]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
kvm: nVMX: support EPT accessed/dirty bits
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
1767e931
PG
32#include <linux/moduleparam.h>
33#include <linux/export.h>
448353ca 34#include <linux/swap.h>
05da4558 35#include <linux/hugetlb.h>
2f333bcb 36#include <linux/compiler.h>
bc6678a3 37#include <linux/srcu.h>
5a0e3ad6 38#include <linux/slab.h>
3f07c014 39#include <linux/sched/signal.h>
bf998156 40#include <linux/uaccess.h>
114df303 41#include <linux/hash.h>
f160c7b7 42#include <linux/kern_levels.h>
6aa8b732 43
e495606d
AK
44#include <asm/page.h>
45#include <asm/cmpxchg.h>
4e542370 46#include <asm/io.h>
13673a90 47#include <asm/vmx.h>
3d0c27ad 48#include <asm/kvm_page_track.h>
6aa8b732 49
18552672
JR
50/*
51 * When setting this variable to true it enables Two-Dimensional-Paging
52 * where the hardware walks 2 page tables:
53 * 1. the guest-virtual to guest-physical
54 * 2. while doing 1. it walks guest-physical to host-physical
55 * If the hardware supports that we don't need to do shadow paging.
56 */
2f333bcb 57bool tdp_enabled = false;
18552672 58
8b1fe17c
XG
59enum {
60 AUDIT_PRE_PAGE_FAULT,
61 AUDIT_POST_PAGE_FAULT,
62 AUDIT_PRE_PTE_WRITE,
6903074c
XG
63 AUDIT_POST_PTE_WRITE,
64 AUDIT_PRE_SYNC,
65 AUDIT_POST_SYNC
8b1fe17c 66};
37a7d8b0 67
8b1fe17c 68#undef MMU_DEBUG
37a7d8b0
AK
69
70#ifdef MMU_DEBUG
fa4a2c08
PB
71static bool dbg = 0;
72module_param(dbg, bool, 0644);
37a7d8b0
AK
73
74#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
75#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 76#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 77#else
37a7d8b0
AK
78#define pgprintk(x...) do { } while (0)
79#define rmap_printk(x...) do { } while (0)
fa4a2c08 80#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 81#endif
6aa8b732 82
957ed9ef
XG
83#define PTE_PREFETCH_NUM 8
84
00763e41 85#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
86#define PT64_SECOND_AVAIL_BITS_SHIFT 52
87
6aa8b732
AK
88#define PT64_LEVEL_BITS 9
89
90#define PT64_LEVEL_SHIFT(level) \
d77c26fc 91 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 92
6aa8b732
AK
93#define PT64_INDEX(address, level)\
94 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
95
96
97#define PT32_LEVEL_BITS 10
98
99#define PT32_LEVEL_SHIFT(level) \
d77c26fc 100 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 101
e04da980
JR
102#define PT32_LVL_OFFSET_MASK(level) \
103 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
104 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
105
106#define PT32_INDEX(address, level)\
107 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
108
109
27aba766 110#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
111#define PT64_DIR_BASE_ADDR_MASK \
112 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
113#define PT64_LVL_ADDR_MASK(level) \
114 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
115 * PT64_LEVEL_BITS))) - 1))
116#define PT64_LVL_OFFSET_MASK(level) \
117 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
118 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
119
120#define PT32_BASE_ADDR_MASK PAGE_MASK
121#define PT32_DIR_BASE_ADDR_MASK \
122 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
123#define PT32_LVL_ADDR_MASK(level) \
124 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
125 * PT32_LEVEL_BITS))) - 1))
6aa8b732 126
53166229
GN
127#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
128 | shadow_x_mask | shadow_nx_mask)
6aa8b732 129
fe135d2c
AK
130#define ACC_EXEC_MASK 1
131#define ACC_WRITE_MASK PT_WRITABLE_MASK
132#define ACC_USER_MASK PT_USER_MASK
133#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
134
f160c7b7
JS
135/* The mask for the R/X bits in EPT PTEs */
136#define PT64_EPT_READABLE_MASK 0x1ull
137#define PT64_EPT_EXECUTABLE_MASK 0x4ull
138
90bb6fc5
AK
139#include <trace/events/kvm.h>
140
07420171
AK
141#define CREATE_TRACE_POINTS
142#include "mmutrace.h"
143
49fde340
XG
144#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
145#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 146
135f8c2b
AK
147#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
148
220f773a
TY
149/* make pte_list_desc fit well in cache line */
150#define PTE_LIST_EXT 3
151
53c07b18
XG
152struct pte_list_desc {
153 u64 *sptes[PTE_LIST_EXT];
154 struct pte_list_desc *more;
cd4a4e53
AK
155};
156
2d11123a
AK
157struct kvm_shadow_walk_iterator {
158 u64 addr;
159 hpa_t shadow_addr;
2d11123a 160 u64 *sptep;
dd3bfd59 161 int level;
2d11123a
AK
162 unsigned index;
163};
164
165#define for_each_shadow_entry(_vcpu, _addr, _walker) \
166 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
167 shadow_walk_okay(&(_walker)); \
168 shadow_walk_next(&(_walker)))
169
c2a2ac2b
XG
170#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
172 shadow_walk_okay(&(_walker)) && \
173 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
174 __shadow_walk_next(&(_walker), spte))
175
53c07b18 176static struct kmem_cache *pte_list_desc_cache;
d3d25b04 177static struct kmem_cache *mmu_page_header_cache;
45221ab6 178static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 179
7b52345e
SY
180static u64 __read_mostly shadow_nx_mask;
181static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
182static u64 __read_mostly shadow_user_mask;
183static u64 __read_mostly shadow_accessed_mask;
184static u64 __read_mostly shadow_dirty_mask;
ce88decf 185static u64 __read_mostly shadow_mmio_mask;
ffb128c8 186static u64 __read_mostly shadow_present_mask;
ce88decf 187
f160c7b7
JS
188/*
189 * The mask/value to distinguish a PTE that has been marked not-present for
190 * access tracking purposes.
191 * The mask would be either 0 if access tracking is disabled, or
192 * SPTE_SPECIAL_MASK|VMX_EPT_RWX_MASK if access tracking is enabled.
193 */
194static u64 __read_mostly shadow_acc_track_mask;
195static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
196
197/*
198 * The mask/shift to use for saving the original R/X bits when marking the PTE
199 * as not-present for access tracking purposes. We do not save the W bit as the
200 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
201 * restored only when a write is attempted to the page.
202 */
203static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
204 PT64_EPT_EXECUTABLE_MASK;
205static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
206
ce88decf 207static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 208static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
209
210void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
211{
312b616b 212 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
ce88decf
XG
213}
214EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
215
f160c7b7
JS
216static inline bool is_access_track_spte(u64 spte)
217{
218 /* Always false if shadow_acc_track_mask is zero. */
219 return (spte & shadow_acc_track_mask) == shadow_acc_track_value;
220}
221
f2fd125d 222/*
ee3d1570
DM
223 * the low bit of the generation number is always presumed to be zero.
224 * This disables mmio caching during memslot updates. The concept is
225 * similar to a seqcount but instead of retrying the access we just punt
226 * and ignore the cache.
227 *
228 * spte bits 3-11 are used as bits 1-9 of the generation number,
229 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 230 */
ee3d1570 231#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
232#define MMIO_SPTE_GEN_HIGH_SHIFT 52
233
ee3d1570
DM
234#define MMIO_GEN_SHIFT 20
235#define MMIO_GEN_LOW_SHIFT 10
236#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 237#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
238
239static u64 generation_mmio_spte_mask(unsigned int gen)
240{
241 u64 mask;
242
842bb26a 243 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
244
245 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
246 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
247 return mask;
248}
249
250static unsigned int get_mmio_spte_generation(u64 spte)
251{
252 unsigned int gen;
253
254 spte &= ~shadow_mmio_mask;
255
256 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
257 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
258 return gen;
259}
260
54bf36aa 261static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 262{
54bf36aa 263 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
264}
265
54bf36aa 266static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 267 unsigned access)
ce88decf 268{
54bf36aa 269 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 270 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 271
ce88decf 272 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 273 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 274
f8f55942 275 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 276 mmu_spte_set(sptep, mask);
ce88decf
XG
277}
278
279static bool is_mmio_spte(u64 spte)
280{
281 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
282}
283
284static gfn_t get_mmio_spte_gfn(u64 spte)
285{
842bb26a 286 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 287 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
288}
289
290static unsigned get_mmio_spte_access(u64 spte)
291{
842bb26a 292 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 293 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
294}
295
54bf36aa 296static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 297 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
298{
299 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 300 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
301 return true;
302 }
303
304 return false;
305}
c7addb90 306
54bf36aa 307static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 308{
089504c0
XG
309 unsigned int kvm_gen, spte_gen;
310
54bf36aa 311 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
312 spte_gen = get_mmio_spte_generation(spte);
313
314 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
315 return likely(kvm_gen == spte_gen);
f8f55942
XG
316}
317
7b52345e 318void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7
JS
319 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
320 u64 acc_track_mask)
7b52345e 321{
312b616b
JS
322 if (acc_track_mask != 0)
323 acc_track_mask |= SPTE_SPECIAL_MASK;
324
7b52345e
SY
325 shadow_user_mask = user_mask;
326 shadow_accessed_mask = accessed_mask;
327 shadow_dirty_mask = dirty_mask;
328 shadow_nx_mask = nx_mask;
329 shadow_x_mask = x_mask;
ffb128c8 330 shadow_present_mask = p_mask;
f160c7b7
JS
331 shadow_acc_track_mask = acc_track_mask;
332 WARN_ON(shadow_accessed_mask != 0 && shadow_acc_track_mask != 0);
7b52345e
SY
333}
334EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
335
f160c7b7
JS
336void kvm_mmu_clear_all_pte_masks(void)
337{
338 shadow_user_mask = 0;
339 shadow_accessed_mask = 0;
340 shadow_dirty_mask = 0;
341 shadow_nx_mask = 0;
342 shadow_x_mask = 0;
343 shadow_mmio_mask = 0;
344 shadow_present_mask = 0;
345 shadow_acc_track_mask = 0;
346}
347
6aa8b732
AK
348static int is_cpuid_PSE36(void)
349{
350 return 1;
351}
352
73b1087e
AK
353static int is_nx(struct kvm_vcpu *vcpu)
354{
f6801dff 355 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
356}
357
c7addb90
AK
358static int is_shadow_present_pte(u64 pte)
359{
f160c7b7 360 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
361}
362
05da4558
MT
363static int is_large_pte(u64 pte)
364{
365 return pte & PT_PAGE_SIZE_MASK;
366}
367
776e6633
MT
368static int is_last_spte(u64 pte, int level)
369{
370 if (level == PT_PAGE_TABLE_LEVEL)
371 return 1;
852e3c19 372 if (is_large_pte(pte))
776e6633
MT
373 return 1;
374 return 0;
375}
376
d3e328f2
JS
377static bool is_executable_pte(u64 spte)
378{
379 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
380}
381
ba049e93 382static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 383{
35149e21 384 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
385}
386
da928521
AK
387static gfn_t pse36_gfn_delta(u32 gpte)
388{
389 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
390
391 return (gpte & PT32_DIR_PSE36_MASK) << shift;
392}
393
603e0651 394#ifdef CONFIG_X86_64
d555c333 395static void __set_spte(u64 *sptep, u64 spte)
e663ee64 396{
b19ee2ff 397 WRITE_ONCE(*sptep, spte);
e663ee64
AK
398}
399
603e0651 400static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 401{
b19ee2ff 402 WRITE_ONCE(*sptep, spte);
603e0651
XG
403}
404
405static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
406{
407 return xchg(sptep, spte);
408}
c2a2ac2b
XG
409
410static u64 __get_spte_lockless(u64 *sptep)
411{
412 return ACCESS_ONCE(*sptep);
413}
a9221dd5 414#else
603e0651
XG
415union split_spte {
416 struct {
417 u32 spte_low;
418 u32 spte_high;
419 };
420 u64 spte;
421};
a9221dd5 422
c2a2ac2b
XG
423static void count_spte_clear(u64 *sptep, u64 spte)
424{
425 struct kvm_mmu_page *sp = page_header(__pa(sptep));
426
427 if (is_shadow_present_pte(spte))
428 return;
429
430 /* Ensure the spte is completely set before we increase the count */
431 smp_wmb();
432 sp->clear_spte_count++;
433}
434
603e0651
XG
435static void __set_spte(u64 *sptep, u64 spte)
436{
437 union split_spte *ssptep, sspte;
a9221dd5 438
603e0651
XG
439 ssptep = (union split_spte *)sptep;
440 sspte = (union split_spte)spte;
441
442 ssptep->spte_high = sspte.spte_high;
443
444 /*
445 * If we map the spte from nonpresent to present, We should store
446 * the high bits firstly, then set present bit, so cpu can not
447 * fetch this spte while we are setting the spte.
448 */
449 smp_wmb();
450
b19ee2ff 451 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
452}
453
603e0651
XG
454static void __update_clear_spte_fast(u64 *sptep, u64 spte)
455{
456 union split_spte *ssptep, sspte;
457
458 ssptep = (union split_spte *)sptep;
459 sspte = (union split_spte)spte;
460
b19ee2ff 461 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
462
463 /*
464 * If we map the spte from present to nonpresent, we should clear
465 * present bit firstly to avoid vcpu fetch the old high bits.
466 */
467 smp_wmb();
468
469 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 470 count_spte_clear(sptep, spte);
603e0651
XG
471}
472
473static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
474{
475 union split_spte *ssptep, sspte, orig;
476
477 ssptep = (union split_spte *)sptep;
478 sspte = (union split_spte)spte;
479
480 /* xchg acts as a barrier before the setting of the high bits */
481 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
482 orig.spte_high = ssptep->spte_high;
483 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 484 count_spte_clear(sptep, spte);
603e0651
XG
485
486 return orig.spte;
487}
c2a2ac2b
XG
488
489/*
490 * The idea using the light way get the spte on x86_32 guest is from
491 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
492 *
493 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
494 * coalesces them and we are running out of the MMU lock. Therefore
495 * we need to protect against in-progress updates of the spte.
496 *
497 * Reading the spte while an update is in progress may get the old value
498 * for the high part of the spte. The race is fine for a present->non-present
499 * change (because the high part of the spte is ignored for non-present spte),
500 * but for a present->present change we must reread the spte.
501 *
502 * All such changes are done in two steps (present->non-present and
503 * non-present->present), hence it is enough to count the number of
504 * present->non-present updates: if it changed while reading the spte,
505 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
506 */
507static u64 __get_spte_lockless(u64 *sptep)
508{
509 struct kvm_mmu_page *sp = page_header(__pa(sptep));
510 union split_spte spte, *orig = (union split_spte *)sptep;
511 int count;
512
513retry:
514 count = sp->clear_spte_count;
515 smp_rmb();
516
517 spte.spte_low = orig->spte_low;
518 smp_rmb();
519
520 spte.spte_high = orig->spte_high;
521 smp_rmb();
522
523 if (unlikely(spte.spte_low != orig->spte_low ||
524 count != sp->clear_spte_count))
525 goto retry;
526
527 return spte.spte;
528}
603e0651
XG
529#endif
530
ea4114bc 531static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 532{
feb3eb70
GN
533 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
534 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
535}
536
8672b721
XG
537static bool spte_has_volatile_bits(u64 spte)
538{
f160c7b7
JS
539 if (!is_shadow_present_pte(spte))
540 return false;
541
c7ba5b48 542 /*
6a6256f9 543 * Always atomically update spte if it can be updated
c7ba5b48
XG
544 * out of mmu-lock, it can ensure dirty bit is not lost,
545 * also, it can help us to get a stable is_writable_pte()
546 * to ensure tlb flush is not missed.
547 */
f160c7b7
JS
548 if (spte_can_locklessly_be_made_writable(spte) ||
549 is_access_track_spte(spte))
c7ba5b48
XG
550 return true;
551
f160c7b7
JS
552 if (shadow_accessed_mask) {
553 if ((spte & shadow_accessed_mask) == 0 ||
554 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
555 return true;
556 }
8672b721 557
f160c7b7 558 return false;
8672b721
XG
559}
560
83ef6c81 561static bool is_accessed_spte(u64 spte)
4132779b 562{
83ef6c81 563 return shadow_accessed_mask ? spte & shadow_accessed_mask
f160c7b7 564 : !is_access_track_spte(spte);
4132779b
XG
565}
566
83ef6c81 567static bool is_dirty_spte(u64 spte)
7e71a59b 568{
83ef6c81
JS
569 return shadow_dirty_mask ? spte & shadow_dirty_mask
570 : spte & PT_WRITABLE_MASK;
7e71a59b
KH
571}
572
1df9f2dc
XG
573/* Rules for using mmu_spte_set:
574 * Set the sptep from nonpresent to present.
575 * Note: the sptep being assigned *must* be either not present
576 * or in a state where the hardware will not attempt to update
577 * the spte.
578 */
579static void mmu_spte_set(u64 *sptep, u64 new_spte)
580{
581 WARN_ON(is_shadow_present_pte(*sptep));
582 __set_spte(sptep, new_spte);
583}
584
f39a058d
JS
585/*
586 * Update the SPTE (excluding the PFN), but do not track changes in its
587 * accessed/dirty status.
1df9f2dc 588 */
f39a058d 589static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 590{
c7ba5b48 591 u64 old_spte = *sptep;
4132779b 592
afd28fe1 593 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 594
6e7d0354
XG
595 if (!is_shadow_present_pte(old_spte)) {
596 mmu_spte_set(sptep, new_spte);
f39a058d 597 return old_spte;
6e7d0354 598 }
4132779b 599
c7ba5b48 600 if (!spte_has_volatile_bits(old_spte))
603e0651 601 __update_clear_spte_fast(sptep, new_spte);
4132779b 602 else
603e0651 603 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 604
83ef6c81
JS
605 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
606
f39a058d
JS
607 return old_spte;
608}
609
610/* Rules for using mmu_spte_update:
611 * Update the state bits, it means the mapped pfn is not changed.
612 *
613 * Whenever we overwrite a writable spte with a read-only one we
614 * should flush remote TLBs. Otherwise rmap_write_protect
615 * will find a read-only spte, even though the writable spte
616 * might be cached on a CPU's TLB, the return value indicates this
617 * case.
618 *
619 * Returns true if the TLB needs to be flushed
620 */
621static bool mmu_spte_update(u64 *sptep, u64 new_spte)
622{
623 bool flush = false;
624 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
625
626 if (!is_shadow_present_pte(old_spte))
627 return false;
628
c7ba5b48
XG
629 /*
630 * For the spte updated out of mmu-lock is safe, since
6a6256f9 631 * we always atomically update it, see the comments in
c7ba5b48
XG
632 * spte_has_volatile_bits().
633 */
ea4114bc 634 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 635 !is_writable_pte(new_spte))
83ef6c81 636 flush = true;
4132779b 637
7e71a59b 638 /*
83ef6c81 639 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
640 * to guarantee consistency between TLB and page tables.
641 */
7e71a59b 642
83ef6c81
JS
643 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
644 flush = true;
4132779b 645 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
646 }
647
648 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
649 flush = true;
4132779b 650 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 651 }
6e7d0354 652
83ef6c81 653 return flush;
b79b93f9
AK
654}
655
1df9f2dc
XG
656/*
657 * Rules for using mmu_spte_clear_track_bits:
658 * It sets the sptep from present to nonpresent, and track the
659 * state bits, it is used to clear the last level sptep.
83ef6c81 660 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
661 */
662static int mmu_spte_clear_track_bits(u64 *sptep)
663{
ba049e93 664 kvm_pfn_t pfn;
1df9f2dc
XG
665 u64 old_spte = *sptep;
666
667 if (!spte_has_volatile_bits(old_spte))
603e0651 668 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 669 else
603e0651 670 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 671
afd28fe1 672 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
673 return 0;
674
675 pfn = spte_to_pfn(old_spte);
86fde74c
XG
676
677 /*
678 * KVM does not hold the refcount of the page used by
679 * kvm mmu, before reclaiming the page, we should
680 * unmap it from mmu first.
681 */
bf4bea8e 682 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 683
83ef6c81 684 if (is_accessed_spte(old_spte))
1df9f2dc 685 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
686
687 if (is_dirty_spte(old_spte))
1df9f2dc 688 kvm_set_pfn_dirty(pfn);
83ef6c81 689
1df9f2dc
XG
690 return 1;
691}
692
693/*
694 * Rules for using mmu_spte_clear_no_track:
695 * Directly clear spte without caring the state bits of sptep,
696 * it is used to set the upper level spte.
697 */
698static void mmu_spte_clear_no_track(u64 *sptep)
699{
603e0651 700 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
701}
702
c2a2ac2b
XG
703static u64 mmu_spte_get_lockless(u64 *sptep)
704{
705 return __get_spte_lockless(sptep);
706}
707
f160c7b7
JS
708static u64 mark_spte_for_access_track(u64 spte)
709{
710 if (shadow_accessed_mask != 0)
711 return spte & ~shadow_accessed_mask;
712
713 if (shadow_acc_track_mask == 0 || is_access_track_spte(spte))
714 return spte;
715
716 /*
20d65236
JS
717 * Making an Access Tracking PTE will result in removal of write access
718 * from the PTE. So, verify that we will be able to restore the write
719 * access in the fast page fault path later on.
f160c7b7
JS
720 */
721 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
722 !spte_can_locklessly_be_made_writable(spte),
723 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
724
725 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
726 shadow_acc_track_saved_bits_shift),
727 "kvm: Access Tracking saved bit locations are not zero\n");
728
729 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
730 shadow_acc_track_saved_bits_shift;
731 spte &= ~shadow_acc_track_mask;
732 spte |= shadow_acc_track_value;
733
734 return spte;
735}
736
d3e328f2
JS
737/* Restore an acc-track PTE back to a regular PTE */
738static u64 restore_acc_track_spte(u64 spte)
739{
740 u64 new_spte = spte;
741 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
742 & shadow_acc_track_saved_bits_mask;
743
744 WARN_ON_ONCE(!is_access_track_spte(spte));
745
746 new_spte &= ~shadow_acc_track_mask;
747 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
748 shadow_acc_track_saved_bits_shift);
749 new_spte |= saved_bits;
750
751 return new_spte;
752}
753
f160c7b7
JS
754/* Returns the Accessed status of the PTE and resets it at the same time. */
755static bool mmu_spte_age(u64 *sptep)
756{
757 u64 spte = mmu_spte_get_lockless(sptep);
758
759 if (!is_accessed_spte(spte))
760 return false;
761
762 if (shadow_accessed_mask) {
763 clear_bit((ffs(shadow_accessed_mask) - 1),
764 (unsigned long *)sptep);
765 } else {
766 /*
767 * Capture the dirty status of the page, so that it doesn't get
768 * lost when the SPTE is marked for access tracking.
769 */
770 if (is_writable_pte(spte))
771 kvm_set_pfn_dirty(spte_to_pfn(spte));
772
773 spte = mark_spte_for_access_track(spte);
774 mmu_spte_update_no_track(sptep, spte);
775 }
776
777 return true;
778}
779
c2a2ac2b
XG
780static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
781{
c142786c
AK
782 /*
783 * Prevent page table teardown by making any free-er wait during
784 * kvm_flush_remote_tlbs() IPI to all active vcpus.
785 */
786 local_irq_disable();
36ca7e0a 787
c142786c
AK
788 /*
789 * Make sure a following spte read is not reordered ahead of the write
790 * to vcpu->mode.
791 */
36ca7e0a 792 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
793}
794
795static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
796{
c142786c
AK
797 /*
798 * Make sure the write to vcpu->mode is not reordered in front of
799 * reads to sptes. If it does, kvm_commit_zap_page() can see us
800 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
801 */
36ca7e0a 802 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 803 local_irq_enable();
c2a2ac2b
XG
804}
805
e2dec939 806static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 807 struct kmem_cache *base_cache, int min)
714b93da
AK
808{
809 void *obj;
810
811 if (cache->nobjs >= min)
e2dec939 812 return 0;
714b93da 813 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 814 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 815 if (!obj)
e2dec939 816 return -ENOMEM;
714b93da
AK
817 cache->objects[cache->nobjs++] = obj;
818 }
e2dec939 819 return 0;
714b93da
AK
820}
821
f759e2b4
XG
822static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
823{
824 return cache->nobjs;
825}
826
e8ad9a70
XG
827static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
828 struct kmem_cache *cache)
714b93da
AK
829{
830 while (mc->nobjs)
e8ad9a70 831 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
832}
833
c1158e63 834static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 835 int min)
c1158e63 836{
842f22ed 837 void *page;
c1158e63
AK
838
839 if (cache->nobjs >= min)
840 return 0;
841 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 842 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
843 if (!page)
844 return -ENOMEM;
842f22ed 845 cache->objects[cache->nobjs++] = page;
c1158e63
AK
846 }
847 return 0;
848}
849
850static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
851{
852 while (mc->nobjs)
c4d198d5 853 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
854}
855
2e3e5882 856static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 857{
e2dec939
AK
858 int r;
859
53c07b18 860 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 861 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
862 if (r)
863 goto out;
ad312c7c 864 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
865 if (r)
866 goto out;
ad312c7c 867 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 868 mmu_page_header_cache, 4);
e2dec939
AK
869out:
870 return r;
714b93da
AK
871}
872
873static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
874{
53c07b18
XG
875 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
876 pte_list_desc_cache);
ad312c7c 877 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
878 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
879 mmu_page_header_cache);
714b93da
AK
880}
881
80feb89a 882static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
883{
884 void *p;
885
886 BUG_ON(!mc->nobjs);
887 p = mc->objects[--mc->nobjs];
714b93da
AK
888 return p;
889}
890
53c07b18 891static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 892{
80feb89a 893 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
894}
895
53c07b18 896static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 897{
53c07b18 898 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
899}
900
2032a93d
LJ
901static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
902{
903 if (!sp->role.direct)
904 return sp->gfns[index];
905
906 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
907}
908
909static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
910{
911 if (sp->role.direct)
912 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
913 else
914 sp->gfns[index] = gfn;
915}
916
05da4558 917/*
d4dbf470
TY
918 * Return the pointer to the large page information for a given gfn,
919 * handling slots that are not large page aligned.
05da4558 920 */
d4dbf470
TY
921static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
922 struct kvm_memory_slot *slot,
923 int level)
05da4558
MT
924{
925 unsigned long idx;
926
fb03cb6f 927 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 928 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
929}
930
547ffaed
XG
931static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
932 gfn_t gfn, int count)
933{
934 struct kvm_lpage_info *linfo;
935 int i;
936
937 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
938 linfo = lpage_info_slot(gfn, slot, i);
939 linfo->disallow_lpage += count;
940 WARN_ON(linfo->disallow_lpage < 0);
941 }
942}
943
944void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
945{
946 update_gfn_disallow_lpage_count(slot, gfn, 1);
947}
948
949void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
950{
951 update_gfn_disallow_lpage_count(slot, gfn, -1);
952}
953
3ed1a478 954static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 955{
699023e2 956 struct kvm_memslots *slots;
d25797b2 957 struct kvm_memory_slot *slot;
3ed1a478 958 gfn_t gfn;
05da4558 959
56ca57f9 960 kvm->arch.indirect_shadow_pages++;
3ed1a478 961 gfn = sp->gfn;
699023e2
PB
962 slots = kvm_memslots_for_spte_role(kvm, sp->role);
963 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
964
965 /* the non-leaf shadow pages are keeping readonly. */
966 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
967 return kvm_slot_page_track_add_page(kvm, slot, gfn,
968 KVM_PAGE_TRACK_WRITE);
969
547ffaed 970 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
971}
972
3ed1a478 973static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 974{
699023e2 975 struct kvm_memslots *slots;
d25797b2 976 struct kvm_memory_slot *slot;
3ed1a478 977 gfn_t gfn;
05da4558 978
56ca57f9 979 kvm->arch.indirect_shadow_pages--;
3ed1a478 980 gfn = sp->gfn;
699023e2
PB
981 slots = kvm_memslots_for_spte_role(kvm, sp->role);
982 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
983 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
984 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
985 KVM_PAGE_TRACK_WRITE);
986
547ffaed 987 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
988}
989
92f94f1e
XG
990static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
991 struct kvm_memory_slot *slot)
05da4558 992{
d4dbf470 993 struct kvm_lpage_info *linfo;
05da4558
MT
994
995 if (slot) {
d4dbf470 996 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 997 return !!linfo->disallow_lpage;
05da4558
MT
998 }
999
92f94f1e 1000 return true;
05da4558
MT
1001}
1002
92f94f1e
XG
1003static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1004 int level)
5225fdf8
TY
1005{
1006 struct kvm_memory_slot *slot;
1007
1008 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 1009 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
1010}
1011
d25797b2 1012static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 1013{
8f0b1ab6 1014 unsigned long page_size;
d25797b2 1015 int i, ret = 0;
05da4558 1016
8f0b1ab6 1017 page_size = kvm_host_page_size(kvm, gfn);
05da4558 1018
8a3d08f1 1019 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
1020 if (page_size >= KVM_HPAGE_SIZE(i))
1021 ret = i;
1022 else
1023 break;
1024 }
1025
4c2155ce 1026 return ret;
05da4558
MT
1027}
1028
d8aacf5d
TY
1029static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1030 bool no_dirty_log)
1031{
1032 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1033 return false;
1034 if (no_dirty_log && slot->dirty_bitmap)
1035 return false;
1036
1037 return true;
1038}
1039
5d163b1c
XG
1040static struct kvm_memory_slot *
1041gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1042 bool no_dirty_log)
05da4558
MT
1043{
1044 struct kvm_memory_slot *slot;
5d163b1c 1045
54bf36aa 1046 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 1047 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
1048 slot = NULL;
1049
1050 return slot;
1051}
1052
fd136902
TY
1053static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1054 bool *force_pt_level)
936a5fe6
AA
1055{
1056 int host_level, level, max_level;
d8aacf5d
TY
1057 struct kvm_memory_slot *slot;
1058
8c85ac1c
TY
1059 if (unlikely(*force_pt_level))
1060 return PT_PAGE_TABLE_LEVEL;
05da4558 1061
8c85ac1c
TY
1062 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1063 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
1064 if (unlikely(*force_pt_level))
1065 return PT_PAGE_TABLE_LEVEL;
1066
d25797b2
JR
1067 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1068
1069 if (host_level == PT_PAGE_TABLE_LEVEL)
1070 return host_level;
1071
55dd98c3 1072 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
1073
1074 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 1075 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 1076 break;
d25797b2
JR
1077
1078 return level - 1;
05da4558
MT
1079}
1080
290fc38d 1081/*
018aabb5 1082 * About rmap_head encoding:
cd4a4e53 1083 *
018aabb5
TY
1084 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1085 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1086 * pte_list_desc containing more mappings.
018aabb5
TY
1087 */
1088
1089/*
1090 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1091 */
53c07b18 1092static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1093 struct kvm_rmap_head *rmap_head)
cd4a4e53 1094{
53c07b18 1095 struct pte_list_desc *desc;
53a27b39 1096 int i, count = 0;
cd4a4e53 1097
018aabb5 1098 if (!rmap_head->val) {
53c07b18 1099 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1100 rmap_head->val = (unsigned long)spte;
1101 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1102 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1103 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1104 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1105 desc->sptes[1] = spte;
018aabb5 1106 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1107 ++count;
cd4a4e53 1108 } else {
53c07b18 1109 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1110 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1111 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1112 desc = desc->more;
53c07b18 1113 count += PTE_LIST_EXT;
53a27b39 1114 }
53c07b18
XG
1115 if (desc->sptes[PTE_LIST_EXT-1]) {
1116 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1117 desc = desc->more;
1118 }
d555c333 1119 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1120 ++count;
d555c333 1121 desc->sptes[i] = spte;
cd4a4e53 1122 }
53a27b39 1123 return count;
cd4a4e53
AK
1124}
1125
53c07b18 1126static void
018aabb5
TY
1127pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1128 struct pte_list_desc *desc, int i,
1129 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1130{
1131 int j;
1132
53c07b18 1133 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1134 ;
d555c333
AK
1135 desc->sptes[i] = desc->sptes[j];
1136 desc->sptes[j] = NULL;
cd4a4e53
AK
1137 if (j != 0)
1138 return;
1139 if (!prev_desc && !desc->more)
018aabb5 1140 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
1141 else
1142 if (prev_desc)
1143 prev_desc->more = desc->more;
1144 else
018aabb5 1145 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1146 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1147}
1148
018aabb5 1149static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1150{
53c07b18
XG
1151 struct pte_list_desc *desc;
1152 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1153 int i;
1154
018aabb5 1155 if (!rmap_head->val) {
53c07b18 1156 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 1157 BUG();
018aabb5 1158 } else if (!(rmap_head->val & 1)) {
53c07b18 1159 rmap_printk("pte_list_remove: %p 1->0\n", spte);
018aabb5 1160 if ((u64 *)rmap_head->val != spte) {
53c07b18 1161 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
1162 BUG();
1163 }
018aabb5 1164 rmap_head->val = 0;
cd4a4e53 1165 } else {
53c07b18 1166 rmap_printk("pte_list_remove: %p many->many\n", spte);
018aabb5 1167 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1168 prev_desc = NULL;
1169 while (desc) {
018aabb5 1170 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1171 if (desc->sptes[i] == spte) {
018aabb5
TY
1172 pte_list_desc_remove_entry(rmap_head,
1173 desc, i, prev_desc);
cd4a4e53
AK
1174 return;
1175 }
018aabb5 1176 }
cd4a4e53
AK
1177 prev_desc = desc;
1178 desc = desc->more;
1179 }
53c07b18 1180 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1181 BUG();
1182 }
1183}
1184
018aabb5
TY
1185static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1186 struct kvm_memory_slot *slot)
53c07b18 1187{
77d11309 1188 unsigned long idx;
53c07b18 1189
77d11309 1190 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1191 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1192}
1193
018aabb5
TY
1194static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1195 struct kvm_mmu_page *sp)
9b9b1492 1196{
699023e2 1197 struct kvm_memslots *slots;
9b9b1492
TY
1198 struct kvm_memory_slot *slot;
1199
699023e2
PB
1200 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1201 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1202 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1203}
1204
f759e2b4
XG
1205static bool rmap_can_add(struct kvm_vcpu *vcpu)
1206{
1207 struct kvm_mmu_memory_cache *cache;
1208
1209 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1210 return mmu_memory_cache_free_objects(cache);
1211}
1212
53c07b18
XG
1213static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1214{
1215 struct kvm_mmu_page *sp;
018aabb5 1216 struct kvm_rmap_head *rmap_head;
53c07b18 1217
53c07b18
XG
1218 sp = page_header(__pa(spte));
1219 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1220 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1221 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1222}
1223
53c07b18
XG
1224static void rmap_remove(struct kvm *kvm, u64 *spte)
1225{
1226 struct kvm_mmu_page *sp;
1227 gfn_t gfn;
018aabb5 1228 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1229
1230 sp = page_header(__pa(spte));
1231 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5
TY
1232 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1233 pte_list_remove(spte, rmap_head);
53c07b18
XG
1234}
1235
1e3f42f0
TY
1236/*
1237 * Used by the following functions to iterate through the sptes linked by a
1238 * rmap. All fields are private and not assumed to be used outside.
1239 */
1240struct rmap_iterator {
1241 /* private fields */
1242 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1243 int pos; /* index of the sptep */
1244};
1245
1246/*
1247 * Iteration must be started by this function. This should also be used after
1248 * removing/dropping sptes from the rmap link because in such cases the
1249 * information in the itererator may not be valid.
1250 *
1251 * Returns sptep if found, NULL otherwise.
1252 */
018aabb5
TY
1253static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1254 struct rmap_iterator *iter)
1e3f42f0 1255{
77fbbbd2
TY
1256 u64 *sptep;
1257
018aabb5 1258 if (!rmap_head->val)
1e3f42f0
TY
1259 return NULL;
1260
018aabb5 1261 if (!(rmap_head->val & 1)) {
1e3f42f0 1262 iter->desc = NULL;
77fbbbd2
TY
1263 sptep = (u64 *)rmap_head->val;
1264 goto out;
1e3f42f0
TY
1265 }
1266
018aabb5 1267 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1268 iter->pos = 0;
77fbbbd2
TY
1269 sptep = iter->desc->sptes[iter->pos];
1270out:
1271 BUG_ON(!is_shadow_present_pte(*sptep));
1272 return sptep;
1e3f42f0
TY
1273}
1274
1275/*
1276 * Must be used with a valid iterator: e.g. after rmap_get_first().
1277 *
1278 * Returns sptep if found, NULL otherwise.
1279 */
1280static u64 *rmap_get_next(struct rmap_iterator *iter)
1281{
77fbbbd2
TY
1282 u64 *sptep;
1283
1e3f42f0
TY
1284 if (iter->desc) {
1285 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1286 ++iter->pos;
1287 sptep = iter->desc->sptes[iter->pos];
1288 if (sptep)
77fbbbd2 1289 goto out;
1e3f42f0
TY
1290 }
1291
1292 iter->desc = iter->desc->more;
1293
1294 if (iter->desc) {
1295 iter->pos = 0;
1296 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1297 sptep = iter->desc->sptes[iter->pos];
1298 goto out;
1e3f42f0
TY
1299 }
1300 }
1301
1302 return NULL;
77fbbbd2
TY
1303out:
1304 BUG_ON(!is_shadow_present_pte(*sptep));
1305 return sptep;
1e3f42f0
TY
1306}
1307
018aabb5
TY
1308#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1309 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1310 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1311
c3707958 1312static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1313{
1df9f2dc 1314 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1315 rmap_remove(kvm, sptep);
be38d276
AK
1316}
1317
8e22f955
XG
1318
1319static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1320{
1321 if (is_large_pte(*sptep)) {
1322 WARN_ON(page_header(__pa(sptep))->role.level ==
1323 PT_PAGE_TABLE_LEVEL);
1324 drop_spte(kvm, sptep);
1325 --kvm->stat.lpages;
1326 return true;
1327 }
1328
1329 return false;
1330}
1331
1332static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1333{
1334 if (__drop_large_spte(vcpu->kvm, sptep))
1335 kvm_flush_remote_tlbs(vcpu->kvm);
1336}
1337
1338/*
49fde340 1339 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1340 * spte write-protection is caused by protecting shadow page table.
49fde340 1341 *
b4619660 1342 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1343 * protection:
1344 * - for dirty logging, the spte can be set to writable at anytime if
1345 * its dirty bitmap is properly set.
1346 * - for spte protection, the spte can be writable only after unsync-ing
1347 * shadow page.
8e22f955 1348 *
c126d94f 1349 * Return true if tlb need be flushed.
8e22f955 1350 */
c4f138b4 1351static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1352{
1353 u64 spte = *sptep;
1354
49fde340 1355 if (!is_writable_pte(spte) &&
ea4114bc 1356 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1357 return false;
1358
1359 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1360
49fde340
XG
1361 if (pt_protect)
1362 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1363 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1364
c126d94f 1365 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1366}
1367
018aabb5
TY
1368static bool __rmap_write_protect(struct kvm *kvm,
1369 struct kvm_rmap_head *rmap_head,
245c3912 1370 bool pt_protect)
98348e95 1371{
1e3f42f0
TY
1372 u64 *sptep;
1373 struct rmap_iterator iter;
d13bc5b5 1374 bool flush = false;
374cbac0 1375
018aabb5 1376 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1377 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1378
d13bc5b5 1379 return flush;
a0ed4607
TY
1380}
1381
c4f138b4 1382static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1383{
1384 u64 spte = *sptep;
1385
1386 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1387
1388 spte &= ~shadow_dirty_mask;
1389
1390 return mmu_spte_update(sptep, spte);
1391}
1392
018aabb5 1393static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1394{
1395 u64 *sptep;
1396 struct rmap_iterator iter;
1397 bool flush = false;
1398
018aabb5 1399 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1400 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1401
1402 return flush;
1403}
1404
c4f138b4 1405static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1406{
1407 u64 spte = *sptep;
1408
1409 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1410
1411 spte |= shadow_dirty_mask;
1412
1413 return mmu_spte_update(sptep, spte);
1414}
1415
018aabb5 1416static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1417{
1418 u64 *sptep;
1419 struct rmap_iterator iter;
1420 bool flush = false;
1421
018aabb5 1422 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1423 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1424
1425 return flush;
1426}
1427
5dc99b23 1428/**
3b0f1d01 1429 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1430 * @kvm: kvm instance
1431 * @slot: slot to protect
1432 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1433 * @mask: indicates which pages we should protect
1434 *
1435 * Used when we do not need to care about huge page mappings: e.g. during dirty
1436 * logging we do not have any such mappings.
1437 */
3b0f1d01 1438static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1439 struct kvm_memory_slot *slot,
1440 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1441{
018aabb5 1442 struct kvm_rmap_head *rmap_head;
a0ed4607 1443
5dc99b23 1444 while (mask) {
018aabb5
TY
1445 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1446 PT_PAGE_TABLE_LEVEL, slot);
1447 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1448
5dc99b23
TY
1449 /* clear the first set bit */
1450 mask &= mask - 1;
1451 }
374cbac0
AK
1452}
1453
f4b4b180
KH
1454/**
1455 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1456 * @kvm: kvm instance
1457 * @slot: slot to clear D-bit
1458 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1459 * @mask: indicates which pages we should clear D-bit
1460 *
1461 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1462 */
1463void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1464 struct kvm_memory_slot *slot,
1465 gfn_t gfn_offset, unsigned long mask)
1466{
018aabb5 1467 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1468
1469 while (mask) {
018aabb5
TY
1470 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1471 PT_PAGE_TABLE_LEVEL, slot);
1472 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1473
1474 /* clear the first set bit */
1475 mask &= mask - 1;
1476 }
1477}
1478EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1479
3b0f1d01
KH
1480/**
1481 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1482 * PT level pages.
1483 *
1484 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1485 * enable dirty logging for them.
1486 *
1487 * Used when we do not need to care about huge page mappings: e.g. during dirty
1488 * logging we do not have any such mappings.
1489 */
1490void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1491 struct kvm_memory_slot *slot,
1492 gfn_t gfn_offset, unsigned long mask)
1493{
88178fd4
KH
1494 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1495 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1496 mask);
1497 else
1498 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1499}
1500
aeecee2e
XG
1501bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1502 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1503{
018aabb5 1504 struct kvm_rmap_head *rmap_head;
5dc99b23 1505 int i;
2f84569f 1506 bool write_protected = false;
95d4c16c 1507
8a3d08f1 1508 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1509 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1510 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1511 }
1512
1513 return write_protected;
95d4c16c
TY
1514}
1515
aeecee2e
XG
1516static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1517{
1518 struct kvm_memory_slot *slot;
1519
1520 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1521 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1522}
1523
018aabb5 1524static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1525{
1e3f42f0
TY
1526 u64 *sptep;
1527 struct rmap_iterator iter;
6a49f85c 1528 bool flush = false;
e930bffe 1529
018aabb5 1530 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1531 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1532
1533 drop_spte(kvm, sptep);
6a49f85c 1534 flush = true;
e930bffe 1535 }
1e3f42f0 1536
6a49f85c
XG
1537 return flush;
1538}
1539
018aabb5 1540static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1541 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1542 unsigned long data)
1543{
018aabb5 1544 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1545}
1546
018aabb5 1547static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1548 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1549 unsigned long data)
3da0dd43 1550{
1e3f42f0
TY
1551 u64 *sptep;
1552 struct rmap_iterator iter;
3da0dd43 1553 int need_flush = 0;
1e3f42f0 1554 u64 new_spte;
3da0dd43 1555 pte_t *ptep = (pte_t *)data;
ba049e93 1556 kvm_pfn_t new_pfn;
3da0dd43
IE
1557
1558 WARN_ON(pte_huge(*ptep));
1559 new_pfn = pte_pfn(*ptep);
1e3f42f0 1560
0d536790 1561restart:
018aabb5 1562 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1563 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1564 sptep, *sptep, gfn, level);
1e3f42f0 1565
3da0dd43 1566 need_flush = 1;
1e3f42f0 1567
3da0dd43 1568 if (pte_write(*ptep)) {
1e3f42f0 1569 drop_spte(kvm, sptep);
0d536790 1570 goto restart;
3da0dd43 1571 } else {
1e3f42f0 1572 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1573 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1574
1575 new_spte &= ~PT_WRITABLE_MASK;
1576 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1577
1578 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1579
1580 mmu_spte_clear_track_bits(sptep);
1581 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1582 }
1583 }
1e3f42f0 1584
3da0dd43
IE
1585 if (need_flush)
1586 kvm_flush_remote_tlbs(kvm);
1587
1588 return 0;
1589}
1590
6ce1f4e2
XG
1591struct slot_rmap_walk_iterator {
1592 /* input fields. */
1593 struct kvm_memory_slot *slot;
1594 gfn_t start_gfn;
1595 gfn_t end_gfn;
1596 int start_level;
1597 int end_level;
1598
1599 /* output fields. */
1600 gfn_t gfn;
018aabb5 1601 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1602 int level;
1603
1604 /* private field. */
018aabb5 1605 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1606};
1607
1608static void
1609rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1610{
1611 iterator->level = level;
1612 iterator->gfn = iterator->start_gfn;
1613 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1614 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1615 iterator->slot);
1616}
1617
1618static void
1619slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1620 struct kvm_memory_slot *slot, int start_level,
1621 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1622{
1623 iterator->slot = slot;
1624 iterator->start_level = start_level;
1625 iterator->end_level = end_level;
1626 iterator->start_gfn = start_gfn;
1627 iterator->end_gfn = end_gfn;
1628
1629 rmap_walk_init_level(iterator, iterator->start_level);
1630}
1631
1632static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1633{
1634 return !!iterator->rmap;
1635}
1636
1637static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1638{
1639 if (++iterator->rmap <= iterator->end_rmap) {
1640 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1641 return;
1642 }
1643
1644 if (++iterator->level > iterator->end_level) {
1645 iterator->rmap = NULL;
1646 return;
1647 }
1648
1649 rmap_walk_init_level(iterator, iterator->level);
1650}
1651
1652#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1653 _start_gfn, _end_gfn, _iter_) \
1654 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1655 _end_level_, _start_gfn, _end_gfn); \
1656 slot_rmap_walk_okay(_iter_); \
1657 slot_rmap_walk_next(_iter_))
1658
84504ef3
TY
1659static int kvm_handle_hva_range(struct kvm *kvm,
1660 unsigned long start,
1661 unsigned long end,
1662 unsigned long data,
1663 int (*handler)(struct kvm *kvm,
018aabb5 1664 struct kvm_rmap_head *rmap_head,
048212d0 1665 struct kvm_memory_slot *slot,
8a9522d2
ALC
1666 gfn_t gfn,
1667 int level,
84504ef3 1668 unsigned long data))
e930bffe 1669{
bc6678a3 1670 struct kvm_memslots *slots;
be6ba0f0 1671 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1672 struct slot_rmap_walk_iterator iterator;
1673 int ret = 0;
9da0e4d5 1674 int i;
bc6678a3 1675
9da0e4d5
PB
1676 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1677 slots = __kvm_memslots(kvm, i);
1678 kvm_for_each_memslot(memslot, slots) {
1679 unsigned long hva_start, hva_end;
1680 gfn_t gfn_start, gfn_end;
e930bffe 1681
9da0e4d5
PB
1682 hva_start = max(start, memslot->userspace_addr);
1683 hva_end = min(end, memslot->userspace_addr +
1684 (memslot->npages << PAGE_SHIFT));
1685 if (hva_start >= hva_end)
1686 continue;
1687 /*
1688 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1689 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1690 */
1691 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1692 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1693
1694 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1695 PT_MAX_HUGEPAGE_LEVEL,
1696 gfn_start, gfn_end - 1,
1697 &iterator)
1698 ret |= handler(kvm, iterator.rmap, memslot,
1699 iterator.gfn, iterator.level, data);
1700 }
e930bffe
AA
1701 }
1702
f395302e 1703 return ret;
e930bffe
AA
1704}
1705
84504ef3
TY
1706static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1707 unsigned long data,
018aabb5
TY
1708 int (*handler)(struct kvm *kvm,
1709 struct kvm_rmap_head *rmap_head,
048212d0 1710 struct kvm_memory_slot *slot,
8a9522d2 1711 gfn_t gfn, int level,
84504ef3
TY
1712 unsigned long data))
1713{
1714 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1715}
1716
1717int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1718{
3da0dd43
IE
1719 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1720}
1721
b3ae2096
TY
1722int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1723{
1724 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1725}
1726
3da0dd43
IE
1727void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1728{
8a8365c5 1729 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1730}
1731
018aabb5 1732static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1733 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1734 unsigned long data)
e930bffe 1735{
1e3f42f0 1736 u64 *sptep;
79f702a6 1737 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1738 int young = 0;
1739
f160c7b7
JS
1740 for_each_rmap_spte(rmap_head, &iter, sptep)
1741 young |= mmu_spte_age(sptep);
0d536790 1742
8a9522d2 1743 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1744 return young;
1745}
1746
018aabb5 1747static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1748 struct kvm_memory_slot *slot, gfn_t gfn,
1749 int level, unsigned long data)
8ee53820 1750{
1e3f42f0
TY
1751 u64 *sptep;
1752 struct rmap_iterator iter;
8ee53820
AA
1753
1754 /*
f160c7b7
JS
1755 * If there's no access bit in the secondary pte set by the hardware and
1756 * fast access tracking is also not enabled, it's up to gup-fast/gup to
1757 * set the access bit in the primary pte or in the page structure.
8ee53820 1758 */
f160c7b7 1759 if (!shadow_accessed_mask && !shadow_acc_track_mask)
8ee53820
AA
1760 goto out;
1761
83ef6c81
JS
1762 for_each_rmap_spte(rmap_head, &iter, sptep)
1763 if (is_accessed_spte(*sptep))
1764 return 1;
8ee53820 1765out:
83ef6c81 1766 return 0;
8ee53820
AA
1767}
1768
53a27b39
MT
1769#define RMAP_RECYCLE_THRESHOLD 1000
1770
852e3c19 1771static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1772{
018aabb5 1773 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1774 struct kvm_mmu_page *sp;
1775
1776 sp = page_header(__pa(spte));
53a27b39 1777
018aabb5 1778 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1779
018aabb5 1780 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1781 kvm_flush_remote_tlbs(vcpu->kvm);
1782}
1783
57128468 1784int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1785{
57128468
ALC
1786 /*
1787 * In case of absence of EPT Access and Dirty Bits supports,
1788 * emulate the accessed bit for EPT, by checking if this page has
1789 * an EPT mapping, and clearing it if it does. On the next access,
1790 * a new EPT mapping will be established.
1791 * This has some overhead, but not as much as the cost of swapping
1792 * out actively used pages or breaking up actively used hugepages.
1793 */
f160c7b7 1794 if (!shadow_accessed_mask && !shadow_acc_track_mask)
57128468
ALC
1795 return kvm_handle_hva_range(kvm, start, end, 0,
1796 kvm_unmap_rmapp);
57128468
ALC
1797
1798 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1799}
1800
8ee53820
AA
1801int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1802{
1803 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1804}
1805
d6c69ee9 1806#ifdef MMU_DEBUG
47ad8e68 1807static int is_empty_shadow_page(u64 *spt)
6aa8b732 1808{
139bdb2d
AK
1809 u64 *pos;
1810 u64 *end;
1811
47ad8e68 1812 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1813 if (is_shadow_present_pte(*pos)) {
b8688d51 1814 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1815 pos, *pos);
6aa8b732 1816 return 0;
139bdb2d 1817 }
6aa8b732
AK
1818 return 1;
1819}
d6c69ee9 1820#endif
6aa8b732 1821
45221ab6
DH
1822/*
1823 * This value is the sum of all of the kvm instances's
1824 * kvm->arch.n_used_mmu_pages values. We need a global,
1825 * aggregate version in order to make the slab shrinker
1826 * faster
1827 */
1828static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1829{
1830 kvm->arch.n_used_mmu_pages += nr;
1831 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1832}
1833
834be0d8 1834static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1835{
fa4a2c08 1836 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1837 hlist_del(&sp->hash_link);
bd4c86ea
XG
1838 list_del(&sp->link);
1839 free_page((unsigned long)sp->spt);
834be0d8
GN
1840 if (!sp->role.direct)
1841 free_page((unsigned long)sp->gfns);
e8ad9a70 1842 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1843}
1844
cea0f0e7
AK
1845static unsigned kvm_page_table_hashfn(gfn_t gfn)
1846{
114df303 1847 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1848}
1849
714b93da 1850static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1851 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1852{
cea0f0e7
AK
1853 if (!parent_pte)
1854 return;
cea0f0e7 1855
67052b35 1856 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1857}
1858
4db35314 1859static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1860 u64 *parent_pte)
1861{
67052b35 1862 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1863}
1864
bcdd9a93
XG
1865static void drop_parent_pte(struct kvm_mmu_page *sp,
1866 u64 *parent_pte)
1867{
1868 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1869 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1870}
1871
47005792 1872static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1873{
67052b35 1874 struct kvm_mmu_page *sp;
7ddca7e4 1875
80feb89a
TY
1876 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1877 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1878 if (!direct)
80feb89a 1879 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1880 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1881
1882 /*
1883 * The active_mmu_pages list is the FIFO list, do not move the
1884 * page until it is zapped. kvm_zap_obsolete_pages depends on
1885 * this feature. See the comments in kvm_zap_obsolete_pages().
1886 */
67052b35 1887 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1888 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1889 return sp;
ad8cfbe3
MT
1890}
1891
67052b35 1892static void mark_unsync(u64 *spte);
1047df1f 1893static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1894{
74c4e63a
TY
1895 u64 *sptep;
1896 struct rmap_iterator iter;
1897
1898 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1899 mark_unsync(sptep);
1900 }
0074ff63
MT
1901}
1902
67052b35 1903static void mark_unsync(u64 *spte)
0074ff63 1904{
67052b35 1905 struct kvm_mmu_page *sp;
1047df1f 1906 unsigned int index;
0074ff63 1907
67052b35 1908 sp = page_header(__pa(spte));
1047df1f
XG
1909 index = spte - sp->spt;
1910 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1911 return;
1047df1f 1912 if (sp->unsync_children++)
0074ff63 1913 return;
1047df1f 1914 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1915}
1916
e8bc217a 1917static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1918 struct kvm_mmu_page *sp)
e8bc217a 1919{
1f50f1b3 1920 return 0;
e8bc217a
MT
1921}
1922
a7052897
MT
1923static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1924{
1925}
1926
0f53b5b1
XG
1927static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1928 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1929 const void *pte)
0f53b5b1
XG
1930{
1931 WARN_ON(1);
1932}
1933
60c8aec6
MT
1934#define KVM_PAGE_ARRAY_NR 16
1935
1936struct kvm_mmu_pages {
1937 struct mmu_page_and_offset {
1938 struct kvm_mmu_page *sp;
1939 unsigned int idx;
1940 } page[KVM_PAGE_ARRAY_NR];
1941 unsigned int nr;
1942};
1943
cded19f3
HE
1944static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1945 int idx)
4731d4c7 1946{
60c8aec6 1947 int i;
4731d4c7 1948
60c8aec6
MT
1949 if (sp->unsync)
1950 for (i=0; i < pvec->nr; i++)
1951 if (pvec->page[i].sp == sp)
1952 return 0;
1953
1954 pvec->page[pvec->nr].sp = sp;
1955 pvec->page[pvec->nr].idx = idx;
1956 pvec->nr++;
1957 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1958}
1959
fd951457
TY
1960static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1961{
1962 --sp->unsync_children;
1963 WARN_ON((int)sp->unsync_children < 0);
1964 __clear_bit(idx, sp->unsync_child_bitmap);
1965}
1966
60c8aec6
MT
1967static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1968 struct kvm_mmu_pages *pvec)
1969{
1970 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1971
37178b8b 1972 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1973 struct kvm_mmu_page *child;
4731d4c7
MT
1974 u64 ent = sp->spt[i];
1975
fd951457
TY
1976 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1977 clear_unsync_child_bit(sp, i);
1978 continue;
1979 }
7a8f1a74
XG
1980
1981 child = page_header(ent & PT64_BASE_ADDR_MASK);
1982
1983 if (child->unsync_children) {
1984 if (mmu_pages_add(pvec, child, i))
1985 return -ENOSPC;
1986
1987 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1988 if (!ret) {
1989 clear_unsync_child_bit(sp, i);
1990 continue;
1991 } else if (ret > 0) {
7a8f1a74 1992 nr_unsync_leaf += ret;
fd951457 1993 } else
7a8f1a74
XG
1994 return ret;
1995 } else if (child->unsync) {
1996 nr_unsync_leaf++;
1997 if (mmu_pages_add(pvec, child, i))
1998 return -ENOSPC;
1999 } else
fd951457 2000 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2001 }
2002
60c8aec6
MT
2003 return nr_unsync_leaf;
2004}
2005
e23d3fef
XG
2006#define INVALID_INDEX (-1)
2007
60c8aec6
MT
2008static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2009 struct kvm_mmu_pages *pvec)
2010{
0a47cd85 2011 pvec->nr = 0;
60c8aec6
MT
2012 if (!sp->unsync_children)
2013 return 0;
2014
e23d3fef 2015 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2016 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2017}
2018
4731d4c7
MT
2019static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2020{
2021 WARN_ON(!sp->unsync);
5e1b3ddb 2022 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2023 sp->unsync = 0;
2024 --kvm->stat.mmu_unsync;
2025}
2026
7775834a
XG
2027static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2028 struct list_head *invalid_list);
2029static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2030 struct list_head *invalid_list);
4731d4c7 2031
f34d251d
XG
2032/*
2033 * NOTE: we should pay more attention on the zapped-obsolete page
2034 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2035 * since it has been deleted from active_mmu_pages but still can be found
2036 * at hast list.
2037 *
f3414bc7 2038 * for_each_valid_sp() has skipped that kind of pages.
f34d251d 2039 */
f3414bc7 2040#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2041 hlist_for_each_entry(_sp, \
2042 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
f3414bc7
DM
2043 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2044 } else
1044b030
TY
2045
2046#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2047 for_each_valid_sp(_kvm, _sp, _gfn) \
2048 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2049
f918b443 2050/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2051static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2052 struct list_head *invalid_list)
4731d4c7 2053{
5b7e0102 2054 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 2055 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2056 return false;
4731d4c7
MT
2057 }
2058
1f50f1b3 2059 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
d98ba053 2060 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2061 return false;
4731d4c7
MT
2062 }
2063
1f50f1b3 2064 return true;
4731d4c7
MT
2065}
2066
35a70510
PB
2067static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2068 struct list_head *invalid_list,
2069 bool remote_flush, bool local_flush)
1d9dc7e0 2070{
35a70510
PB
2071 if (!list_empty(invalid_list)) {
2072 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2073 return;
2074 }
d98ba053 2075
35a70510
PB
2076 if (remote_flush)
2077 kvm_flush_remote_tlbs(vcpu->kvm);
2078 else if (local_flush)
2079 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2080}
2081
e37fa785
XG
2082#ifdef CONFIG_KVM_MMU_AUDIT
2083#include "mmu_audit.c"
2084#else
2085static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2086static void mmu_audit_disable(void) { }
2087#endif
2088
46971a2f
XG
2089static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2090{
2091 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2092}
2093
1f50f1b3 2094static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2095 struct list_head *invalid_list)
1d9dc7e0 2096{
9a43c5d9
PB
2097 kvm_unlink_unsync_page(vcpu->kvm, sp);
2098 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2099}
2100
9f1a122f 2101/* @gfn should be write-protected at the call site */
2a74003a
PB
2102static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2103 struct list_head *invalid_list)
9f1a122f 2104{
9f1a122f 2105 struct kvm_mmu_page *s;
2a74003a 2106 bool ret = false;
9f1a122f 2107
b67bfe0d 2108 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2109 if (!s->unsync)
9f1a122f
XG
2110 continue;
2111
2112 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2113 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2114 }
2115
2a74003a 2116 return ret;
9f1a122f
XG
2117}
2118
60c8aec6 2119struct mmu_page_path {
0a47cd85
PB
2120 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
2121 unsigned int idx[PT64_ROOT_LEVEL];
4731d4c7
MT
2122};
2123
60c8aec6 2124#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2125 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2126 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2127 i = mmu_pages_next(&pvec, &parents, i))
2128
cded19f3
HE
2129static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2130 struct mmu_page_path *parents,
2131 int i)
60c8aec6
MT
2132{
2133 int n;
2134
2135 for (n = i+1; n < pvec->nr; n++) {
2136 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2137 unsigned idx = pvec->page[n].idx;
2138 int level = sp->role.level;
60c8aec6 2139
0a47cd85
PB
2140 parents->idx[level-1] = idx;
2141 if (level == PT_PAGE_TABLE_LEVEL)
2142 break;
60c8aec6 2143
0a47cd85 2144 parents->parent[level-2] = sp;
60c8aec6
MT
2145 }
2146
2147 return n;
2148}
2149
0a47cd85
PB
2150static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2151 struct mmu_page_path *parents)
2152{
2153 struct kvm_mmu_page *sp;
2154 int level;
2155
2156 if (pvec->nr == 0)
2157 return 0;
2158
e23d3fef
XG
2159 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2160
0a47cd85
PB
2161 sp = pvec->page[0].sp;
2162 level = sp->role.level;
2163 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2164
2165 parents->parent[level-2] = sp;
2166
2167 /* Also set up a sentinel. Further entries in pvec are all
2168 * children of sp, so this element is never overwritten.
2169 */
2170 parents->parent[level-1] = NULL;
2171 return mmu_pages_next(pvec, parents, 0);
2172}
2173
cded19f3 2174static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2175{
60c8aec6
MT
2176 struct kvm_mmu_page *sp;
2177 unsigned int level = 0;
2178
2179 do {
2180 unsigned int idx = parents->idx[level];
60c8aec6
MT
2181 sp = parents->parent[level];
2182 if (!sp)
2183 return;
2184
e23d3fef 2185 WARN_ON(idx == INVALID_INDEX);
fd951457 2186 clear_unsync_child_bit(sp, idx);
60c8aec6 2187 level++;
0a47cd85 2188 } while (!sp->unsync_children);
60c8aec6 2189}
4731d4c7 2190
60c8aec6
MT
2191static void mmu_sync_children(struct kvm_vcpu *vcpu,
2192 struct kvm_mmu_page *parent)
2193{
2194 int i;
2195 struct kvm_mmu_page *sp;
2196 struct mmu_page_path parents;
2197 struct kvm_mmu_pages pages;
d98ba053 2198 LIST_HEAD(invalid_list);
50c9e6f3 2199 bool flush = false;
60c8aec6 2200
60c8aec6 2201 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2202 bool protected = false;
b1a36821
MT
2203
2204 for_each_sp(pages, sp, parents, i)
54bf36aa 2205 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2206
50c9e6f3 2207 if (protected) {
b1a36821 2208 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2209 flush = false;
2210 }
b1a36821 2211
60c8aec6 2212 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2213 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2214 mmu_pages_clear_parents(&parents);
2215 }
50c9e6f3
PB
2216 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2217 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2218 cond_resched_lock(&vcpu->kvm->mmu_lock);
2219 flush = false;
2220 }
60c8aec6 2221 }
50c9e6f3
PB
2222
2223 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2224}
2225
a30f47cb
XG
2226static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2227{
e5691a81 2228 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2229}
2230
2231static void clear_sp_write_flooding_count(u64 *spte)
2232{
2233 struct kvm_mmu_page *sp = page_header(__pa(spte));
2234
2235 __clear_sp_write_flooding_count(sp);
2236}
2237
cea0f0e7
AK
2238static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2239 gfn_t gfn,
2240 gva_t gaddr,
2241 unsigned level,
f6e2c02b 2242 int direct,
bb11c6c9 2243 unsigned access)
cea0f0e7
AK
2244{
2245 union kvm_mmu_page_role role;
cea0f0e7 2246 unsigned quadrant;
9f1a122f 2247 struct kvm_mmu_page *sp;
9f1a122f 2248 bool need_sync = false;
2a74003a 2249 bool flush = false;
f3414bc7 2250 int collisions = 0;
2a74003a 2251 LIST_HEAD(invalid_list);
cea0f0e7 2252
a770f6f2 2253 role = vcpu->arch.mmu.base_role;
cea0f0e7 2254 role.level = level;
f6e2c02b 2255 role.direct = direct;
84b0c8c6 2256 if (role.direct)
5b7e0102 2257 role.cr4_pae = 0;
41074d07 2258 role.access = access;
c5a78f2b
JR
2259 if (!vcpu->arch.mmu.direct_map
2260 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2261 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2262 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2263 role.quadrant = quadrant;
2264 }
f3414bc7
DM
2265 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2266 if (sp->gfn != gfn) {
2267 collisions++;
2268 continue;
2269 }
2270
7ae680eb
XG
2271 if (!need_sync && sp->unsync)
2272 need_sync = true;
4731d4c7 2273
7ae680eb
XG
2274 if (sp->role.word != role.word)
2275 continue;
4731d4c7 2276
2a74003a
PB
2277 if (sp->unsync) {
2278 /* The page is good, but __kvm_sync_page might still end
2279 * up zapping it. If so, break in order to rebuild it.
2280 */
2281 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2282 break;
2283
2284 WARN_ON(!list_empty(&invalid_list));
2285 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2286 }
e02aa901 2287
98bba238 2288 if (sp->unsync_children)
a8eeb04a 2289 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2290
a30f47cb 2291 __clear_sp_write_flooding_count(sp);
7ae680eb 2292 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2293 goto out;
7ae680eb 2294 }
47005792 2295
dfc5aa00 2296 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2297
2298 sp = kvm_mmu_alloc_page(vcpu, direct);
2299
4db35314
AK
2300 sp->gfn = gfn;
2301 sp->role = role;
7ae680eb
XG
2302 hlist_add_head(&sp->hash_link,
2303 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2304 if (!direct) {
56ca57f9
XG
2305 /*
2306 * we should do write protection before syncing pages
2307 * otherwise the content of the synced shadow page may
2308 * be inconsistent with guest page table.
2309 */
2310 account_shadowed(vcpu->kvm, sp);
2311 if (level == PT_PAGE_TABLE_LEVEL &&
2312 rmap_write_protect(vcpu, gfn))
b1a36821 2313 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f 2314
9f1a122f 2315 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2316 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2317 }
5304b8d3 2318 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2319 clear_page(sp->spt);
f691fe1d 2320 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2321
2322 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2323out:
2324 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2325 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2326 return sp;
cea0f0e7
AK
2327}
2328
2d11123a
AK
2329static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2330 struct kvm_vcpu *vcpu, u64 addr)
2331{
2332 iterator->addr = addr;
2333 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2334 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2335
2336 if (iterator->level == PT64_ROOT_LEVEL &&
2337 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2338 !vcpu->arch.mmu.direct_map)
2339 --iterator->level;
2340
2d11123a
AK
2341 if (iterator->level == PT32E_ROOT_LEVEL) {
2342 iterator->shadow_addr
2343 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2344 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2345 --iterator->level;
2346 if (!iterator->shadow_addr)
2347 iterator->level = 0;
2348 }
2349}
2350
2351static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2352{
2353 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2354 return false;
4d88954d 2355
2d11123a
AK
2356 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2357 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2358 return true;
2359}
2360
c2a2ac2b
XG
2361static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2362 u64 spte)
2d11123a 2363{
c2a2ac2b 2364 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2365 iterator->level = 0;
2366 return;
2367 }
2368
c2a2ac2b 2369 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2370 --iterator->level;
2371}
2372
c2a2ac2b
XG
2373static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2374{
2375 return __shadow_walk_next(iterator, *iterator->sptep);
2376}
2377
98bba238
TY
2378static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2379 struct kvm_mmu_page *sp)
32ef26a3
AK
2380{
2381 u64 spte;
2382
ffb128c8 2383 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2384
ffb128c8 2385 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
0e3d0648 2386 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
24db2734 2387
1df9f2dc 2388 mmu_spte_set(sptep, spte);
98bba238
TY
2389
2390 mmu_page_add_parent_pte(vcpu, sp, sptep);
2391
2392 if (sp->unsync_children || sp->unsync)
2393 mark_unsync(sptep);
32ef26a3
AK
2394}
2395
a357bd22
AK
2396static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2397 unsigned direct_access)
2398{
2399 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2400 struct kvm_mmu_page *child;
2401
2402 /*
2403 * For the direct sp, if the guest pte's dirty bit
2404 * changed form clean to dirty, it will corrupt the
2405 * sp's access: allow writable in the read-only sp,
2406 * so we should update the spte at this point to get
2407 * a new sp with the correct access.
2408 */
2409 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2410 if (child->role.access == direct_access)
2411 return;
2412
bcdd9a93 2413 drop_parent_pte(child, sptep);
a357bd22
AK
2414 kvm_flush_remote_tlbs(vcpu->kvm);
2415 }
2416}
2417
505aef8f 2418static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2419 u64 *spte)
2420{
2421 u64 pte;
2422 struct kvm_mmu_page *child;
2423
2424 pte = *spte;
2425 if (is_shadow_present_pte(pte)) {
505aef8f 2426 if (is_last_spte(pte, sp->role.level)) {
c3707958 2427 drop_spte(kvm, spte);
505aef8f
XG
2428 if (is_large_pte(pte))
2429 --kvm->stat.lpages;
2430 } else {
38e3b2b2 2431 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2432 drop_parent_pte(child, spte);
38e3b2b2 2433 }
505aef8f
XG
2434 return true;
2435 }
2436
2437 if (is_mmio_spte(pte))
ce88decf 2438 mmu_spte_clear_no_track(spte);
c3707958 2439
505aef8f 2440 return false;
38e3b2b2
XG
2441}
2442
90cb0529 2443static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2444 struct kvm_mmu_page *sp)
a436036b 2445{
697fe2e2 2446 unsigned i;
697fe2e2 2447
38e3b2b2
XG
2448 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2449 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2450}
2451
31aa2b44 2452static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2453{
1e3f42f0
TY
2454 u64 *sptep;
2455 struct rmap_iterator iter;
a436036b 2456
018aabb5 2457 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2458 drop_parent_pte(sp, sptep);
31aa2b44
AK
2459}
2460
60c8aec6 2461static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2462 struct kvm_mmu_page *parent,
2463 struct list_head *invalid_list)
4731d4c7 2464{
60c8aec6
MT
2465 int i, zapped = 0;
2466 struct mmu_page_path parents;
2467 struct kvm_mmu_pages pages;
4731d4c7 2468
60c8aec6 2469 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2470 return 0;
60c8aec6 2471
60c8aec6
MT
2472 while (mmu_unsync_walk(parent, &pages)) {
2473 struct kvm_mmu_page *sp;
2474
2475 for_each_sp(pages, sp, parents, i) {
7775834a 2476 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2477 mmu_pages_clear_parents(&parents);
77662e00 2478 zapped++;
60c8aec6 2479 }
60c8aec6
MT
2480 }
2481
2482 return zapped;
4731d4c7
MT
2483}
2484
7775834a
XG
2485static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2486 struct list_head *invalid_list)
31aa2b44 2487{
4731d4c7 2488 int ret;
f691fe1d 2489
7775834a 2490 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2491 ++kvm->stat.mmu_shadow_zapped;
7775834a 2492 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2493 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2494 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2495
f6e2c02b 2496 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2497 unaccount_shadowed(kvm, sp);
5304b8d3 2498
4731d4c7
MT
2499 if (sp->unsync)
2500 kvm_unlink_unsync_page(kvm, sp);
4db35314 2501 if (!sp->root_count) {
54a4f023
GJ
2502 /* Count self */
2503 ret++;
7775834a 2504 list_move(&sp->link, invalid_list);
aa6bd187 2505 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2506 } else {
5b5c6a5a 2507 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2508
2509 /*
2510 * The obsolete pages can not be used on any vcpus.
2511 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2512 */
2513 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2514 kvm_reload_remote_mmus(kvm);
2e53d63a 2515 }
7775834a
XG
2516
2517 sp->role.invalid = 1;
4731d4c7 2518 return ret;
a436036b
AK
2519}
2520
7775834a
XG
2521static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2522 struct list_head *invalid_list)
2523{
945315b9 2524 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2525
2526 if (list_empty(invalid_list))
2527 return;
2528
c142786c 2529 /*
9753f529
LT
2530 * We need to make sure everyone sees our modifications to
2531 * the page tables and see changes to vcpu->mode here. The barrier
2532 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2533 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2534 *
2535 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2536 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2537 */
2538 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2539
945315b9 2540 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2541 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2542 kvm_mmu_free_page(sp);
945315b9 2543 }
7775834a
XG
2544}
2545
5da59607
TY
2546static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2547 struct list_head *invalid_list)
2548{
2549 struct kvm_mmu_page *sp;
2550
2551 if (list_empty(&kvm->arch.active_mmu_pages))
2552 return false;
2553
d74c0e6b
GT
2554 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2555 struct kvm_mmu_page, link);
5da59607
TY
2556 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2557
2558 return true;
2559}
2560
82ce2c96
IE
2561/*
2562 * Changing the number of mmu pages allocated to the vm
49d5ca26 2563 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2564 */
49d5ca26 2565void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2566{
d98ba053 2567 LIST_HEAD(invalid_list);
82ce2c96 2568
b34cb590
TY
2569 spin_lock(&kvm->mmu_lock);
2570
49d5ca26 2571 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2572 /* Need to free some mmu pages to achieve the goal. */
2573 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2574 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2575 break;
82ce2c96 2576
aa6bd187 2577 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2578 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2579 }
82ce2c96 2580
49d5ca26 2581 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2582
2583 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2584}
2585
1cb3f3ae 2586int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2587{
4db35314 2588 struct kvm_mmu_page *sp;
d98ba053 2589 LIST_HEAD(invalid_list);
a436036b
AK
2590 int r;
2591
9ad17b10 2592 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2593 r = 0;
1cb3f3ae 2594 spin_lock(&kvm->mmu_lock);
b67bfe0d 2595 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2596 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2597 sp->role.word);
2598 r = 1;
f41d335a 2599 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2600 }
d98ba053 2601 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2602 spin_unlock(&kvm->mmu_lock);
2603
a436036b 2604 return r;
cea0f0e7 2605}
1cb3f3ae 2606EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2607
5c520e90 2608static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2609{
2610 trace_kvm_mmu_unsync_page(sp);
2611 ++vcpu->kvm->stat.mmu_unsync;
2612 sp->unsync = 1;
2613
2614 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2615}
2616
3d0c27ad
XG
2617static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2618 bool can_unsync)
4731d4c7 2619{
5c520e90 2620 struct kvm_mmu_page *sp;
4731d4c7 2621
3d0c27ad
XG
2622 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2623 return true;
9cf5cf5a 2624
5c520e90 2625 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2626 if (!can_unsync)
3d0c27ad 2627 return true;
36a2e677 2628
5c520e90
XG
2629 if (sp->unsync)
2630 continue;
9cf5cf5a 2631
5c520e90
XG
2632 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2633 kvm_unsync_page(vcpu, sp);
4731d4c7 2634 }
3d0c27ad
XG
2635
2636 return false;
4731d4c7
MT
2637}
2638
ba049e93 2639static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2640{
2641 if (pfn_valid(pfn))
2642 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2643
2644 return true;
2645}
2646
d555c333 2647static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2648 unsigned pte_access, int level,
ba049e93 2649 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2650 bool can_unsync, bool host_writable)
1c4f1fd6 2651{
ffb128c8 2652 u64 spte = 0;
1e73f9dd 2653 int ret = 0;
64d4d521 2654
54bf36aa 2655 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2656 return 0;
2657
d95c5568
BD
2658 /*
2659 * For the EPT case, shadow_present_mask is 0 if hardware
2660 * supports exec-only page table entries. In that case,
2661 * ACC_USER_MASK and shadow_user_mask are used to represent
2662 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2663 */
ffb128c8 2664 spte |= shadow_present_mask;
947da538 2665 if (!speculative)
3201b5d9 2666 spte |= shadow_accessed_mask;
640d9b0d 2667
7b52345e
SY
2668 if (pte_access & ACC_EXEC_MASK)
2669 spte |= shadow_x_mask;
2670 else
2671 spte |= shadow_nx_mask;
49fde340 2672
1c4f1fd6 2673 if (pte_access & ACC_USER_MASK)
7b52345e 2674 spte |= shadow_user_mask;
49fde340 2675
852e3c19 2676 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2677 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2678 if (tdp_enabled)
4b12f0de 2679 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2680 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2681
9bdbba13 2682 if (host_writable)
1403283a 2683 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2684 else
2685 pte_access &= ~ACC_WRITE_MASK;
1403283a 2686
35149e21 2687 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2688
c2288505 2689 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2690
c2193463 2691 /*
7751babd
XG
2692 * Other vcpu creates new sp in the window between
2693 * mapping_level() and acquiring mmu-lock. We can
2694 * allow guest to retry the access, the mapping can
2695 * be fixed if guest refault.
c2193463 2696 */
852e3c19 2697 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2698 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2699 goto done;
38187c83 2700
49fde340 2701 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2702
ecc5589f
MT
2703 /*
2704 * Optimization: for pte sync, if spte was writable the hash
2705 * lookup is unnecessary (and expensive). Write protection
2706 * is responsibility of mmu_get_page / kvm_sync_page.
2707 * Same reasoning can be applied to dirty page accounting.
2708 */
8dae4445 2709 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2710 goto set_pte;
2711
4731d4c7 2712 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2713 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2714 __func__, gfn);
1e73f9dd 2715 ret = 1;
1c4f1fd6 2716 pte_access &= ~ACC_WRITE_MASK;
49fde340 2717 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2718 }
2719 }
2720
9b51a630 2721 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2722 kvm_vcpu_mark_page_dirty(vcpu, gfn);
9b51a630
KH
2723 spte |= shadow_dirty_mask;
2724 }
1c4f1fd6 2725
f160c7b7
JS
2726 if (speculative)
2727 spte = mark_spte_for_access_track(spte);
2728
38187c83 2729set_pte:
6e7d0354 2730 if (mmu_spte_update(sptep, spte))
b330aa0c 2731 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2732done:
1e73f9dd
MT
2733 return ret;
2734}
2735
029499b4 2736static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
ba049e93 2737 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
029499b4 2738 bool speculative, bool host_writable)
1e73f9dd
MT
2739{
2740 int was_rmapped = 0;
53a27b39 2741 int rmap_count;
029499b4 2742 bool emulate = false;
1e73f9dd 2743
f7616203
XG
2744 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2745 *sptep, write_fault, gfn);
1e73f9dd 2746
afd28fe1 2747 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2748 /*
2749 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2750 * the parent of the now unreachable PTE.
2751 */
852e3c19
JR
2752 if (level > PT_PAGE_TABLE_LEVEL &&
2753 !is_large_pte(*sptep)) {
1e73f9dd 2754 struct kvm_mmu_page *child;
d555c333 2755 u64 pte = *sptep;
1e73f9dd
MT
2756
2757 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2758 drop_parent_pte(child, sptep);
3be2264b 2759 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2760 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2761 pgprintk("hfn old %llx new %llx\n",
d555c333 2762 spte_to_pfn(*sptep), pfn);
c3707958 2763 drop_spte(vcpu->kvm, sptep);
91546356 2764 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2765 } else
2766 was_rmapped = 1;
1e73f9dd 2767 }
852e3c19 2768
c2288505
XG
2769 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2770 true, host_writable)) {
1e73f9dd 2771 if (write_fault)
029499b4 2772 emulate = true;
77c3913b 2773 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2774 }
1e73f9dd 2775
029499b4
TY
2776 if (unlikely(is_mmio_spte(*sptep)))
2777 emulate = true;
ce88decf 2778
d555c333 2779 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2780 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2781 is_large_pte(*sptep)? "2MB" : "4kB",
f160c7b7 2782 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
a205bc19 2783 *sptep, sptep);
d555c333 2784 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2785 ++vcpu->kvm->stat.lpages;
2786
ffb61bb3 2787 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2788 if (!was_rmapped) {
2789 rmap_count = rmap_add(vcpu, sptep, gfn);
2790 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2791 rmap_recycle(vcpu, sptep, gfn);
2792 }
1c4f1fd6 2793 }
cb9aaa30 2794
f3ac1a4b 2795 kvm_release_pfn_clean(pfn);
029499b4
TY
2796
2797 return emulate;
1c4f1fd6
AK
2798}
2799
ba049e93 2800static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2801 bool no_dirty_log)
2802{
2803 struct kvm_memory_slot *slot;
957ed9ef 2804
5d163b1c 2805 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2806 if (!slot)
6c8ee57b 2807 return KVM_PFN_ERR_FAULT;
957ed9ef 2808
037d92dc 2809 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2810}
2811
2812static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2813 struct kvm_mmu_page *sp,
2814 u64 *start, u64 *end)
2815{
2816 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2817 struct kvm_memory_slot *slot;
957ed9ef
XG
2818 unsigned access = sp->role.access;
2819 int i, ret;
2820 gfn_t gfn;
2821
2822 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2823 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2824 if (!slot)
957ed9ef
XG
2825 return -1;
2826
d9ef13c2 2827 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2828 if (ret <= 0)
2829 return -1;
2830
2831 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
2832 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2833 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
2834
2835 return 0;
2836}
2837
2838static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2839 struct kvm_mmu_page *sp, u64 *sptep)
2840{
2841 u64 *spte, *start = NULL;
2842 int i;
2843
2844 WARN_ON(!sp->role.direct);
2845
2846 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2847 spte = sp->spt + i;
2848
2849 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2850 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2851 if (!start)
2852 continue;
2853 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2854 break;
2855 start = NULL;
2856 } else if (!start)
2857 start = spte;
2858 }
2859}
2860
2861static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2862{
2863 struct kvm_mmu_page *sp;
2864
2865 /*
2866 * Since it's no accessed bit on EPT, it's no way to
2867 * distinguish between actually accessed translations
2868 * and prefetched, so disable pte prefetch if EPT is
2869 * enabled.
2870 */
2871 if (!shadow_accessed_mask)
2872 return;
2873
2874 sp = page_header(__pa(sptep));
2875 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2876 return;
2877
2878 __direct_pte_prefetch(vcpu, sp, sptep);
2879}
2880
7ee0e5b2 2881static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 2882 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 2883{
9f652d21 2884 struct kvm_shadow_walk_iterator iterator;
140754bc 2885 struct kvm_mmu_page *sp;
b90a0e6c 2886 int emulate = 0;
140754bc 2887 gfn_t pseudo_gfn;
6aa8b732 2888
989c6b34
MT
2889 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2890 return 0;
2891
9f652d21 2892 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2893 if (iterator.level == level) {
029499b4
TY
2894 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2895 write, level, gfn, pfn, prefault,
2896 map_writable);
957ed9ef 2897 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2898 ++vcpu->stat.pf_fixed;
2899 break;
6aa8b732
AK
2900 }
2901
404381c5 2902 drop_large_spte(vcpu, iterator.sptep);
c3707958 2903 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2904 u64 base_addr = iterator.addr;
2905
2906 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2907 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 2908 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 2909 iterator.level - 1, 1, ACC_ALL);
140754bc 2910
98bba238 2911 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
2912 }
2913 }
b90a0e6c 2914 return emulate;
6aa8b732
AK
2915}
2916
77db5cbd 2917static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2918{
77db5cbd
HY
2919 siginfo_t info;
2920
2921 info.si_signo = SIGBUS;
2922 info.si_errno = 0;
2923 info.si_code = BUS_MCEERR_AR;
2924 info.si_addr = (void __user *)address;
2925 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2926
77db5cbd 2927 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2928}
2929
ba049e93 2930static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2931{
4d8b81ab
XG
2932 /*
2933 * Do not cache the mmio info caused by writing the readonly gfn
2934 * into the spte otherwise read access on readonly gfn also can
2935 * caused mmio page fault and treat it as mmio access.
2936 * Return 1 to tell kvm to emulate it.
2937 */
2938 if (pfn == KVM_PFN_ERR_RO_FAULT)
2939 return 1;
2940
e6c1502b 2941 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2942 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
bf998156 2943 return 0;
d7c55201 2944 }
edba23e5 2945
d7c55201 2946 return -EFAULT;
bf998156
HY
2947}
2948
936a5fe6 2949static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
2950 gfn_t *gfnp, kvm_pfn_t *pfnp,
2951 int *levelp)
936a5fe6 2952{
ba049e93 2953 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
2954 gfn_t gfn = *gfnp;
2955 int level = *levelp;
2956
2957 /*
2958 * Check if it's a transparent hugepage. If this would be an
2959 * hugetlbfs page, level wouldn't be set to
2960 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2961 * here.
2962 */
bf4bea8e 2963 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6 2964 level == PT_PAGE_TABLE_LEVEL &&
127393fb 2965 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 2966 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
2967 unsigned long mask;
2968 /*
2969 * mmu_notifier_retry was successful and we hold the
2970 * mmu_lock here, so the pmd can't become splitting
2971 * from under us, and in turn
2972 * __split_huge_page_refcount() can't run from under
2973 * us and we can safely transfer the refcount from
2974 * PG_tail to PG_head as we switch the pfn to tail to
2975 * head.
2976 */
2977 *levelp = level = PT_DIRECTORY_LEVEL;
2978 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2979 VM_BUG_ON((gfn & mask) != (pfn & mask));
2980 if (pfn & mask) {
2981 gfn &= ~mask;
2982 *gfnp = gfn;
2983 kvm_release_pfn_clean(pfn);
2984 pfn &= ~mask;
c3586667 2985 kvm_get_pfn(pfn);
936a5fe6
AA
2986 *pfnp = pfn;
2987 }
2988 }
2989}
2990
d7c55201 2991static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 2992 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 2993{
d7c55201 2994 /* The pfn is invalid, report the error! */
81c52c56 2995 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2996 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2997 return true;
d7c55201
XG
2998 }
2999
ce88decf 3000 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 3001 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 3002
798e88b3 3003 return false;
d7c55201
XG
3004}
3005
e5552fd2 3006static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3007{
1c118b82
XG
3008 /*
3009 * Do not fix the mmio spte with invalid generation number which
3010 * need to be updated by slow page fault path.
3011 */
3012 if (unlikely(error_code & PFERR_RSVD_MASK))
3013 return false;
3014
f160c7b7
JS
3015 /* See if the page fault is due to an NX violation */
3016 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3017 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3018 return false;
3019
c7ba5b48 3020 /*
f160c7b7
JS
3021 * #PF can be fast if:
3022 * 1. The shadow page table entry is not present, which could mean that
3023 * the fault is potentially caused by access tracking (if enabled).
3024 * 2. The shadow page table entry is present and the fault
3025 * is caused by write-protect, that means we just need change the W
3026 * bit of the spte which can be done out of mmu-lock.
3027 *
3028 * However, if access tracking is disabled we know that a non-present
3029 * page must be a genuine page fault where we have to create a new SPTE.
3030 * So, if access tracking is disabled, we return true only for write
3031 * accesses to a present page.
c7ba5b48 3032 */
c7ba5b48 3033
f160c7b7
JS
3034 return shadow_acc_track_mask != 0 ||
3035 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3036 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3037}
3038
97dceba2
JS
3039/*
3040 * Returns true if the SPTE was fixed successfully. Otherwise,
3041 * someone else modified the SPTE from its original value.
3042 */
c7ba5b48 3043static bool
92a476cb 3044fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3045 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3046{
c7ba5b48
XG
3047 gfn_t gfn;
3048
3049 WARN_ON(!sp->role.direct);
3050
9b51a630
KH
3051 /*
3052 * Theoretically we could also set dirty bit (and flush TLB) here in
3053 * order to eliminate unnecessary PML logging. See comments in
3054 * set_spte. But fast_page_fault is very unlikely to happen with PML
3055 * enabled, so we do not do this. This might result in the same GPA
3056 * to be logged in PML buffer again when the write really happens, and
3057 * eventually to be called by mark_page_dirty twice. But it's also no
3058 * harm. This also avoids the TLB flush needed after setting dirty bit
3059 * so non-PML cases won't be impacted.
3060 *
3061 * Compare with set_spte where instead shadow_dirty_mask is set.
3062 */
f160c7b7 3063 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3064 return false;
3065
d3e328f2 3066 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3067 /*
3068 * The gfn of direct spte is stable since it is
3069 * calculated by sp->gfn.
3070 */
3071 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3072 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3073 }
c7ba5b48
XG
3074
3075 return true;
3076}
3077
d3e328f2
JS
3078static bool is_access_allowed(u32 fault_err_code, u64 spte)
3079{
3080 if (fault_err_code & PFERR_FETCH_MASK)
3081 return is_executable_pte(spte);
3082
3083 if (fault_err_code & PFERR_WRITE_MASK)
3084 return is_writable_pte(spte);
3085
3086 /* Fault was on Read access */
3087 return spte & PT_PRESENT_MASK;
3088}
3089
c7ba5b48
XG
3090/*
3091 * Return value:
3092 * - true: let the vcpu to access on the same address again.
3093 * - false: let the real page fault path to fix it.
3094 */
3095static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3096 u32 error_code)
3097{
3098 struct kvm_shadow_walk_iterator iterator;
92a476cb 3099 struct kvm_mmu_page *sp;
97dceba2 3100 bool fault_handled = false;
c7ba5b48 3101 u64 spte = 0ull;
97dceba2 3102 uint retry_count = 0;
c7ba5b48 3103
37f6a4e2
MT
3104 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3105 return false;
3106
e5552fd2 3107 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3108 return false;
3109
3110 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3111
97dceba2 3112 do {
d3e328f2 3113 u64 new_spte;
c7ba5b48 3114
d162f30a
JS
3115 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3116 if (!is_shadow_present_pte(spte) ||
3117 iterator.level < level)
3118 break;
3119
97dceba2
JS
3120 sp = page_header(__pa(iterator.sptep));
3121 if (!is_last_spte(spte, sp->role.level))
3122 break;
c7ba5b48 3123
97dceba2 3124 /*
f160c7b7
JS
3125 * Check whether the memory access that caused the fault would
3126 * still cause it if it were to be performed right now. If not,
3127 * then this is a spurious fault caused by TLB lazily flushed,
3128 * or some other CPU has already fixed the PTE after the
3129 * current CPU took the fault.
97dceba2
JS
3130 *
3131 * Need not check the access of upper level table entries since
3132 * they are always ACC_ALL.
3133 */
d3e328f2
JS
3134 if (is_access_allowed(error_code, spte)) {
3135 fault_handled = true;
3136 break;
3137 }
f160c7b7 3138
d3e328f2
JS
3139 new_spte = spte;
3140
3141 if (is_access_track_spte(spte))
3142 new_spte = restore_acc_track_spte(new_spte);
3143
3144 /*
3145 * Currently, to simplify the code, write-protection can
3146 * be removed in the fast path only if the SPTE was
3147 * write-protected for dirty-logging or access tracking.
3148 */
3149 if ((error_code & PFERR_WRITE_MASK) &&
3150 spte_can_locklessly_be_made_writable(spte))
3151 {
3152 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3153
3154 /*
d3e328f2
JS
3155 * Do not fix write-permission on the large spte. Since
3156 * we only dirty the first page into the dirty-bitmap in
3157 * fast_pf_fix_direct_spte(), other pages are missed
3158 * if its slot has dirty logging enabled.
3159 *
3160 * Instead, we let the slow page fault path create a
3161 * normal spte to fix the access.
3162 *
3163 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3164 */
d3e328f2 3165 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3166 break;
97dceba2 3167 }
c7ba5b48 3168
f160c7b7 3169 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3170 if (new_spte == spte ||
3171 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3172 break;
3173
3174 /*
3175 * Currently, fast page fault only works for direct mapping
3176 * since the gfn is not stable for indirect shadow page. See
3177 * Documentation/virtual/kvm/locking.txt to get more detail.
3178 */
3179 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3180 iterator.sptep, spte,
d3e328f2 3181 new_spte);
97dceba2
JS
3182 if (fault_handled)
3183 break;
3184
3185 if (++retry_count > 4) {
3186 printk_once(KERN_WARNING
3187 "kvm: Fast #PF retrying more than 4 times.\n");
3188 break;
3189 }
3190
97dceba2 3191 } while (true);
c126d94f 3192
a72faf25 3193 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
97dceba2 3194 spte, fault_handled);
c7ba5b48
XG
3195 walk_shadow_page_lockless_end(vcpu);
3196
97dceba2 3197 return fault_handled;
c7ba5b48
XG
3198}
3199
78b2c54a 3200static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3201 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
450e0b41 3202static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3203
c7ba5b48
XG
3204static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3205 gfn_t gfn, bool prefault)
10589a46
MT
3206{
3207 int r;
852e3c19 3208 int level;
fd136902 3209 bool force_pt_level = false;
ba049e93 3210 kvm_pfn_t pfn;
e930bffe 3211 unsigned long mmu_seq;
c7ba5b48 3212 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3213
fd136902 3214 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3215 if (likely(!force_pt_level)) {
936a5fe6
AA
3216 /*
3217 * This path builds a PAE pagetable - so we can map
3218 * 2mb pages at maximum. Therefore check if the level
3219 * is larger than that.
3220 */
3221 if (level > PT_DIRECTORY_LEVEL)
3222 level = PT_DIRECTORY_LEVEL;
852e3c19 3223
936a5fe6 3224 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3225 }
05da4558 3226
c7ba5b48
XG
3227 if (fast_page_fault(vcpu, v, level, error_code))
3228 return 0;
3229
e930bffe 3230 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3231 smp_rmb();
060c2abe 3232
78b2c54a 3233 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3234 return 0;
aaee2c94 3235
d7c55201
XG
3236 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3237 return r;
d196e343 3238
aaee2c94 3239 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3240 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3241 goto out_unlock;
450e0b41 3242 make_mmu_pages_available(vcpu);
936a5fe6
AA
3243 if (likely(!force_pt_level))
3244 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3245 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3246 spin_unlock(&vcpu->kvm->mmu_lock);
3247
10589a46 3248 return r;
e930bffe
AA
3249
3250out_unlock:
3251 spin_unlock(&vcpu->kvm->mmu_lock);
3252 kvm_release_pfn_clean(pfn);
3253 return 0;
10589a46
MT
3254}
3255
3256
17ac10ad
AK
3257static void mmu_free_roots(struct kvm_vcpu *vcpu)
3258{
3259 int i;
4db35314 3260 struct kvm_mmu_page *sp;
d98ba053 3261 LIST_HEAD(invalid_list);
17ac10ad 3262
ad312c7c 3263 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3264 return;
35af577a 3265
81407ca5
JR
3266 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3267 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3268 vcpu->arch.mmu.direct_map)) {
ad312c7c 3269 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3270
35af577a 3271 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3272 sp = page_header(root);
3273 --sp->root_count;
d98ba053
XG
3274 if (!sp->root_count && sp->role.invalid) {
3275 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3276 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3277 }
aaee2c94 3278 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3279 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3280 return;
3281 }
35af577a
GN
3282
3283 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3284 for (i = 0; i < 4; ++i) {
ad312c7c 3285 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3286
417726a3 3287 if (root) {
417726a3 3288 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3289 sp = page_header(root);
3290 --sp->root_count;
2e53d63a 3291 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3292 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3293 &invalid_list);
417726a3 3294 }
ad312c7c 3295 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3296 }
d98ba053 3297 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3298 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3299 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3300}
3301
8986ecc0
MT
3302static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3303{
3304 int ret = 0;
3305
3306 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3307 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3308 ret = 1;
3309 }
3310
3311 return ret;
3312}
3313
651dd37a
JR
3314static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3315{
3316 struct kvm_mmu_page *sp;
7ebaf15e 3317 unsigned i;
651dd37a
JR
3318
3319 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3320 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3321 make_mmu_pages_available(vcpu);
bb11c6c9 3322 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3323 ++sp->root_count;
3324 spin_unlock(&vcpu->kvm->mmu_lock);
3325 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3326 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3327 for (i = 0; i < 4; ++i) {
3328 hpa_t root = vcpu->arch.mmu.pae_root[i];
3329
fa4a2c08 3330 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3331 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3332 make_mmu_pages_available(vcpu);
649497d1 3333 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3334 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3335 root = __pa(sp->spt);
3336 ++sp->root_count;
3337 spin_unlock(&vcpu->kvm->mmu_lock);
3338 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3339 }
6292757f 3340 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3341 } else
3342 BUG();
3343
3344 return 0;
3345}
3346
3347static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3348{
4db35314 3349 struct kvm_mmu_page *sp;
81407ca5
JR
3350 u64 pdptr, pm_mask;
3351 gfn_t root_gfn;
3352 int i;
3bb65a22 3353
5777ed34 3354 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3355
651dd37a
JR
3356 if (mmu_check_root(vcpu, root_gfn))
3357 return 1;
3358
3359 /*
3360 * Do we shadow a long mode page table? If so we need to
3361 * write-protect the guests page table root.
3362 */
3363 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3364 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3365
fa4a2c08 3366 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3367
8facbbff 3368 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3369 make_mmu_pages_available(vcpu);
651dd37a 3370 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
bb11c6c9 3371 0, ACC_ALL);
4db35314
AK
3372 root = __pa(sp->spt);
3373 ++sp->root_count;
8facbbff 3374 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3375 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3376 return 0;
17ac10ad 3377 }
f87f9288 3378
651dd37a
JR
3379 /*
3380 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3381 * or a PAE 3-level page table. In either case we need to be aware that
3382 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3383 */
81407ca5
JR
3384 pm_mask = PT_PRESENT_MASK;
3385 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3386 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3387
17ac10ad 3388 for (i = 0; i < 4; ++i) {
ad312c7c 3389 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3390
fa4a2c08 3391 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3392 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3393 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
812f30b2 3394 if (!(pdptr & PT_PRESENT_MASK)) {
ad312c7c 3395 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3396 continue;
3397 }
6de4f3ad 3398 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3399 if (mmu_check_root(vcpu, root_gfn))
3400 return 1;
5a7388c2 3401 }
8facbbff 3402 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3403 make_mmu_pages_available(vcpu);
bb11c6c9
TY
3404 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3405 0, ACC_ALL);
4db35314
AK
3406 root = __pa(sp->spt);
3407 ++sp->root_count;
8facbbff
AK
3408 spin_unlock(&vcpu->kvm->mmu_lock);
3409
81407ca5 3410 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3411 }
6292757f 3412 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3413
3414 /*
3415 * If we shadow a 32 bit page table with a long mode page
3416 * table we enter this path.
3417 */
3418 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3419 if (vcpu->arch.mmu.lm_root == NULL) {
3420 /*
3421 * The additional page necessary for this is only
3422 * allocated on demand.
3423 */
3424
3425 u64 *lm_root;
3426
3427 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3428 if (lm_root == NULL)
3429 return 1;
3430
3431 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3432
3433 vcpu->arch.mmu.lm_root = lm_root;
3434 }
3435
3436 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3437 }
3438
8986ecc0 3439 return 0;
17ac10ad
AK
3440}
3441
651dd37a
JR
3442static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3443{
3444 if (vcpu->arch.mmu.direct_map)
3445 return mmu_alloc_direct_roots(vcpu);
3446 else
3447 return mmu_alloc_shadow_roots(vcpu);
3448}
3449
0ba73cda
MT
3450static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3451{
3452 int i;
3453 struct kvm_mmu_page *sp;
3454
81407ca5
JR
3455 if (vcpu->arch.mmu.direct_map)
3456 return;
3457
0ba73cda
MT
3458 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3459 return;
6903074c 3460
56f17dd3 3461 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3462 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3463 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3464 hpa_t root = vcpu->arch.mmu.root_hpa;
3465 sp = page_header(root);
3466 mmu_sync_children(vcpu, sp);
0375f7fa 3467 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3468 return;
3469 }
3470 for (i = 0; i < 4; ++i) {
3471 hpa_t root = vcpu->arch.mmu.pae_root[i];
3472
8986ecc0 3473 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3474 root &= PT64_BASE_ADDR_MASK;
3475 sp = page_header(root);
3476 mmu_sync_children(vcpu, sp);
3477 }
3478 }
0375f7fa 3479 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3480}
3481
3482void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3483{
3484 spin_lock(&vcpu->kvm->mmu_lock);
3485 mmu_sync_roots(vcpu);
6cffe8ca 3486 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3487}
bfd0a56b 3488EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3489
1871c602 3490static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3491 u32 access, struct x86_exception *exception)
6aa8b732 3492{
ab9ae313
AK
3493 if (exception)
3494 exception->error_code = 0;
6aa8b732
AK
3495 return vaddr;
3496}
3497
6539e738 3498static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3499 u32 access,
3500 struct x86_exception *exception)
6539e738 3501{
ab9ae313
AK
3502 if (exception)
3503 exception->error_code = 0;
54987b7a 3504 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3505}
3506
d625b155
XG
3507static bool
3508__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3509{
3510 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3511
3512 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3513 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3514}
3515
3516static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3517{
3518 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3519}
3520
3521static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3522{
3523 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3524}
3525
ded58749 3526static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3527{
3528 if (direct)
3529 return vcpu_match_mmio_gpa(vcpu, addr);
3530
3531 return vcpu_match_mmio_gva(vcpu, addr);
3532}
3533
47ab8751
XG
3534/* return true if reserved bit is detected on spte. */
3535static bool
3536walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3537{
3538 struct kvm_shadow_walk_iterator iterator;
47ab8751
XG
3539 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3540 int root, leaf;
3541 bool reserved = false;
ce88decf 3542
37f6a4e2 3543 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3544 goto exit;
37f6a4e2 3545
ce88decf 3546 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3547
29ecd660
PB
3548 for (shadow_walk_init(&iterator, vcpu, addr),
3549 leaf = root = iterator.level;
47ab8751
XG
3550 shadow_walk_okay(&iterator);
3551 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3552 spte = mmu_spte_get_lockless(iterator.sptep);
3553
3554 sptes[leaf - 1] = spte;
29ecd660 3555 leaf--;
47ab8751 3556
ce88decf
XG
3557 if (!is_shadow_present_pte(spte))
3558 break;
47ab8751
XG
3559
3560 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
58c95070 3561 iterator.level);
47ab8751
XG
3562 }
3563
ce88decf
XG
3564 walk_shadow_page_lockless_end(vcpu);
3565
47ab8751
XG
3566 if (reserved) {
3567 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3568 __func__, addr);
29ecd660 3569 while (root > leaf) {
47ab8751
XG
3570 pr_err("------ spte 0x%llx level %d.\n",
3571 sptes[root - 1], root);
3572 root--;
3573 }
3574 }
3575exit:
3576 *sptep = spte;
3577 return reserved;
ce88decf
XG
3578}
3579
450869d6 3580int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3581{
3582 u64 spte;
47ab8751 3583 bool reserved;
ce88decf 3584
ded58749 3585 if (mmio_info_in_cache(vcpu, addr, direct))
b37fbea6 3586 return RET_MMIO_PF_EMULATE;
ce88decf 3587
47ab8751 3588 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3589 if (WARN_ON(reserved))
47ab8751 3590 return RET_MMIO_PF_BUG;
ce88decf
XG
3591
3592 if (is_mmio_spte(spte)) {
3593 gfn_t gfn = get_mmio_spte_gfn(spte);
3594 unsigned access = get_mmio_spte_access(spte);
3595
54bf36aa 3596 if (!check_mmio_spte(vcpu, spte))
f8f55942
XG
3597 return RET_MMIO_PF_INVALID;
3598
ce88decf
XG
3599 if (direct)
3600 addr = 0;
4f022648
XG
3601
3602 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3603 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3604 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3605 }
3606
ce88decf
XG
3607 /*
3608 * If the page table is zapped by other cpus, let CPU fault again on
3609 * the address.
3610 */
b37fbea6 3611 return RET_MMIO_PF_RETRY;
ce88decf 3612}
450869d6 3613EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
ce88decf 3614
3d0c27ad
XG
3615static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3616 u32 error_code, gfn_t gfn)
3617{
3618 if (unlikely(error_code & PFERR_RSVD_MASK))
3619 return false;
3620
3621 if (!(error_code & PFERR_PRESENT_MASK) ||
3622 !(error_code & PFERR_WRITE_MASK))
3623 return false;
3624
3625 /*
3626 * guest is writing the page which is write tracked which can
3627 * not be fixed by page fault handler.
3628 */
3629 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3630 return true;
3631
3632 return false;
3633}
3634
e5691a81
XG
3635static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3636{
3637 struct kvm_shadow_walk_iterator iterator;
3638 u64 spte;
3639
3640 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3641 return;
3642
3643 walk_shadow_page_lockless_begin(vcpu);
3644 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3645 clear_sp_write_flooding_count(iterator.sptep);
3646 if (!is_shadow_present_pte(spte))
3647 break;
3648 }
3649 walk_shadow_page_lockless_end(vcpu);
3650}
3651
6aa8b732 3652static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3653 u32 error_code, bool prefault)
6aa8b732 3654{
3d0c27ad 3655 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3656 int r;
6aa8b732 3657
b8688d51 3658 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3659
3d0c27ad
XG
3660 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3661 return 1;
ce88decf 3662
e2dec939
AK
3663 r = mmu_topup_memory_caches(vcpu);
3664 if (r)
3665 return r;
714b93da 3666
fa4a2c08 3667 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3668
6aa8b732 3669
e833240f 3670 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3671 error_code, gfn, prefault);
6aa8b732
AK
3672}
3673
7e1fbeac 3674static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3675{
3676 struct kvm_arch_async_pf arch;
fb67e14f 3677
7c90705b 3678 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3679 arch.gfn = gfn;
c4806acd 3680 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3681 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3682
54bf36aa 3683 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3684}
3685
3686static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3687{
35754c98 3688 if (unlikely(!lapic_in_kernel(vcpu) ||
af585b92
GN
3689 kvm_event_needs_reinjection(vcpu)))
3690 return false;
3691
3692 return kvm_x86_ops->interrupt_allowed(vcpu);
3693}
3694
78b2c54a 3695static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3696 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 3697{
3520469d 3698 struct kvm_memory_slot *slot;
af585b92
GN
3699 bool async;
3700
54bf36aa 3701 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3702 async = false;
3703 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3704 if (!async)
3705 return false; /* *pfn has correct page already */
3706
78b2c54a 3707 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3708 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3709 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3710 trace_kvm_async_pf_doublefault(gva, gfn);
3711 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3712 return true;
3713 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3714 return true;
3715 }
3716
3520469d 3717 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3718 return false;
3719}
3720
6a39bbc5
XG
3721static bool
3722check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3723{
3724 int page_num = KVM_PAGES_PER_HPAGE(level);
3725
3726 gfn &= ~(page_num - 1);
3727
3728 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3729}
3730
56028d08 3731static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3732 bool prefault)
fb72d167 3733{
ba049e93 3734 kvm_pfn_t pfn;
fb72d167 3735 int r;
852e3c19 3736 int level;
cd1872f0 3737 bool force_pt_level;
05da4558 3738 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3739 unsigned long mmu_seq;
612819c3
MT
3740 int write = error_code & PFERR_WRITE_MASK;
3741 bool map_writable;
fb72d167 3742
fa4a2c08 3743 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3744
3d0c27ad
XG
3745 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3746 return 1;
ce88decf 3747
fb72d167
JR
3748 r = mmu_topup_memory_caches(vcpu);
3749 if (r)
3750 return r;
3751
fd136902
TY
3752 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3753 PT_DIRECTORY_LEVEL);
3754 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3755 if (likely(!force_pt_level)) {
6a39bbc5
XG
3756 if (level > PT_DIRECTORY_LEVEL &&
3757 !check_hugepage_cache_consistency(vcpu, gfn, level))
3758 level = PT_DIRECTORY_LEVEL;
936a5fe6 3759 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3760 }
852e3c19 3761
c7ba5b48
XG
3762 if (fast_page_fault(vcpu, gpa, level, error_code))
3763 return 0;
3764
e930bffe 3765 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3766 smp_rmb();
af585b92 3767
78b2c54a 3768 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3769 return 0;
3770
d7c55201
XG
3771 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3772 return r;
3773
fb72d167 3774 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3775 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3776 goto out_unlock;
450e0b41 3777 make_mmu_pages_available(vcpu);
936a5fe6
AA
3778 if (likely(!force_pt_level))
3779 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3780 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 3781 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3782
3783 return r;
e930bffe
AA
3784
3785out_unlock:
3786 spin_unlock(&vcpu->kvm->mmu_lock);
3787 kvm_release_pfn_clean(pfn);
3788 return 0;
fb72d167
JR
3789}
3790
8a3c1a33
PB
3791static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3792 struct kvm_mmu *context)
6aa8b732 3793{
6aa8b732 3794 context->page_fault = nonpaging_page_fault;
6aa8b732 3795 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3796 context->sync_page = nonpaging_sync_page;
a7052897 3797 context->invlpg = nonpaging_invlpg;
0f53b5b1 3798 context->update_pte = nonpaging_update_pte;
cea0f0e7 3799 context->root_level = 0;
6aa8b732 3800 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3801 context->root_hpa = INVALID_PAGE;
c5a78f2b 3802 context->direct_map = true;
2d48a985 3803 context->nx = false;
6aa8b732
AK
3804}
3805
d8d173da 3806void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3807{
cea0f0e7 3808 mmu_free_roots(vcpu);
6aa8b732
AK
3809}
3810
5777ed34
JR
3811static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3812{
9f8fe504 3813 return kvm_read_cr3(vcpu);
5777ed34
JR
3814}
3815
6389ee94
AK
3816static void inject_page_fault(struct kvm_vcpu *vcpu,
3817 struct x86_exception *fault)
6aa8b732 3818{
6389ee94 3819 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3820}
3821
54bf36aa 3822static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3823 unsigned access, int *nr_present)
ce88decf
XG
3824{
3825 if (unlikely(is_mmio_spte(*sptep))) {
3826 if (gfn != get_mmio_spte_gfn(*sptep)) {
3827 mmu_spte_clear_no_track(sptep);
3828 return true;
3829 }
3830
3831 (*nr_present)++;
54bf36aa 3832 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3833 return true;
3834 }
3835
3836 return false;
3837}
3838
6bb69c9b
PB
3839static inline bool is_last_gpte(struct kvm_mmu *mmu,
3840 unsigned level, unsigned gpte)
6fd01b71 3841{
6bb69c9b
PB
3842 /*
3843 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3844 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3845 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3846 */
3847 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
6fd01b71 3848
6bb69c9b
PB
3849 /*
3850 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3851 * If it is clear, there are no large pages at this level, so clear
3852 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3853 */
3854 gpte &= level - mmu->last_nonleaf_level;
3855
3856 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
3857}
3858
37406aaa
NHE
3859#define PTTYPE_EPT 18 /* arbitrary */
3860#define PTTYPE PTTYPE_EPT
3861#include "paging_tmpl.h"
3862#undef PTTYPE
3863
6aa8b732
AK
3864#define PTTYPE 64
3865#include "paging_tmpl.h"
3866#undef PTTYPE
3867
3868#define PTTYPE 32
3869#include "paging_tmpl.h"
3870#undef PTTYPE
3871
6dc98b86
XG
3872static void
3873__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3874 struct rsvd_bits_validate *rsvd_check,
3875 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3876 bool pse, bool amd)
82725b20 3877{
82725b20 3878 u64 exb_bit_rsvd = 0;
5f7dde7b 3879 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3880 u64 nonleaf_bit8_rsvd = 0;
82725b20 3881
a0a64f50 3882 rsvd_check->bad_mt_xwr = 0;
25d92081 3883
6dc98b86 3884 if (!nx)
82725b20 3885 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3886 if (!gbpages)
5f7dde7b 3887 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3888
3889 /*
3890 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3891 * leaf entries) on AMD CPUs only.
3892 */
6fec2144 3893 if (amd)
a0c0feb5
PB
3894 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3895
6dc98b86 3896 switch (level) {
82725b20
DE
3897 case PT32_ROOT_LEVEL:
3898 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3899 rsvd_check->rsvd_bits_mask[0][1] = 0;
3900 rsvd_check->rsvd_bits_mask[0][0] = 0;
3901 rsvd_check->rsvd_bits_mask[1][0] =
3902 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 3903
6dc98b86 3904 if (!pse) {
a0a64f50 3905 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
3906 break;
3907 }
3908
82725b20
DE
3909 if (is_cpuid_PSE36())
3910 /* 36bits PSE 4MB page */
a0a64f50 3911 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
3912 else
3913 /* 32 bits PSE 4MB page */
a0a64f50 3914 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3915 break;
3916 case PT32E_ROOT_LEVEL:
a0a64f50 3917 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 3918 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3919 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 3920 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3921 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 3922 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 3923 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 3924 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
3925 rsvd_bits(maxphyaddr, 62) |
3926 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3927 rsvd_check->rsvd_bits_mask[1][0] =
3928 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3929 break;
3930 case PT64_ROOT_LEVEL:
a0a64f50
XG
3931 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3932 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 3933 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3934 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3935 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 3936 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3937 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3938 rsvd_bits(maxphyaddr, 51);
3939 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3940 rsvd_bits(maxphyaddr, 51);
3941 rsvd_check->rsvd_bits_mask[1][3] =
3942 rsvd_check->rsvd_bits_mask[0][3];
3943 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3944 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3945 rsvd_bits(13, 29);
a0a64f50 3946 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3947 rsvd_bits(maxphyaddr, 51) |
3948 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3949 rsvd_check->rsvd_bits_mask[1][0] =
3950 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3951 break;
3952 }
3953}
3954
6dc98b86
XG
3955static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3956 struct kvm_mmu *context)
3957{
3958 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3959 cpuid_maxphyaddr(vcpu), context->root_level,
3960 context->nx, guest_cpuid_has_gbpages(vcpu),
6fec2144 3961 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
3962}
3963
81b8eebb
XG
3964static void
3965__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3966 int maxphyaddr, bool execonly)
25d92081 3967{
951f9fd7 3968 u64 bad_mt_xwr;
25d92081 3969
a0a64f50 3970 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 3971 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 3972 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 3973 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3974 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 3975 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3976 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
3977
3978 /* large page */
a0a64f50
XG
3979 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3980 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 3981 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 3982 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 3983 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 3984 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 3985
951f9fd7
PB
3986 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3987 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3988 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3989 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3990 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3991 if (!execonly) {
3992 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3993 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 3994 }
951f9fd7 3995 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
3996}
3997
81b8eebb
XG
3998static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3999 struct kvm_mmu *context, bool execonly)
4000{
4001 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4002 cpuid_maxphyaddr(vcpu), execonly);
4003}
4004
c258b62b
XG
4005/*
4006 * the page table on host is the shadow page table for the page
4007 * table in guest or amd nested guest, its mmu features completely
4008 * follow the features in guest.
4009 */
4010void
4011reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4012{
5f0b8199
PB
4013 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4014
6fec2144
PB
4015 /*
4016 * Passing "true" to the last argument is okay; it adds a check
4017 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4018 */
c258b62b
XG
4019 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4020 boot_cpu_data.x86_phys_bits,
5f0b8199 4021 context->shadow_root_level, uses_nx,
6fec2144
PB
4022 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
4023 true);
c258b62b
XG
4024}
4025EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4026
6fec2144
PB
4027static inline bool boot_cpu_is_amd(void)
4028{
4029 WARN_ON_ONCE(!tdp_enabled);
4030 return shadow_x_mask == 0;
4031}
4032
c258b62b
XG
4033/*
4034 * the direct page table on host, use as much mmu features as
4035 * possible, however, kvm currently does not do execution-protection.
4036 */
4037static void
4038reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4039 struct kvm_mmu *context)
4040{
6fec2144 4041 if (boot_cpu_is_amd())
c258b62b
XG
4042 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4043 boot_cpu_data.x86_phys_bits,
4044 context->shadow_root_level, false,
b8291adc
BP
4045 boot_cpu_has(X86_FEATURE_GBPAGES),
4046 true, true);
c258b62b
XG
4047 else
4048 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4049 boot_cpu_data.x86_phys_bits,
4050 false);
4051
4052}
4053
4054/*
4055 * as the comments in reset_shadow_zero_bits_mask() except it
4056 * is the shadow page table for intel nested guest.
4057 */
4058static void
4059reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4060 struct kvm_mmu *context, bool execonly)
4061{
4062 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4063 boot_cpu_data.x86_phys_bits, execonly);
4064}
4065
edc90b7d
XG
4066static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4067 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
4068{
4069 unsigned bit, byte, pfec;
4070 u8 map;
66386ade 4071 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 4072
66386ade 4073 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 4074 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
4075 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4076 pfec = byte << 1;
4077 map = 0;
4078 wf = pfec & PFERR_WRITE_MASK;
4079 uf = pfec & PFERR_USER_MASK;
4080 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
4081 /*
4082 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
4083 * subject to SMAP restrictions, and cleared otherwise. The
4084 * bit is only meaningful if the SMAP bit is set in CR4.
4085 */
4086 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
4087 for (bit = 0; bit < 8; ++bit) {
4088 x = bit & ACC_EXEC_MASK;
4089 w = bit & ACC_WRITE_MASK;
4090 u = bit & ACC_USER_MASK;
4091
25d92081
YZ
4092 if (!ept) {
4093 /* Not really needed: !nx will cause pte.nx to fault */
4094 x |= !mmu->nx;
4095 /* Allow supervisor writes if !cr0.wp */
4096 w |= !is_write_protection(vcpu) && !uf;
4097 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 4098 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
4099
4100 /*
4101 * SMAP:kernel-mode data accesses from user-mode
4102 * mappings should fault. A fault is considered
4103 * as a SMAP violation if all of the following
4104 * conditions are ture:
4105 * - X86_CR4_SMAP is set in CR4
9332ef9d 4106 * - A user page is accessed
97ec8c06
FW
4107 * - Page fault in kernel mode
4108 * - if CPL = 3 or X86_EFLAGS_AC is clear
4109 *
4110 * Here, we cover the first three conditions.
4111 * The fourth is computed dynamically in
4112 * permission_fault() and is in smapf.
4113 *
4114 * Also, SMAP does not affect instruction
4115 * fetches, add the !ff check here to make it
4116 * clearer.
4117 */
4118 smap = cr4_smap && u && !uf && !ff;
d95c5568 4119 }
97d64b78 4120
97ec8c06
FW
4121 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
4122 (smapf && smap);
97d64b78
AK
4123 map |= fault << bit;
4124 }
4125 mmu->permissions[byte] = map;
4126 }
4127}
4128
2d344105
HH
4129/*
4130* PKU is an additional mechanism by which the paging controls access to
4131* user-mode addresses based on the value in the PKRU register. Protection
4132* key violations are reported through a bit in the page fault error code.
4133* Unlike other bits of the error code, the PK bit is not known at the
4134* call site of e.g. gva_to_gpa; it must be computed directly in
4135* permission_fault based on two bits of PKRU, on some machine state (CR4,
4136* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4137*
4138* In particular the following conditions come from the error code, the
4139* page tables and the machine state:
4140* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4141* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4142* - PK is always zero if U=0 in the page tables
4143* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4144*
4145* The PKRU bitmask caches the result of these four conditions. The error
4146* code (minus the P bit) and the page table's U bit form an index into the
4147* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4148* with the two bits of the PKRU register corresponding to the protection key.
4149* For the first three conditions above the bits will be 00, thus masking
4150* away both AD and WD. For all reads or if the last condition holds, WD
4151* only will be masked away.
4152*/
4153static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4154 bool ept)
4155{
4156 unsigned bit;
4157 bool wp;
4158
4159 if (ept) {
4160 mmu->pkru_mask = 0;
4161 return;
4162 }
4163
4164 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4165 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4166 mmu->pkru_mask = 0;
4167 return;
4168 }
4169
4170 wp = is_write_protection(vcpu);
4171
4172 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4173 unsigned pfec, pkey_bits;
4174 bool check_pkey, check_write, ff, uf, wf, pte_user;
4175
4176 pfec = bit << 1;
4177 ff = pfec & PFERR_FETCH_MASK;
4178 uf = pfec & PFERR_USER_MASK;
4179 wf = pfec & PFERR_WRITE_MASK;
4180
4181 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4182 pte_user = pfec & PFERR_RSVD_MASK;
4183
4184 /*
4185 * Only need to check the access which is not an
4186 * instruction fetch and is to a user page.
4187 */
4188 check_pkey = (!ff && pte_user);
4189 /*
4190 * write access is controlled by PKRU if it is a
4191 * user access or CR0.WP = 1.
4192 */
4193 check_write = check_pkey && wf && (uf || wp);
4194
4195 /* PKRU.AD stops both read and write access. */
4196 pkey_bits = !!check_pkey;
4197 /* PKRU.WD stops write access. */
4198 pkey_bits |= (!!check_write) << 1;
4199
4200 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4201 }
4202}
4203
6bb69c9b 4204static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4205{
6bb69c9b
PB
4206 unsigned root_level = mmu->root_level;
4207
4208 mmu->last_nonleaf_level = root_level;
4209 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4210 mmu->last_nonleaf_level++;
6fd01b71
AK
4211}
4212
8a3c1a33
PB
4213static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4214 struct kvm_mmu *context,
4215 int level)
6aa8b732 4216{
2d48a985 4217 context->nx = is_nx(vcpu);
4d6931c3 4218 context->root_level = level;
2d48a985 4219
4d6931c3 4220 reset_rsvds_bits_mask(vcpu, context);
25d92081 4221 update_permission_bitmask(vcpu, context, false);
2d344105 4222 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4223 update_last_nonleaf_level(vcpu, context);
6aa8b732 4224
fa4a2c08 4225 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4226 context->page_fault = paging64_page_fault;
6aa8b732 4227 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4228 context->sync_page = paging64_sync_page;
a7052897 4229 context->invlpg = paging64_invlpg;
0f53b5b1 4230 context->update_pte = paging64_update_pte;
17ac10ad 4231 context->shadow_root_level = level;
17c3ba9d 4232 context->root_hpa = INVALID_PAGE;
c5a78f2b 4233 context->direct_map = false;
6aa8b732
AK
4234}
4235
8a3c1a33
PB
4236static void paging64_init_context(struct kvm_vcpu *vcpu,
4237 struct kvm_mmu *context)
17ac10ad 4238{
8a3c1a33 4239 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
4240}
4241
8a3c1a33
PB
4242static void paging32_init_context(struct kvm_vcpu *vcpu,
4243 struct kvm_mmu *context)
6aa8b732 4244{
2d48a985 4245 context->nx = false;
4d6931c3 4246 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4247
4d6931c3 4248 reset_rsvds_bits_mask(vcpu, context);
25d92081 4249 update_permission_bitmask(vcpu, context, false);
2d344105 4250 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4251 update_last_nonleaf_level(vcpu, context);
6aa8b732 4252
6aa8b732 4253 context->page_fault = paging32_page_fault;
6aa8b732 4254 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4255 context->sync_page = paging32_sync_page;
a7052897 4256 context->invlpg = paging32_invlpg;
0f53b5b1 4257 context->update_pte = paging32_update_pte;
6aa8b732 4258 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 4259 context->root_hpa = INVALID_PAGE;
c5a78f2b 4260 context->direct_map = false;
6aa8b732
AK
4261}
4262
8a3c1a33
PB
4263static void paging32E_init_context(struct kvm_vcpu *vcpu,
4264 struct kvm_mmu *context)
6aa8b732 4265{
8a3c1a33 4266 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4267}
4268
8a3c1a33 4269static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4270{
ad896af0 4271 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 4272
c445f8ef 4273 context->base_role.word = 0;
699023e2 4274 context->base_role.smm = is_smm(vcpu);
fb72d167 4275 context->page_fault = tdp_page_fault;
e8bc217a 4276 context->sync_page = nonpaging_sync_page;
a7052897 4277 context->invlpg = nonpaging_invlpg;
0f53b5b1 4278 context->update_pte = nonpaging_update_pte;
67253af5 4279 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 4280 context->root_hpa = INVALID_PAGE;
c5a78f2b 4281 context->direct_map = true;
1c97f0a0 4282 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4283 context->get_cr3 = get_cr3;
e4e517b4 4284 context->get_pdptr = kvm_pdptr_read;
cb659db8 4285 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4286
4287 if (!is_paging(vcpu)) {
2d48a985 4288 context->nx = false;
fb72d167
JR
4289 context->gva_to_gpa = nonpaging_gva_to_gpa;
4290 context->root_level = 0;
4291 } else if (is_long_mode(vcpu)) {
2d48a985 4292 context->nx = is_nx(vcpu);
fb72d167 4293 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
4294 reset_rsvds_bits_mask(vcpu, context);
4295 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4296 } else if (is_pae(vcpu)) {
2d48a985 4297 context->nx = is_nx(vcpu);
fb72d167 4298 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4299 reset_rsvds_bits_mask(vcpu, context);
4300 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4301 } else {
2d48a985 4302 context->nx = false;
fb72d167 4303 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4304 reset_rsvds_bits_mask(vcpu, context);
4305 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4306 }
4307
25d92081 4308 update_permission_bitmask(vcpu, context, false);
2d344105 4309 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4310 update_last_nonleaf_level(vcpu, context);
c258b62b 4311 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4312}
4313
ad896af0 4314void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 4315{
411c588d 4316 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 4317 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
4318 struct kvm_mmu *context = &vcpu->arch.mmu;
4319
fa4a2c08 4320 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
4321
4322 if (!is_paging(vcpu))
8a3c1a33 4323 nonpaging_init_context(vcpu, context);
a9058ecd 4324 else if (is_long_mode(vcpu))
8a3c1a33 4325 paging64_init_context(vcpu, context);
6aa8b732 4326 else if (is_pae(vcpu))
8a3c1a33 4327 paging32E_init_context(vcpu, context);
6aa8b732 4328 else
8a3c1a33 4329 paging32_init_context(vcpu, context);
a770f6f2 4330
ad896af0
PB
4331 context->base_role.nxe = is_nx(vcpu);
4332 context->base_role.cr4_pae = !!is_pae(vcpu);
4333 context->base_role.cr0_wp = is_write_protection(vcpu);
4334 context->base_role.smep_andnot_wp
411c588d 4335 = smep && !is_write_protection(vcpu);
edc90b7d
XG
4336 context->base_role.smap_andnot_wp
4337 = smap && !is_write_protection(vcpu);
699023e2 4338 context->base_role.smm = is_smm(vcpu);
c258b62b 4339 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4340}
4341EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4342
ae1e2d10
PB
4343void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4344 bool accessed_dirty)
155a97a3 4345{
ad896af0
PB
4346 struct kvm_mmu *context = &vcpu->arch.mmu;
4347
fa4a2c08 4348 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
4349
4350 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4351
4352 context->nx = true;
ae1e2d10 4353 context->ept_ad = accessed_dirty;
155a97a3
NHE
4354 context->page_fault = ept_page_fault;
4355 context->gva_to_gpa = ept_gva_to_gpa;
4356 context->sync_page = ept_sync_page;
4357 context->invlpg = ept_invlpg;
4358 context->update_pte = ept_update_pte;
155a97a3
NHE
4359 context->root_level = context->shadow_root_level;
4360 context->root_hpa = INVALID_PAGE;
4361 context->direct_map = false;
4362
4363 update_permission_bitmask(vcpu, context, true);
2d344105 4364 update_pkru_bitmask(vcpu, context, true);
155a97a3 4365 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4366 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4367}
4368EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4369
8a3c1a33 4370static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4371{
ad896af0
PB
4372 struct kvm_mmu *context = &vcpu->arch.mmu;
4373
4374 kvm_init_shadow_mmu(vcpu);
4375 context->set_cr3 = kvm_x86_ops->set_cr3;
4376 context->get_cr3 = get_cr3;
4377 context->get_pdptr = kvm_pdptr_read;
4378 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4379}
4380
8a3c1a33 4381static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4382{
4383 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4384
4385 g_context->get_cr3 = get_cr3;
e4e517b4 4386 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4387 g_context->inject_page_fault = kvm_inject_page_fault;
4388
4389 /*
0af2593b
DM
4390 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4391 * L1's nested page tables (e.g. EPT12). The nested translation
4392 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4393 * L2's page tables as the first level of translation and L1's
4394 * nested page tables as the second level of translation. Basically
4395 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4396 */
4397 if (!is_paging(vcpu)) {
2d48a985 4398 g_context->nx = false;
02f59dc9
JR
4399 g_context->root_level = 0;
4400 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4401 } else if (is_long_mode(vcpu)) {
2d48a985 4402 g_context->nx = is_nx(vcpu);
02f59dc9 4403 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4404 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4405 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4406 } else if (is_pae(vcpu)) {
2d48a985 4407 g_context->nx = is_nx(vcpu);
02f59dc9 4408 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4409 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4410 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4411 } else {
2d48a985 4412 g_context->nx = false;
02f59dc9 4413 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4414 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4415 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4416 }
4417
25d92081 4418 update_permission_bitmask(vcpu, g_context, false);
2d344105 4419 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4420 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4421}
4422
8a3c1a33 4423static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4424{
02f59dc9 4425 if (mmu_is_nested(vcpu))
e0c6db3e 4426 init_kvm_nested_mmu(vcpu);
02f59dc9 4427 else if (tdp_enabled)
e0c6db3e 4428 init_kvm_tdp_mmu(vcpu);
fb72d167 4429 else
e0c6db3e 4430 init_kvm_softmmu(vcpu);
fb72d167
JR
4431}
4432
8a3c1a33 4433void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4434{
95f93af4 4435 kvm_mmu_unload(vcpu);
8a3c1a33 4436 init_kvm_mmu(vcpu);
17c3ba9d 4437}
8668a3c4 4438EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4439
4440int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4441{
714b93da
AK
4442 int r;
4443
e2dec939 4444 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4445 if (r)
4446 goto out;
8986ecc0 4447 r = mmu_alloc_roots(vcpu);
e2858b4a 4448 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4449 if (r)
4450 goto out;
3662cb1c 4451 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4452 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4453out:
4454 return r;
6aa8b732 4455}
17c3ba9d
AK
4456EXPORT_SYMBOL_GPL(kvm_mmu_load);
4457
4458void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4459{
4460 mmu_free_roots(vcpu);
95f93af4 4461 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4462}
4b16184c 4463EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4464
0028425f 4465static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4466 struct kvm_mmu_page *sp, u64 *spte,
4467 const void *new)
0028425f 4468{
30945387 4469 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4470 ++vcpu->kvm->stat.mmu_pde_zapped;
4471 return;
30945387 4472 }
0028425f 4473
4cee5764 4474 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4475 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4476}
4477
79539cec
AK
4478static bool need_remote_flush(u64 old, u64 new)
4479{
4480 if (!is_shadow_present_pte(old))
4481 return false;
4482 if (!is_shadow_present_pte(new))
4483 return true;
4484 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4485 return true;
53166229
GN
4486 old ^= shadow_nx_mask;
4487 new ^= shadow_nx_mask;
79539cec
AK
4488 return (old & ~new & PT64_PERM_MASK) != 0;
4489}
4490
889e5cbc
XG
4491static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4492 const u8 *new, int *bytes)
da4a00f0 4493{
889e5cbc
XG
4494 u64 gentry;
4495 int r;
72016f3a 4496
72016f3a
AK
4497 /*
4498 * Assume that the pte write on a page table of the same type
49b26e26
XG
4499 * as the current vcpu paging mode since we update the sptes only
4500 * when they have the same mode.
72016f3a 4501 */
889e5cbc 4502 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4503 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4504 *gpa &= ~(gpa_t)7;
4505 *bytes = 8;
54bf36aa 4506 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4507 if (r)
4508 gentry = 0;
08e850c6
AK
4509 new = (const u8 *)&gentry;
4510 }
4511
889e5cbc 4512 switch (*bytes) {
08e850c6
AK
4513 case 4:
4514 gentry = *(const u32 *)new;
4515 break;
4516 case 8:
4517 gentry = *(const u64 *)new;
4518 break;
4519 default:
4520 gentry = 0;
4521 break;
72016f3a
AK
4522 }
4523
889e5cbc
XG
4524 return gentry;
4525}
4526
4527/*
4528 * If we're seeing too many writes to a page, it may no longer be a page table,
4529 * or we may be forking, in which case it is better to unmap the page.
4530 */
a138fe75 4531static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4532{
a30f47cb
XG
4533 /*
4534 * Skip write-flooding detected for the sp whose level is 1, because
4535 * it can become unsync, then the guest page is not write-protected.
4536 */
f71fa31f 4537 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4538 return false;
3246af0e 4539
e5691a81
XG
4540 atomic_inc(&sp->write_flooding_count);
4541 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4542}
4543
4544/*
4545 * Misaligned accesses are too much trouble to fix up; also, they usually
4546 * indicate a page is not used as a page table.
4547 */
4548static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4549 int bytes)
4550{
4551 unsigned offset, pte_size, misaligned;
4552
4553 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4554 gpa, bytes, sp->role.word);
4555
4556 offset = offset_in_page(gpa);
4557 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4558
4559 /*
4560 * Sometimes, the OS only writes the last one bytes to update status
4561 * bits, for example, in linux, andb instruction is used in clear_bit().
4562 */
4563 if (!(offset & (pte_size - 1)) && bytes == 1)
4564 return false;
4565
889e5cbc
XG
4566 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4567 misaligned |= bytes < 4;
4568
4569 return misaligned;
4570}
4571
4572static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4573{
4574 unsigned page_offset, quadrant;
4575 u64 *spte;
4576 int level;
4577
4578 page_offset = offset_in_page(gpa);
4579 level = sp->role.level;
4580 *nspte = 1;
4581 if (!sp->role.cr4_pae) {
4582 page_offset <<= 1; /* 32->64 */
4583 /*
4584 * A 32-bit pde maps 4MB while the shadow pdes map
4585 * only 2MB. So we need to double the offset again
4586 * and zap two pdes instead of one.
4587 */
4588 if (level == PT32_ROOT_LEVEL) {
4589 page_offset &= ~7; /* kill rounding error */
4590 page_offset <<= 1;
4591 *nspte = 2;
4592 }
4593 quadrant = page_offset >> PAGE_SHIFT;
4594 page_offset &= ~PAGE_MASK;
4595 if (quadrant != sp->role.quadrant)
4596 return NULL;
4597 }
4598
4599 spte = &sp->spt[page_offset / sizeof(*spte)];
4600 return spte;
4601}
4602
13d268ca 4603static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
4604 const u8 *new, int bytes,
4605 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
4606{
4607 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4608 struct kvm_mmu_page *sp;
889e5cbc
XG
4609 LIST_HEAD(invalid_list);
4610 u64 entry, gentry, *spte;
4611 int npte;
b8c67b7a 4612 bool remote_flush, local_flush;
4141259b
AM
4613 union kvm_mmu_page_role mask = { };
4614
4615 mask.cr0_wp = 1;
4616 mask.cr4_pae = 1;
4617 mask.nxe = 1;
4618 mask.smep_andnot_wp = 1;
4619 mask.smap_andnot_wp = 1;
699023e2 4620 mask.smm = 1;
889e5cbc
XG
4621
4622 /*
4623 * If we don't have indirect shadow pages, it means no page is
4624 * write-protected, so we can exit simply.
4625 */
4626 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4627 return;
4628
b8c67b7a 4629 remote_flush = local_flush = false;
889e5cbc
XG
4630
4631 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4632
4633 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4634
4635 /*
4636 * No need to care whether allocation memory is successful
4637 * or not since pte prefetch is skiped if it does not have
4638 * enough objects in the cache.
4639 */
4640 mmu_topup_memory_caches(vcpu);
4641
4642 spin_lock(&vcpu->kvm->mmu_lock);
4643 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4644 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4645
b67bfe0d 4646 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4647 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4648 detect_write_flooding(sp)) {
b8c67b7a 4649 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4650 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4651 continue;
4652 }
889e5cbc
XG
4653
4654 spte = get_written_sptes(sp, gpa, &npte);
4655 if (!spte)
4656 continue;
4657
0671a8e7 4658 local_flush = true;
ac1b714e 4659 while (npte--) {
79539cec 4660 entry = *spte;
38e3b2b2 4661 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4662 if (gentry &&
4663 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4664 & mask.word) && rmap_can_add(vcpu))
7c562522 4665 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4666 if (need_remote_flush(entry, *spte))
0671a8e7 4667 remote_flush = true;
ac1b714e 4668 ++spte;
9b7a0325 4669 }
9b7a0325 4670 }
b8c67b7a 4671 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 4672 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4673 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4674}
4675
a436036b
AK
4676int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4677{
10589a46
MT
4678 gpa_t gpa;
4679 int r;
a436036b 4680
c5a78f2b 4681 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4682 return 0;
4683
1871c602 4684 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4685
10589a46 4686 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4687
10589a46 4688 return r;
a436036b 4689}
577bdc49 4690EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4691
81f4f76b 4692static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4693{
d98ba053 4694 LIST_HEAD(invalid_list);
103ad25a 4695
81f4f76b
TY
4696 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4697 return;
4698
5da59607
TY
4699 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4700 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4701 break;
ebeace86 4702
4cee5764 4703 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4704 }
aa6bd187 4705 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4706}
ebeace86 4707
14727754 4708int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
dc25e89e 4709 void *insn, int insn_len)
3067714c 4710{
1cb3f3ae 4711 int r, emulation_type = EMULTYPE_RETRY;
3067714c 4712 enum emulation_result er;
ded58749 4713 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
3067714c 4714
e9ee956e
TY
4715 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4716 r = handle_mmio_page_fault(vcpu, cr2, direct);
4717 if (r == RET_MMIO_PF_EMULATE) {
4718 emulation_type = 0;
4719 goto emulate;
4720 }
4721 if (r == RET_MMIO_PF_RETRY)
4722 return 1;
4723 if (r < 0)
4724 return r;
4725 }
3067714c 4726
14727754
TL
4727 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4728 false);
3067714c 4729 if (r < 0)
e9ee956e
TY
4730 return r;
4731 if (!r)
4732 return 1;
3067714c 4733
14727754
TL
4734 /*
4735 * Before emulating the instruction, check if the error code
4736 * was due to a RO violation while translating the guest page.
4737 * This can occur when using nested virtualization with nested
4738 * paging in both guests. If true, we simply unprotect the page
4739 * and resume the guest.
4740 *
4741 * Note: AMD only (since it supports the PFERR_GUEST_PAGE_MASK used
4742 * in PFERR_NEXT_GUEST_PAGE)
4743 */
4744 if (error_code == PFERR_NESTED_GUEST_PAGE) {
4745 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4746 return 1;
4747 }
4748
ded58749 4749 if (mmio_info_in_cache(vcpu, cr2, direct))
1cb3f3ae 4750 emulation_type = 0;
e9ee956e 4751emulate:
1cb3f3ae 4752 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4753
4754 switch (er) {
4755 case EMULATE_DONE:
4756 return 1;
ac0a48c3 4757 case EMULATE_USER_EXIT:
3067714c 4758 ++vcpu->stat.mmio_exits;
6d77dbfc 4759 /* fall through */
3067714c 4760 case EMULATE_FAIL:
3f5d18a9 4761 return 0;
3067714c
AK
4762 default:
4763 BUG();
4764 }
3067714c
AK
4765}
4766EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4767
a7052897
MT
4768void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4769{
a7052897 4770 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4771 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4772 ++vcpu->stat.invlpg;
4773}
4774EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4775
18552672
JR
4776void kvm_enable_tdp(void)
4777{
4778 tdp_enabled = true;
4779}
4780EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4781
5f4cb662
JR
4782void kvm_disable_tdp(void)
4783{
4784 tdp_enabled = false;
4785}
4786EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4787
6aa8b732
AK
4788static void free_mmu_pages(struct kvm_vcpu *vcpu)
4789{
ad312c7c 4790 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4791 if (vcpu->arch.mmu.lm_root != NULL)
4792 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4793}
4794
4795static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4796{
17ac10ad 4797 struct page *page;
6aa8b732
AK
4798 int i;
4799
17ac10ad
AK
4800 /*
4801 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4802 * Therefore we need to allocate shadow page tables in the first
4803 * 4GB of memory, which happens to fit the DMA32 zone.
4804 */
4805 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4806 if (!page)
d7fa6ab2
WY
4807 return -ENOMEM;
4808
ad312c7c 4809 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4810 for (i = 0; i < 4; ++i)
ad312c7c 4811 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4812
6aa8b732 4813 return 0;
6aa8b732
AK
4814}
4815
8018c27b 4816int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4817{
e459e322
XG
4818 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4819 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4820 vcpu->arch.mmu.translate_gpa = translate_gpa;
4821 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4822
8018c27b
IM
4823 return alloc_mmu_pages(vcpu);
4824}
6aa8b732 4825
8a3c1a33 4826void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4827{
fa4a2c08 4828 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4829
8a3c1a33 4830 init_kvm_mmu(vcpu);
6aa8b732
AK
4831}
4832
b5f5fdca 4833static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
4834 struct kvm_memory_slot *slot,
4835 struct kvm_page_track_notifier_node *node)
b5f5fdca
XC
4836{
4837 kvm_mmu_invalidate_zap_all_pages(kvm);
4838}
4839
13d268ca
XG
4840void kvm_mmu_init_vm(struct kvm *kvm)
4841{
4842 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4843
4844 node->track_write = kvm_mmu_pte_write;
b5f5fdca 4845 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca
XG
4846 kvm_page_track_register_notifier(kvm, node);
4847}
4848
4849void kvm_mmu_uninit_vm(struct kvm *kvm)
4850{
4851 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4852
4853 kvm_page_track_unregister_notifier(kvm, node);
4854}
4855
1bad2b2a 4856/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 4857typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
4858
4859/* The caller should hold mmu-lock before calling this function. */
4860static bool
4861slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4862 slot_level_handler fn, int start_level, int end_level,
4863 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4864{
4865 struct slot_rmap_walk_iterator iterator;
4866 bool flush = false;
4867
4868 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4869 end_gfn, &iterator) {
4870 if (iterator.rmap)
4871 flush |= fn(kvm, iterator.rmap);
4872
4873 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4874 if (flush && lock_flush_tlb) {
4875 kvm_flush_remote_tlbs(kvm);
4876 flush = false;
4877 }
4878 cond_resched_lock(&kvm->mmu_lock);
4879 }
4880 }
4881
4882 if (flush && lock_flush_tlb) {
4883 kvm_flush_remote_tlbs(kvm);
4884 flush = false;
4885 }
4886
4887 return flush;
4888}
4889
4890static bool
4891slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4892 slot_level_handler fn, int start_level, int end_level,
4893 bool lock_flush_tlb)
4894{
4895 return slot_handle_level_range(kvm, memslot, fn, start_level,
4896 end_level, memslot->base_gfn,
4897 memslot->base_gfn + memslot->npages - 1,
4898 lock_flush_tlb);
4899}
4900
4901static bool
4902slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4903 slot_level_handler fn, bool lock_flush_tlb)
4904{
4905 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4906 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4907}
4908
4909static bool
4910slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4911 slot_level_handler fn, bool lock_flush_tlb)
4912{
4913 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4914 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4915}
4916
4917static bool
4918slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4919 slot_level_handler fn, bool lock_flush_tlb)
4920{
4921 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4922 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4923}
4924
efdfe536
XG
4925void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4926{
4927 struct kvm_memslots *slots;
4928 struct kvm_memory_slot *memslot;
9da0e4d5 4929 int i;
efdfe536
XG
4930
4931 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
4932 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4933 slots = __kvm_memslots(kvm, i);
4934 kvm_for_each_memslot(memslot, slots) {
4935 gfn_t start, end;
4936
4937 start = max(gfn_start, memslot->base_gfn);
4938 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4939 if (start >= end)
4940 continue;
efdfe536 4941
9da0e4d5
PB
4942 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4943 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4944 start, end - 1, true);
4945 }
efdfe536
XG
4946 }
4947
4948 spin_unlock(&kvm->mmu_lock);
4949}
4950
018aabb5
TY
4951static bool slot_rmap_write_protect(struct kvm *kvm,
4952 struct kvm_rmap_head *rmap_head)
d77aa73c 4953{
018aabb5 4954 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
4955}
4956
1c91cad4
KH
4957void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4958 struct kvm_memory_slot *memslot)
6aa8b732 4959{
d77aa73c 4960 bool flush;
6aa8b732 4961
9d1beefb 4962 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4963 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4964 false);
9d1beefb 4965 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4966
4967 /*
4968 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4969 * which do tlb flush out of mmu-lock should be serialized by
4970 * kvm->slots_lock otherwise tlb flush would be missed.
4971 */
4972 lockdep_assert_held(&kvm->slots_lock);
4973
4974 /*
4975 * We can flush all the TLBs out of the mmu lock without TLB
4976 * corruption since we just change the spte from writable to
4977 * readonly so that we only need to care the case of changing
4978 * spte from present to present (changing the spte from present
4979 * to nonpresent will flush all the TLBs immediately), in other
4980 * words, the only case we care is mmu_spte_update() where we
4981 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4982 * instead of PT_WRITABLE_MASK, that means it does not depend
4983 * on PT_WRITABLE_MASK anymore.
4984 */
d91ffee9
KH
4985 if (flush)
4986 kvm_flush_remote_tlbs(kvm);
6aa8b732 4987}
37a7d8b0 4988
3ea3b7fa 4989static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 4990 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
4991{
4992 u64 *sptep;
4993 struct rmap_iterator iter;
4994 int need_tlb_flush = 0;
ba049e93 4995 kvm_pfn_t pfn;
3ea3b7fa
WL
4996 struct kvm_mmu_page *sp;
4997
0d536790 4998restart:
018aabb5 4999 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
5000 sp = page_header(__pa(sptep));
5001 pfn = spte_to_pfn(*sptep);
5002
5003 /*
decf6333
XG
5004 * We cannot do huge page mapping for indirect shadow pages,
5005 * which are found on the last rmap (level = 1) when not using
5006 * tdp; such shadow pages are synced with the page table in
5007 * the guest, and the guest page table is using 4K page size
5008 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
5009 */
5010 if (sp->role.direct &&
5011 !kvm_is_reserved_pfn(pfn) &&
127393fb 5012 PageTransCompoundMap(pfn_to_page(pfn))) {
3ea3b7fa 5013 drop_spte(kvm, sptep);
3ea3b7fa 5014 need_tlb_flush = 1;
0d536790
XG
5015 goto restart;
5016 }
3ea3b7fa
WL
5017 }
5018
5019 return need_tlb_flush;
5020}
5021
5022void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5023 const struct kvm_memory_slot *memslot)
3ea3b7fa 5024{
f36f3f28 5025 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5026 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5027 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5028 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5029 spin_unlock(&kvm->mmu_lock);
5030}
5031
f4b4b180
KH
5032void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5033 struct kvm_memory_slot *memslot)
5034{
d77aa73c 5035 bool flush;
f4b4b180
KH
5036
5037 spin_lock(&kvm->mmu_lock);
d77aa73c 5038 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5039 spin_unlock(&kvm->mmu_lock);
5040
5041 lockdep_assert_held(&kvm->slots_lock);
5042
5043 /*
5044 * It's also safe to flush TLBs out of mmu lock here as currently this
5045 * function is only used for dirty logging, in which case flushing TLB
5046 * out of mmu lock also guarantees no dirty pages will be lost in
5047 * dirty_bitmap.
5048 */
5049 if (flush)
5050 kvm_flush_remote_tlbs(kvm);
5051}
5052EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5053
5054void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5055 struct kvm_memory_slot *memslot)
5056{
d77aa73c 5057 bool flush;
f4b4b180
KH
5058
5059 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5060 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5061 false);
f4b4b180
KH
5062 spin_unlock(&kvm->mmu_lock);
5063
5064 /* see kvm_mmu_slot_remove_write_access */
5065 lockdep_assert_held(&kvm->slots_lock);
5066
5067 if (flush)
5068 kvm_flush_remote_tlbs(kvm);
5069}
5070EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5071
5072void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5073 struct kvm_memory_slot *memslot)
5074{
d77aa73c 5075 bool flush;
f4b4b180
KH
5076
5077 spin_lock(&kvm->mmu_lock);
d77aa73c 5078 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
5079 spin_unlock(&kvm->mmu_lock);
5080
5081 lockdep_assert_held(&kvm->slots_lock);
5082
5083 /* see kvm_mmu_slot_leaf_clear_dirty */
5084 if (flush)
5085 kvm_flush_remote_tlbs(kvm);
5086}
5087EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5088
e7d11c7a 5089#define BATCH_ZAP_PAGES 10
5304b8d3
XG
5090static void kvm_zap_obsolete_pages(struct kvm *kvm)
5091{
5092 struct kvm_mmu_page *sp, *node;
e7d11c7a 5093 int batch = 0;
5304b8d3
XG
5094
5095restart:
5096 list_for_each_entry_safe_reverse(sp, node,
5097 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
5098 int ret;
5099
5304b8d3
XG
5100 /*
5101 * No obsolete page exists before new created page since
5102 * active_mmu_pages is the FIFO list.
5103 */
5104 if (!is_obsolete_sp(kvm, sp))
5105 break;
5106
5107 /*
5304b8d3
XG
5108 * Since we are reversely walking the list and the invalid
5109 * list will be moved to the head, skip the invalid page
5110 * can help us to avoid the infinity list walking.
5111 */
5112 if (sp->role.invalid)
5113 continue;
5114
f34d251d
XG
5115 /*
5116 * Need not flush tlb since we only zap the sp with invalid
5117 * generation number.
5118 */
e7d11c7a 5119 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 5120 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 5121 batch = 0;
5304b8d3
XG
5122 goto restart;
5123 }
5124
365c8868
XG
5125 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5126 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
5127 batch += ret;
5128
5129 if (ret)
5304b8d3
XG
5130 goto restart;
5131 }
5132
f34d251d
XG
5133 /*
5134 * Should flush tlb before free page tables since lockless-walking
5135 * may use the pages.
5136 */
365c8868 5137 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
5138}
5139
5140/*
5141 * Fast invalidate all shadow pages and use lock-break technique
5142 * to zap obsolete pages.
5143 *
5144 * It's required when memslot is being deleted or VM is being
5145 * destroyed, in these cases, we should ensure that KVM MMU does
5146 * not use any resource of the being-deleted slot or all slots
5147 * after calling the function.
5148 */
5149void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5150{
5151 spin_lock(&kvm->mmu_lock);
35006126 5152 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
5153 kvm->arch.mmu_valid_gen++;
5154
f34d251d
XG
5155 /*
5156 * Notify all vcpus to reload its shadow page table
5157 * and flush TLB. Then all vcpus will switch to new
5158 * shadow page table with the new mmu_valid_gen.
5159 *
5160 * Note: we should do this under the protection of
5161 * mmu-lock, otherwise, vcpu would purge shadow page
5162 * but miss tlb flush.
5163 */
5164 kvm_reload_remote_mmus(kvm);
5165
5304b8d3
XG
5166 kvm_zap_obsolete_pages(kvm);
5167 spin_unlock(&kvm->mmu_lock);
5168}
5169
365c8868
XG
5170static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5171{
5172 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5173}
5174
54bf36aa 5175void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
5176{
5177 /*
5178 * The very rare case: if the generation-number is round,
5179 * zap all shadow pages.
f8f55942 5180 */
54bf36aa 5181 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
ae0f5499 5182 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 5183 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 5184 }
f8f55942
XG
5185}
5186
70534a73
DC
5187static unsigned long
5188mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5189{
5190 struct kvm *kvm;
1495f230 5191 int nr_to_scan = sc->nr_to_scan;
70534a73 5192 unsigned long freed = 0;
3ee16c81 5193
2f303b74 5194 spin_lock(&kvm_lock);
3ee16c81
IE
5195
5196 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5197 int idx;
d98ba053 5198 LIST_HEAD(invalid_list);
3ee16c81 5199
35f2d16b
TY
5200 /*
5201 * Never scan more than sc->nr_to_scan VM instances.
5202 * Will not hit this condition practically since we do not try
5203 * to shrink more than one VM and it is very unlikely to see
5204 * !n_used_mmu_pages so many times.
5205 */
5206 if (!nr_to_scan--)
5207 break;
19526396
GN
5208 /*
5209 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5210 * here. We may skip a VM instance errorneosly, but we do not
5211 * want to shrink a VM that only started to populate its MMU
5212 * anyway.
5213 */
365c8868
XG
5214 if (!kvm->arch.n_used_mmu_pages &&
5215 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5216 continue;
19526396 5217
f656ce01 5218 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5219 spin_lock(&kvm->mmu_lock);
3ee16c81 5220
365c8868
XG
5221 if (kvm_has_zapped_obsolete_pages(kvm)) {
5222 kvm_mmu_commit_zap_page(kvm,
5223 &kvm->arch.zapped_obsolete_pages);
5224 goto unlock;
5225 }
5226
70534a73
DC
5227 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5228 freed++;
d98ba053 5229 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 5230
365c8868 5231unlock:
3ee16c81 5232 spin_unlock(&kvm->mmu_lock);
f656ce01 5233 srcu_read_unlock(&kvm->srcu, idx);
19526396 5234
70534a73
DC
5235 /*
5236 * unfair on small ones
5237 * per-vm shrinkers cry out
5238 * sadness comes quickly
5239 */
19526396
GN
5240 list_move_tail(&kvm->vm_list, &vm_list);
5241 break;
3ee16c81 5242 }
3ee16c81 5243
2f303b74 5244 spin_unlock(&kvm_lock);
70534a73 5245 return freed;
70534a73
DC
5246}
5247
5248static unsigned long
5249mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5250{
45221ab6 5251 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5252}
5253
5254static struct shrinker mmu_shrinker = {
70534a73
DC
5255 .count_objects = mmu_shrink_count,
5256 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5257 .seeks = DEFAULT_SEEKS * 10,
5258};
5259
2ddfd20e 5260static void mmu_destroy_caches(void)
b5a33a75 5261{
53c07b18
XG
5262 if (pte_list_desc_cache)
5263 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
5264 if (mmu_page_header_cache)
5265 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5266}
5267
5268int kvm_mmu_module_init(void)
5269{
f160c7b7
JS
5270 kvm_mmu_clear_all_pte_masks();
5271
53c07b18
XG
5272 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5273 sizeof(struct pte_list_desc),
20c2df83 5274 0, 0, NULL);
53c07b18 5275 if (!pte_list_desc_cache)
b5a33a75
AK
5276 goto nomem;
5277
d3d25b04
AK
5278 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5279 sizeof(struct kvm_mmu_page),
20c2df83 5280 0, 0, NULL);
d3d25b04
AK
5281 if (!mmu_page_header_cache)
5282 goto nomem;
5283
908c7f19 5284 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
5285 goto nomem;
5286
3ee16c81
IE
5287 register_shrinker(&mmu_shrinker);
5288
b5a33a75
AK
5289 return 0;
5290
5291nomem:
3ee16c81 5292 mmu_destroy_caches();
b5a33a75
AK
5293 return -ENOMEM;
5294}
5295
3ad82a7e
ZX
5296/*
5297 * Caculate mmu pages needed for kvm.
5298 */
5299unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5300{
3ad82a7e
ZX
5301 unsigned int nr_mmu_pages;
5302 unsigned int nr_pages = 0;
bc6678a3 5303 struct kvm_memslots *slots;
be6ba0f0 5304 struct kvm_memory_slot *memslot;
9da0e4d5 5305 int i;
3ad82a7e 5306
9da0e4d5
PB
5307 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5308 slots = __kvm_memslots(kvm, i);
90d83dc3 5309
9da0e4d5
PB
5310 kvm_for_each_memslot(memslot, slots)
5311 nr_pages += memslot->npages;
5312 }
3ad82a7e
ZX
5313
5314 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5315 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 5316 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5317
5318 return nr_mmu_pages;
5319}
5320
c42fffe3
XG
5321void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5322{
95f93af4 5323 kvm_mmu_unload(vcpu);
c42fffe3
XG
5324 free_mmu_pages(vcpu);
5325 mmu_free_memory_caches(vcpu);
b034cf01
XG
5326}
5327
b034cf01
XG
5328void kvm_mmu_module_exit(void)
5329{
5330 mmu_destroy_caches();
5331 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5332 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5333 mmu_audit_disable();
5334}