sp->unsync)
2490 continue;
9cf5cf5a 2491
5c520e90
XG
2492 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2493 kvm_unsync_page(vcpu, sp);
4731d4c7 2494 }
3d0c27ad
XG
2495
2496 return false;
4731d4c7
MT
2497}
2498
ba049e93 2499static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2500{
2501 if (pfn_valid(pfn))
2502 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2503
2504 return true;
2505}
2506
d555c333 2507static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2508 unsigned pte_access, int level,
ba049e93 2509 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2510 bool can_unsync, bool host_writable)
1c4f1fd6 2511{
ffb128c8 2512 u64 spte = 0;
1e73f9dd 2513 int ret = 0;
64d4d521 2514
54bf36aa 2515 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2516 return 0;
2517
d95c5568
BD
2518 /*
2519 * For the EPT case, shadow_present_mask is 0 if hardware
2520 * supports exec-only page table entries. In that case,
2521 * ACC_USER_MASK and shadow_user_mask are used to represent
2522 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2523 */
ffb128c8 2524 spte |= shadow_present_mask;
947da538 2525 if (!speculative)
3201b5d9 2526 spte |= shadow_accessed_mask;
640d9b0d 2527
7b52345e
SY
2528 if (pte_access & ACC_EXEC_MASK)
2529 spte |= shadow_x_mask;
2530 else
2531 spte |= shadow_nx_mask;
49fde340 2532
1c4f1fd6 2533 if (pte_access & ACC_USER_MASK)
7b52345e 2534 spte |= shadow_user_mask;
49fde340 2535
852e3c19 2536 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2537 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2538 if (tdp_enabled)
4b12f0de 2539 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2540 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2541
9bdbba13 2542 if (host_writable)
1403283a 2543 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2544 else
2545 pte_access &= ~ACC_WRITE_MASK;
1403283a 2546
35149e21 2547 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2548
c2288505 2549 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2550
c2193463 2551 /*
7751babd
XG
2552 * Other vcpu creates new sp in the window between
2553 * mapping_level() and acquiring mmu-lock. We can
2554 * allow guest to retry the access, the mapping can
2555 * be fixed if guest refault.
c2193463 2556 */
852e3c19 2557 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2558 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2559 goto done;
38187c83 2560
49fde340 2561 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2562
ecc5589f
MT
2563 /*
2564 * Optimization: for pte sync, if spte was writable the hash
2565 * lookup is unnecessary (and expensive). Write protection
2566 * is responsibility of mmu_get_page / kvm_sync_page.
2567 * Same reasoning can be applied to dirty page accounting.
2568 */
8dae4445 2569 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2570 goto set_pte;
2571
4731d4c7 2572 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2573 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2574 __func__, gfn);
1e73f9dd 2575 ret = 1;
1c4f1fd6 2576 pte_access &= ~ACC_WRITE_MASK;
49fde340 2577 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2578 }
2579 }
2580
9b51a630 2581 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2582 kvm_vcpu_mark_page_dirty(vcpu, gfn);
9b51a630
KH
2583 spte |= shadow_dirty_mask;
2584 }
1c4f1fd6 2585
38187c83 2586set_pte:
6e7d0354 2587 if (mmu_spte_update(sptep, spte))
b330aa0c 2588 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2589done:
1e73f9dd
MT
2590 return ret;
2591}
2592
029499b4 2593static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
ba049e93 2594 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
029499b4 2595 bool speculative, bool host_writable)
1e73f9dd
MT
2596{
2597 int was_rmapped = 0;
53a27b39 2598 int rmap_count;
029499b4 2599 bool emulate = false;
1e73f9dd 2600
f7616203
XG
2601 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2602 *sptep, write_fault, gfn);
1e73f9dd 2603
afd28fe1 2604 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2605 /*
2606 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2607 * the parent of the now unreachable PTE.
2608 */
852e3c19
JR
2609 if (level > PT_PAGE_TABLE_LEVEL &&
2610 !is_large_pte(*sptep)) {
1e73f9dd 2611 struct kvm_mmu_page *child;
d555c333 2612 u64 pte = *sptep;
1e73f9dd
MT
2613
2614 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2615 drop_parent_pte(child, sptep);
3be2264b 2616 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2617 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2618 pgprintk("hfn old %llx new %llx\n",
d555c333 2619 spte_to_pfn(*sptep), pfn);
c3707958 2620 drop_spte(vcpu->kvm, sptep);
91546356 2621 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2622 } else
2623 was_rmapped = 1;
1e73f9dd 2624 }
852e3c19 2625
c2288505
XG
2626 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2627 true, host_writable)) {
1e73f9dd 2628 if (write_fault)
029499b4 2629 emulate = true;
77c3913b 2630 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2631 }
1e73f9dd 2632
029499b4
TY
2633 if (unlikely(is_mmio_spte(*sptep)))
2634 emulate = true;
ce88decf 2635
d555c333 2636 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2637 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2638 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2639 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2640 *sptep, sptep);
d555c333 2641 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2642 ++vcpu->kvm->stat.lpages;
2643
ffb61bb3 2644 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2645 if (!was_rmapped) {
2646 rmap_count = rmap_add(vcpu, sptep, gfn);
2647 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2648 rmap_recycle(vcpu, sptep, gfn);
2649 }
1c4f1fd6 2650 }
cb9aaa30 2651
f3ac1a4b 2652 kvm_release_pfn_clean(pfn);
029499b4
TY
2653
2654 return emulate;
1c4f1fd6
AK
2655}
2656
ba049e93 2657static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2658 bool no_dirty_log)
2659{
2660 struct kvm_memory_slot *slot;
957ed9ef 2661
5d163b1c 2662 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2663 if (!slot)
6c8ee57b 2664 return KVM_PFN_ERR_FAULT;
957ed9ef 2665
037d92dc 2666 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2667}
2668
2669static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2670 struct kvm_mmu_page *sp,
2671 u64 *start, u64 *end)
2672{
2673 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2674 struct kvm_memory_slot *slot;
957ed9ef
XG
2675 unsigned access = sp->role.access;
2676 int i, ret;
2677 gfn_t gfn;
2678
2679 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2680 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2681 if (!slot)
957ed9ef
XG
2682 return -1;
2683
d9ef13c2 2684 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2685 if (ret <= 0)
2686 return -1;
2687
2688 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
2689 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2690 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
2691
2692 return 0;
2693}
2694
2695static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2696 struct kvm_mmu_page *sp, u64 *sptep)
2697{
2698 u64 *spte, *start = NULL;
2699 int i;
2700
2701 WARN_ON(!sp->role.direct);
2702
2703 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2704 spte = sp->spt + i;
2705
2706 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2707 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2708 if (!start)
2709 continue;
2710 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2711 break;
2712 start = NULL;
2713 } else if (!start)
2714 start = spte;
2715 }
2716}
2717
2718static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2719{
2720 struct kvm_mmu_page *sp;
2721
2722 /*
2723 * Since it's no accessed bit on EPT, it's no way to
2724 * distinguish between actually accessed translations
2725 * and prefetched, so disable pte prefetch if EPT is
2726 * enabled.
2727 */
2728 if (!shadow_accessed_mask)
2729 return;
2730
2731 sp = page_header(__pa(sptep));
2732 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2733 return;
2734
2735 __direct_pte_prefetch(vcpu, sp, sptep);
2736}
2737
7ee0e5b2 2738static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 2739 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 2740{
9f652d21 2741 struct kvm_shadow_walk_iterator iterator;
140754bc 2742 struct kvm_mmu_page *sp;
b90a0e6c 2743 int emulate = 0;
140754bc 2744 gfn_t pseudo_gfn;
6aa8b732 2745
989c6b34
MT
2746 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2747 return 0;
2748
9f652d21 2749 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2750 if (iterator.level == level) {
029499b4
TY
2751 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2752 write, level, gfn, pfn, prefault,
2753 map_writable);
957ed9ef 2754 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2755 ++vcpu->stat.pf_fixed;
2756 break;
6aa8b732
AK
2757 }
2758
404381c5 2759 drop_large_spte(vcpu, iterator.sptep);
c3707958 2760 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2761 u64 base_addr = iterator.addr;
2762
2763 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2764 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 2765 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 2766 iterator.level - 1, 1, ACC_ALL);
140754bc 2767
98bba238 2768 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
2769 }
2770 }
b90a0e6c 2771 return emulate;
6aa8b732
AK
2772}
2773
77db5cbd 2774static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2775{
77db5cbd
HY
2776 siginfo_t info;
2777
2778 info.si_signo = SIGBUS;
2779 info.si_errno = 0;
2780 info.si_code = BUS_MCEERR_AR;
2781 info.si_addr = (void __user *)address;
2782 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2783
77db5cbd 2784 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2785}
2786
ba049e93 2787static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2788{
4d8b81ab
XG
2789 /*
2790 * Do not cache the mmio info caused by writing the readonly gfn
2791 * into the spte otherwise read access on readonly gfn also can
2792 * caused mmio page fault and treat it as mmio access.
2793 * Return 1 to tell kvm to emulate it.
2794 */
2795 if (pfn == KVM_PFN_ERR_RO_FAULT)
2796 return 1;
2797
e6c1502b 2798 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2799 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
bf998156 2800 return 0;
d7c55201 2801 }
edba23e5 2802
d7c55201 2803 return -EFAULT;
bf998156
HY
2804}
2805
936a5fe6 2806static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
2807 gfn_t *gfnp, kvm_pfn_t *pfnp,
2808 int *levelp)
936a5fe6 2809{
ba049e93 2810 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
2811 gfn_t gfn = *gfnp;
2812 int level = *levelp;
2813
2814 /*
2815 * Check if it's a transparent hugepage. If this would be an
2816 * hugetlbfs page, level wouldn't be set to
2817 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2818 * here.
2819 */
bf4bea8e 2820 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6 2821 level == PT_PAGE_TABLE_LEVEL &&
127393fb 2822 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 2823 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
2824 unsigned long mask;
2825 /*
2826 * mmu_notifier_retry was successful and we hold the
2827 * mmu_lock here, so the pmd can't become splitting
2828 * from under us, and in turn
2829 * __split_huge_page_refcount() can't run from under
2830 * us and we can safely transfer the refcount from
2831 * PG_tail to PG_head as we switch the pfn to tail to
2832 * head.
2833 */
2834 *levelp = level = PT_DIRECTORY_LEVEL;
2835 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2836 VM_BUG_ON((gfn & mask) != (pfn & mask));
2837 if (pfn & mask) {
2838 gfn &= ~mask;
2839 *gfnp = gfn;
2840 kvm_release_pfn_clean(pfn);
2841 pfn &= ~mask;
c3586667 2842 kvm_get_pfn(pfn);
936a5fe6
AA
2843 *pfnp = pfn;
2844 }
2845 }
2846}
2847
d7c55201 2848static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 2849 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 2850{
d7c55201 2851 /* The pfn is invalid, report the error! */
81c52c56 2852 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2853 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2854 return true;
d7c55201
XG
2855 }
2856
ce88decf 2857 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2858 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 2859
798e88b3 2860 return false;
d7c55201
XG
2861}
2862
e5552fd2 2863static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2864{
1c118b82
XG
2865 /*
2866 * Do not fix the mmio spte with invalid generation number which
2867 * need to be updated by slow page fault path.
2868 */
2869 if (unlikely(error_code & PFERR_RSVD_MASK))
2870 return false;
2871
c7ba5b48
XG
2872 /*
2873 * #PF can be fast only if the shadow page table is present and it
2874 * is caused by write-protect, that means we just need change the
2875 * W bit of the spte which can be done out of mmu-lock.
2876 */
2877 if (!(error_code & PFERR_PRESENT_MASK) ||
2878 !(error_code & PFERR_WRITE_MASK))
2879 return false;
2880
2881 return true;
2882}
2883
2884static bool
92a476cb
XG
2885fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2886 u64 *sptep, u64 spte)
c7ba5b48 2887{
c7ba5b48
XG
2888 gfn_t gfn;
2889
2890 WARN_ON(!sp->role.direct);
2891
2892 /*
2893 * The gfn of direct spte is stable since it is calculated
2894 * by sp->gfn.
2895 */
2896 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2897
9b51a630
KH
2898 /*
2899 * Theoretically we could also set dirty bit (and flush TLB) here in
2900 * order to eliminate unnecessary PML logging. See comments in
2901 * set_spte. But fast_page_fault is very unlikely to happen with PML
2902 * enabled, so we do not do this. This might result in the same GPA
2903 * to be logged in PML buffer again when the write really happens, and
2904 * eventually to be called by mark_page_dirty twice. But it's also no
2905 * harm. This also avoids the TLB flush needed after setting dirty bit
2906 * so non-PML cases won't be impacted.
2907 *
2908 * Compare with set_spte where instead shadow_dirty_mask is set.
2909 */
c7ba5b48 2910 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
54bf36aa 2911 kvm_vcpu_mark_page_dirty(vcpu, gfn);
c7ba5b48
XG
2912
2913 return true;
2914}
2915
2916/*
2917 * Return value:
2918 * - true: let the vcpu to access on the same address again.
2919 * - false: let the real page fault path to fix it.
2920 */
2921static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2922 u32 error_code)
2923{
2924 struct kvm_shadow_walk_iterator iterator;
92a476cb 2925 struct kvm_mmu_page *sp;
c7ba5b48
XG
2926 bool ret = false;
2927 u64 spte = 0ull;
2928
37f6a4e2
MT
2929 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2930 return false;
2931
e5552fd2 2932 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2933 return false;
2934
2935 walk_shadow_page_lockless_begin(vcpu);
2936 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2937 if (!is_shadow_present_pte(spte) || iterator.level < level)
2938 break;
2939
2940 /*
2941 * If the mapping has been changed, let the vcpu fault on the
2942 * same address again.
2943 */
afd28fe1 2944 if (!is_shadow_present_pte(spte)) {
c7ba5b48
XG
2945 ret = true;
2946 goto exit;
2947 }
2948
92a476cb
XG
2949 sp = page_header(__pa(iterator.sptep));
2950 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2951 goto exit;
2952
2953 /*
2954 * Check if it is a spurious fault caused by TLB lazily flushed.
2955 *
2956 * Need not check the access of upper level table entries since
2957 * they are always ACC_ALL.
2958 */
2959 if (is_writable_pte(spte)) {
2960 ret = true;
2961 goto exit;
2962 }
2963
2964 /*
2965 * Currently, to simplify the code, only the spte write-protected
2966 * by dirty-log can be fast fixed.
2967 */
2968 if (!spte_is_locklessly_modifiable(spte))
2969 goto exit;
2970
c126d94f
XG
2971 /*
2972 * Do not fix write-permission on the large spte since we only dirty
2973 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2974 * that means other pages are missed if its slot is dirty-logged.
2975 *
2976 * Instead, we let the slow page fault path create a normal spte to
2977 * fix the access.
2978 *
2979 * See the comments in kvm_arch_commit_memory_region().
2980 */
2981 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2982 goto exit;
2983
c7ba5b48
XG
2984 /*
2985 * Currently, fast page fault only works for direct mapping since
2986 * the gfn is not stable for indirect shadow page.
2987 * See Documentation/virtual/kvm/locking.txt to get more detail.
2988 */
92a476cb 2989 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 2990exit:
a72faf25
XG
2991 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2992 spte, ret);
c7ba5b48
XG
2993 walk_shadow_page_lockless_end(vcpu);
2994
2995 return ret;
2996}
2997
78b2c54a 2998static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 2999 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
450e0b41 3000static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3001
c7ba5b48
XG
3002static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3003 gfn_t gfn, bool prefault)
10589a46
MT
3004{
3005 int r;
852e3c19 3006 int level;
fd136902 3007 bool force_pt_level = false;
ba049e93 3008 kvm_pfn_t pfn;
e930bffe 3009 unsigned long mmu_seq;
c7ba5b48 3010 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3011
fd136902 3012 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3013 if (likely(!force_pt_level)) {
936a5fe6
AA
3014 /*
3015 * This path builds a PAE pagetable - so we can map
3016 * 2mb pages at maximum. Therefore check if the level
3017 * is larger than that.
3018 */
3019 if (level > PT_DIRECTORY_LEVEL)
3020 level = PT_DIRECTORY_LEVEL;
852e3c19 3021
936a5fe6 3022 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3023 }
05da4558 3024
c7ba5b48
XG
3025 if (fast_page_fault(vcpu, v, level, error_code))
3026 return 0;
3027
e930bffe 3028 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3029 smp_rmb();
060c2abe 3030
78b2c54a 3031 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3032 return 0;
aaee2c94 3033
d7c55201
XG
3034 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3035 return r;
d196e343 3036
aaee2c94 3037 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3038 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3039 goto out_unlock;
450e0b41 3040 make_mmu_pages_available(vcpu);
936a5fe6
AA
3041 if (likely(!force_pt_level))
3042 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3043 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3044 spin_unlock(&vcpu->kvm->mmu_lock);
3045
10589a46 3046 return r;
e930bffe
AA
3047
3048out_unlock:
3049 spin_unlock(&vcpu->kvm->mmu_lock);
3050 kvm_release_pfn_clean(pfn);
3051 return 0;
10589a46
MT
3052}
3053
3054
17ac10ad
AK
3055static void mmu_free_roots(struct kvm_vcpu *vcpu)
3056{
3057 int i;
4db35314 3058 struct kvm_mmu_page *sp;
d98ba053 3059 LIST_HEAD(invalid_list);
17ac10ad 3060
ad312c7c 3061 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3062 return;
35af577a 3063
81407ca5
JR
3064 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3065 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3066 vcpu->arch.mmu.direct_map)) {
ad312c7c 3067 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3068
35af577a 3069 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3070 sp = page_header(root);
3071 --sp->root_count;
d98ba053
XG
3072 if (!sp->root_count && sp->role.invalid) {
3073 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3074 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3075 }
aaee2c94 3076 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3077 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3078 return;
3079 }
35af577a
GN
3080
3081 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3082 for (i = 0; i < 4; ++i) {
ad312c7c 3083 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3084
417726a3 3085 if (root) {
417726a3 3086 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3087 sp = page_header(root);
3088 --sp->root_count;
2e53d63a 3089 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3090 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3091 &invalid_list);
417726a3 3092 }
ad312c7c 3093 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3094 }
d98ba053 3095 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3096 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3097 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3098}
3099
8986ecc0
MT
3100static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3101{
3102 int ret = 0;
3103
3104 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3105 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3106 ret = 1;
3107 }
3108
3109 return ret;
3110}
3111
651dd37a
JR
3112static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3113{
3114 struct kvm_mmu_page *sp;
7ebaf15e 3115 unsigned i;
651dd37a
JR
3116
3117 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3118 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3119 make_mmu_pages_available(vcpu);
bb11c6c9 3120 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3121 ++sp->root_count;
3122 spin_unlock(&vcpu->kvm->mmu_lock);
3123 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3124 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3125 for (i = 0; i < 4; ++i) {
3126 hpa_t root = vcpu->arch.mmu.pae_root[i];
3127
fa4a2c08 3128 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3129 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3130 make_mmu_pages_available(vcpu);
649497d1 3131 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3132 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3133 root = __pa(sp->spt);
3134 ++sp->root_count;
3135 spin_unlock(&vcpu->kvm->mmu_lock);
3136 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3137 }
6292757f 3138 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3139 } else
3140 BUG();
3141
3142 return 0;
3143}
3144
3145static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3146{
4db35314 3147 struct kvm_mmu_page *sp;
81407ca5
JR
3148 u64 pdptr, pm_mask;
3149 gfn_t root_gfn;
3150 int i;
3bb65a22 3151
5777ed34 3152 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3153
651dd37a
JR
3154 if (mmu_check_root(vcpu, root_gfn))
3155 return 1;
3156
3157 /*
3158 * Do we shadow a long mode page table? If so we need to
3159 * write-protect the guests page table root.
3160 */
3161 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3162 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3163
fa4a2c08 3164 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3165
8facbbff 3166 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3167 make_mmu_pages_available(vcpu);
651dd37a 3168 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
bb11c6c9 3169 0, ACC_ALL);
4db35314
AK
3170 root = __pa(sp->spt);
3171 ++sp->root_count;
8facbbff 3172 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3173 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3174 return 0;
17ac10ad 3175 }
f87f9288 3176
651dd37a
JR
3177 /*
3178 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3179 * or a PAE 3-level page table. In either case we need to be aware that
3180 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3181 */
81407ca5
JR
3182 pm_mask = PT_PRESENT_MASK;
3183 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3184 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3185
17ac10ad 3186 for (i = 0; i < 4; ++i) {
ad312c7c 3187 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3188
fa4a2c08 3189 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3190 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3191 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
812f30b2 3192 if (!(pdptr & PT_PRESENT_MASK)) {
ad312c7c 3193 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3194 continue;
3195 }
6de4f3ad 3196 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3197 if (mmu_check_root(vcpu, root_gfn))
3198 return 1;
5a7388c2 3199 }
8facbbff 3200 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3201 make_mmu_pages_available(vcpu);
bb11c6c9
TY
3202 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3203 0, ACC_ALL);
4db35314
AK
3204 root = __pa(sp->spt);
3205 ++sp->root_count;
8facbbff
AK
3206 spin_unlock(&vcpu->kvm->mmu_lock);
3207
81407ca5 3208 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3209 }
6292757f 3210 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3211
3212 /*
3213 * If we shadow a 32 bit page table with a long mode page
3214 * table we enter this path.
3215 */
3216 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3217 if (vcpu->arch.mmu.lm_root == NULL) {
3218 /*
3219 * The additional page necessary for this is only
3220 * allocated on demand.
3221 */
3222
3223 u64 *lm_root;
3224
3225 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3226 if (lm_root == NULL)
3227 return 1;
3228
3229 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3230
3231 vcpu->arch.mmu.lm_root = lm_root;
3232 }
3233
3234 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3235 }
3236
8986ecc0 3237 return 0;
17ac10ad
AK
3238}
3239
651dd37a
JR
3240static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3241{
3242 if (vcpu->arch.mmu.direct_map)
3243 return mmu_alloc_direct_roots(vcpu);
3244 else
3245 return mmu_alloc_shadow_roots(vcpu);
3246}
3247
0ba73cda
MT
3248static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3249{
3250 int i;
3251 struct kvm_mmu_page *sp;
3252
81407ca5
JR
3253 if (vcpu->arch.mmu.direct_map)
3254 return;
3255
0ba73cda
MT
3256 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3257 return;
6903074c 3258
56f17dd3 3259 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3260 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3261 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3262 hpa_t root = vcpu->arch.mmu.root_hpa;
3263 sp = page_header(root);
3264 mmu_sync_children(vcpu, sp);
0375f7fa 3265 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3266 return;
3267 }
3268 for (i = 0; i < 4; ++i) {
3269 hpa_t root = vcpu->arch.mmu.pae_root[i];
3270
8986ecc0 3271 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3272 root &= PT64_BASE_ADDR_MASK;
3273 sp = page_header(root);
3274 mmu_sync_children(vcpu, sp);
3275 }
3276 }
0375f7fa 3277 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3278}
3279
3280void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3281{
3282 spin_lock(&vcpu->kvm->mmu_lock);
3283 mmu_sync_roots(vcpu);
6cffe8ca 3284 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3285}
bfd0a56b 3286EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3287
1871c602 3288static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3289 u32 access, struct x86_exception *exception)
6aa8b732 3290{
ab9ae313
AK
3291 if (exception)
3292 exception->error_code = 0;
6aa8b732
AK
3293 return vaddr;
3294}
3295
6539e738 3296static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3297 u32 access,
3298 struct x86_exception *exception)
6539e738 3299{
ab9ae313
AK
3300 if (exception)
3301 exception->error_code = 0;
54987b7a 3302 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3303}
3304
d625b155
XG
3305static bool
3306__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3307{
3308 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3309
3310 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3311 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3312}
3313
3314static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3315{
3316 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3317}
3318
3319static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3320{
3321 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3322}
3323
ded58749 3324static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3325{
3326 if (direct)
3327 return vcpu_match_mmio_gpa(vcpu, addr);
3328
3329 return vcpu_match_mmio_gva(vcpu, addr);
3330}
3331
47ab8751
XG
3332/* return true if reserved bit is detected on spte. */
3333static bool
3334walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3335{
3336 struct kvm_shadow_walk_iterator iterator;
47ab8751
XG
3337 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3338 int root, leaf;
3339 bool reserved = false;
ce88decf 3340
37f6a4e2 3341 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3342 goto exit;
37f6a4e2 3343
ce88decf 3344 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3345
29ecd660
PB
3346 for (shadow_walk_init(&iterator, vcpu, addr),
3347 leaf = root = iterator.level;
47ab8751
XG
3348 shadow_walk_okay(&iterator);
3349 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3350 spte = mmu_spte_get_lockless(iterator.sptep);
3351
3352 sptes[leaf - 1] = spte;
29ecd660 3353 leaf--;
47ab8751 3354
ce88decf
XG
3355 if (!is_shadow_present_pte(spte))
3356 break;
47ab8751
XG
3357
3358 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
58c95070 3359 iterator.level);
47ab8751
XG
3360 }
3361
ce88decf
XG
3362 walk_shadow_page_lockless_end(vcpu);
3363
47ab8751
XG
3364 if (reserved) {
3365 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3366 __func__, addr);
29ecd660 3367 while (root > leaf) {
47ab8751
XG
3368 pr_err("------ spte 0x%llx level %d.\n",
3369 sptes[root - 1], root);
3370 root--;
3371 }
3372 }
3373exit:
3374 *sptep = spte;
3375 return reserved;
ce88decf
XG
3376}
3377
450869d6 3378int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3379{
3380 u64 spte;
47ab8751 3381 bool reserved;
ce88decf 3382
ded58749 3383 if (mmio_info_in_cache(vcpu, addr, direct))
b37fbea6 3384 return RET_MMIO_PF_EMULATE;
ce88decf 3385
47ab8751 3386 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3387 if (WARN_ON(reserved))
47ab8751 3388 return RET_MMIO_PF_BUG;
ce88decf
XG
3389
3390 if (is_mmio_spte(spte)) {
3391 gfn_t gfn = get_mmio_spte_gfn(spte);
3392 unsigned access = get_mmio_spte_access(spte);
3393
54bf36aa 3394 if (!check_mmio_spte(vcpu, spte))
f8f55942
XG
3395 return RET_MMIO_PF_INVALID;
3396
ce88decf
XG
3397 if (direct)
3398 addr = 0;
4f022648
XG
3399
3400 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3401 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3402 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3403 }
3404
ce88decf
XG
3405 /*
3406 * If the page table is zapped by other cpus, let CPU fault again on
3407 * the address.
3408 */
b37fbea6 3409 return RET_MMIO_PF_RETRY;
ce88decf 3410}
450869d6 3411EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
ce88decf 3412
3d0c27ad
XG
3413static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3414 u32 error_code, gfn_t gfn)
3415{
3416 if (unlikely(error_code & PFERR_RSVD_MASK))
3417 return false;
3418
3419 if (!(error_code & PFERR_PRESENT_MASK) ||
3420 !(error_code & PFERR_WRITE_MASK))
3421 return false;
3422
3423 /*
3424 * guest is writing the page which is write tracked which can
3425 * not be fixed by page fault handler.
3426 */
3427 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3428 return true;
3429
3430 return false;
3431}
3432
e5691a81
XG
3433static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3434{
3435 struct kvm_shadow_walk_iterator iterator;
3436 u64 spte;
3437
3438 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3439 return;
3440
3441 walk_shadow_page_lockless_begin(vcpu);
3442 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3443 clear_sp_write_flooding_count(iterator.sptep);
3444 if (!is_shadow_present_pte(spte))
3445 break;
3446 }
3447 walk_shadow_page_lockless_end(vcpu);
3448}
3449
6aa8b732 3450static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3451 u32 error_code, bool prefault)
6aa8b732 3452{
3d0c27ad 3453 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3454 int r;
6aa8b732 3455
b8688d51 3456 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3457
3d0c27ad
XG
3458 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3459 return 1;
ce88decf 3460
e2dec939
AK
3461 r = mmu_topup_memory_caches(vcpu);
3462 if (r)
3463 return r;
714b93da 3464
fa4a2c08 3465 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3466
6aa8b732 3467
e833240f 3468 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3469 error_code, gfn, prefault);
6aa8b732
AK
3470}
3471
7e1fbeac 3472static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3473{
3474 struct kvm_arch_async_pf arch;
fb67e14f 3475
7c90705b 3476 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3477 arch.gfn = gfn;
c4806acd 3478 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3479 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3480
54bf36aa 3481 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3482}
3483
3484static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3485{
35754c98 3486 if (unlikely(!lapic_in_kernel(vcpu) ||
af585b92
GN
3487 kvm_event_needs_reinjection(vcpu)))
3488 return false;
3489
3490 return kvm_x86_ops->interrupt_allowed(vcpu);
3491}
3492
78b2c54a 3493static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3494 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 3495{
3520469d 3496 struct kvm_memory_slot *slot;
af585b92
GN
3497 bool async;
3498
54bf36aa 3499 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3500 async = false;
3501 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3502 if (!async)
3503 return false; /* *pfn has correct page already */
3504
78b2c54a 3505 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3506 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3507 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3508 trace_kvm_async_pf_doublefault(gva, gfn);
3509 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3510 return true;
3511 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3512 return true;
3513 }
3514
3520469d 3515 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3516 return false;
3517}
3518
6a39bbc5
XG
3519static bool
3520check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3521{
3522 int page_num = KVM_PAGES_PER_HPAGE(level);
3523
3524 gfn &= ~(page_num - 1);
3525
3526 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3527}
3528
56028d08 3529static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3530 bool prefault)
fb72d167 3531{
ba049e93 3532 kvm_pfn_t pfn;
fb72d167 3533 int r;
852e3c19 3534 int level;
cd1872f0 3535 bool force_pt_level;
05da4558 3536 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3537 unsigned long mmu_seq;
612819c3
MT
3538 int write = error_code & PFERR_WRITE_MASK;
3539 bool map_writable;
fb72d167 3540
fa4a2c08 3541 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3542
3d0c27ad
XG
3543 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3544 return 1;
ce88decf 3545
fb72d167
JR
3546 r = mmu_topup_memory_caches(vcpu);
3547 if (r)
3548 return r;
3549
fd136902
TY
3550 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3551 PT_DIRECTORY_LEVEL);
3552 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3553 if (likely(!force_pt_level)) {
6a39bbc5
XG
3554 if (level > PT_DIRECTORY_LEVEL &&
3555 !check_hugepage_cache_consistency(vcpu, gfn, level))
3556 level = PT_DIRECTORY_LEVEL;
936a5fe6 3557 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3558 }
852e3c19 3559
c7ba5b48
XG
3560 if (fast_page_fault(vcpu, gpa, level, error_code))
3561 return 0;
3562
e930bffe 3563 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3564 smp_rmb();
af585b92 3565
78b2c54a 3566 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3567 return 0;
3568
d7c55201
XG
3569 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3570 return r;
3571
fb72d167 3572 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3573 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3574 goto out_unlock;
450e0b41 3575 make_mmu_pages_available(vcpu);
936a5fe6
AA
3576 if (likely(!force_pt_level))
3577 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3578 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 3579 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3580
3581 return r;
e930bffe
AA
3582
3583out_unlock:
3584 spin_unlock(&vcpu->kvm->mmu_lock);
3585 kvm_release_pfn_clean(pfn);
3586 return 0;
fb72d167
JR
3587}
3588
8a3c1a33
PB
3589static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3590 struct kvm_mmu *context)
6aa8b732 3591{
6aa8b732 3592 context->page_fault = nonpaging_page_fault;
6aa8b732 3593 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3594 context->sync_page = nonpaging_sync_page;
a7052897 3595 context->invlpg = nonpaging_invlpg;
0f53b5b1 3596 context->update_pte = nonpaging_update_pte;
cea0f0e7 3597 context->root_level = 0;
6aa8b732 3598 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3599 context->root_hpa = INVALID_PAGE;
c5a78f2b 3600 context->direct_map = true;
2d48a985 3601 context->nx = false;
6aa8b732
AK
3602}
3603
d8d173da 3604void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3605{
cea0f0e7 3606 mmu_free_roots(vcpu);
6aa8b732
AK
3607}
3608
5777ed34
JR
3609static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3610{
9f8fe504 3611 return kvm_read_cr3(vcpu);
5777ed34
JR
3612}
3613
6389ee94
AK
3614static void inject_page_fault(struct kvm_vcpu *vcpu,
3615 struct x86_exception *fault)
6aa8b732 3616{
6389ee94 3617 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3618}
3619
54bf36aa 3620static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3621 unsigned access, int *nr_present)
ce88decf
XG
3622{
3623 if (unlikely(is_mmio_spte(*sptep))) {
3624 if (gfn != get_mmio_spte_gfn(*sptep)) {
3625 mmu_spte_clear_no_track(sptep);
3626 return true;
3627 }
3628
3629 (*nr_present)++;
54bf36aa 3630 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3631 return true;
3632 }
3633
3634 return false;
3635}
3636
6bb69c9b
PB
3637static inline bool is_last_gpte(struct kvm_mmu *mmu,
3638 unsigned level, unsigned gpte)
6fd01b71 3639{
6bb69c9b
PB
3640 /*
3641 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3642 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3643 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3644 */
3645 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
6fd01b71 3646
6bb69c9b
PB
3647 /*
3648 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3649 * If it is clear, there are no large pages at this level, so clear
3650 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3651 */
3652 gpte &= level - mmu->last_nonleaf_level;
3653
3654 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
3655}
3656
37406aaa
NHE
3657#define PTTYPE_EPT 18 /* arbitrary */
3658#define PTTYPE PTTYPE_EPT
3659#include "paging_tmpl.h"
3660#undef PTTYPE
3661
6aa8b732
AK
3662#define PTTYPE 64
3663#include "paging_tmpl.h"
3664#undef PTTYPE
3665
3666#define PTTYPE 32
3667#include "paging_tmpl.h"
3668#undef PTTYPE
3669
6dc98b86
XG
3670static void
3671__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3672 struct rsvd_bits_validate *rsvd_check,
3673 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3674 bool pse, bool amd)
82725b20 3675{
82725b20 3676 u64 exb_bit_rsvd = 0;
5f7dde7b 3677 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3678 u64 nonleaf_bit8_rsvd = 0;
82725b20 3679
a0a64f50 3680 rsvd_check->bad_mt_xwr = 0;
25d92081 3681
6dc98b86 3682 if (!nx)
82725b20 3683 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3684 if (!gbpages)
5f7dde7b 3685 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3686
3687 /*
3688 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3689 * leaf entries) on AMD CPUs only.
3690 */
6fec2144 3691 if (amd)
a0c0feb5
PB
3692 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3693
6dc98b86 3694 switch (level) {
82725b20
DE
3695 case PT32_ROOT_LEVEL:
3696 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3697 rsvd_check->rsvd_bits_mask[0][1] = 0;
3698 rsvd_check->rsvd_bits_mask[0][0] = 0;
3699 rsvd_check->rsvd_bits_mask[1][0] =
3700 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 3701
6dc98b86 3702 if (!pse) {
a0a64f50 3703 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
3704 break;
3705 }
3706
82725b20
DE
3707 if (is_cpuid_PSE36())
3708 /* 36bits PSE 4MB page */
a0a64f50 3709 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
3710 else
3711 /* 32 bits PSE 4MB page */
a0a64f50 3712 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3713 break;
3714 case PT32E_ROOT_LEVEL:
a0a64f50 3715 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 3716 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3717 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 3718 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3719 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 3720 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 3721 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 3722 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
3723 rsvd_bits(maxphyaddr, 62) |
3724 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3725 rsvd_check->rsvd_bits_mask[1][0] =
3726 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3727 break;
3728 case PT64_ROOT_LEVEL:
a0a64f50
XG
3729 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3730 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 3731 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3732 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3733 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 3734 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3735 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3736 rsvd_bits(maxphyaddr, 51);
3737 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3738 rsvd_bits(maxphyaddr, 51);
3739 rsvd_check->rsvd_bits_mask[1][3] =
3740 rsvd_check->rsvd_bits_mask[0][3];
3741 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3742 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3743 rsvd_bits(13, 29);
a0a64f50 3744 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3745 rsvd_bits(maxphyaddr, 51) |
3746 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3747 rsvd_check->rsvd_bits_mask[1][0] =
3748 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3749 break;
3750 }
3751}
3752
6dc98b86
XG
3753static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3754 struct kvm_mmu *context)
3755{
3756 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3757 cpuid_maxphyaddr(vcpu), context->root_level,
3758 context->nx, guest_cpuid_has_gbpages(vcpu),
6fec2144 3759 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
3760}
3761
81b8eebb
XG
3762static void
3763__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3764 int maxphyaddr, bool execonly)
25d92081 3765{
951f9fd7 3766 u64 bad_mt_xwr;
25d92081 3767
a0a64f50 3768 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 3769 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 3770 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 3771 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3772 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 3773 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3774 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
3775
3776 /* large page */
a0a64f50
XG
3777 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3778 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 3779 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 3780 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 3781 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 3782 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 3783
951f9fd7
PB
3784 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3785 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3786 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3787 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3788 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3789 if (!execonly) {
3790 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3791 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 3792 }
951f9fd7 3793 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
3794}
3795
81b8eebb
XG
3796static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3797 struct kvm_mmu *context, bool execonly)
3798{
3799 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3800 cpuid_maxphyaddr(vcpu), execonly);
3801}
3802
c258b62b
XG
3803/*
3804 * the page table on host is the shadow page table for the page
3805 * table in guest or amd nested guest, its mmu features completely
3806 * follow the features in guest.
3807 */
3808void
3809reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3810{
5f0b8199
PB
3811 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3812
6fec2144
PB
3813 /*
3814 * Passing "true" to the last argument is okay; it adds a check
3815 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3816 */
c258b62b
XG
3817 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3818 boot_cpu_data.x86_phys_bits,
5f0b8199 3819 context->shadow_root_level, uses_nx,
6fec2144
PB
3820 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3821 true);
c258b62b
XG
3822}
3823EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3824
6fec2144
PB
3825static inline bool boot_cpu_is_amd(void)
3826{
3827 WARN_ON_ONCE(!tdp_enabled);
3828 return shadow_x_mask == 0;
3829}
3830
c258b62b
XG
3831/*
3832 * the direct page table on host, use as much mmu features as
3833 * possible, however, kvm currently does not do execution-protection.
3834 */
3835static void
3836reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3837 struct kvm_mmu *context)
3838{
6fec2144 3839 if (boot_cpu_is_amd())
c258b62b
XG
3840 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3841 boot_cpu_data.x86_phys_bits,
3842 context->shadow_root_level, false,
b8291adc
BP
3843 boot_cpu_has(X86_FEATURE_GBPAGES),
3844 true, true);
c258b62b
XG
3845 else
3846 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3847 boot_cpu_data.x86_phys_bits,
3848 false);
3849
3850}
3851
3852/*
3853 * as the comments in reset_shadow_zero_bits_mask() except it
3854 * is the shadow page table for intel nested guest.
3855 */
3856static void
3857reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3858 struct kvm_mmu *context, bool execonly)
3859{
3860 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3861 boot_cpu_data.x86_phys_bits, execonly);
3862}
3863
edc90b7d
XG
3864static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3865 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3866{
3867 unsigned bit, byte, pfec;
3868 u8 map;
66386ade 3869 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3870
66386ade 3871 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3872 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3873 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3874 pfec = byte << 1;
3875 map = 0;
3876 wf = pfec & PFERR_WRITE_MASK;
3877 uf = pfec & PFERR_USER_MASK;
3878 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3879 /*
3880 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3881 * subject to SMAP restrictions, and cleared otherwise. The
3882 * bit is only meaningful if the SMAP bit is set in CR4.
3883 */
3884 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3885 for (bit = 0; bit < 8; ++bit) {
3886 x = bit & ACC_EXEC_MASK;
3887 w = bit & ACC_WRITE_MASK;
3888 u = bit & ACC_USER_MASK;
3889
25d92081
YZ
3890 if (!ept) {
3891 /* Not really needed: !nx will cause pte.nx to fault */
3892 x |= !mmu->nx;
3893 /* Allow supervisor writes if !cr0.wp */
3894 w |= !is_write_protection(vcpu) && !uf;
3895 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3896 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3897
3898 /*
3899 * SMAP:kernel-mode data accesses from user-mode
3900 * mappings should fault. A fault is considered
3901 * as a SMAP violation if all of the following
3902 * conditions are ture:
3903 * - X86_CR4_SMAP is set in CR4
3904 * - An user page is accessed
3905 * - Page fault in kernel mode
3906 * - if CPL = 3 or X86_EFLAGS_AC is clear
3907 *
3908 * Here, we cover the first three conditions.
3909 * The fourth is computed dynamically in
3910 * permission_fault() and is in smapf.
3911 *
3912 * Also, SMAP does not affect instruction
3913 * fetches, add the !ff check here to make it
3914 * clearer.
3915 */
3916 smap = cr4_smap && u && !uf && !ff;
d95c5568 3917 }
97d64b78 3918
97ec8c06
FW
3919 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3920 (smapf && smap);
97d64b78
AK
3921 map |= fault << bit;
3922 }
3923 mmu->permissions[byte] = map;
3924 }
3925}
3926
2d344105
HH
3927/*
3928* PKU is an additional mechanism by which the paging controls access to
3929* user-mode addresses based on the value in the PKRU register. Protection
3930* key violations are reported through a bit in the page fault error code.
3931* Unlike other bits of the error code, the PK bit is not known at the
3932* call site of e.g. gva_to_gpa; it must be computed directly in
3933* permission_fault based on two bits of PKRU, on some machine state (CR4,
3934* CR0, EFER, CPL), and on other bits of the error code and the page tables.
3935*
3936* In particular the following conditions come from the error code, the
3937* page tables and the machine state:
3938* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
3939* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
3940* - PK is always zero if U=0 in the page tables
3941* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
3942*
3943* The PKRU bitmask caches the result of these four conditions. The error
3944* code (minus the P bit) and the page table's U bit form an index into the
3945* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
3946* with the two bits of the PKRU register corresponding to the protection key.
3947* For the first three conditions above the bits will be 00, thus masking
3948* away both AD and WD. For all reads or if the last condition holds, WD
3949* only will be masked away.
3950*/
3951static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3952 bool ept)
3953{
3954 unsigned bit;
3955 bool wp;
3956
3957 if (ept) {
3958 mmu->pkru_mask = 0;
3959 return;
3960 }
3961
3962 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
3963 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
3964 mmu->pkru_mask = 0;
3965 return;
3966 }
3967
3968 wp = is_write_protection(vcpu);
3969
3970 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
3971 unsigned pfec, pkey_bits;
3972 bool check_pkey, check_write, ff, uf, wf, pte_user;
3973
3974 pfec = bit << 1;
3975 ff = pfec & PFERR_FETCH_MASK;
3976 uf = pfec & PFERR_USER_MASK;
3977 wf = pfec & PFERR_WRITE_MASK;
3978
3979 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
3980 pte_user = pfec & PFERR_RSVD_MASK;
3981
3982 /*
3983 * Only need to check the access which is not an
3984 * instruction fetch and is to a user page.
3985 */
3986 check_pkey = (!ff && pte_user);
3987 /*
3988 * write access is controlled by PKRU if it is a
3989 * user access or CR0.WP = 1.
3990 */
3991 check_write = check_pkey && wf && (uf || wp);
3992
3993 /* PKRU.AD stops both read and write access. */
3994 pkey_bits = !!check_pkey;
3995 /* PKRU.WD stops write access. */
3996 pkey_bits |= (!!check_write) << 1;
3997
3998 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
3999 }
4000}
4001
6bb69c9b 4002static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4003{
6bb69c9b
PB
4004 unsigned root_level = mmu->root_level;
4005
4006 mmu->last_nonleaf_level = root_level;
4007 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4008 mmu->last_nonleaf_level++;
6fd01b71
AK
4009}
4010
8a3c1a33
PB
4011static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4012 struct kvm_mmu *context,
4013 int level)
6aa8b732 4014{
2d48a985 4015 context->nx = is_nx(vcpu);
4d6931c3 4016 context->root_level = level;
2d48a985 4017
4d6931c3 4018 reset_rsvds_bits_mask(vcpu, context);
25d92081 4019 update_permission_bitmask(vcpu, context, false);
2d344105 4020 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4021 update_last_nonleaf_level(vcpu, context);
6aa8b732 4022
fa4a2c08 4023 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4024 context->page_fault = paging64_page_fault;
6aa8b732 4025 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4026 context->sync_page = paging64_sync_page;
a7052897 4027 context->invlpg = paging64_invlpg;
0f53b5b1 4028 context->update_pte = paging64_update_pte;
17ac10ad 4029 context->shadow_root_level = level;
17c3ba9d 4030 context->root_hpa = INVALID_PAGE;
c5a78f2b 4031 context->direct_map = false;
6aa8b732
AK
4032}
4033
8a3c1a33
PB
4034static void paging64_init_context(struct kvm_vcpu *vcpu,
4035 struct kvm_mmu *context)
17ac10ad 4036{
8a3c1a33 4037 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
4038}
4039
8a3c1a33
PB
4040static void paging32_init_context(struct kvm_vcpu *vcpu,
4041 struct kvm_mmu *context)
6aa8b732 4042{
2d48a985 4043 context->nx = false;
4d6931c3 4044 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4045
4d6931c3 4046 reset_rsvds_bits_mask(vcpu, context);
25d92081 4047 update_permission_bitmask(vcpu, context, false);
2d344105 4048 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4049 update_last_nonleaf_level(vcpu, context);
6aa8b732 4050
6aa8b732 4051 context->page_fault = paging32_page_fault;
6aa8b732 4052 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4053 context->sync_page = paging32_sync_page;
a7052897 4054 context->invlpg = paging32_invlpg;
0f53b5b1 4055 context->update_pte = paging32_update_pte;
6aa8b732 4056 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 4057 context->root_hpa = INVALID_PAGE;
c5a78f2b 4058 context->direct_map = false;
6aa8b732
AK
4059}
4060
8a3c1a33
PB
4061static void paging32E_init_context(struct kvm_vcpu *vcpu,
4062 struct kvm_mmu *context)
6aa8b732 4063{
8a3c1a33 4064 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4065}
4066
8a3c1a33 4067static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4068{
ad896af0 4069 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 4070
c445f8ef 4071 context->base_role.word = 0;
699023e2 4072 context->base_role.smm = is_smm(vcpu);
fb72d167 4073 context->page_fault = tdp_page_fault;
e8bc217a 4074 context->sync_page = nonpaging_sync_page;
a7052897 4075 context->invlpg = nonpaging_invlpg;
0f53b5b1 4076 context->update_pte = nonpaging_update_pte;
67253af5 4077 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 4078 context->root_hpa = INVALID_PAGE;
c5a78f2b 4079 context->direct_map = true;
1c97f0a0 4080 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4081 context->get_cr3 = get_cr3;
e4e517b4 4082 context->get_pdptr = kvm_pdptr_read;
cb659db8 4083 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4084
4085 if (!is_paging(vcpu)) {
2d48a985 4086 context->nx = false;
fb72d167
JR
4087 context->gva_to_gpa = nonpaging_gva_to_gpa;
4088 context->root_level = 0;
4089 } else if (is_long_mode(vcpu)) {
2d48a985 4090 context->nx = is_nx(vcpu);
fb72d167 4091 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
4092 reset_rsvds_bits_mask(vcpu, context);
4093 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4094 } else if (is_pae(vcpu)) {
2d48a985 4095 context->nx = is_nx(vcpu);
fb72d167 4096 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4097 reset_rsvds_bits_mask(vcpu, context);
4098 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4099 } else {
2d48a985 4100 context->nx = false;
fb72d167 4101 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4102 reset_rsvds_bits_mask(vcpu, context);
4103 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4104 }
4105
25d92081 4106 update_permission_bitmask(vcpu, context, false);
2d344105 4107 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4108 update_last_nonleaf_level(vcpu, context);
c258b62b 4109 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4110}
4111
ad896af0 4112void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 4113{
411c588d 4114 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 4115 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
4116 struct kvm_mmu *context = &vcpu->arch.mmu;
4117
fa4a2c08 4118 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
4119
4120 if (!is_paging(vcpu))
8a3c1a33 4121 nonpaging_init_context(vcpu, context);
a9058ecd 4122 else if (is_long_mode(vcpu))
8a3c1a33 4123 paging64_init_context(vcpu, context);
6aa8b732 4124 else if (is_pae(vcpu))
8a3c1a33 4125 paging32E_init_context(vcpu, context);
6aa8b732 4126 else
8a3c1a33 4127 paging32_init_context(vcpu, context);
a770f6f2 4128
ad896af0
PB
4129 context->base_role.nxe = is_nx(vcpu);
4130 context->base_role.cr4_pae = !!is_pae(vcpu);
4131 context->base_role.cr0_wp = is_write_protection(vcpu);
4132 context->base_role.smep_andnot_wp
411c588d 4133 = smep && !is_write_protection(vcpu);
edc90b7d
XG
4134 context->base_role.smap_andnot_wp
4135 = smap && !is_write_protection(vcpu);
699023e2 4136 context->base_role.smm = is_smm(vcpu);
c258b62b 4137 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4138}
4139EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4140
ad896af0 4141void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 4142{
ad896af0
PB
4143 struct kvm_mmu *context = &vcpu->arch.mmu;
4144
fa4a2c08 4145 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
4146
4147 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4148
4149 context->nx = true;
155a97a3
NHE
4150 context->page_fault = ept_page_fault;
4151 context->gva_to_gpa = ept_gva_to_gpa;
4152 context->sync_page = ept_sync_page;
4153 context->invlpg = ept_invlpg;
4154 context->update_pte = ept_update_pte;
155a97a3
NHE
4155 context->root_level = context->shadow_root_level;
4156 context->root_hpa = INVALID_PAGE;
4157 context->direct_map = false;
4158
4159 update_permission_bitmask(vcpu, context, true);
2d344105 4160 update_pkru_bitmask(vcpu, context, true);
155a97a3 4161 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4162 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4163}
4164EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4165
8a3c1a33 4166static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4167{
ad896af0
PB
4168 struct kvm_mmu *context = &vcpu->arch.mmu;
4169
4170 kvm_init_shadow_mmu(vcpu);
4171 context->set_cr3 = kvm_x86_ops->set_cr3;
4172 context->get_cr3 = get_cr3;
4173 context->get_pdptr = kvm_pdptr_read;
4174 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4175}
4176
8a3c1a33 4177static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4178{
4179 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4180
4181 g_context->get_cr3 = get_cr3;
e4e517b4 4182 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4183 g_context->inject_page_fault = kvm_inject_page_fault;
4184
4185 /*
0af2593b
DM
4186 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4187 * L1's nested page tables (e.g. EPT12). The nested translation
4188 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4189 * L2's page tables as the first level of translation and L1's
4190 * nested page tables as the second level of translation. Basically
4191 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4192 */
4193 if (!is_paging(vcpu)) {
2d48a985 4194 g_context->nx = false;
02f59dc9
JR
4195 g_context->root_level = 0;
4196 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4197 } else if (is_long_mode(vcpu)) {
2d48a985 4198 g_context->nx = is_nx(vcpu);
02f59dc9 4199 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4200 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4201 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4202 } else if (is_pae(vcpu)) {
2d48a985 4203 g_context->nx = is_nx(vcpu);
02f59dc9 4204 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4205 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4206 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4207 } else {
2d48a985 4208 g_context->nx = false;
02f59dc9 4209 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4210 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4211 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4212 }
4213
25d92081 4214 update_permission_bitmask(vcpu, g_context, false);
2d344105 4215 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4216 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4217}
4218
8a3c1a33 4219static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4220{
02f59dc9 4221 if (mmu_is_nested(vcpu))
e0c6db3e 4222 init_kvm_nested_mmu(vcpu);
02f59dc9 4223 else if (tdp_enabled)
e0c6db3e 4224 init_kvm_tdp_mmu(vcpu);
fb72d167 4225 else
e0c6db3e 4226 init_kvm_softmmu(vcpu);
fb72d167
JR
4227}
4228
8a3c1a33 4229void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4230{
95f93af4 4231 kvm_mmu_unload(vcpu);
8a3c1a33 4232 init_kvm_mmu(vcpu);
17c3ba9d 4233}
8668a3c4 4234EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4235
4236int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4237{
714b93da
AK
4238 int r;
4239
e2dec939 4240 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4241 if (r)
4242 goto out;
8986ecc0 4243 r = mmu_alloc_roots(vcpu);
e2858b4a 4244 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4245 if (r)
4246 goto out;
3662cb1c 4247 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4248 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4249out:
4250 return r;
6aa8b732 4251}
17c3ba9d
AK
4252EXPORT_SYMBOL_GPL(kvm_mmu_load);
4253
4254void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4255{
4256 mmu_free_roots(vcpu);
95f93af4 4257 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4258}
4b16184c 4259EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4260
0028425f 4261static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4262 struct kvm_mmu_page *sp, u64 *spte,
4263 const void *new)
0028425f 4264{
30945387 4265 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4266 ++vcpu->kvm->stat.mmu_pde_zapped;
4267 return;
30945387 4268 }
0028425f 4269
4cee5764 4270 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4271 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4272}
4273
79539cec
AK
4274static bool need_remote_flush(u64 old, u64 new)
4275{
4276 if (!is_shadow_present_pte(old))
4277 return false;
4278 if (!is_shadow_present_pte(new))
4279 return true;
4280 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4281 return true;
53166229
GN
4282 old ^= shadow_nx_mask;
4283 new ^= shadow_nx_mask;
79539cec
AK
4284 return (old & ~new & PT64_PERM_MASK) != 0;
4285}
4286
889e5cbc
XG
4287static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4288 const u8 *new, int *bytes)
da4a00f0 4289{
889e5cbc
XG
4290 u64 gentry;
4291 int r;
72016f3a 4292
72016f3a
AK
4293 /*
4294 * Assume that the pte write on a page table of the same type
49b26e26
XG
4295 * as the current vcpu paging mode since we update the sptes only
4296 * when they have the same mode.
72016f3a 4297 */
889e5cbc 4298 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4299 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4300 *gpa &= ~(gpa_t)7;
4301 *bytes = 8;
54bf36aa 4302 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4303 if (r)
4304 gentry = 0;
08e850c6
AK
4305 new = (const u8 *)&gentry;
4306 }
4307
889e5cbc 4308 switch (*bytes) {
08e850c6
AK
4309 case 4:
4310 gentry = *(const u32 *)new;
4311 break;
4312 case 8:
4313 gentry = *(const u64 *)new;
4314 break;
4315 default:
4316 gentry = 0;
4317 break;
72016f3a
AK
4318 }
4319
889e5cbc
XG
4320 return gentry;
4321}
4322
4323/*
4324 * If we're seeing too many writes to a page, it may no longer be a page table,
4325 * or we may be forking, in which case it is better to unmap the page.
4326 */
a138fe75 4327static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4328{
a30f47cb
XG
4329 /*
4330 * Skip write-flooding detected for the sp whose level is 1, because
4331 * it can become unsync, then the guest page is not write-protected.
4332 */
f71fa31f 4333 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4334 return false;
3246af0e 4335
e5691a81
XG
4336 atomic_inc(&sp->write_flooding_count);
4337 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4338}
4339
4340/*
4341 * Misaligned accesses are too much trouble to fix up; also, they usually
4342 * indicate a page is not used as a page table.
4343 */
4344static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4345 int bytes)
4346{
4347 unsigned offset, pte_size, misaligned;
4348
4349 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4350 gpa, bytes, sp->role.word);
4351
4352 offset = offset_in_page(gpa);
4353 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4354
4355 /*
4356 * Sometimes, the OS only writes the last one bytes to update status
4357 * bits, for example, in linux, andb instruction is used in clear_bit().
4358 */
4359 if (!(offset & (pte_size - 1)) && bytes == 1)
4360 return false;
4361
889e5cbc
XG
4362 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4363 misaligned |= bytes < 4;
4364
4365 return misaligned;
4366}
4367
4368static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4369{
4370 unsigned page_offset, quadrant;
4371 u64 *spte;
4372 int level;
4373
4374 page_offset = offset_in_page(gpa);
4375 level = sp->role.level;
4376 *nspte = 1;
4377 if (!sp->role.cr4_pae) {
4378 page_offset <<= 1; /* 32->64 */
4379 /*
4380 * A 32-bit pde maps 4MB while the shadow pdes map
4381 * only 2MB. So we need to double the offset again
4382 * and zap two pdes instead of one.
4383 */
4384 if (level == PT32_ROOT_LEVEL) {
4385 page_offset &= ~7; /* kill rounding error */
4386 page_offset <<= 1;
4387 *nspte = 2;
4388 }
4389 quadrant = page_offset >> PAGE_SHIFT;
4390 page_offset &= ~PAGE_MASK;
4391 if (quadrant != sp->role.quadrant)
4392 return NULL;
4393 }
4394
4395 spte = &sp->spt[page_offset / sizeof(*spte)];
4396 return spte;
4397}
4398
13d268ca 4399static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
4400 const u8 *new, int bytes,
4401 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
4402{
4403 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4404 struct kvm_mmu_page *sp;
889e5cbc
XG
4405 LIST_HEAD(invalid_list);
4406 u64 entry, gentry, *spte;
4407 int npte;
b8c67b7a 4408 bool remote_flush, local_flush;
4141259b
AM
4409 union kvm_mmu_page_role mask = { };
4410
4411 mask.cr0_wp = 1;
4412 mask.cr4_pae = 1;
4413 mask.nxe = 1;
4414 mask.smep_andnot_wp = 1;
4415 mask.smap_andnot_wp = 1;
699023e2 4416 mask.smm = 1;
889e5cbc
XG
4417
4418 /*
4419 * If we don't have indirect shadow pages, it means no page is
4420 * write-protected, so we can exit simply.
4421 */
4422 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4423 return;
4424
b8c67b7a 4425 remote_flush = local_flush = false;
889e5cbc
XG
4426
4427 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4428
4429 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4430
4431 /*
4432 * No need to care whether allocation memory is successful
4433 * or not since pte prefetch is skiped if it does not have
4434 * enough objects in the cache.
4435 */
4436 mmu_topup_memory_caches(vcpu);
4437
4438 spin_lock(&vcpu->kvm->mmu_lock);
4439 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4440 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4441
b67bfe0d 4442 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4443 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4444 detect_write_flooding(sp)) {
b8c67b7a 4445 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4446 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4447 continue;
4448 }
889e5cbc
XG
4449
4450 spte = get_written_sptes(sp, gpa, &npte);
4451 if (!spte)
4452 continue;
4453
0671a8e7 4454 local_flush = true;
ac1b714e 4455 while (npte--) {
79539cec 4456 entry = *spte;
38e3b2b2 4457 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4458 if (gentry &&
4459 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4460 & mask.word) && rmap_can_add(vcpu))
7c562522 4461 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4462 if (need_remote_flush(entry, *spte))
0671a8e7 4463 remote_flush = true;
ac1b714e 4464 ++spte;
9b7a0325 4465 }
9b7a0325 4466 }
b8c67b7a 4467 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 4468 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4469 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4470}
4471
a436036b
AK
4472int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4473{
10589a46
MT
4474 gpa_t gpa;
4475 int r;
a436036b 4476
c5a78f2b 4477 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4478 return 0;
4479
1871c602 4480 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4481
10589a46 4482 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4483
10589a46 4484 return r;
a436036b 4485}
577bdc49 4486EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4487
81f4f76b 4488static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4489{
d98ba053 4490 LIST_HEAD(invalid_list);
103ad25a 4491
81f4f76b
TY
4492 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4493 return;
4494
5da59607
TY
4495 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4496 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4497 break;
ebeace86 4498
4cee5764 4499 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4500 }
aa6bd187 4501 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4502}
ebeace86 4503
dc25e89e
AP
4504int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4505 void *insn, int insn_len)
3067714c 4506{
1cb3f3ae 4507 int r, emulation_type = EMULTYPE_RETRY;
3067714c 4508 enum emulation_result er;
ded58749 4509 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
3067714c 4510
e9ee956e
TY
4511 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4512 r = handle_mmio_page_fault(vcpu, cr2, direct);
4513 if (r == RET_MMIO_PF_EMULATE) {
4514 emulation_type = 0;
4515 goto emulate;
4516 }
4517 if (r == RET_MMIO_PF_RETRY)
4518 return 1;
4519 if (r < 0)
4520 return r;
4521 }
3067714c 4522
56028d08 4523 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c 4524 if (r < 0)
e9ee956e
TY
4525 return r;
4526 if (!r)
4527 return 1;
3067714c 4528
ded58749 4529 if (mmio_info_in_cache(vcpu, cr2, direct))
1cb3f3ae 4530 emulation_type = 0;
e9ee956e 4531emulate:
1cb3f3ae 4532 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4533
4534 switch (er) {
4535 case EMULATE_DONE:
4536 return 1;
ac0a48c3 4537 case EMULATE_USER_EXIT:
3067714c 4538 ++vcpu->stat.mmio_exits;
6d77dbfc 4539 /* fall through */
3067714c 4540 case EMULATE_FAIL:
3f5d18a9 4541 return 0;
3067714c
AK
4542 default:
4543 BUG();
4544 }
3067714c
AK
4545}
4546EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4547
a7052897
MT
4548void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4549{
a7052897 4550 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4551 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4552 ++vcpu->stat.invlpg;
4553}
4554EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4555
18552672
JR
4556void kvm_enable_tdp(void)
4557{
4558 tdp_enabled = true;
4559}
4560EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4561
5f4cb662
JR
4562void kvm_disable_tdp(void)
4563{
4564 tdp_enabled = false;
4565}
4566EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4567
6aa8b732
AK
4568static void free_mmu_pages(struct kvm_vcpu *vcpu)
4569{
ad312c7c 4570 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4571 if (vcpu->arch.mmu.lm_root != NULL)
4572 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4573}
4574
4575static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4576{
17ac10ad 4577 struct page *page;
6aa8b732
AK
4578 int i;
4579
17ac10ad
AK
4580 /*
4581 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4582 * Therefore we need to allocate shadow page tables in the first
4583 * 4GB of memory, which happens to fit the DMA32 zone.
4584 */
4585 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4586 if (!page)
d7fa6ab2
WY
4587 return -ENOMEM;
4588
ad312c7c 4589 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4590 for (i = 0; i < 4; ++i)
ad312c7c 4591 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4592
6aa8b732 4593 return 0;
6aa8b732
AK
4594}
4595
8018c27b 4596int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4597{
e459e322
XG
4598 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4599 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4600 vcpu->arch.mmu.translate_gpa = translate_gpa;
4601 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4602
8018c27b
IM
4603 return alloc_mmu_pages(vcpu);
4604}
6aa8b732 4605
8a3c1a33 4606void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4607{
fa4a2c08 4608 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4609
8a3c1a33 4610 init_kvm_mmu(vcpu);
6aa8b732
AK
4611}
4612
b5f5fdca 4613static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
4614 struct kvm_memory_slot *slot,
4615 struct kvm_page_track_notifier_node *node)
b5f5fdca
XC
4616{
4617 kvm_mmu_invalidate_zap_all_pages(kvm);
4618}
4619
13d268ca
XG
4620void kvm_mmu_init_vm(struct kvm *kvm)
4621{
4622 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4623
4624 node->track_write = kvm_mmu_pte_write;
b5f5fdca 4625 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca
XG
4626 kvm_page_track_register_notifier(kvm, node);
4627}
4628
4629void kvm_mmu_uninit_vm(struct kvm *kvm)
4630{
4631 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4632
4633 kvm_page_track_unregister_notifier(kvm, node);
4634}
4635
1bad2b2a 4636/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 4637typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
4638
4639/* The caller should hold mmu-lock before calling this function. */
4640static bool
4641slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4642 slot_level_handler fn, int start_level, int end_level,
4643 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4644{
4645 struct slot_rmap_walk_iterator iterator;
4646 bool flush = false;
4647
4648 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4649 end_gfn, &iterator) {
4650 if (iterator.rmap)
4651 flush |= fn(kvm, iterator.rmap);
4652
4653 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4654 if (flush && lock_flush_tlb) {
4655 kvm_flush_remote_tlbs(kvm);
4656 flush = false;
4657 }
4658 cond_resched_lock(&kvm->mmu_lock);
4659 }
4660 }
4661
4662 if (flush && lock_flush_tlb) {
4663 kvm_flush_remote_tlbs(kvm);
4664 flush = false;
4665 }
4666
4667 return flush;
4668}
4669
4670static bool
4671slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4672 slot_level_handler fn, int start_level, int end_level,
4673 bool lock_flush_tlb)
4674{
4675 return slot_handle_level_range(kvm, memslot, fn, start_level,
4676 end_level, memslot->base_gfn,
4677 memslot->base_gfn + memslot->npages - 1,
4678 lock_flush_tlb);
4679}
4680
4681static bool
4682slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4683 slot_level_handler fn, bool lock_flush_tlb)
4684{
4685 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4686 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4687}
4688
4689static bool
4690slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4691 slot_level_handler fn, bool lock_flush_tlb)
4692{
4693 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4694 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4695}
4696
4697static bool
4698slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4699 slot_level_handler fn, bool lock_flush_tlb)
4700{
4701 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4702 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4703}
4704
efdfe536
XG
4705void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4706{
4707 struct kvm_memslots *slots;
4708 struct kvm_memory_slot *memslot;
9da0e4d5 4709 int i;
efdfe536
XG
4710
4711 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
4712 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4713 slots = __kvm_memslots(kvm, i);
4714 kvm_for_each_memslot(memslot, slots) {
4715 gfn_t start, end;
4716
4717 start = max(gfn_start, memslot->base_gfn);
4718 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4719 if (start >= end)
4720 continue;
efdfe536 4721
9da0e4d5
PB
4722 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4723 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4724 start, end - 1, true);
4725 }
efdfe536
XG
4726 }
4727
4728 spin_unlock(&kvm->mmu_lock);
4729}
4730
018aabb5
TY
4731static bool slot_rmap_write_protect(struct kvm *kvm,
4732 struct kvm_rmap_head *rmap_head)
d77aa73c 4733{
018aabb5 4734 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
4735}
4736
1c91cad4
KH
4737void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4738 struct kvm_memory_slot *memslot)
6aa8b732 4739{
d77aa73c 4740 bool flush;
6aa8b732 4741
9d1beefb 4742 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4743 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4744 false);
9d1beefb 4745 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4746
4747 /*
4748 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4749 * which do tlb flush out of mmu-lock should be serialized by
4750 * kvm->slots_lock otherwise tlb flush would be missed.
4751 */
4752 lockdep_assert_held(&kvm->slots_lock);
4753
4754 /*
4755 * We can flush all the TLBs out of the mmu lock without TLB
4756 * corruption since we just change the spte from writable to
4757 * readonly so that we only need to care the case of changing
4758 * spte from present to present (changing the spte from present
4759 * to nonpresent will flush all the TLBs immediately), in other
4760 * words, the only case we care is mmu_spte_update() where we
4761 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4762 * instead of PT_WRITABLE_MASK, that means it does not depend
4763 * on PT_WRITABLE_MASK anymore.
4764 */
d91ffee9
KH
4765 if (flush)
4766 kvm_flush_remote_tlbs(kvm);
6aa8b732 4767}
37a7d8b0 4768
3ea3b7fa 4769static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 4770 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
4771{
4772 u64 *sptep;
4773 struct rmap_iterator iter;
4774 int need_tlb_flush = 0;
ba049e93 4775 kvm_pfn_t pfn;
3ea3b7fa
WL
4776 struct kvm_mmu_page *sp;
4777
0d536790 4778restart:
018aabb5 4779 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
4780 sp = page_header(__pa(sptep));
4781 pfn = spte_to_pfn(*sptep);
4782
4783 /*
decf6333
XG
4784 * We cannot do huge page mapping for indirect shadow pages,
4785 * which are found on the last rmap (level = 1) when not using
4786 * tdp; such shadow pages are synced with the page table in
4787 * the guest, and the guest page table is using 4K page size
4788 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
4789 */
4790 if (sp->role.direct &&
4791 !kvm_is_reserved_pfn(pfn) &&
127393fb 4792 PageTransCompoundMap(pfn_to_page(pfn))) {
3ea3b7fa 4793 drop_spte(kvm, sptep);
3ea3b7fa 4794 need_tlb_flush = 1;
0d536790
XG
4795 goto restart;
4796 }
3ea3b7fa
WL
4797 }
4798
4799 return need_tlb_flush;
4800}
4801
4802void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 4803 const struct kvm_memory_slot *memslot)
3ea3b7fa 4804{
f36f3f28 4805 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 4806 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
4807 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4808 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
4809 spin_unlock(&kvm->mmu_lock);
4810}
4811
f4b4b180
KH
4812void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4813 struct kvm_memory_slot *memslot)
4814{
d77aa73c 4815 bool flush;
f4b4b180
KH
4816
4817 spin_lock(&kvm->mmu_lock);
d77aa73c 4818 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
4819 spin_unlock(&kvm->mmu_lock);
4820
4821 lockdep_assert_held(&kvm->slots_lock);
4822
4823 /*
4824 * It's also safe to flush TLBs out of mmu lock here as currently this
4825 * function is only used for dirty logging, in which case flushing TLB
4826 * out of mmu lock also guarantees no dirty pages will be lost in
4827 * dirty_bitmap.
4828 */
4829 if (flush)
4830 kvm_flush_remote_tlbs(kvm);
4831}
4832EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4833
4834void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4835 struct kvm_memory_slot *memslot)
4836{
d77aa73c 4837 bool flush;
f4b4b180
KH
4838
4839 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4840 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4841 false);
f4b4b180
KH
4842 spin_unlock(&kvm->mmu_lock);
4843
4844 /* see kvm_mmu_slot_remove_write_access */
4845 lockdep_assert_held(&kvm->slots_lock);
4846
4847 if (flush)
4848 kvm_flush_remote_tlbs(kvm);
4849}
4850EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4851
4852void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4853 struct kvm_memory_slot *memslot)
4854{
d77aa73c 4855 bool flush;
f4b4b180
KH
4856
4857 spin_lock(&kvm->mmu_lock);
d77aa73c 4858 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
4859 spin_unlock(&kvm->mmu_lock);
4860
4861 lockdep_assert_held(&kvm->slots_lock);
4862
4863 /* see kvm_mmu_slot_leaf_clear_dirty */
4864 if (flush)
4865 kvm_flush_remote_tlbs(kvm);
4866}
4867EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4868
e7d11c7a 4869#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4870static void kvm_zap_obsolete_pages(struct kvm *kvm)
4871{
4872 struct kvm_mmu_page *sp, *node;
e7d11c7a 4873 int batch = 0;
5304b8d3
XG
4874
4875restart:
4876 list_for_each_entry_safe_reverse(sp, node,
4877 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4878 int ret;
4879
5304b8d3
XG
4880 /*
4881 * No obsolete page exists before new created page since
4882 * active_mmu_pages is the FIFO list.
4883 */
4884 if (!is_obsolete_sp(kvm, sp))
4885 break;
4886
4887 /*
5304b8d3
XG
4888 * Since we are reversely walking the list and the invalid
4889 * list will be moved to the head, skip the invalid page
4890 * can help us to avoid the infinity list walking.
4891 */
4892 if (sp->role.invalid)
4893 continue;
4894
f34d251d
XG
4895 /*
4896 * Need not flush tlb since we only zap the sp with invalid
4897 * generation number.
4898 */
e7d11c7a 4899 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4900 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4901 batch = 0;
5304b8d3
XG
4902 goto restart;
4903 }
4904
365c8868
XG
4905 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4906 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4907 batch += ret;
4908
4909 if (ret)
5304b8d3
XG
4910 goto restart;
4911 }
4912
f34d251d
XG
4913 /*
4914 * Should flush tlb before free page tables since lockless-walking
4915 * may use the pages.
4916 */
365c8868 4917 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4918}
4919
4920/*
4921 * Fast invalidate all shadow pages and use lock-break technique
4922 * to zap obsolete pages.
4923 *
4924 * It's required when memslot is being deleted or VM is being
4925 * destroyed, in these cases, we should ensure that KVM MMU does
4926 * not use any resource of the being-deleted slot or all slots
4927 * after calling the function.
4928 */
4929void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4930{
4931 spin_lock(&kvm->mmu_lock);
35006126 4932 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4933 kvm->arch.mmu_valid_gen++;
4934
f34d251d
XG
4935 /*
4936 * Notify all vcpus to reload its shadow page table
4937 * and flush TLB. Then all vcpus will switch to new
4938 * shadow page table with the new mmu_valid_gen.
4939 *
4940 * Note: we should do this under the protection of
4941 * mmu-lock, otherwise, vcpu would purge shadow page
4942 * but miss tlb flush.
4943 */
4944 kvm_reload_remote_mmus(kvm);
4945
5304b8d3
XG
4946 kvm_zap_obsolete_pages(kvm);
4947 spin_unlock(&kvm->mmu_lock);
4948}
4949
365c8868
XG
4950static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4951{
4952 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4953}
4954
54bf36aa 4955void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
4956{
4957 /*
4958 * The very rare case: if the generation-number is round,
4959 * zap all shadow pages.
f8f55942 4960 */
54bf36aa 4961 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
ae0f5499 4962 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4963 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4964 }
f8f55942
XG
4965}
4966
70534a73
DC
4967static unsigned long
4968mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4969{
4970 struct kvm *kvm;
1495f230 4971 int nr_to_scan = sc->nr_to_scan;
70534a73 4972 unsigned long freed = 0;
3ee16c81 4973
2f303b74 4974 spin_lock(&kvm_lock);
3ee16c81
IE
4975
4976 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4977 int idx;
d98ba053 4978 LIST_HEAD(invalid_list);
3ee16c81 4979
35f2d16b
TY
4980 /*
4981 * Never scan more than sc->nr_to_scan VM instances.
4982 * Will not hit this condition practically since we do not try
4983 * to shrink more than one VM and it is very unlikely to see
4984 * !n_used_mmu_pages so many times.
4985 */
4986 if (!nr_to_scan--)
4987 break;
19526396
GN
4988 /*
4989 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4990 * here. We may skip a VM instance errorneosly, but we do not
4991 * want to shrink a VM that only started to populate its MMU
4992 * anyway.
4993 */
365c8868
XG
4994 if (!kvm->arch.n_used_mmu_pages &&
4995 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4996 continue;
19526396 4997
f656ce01 4998 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4999 spin_lock(&kvm->mmu_lock);
3ee16c81 5000
365c8868
XG
5001 if (kvm_has_zapped_obsolete_pages(kvm)) {
5002 kvm_mmu_commit_zap_page(kvm,
5003 &kvm->arch.zapped_obsolete_pages);
5004 goto unlock;
5005 }
5006
70534a73
DC
5007 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5008 freed++;
d98ba053 5009 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 5010
365c8868 5011unlock:
3ee16c81 5012 spin_unlock(&kvm->mmu_lock);
f656ce01 5013 srcu_read_unlock(&kvm->srcu, idx);
19526396 5014
70534a73
DC
5015 /*
5016 * unfair on small ones
5017 * per-vm shrinkers cry out
5018 * sadness comes quickly
5019 */
19526396
GN
5020 list_move_tail(&kvm->vm_list, &vm_list);
5021 break;
3ee16c81 5022 }
3ee16c81 5023
2f303b74 5024 spin_unlock(&kvm_lock);
70534a73 5025 return freed;
70534a73
DC
5026}
5027
5028static unsigned long
5029mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5030{
45221ab6 5031 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5032}
5033
5034static struct shrinker mmu_shrinker = {
70534a73
DC
5035 .count_objects = mmu_shrink_count,
5036 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5037 .seeks = DEFAULT_SEEKS * 10,
5038};
5039
2ddfd20e 5040static void mmu_destroy_caches(void)
b5a33a75 5041{
53c07b18
XG
5042 if (pte_list_desc_cache)
5043 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
5044 if (mmu_page_header_cache)
5045 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5046}
5047
5048int kvm_mmu_module_init(void)
5049{
53c07b18
XG
5050 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5051 sizeof(struct pte_list_desc),
20c2df83 5052 0, 0, NULL);
53c07b18 5053 if (!pte_list_desc_cache)
b5a33a75
AK
5054 goto nomem;
5055
d3d25b04
AK
5056 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5057 sizeof(struct kvm_mmu_page),
20c2df83 5058 0, 0, NULL);
d3d25b04
AK
5059 if (!mmu_page_header_cache)
5060 goto nomem;
5061
908c7f19 5062 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
5063 goto nomem;
5064
3ee16c81
IE
5065 register_shrinker(&mmu_shrinker);
5066
b5a33a75
AK
5067 return 0;
5068
5069nomem:
3ee16c81 5070 mmu_destroy_caches();
b5a33a75
AK
5071 return -ENOMEM;
5072}
5073
3ad82a7e
ZX
5074/*
5075 * Caculate mmu pages needed for kvm.
5076 */
5077unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5078{
3ad82a7e
ZX
5079 unsigned int nr_mmu_pages;
5080 unsigned int nr_pages = 0;
bc6678a3 5081 struct kvm_memslots *slots;
be6ba0f0 5082 struct kvm_memory_slot *memslot;
9da0e4d5 5083 int i;
3ad82a7e 5084
9da0e4d5
PB
5085 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5086 slots = __kvm_memslots(kvm, i);
90d83dc3 5087
9da0e4d5
PB
5088 kvm_for_each_memslot(memslot, slots)
5089 nr_pages += memslot->npages;
5090 }
3ad82a7e
ZX
5091
5092 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5093 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 5094 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5095
5096 return nr_mmu_pages;
5097}
5098
c42fffe3
XG
5099void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5100{
95f93af4 5101 kvm_mmu_unload(vcpu);
c42fffe3
XG
5102 free_mmu_pages(vcpu);
5103 mmu_free_memory_caches(vcpu);
b034cf01
XG
5104}
5105
b034cf01
XG
5106void kvm_mmu_module_exit(void)
5107{
5108 mmu_destroy_caches();
5109 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5110 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5111 mmu_audit_disable();
5112}