]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu.c
kvm: Add memcg accounting to KVM allocations
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
1767e931
PG
32#include <linux/moduleparam.h>
33#include <linux/export.h>
448353ca 34#include <linux/swap.h>
05da4558 35#include <linux/hugetlb.h>
2f333bcb 36#include <linux/compiler.h>
bc6678a3 37#include <linux/srcu.h>
5a0e3ad6 38#include <linux/slab.h>
3f07c014 39#include <linux/sched/signal.h>
bf998156 40#include <linux/uaccess.h>
114df303 41#include <linux/hash.h>
f160c7b7 42#include <linux/kern_levels.h>
6aa8b732 43
e495606d 44#include <asm/page.h>
aa2e063a 45#include <asm/pat.h>
e495606d 46#include <asm/cmpxchg.h>
4e542370 47#include <asm/io.h>
13673a90 48#include <asm/vmx.h>
3d0c27ad 49#include <asm/kvm_page_track.h>
1261bfa3 50#include "trace.h"
6aa8b732 51
18552672
JR
52/*
53 * When setting this variable to true it enables Two-Dimensional-Paging
54 * where the hardware walks 2 page tables:
55 * 1. the guest-virtual to guest-physical
56 * 2. while doing 1. it walks guest-physical to host-physical
57 * If the hardware supports that we don't need to do shadow paging.
58 */
2f333bcb 59bool tdp_enabled = false;
18552672 60
8b1fe17c
XG
61enum {
62 AUDIT_PRE_PAGE_FAULT,
63 AUDIT_POST_PAGE_FAULT,
64 AUDIT_PRE_PTE_WRITE,
6903074c
XG
65 AUDIT_POST_PTE_WRITE,
66 AUDIT_PRE_SYNC,
67 AUDIT_POST_SYNC
8b1fe17c 68};
37a7d8b0 69
8b1fe17c 70#undef MMU_DEBUG
37a7d8b0
AK
71
72#ifdef MMU_DEBUG
fa4a2c08
PB
73static bool dbg = 0;
74module_param(dbg, bool, 0644);
37a7d8b0
AK
75
76#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 78#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 79#else
37a7d8b0
AK
80#define pgprintk(x...) do { } while (0)
81#define rmap_printk(x...) do { } while (0)
fa4a2c08 82#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 83#endif
6aa8b732 84
957ed9ef
XG
85#define PTE_PREFETCH_NUM 8
86
00763e41 87#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
88#define PT64_SECOND_AVAIL_BITS_SHIFT 52
89
6aa8b732
AK
90#define PT64_LEVEL_BITS 9
91
92#define PT64_LEVEL_SHIFT(level) \
d77c26fc 93 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 94
6aa8b732
AK
95#define PT64_INDEX(address, level)\
96 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99#define PT32_LEVEL_BITS 10
100
101#define PT32_LEVEL_SHIFT(level) \
d77c26fc 102 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 103
e04da980
JR
104#define PT32_LVL_OFFSET_MASK(level) \
105 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
106 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
107
108#define PT32_INDEX(address, level)\
109 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
8acc0993
KH
112#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
113#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
114#else
115#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
116#endif
e04da980
JR
117#define PT64_LVL_ADDR_MASK(level) \
118 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
119 * PT64_LEVEL_BITS))) - 1))
120#define PT64_LVL_OFFSET_MASK(level) \
121 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
123
124#define PT32_BASE_ADDR_MASK PAGE_MASK
125#define PT32_DIR_BASE_ADDR_MASK \
126 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
127#define PT32_LVL_ADDR_MASK(level) \
128 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
129 * PT32_LEVEL_BITS))) - 1))
6aa8b732 130
53166229 131#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 132 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 133
fe135d2c
AK
134#define ACC_EXEC_MASK 1
135#define ACC_WRITE_MASK PT_WRITABLE_MASK
136#define ACC_USER_MASK PT_USER_MASK
137#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
138
f160c7b7
JS
139/* The mask for the R/X bits in EPT PTEs */
140#define PT64_EPT_READABLE_MASK 0x1ull
141#define PT64_EPT_EXECUTABLE_MASK 0x4ull
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
9b8ebbdb
PB
156/*
157 * Return values of handle_mmio_page_fault and mmu.page_fault:
158 * RET_PF_RETRY: let CPU fault again on the address.
159 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
160 *
161 * For handle_mmio_page_fault only:
162 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
163 */
164enum {
165 RET_PF_RETRY = 0,
166 RET_PF_EMULATE = 1,
167 RET_PF_INVALID = 2,
168};
169
53c07b18
XG
170struct pte_list_desc {
171 u64 *sptes[PTE_LIST_EXT];
172 struct pte_list_desc *more;
cd4a4e53
AK
173};
174
2d11123a
AK
175struct kvm_shadow_walk_iterator {
176 u64 addr;
177 hpa_t shadow_addr;
2d11123a 178 u64 *sptep;
dd3bfd59 179 int level;
2d11123a
AK
180 unsigned index;
181};
182
9fa72119
JS
183static const union kvm_mmu_page_role mmu_base_role_mask = {
184 .cr0_wp = 1,
185 .cr4_pae = 1,
186 .nxe = 1,
187 .smep_andnot_wp = 1,
188 .smap_andnot_wp = 1,
189 .smm = 1,
190 .guest_mode = 1,
191 .ad_disabled = 1,
192};
193
7eb77e9f
JS
194#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
195 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
196 (_root), (_addr)); \
197 shadow_walk_okay(&(_walker)); \
198 shadow_walk_next(&(_walker)))
199
200#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
201 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
202 shadow_walk_okay(&(_walker)); \
203 shadow_walk_next(&(_walker)))
204
c2a2ac2b
XG
205#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
206 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
207 shadow_walk_okay(&(_walker)) && \
208 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
209 __shadow_walk_next(&(_walker), spte))
210
53c07b18 211static struct kmem_cache *pte_list_desc_cache;
d3d25b04 212static struct kmem_cache *mmu_page_header_cache;
45221ab6 213static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 214
7b52345e
SY
215static u64 __read_mostly shadow_nx_mask;
216static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
217static u64 __read_mostly shadow_user_mask;
218static u64 __read_mostly shadow_accessed_mask;
219static u64 __read_mostly shadow_dirty_mask;
ce88decf 220static u64 __read_mostly shadow_mmio_mask;
dcdca5fe 221static u64 __read_mostly shadow_mmio_value;
ffb128c8 222static u64 __read_mostly shadow_present_mask;
d0ec49d4 223static u64 __read_mostly shadow_me_mask;
ce88decf 224
f160c7b7 225/*
ac8d57e5
PF
226 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
227 * Non-present SPTEs with shadow_acc_track_value set are in place for access
228 * tracking.
f160c7b7
JS
229 */
230static u64 __read_mostly shadow_acc_track_mask;
231static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
232
233/*
234 * The mask/shift to use for saving the original R/X bits when marking the PTE
235 * as not-present for access tracking purposes. We do not save the W bit as the
236 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
237 * restored only when a write is attempted to the page.
238 */
239static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
240 PT64_EPT_EXECUTABLE_MASK;
241static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
242
28a1f3ac
JS
243/*
244 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
245 * to guard against L1TF attacks.
246 */
247static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
248
249/*
250 * The number of high-order 1 bits to use in the mask above.
251 */
252static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
253
daa07cbc
SC
254/*
255 * In some cases, we need to preserve the GFN of a non-present or reserved
256 * SPTE when we usurp the upper five bits of the physical address space to
257 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
258 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
259 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
260 * high and low parts. This mask covers the lower bits of the GFN.
261 */
262static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
263
264
ce88decf 265static void mmu_spte_set(u64 *sptep, u64 spte);
9fa72119
JS
266static union kvm_mmu_page_role
267kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 268
40ef75a7
LT
269
270static inline bool kvm_available_flush_tlb_with_range(void)
271{
272 return kvm_x86_ops->tlb_remote_flush_with_range;
273}
274
275static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
276 struct kvm_tlb_range *range)
277{
278 int ret = -ENOTSUPP;
279
280 if (range && kvm_x86_ops->tlb_remote_flush_with_range)
281 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
282
283 if (ret)
284 kvm_flush_remote_tlbs(kvm);
285}
286
287static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
288 u64 start_gfn, u64 pages)
289{
290 struct kvm_tlb_range range;
291
292 range.start_gfn = start_gfn;
293 range.pages = pages;
294
295 kvm_flush_remote_tlbs_with_range(kvm, &range);
296}
297
dcdca5fe 298void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
ce88decf 299{
dcdca5fe
PF
300 BUG_ON((mmio_mask & mmio_value) != mmio_value);
301 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
312b616b 302 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
ce88decf
XG
303}
304EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
305
ac8d57e5
PF
306static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
307{
308 return sp->role.ad_disabled;
309}
310
311static inline bool spte_ad_enabled(u64 spte)
312{
313 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
314 return !(spte & shadow_acc_track_value);
315}
316
317static inline u64 spte_shadow_accessed_mask(u64 spte)
318{
319 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
320 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
321}
322
323static inline u64 spte_shadow_dirty_mask(u64 spte)
324{
325 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
326 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
327}
328
f160c7b7
JS
329static inline bool is_access_track_spte(u64 spte)
330{
ac8d57e5 331 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
332}
333
f2fd125d 334/*
ee3d1570
DM
335 * the low bit of the generation number is always presumed to be zero.
336 * This disables mmio caching during memslot updates. The concept is
337 * similar to a seqcount but instead of retrying the access we just punt
338 * and ignore the cache.
339 *
340 * spte bits 3-11 are used as bits 1-9 of the generation number,
341 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 342 */
ee3d1570 343#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
344#define MMIO_SPTE_GEN_HIGH_SHIFT 52
345
ee3d1570
DM
346#define MMIO_GEN_SHIFT 20
347#define MMIO_GEN_LOW_SHIFT 10
348#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 349#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
350
351static u64 generation_mmio_spte_mask(unsigned int gen)
352{
353 u64 mask;
354
842bb26a 355 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
356
357 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
358 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
359 return mask;
360}
361
362static unsigned int get_mmio_spte_generation(u64 spte)
363{
364 unsigned int gen;
365
366 spte &= ~shadow_mmio_mask;
367
368 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
369 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
370 return gen;
371}
372
54bf36aa 373static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 374{
54bf36aa 375 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
376}
377
54bf36aa 378static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 379 unsigned access)
ce88decf 380{
54bf36aa 381 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 382 u64 mask = generation_mmio_spte_mask(gen);
28a1f3ac 383 u64 gpa = gfn << PAGE_SHIFT;
95b0430d 384
ce88decf 385 access &= ACC_WRITE_MASK | ACC_USER_MASK;
28a1f3ac
JS
386 mask |= shadow_mmio_value | access;
387 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
388 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
389 << shadow_nonpresent_or_rsvd_mask_len;
f2fd125d 390
f8f55942 391 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 392 mmu_spte_set(sptep, mask);
ce88decf
XG
393}
394
395static bool is_mmio_spte(u64 spte)
396{
dcdca5fe 397 return (spte & shadow_mmio_mask) == shadow_mmio_value;
ce88decf
XG
398}
399
400static gfn_t get_mmio_spte_gfn(u64 spte)
401{
daa07cbc 402 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac
JS
403
404 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
405 & shadow_nonpresent_or_rsvd_mask;
406
407 return gpa >> PAGE_SHIFT;
ce88decf
XG
408}
409
410static unsigned get_mmio_spte_access(u64 spte)
411{
842bb26a 412 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 413 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
414}
415
54bf36aa 416static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 417 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
418{
419 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 420 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
421 return true;
422 }
423
424 return false;
425}
c7addb90 426
54bf36aa 427static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 428{
089504c0
XG
429 unsigned int kvm_gen, spte_gen;
430
54bf36aa 431 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
432 spte_gen = get_mmio_spte_generation(spte);
433
434 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
435 return likely(kvm_gen == spte_gen);
f8f55942
XG
436}
437
ce00053b
PF
438/*
439 * Sets the shadow PTE masks used by the MMU.
440 *
441 * Assumptions:
442 * - Setting either @accessed_mask or @dirty_mask requires setting both
443 * - At least one of @accessed_mask or @acc_track_mask must be set
444 */
7b52345e 445void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 446 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 447 u64 acc_track_mask, u64 me_mask)
7b52345e 448{
ce00053b
PF
449 BUG_ON(!dirty_mask != !accessed_mask);
450 BUG_ON(!accessed_mask && !acc_track_mask);
ac8d57e5 451 BUG_ON(acc_track_mask & shadow_acc_track_value);
312b616b 452
7b52345e
SY
453 shadow_user_mask = user_mask;
454 shadow_accessed_mask = accessed_mask;
455 shadow_dirty_mask = dirty_mask;
456 shadow_nx_mask = nx_mask;
457 shadow_x_mask = x_mask;
ffb128c8 458 shadow_present_mask = p_mask;
f160c7b7 459 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 460 shadow_me_mask = me_mask;
7b52345e
SY
461}
462EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
463
28a1f3ac 464static void kvm_mmu_reset_all_pte_masks(void)
f160c7b7 465{
daa07cbc
SC
466 u8 low_phys_bits;
467
f160c7b7
JS
468 shadow_user_mask = 0;
469 shadow_accessed_mask = 0;
470 shadow_dirty_mask = 0;
471 shadow_nx_mask = 0;
472 shadow_x_mask = 0;
473 shadow_mmio_mask = 0;
474 shadow_present_mask = 0;
475 shadow_acc_track_mask = 0;
28a1f3ac
JS
476
477 /*
478 * If the CPU has 46 or less physical address bits, then set an
479 * appropriate mask to guard against L1TF attacks. Otherwise, it is
480 * assumed that the CPU is not vulnerable to L1TF.
481 */
daa07cbc 482 low_phys_bits = boot_cpu_data.x86_phys_bits;
28a1f3ac 483 if (boot_cpu_data.x86_phys_bits <
daa07cbc 484 52 - shadow_nonpresent_or_rsvd_mask_len) {
28a1f3ac
JS
485 shadow_nonpresent_or_rsvd_mask =
486 rsvd_bits(boot_cpu_data.x86_phys_bits -
487 shadow_nonpresent_or_rsvd_mask_len,
488 boot_cpu_data.x86_phys_bits - 1);
daa07cbc
SC
489 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
490 }
491 shadow_nonpresent_or_rsvd_lower_gfn_mask =
492 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
f160c7b7
JS
493}
494
6aa8b732
AK
495static int is_cpuid_PSE36(void)
496{
497 return 1;
498}
499
73b1087e
AK
500static int is_nx(struct kvm_vcpu *vcpu)
501{
f6801dff 502 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
503}
504
c7addb90
AK
505static int is_shadow_present_pte(u64 pte)
506{
f160c7b7 507 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
508}
509
05da4558
MT
510static int is_large_pte(u64 pte)
511{
512 return pte & PT_PAGE_SIZE_MASK;
513}
514
776e6633
MT
515static int is_last_spte(u64 pte, int level)
516{
517 if (level == PT_PAGE_TABLE_LEVEL)
518 return 1;
852e3c19 519 if (is_large_pte(pte))
776e6633
MT
520 return 1;
521 return 0;
522}
523
d3e328f2
JS
524static bool is_executable_pte(u64 spte)
525{
526 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
527}
528
ba049e93 529static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 530{
35149e21 531 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
532}
533
da928521
AK
534static gfn_t pse36_gfn_delta(u32 gpte)
535{
536 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
537
538 return (gpte & PT32_DIR_PSE36_MASK) << shift;
539}
540
603e0651 541#ifdef CONFIG_X86_64
d555c333 542static void __set_spte(u64 *sptep, u64 spte)
e663ee64 543{
b19ee2ff 544 WRITE_ONCE(*sptep, spte);
e663ee64
AK
545}
546
603e0651 547static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 548{
b19ee2ff 549 WRITE_ONCE(*sptep, spte);
603e0651
XG
550}
551
552static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
553{
554 return xchg(sptep, spte);
555}
c2a2ac2b
XG
556
557static u64 __get_spte_lockless(u64 *sptep)
558{
6aa7de05 559 return READ_ONCE(*sptep);
c2a2ac2b 560}
a9221dd5 561#else
603e0651
XG
562union split_spte {
563 struct {
564 u32 spte_low;
565 u32 spte_high;
566 };
567 u64 spte;
568};
a9221dd5 569
c2a2ac2b
XG
570static void count_spte_clear(u64 *sptep, u64 spte)
571{
572 struct kvm_mmu_page *sp = page_header(__pa(sptep));
573
574 if (is_shadow_present_pte(spte))
575 return;
576
577 /* Ensure the spte is completely set before we increase the count */
578 smp_wmb();
579 sp->clear_spte_count++;
580}
581
603e0651
XG
582static void __set_spte(u64 *sptep, u64 spte)
583{
584 union split_spte *ssptep, sspte;
a9221dd5 585
603e0651
XG
586 ssptep = (union split_spte *)sptep;
587 sspte = (union split_spte)spte;
588
589 ssptep->spte_high = sspte.spte_high;
590
591 /*
592 * If we map the spte from nonpresent to present, We should store
593 * the high bits firstly, then set present bit, so cpu can not
594 * fetch this spte while we are setting the spte.
595 */
596 smp_wmb();
597
b19ee2ff 598 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
599}
600
603e0651
XG
601static void __update_clear_spte_fast(u64 *sptep, u64 spte)
602{
603 union split_spte *ssptep, sspte;
604
605 ssptep = (union split_spte *)sptep;
606 sspte = (union split_spte)spte;
607
b19ee2ff 608 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
609
610 /*
611 * If we map the spte from present to nonpresent, we should clear
612 * present bit firstly to avoid vcpu fetch the old high bits.
613 */
614 smp_wmb();
615
616 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 617 count_spte_clear(sptep, spte);
603e0651
XG
618}
619
620static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
621{
622 union split_spte *ssptep, sspte, orig;
623
624 ssptep = (union split_spte *)sptep;
625 sspte = (union split_spte)spte;
626
627 /* xchg acts as a barrier before the setting of the high bits */
628 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
629 orig.spte_high = ssptep->spte_high;
630 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 631 count_spte_clear(sptep, spte);
603e0651
XG
632
633 return orig.spte;
634}
c2a2ac2b
XG
635
636/*
637 * The idea using the light way get the spte on x86_32 guest is from
638 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
639 *
640 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
641 * coalesces them and we are running out of the MMU lock. Therefore
642 * we need to protect against in-progress updates of the spte.
643 *
644 * Reading the spte while an update is in progress may get the old value
645 * for the high part of the spte. The race is fine for a present->non-present
646 * change (because the high part of the spte is ignored for non-present spte),
647 * but for a present->present change we must reread the spte.
648 *
649 * All such changes are done in two steps (present->non-present and
650 * non-present->present), hence it is enough to count the number of
651 * present->non-present updates: if it changed while reading the spte,
652 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
653 */
654static u64 __get_spte_lockless(u64 *sptep)
655{
656 struct kvm_mmu_page *sp = page_header(__pa(sptep));
657 union split_spte spte, *orig = (union split_spte *)sptep;
658 int count;
659
660retry:
661 count = sp->clear_spte_count;
662 smp_rmb();
663
664 spte.spte_low = orig->spte_low;
665 smp_rmb();
666
667 spte.spte_high = orig->spte_high;
668 smp_rmb();
669
670 if (unlikely(spte.spte_low != orig->spte_low ||
671 count != sp->clear_spte_count))
672 goto retry;
673
674 return spte.spte;
675}
603e0651
XG
676#endif
677
ea4114bc 678static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 679{
feb3eb70
GN
680 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
681 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
682}
683
8672b721
XG
684static bool spte_has_volatile_bits(u64 spte)
685{
f160c7b7
JS
686 if (!is_shadow_present_pte(spte))
687 return false;
688
c7ba5b48 689 /*
6a6256f9 690 * Always atomically update spte if it can be updated
c7ba5b48
XG
691 * out of mmu-lock, it can ensure dirty bit is not lost,
692 * also, it can help us to get a stable is_writable_pte()
693 * to ensure tlb flush is not missed.
694 */
f160c7b7
JS
695 if (spte_can_locklessly_be_made_writable(spte) ||
696 is_access_track_spte(spte))
c7ba5b48
XG
697 return true;
698
ac8d57e5 699 if (spte_ad_enabled(spte)) {
f160c7b7
JS
700 if ((spte & shadow_accessed_mask) == 0 ||
701 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
702 return true;
703 }
8672b721 704
f160c7b7 705 return false;
8672b721
XG
706}
707
83ef6c81 708static bool is_accessed_spte(u64 spte)
4132779b 709{
ac8d57e5
PF
710 u64 accessed_mask = spte_shadow_accessed_mask(spte);
711
712 return accessed_mask ? spte & accessed_mask
713 : !is_access_track_spte(spte);
4132779b
XG
714}
715
83ef6c81 716static bool is_dirty_spte(u64 spte)
7e71a59b 717{
ac8d57e5
PF
718 u64 dirty_mask = spte_shadow_dirty_mask(spte);
719
720 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
721}
722
1df9f2dc
XG
723/* Rules for using mmu_spte_set:
724 * Set the sptep from nonpresent to present.
725 * Note: the sptep being assigned *must* be either not present
726 * or in a state where the hardware will not attempt to update
727 * the spte.
728 */
729static void mmu_spte_set(u64 *sptep, u64 new_spte)
730{
731 WARN_ON(is_shadow_present_pte(*sptep));
732 __set_spte(sptep, new_spte);
733}
734
f39a058d
JS
735/*
736 * Update the SPTE (excluding the PFN), but do not track changes in its
737 * accessed/dirty status.
1df9f2dc 738 */
f39a058d 739static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 740{
c7ba5b48 741 u64 old_spte = *sptep;
4132779b 742
afd28fe1 743 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 744
6e7d0354
XG
745 if (!is_shadow_present_pte(old_spte)) {
746 mmu_spte_set(sptep, new_spte);
f39a058d 747 return old_spte;
6e7d0354 748 }
4132779b 749
c7ba5b48 750 if (!spte_has_volatile_bits(old_spte))
603e0651 751 __update_clear_spte_fast(sptep, new_spte);
4132779b 752 else
603e0651 753 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 754
83ef6c81
JS
755 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
756
f39a058d
JS
757 return old_spte;
758}
759
760/* Rules for using mmu_spte_update:
761 * Update the state bits, it means the mapped pfn is not changed.
762 *
763 * Whenever we overwrite a writable spte with a read-only one we
764 * should flush remote TLBs. Otherwise rmap_write_protect
765 * will find a read-only spte, even though the writable spte
766 * might be cached on a CPU's TLB, the return value indicates this
767 * case.
768 *
769 * Returns true if the TLB needs to be flushed
770 */
771static bool mmu_spte_update(u64 *sptep, u64 new_spte)
772{
773 bool flush = false;
774 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
775
776 if (!is_shadow_present_pte(old_spte))
777 return false;
778
c7ba5b48
XG
779 /*
780 * For the spte updated out of mmu-lock is safe, since
6a6256f9 781 * we always atomically update it, see the comments in
c7ba5b48
XG
782 * spte_has_volatile_bits().
783 */
ea4114bc 784 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 785 !is_writable_pte(new_spte))
83ef6c81 786 flush = true;
4132779b 787
7e71a59b 788 /*
83ef6c81 789 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
790 * to guarantee consistency between TLB and page tables.
791 */
7e71a59b 792
83ef6c81
JS
793 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
794 flush = true;
4132779b 795 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
796 }
797
798 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
799 flush = true;
4132779b 800 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 801 }
6e7d0354 802
83ef6c81 803 return flush;
b79b93f9
AK
804}
805
1df9f2dc
XG
806/*
807 * Rules for using mmu_spte_clear_track_bits:
808 * It sets the sptep from present to nonpresent, and track the
809 * state bits, it is used to clear the last level sptep.
83ef6c81 810 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
811 */
812static int mmu_spte_clear_track_bits(u64 *sptep)
813{
ba049e93 814 kvm_pfn_t pfn;
1df9f2dc
XG
815 u64 old_spte = *sptep;
816
817 if (!spte_has_volatile_bits(old_spte))
603e0651 818 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 819 else
603e0651 820 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 821
afd28fe1 822 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
823 return 0;
824
825 pfn = spte_to_pfn(old_spte);
86fde74c
XG
826
827 /*
828 * KVM does not hold the refcount of the page used by
829 * kvm mmu, before reclaiming the page, we should
830 * unmap it from mmu first.
831 */
bf4bea8e 832 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 833
83ef6c81 834 if (is_accessed_spte(old_spte))
1df9f2dc 835 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
836
837 if (is_dirty_spte(old_spte))
1df9f2dc 838 kvm_set_pfn_dirty(pfn);
83ef6c81 839
1df9f2dc
XG
840 return 1;
841}
842
843/*
844 * Rules for using mmu_spte_clear_no_track:
845 * Directly clear spte without caring the state bits of sptep,
846 * it is used to set the upper level spte.
847 */
848static void mmu_spte_clear_no_track(u64 *sptep)
849{
603e0651 850 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
851}
852
c2a2ac2b
XG
853static u64 mmu_spte_get_lockless(u64 *sptep)
854{
855 return __get_spte_lockless(sptep);
856}
857
f160c7b7
JS
858static u64 mark_spte_for_access_track(u64 spte)
859{
ac8d57e5 860 if (spte_ad_enabled(spte))
f160c7b7
JS
861 return spte & ~shadow_accessed_mask;
862
ac8d57e5 863 if (is_access_track_spte(spte))
f160c7b7
JS
864 return spte;
865
866 /*
20d65236
JS
867 * Making an Access Tracking PTE will result in removal of write access
868 * from the PTE. So, verify that we will be able to restore the write
869 * access in the fast page fault path later on.
f160c7b7
JS
870 */
871 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
872 !spte_can_locklessly_be_made_writable(spte),
873 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
874
875 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
876 shadow_acc_track_saved_bits_shift),
877 "kvm: Access Tracking saved bit locations are not zero\n");
878
879 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
880 shadow_acc_track_saved_bits_shift;
881 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
882
883 return spte;
884}
885
d3e328f2
JS
886/* Restore an acc-track PTE back to a regular PTE */
887static u64 restore_acc_track_spte(u64 spte)
888{
889 u64 new_spte = spte;
890 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
891 & shadow_acc_track_saved_bits_mask;
892
ac8d57e5 893 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
894 WARN_ON_ONCE(!is_access_track_spte(spte));
895
896 new_spte &= ~shadow_acc_track_mask;
897 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
898 shadow_acc_track_saved_bits_shift);
899 new_spte |= saved_bits;
900
901 return new_spte;
902}
903
f160c7b7
JS
904/* Returns the Accessed status of the PTE and resets it at the same time. */
905static bool mmu_spte_age(u64 *sptep)
906{
907 u64 spte = mmu_spte_get_lockless(sptep);
908
909 if (!is_accessed_spte(spte))
910 return false;
911
ac8d57e5 912 if (spte_ad_enabled(spte)) {
f160c7b7
JS
913 clear_bit((ffs(shadow_accessed_mask) - 1),
914 (unsigned long *)sptep);
915 } else {
916 /*
917 * Capture the dirty status of the page, so that it doesn't get
918 * lost when the SPTE is marked for access tracking.
919 */
920 if (is_writable_pte(spte))
921 kvm_set_pfn_dirty(spte_to_pfn(spte));
922
923 spte = mark_spte_for_access_track(spte);
924 mmu_spte_update_no_track(sptep, spte);
925 }
926
927 return true;
928}
929
c2a2ac2b
XG
930static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
931{
c142786c
AK
932 /*
933 * Prevent page table teardown by making any free-er wait during
934 * kvm_flush_remote_tlbs() IPI to all active vcpus.
935 */
936 local_irq_disable();
36ca7e0a 937
c142786c
AK
938 /*
939 * Make sure a following spte read is not reordered ahead of the write
940 * to vcpu->mode.
941 */
36ca7e0a 942 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
943}
944
945static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
946{
c142786c
AK
947 /*
948 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 949 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
950 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
951 */
36ca7e0a 952 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 953 local_irq_enable();
c2a2ac2b
XG
954}
955
e2dec939 956static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 957 struct kmem_cache *base_cache, int min)
714b93da
AK
958{
959 void *obj;
960
961 if (cache->nobjs >= min)
e2dec939 962 return 0;
714b93da 963 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 964 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 965 if (!obj)
daefb794 966 return cache->nobjs >= min ? 0 : -ENOMEM;
714b93da
AK
967 cache->objects[cache->nobjs++] = obj;
968 }
e2dec939 969 return 0;
714b93da
AK
970}
971
f759e2b4
XG
972static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
973{
974 return cache->nobjs;
975}
976
e8ad9a70
XG
977static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
978 struct kmem_cache *cache)
714b93da
AK
979{
980 while (mc->nobjs)
e8ad9a70 981 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
982}
983
c1158e63 984static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 985 int min)
c1158e63 986{
842f22ed 987 void *page;
c1158e63
AK
988
989 if (cache->nobjs >= min)
990 return 0;
991 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
d97e5e61 992 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
c1158e63 993 if (!page)
daefb794 994 return cache->nobjs >= min ? 0 : -ENOMEM;
842f22ed 995 cache->objects[cache->nobjs++] = page;
c1158e63
AK
996 }
997 return 0;
998}
999
1000static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1001{
1002 while (mc->nobjs)
c4d198d5 1003 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
1004}
1005
2e3e5882 1006static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 1007{
e2dec939
AK
1008 int r;
1009
53c07b18 1010 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 1011 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
1012 if (r)
1013 goto out;
ad312c7c 1014 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
1015 if (r)
1016 goto out;
ad312c7c 1017 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 1018 mmu_page_header_cache, 4);
e2dec939
AK
1019out:
1020 return r;
714b93da
AK
1021}
1022
1023static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1024{
53c07b18
XG
1025 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1026 pte_list_desc_cache);
ad312c7c 1027 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
1028 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1029 mmu_page_header_cache);
714b93da
AK
1030}
1031
80feb89a 1032static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
1033{
1034 void *p;
1035
1036 BUG_ON(!mc->nobjs);
1037 p = mc->objects[--mc->nobjs];
714b93da
AK
1038 return p;
1039}
1040
53c07b18 1041static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 1042{
80feb89a 1043 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
1044}
1045
53c07b18 1046static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 1047{
53c07b18 1048 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
1049}
1050
2032a93d
LJ
1051static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1052{
1053 if (!sp->role.direct)
1054 return sp->gfns[index];
1055
1056 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1057}
1058
1059static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1060{
1061 if (sp->role.direct)
1062 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
1063 else
1064 sp->gfns[index] = gfn;
1065}
1066
05da4558 1067/*
d4dbf470
TY
1068 * Return the pointer to the large page information for a given gfn,
1069 * handling slots that are not large page aligned.
05da4558 1070 */
d4dbf470
TY
1071static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1072 struct kvm_memory_slot *slot,
1073 int level)
05da4558
MT
1074{
1075 unsigned long idx;
1076
fb03cb6f 1077 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 1078 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
1079}
1080
547ffaed
XG
1081static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1082 gfn_t gfn, int count)
1083{
1084 struct kvm_lpage_info *linfo;
1085 int i;
1086
1087 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1088 linfo = lpage_info_slot(gfn, slot, i);
1089 linfo->disallow_lpage += count;
1090 WARN_ON(linfo->disallow_lpage < 0);
1091 }
1092}
1093
1094void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1095{
1096 update_gfn_disallow_lpage_count(slot, gfn, 1);
1097}
1098
1099void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1100{
1101 update_gfn_disallow_lpage_count(slot, gfn, -1);
1102}
1103
3ed1a478 1104static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1105{
699023e2 1106 struct kvm_memslots *slots;
d25797b2 1107 struct kvm_memory_slot *slot;
3ed1a478 1108 gfn_t gfn;
05da4558 1109
56ca57f9 1110 kvm->arch.indirect_shadow_pages++;
3ed1a478 1111 gfn = sp->gfn;
699023e2
PB
1112 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1113 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1114
1115 /* the non-leaf shadow pages are keeping readonly. */
1116 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1117 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1118 KVM_PAGE_TRACK_WRITE);
1119
547ffaed 1120 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1121}
1122
3ed1a478 1123static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1124{
699023e2 1125 struct kvm_memslots *slots;
d25797b2 1126 struct kvm_memory_slot *slot;
3ed1a478 1127 gfn_t gfn;
05da4558 1128
56ca57f9 1129 kvm->arch.indirect_shadow_pages--;
3ed1a478 1130 gfn = sp->gfn;
699023e2
PB
1131 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1132 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1133 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1134 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1135 KVM_PAGE_TRACK_WRITE);
1136
547ffaed 1137 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1138}
1139
92f94f1e
XG
1140static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1141 struct kvm_memory_slot *slot)
05da4558 1142{
d4dbf470 1143 struct kvm_lpage_info *linfo;
05da4558
MT
1144
1145 if (slot) {
d4dbf470 1146 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 1147 return !!linfo->disallow_lpage;
05da4558
MT
1148 }
1149
92f94f1e 1150 return true;
05da4558
MT
1151}
1152
92f94f1e
XG
1153static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1154 int level)
5225fdf8
TY
1155{
1156 struct kvm_memory_slot *slot;
1157
1158 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 1159 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
1160}
1161
d25797b2 1162static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 1163{
8f0b1ab6 1164 unsigned long page_size;
d25797b2 1165 int i, ret = 0;
05da4558 1166
8f0b1ab6 1167 page_size = kvm_host_page_size(kvm, gfn);
05da4558 1168
8a3d08f1 1169 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
1170 if (page_size >= KVM_HPAGE_SIZE(i))
1171 ret = i;
1172 else
1173 break;
1174 }
1175
4c2155ce 1176 return ret;
05da4558
MT
1177}
1178
d8aacf5d
TY
1179static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1180 bool no_dirty_log)
1181{
1182 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1183 return false;
1184 if (no_dirty_log && slot->dirty_bitmap)
1185 return false;
1186
1187 return true;
1188}
1189
5d163b1c
XG
1190static struct kvm_memory_slot *
1191gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1192 bool no_dirty_log)
05da4558
MT
1193{
1194 struct kvm_memory_slot *slot;
5d163b1c 1195
54bf36aa 1196 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 1197 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
1198 slot = NULL;
1199
1200 return slot;
1201}
1202
fd136902
TY
1203static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1204 bool *force_pt_level)
936a5fe6
AA
1205{
1206 int host_level, level, max_level;
d8aacf5d
TY
1207 struct kvm_memory_slot *slot;
1208
8c85ac1c
TY
1209 if (unlikely(*force_pt_level))
1210 return PT_PAGE_TABLE_LEVEL;
05da4558 1211
8c85ac1c
TY
1212 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1213 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
1214 if (unlikely(*force_pt_level))
1215 return PT_PAGE_TABLE_LEVEL;
1216
d25797b2
JR
1217 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1218
1219 if (host_level == PT_PAGE_TABLE_LEVEL)
1220 return host_level;
1221
55dd98c3 1222 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
1223
1224 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 1225 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 1226 break;
d25797b2
JR
1227
1228 return level - 1;
05da4558
MT
1229}
1230
290fc38d 1231/*
018aabb5 1232 * About rmap_head encoding:
cd4a4e53 1233 *
018aabb5
TY
1234 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1235 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1236 * pte_list_desc containing more mappings.
018aabb5
TY
1237 */
1238
1239/*
1240 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1241 */
53c07b18 1242static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1243 struct kvm_rmap_head *rmap_head)
cd4a4e53 1244{
53c07b18 1245 struct pte_list_desc *desc;
53a27b39 1246 int i, count = 0;
cd4a4e53 1247
018aabb5 1248 if (!rmap_head->val) {
53c07b18 1249 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1250 rmap_head->val = (unsigned long)spte;
1251 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1252 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1253 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1254 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1255 desc->sptes[1] = spte;
018aabb5 1256 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1257 ++count;
cd4a4e53 1258 } else {
53c07b18 1259 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1260 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1261 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1262 desc = desc->more;
53c07b18 1263 count += PTE_LIST_EXT;
53a27b39 1264 }
53c07b18
XG
1265 if (desc->sptes[PTE_LIST_EXT-1]) {
1266 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1267 desc = desc->more;
1268 }
d555c333 1269 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1270 ++count;
d555c333 1271 desc->sptes[i] = spte;
cd4a4e53 1272 }
53a27b39 1273 return count;
cd4a4e53
AK
1274}
1275
53c07b18 1276static void
018aabb5
TY
1277pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1278 struct pte_list_desc *desc, int i,
1279 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1280{
1281 int j;
1282
53c07b18 1283 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1284 ;
d555c333
AK
1285 desc->sptes[i] = desc->sptes[j];
1286 desc->sptes[j] = NULL;
cd4a4e53
AK
1287 if (j != 0)
1288 return;
1289 if (!prev_desc && !desc->more)
018aabb5 1290 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
1291 else
1292 if (prev_desc)
1293 prev_desc->more = desc->more;
1294 else
018aabb5 1295 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1296 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1297}
1298
8daf3462 1299static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1300{
53c07b18
XG
1301 struct pte_list_desc *desc;
1302 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1303 int i;
1304
018aabb5 1305 if (!rmap_head->val) {
8daf3462 1306 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 1307 BUG();
018aabb5 1308 } else if (!(rmap_head->val & 1)) {
8daf3462 1309 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 1310 if ((u64 *)rmap_head->val != spte) {
8daf3462 1311 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
1312 BUG();
1313 }
018aabb5 1314 rmap_head->val = 0;
cd4a4e53 1315 } else {
8daf3462 1316 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 1317 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1318 prev_desc = NULL;
1319 while (desc) {
018aabb5 1320 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1321 if (desc->sptes[i] == spte) {
018aabb5
TY
1322 pte_list_desc_remove_entry(rmap_head,
1323 desc, i, prev_desc);
cd4a4e53
AK
1324 return;
1325 }
018aabb5 1326 }
cd4a4e53
AK
1327 prev_desc = desc;
1328 desc = desc->more;
1329 }
8daf3462 1330 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
1331 BUG();
1332 }
1333}
1334
e7912386
WY
1335static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1336{
1337 mmu_spte_clear_track_bits(sptep);
1338 __pte_list_remove(sptep, rmap_head);
1339}
1340
018aabb5
TY
1341static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1342 struct kvm_memory_slot *slot)
53c07b18 1343{
77d11309 1344 unsigned long idx;
53c07b18 1345
77d11309 1346 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1347 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1348}
1349
018aabb5
TY
1350static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1351 struct kvm_mmu_page *sp)
9b9b1492 1352{
699023e2 1353 struct kvm_memslots *slots;
9b9b1492
TY
1354 struct kvm_memory_slot *slot;
1355
699023e2
PB
1356 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1357 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1358 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1359}
1360
f759e2b4
XG
1361static bool rmap_can_add(struct kvm_vcpu *vcpu)
1362{
1363 struct kvm_mmu_memory_cache *cache;
1364
1365 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1366 return mmu_memory_cache_free_objects(cache);
1367}
1368
53c07b18
XG
1369static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1370{
1371 struct kvm_mmu_page *sp;
018aabb5 1372 struct kvm_rmap_head *rmap_head;
53c07b18 1373
53c07b18
XG
1374 sp = page_header(__pa(spte));
1375 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1376 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1377 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1378}
1379
53c07b18
XG
1380static void rmap_remove(struct kvm *kvm, u64 *spte)
1381{
1382 struct kvm_mmu_page *sp;
1383 gfn_t gfn;
018aabb5 1384 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1385
1386 sp = page_header(__pa(spte));
1387 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 1388 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 1389 __pte_list_remove(spte, rmap_head);
53c07b18
XG
1390}
1391
1e3f42f0
TY
1392/*
1393 * Used by the following functions to iterate through the sptes linked by a
1394 * rmap. All fields are private and not assumed to be used outside.
1395 */
1396struct rmap_iterator {
1397 /* private fields */
1398 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1399 int pos; /* index of the sptep */
1400};
1401
1402/*
1403 * Iteration must be started by this function. This should also be used after
1404 * removing/dropping sptes from the rmap link because in such cases the
1405 * information in the itererator may not be valid.
1406 *
1407 * Returns sptep if found, NULL otherwise.
1408 */
018aabb5
TY
1409static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1410 struct rmap_iterator *iter)
1e3f42f0 1411{
77fbbbd2
TY
1412 u64 *sptep;
1413
018aabb5 1414 if (!rmap_head->val)
1e3f42f0
TY
1415 return NULL;
1416
018aabb5 1417 if (!(rmap_head->val & 1)) {
1e3f42f0 1418 iter->desc = NULL;
77fbbbd2
TY
1419 sptep = (u64 *)rmap_head->val;
1420 goto out;
1e3f42f0
TY
1421 }
1422
018aabb5 1423 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1424 iter->pos = 0;
77fbbbd2
TY
1425 sptep = iter->desc->sptes[iter->pos];
1426out:
1427 BUG_ON(!is_shadow_present_pte(*sptep));
1428 return sptep;
1e3f42f0
TY
1429}
1430
1431/*
1432 * Must be used with a valid iterator: e.g. after rmap_get_first().
1433 *
1434 * Returns sptep if found, NULL otherwise.
1435 */
1436static u64 *rmap_get_next(struct rmap_iterator *iter)
1437{
77fbbbd2
TY
1438 u64 *sptep;
1439
1e3f42f0
TY
1440 if (iter->desc) {
1441 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1442 ++iter->pos;
1443 sptep = iter->desc->sptes[iter->pos];
1444 if (sptep)
77fbbbd2 1445 goto out;
1e3f42f0
TY
1446 }
1447
1448 iter->desc = iter->desc->more;
1449
1450 if (iter->desc) {
1451 iter->pos = 0;
1452 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1453 sptep = iter->desc->sptes[iter->pos];
1454 goto out;
1e3f42f0
TY
1455 }
1456 }
1457
1458 return NULL;
77fbbbd2
TY
1459out:
1460 BUG_ON(!is_shadow_present_pte(*sptep));
1461 return sptep;
1e3f42f0
TY
1462}
1463
018aabb5
TY
1464#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1465 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1466 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1467
c3707958 1468static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1469{
1df9f2dc 1470 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1471 rmap_remove(kvm, sptep);
be38d276
AK
1472}
1473
8e22f955
XG
1474
1475static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1476{
1477 if (is_large_pte(*sptep)) {
1478 WARN_ON(page_header(__pa(sptep))->role.level ==
1479 PT_PAGE_TABLE_LEVEL);
1480 drop_spte(kvm, sptep);
1481 --kvm->stat.lpages;
1482 return true;
1483 }
1484
1485 return false;
1486}
1487
1488static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1489{
c3134ce2
LT
1490 if (__drop_large_spte(vcpu->kvm, sptep)) {
1491 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1492
1493 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1494 KVM_PAGES_PER_HPAGE(sp->role.level));
1495 }
8e22f955
XG
1496}
1497
1498/*
49fde340 1499 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1500 * spte write-protection is caused by protecting shadow page table.
49fde340 1501 *
b4619660 1502 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1503 * protection:
1504 * - for dirty logging, the spte can be set to writable at anytime if
1505 * its dirty bitmap is properly set.
1506 * - for spte protection, the spte can be writable only after unsync-ing
1507 * shadow page.
8e22f955 1508 *
c126d94f 1509 * Return true if tlb need be flushed.
8e22f955 1510 */
c4f138b4 1511static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1512{
1513 u64 spte = *sptep;
1514
49fde340 1515 if (!is_writable_pte(spte) &&
ea4114bc 1516 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1517 return false;
1518
1519 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1520
49fde340
XG
1521 if (pt_protect)
1522 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1523 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1524
c126d94f 1525 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1526}
1527
018aabb5
TY
1528static bool __rmap_write_protect(struct kvm *kvm,
1529 struct kvm_rmap_head *rmap_head,
245c3912 1530 bool pt_protect)
98348e95 1531{
1e3f42f0
TY
1532 u64 *sptep;
1533 struct rmap_iterator iter;
d13bc5b5 1534 bool flush = false;
374cbac0 1535
018aabb5 1536 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1537 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1538
d13bc5b5 1539 return flush;
a0ed4607
TY
1540}
1541
c4f138b4 1542static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1543{
1544 u64 spte = *sptep;
1545
1546 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1547
1548 spte &= ~shadow_dirty_mask;
1549
1550 return mmu_spte_update(sptep, spte);
1551}
1552
ac8d57e5
PF
1553static bool wrprot_ad_disabled_spte(u64 *sptep)
1554{
1555 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1556 (unsigned long *)sptep);
1557 if (was_writable)
1558 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1559
1560 return was_writable;
1561}
1562
1563/*
1564 * Gets the GFN ready for another round of dirty logging by clearing the
1565 * - D bit on ad-enabled SPTEs, and
1566 * - W bit on ad-disabled SPTEs.
1567 * Returns true iff any D or W bits were cleared.
1568 */
018aabb5 1569static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1570{
1571 u64 *sptep;
1572 struct rmap_iterator iter;
1573 bool flush = false;
1574
018aabb5 1575 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1576 if (spte_ad_enabled(*sptep))
1577 flush |= spte_clear_dirty(sptep);
1578 else
1579 flush |= wrprot_ad_disabled_spte(sptep);
f4b4b180
KH
1580
1581 return flush;
1582}
1583
c4f138b4 1584static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1585{
1586 u64 spte = *sptep;
1587
1588 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1589
1590 spte |= shadow_dirty_mask;
1591
1592 return mmu_spte_update(sptep, spte);
1593}
1594
018aabb5 1595static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1596{
1597 u64 *sptep;
1598 struct rmap_iterator iter;
1599 bool flush = false;
1600
018aabb5 1601 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1602 if (spte_ad_enabled(*sptep))
1603 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1604
1605 return flush;
1606}
1607
5dc99b23 1608/**
3b0f1d01 1609 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1610 * @kvm: kvm instance
1611 * @slot: slot to protect
1612 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1613 * @mask: indicates which pages we should protect
1614 *
1615 * Used when we do not need to care about huge page mappings: e.g. during dirty
1616 * logging we do not have any such mappings.
1617 */
3b0f1d01 1618static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1619 struct kvm_memory_slot *slot,
1620 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1621{
018aabb5 1622 struct kvm_rmap_head *rmap_head;
a0ed4607 1623
5dc99b23 1624 while (mask) {
018aabb5
TY
1625 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1626 PT_PAGE_TABLE_LEVEL, slot);
1627 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1628
5dc99b23
TY
1629 /* clear the first set bit */
1630 mask &= mask - 1;
1631 }
374cbac0
AK
1632}
1633
f4b4b180 1634/**
ac8d57e5
PF
1635 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1636 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1637 * @kvm: kvm instance
1638 * @slot: slot to clear D-bit
1639 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1640 * @mask: indicates which pages we should clear D-bit
1641 *
1642 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1643 */
1644void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1645 struct kvm_memory_slot *slot,
1646 gfn_t gfn_offset, unsigned long mask)
1647{
018aabb5 1648 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1649
1650 while (mask) {
018aabb5
TY
1651 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1652 PT_PAGE_TABLE_LEVEL, slot);
1653 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1654
1655 /* clear the first set bit */
1656 mask &= mask - 1;
1657 }
1658}
1659EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1660
3b0f1d01
KH
1661/**
1662 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1663 * PT level pages.
1664 *
1665 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1666 * enable dirty logging for them.
1667 *
1668 * Used when we do not need to care about huge page mappings: e.g. during dirty
1669 * logging we do not have any such mappings.
1670 */
1671void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1672 struct kvm_memory_slot *slot,
1673 gfn_t gfn_offset, unsigned long mask)
1674{
88178fd4
KH
1675 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1676 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1677 mask);
1678 else
1679 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1680}
1681
bab4165e
BD
1682/**
1683 * kvm_arch_write_log_dirty - emulate dirty page logging
1684 * @vcpu: Guest mode vcpu
1685 *
1686 * Emulate arch specific page modification logging for the
1687 * nested hypervisor
1688 */
1689int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1690{
1691 if (kvm_x86_ops->write_log_dirty)
1692 return kvm_x86_ops->write_log_dirty(vcpu);
1693
1694 return 0;
1695}
1696
aeecee2e
XG
1697bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1698 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1699{
018aabb5 1700 struct kvm_rmap_head *rmap_head;
5dc99b23 1701 int i;
2f84569f 1702 bool write_protected = false;
95d4c16c 1703
8a3d08f1 1704 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1705 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1706 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1707 }
1708
1709 return write_protected;
95d4c16c
TY
1710}
1711
aeecee2e
XG
1712static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1713{
1714 struct kvm_memory_slot *slot;
1715
1716 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1717 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1718}
1719
018aabb5 1720static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1721{
1e3f42f0
TY
1722 u64 *sptep;
1723 struct rmap_iterator iter;
6a49f85c 1724 bool flush = false;
e930bffe 1725
018aabb5 1726 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1727 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1728
e7912386 1729 pte_list_remove(rmap_head, sptep);
6a49f85c 1730 flush = true;
e930bffe 1731 }
1e3f42f0 1732
6a49f85c
XG
1733 return flush;
1734}
1735
018aabb5 1736static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1737 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1738 unsigned long data)
1739{
018aabb5 1740 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1741}
1742
018aabb5 1743static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1744 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1745 unsigned long data)
3da0dd43 1746{
1e3f42f0
TY
1747 u64 *sptep;
1748 struct rmap_iterator iter;
3da0dd43 1749 int need_flush = 0;
1e3f42f0 1750 u64 new_spte;
3da0dd43 1751 pte_t *ptep = (pte_t *)data;
ba049e93 1752 kvm_pfn_t new_pfn;
3da0dd43
IE
1753
1754 WARN_ON(pte_huge(*ptep));
1755 new_pfn = pte_pfn(*ptep);
1e3f42f0 1756
0d536790 1757restart:
018aabb5 1758 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1759 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1760 sptep, *sptep, gfn, level);
1e3f42f0 1761
3da0dd43 1762 need_flush = 1;
1e3f42f0 1763
3da0dd43 1764 if (pte_write(*ptep)) {
e7912386 1765 pte_list_remove(rmap_head, sptep);
0d536790 1766 goto restart;
3da0dd43 1767 } else {
1e3f42f0 1768 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1769 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1770
1771 new_spte &= ~PT_WRITABLE_MASK;
1772 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1773
1774 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1775
1776 mmu_spte_clear_track_bits(sptep);
1777 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1778 }
1779 }
1e3f42f0 1780
3cc5ea94
LT
1781 if (need_flush && kvm_available_flush_tlb_with_range()) {
1782 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1783 return 0;
1784 }
1785
0cf853c5 1786 return need_flush;
3da0dd43
IE
1787}
1788
6ce1f4e2
XG
1789struct slot_rmap_walk_iterator {
1790 /* input fields. */
1791 struct kvm_memory_slot *slot;
1792 gfn_t start_gfn;
1793 gfn_t end_gfn;
1794 int start_level;
1795 int end_level;
1796
1797 /* output fields. */
1798 gfn_t gfn;
018aabb5 1799 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1800 int level;
1801
1802 /* private field. */
018aabb5 1803 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1804};
1805
1806static void
1807rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1808{
1809 iterator->level = level;
1810 iterator->gfn = iterator->start_gfn;
1811 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1812 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1813 iterator->slot);
1814}
1815
1816static void
1817slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1818 struct kvm_memory_slot *slot, int start_level,
1819 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1820{
1821 iterator->slot = slot;
1822 iterator->start_level = start_level;
1823 iterator->end_level = end_level;
1824 iterator->start_gfn = start_gfn;
1825 iterator->end_gfn = end_gfn;
1826
1827 rmap_walk_init_level(iterator, iterator->start_level);
1828}
1829
1830static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1831{
1832 return !!iterator->rmap;
1833}
1834
1835static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1836{
1837 if (++iterator->rmap <= iterator->end_rmap) {
1838 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1839 return;
1840 }
1841
1842 if (++iterator->level > iterator->end_level) {
1843 iterator->rmap = NULL;
1844 return;
1845 }
1846
1847 rmap_walk_init_level(iterator, iterator->level);
1848}
1849
1850#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1851 _start_gfn, _end_gfn, _iter_) \
1852 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1853 _end_level_, _start_gfn, _end_gfn); \
1854 slot_rmap_walk_okay(_iter_); \
1855 slot_rmap_walk_next(_iter_))
1856
84504ef3
TY
1857static int kvm_handle_hva_range(struct kvm *kvm,
1858 unsigned long start,
1859 unsigned long end,
1860 unsigned long data,
1861 int (*handler)(struct kvm *kvm,
018aabb5 1862 struct kvm_rmap_head *rmap_head,
048212d0 1863 struct kvm_memory_slot *slot,
8a9522d2
ALC
1864 gfn_t gfn,
1865 int level,
84504ef3 1866 unsigned long data))
e930bffe 1867{
bc6678a3 1868 struct kvm_memslots *slots;
be6ba0f0 1869 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1870 struct slot_rmap_walk_iterator iterator;
1871 int ret = 0;
9da0e4d5 1872 int i;
bc6678a3 1873
9da0e4d5
PB
1874 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1875 slots = __kvm_memslots(kvm, i);
1876 kvm_for_each_memslot(memslot, slots) {
1877 unsigned long hva_start, hva_end;
1878 gfn_t gfn_start, gfn_end;
e930bffe 1879
9da0e4d5
PB
1880 hva_start = max(start, memslot->userspace_addr);
1881 hva_end = min(end, memslot->userspace_addr +
1882 (memslot->npages << PAGE_SHIFT));
1883 if (hva_start >= hva_end)
1884 continue;
1885 /*
1886 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1887 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1888 */
1889 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1890 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1891
1892 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1893 PT_MAX_HUGEPAGE_LEVEL,
1894 gfn_start, gfn_end - 1,
1895 &iterator)
1896 ret |= handler(kvm, iterator.rmap, memslot,
1897 iterator.gfn, iterator.level, data);
1898 }
e930bffe
AA
1899 }
1900
f395302e 1901 return ret;
e930bffe
AA
1902}
1903
84504ef3
TY
1904static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1905 unsigned long data,
018aabb5
TY
1906 int (*handler)(struct kvm *kvm,
1907 struct kvm_rmap_head *rmap_head,
048212d0 1908 struct kvm_memory_slot *slot,
8a9522d2 1909 gfn_t gfn, int level,
84504ef3
TY
1910 unsigned long data))
1911{
1912 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1913}
1914
b3ae2096
TY
1915int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1916{
1917 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1918}
1919
748c0e31 1920int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1921{
0cf853c5 1922 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1923}
1924
018aabb5 1925static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1926 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1927 unsigned long data)
e930bffe 1928{
1e3f42f0 1929 u64 *sptep;
79f702a6 1930 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1931 int young = 0;
1932
f160c7b7
JS
1933 for_each_rmap_spte(rmap_head, &iter, sptep)
1934 young |= mmu_spte_age(sptep);
0d536790 1935
8a9522d2 1936 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1937 return young;
1938}
1939
018aabb5 1940static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1941 struct kvm_memory_slot *slot, gfn_t gfn,
1942 int level, unsigned long data)
8ee53820 1943{
1e3f42f0
TY
1944 u64 *sptep;
1945 struct rmap_iterator iter;
8ee53820 1946
83ef6c81
JS
1947 for_each_rmap_spte(rmap_head, &iter, sptep)
1948 if (is_accessed_spte(*sptep))
1949 return 1;
83ef6c81 1950 return 0;
8ee53820
AA
1951}
1952
53a27b39
MT
1953#define RMAP_RECYCLE_THRESHOLD 1000
1954
852e3c19 1955static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1956{
018aabb5 1957 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1958 struct kvm_mmu_page *sp;
1959
1960 sp = page_header(__pa(spte));
53a27b39 1961
018aabb5 1962 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1963
018aabb5 1964 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
1965 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1966 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
1967}
1968
57128468 1969int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1970{
57128468 1971 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1972}
1973
8ee53820
AA
1974int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1975{
1976 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1977}
1978
d6c69ee9 1979#ifdef MMU_DEBUG
47ad8e68 1980static int is_empty_shadow_page(u64 *spt)
6aa8b732 1981{
139bdb2d
AK
1982 u64 *pos;
1983 u64 *end;
1984
47ad8e68 1985 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1986 if (is_shadow_present_pte(*pos)) {
b8688d51 1987 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1988 pos, *pos);
6aa8b732 1989 return 0;
139bdb2d 1990 }
6aa8b732
AK
1991 return 1;
1992}
d6c69ee9 1993#endif
6aa8b732 1994
45221ab6
DH
1995/*
1996 * This value is the sum of all of the kvm instances's
1997 * kvm->arch.n_used_mmu_pages values. We need a global,
1998 * aggregate version in order to make the slab shrinker
1999 * faster
2000 */
2001static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
2002{
2003 kvm->arch.n_used_mmu_pages += nr;
2004 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2005}
2006
834be0d8 2007static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 2008{
fa4a2c08 2009 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 2010 hlist_del(&sp->hash_link);
bd4c86ea
XG
2011 list_del(&sp->link);
2012 free_page((unsigned long)sp->spt);
834be0d8
GN
2013 if (!sp->role.direct)
2014 free_page((unsigned long)sp->gfns);
e8ad9a70 2015 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
2016}
2017
cea0f0e7
AK
2018static unsigned kvm_page_table_hashfn(gfn_t gfn)
2019{
114df303 2020 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
2021}
2022
714b93da 2023static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 2024 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2025{
cea0f0e7
AK
2026 if (!parent_pte)
2027 return;
cea0f0e7 2028
67052b35 2029 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2030}
2031
4db35314 2032static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
2033 u64 *parent_pte)
2034{
8daf3462 2035 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2036}
2037
bcdd9a93
XG
2038static void drop_parent_pte(struct kvm_mmu_page *sp,
2039 u64 *parent_pte)
2040{
2041 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 2042 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
2043}
2044
47005792 2045static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 2046{
67052b35 2047 struct kvm_mmu_page *sp;
7ddca7e4 2048
80feb89a
TY
2049 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2050 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2051 if (!direct)
80feb89a 2052 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2053 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
2054
2055 /*
2056 * The active_mmu_pages list is the FIFO list, do not move the
2057 * page until it is zapped. kvm_zap_obsolete_pages depends on
2058 * this feature. See the comments in kvm_zap_obsolete_pages().
2059 */
67052b35 2060 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
2061 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2062 return sp;
ad8cfbe3
MT
2063}
2064
67052b35 2065static void mark_unsync(u64 *spte);
1047df1f 2066static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 2067{
74c4e63a
TY
2068 u64 *sptep;
2069 struct rmap_iterator iter;
2070
2071 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2072 mark_unsync(sptep);
2073 }
0074ff63
MT
2074}
2075
67052b35 2076static void mark_unsync(u64 *spte)
0074ff63 2077{
67052b35 2078 struct kvm_mmu_page *sp;
1047df1f 2079 unsigned int index;
0074ff63 2080
67052b35 2081 sp = page_header(__pa(spte));
1047df1f
XG
2082 index = spte - sp->spt;
2083 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 2084 return;
1047df1f 2085 if (sp->unsync_children++)
0074ff63 2086 return;
1047df1f 2087 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
2088}
2089
e8bc217a 2090static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 2091 struct kvm_mmu_page *sp)
e8bc217a 2092{
1f50f1b3 2093 return 0;
e8bc217a
MT
2094}
2095
7eb77e9f 2096static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
a7052897
MT
2097{
2098}
2099
0f53b5b1
XG
2100static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2101 struct kvm_mmu_page *sp, u64 *spte,
7c562522 2102 const void *pte)
0f53b5b1
XG
2103{
2104 WARN_ON(1);
2105}
2106
60c8aec6
MT
2107#define KVM_PAGE_ARRAY_NR 16
2108
2109struct kvm_mmu_pages {
2110 struct mmu_page_and_offset {
2111 struct kvm_mmu_page *sp;
2112 unsigned int idx;
2113 } page[KVM_PAGE_ARRAY_NR];
2114 unsigned int nr;
2115};
2116
cded19f3
HE
2117static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2118 int idx)
4731d4c7 2119{
60c8aec6 2120 int i;
4731d4c7 2121
60c8aec6
MT
2122 if (sp->unsync)
2123 for (i=0; i < pvec->nr; i++)
2124 if (pvec->page[i].sp == sp)
2125 return 0;
2126
2127 pvec->page[pvec->nr].sp = sp;
2128 pvec->page[pvec->nr].idx = idx;
2129 pvec->nr++;
2130 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2131}
2132
fd951457
TY
2133static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2134{
2135 --sp->unsync_children;
2136 WARN_ON((int)sp->unsync_children < 0);
2137 __clear_bit(idx, sp->unsync_child_bitmap);
2138}
2139
60c8aec6
MT
2140static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2141 struct kvm_mmu_pages *pvec)
2142{
2143 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2144
37178b8b 2145 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2146 struct kvm_mmu_page *child;
4731d4c7
MT
2147 u64 ent = sp->spt[i];
2148
fd951457
TY
2149 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2150 clear_unsync_child_bit(sp, i);
2151 continue;
2152 }
7a8f1a74
XG
2153
2154 child = page_header(ent & PT64_BASE_ADDR_MASK);
2155
2156 if (child->unsync_children) {
2157 if (mmu_pages_add(pvec, child, i))
2158 return -ENOSPC;
2159
2160 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2161 if (!ret) {
2162 clear_unsync_child_bit(sp, i);
2163 continue;
2164 } else if (ret > 0) {
7a8f1a74 2165 nr_unsync_leaf += ret;
fd951457 2166 } else
7a8f1a74
XG
2167 return ret;
2168 } else if (child->unsync) {
2169 nr_unsync_leaf++;
2170 if (mmu_pages_add(pvec, child, i))
2171 return -ENOSPC;
2172 } else
fd951457 2173 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2174 }
2175
60c8aec6
MT
2176 return nr_unsync_leaf;
2177}
2178
e23d3fef
XG
2179#define INVALID_INDEX (-1)
2180
60c8aec6
MT
2181static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2182 struct kvm_mmu_pages *pvec)
2183{
0a47cd85 2184 pvec->nr = 0;
60c8aec6
MT
2185 if (!sp->unsync_children)
2186 return 0;
2187
e23d3fef 2188 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2189 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2190}
2191
4731d4c7
MT
2192static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2193{
2194 WARN_ON(!sp->unsync);
5e1b3ddb 2195 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2196 sp->unsync = 0;
2197 --kvm->stat.mmu_unsync;
2198}
2199
7775834a
XG
2200static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2201 struct list_head *invalid_list);
2202static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2203 struct list_head *invalid_list);
4731d4c7 2204
f34d251d
XG
2205/*
2206 * NOTE: we should pay more attention on the zapped-obsolete page
2207 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2208 * since it has been deleted from active_mmu_pages but still can be found
2209 * at hast list.
2210 *
f3414bc7 2211 * for_each_valid_sp() has skipped that kind of pages.
f34d251d 2212 */
f3414bc7 2213#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2214 hlist_for_each_entry(_sp, \
2215 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
f3414bc7
DM
2216 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2217 } else
1044b030
TY
2218
2219#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2220 for_each_valid_sp(_kvm, _sp, _gfn) \
2221 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2222
f918b443 2223/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2224static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2225 struct list_head *invalid_list)
4731d4c7 2226{
450917b6 2227 if (sp->role.cr4_pae != !!is_pae(vcpu)
44dd3ffa 2228 || vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 2229 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2230 return false;
4731d4c7
MT
2231 }
2232
1f50f1b3 2233 return true;
4731d4c7
MT
2234}
2235
35a70510
PB
2236static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2237 struct list_head *invalid_list,
2238 bool remote_flush, bool local_flush)
1d9dc7e0 2239{
35a70510
PB
2240 if (!list_empty(invalid_list)) {
2241 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2242 return;
2243 }
d98ba053 2244
35a70510
PB
2245 if (remote_flush)
2246 kvm_flush_remote_tlbs(vcpu->kvm);
2247 else if (local_flush)
2248 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2249}
2250
e37fa785
XG
2251#ifdef CONFIG_KVM_MMU_AUDIT
2252#include "mmu_audit.c"
2253#else
2254static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2255static void mmu_audit_disable(void) { }
2256#endif
2257
46971a2f
XG
2258static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2259{
2260 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2261}
2262
1f50f1b3 2263static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2264 struct list_head *invalid_list)
1d9dc7e0 2265{
9a43c5d9
PB
2266 kvm_unlink_unsync_page(vcpu->kvm, sp);
2267 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2268}
2269
9f1a122f 2270/* @gfn should be write-protected at the call site */
2a74003a
PB
2271static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2272 struct list_head *invalid_list)
9f1a122f 2273{
9f1a122f 2274 struct kvm_mmu_page *s;
2a74003a 2275 bool ret = false;
9f1a122f 2276
b67bfe0d 2277 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2278 if (!s->unsync)
9f1a122f
XG
2279 continue;
2280
2281 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2282 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2283 }
2284
2a74003a 2285 return ret;
9f1a122f
XG
2286}
2287
60c8aec6 2288struct mmu_page_path {
2a7266a8
YZ
2289 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2290 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
2291};
2292
60c8aec6 2293#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2294 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2295 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2296 i = mmu_pages_next(&pvec, &parents, i))
2297
cded19f3
HE
2298static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2299 struct mmu_page_path *parents,
2300 int i)
60c8aec6
MT
2301{
2302 int n;
2303
2304 for (n = i+1; n < pvec->nr; n++) {
2305 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2306 unsigned idx = pvec->page[n].idx;
2307 int level = sp->role.level;
60c8aec6 2308
0a47cd85
PB
2309 parents->idx[level-1] = idx;
2310 if (level == PT_PAGE_TABLE_LEVEL)
2311 break;
60c8aec6 2312
0a47cd85 2313 parents->parent[level-2] = sp;
60c8aec6
MT
2314 }
2315
2316 return n;
2317}
2318
0a47cd85
PB
2319static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2320 struct mmu_page_path *parents)
2321{
2322 struct kvm_mmu_page *sp;
2323 int level;
2324
2325 if (pvec->nr == 0)
2326 return 0;
2327
e23d3fef
XG
2328 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2329
0a47cd85
PB
2330 sp = pvec->page[0].sp;
2331 level = sp->role.level;
2332 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2333
2334 parents->parent[level-2] = sp;
2335
2336 /* Also set up a sentinel. Further entries in pvec are all
2337 * children of sp, so this element is never overwritten.
2338 */
2339 parents->parent[level-1] = NULL;
2340 return mmu_pages_next(pvec, parents, 0);
2341}
2342
cded19f3 2343static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2344{
60c8aec6
MT
2345 struct kvm_mmu_page *sp;
2346 unsigned int level = 0;
2347
2348 do {
2349 unsigned int idx = parents->idx[level];
60c8aec6
MT
2350 sp = parents->parent[level];
2351 if (!sp)
2352 return;
2353
e23d3fef 2354 WARN_ON(idx == INVALID_INDEX);
fd951457 2355 clear_unsync_child_bit(sp, idx);
60c8aec6 2356 level++;
0a47cd85 2357 } while (!sp->unsync_children);
60c8aec6 2358}
4731d4c7 2359
60c8aec6
MT
2360static void mmu_sync_children(struct kvm_vcpu *vcpu,
2361 struct kvm_mmu_page *parent)
2362{
2363 int i;
2364 struct kvm_mmu_page *sp;
2365 struct mmu_page_path parents;
2366 struct kvm_mmu_pages pages;
d98ba053 2367 LIST_HEAD(invalid_list);
50c9e6f3 2368 bool flush = false;
60c8aec6 2369
60c8aec6 2370 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2371 bool protected = false;
b1a36821
MT
2372
2373 for_each_sp(pages, sp, parents, i)
54bf36aa 2374 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2375
50c9e6f3 2376 if (protected) {
b1a36821 2377 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2378 flush = false;
2379 }
b1a36821 2380
60c8aec6 2381 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2382 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2383 mmu_pages_clear_parents(&parents);
2384 }
50c9e6f3
PB
2385 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2386 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2387 cond_resched_lock(&vcpu->kvm->mmu_lock);
2388 flush = false;
2389 }
60c8aec6 2390 }
50c9e6f3
PB
2391
2392 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2393}
2394
a30f47cb
XG
2395static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2396{
e5691a81 2397 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2398}
2399
2400static void clear_sp_write_flooding_count(u64 *spte)
2401{
2402 struct kvm_mmu_page *sp = page_header(__pa(spte));
2403
2404 __clear_sp_write_flooding_count(sp);
2405}
2406
cea0f0e7
AK
2407static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2408 gfn_t gfn,
2409 gva_t gaddr,
2410 unsigned level,
f6e2c02b 2411 int direct,
bb11c6c9 2412 unsigned access)
cea0f0e7
AK
2413{
2414 union kvm_mmu_page_role role;
cea0f0e7 2415 unsigned quadrant;
9f1a122f 2416 struct kvm_mmu_page *sp;
9f1a122f 2417 bool need_sync = false;
2a74003a 2418 bool flush = false;
f3414bc7 2419 int collisions = 0;
2a74003a 2420 LIST_HEAD(invalid_list);
cea0f0e7 2421
36d9594d 2422 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2423 role.level = level;
f6e2c02b 2424 role.direct = direct;
84b0c8c6 2425 if (role.direct)
5b7e0102 2426 role.cr4_pae = 0;
41074d07 2427 role.access = access;
44dd3ffa
VK
2428 if (!vcpu->arch.mmu->direct_map
2429 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2430 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2431 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2432 role.quadrant = quadrant;
2433 }
f3414bc7
DM
2434 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2435 if (sp->gfn != gfn) {
2436 collisions++;
2437 continue;
2438 }
2439
7ae680eb
XG
2440 if (!need_sync && sp->unsync)
2441 need_sync = true;
4731d4c7 2442
7ae680eb
XG
2443 if (sp->role.word != role.word)
2444 continue;
4731d4c7 2445
2a74003a
PB
2446 if (sp->unsync) {
2447 /* The page is good, but __kvm_sync_page might still end
2448 * up zapping it. If so, break in order to rebuild it.
2449 */
2450 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2451 break;
2452
2453 WARN_ON(!list_empty(&invalid_list));
2454 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2455 }
e02aa901 2456
98bba238 2457 if (sp->unsync_children)
a8eeb04a 2458 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2459
a30f47cb 2460 __clear_sp_write_flooding_count(sp);
7ae680eb 2461 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2462 goto out;
7ae680eb 2463 }
47005792 2464
dfc5aa00 2465 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2466
2467 sp = kvm_mmu_alloc_page(vcpu, direct);
2468
4db35314
AK
2469 sp->gfn = gfn;
2470 sp->role = role;
7ae680eb
XG
2471 hlist_add_head(&sp->hash_link,
2472 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2473 if (!direct) {
56ca57f9
XG
2474 /*
2475 * we should do write protection before syncing pages
2476 * otherwise the content of the synced shadow page may
2477 * be inconsistent with guest page table.
2478 */
2479 account_shadowed(vcpu->kvm, sp);
2480 if (level == PT_PAGE_TABLE_LEVEL &&
2481 rmap_write_protect(vcpu, gfn))
c3134ce2 2482 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2483
9f1a122f 2484 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2485 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2486 }
5304b8d3 2487 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2488 clear_page(sp->spt);
f691fe1d 2489 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2490
2491 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2492out:
2493 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2494 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2495 return sp;
cea0f0e7
AK
2496}
2497
7eb77e9f
JS
2498static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2499 struct kvm_vcpu *vcpu, hpa_t root,
2500 u64 addr)
2d11123a
AK
2501{
2502 iterator->addr = addr;
7eb77e9f 2503 iterator->shadow_addr = root;
44dd3ffa 2504 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2505
2a7266a8 2506 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2507 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2508 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2509 --iterator->level;
2510
2d11123a 2511 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2512 /*
2513 * prev_root is currently only used for 64-bit hosts. So only
2514 * the active root_hpa is valid here.
2515 */
44dd3ffa 2516 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2517
2d11123a 2518 iterator->shadow_addr
44dd3ffa 2519 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2520 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2521 --iterator->level;
2522 if (!iterator->shadow_addr)
2523 iterator->level = 0;
2524 }
2525}
2526
7eb77e9f
JS
2527static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2528 struct kvm_vcpu *vcpu, u64 addr)
2529{
44dd3ffa 2530 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2531 addr);
2532}
2533
2d11123a
AK
2534static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2535{
2536 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2537 return false;
4d88954d 2538
2d11123a
AK
2539 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2540 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2541 return true;
2542}
2543
c2a2ac2b
XG
2544static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2545 u64 spte)
2d11123a 2546{
c2a2ac2b 2547 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2548 iterator->level = 0;
2549 return;
2550 }
2551
c2a2ac2b 2552 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2553 --iterator->level;
2554}
2555
c2a2ac2b
XG
2556static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2557{
bb606a9b 2558 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2559}
2560
98bba238
TY
2561static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2562 struct kvm_mmu_page *sp)
32ef26a3
AK
2563{
2564 u64 spte;
2565
ffb128c8 2566 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2567
ffb128c8 2568 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2569 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2570
2571 if (sp_ad_disabled(sp))
2572 spte |= shadow_acc_track_value;
2573 else
2574 spte |= shadow_accessed_mask;
24db2734 2575
1df9f2dc 2576 mmu_spte_set(sptep, spte);
98bba238
TY
2577
2578 mmu_page_add_parent_pte(vcpu, sp, sptep);
2579
2580 if (sp->unsync_children || sp->unsync)
2581 mark_unsync(sptep);
32ef26a3
AK
2582}
2583
a357bd22
AK
2584static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2585 unsigned direct_access)
2586{
2587 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2588 struct kvm_mmu_page *child;
2589
2590 /*
2591 * For the direct sp, if the guest pte's dirty bit
2592 * changed form clean to dirty, it will corrupt the
2593 * sp's access: allow writable in the read-only sp,
2594 * so we should update the spte at this point to get
2595 * a new sp with the correct access.
2596 */
2597 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2598 if (child->role.access == direct_access)
2599 return;
2600
bcdd9a93 2601 drop_parent_pte(child, sptep);
c3134ce2 2602 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2603 }
2604}
2605
505aef8f 2606static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2607 u64 *spte)
2608{
2609 u64 pte;
2610 struct kvm_mmu_page *child;
2611
2612 pte = *spte;
2613 if (is_shadow_present_pte(pte)) {
505aef8f 2614 if (is_last_spte(pte, sp->role.level)) {
c3707958 2615 drop_spte(kvm, spte);
505aef8f
XG
2616 if (is_large_pte(pte))
2617 --kvm->stat.lpages;
2618 } else {
38e3b2b2 2619 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2620 drop_parent_pte(child, spte);
38e3b2b2 2621 }
505aef8f
XG
2622 return true;
2623 }
2624
2625 if (is_mmio_spte(pte))
ce88decf 2626 mmu_spte_clear_no_track(spte);
c3707958 2627
505aef8f 2628 return false;
38e3b2b2
XG
2629}
2630
90cb0529 2631static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2632 struct kvm_mmu_page *sp)
a436036b 2633{
697fe2e2 2634 unsigned i;
697fe2e2 2635
38e3b2b2
XG
2636 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2637 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2638}
2639
31aa2b44 2640static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2641{
1e3f42f0
TY
2642 u64 *sptep;
2643 struct rmap_iterator iter;
a436036b 2644
018aabb5 2645 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2646 drop_parent_pte(sp, sptep);
31aa2b44
AK
2647}
2648
60c8aec6 2649static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2650 struct kvm_mmu_page *parent,
2651 struct list_head *invalid_list)
4731d4c7 2652{
60c8aec6
MT
2653 int i, zapped = 0;
2654 struct mmu_page_path parents;
2655 struct kvm_mmu_pages pages;
4731d4c7 2656
60c8aec6 2657 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2658 return 0;
60c8aec6 2659
60c8aec6
MT
2660 while (mmu_unsync_walk(parent, &pages)) {
2661 struct kvm_mmu_page *sp;
2662
2663 for_each_sp(pages, sp, parents, i) {
7775834a 2664 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2665 mmu_pages_clear_parents(&parents);
77662e00 2666 zapped++;
60c8aec6 2667 }
60c8aec6
MT
2668 }
2669
2670 return zapped;
4731d4c7
MT
2671}
2672
7775834a
XG
2673static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2674 struct list_head *invalid_list)
31aa2b44 2675{
4731d4c7 2676 int ret;
f691fe1d 2677
7775834a 2678 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2679 ++kvm->stat.mmu_shadow_zapped;
7775834a 2680 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2681 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2682 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2683
f6e2c02b 2684 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2685 unaccount_shadowed(kvm, sp);
5304b8d3 2686
4731d4c7
MT
2687 if (sp->unsync)
2688 kvm_unlink_unsync_page(kvm, sp);
4db35314 2689 if (!sp->root_count) {
54a4f023
GJ
2690 /* Count self */
2691 ret++;
7775834a 2692 list_move(&sp->link, invalid_list);
aa6bd187 2693 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2694 } else {
5b5c6a5a 2695 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2696
2697 /*
2698 * The obsolete pages can not be used on any vcpus.
2699 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2700 */
2701 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2702 kvm_reload_remote_mmus(kvm);
2e53d63a 2703 }
7775834a
XG
2704
2705 sp->role.invalid = 1;
4731d4c7 2706 return ret;
a436036b
AK
2707}
2708
7775834a
XG
2709static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2710 struct list_head *invalid_list)
2711{
945315b9 2712 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2713
2714 if (list_empty(invalid_list))
2715 return;
2716
c142786c 2717 /*
9753f529
LT
2718 * We need to make sure everyone sees our modifications to
2719 * the page tables and see changes to vcpu->mode here. The barrier
2720 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2721 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2722 *
2723 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2724 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2725 */
2726 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2727
945315b9 2728 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2729 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2730 kvm_mmu_free_page(sp);
945315b9 2731 }
7775834a
XG
2732}
2733
5da59607
TY
2734static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2735 struct list_head *invalid_list)
2736{
2737 struct kvm_mmu_page *sp;
2738
2739 if (list_empty(&kvm->arch.active_mmu_pages))
2740 return false;
2741
d74c0e6b
GT
2742 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2743 struct kvm_mmu_page, link);
42bcbebf 2744 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
5da59607
TY
2745}
2746
82ce2c96
IE
2747/*
2748 * Changing the number of mmu pages allocated to the vm
49d5ca26 2749 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2750 */
49d5ca26 2751void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2752{
d98ba053 2753 LIST_HEAD(invalid_list);
82ce2c96 2754
b34cb590
TY
2755 spin_lock(&kvm->mmu_lock);
2756
49d5ca26 2757 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2758 /* Need to free some mmu pages to achieve the goal. */
2759 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2760 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2761 break;
82ce2c96 2762
aa6bd187 2763 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2764 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2765 }
82ce2c96 2766
49d5ca26 2767 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2768
2769 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2770}
2771
1cb3f3ae 2772int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2773{
4db35314 2774 struct kvm_mmu_page *sp;
d98ba053 2775 LIST_HEAD(invalid_list);
a436036b
AK
2776 int r;
2777
9ad17b10 2778 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2779 r = 0;
1cb3f3ae 2780 spin_lock(&kvm->mmu_lock);
b67bfe0d 2781 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2782 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2783 sp->role.word);
2784 r = 1;
f41d335a 2785 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2786 }
d98ba053 2787 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2788 spin_unlock(&kvm->mmu_lock);
2789
a436036b 2790 return r;
cea0f0e7 2791}
1cb3f3ae 2792EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2793
5c520e90 2794static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2795{
2796 trace_kvm_mmu_unsync_page(sp);
2797 ++vcpu->kvm->stat.mmu_unsync;
2798 sp->unsync = 1;
2799
2800 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2801}
2802
3d0c27ad
XG
2803static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2804 bool can_unsync)
4731d4c7 2805{
5c520e90 2806 struct kvm_mmu_page *sp;
4731d4c7 2807
3d0c27ad
XG
2808 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2809 return true;
9cf5cf5a 2810
5c520e90 2811 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2812 if (!can_unsync)
3d0c27ad 2813 return true;
36a2e677 2814
5c520e90
XG
2815 if (sp->unsync)
2816 continue;
9cf5cf5a 2817
5c520e90
XG
2818 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2819 kvm_unsync_page(vcpu, sp);
4731d4c7 2820 }
3d0c27ad 2821
578e1c4d
JS
2822 /*
2823 * We need to ensure that the marking of unsync pages is visible
2824 * before the SPTE is updated to allow writes because
2825 * kvm_mmu_sync_roots() checks the unsync flags without holding
2826 * the MMU lock and so can race with this. If the SPTE was updated
2827 * before the page had been marked as unsync-ed, something like the
2828 * following could happen:
2829 *
2830 * CPU 1 CPU 2
2831 * ---------------------------------------------------------------------
2832 * 1.2 Host updates SPTE
2833 * to be writable
2834 * 2.1 Guest writes a GPTE for GVA X.
2835 * (GPTE being in the guest page table shadowed
2836 * by the SP from CPU 1.)
2837 * This reads SPTE during the page table walk.
2838 * Since SPTE.W is read as 1, there is no
2839 * fault.
2840 *
2841 * 2.2 Guest issues TLB flush.
2842 * That causes a VM Exit.
2843 *
2844 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2845 * Since it is false, so it just returns.
2846 *
2847 * 2.4 Guest accesses GVA X.
2848 * Since the mapping in the SP was not updated,
2849 * so the old mapping for GVA X incorrectly
2850 * gets used.
2851 * 1.1 Host marks SP
2852 * as unsync
2853 * (sp->unsync = true)
2854 *
2855 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2856 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2857 * pairs with this write barrier.
2858 */
2859 smp_wmb();
2860
3d0c27ad 2861 return false;
4731d4c7
MT
2862}
2863
ba049e93 2864static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2865{
2866 if (pfn_valid(pfn))
aa2e063a
HZ
2867 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2868 /*
2869 * Some reserved pages, such as those from NVDIMM
2870 * DAX devices, are not for MMIO, and can be mapped
2871 * with cached memory type for better performance.
2872 * However, the above check misconceives those pages
2873 * as MMIO, and results in KVM mapping them with UC
2874 * memory type, which would hurt the performance.
2875 * Therefore, we check the host memory type in addition
2876 * and only treat UC/UC-/WC pages as MMIO.
2877 */
2878 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
d1fe9219
PB
2879
2880 return true;
2881}
2882
5ce4786f
JS
2883/* Bits which may be returned by set_spte() */
2884#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2885#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2886
d555c333 2887static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2888 unsigned pte_access, int level,
ba049e93 2889 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2890 bool can_unsync, bool host_writable)
1c4f1fd6 2891{
ffb128c8 2892 u64 spte = 0;
1e73f9dd 2893 int ret = 0;
ac8d57e5 2894 struct kvm_mmu_page *sp;
64d4d521 2895
54bf36aa 2896 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2897 return 0;
2898
ac8d57e5
PF
2899 sp = page_header(__pa(sptep));
2900 if (sp_ad_disabled(sp))
2901 spte |= shadow_acc_track_value;
2902
d95c5568
BD
2903 /*
2904 * For the EPT case, shadow_present_mask is 0 if hardware
2905 * supports exec-only page table entries. In that case,
2906 * ACC_USER_MASK and shadow_user_mask are used to represent
2907 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2908 */
ffb128c8 2909 spte |= shadow_present_mask;
947da538 2910 if (!speculative)
ac8d57e5 2911 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 2912
7b52345e
SY
2913 if (pte_access & ACC_EXEC_MASK)
2914 spte |= shadow_x_mask;
2915 else
2916 spte |= shadow_nx_mask;
49fde340 2917
1c4f1fd6 2918 if (pte_access & ACC_USER_MASK)
7b52345e 2919 spte |= shadow_user_mask;
49fde340 2920
852e3c19 2921 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2922 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2923 if (tdp_enabled)
4b12f0de 2924 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2925 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2926
9bdbba13 2927 if (host_writable)
1403283a 2928 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2929 else
2930 pte_access &= ~ACC_WRITE_MASK;
1403283a 2931
daaf216c
TL
2932 if (!kvm_is_mmio_pfn(pfn))
2933 spte |= shadow_me_mask;
2934
35149e21 2935 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2936
c2288505 2937 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2938
c2193463 2939 /*
7751babd
XG
2940 * Other vcpu creates new sp in the window between
2941 * mapping_level() and acquiring mmu-lock. We can
2942 * allow guest to retry the access, the mapping can
2943 * be fixed if guest refault.
c2193463 2944 */
852e3c19 2945 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2946 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2947 goto done;
38187c83 2948
49fde340 2949 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2950
ecc5589f
MT
2951 /*
2952 * Optimization: for pte sync, if spte was writable the hash
2953 * lookup is unnecessary (and expensive). Write protection
2954 * is responsibility of mmu_get_page / kvm_sync_page.
2955 * Same reasoning can be applied to dirty page accounting.
2956 */
8dae4445 2957 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2958 goto set_pte;
2959
4731d4c7 2960 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2961 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2962 __func__, gfn);
5ce4786f 2963 ret |= SET_SPTE_WRITE_PROTECTED_PT;
1c4f1fd6 2964 pte_access &= ~ACC_WRITE_MASK;
49fde340 2965 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2966 }
2967 }
2968
9b51a630 2969 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2970 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 2971 spte |= spte_shadow_dirty_mask(spte);
9b51a630 2972 }
1c4f1fd6 2973
f160c7b7
JS
2974 if (speculative)
2975 spte = mark_spte_for_access_track(spte);
2976
38187c83 2977set_pte:
6e7d0354 2978 if (mmu_spte_update(sptep, spte))
5ce4786f 2979 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
be38d276 2980done:
1e73f9dd
MT
2981 return ret;
2982}
2983
9b8ebbdb
PB
2984static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2985 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2986 bool speculative, bool host_writable)
1e73f9dd
MT
2987{
2988 int was_rmapped = 0;
53a27b39 2989 int rmap_count;
5ce4786f 2990 int set_spte_ret;
9b8ebbdb 2991 int ret = RET_PF_RETRY;
c2a4eadf 2992 bool flush = false;
1e73f9dd 2993
f7616203
XG
2994 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2995 *sptep, write_fault, gfn);
1e73f9dd 2996
afd28fe1 2997 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2998 /*
2999 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3000 * the parent of the now unreachable PTE.
3001 */
852e3c19
JR
3002 if (level > PT_PAGE_TABLE_LEVEL &&
3003 !is_large_pte(*sptep)) {
1e73f9dd 3004 struct kvm_mmu_page *child;
d555c333 3005 u64 pte = *sptep;
1e73f9dd
MT
3006
3007 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 3008 drop_parent_pte(child, sptep);
c2a4eadf 3009 flush = true;
d555c333 3010 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 3011 pgprintk("hfn old %llx new %llx\n",
d555c333 3012 spte_to_pfn(*sptep), pfn);
c3707958 3013 drop_spte(vcpu->kvm, sptep);
c2a4eadf 3014 flush = true;
6bed6b9e
JR
3015 } else
3016 was_rmapped = 1;
1e73f9dd 3017 }
852e3c19 3018
5ce4786f
JS
3019 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3020 speculative, true, host_writable);
3021 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 3022 if (write_fault)
9b8ebbdb 3023 ret = RET_PF_EMULATE;
77c3913b 3024 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 3025 }
c3134ce2 3026
c2a4eadf 3027 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
3028 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3029 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 3030
029499b4 3031 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 3032 ret = RET_PF_EMULATE;
ce88decf 3033
d555c333 3034 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 3035 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 3036 is_large_pte(*sptep)? "2MB" : "4kB",
f160c7b7 3037 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
a205bc19 3038 *sptep, sptep);
d555c333 3039 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
3040 ++vcpu->kvm->stat.lpages;
3041
ffb61bb3 3042 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
3043 if (!was_rmapped) {
3044 rmap_count = rmap_add(vcpu, sptep, gfn);
3045 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3046 rmap_recycle(vcpu, sptep, gfn);
3047 }
1c4f1fd6 3048 }
cb9aaa30 3049
f3ac1a4b 3050 kvm_release_pfn_clean(pfn);
029499b4 3051
9b8ebbdb 3052 return ret;
1c4f1fd6
AK
3053}
3054
ba049e93 3055static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
3056 bool no_dirty_log)
3057{
3058 struct kvm_memory_slot *slot;
957ed9ef 3059
5d163b1c 3060 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 3061 if (!slot)
6c8ee57b 3062 return KVM_PFN_ERR_FAULT;
957ed9ef 3063
037d92dc 3064 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
3065}
3066
3067static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3068 struct kvm_mmu_page *sp,
3069 u64 *start, u64 *end)
3070{
3071 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 3072 struct kvm_memory_slot *slot;
957ed9ef
XG
3073 unsigned access = sp->role.access;
3074 int i, ret;
3075 gfn_t gfn;
3076
3077 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
3078 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3079 if (!slot)
957ed9ef
XG
3080 return -1;
3081
d9ef13c2 3082 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
3083 if (ret <= 0)
3084 return -1;
3085
3086 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
3087 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3088 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
3089
3090 return 0;
3091}
3092
3093static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3094 struct kvm_mmu_page *sp, u64 *sptep)
3095{
3096 u64 *spte, *start = NULL;
3097 int i;
3098
3099 WARN_ON(!sp->role.direct);
3100
3101 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3102 spte = sp->spt + i;
3103
3104 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 3105 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
3106 if (!start)
3107 continue;
3108 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3109 break;
3110 start = NULL;
3111 } else if (!start)
3112 start = spte;
3113 }
3114}
3115
3116static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3117{
3118 struct kvm_mmu_page *sp;
3119
ac8d57e5
PF
3120 sp = page_header(__pa(sptep));
3121
957ed9ef 3122 /*
ac8d57e5
PF
3123 * Without accessed bits, there's no way to distinguish between
3124 * actually accessed translations and prefetched, so disable pte
3125 * prefetch if accessed bits aren't available.
957ed9ef 3126 */
ac8d57e5 3127 if (sp_ad_disabled(sp))
957ed9ef
XG
3128 return;
3129
957ed9ef
XG
3130 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3131 return;
3132
3133 __direct_pte_prefetch(vcpu, sp, sptep);
3134}
3135
7ee0e5b2 3136static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 3137 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 3138{
9f652d21 3139 struct kvm_shadow_walk_iterator iterator;
140754bc 3140 struct kvm_mmu_page *sp;
b90a0e6c 3141 int emulate = 0;
140754bc 3142 gfn_t pseudo_gfn;
6aa8b732 3143
44dd3ffa 3144 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
989c6b34
MT
3145 return 0;
3146
9f652d21 3147 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 3148 if (iterator.level == level) {
029499b4
TY
3149 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
3150 write, level, gfn, pfn, prefault,
3151 map_writable);
957ed9ef 3152 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
3153 ++vcpu->stat.pf_fixed;
3154 break;
6aa8b732
AK
3155 }
3156
404381c5 3157 drop_large_spte(vcpu, iterator.sptep);
c3707958 3158 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
3159 u64 base_addr = iterator.addr;
3160
3161 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
3162 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 3163 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 3164 iterator.level - 1, 1, ACC_ALL);
140754bc 3165
98bba238 3166 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
3167 }
3168 }
b90a0e6c 3169 return emulate;
6aa8b732
AK
3170}
3171
77db5cbd 3172static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 3173{
585a8b9b 3174 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
3175}
3176
ba049e93 3177static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 3178{
4d8b81ab
XG
3179 /*
3180 * Do not cache the mmio info caused by writing the readonly gfn
3181 * into the spte otherwise read access on readonly gfn also can
3182 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
3183 */
3184 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 3185 return RET_PF_EMULATE;
4d8b81ab 3186
e6c1502b 3187 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3188 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 3189 return RET_PF_RETRY;
d7c55201 3190 }
edba23e5 3191
2c151b25 3192 return -EFAULT;
bf998156
HY
3193}
3194
936a5fe6 3195static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
3196 gfn_t *gfnp, kvm_pfn_t *pfnp,
3197 int *levelp)
936a5fe6 3198{
ba049e93 3199 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
3200 gfn_t gfn = *gfnp;
3201 int level = *levelp;
3202
3203 /*
3204 * Check if it's a transparent hugepage. If this would be an
3205 * hugetlbfs page, level wouldn't be set to
3206 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3207 * here.
3208 */
bf4bea8e 3209 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6 3210 level == PT_PAGE_TABLE_LEVEL &&
127393fb 3211 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 3212 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
3213 unsigned long mask;
3214 /*
3215 * mmu_notifier_retry was successful and we hold the
3216 * mmu_lock here, so the pmd can't become splitting
3217 * from under us, and in turn
3218 * __split_huge_page_refcount() can't run from under
3219 * us and we can safely transfer the refcount from
3220 * PG_tail to PG_head as we switch the pfn to tail to
3221 * head.
3222 */
3223 *levelp = level = PT_DIRECTORY_LEVEL;
3224 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3225 VM_BUG_ON((gfn & mask) != (pfn & mask));
3226 if (pfn & mask) {
3227 gfn &= ~mask;
3228 *gfnp = gfn;
3229 kvm_release_pfn_clean(pfn);
3230 pfn &= ~mask;
c3586667 3231 kvm_get_pfn(pfn);
936a5fe6
AA
3232 *pfnp = pfn;
3233 }
3234 }
3235}
3236
d7c55201 3237static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 3238 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 3239{
d7c55201 3240 /* The pfn is invalid, report the error! */
81c52c56 3241 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3242 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3243 return true;
d7c55201
XG
3244 }
3245
ce88decf 3246 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 3247 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 3248
798e88b3 3249 return false;
d7c55201
XG
3250}
3251
e5552fd2 3252static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3253{
1c118b82
XG
3254 /*
3255 * Do not fix the mmio spte with invalid generation number which
3256 * need to be updated by slow page fault path.
3257 */
3258 if (unlikely(error_code & PFERR_RSVD_MASK))
3259 return false;
3260
f160c7b7
JS
3261 /* See if the page fault is due to an NX violation */
3262 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3263 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3264 return false;
3265
c7ba5b48 3266 /*
f160c7b7
JS
3267 * #PF can be fast if:
3268 * 1. The shadow page table entry is not present, which could mean that
3269 * the fault is potentially caused by access tracking (if enabled).
3270 * 2. The shadow page table entry is present and the fault
3271 * is caused by write-protect, that means we just need change the W
3272 * bit of the spte which can be done out of mmu-lock.
3273 *
3274 * However, if access tracking is disabled we know that a non-present
3275 * page must be a genuine page fault where we have to create a new SPTE.
3276 * So, if access tracking is disabled, we return true only for write
3277 * accesses to a present page.
c7ba5b48 3278 */
c7ba5b48 3279
f160c7b7
JS
3280 return shadow_acc_track_mask != 0 ||
3281 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3282 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3283}
3284
97dceba2
JS
3285/*
3286 * Returns true if the SPTE was fixed successfully. Otherwise,
3287 * someone else modified the SPTE from its original value.
3288 */
c7ba5b48 3289static bool
92a476cb 3290fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3291 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3292{
c7ba5b48
XG
3293 gfn_t gfn;
3294
3295 WARN_ON(!sp->role.direct);
3296
9b51a630
KH
3297 /*
3298 * Theoretically we could also set dirty bit (and flush TLB) here in
3299 * order to eliminate unnecessary PML logging. See comments in
3300 * set_spte. But fast_page_fault is very unlikely to happen with PML
3301 * enabled, so we do not do this. This might result in the same GPA
3302 * to be logged in PML buffer again when the write really happens, and
3303 * eventually to be called by mark_page_dirty twice. But it's also no
3304 * harm. This also avoids the TLB flush needed after setting dirty bit
3305 * so non-PML cases won't be impacted.
3306 *
3307 * Compare with set_spte where instead shadow_dirty_mask is set.
3308 */
f160c7b7 3309 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3310 return false;
3311
d3e328f2 3312 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3313 /*
3314 * The gfn of direct spte is stable since it is
3315 * calculated by sp->gfn.
3316 */
3317 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3318 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3319 }
c7ba5b48
XG
3320
3321 return true;
3322}
3323
d3e328f2
JS
3324static bool is_access_allowed(u32 fault_err_code, u64 spte)
3325{
3326 if (fault_err_code & PFERR_FETCH_MASK)
3327 return is_executable_pte(spte);
3328
3329 if (fault_err_code & PFERR_WRITE_MASK)
3330 return is_writable_pte(spte);
3331
3332 /* Fault was on Read access */
3333 return spte & PT_PRESENT_MASK;
3334}
3335
c7ba5b48
XG
3336/*
3337 * Return value:
3338 * - true: let the vcpu to access on the same address again.
3339 * - false: let the real page fault path to fix it.
3340 */
3341static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3342 u32 error_code)
3343{
3344 struct kvm_shadow_walk_iterator iterator;
92a476cb 3345 struct kvm_mmu_page *sp;
97dceba2 3346 bool fault_handled = false;
c7ba5b48 3347 u64 spte = 0ull;
97dceba2 3348 uint retry_count = 0;
c7ba5b48 3349
44dd3ffa 3350 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
37f6a4e2
MT
3351 return false;
3352
e5552fd2 3353 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3354 return false;
3355
3356 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3357
97dceba2 3358 do {
d3e328f2 3359 u64 new_spte;
c7ba5b48 3360
d162f30a
JS
3361 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3362 if (!is_shadow_present_pte(spte) ||
3363 iterator.level < level)
3364 break;
3365
97dceba2
JS
3366 sp = page_header(__pa(iterator.sptep));
3367 if (!is_last_spte(spte, sp->role.level))
3368 break;
c7ba5b48 3369
97dceba2 3370 /*
f160c7b7
JS
3371 * Check whether the memory access that caused the fault would
3372 * still cause it if it were to be performed right now. If not,
3373 * then this is a spurious fault caused by TLB lazily flushed,
3374 * or some other CPU has already fixed the PTE after the
3375 * current CPU took the fault.
97dceba2
JS
3376 *
3377 * Need not check the access of upper level table entries since
3378 * they are always ACC_ALL.
3379 */
d3e328f2
JS
3380 if (is_access_allowed(error_code, spte)) {
3381 fault_handled = true;
3382 break;
3383 }
f160c7b7 3384
d3e328f2
JS
3385 new_spte = spte;
3386
3387 if (is_access_track_spte(spte))
3388 new_spte = restore_acc_track_spte(new_spte);
3389
3390 /*
3391 * Currently, to simplify the code, write-protection can
3392 * be removed in the fast path only if the SPTE was
3393 * write-protected for dirty-logging or access tracking.
3394 */
3395 if ((error_code & PFERR_WRITE_MASK) &&
3396 spte_can_locklessly_be_made_writable(spte))
3397 {
3398 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3399
3400 /*
d3e328f2
JS
3401 * Do not fix write-permission on the large spte. Since
3402 * we only dirty the first page into the dirty-bitmap in
3403 * fast_pf_fix_direct_spte(), other pages are missed
3404 * if its slot has dirty logging enabled.
3405 *
3406 * Instead, we let the slow page fault path create a
3407 * normal spte to fix the access.
3408 *
3409 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3410 */
d3e328f2 3411 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3412 break;
97dceba2 3413 }
c7ba5b48 3414
f160c7b7 3415 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3416 if (new_spte == spte ||
3417 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3418 break;
3419
3420 /*
3421 * Currently, fast page fault only works for direct mapping
3422 * since the gfn is not stable for indirect shadow page. See
3423 * Documentation/virtual/kvm/locking.txt to get more detail.
3424 */
3425 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3426 iterator.sptep, spte,
d3e328f2 3427 new_spte);
97dceba2
JS
3428 if (fault_handled)
3429 break;
3430
3431 if (++retry_count > 4) {
3432 printk_once(KERN_WARNING
3433 "kvm: Fast #PF retrying more than 4 times.\n");
3434 break;
3435 }
3436
97dceba2 3437 } while (true);
c126d94f 3438
a72faf25 3439 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
97dceba2 3440 spte, fault_handled);
c7ba5b48
XG
3441 walk_shadow_page_lockless_end(vcpu);
3442
97dceba2 3443 return fault_handled;
c7ba5b48
XG
3444}
3445
78b2c54a 3446static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3447 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
26eeb53c 3448static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3449
c7ba5b48
XG
3450static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3451 gfn_t gfn, bool prefault)
10589a46
MT
3452{
3453 int r;
852e3c19 3454 int level;
fd136902 3455 bool force_pt_level = false;
ba049e93 3456 kvm_pfn_t pfn;
e930bffe 3457 unsigned long mmu_seq;
c7ba5b48 3458 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3459
fd136902 3460 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3461 if (likely(!force_pt_level)) {
936a5fe6
AA
3462 /*
3463 * This path builds a PAE pagetable - so we can map
3464 * 2mb pages at maximum. Therefore check if the level
3465 * is larger than that.
3466 */
3467 if (level > PT_DIRECTORY_LEVEL)
3468 level = PT_DIRECTORY_LEVEL;
852e3c19 3469
936a5fe6 3470 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3471 }
05da4558 3472
c7ba5b48 3473 if (fast_page_fault(vcpu, v, level, error_code))
9b8ebbdb 3474 return RET_PF_RETRY;
c7ba5b48 3475
e930bffe 3476 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3477 smp_rmb();
060c2abe 3478
78b2c54a 3479 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
9b8ebbdb 3480 return RET_PF_RETRY;
aaee2c94 3481
d7c55201
XG
3482 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3483 return r;
d196e343 3484
aaee2c94 3485 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3486 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3487 goto out_unlock;
26eeb53c
WL
3488 if (make_mmu_pages_available(vcpu) < 0)
3489 goto out_unlock;
936a5fe6
AA
3490 if (likely(!force_pt_level))
3491 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3492 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3493 spin_unlock(&vcpu->kvm->mmu_lock);
3494
10589a46 3495 return r;
e930bffe
AA
3496
3497out_unlock:
3498 spin_unlock(&vcpu->kvm->mmu_lock);
3499 kvm_release_pfn_clean(pfn);
9b8ebbdb 3500 return RET_PF_RETRY;
10589a46
MT
3501}
3502
74b566e6
JS
3503static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3504 struct list_head *invalid_list)
17ac10ad 3505{
4db35314 3506 struct kvm_mmu_page *sp;
17ac10ad 3507
74b566e6 3508 if (!VALID_PAGE(*root_hpa))
7b53aa56 3509 return;
35af577a 3510
74b566e6
JS
3511 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3512 --sp->root_count;
3513 if (!sp->root_count && sp->role.invalid)
3514 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
17ac10ad 3515
74b566e6
JS
3516 *root_hpa = INVALID_PAGE;
3517}
3518
08fb59d8 3519/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3520void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3521 ulong roots_to_free)
74b566e6
JS
3522{
3523 int i;
3524 LIST_HEAD(invalid_list);
08fb59d8 3525 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3526
b94742c9 3527 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3528
08fb59d8 3529 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3530 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3531 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3532 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3533 VALID_PAGE(mmu->prev_roots[i].hpa))
3534 break;
3535
3536 if (i == KVM_MMU_NUM_PREV_ROOTS)
3537 return;
3538 }
35af577a
GN
3539
3540 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3541
b94742c9
JS
3542 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3543 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3544 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3545 &invalid_list);
7c390d35 3546
08fb59d8
JS
3547 if (free_active_root) {
3548 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3549 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3550 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3551 &invalid_list);
3552 } else {
3553 for (i = 0; i < 4; ++i)
3554 if (mmu->pae_root[i] != 0)
3555 mmu_free_root_page(vcpu->kvm,
3556 &mmu->pae_root[i],
3557 &invalid_list);
3558 mmu->root_hpa = INVALID_PAGE;
3559 }
17ac10ad 3560 }
74b566e6 3561
d98ba053 3562 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3563 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad 3564}
74b566e6 3565EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3566
8986ecc0
MT
3567static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3568{
3569 int ret = 0;
3570
3571 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3572 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3573 ret = 1;
3574 }
3575
3576 return ret;
3577}
3578
651dd37a
JR
3579static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3580{
3581 struct kvm_mmu_page *sp;
7ebaf15e 3582 unsigned i;
651dd37a 3583
44dd3ffa 3584 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
651dd37a 3585 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3586 if(make_mmu_pages_available(vcpu) < 0) {
3587 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3588 return -ENOSPC;
26eeb53c 3589 }
855feb67 3590 sp = kvm_mmu_get_page(vcpu, 0, 0,
44dd3ffa 3591 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
651dd37a
JR
3592 ++sp->root_count;
3593 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa
VK
3594 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3595 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3596 for (i = 0; i < 4; ++i) {
44dd3ffa 3597 hpa_t root = vcpu->arch.mmu->pae_root[i];
651dd37a 3598
fa4a2c08 3599 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3600 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3601 if (make_mmu_pages_available(vcpu) < 0) {
3602 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3603 return -ENOSPC;
26eeb53c 3604 }
649497d1 3605 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3606 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3607 root = __pa(sp->spt);
3608 ++sp->root_count;
3609 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3610 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3611 }
44dd3ffa 3612 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3613 } else
3614 BUG();
3615
3616 return 0;
3617}
3618
3619static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3620{
4db35314 3621 struct kvm_mmu_page *sp;
81407ca5
JR
3622 u64 pdptr, pm_mask;
3623 gfn_t root_gfn;
3624 int i;
3bb65a22 3625
44dd3ffa 3626 root_gfn = vcpu->arch.mmu->get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3627
651dd37a
JR
3628 if (mmu_check_root(vcpu, root_gfn))
3629 return 1;
3630
3631 /*
3632 * Do we shadow a long mode page table? If so we need to
3633 * write-protect the guests page table root.
3634 */
44dd3ffa
VK
3635 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3636 hpa_t root = vcpu->arch.mmu->root_hpa;
17ac10ad 3637
fa4a2c08 3638 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3639
8facbbff 3640 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3641 if (make_mmu_pages_available(vcpu) < 0) {
3642 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3643 return -ENOSPC;
26eeb53c 3644 }
855feb67 3645 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
44dd3ffa 3646 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
4db35314
AK
3647 root = __pa(sp->spt);
3648 ++sp->root_count;
8facbbff 3649 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3650 vcpu->arch.mmu->root_hpa = root;
8986ecc0 3651 return 0;
17ac10ad 3652 }
f87f9288 3653
651dd37a
JR
3654 /*
3655 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3656 * or a PAE 3-level page table. In either case we need to be aware that
3657 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3658 */
81407ca5 3659 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3660 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3661 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3662
17ac10ad 3663 for (i = 0; i < 4; ++i) {
44dd3ffa 3664 hpa_t root = vcpu->arch.mmu->pae_root[i];
17ac10ad 3665
fa4a2c08 3666 MMU_WARN_ON(VALID_PAGE(root));
44dd3ffa
VK
3667 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3668 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3669 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3670 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3671 continue;
3672 }
6de4f3ad 3673 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3674 if (mmu_check_root(vcpu, root_gfn))
3675 return 1;
5a7388c2 3676 }
8facbbff 3677 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3678 if (make_mmu_pages_available(vcpu) < 0) {
3679 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3680 return -ENOSPC;
26eeb53c 3681 }
bb11c6c9
TY
3682 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3683 0, ACC_ALL);
4db35314
AK
3684 root = __pa(sp->spt);
3685 ++sp->root_count;
8facbbff
AK
3686 spin_unlock(&vcpu->kvm->mmu_lock);
3687
44dd3ffa 3688 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3689 }
44dd3ffa 3690 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3691
3692 /*
3693 * If we shadow a 32 bit page table with a long mode page
3694 * table we enter this path.
3695 */
44dd3ffa
VK
3696 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3697 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3698 /*
3699 * The additional page necessary for this is only
3700 * allocated on demand.
3701 */
3702
3703 u64 *lm_root;
3704
3705 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3706 if (lm_root == NULL)
3707 return 1;
3708
44dd3ffa 3709 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3710
44dd3ffa 3711 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3712 }
3713
44dd3ffa 3714 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3715 }
3716
8986ecc0 3717 return 0;
17ac10ad
AK
3718}
3719
651dd37a
JR
3720static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3721{
44dd3ffa 3722 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3723 return mmu_alloc_direct_roots(vcpu);
3724 else
3725 return mmu_alloc_shadow_roots(vcpu);
3726}
3727
578e1c4d 3728void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3729{
3730 int i;
3731 struct kvm_mmu_page *sp;
3732
44dd3ffa 3733 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3734 return;
3735
44dd3ffa 3736 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3737 return;
6903074c 3738
56f17dd3 3739 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3740
44dd3ffa
VK
3741 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3742 hpa_t root = vcpu->arch.mmu->root_hpa;
0ba73cda 3743 sp = page_header(root);
578e1c4d
JS
3744
3745 /*
3746 * Even if another CPU was marking the SP as unsync-ed
3747 * simultaneously, any guest page table changes are not
3748 * guaranteed to be visible anyway until this VCPU issues a TLB
3749 * flush strictly after those changes are made. We only need to
3750 * ensure that the other CPU sets these flags before any actual
3751 * changes to the page tables are made. The comments in
3752 * mmu_need_write_protect() describe what could go wrong if this
3753 * requirement isn't satisfied.
3754 */
3755 if (!smp_load_acquire(&sp->unsync) &&
3756 !smp_load_acquire(&sp->unsync_children))
3757 return;
3758
3759 spin_lock(&vcpu->kvm->mmu_lock);
3760 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3761
0ba73cda 3762 mmu_sync_children(vcpu, sp);
578e1c4d 3763
0375f7fa 3764 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3765 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3766 return;
3767 }
578e1c4d
JS
3768
3769 spin_lock(&vcpu->kvm->mmu_lock);
3770 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3771
0ba73cda 3772 for (i = 0; i < 4; ++i) {
44dd3ffa 3773 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3774
8986ecc0 3775 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3776 root &= PT64_BASE_ADDR_MASK;
3777 sp = page_header(root);
3778 mmu_sync_children(vcpu, sp);
3779 }
3780 }
0ba73cda 3781
578e1c4d 3782 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3783 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3784}
bfd0a56b 3785EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3786
1871c602 3787static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3788 u32 access, struct x86_exception *exception)
6aa8b732 3789{
ab9ae313
AK
3790 if (exception)
3791 exception->error_code = 0;
6aa8b732
AK
3792 return vaddr;
3793}
3794
6539e738 3795static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3796 u32 access,
3797 struct x86_exception *exception)
6539e738 3798{
ab9ae313
AK
3799 if (exception)
3800 exception->error_code = 0;
54987b7a 3801 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3802}
3803
d625b155
XG
3804static bool
3805__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3806{
3807 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3808
3809 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3810 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3811}
3812
3813static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3814{
3815 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3816}
3817
3818static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3819{
3820 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3821}
3822
ded58749 3823static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3824{
9034e6e8
PB
3825 /*
3826 * A nested guest cannot use the MMIO cache if it is using nested
3827 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3828 */
3829 if (mmu_is_nested(vcpu))
3830 return false;
3831
ce88decf
XG
3832 if (direct)
3833 return vcpu_match_mmio_gpa(vcpu, addr);
3834
3835 return vcpu_match_mmio_gva(vcpu, addr);
3836}
3837
47ab8751
XG
3838/* return true if reserved bit is detected on spte. */
3839static bool
3840walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3841{
3842 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3843 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
47ab8751
XG
3844 int root, leaf;
3845 bool reserved = false;
ce88decf 3846
44dd3ffa 3847 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
47ab8751 3848 goto exit;
37f6a4e2 3849
ce88decf 3850 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3851
29ecd660
PB
3852 for (shadow_walk_init(&iterator, vcpu, addr),
3853 leaf = root = iterator.level;
47ab8751
XG
3854 shadow_walk_okay(&iterator);
3855 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3856 spte = mmu_spte_get_lockless(iterator.sptep);
3857
3858 sptes[leaf - 1] = spte;
29ecd660 3859 leaf--;
47ab8751 3860
ce88decf
XG
3861 if (!is_shadow_present_pte(spte))
3862 break;
47ab8751 3863
44dd3ffa 3864 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
58c95070 3865 iterator.level);
47ab8751
XG
3866 }
3867
ce88decf
XG
3868 walk_shadow_page_lockless_end(vcpu);
3869
47ab8751
XG
3870 if (reserved) {
3871 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3872 __func__, addr);
29ecd660 3873 while (root > leaf) {
47ab8751
XG
3874 pr_err("------ spte 0x%llx level %d.\n",
3875 sptes[root - 1], root);
3876 root--;
3877 }
3878 }
3879exit:
3880 *sptep = spte;
3881 return reserved;
ce88decf
XG
3882}
3883
e08d26f0 3884static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3885{
3886 u64 spte;
47ab8751 3887 bool reserved;
ce88decf 3888
ded58749 3889 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3890 return RET_PF_EMULATE;
ce88decf 3891
47ab8751 3892 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3893 if (WARN_ON(reserved))
9b8ebbdb 3894 return -EINVAL;
ce88decf
XG
3895
3896 if (is_mmio_spte(spte)) {
3897 gfn_t gfn = get_mmio_spte_gfn(spte);
3898 unsigned access = get_mmio_spte_access(spte);
3899
54bf36aa 3900 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3901 return RET_PF_INVALID;
f8f55942 3902
ce88decf
XG
3903 if (direct)
3904 addr = 0;
4f022648
XG
3905
3906 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3907 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3908 return RET_PF_EMULATE;
ce88decf
XG
3909 }
3910
ce88decf
XG
3911 /*
3912 * If the page table is zapped by other cpus, let CPU fault again on
3913 * the address.
3914 */
9b8ebbdb 3915 return RET_PF_RETRY;
ce88decf 3916}
ce88decf 3917
3d0c27ad
XG
3918static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3919 u32 error_code, gfn_t gfn)
3920{
3921 if (unlikely(error_code & PFERR_RSVD_MASK))
3922 return false;
3923
3924 if (!(error_code & PFERR_PRESENT_MASK) ||
3925 !(error_code & PFERR_WRITE_MASK))
3926 return false;
3927
3928 /*
3929 * guest is writing the page which is write tracked which can
3930 * not be fixed by page fault handler.
3931 */
3932 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3933 return true;
3934
3935 return false;
3936}
3937
e5691a81
XG
3938static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3939{
3940 struct kvm_shadow_walk_iterator iterator;
3941 u64 spte;
3942
44dd3ffa 3943 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
e5691a81
XG
3944 return;
3945
3946 walk_shadow_page_lockless_begin(vcpu);
3947 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3948 clear_sp_write_flooding_count(iterator.sptep);
3949 if (!is_shadow_present_pte(spte))
3950 break;
3951 }
3952 walk_shadow_page_lockless_end(vcpu);
3953}
3954
6aa8b732 3955static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3956 u32 error_code, bool prefault)
6aa8b732 3957{
3d0c27ad 3958 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3959 int r;
6aa8b732 3960
b8688d51 3961 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3962
3d0c27ad 3963 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3964 return RET_PF_EMULATE;
ce88decf 3965
e2dec939
AK
3966 r = mmu_topup_memory_caches(vcpu);
3967 if (r)
3968 return r;
714b93da 3969
44dd3ffa 3970 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
6aa8b732 3971
6aa8b732 3972
e833240f 3973 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3974 error_code, gfn, prefault);
6aa8b732
AK
3975}
3976
7e1fbeac 3977static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3978{
3979 struct kvm_arch_async_pf arch;
fb67e14f 3980
7c90705b 3981 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3982 arch.gfn = gfn;
44dd3ffa
VK
3983 arch.direct_map = vcpu->arch.mmu->direct_map;
3984 arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
af585b92 3985
54bf36aa 3986 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3987}
3988
9bc1f09f 3989bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
af585b92 3990{
35754c98 3991 if (unlikely(!lapic_in_kernel(vcpu) ||
2a266f23
HZ
3992 kvm_event_needs_reinjection(vcpu) ||
3993 vcpu->arch.exception.pending))
af585b92
GN
3994 return false;
3995
52a5c155 3996 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
9bc1f09f
WL
3997 return false;
3998
af585b92
GN
3999 return kvm_x86_ops->interrupt_allowed(vcpu);
4000}
4001
78b2c54a 4002static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 4003 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 4004{
3520469d 4005 struct kvm_memory_slot *slot;
af585b92
GN
4006 bool async;
4007
3a2936de
JM
4008 /*
4009 * Don't expose private memslots to L2.
4010 */
4011 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4012 *pfn = KVM_PFN_NOSLOT;
4013 return false;
4014 }
4015
54bf36aa 4016 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
4017 async = false;
4018 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
4019 if (!async)
4020 return false; /* *pfn has correct page already */
4021
9bc1f09f 4022 if (!prefault && kvm_can_do_async_pf(vcpu)) {
c9b263d2 4023 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
4024 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4025 trace_kvm_async_pf_doublefault(gva, gfn);
4026 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4027 return true;
4028 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
4029 return true;
4030 }
4031
3520469d 4032 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
4033 return false;
4034}
4035
1261bfa3 4036int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 4037 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
4038{
4039 int r = 1;
4040
c595ceee 4041 vcpu->arch.l1tf_flush_l1d = true;
1261bfa3
WL
4042 switch (vcpu->arch.apf.host_apf_reason) {
4043 default:
4044 trace_kvm_page_fault(fault_address, error_code);
4045
d0006530 4046 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
4047 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4048 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4049 insn_len);
4050 break;
4051 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4052 vcpu->arch.apf.host_apf_reason = 0;
4053 local_irq_disable();
a2b7861b 4054 kvm_async_pf_task_wait(fault_address, 0);
1261bfa3
WL
4055 local_irq_enable();
4056 break;
4057 case KVM_PV_REASON_PAGE_READY:
4058 vcpu->arch.apf.host_apf_reason = 0;
4059 local_irq_disable();
4060 kvm_async_pf_task_wake(fault_address);
4061 local_irq_enable();
4062 break;
4063 }
4064 return r;
4065}
4066EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4067
6a39bbc5
XG
4068static bool
4069check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4070{
4071 int page_num = KVM_PAGES_PER_HPAGE(level);
4072
4073 gfn &= ~(page_num - 1);
4074
4075 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4076}
4077
56028d08 4078static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 4079 bool prefault)
fb72d167 4080{
ba049e93 4081 kvm_pfn_t pfn;
fb72d167 4082 int r;
852e3c19 4083 int level;
cd1872f0 4084 bool force_pt_level;
05da4558 4085 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 4086 unsigned long mmu_seq;
612819c3
MT
4087 int write = error_code & PFERR_WRITE_MASK;
4088 bool map_writable;
fb72d167 4089
44dd3ffa 4090 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
fb72d167 4091
3d0c27ad 4092 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 4093 return RET_PF_EMULATE;
ce88decf 4094
fb72d167
JR
4095 r = mmu_topup_memory_caches(vcpu);
4096 if (r)
4097 return r;
4098
fd136902
TY
4099 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4100 PT_DIRECTORY_LEVEL);
4101 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 4102 if (likely(!force_pt_level)) {
6a39bbc5
XG
4103 if (level > PT_DIRECTORY_LEVEL &&
4104 !check_hugepage_cache_consistency(vcpu, gfn, level))
4105 level = PT_DIRECTORY_LEVEL;
936a5fe6 4106 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 4107 }
852e3c19 4108
c7ba5b48 4109 if (fast_page_fault(vcpu, gpa, level, error_code))
9b8ebbdb 4110 return RET_PF_RETRY;
c7ba5b48 4111
e930bffe 4112 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 4113 smp_rmb();
af585b92 4114
78b2c54a 4115 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
9b8ebbdb 4116 return RET_PF_RETRY;
af585b92 4117
d7c55201
XG
4118 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4119 return r;
4120
fb72d167 4121 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 4122 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 4123 goto out_unlock;
26eeb53c
WL
4124 if (make_mmu_pages_available(vcpu) < 0)
4125 goto out_unlock;
936a5fe6
AA
4126 if (likely(!force_pt_level))
4127 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 4128 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 4129 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
4130
4131 return r;
e930bffe
AA
4132
4133out_unlock:
4134 spin_unlock(&vcpu->kvm->mmu_lock);
4135 kvm_release_pfn_clean(pfn);
9b8ebbdb 4136 return RET_PF_RETRY;
fb72d167
JR
4137}
4138
8a3c1a33
PB
4139static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4140 struct kvm_mmu *context)
6aa8b732 4141{
6aa8b732 4142 context->page_fault = nonpaging_page_fault;
6aa8b732 4143 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 4144 context->sync_page = nonpaging_sync_page;
a7052897 4145 context->invlpg = nonpaging_invlpg;
0f53b5b1 4146 context->update_pte = nonpaging_update_pte;
cea0f0e7 4147 context->root_level = 0;
6aa8b732 4148 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4149 context->direct_map = true;
2d48a985 4150 context->nx = false;
6aa8b732
AK
4151}
4152
b94742c9
JS
4153/*
4154 * Find out if a previously cached root matching the new CR3/role is available.
4155 * The current root is also inserted into the cache.
4156 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4157 * returned.
4158 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4159 * false is returned. This root should now be freed by the caller.
4160 */
4161static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4162 union kvm_mmu_page_role new_role)
4163{
4164 uint i;
4165 struct kvm_mmu_root_info root;
44dd3ffa 4166 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9
JS
4167
4168 root.cr3 = mmu->get_cr3(vcpu);
4169 root.hpa = mmu->root_hpa;
4170
4171 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4172 swap(root, mmu->prev_roots[i]);
4173
4174 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4175 page_header(root.hpa) != NULL &&
4176 new_role.word == page_header(root.hpa)->role.word)
4177 break;
4178 }
4179
4180 mmu->root_hpa = root.hpa;
4181
4182 return i < KVM_MMU_NUM_PREV_ROOTS;
4183}
4184
0aab33e4 4185static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4186 union kvm_mmu_page_role new_role,
4187 bool skip_tlb_flush)
6aa8b732 4188{
44dd3ffa 4189 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
4190
4191 /*
4192 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4193 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4194 * later if necessary.
4195 */
4196 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4197 mmu->root_level >= PT64_ROOT_4LEVEL) {
7c390d35
JS
4198 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4199 return false;
4200
b94742c9 4201 if (cached_root_available(vcpu, new_cr3, new_role)) {
7c390d35
JS
4202 /*
4203 * It is possible that the cached previous root page is
4204 * obsolete because of a change in the MMU
4205 * generation number. However, that is accompanied by
4206 * KVM_REQ_MMU_RELOAD, which will free the root that we
4207 * have set here and allocate a new one.
4208 */
4209
0aab33e4 4210 kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
956bf353
JS
4211 if (!skip_tlb_flush) {
4212 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
ade61e28 4213 kvm_x86_ops->tlb_flush(vcpu, true);
956bf353
JS
4214 }
4215
4216 /*
4217 * The last MMIO access's GVA and GPA are cached in the
4218 * VCPU. When switching to a new CR3, that GVA->GPA
4219 * mapping may no longer be valid. So clear any cached
4220 * MMIO info even when we don't need to sync the shadow
4221 * page tables.
4222 */
4223 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
ade61e28 4224
7c390d35
JS
4225 __clear_sp_write_flooding_count(
4226 page_header(mmu->root_hpa));
4227
7c390d35
JS
4228 return true;
4229 }
4230 }
4231
4232 return false;
6aa8b732
AK
4233}
4234
0aab33e4 4235static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4236 union kvm_mmu_page_role new_role,
4237 bool skip_tlb_flush)
6aa8b732 4238{
ade61e28 4239 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
6a82cd1c
VK
4240 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4241 KVM_MMU_ROOT_CURRENT);
6aa8b732
AK
4242}
4243
ade61e28 4244void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
0aab33e4 4245{
ade61e28
JS
4246 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4247 skip_tlb_flush);
0aab33e4 4248}
50c28f21 4249EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
0aab33e4 4250
5777ed34
JR
4251static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4252{
9f8fe504 4253 return kvm_read_cr3(vcpu);
5777ed34
JR
4254}
4255
6389ee94
AK
4256static void inject_page_fault(struct kvm_vcpu *vcpu,
4257 struct x86_exception *fault)
6aa8b732 4258{
44dd3ffa 4259 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
6aa8b732
AK
4260}
4261
54bf36aa 4262static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 4263 unsigned access, int *nr_present)
ce88decf
XG
4264{
4265 if (unlikely(is_mmio_spte(*sptep))) {
4266 if (gfn != get_mmio_spte_gfn(*sptep)) {
4267 mmu_spte_clear_no_track(sptep);
4268 return true;
4269 }
4270
4271 (*nr_present)++;
54bf36aa 4272 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
4273 return true;
4274 }
4275
4276 return false;
4277}
4278
6bb69c9b
PB
4279static inline bool is_last_gpte(struct kvm_mmu *mmu,
4280 unsigned level, unsigned gpte)
6fd01b71 4281{
6bb69c9b
PB
4282 /*
4283 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4284 * If it is clear, there are no large pages at this level, so clear
4285 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4286 */
4287 gpte &= level - mmu->last_nonleaf_level;
4288
829ee279
LP
4289 /*
4290 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4291 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4292 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4293 */
4294 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4295
6bb69c9b 4296 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4297}
4298
37406aaa
NHE
4299#define PTTYPE_EPT 18 /* arbitrary */
4300#define PTTYPE PTTYPE_EPT
4301#include "paging_tmpl.h"
4302#undef PTTYPE
4303
6aa8b732
AK
4304#define PTTYPE 64
4305#include "paging_tmpl.h"
4306#undef PTTYPE
4307
4308#define PTTYPE 32
4309#include "paging_tmpl.h"
4310#undef PTTYPE
4311
6dc98b86
XG
4312static void
4313__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4314 struct rsvd_bits_validate *rsvd_check,
4315 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 4316 bool pse, bool amd)
82725b20 4317{
82725b20 4318 u64 exb_bit_rsvd = 0;
5f7dde7b 4319 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4320 u64 nonleaf_bit8_rsvd = 0;
82725b20 4321
a0a64f50 4322 rsvd_check->bad_mt_xwr = 0;
25d92081 4323
6dc98b86 4324 if (!nx)
82725b20 4325 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 4326 if (!gbpages)
5f7dde7b 4327 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4328
4329 /*
4330 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4331 * leaf entries) on AMD CPUs only.
4332 */
6fec2144 4333 if (amd)
a0c0feb5
PB
4334 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4335
6dc98b86 4336 switch (level) {
82725b20
DE
4337 case PT32_ROOT_LEVEL:
4338 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4339 rsvd_check->rsvd_bits_mask[0][1] = 0;
4340 rsvd_check->rsvd_bits_mask[0][0] = 0;
4341 rsvd_check->rsvd_bits_mask[1][0] =
4342 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4343
6dc98b86 4344 if (!pse) {
a0a64f50 4345 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4346 break;
4347 }
4348
82725b20
DE
4349 if (is_cpuid_PSE36())
4350 /* 36bits PSE 4MB page */
a0a64f50 4351 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4352 else
4353 /* 32 bits PSE 4MB page */
a0a64f50 4354 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4355 break;
4356 case PT32E_ROOT_LEVEL:
a0a64f50 4357 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4358 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4359 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4360 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4361 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4362 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4363 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4364 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4365 rsvd_bits(maxphyaddr, 62) |
4366 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4367 rsvd_check->rsvd_bits_mask[1][0] =
4368 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4369 break;
855feb67
YZ
4370 case PT64_ROOT_5LEVEL:
4371 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4372 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4373 rsvd_bits(maxphyaddr, 51);
4374 rsvd_check->rsvd_bits_mask[1][4] =
4375 rsvd_check->rsvd_bits_mask[0][4];
b2869f28 4376 /* fall through */
2a7266a8 4377 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4378 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4379 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4380 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4381 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4382 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 4383 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4384 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4385 rsvd_bits(maxphyaddr, 51);
4386 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4387 rsvd_bits(maxphyaddr, 51);
4388 rsvd_check->rsvd_bits_mask[1][3] =
4389 rsvd_check->rsvd_bits_mask[0][3];
4390 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4391 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4392 rsvd_bits(13, 29);
a0a64f50 4393 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4394 rsvd_bits(maxphyaddr, 51) |
4395 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4396 rsvd_check->rsvd_bits_mask[1][0] =
4397 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4398 break;
4399 }
4400}
4401
6dc98b86
XG
4402static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4403 struct kvm_mmu *context)
4404{
4405 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4406 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4407 context->nx,
4408 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
6fec2144 4409 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
4410}
4411
81b8eebb
XG
4412static void
4413__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4414 int maxphyaddr, bool execonly)
25d92081 4415{
951f9fd7 4416 u64 bad_mt_xwr;
25d92081 4417
855feb67
YZ
4418 rsvd_check->rsvd_bits_mask[0][4] =
4419 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4420 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4421 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4422 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4423 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4424 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4425 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4426 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4427
4428 /* large page */
855feb67 4429 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4430 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4431 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4432 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4433 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4434 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4435 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4436
951f9fd7
PB
4437 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4438 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4439 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4440 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4441 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4442 if (!execonly) {
4443 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4444 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4445 }
951f9fd7 4446 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4447}
4448
81b8eebb
XG
4449static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4450 struct kvm_mmu *context, bool execonly)
4451{
4452 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4453 cpuid_maxphyaddr(vcpu), execonly);
4454}
4455
c258b62b
XG
4456/*
4457 * the page table on host is the shadow page table for the page
4458 * table in guest or amd nested guest, its mmu features completely
4459 * follow the features in guest.
4460 */
4461void
4462reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4463{
36d9594d
VK
4464 bool uses_nx = context->nx ||
4465 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4466 struct rsvd_bits_validate *shadow_zero_check;
4467 int i;
5f0b8199 4468
6fec2144
PB
4469 /*
4470 * Passing "true" to the last argument is okay; it adds a check
4471 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4472 */
ea2800dd
BS
4473 shadow_zero_check = &context->shadow_zero_check;
4474 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
c258b62b 4475 boot_cpu_data.x86_phys_bits,
5f0b8199 4476 context->shadow_root_level, uses_nx,
d6321d49
RK
4477 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4478 is_pse(vcpu), true);
ea2800dd
BS
4479
4480 if (!shadow_me_mask)
4481 return;
4482
4483 for (i = context->shadow_root_level; --i >= 0;) {
4484 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4485 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4486 }
4487
c258b62b
XG
4488}
4489EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4490
6fec2144
PB
4491static inline bool boot_cpu_is_amd(void)
4492{
4493 WARN_ON_ONCE(!tdp_enabled);
4494 return shadow_x_mask == 0;
4495}
4496
c258b62b
XG
4497/*
4498 * the direct page table on host, use as much mmu features as
4499 * possible, however, kvm currently does not do execution-protection.
4500 */
4501static void
4502reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4503 struct kvm_mmu *context)
4504{
ea2800dd
BS
4505 struct rsvd_bits_validate *shadow_zero_check;
4506 int i;
4507
4508 shadow_zero_check = &context->shadow_zero_check;
4509
6fec2144 4510 if (boot_cpu_is_amd())
ea2800dd 4511 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
c258b62b
XG
4512 boot_cpu_data.x86_phys_bits,
4513 context->shadow_root_level, false,
b8291adc
BP
4514 boot_cpu_has(X86_FEATURE_GBPAGES),
4515 true, true);
c258b62b 4516 else
ea2800dd 4517 __reset_rsvds_bits_mask_ept(shadow_zero_check,
c258b62b
XG
4518 boot_cpu_data.x86_phys_bits,
4519 false);
4520
ea2800dd
BS
4521 if (!shadow_me_mask)
4522 return;
4523
4524 for (i = context->shadow_root_level; --i >= 0;) {
4525 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4526 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4527 }
c258b62b
XG
4528}
4529
4530/*
4531 * as the comments in reset_shadow_zero_bits_mask() except it
4532 * is the shadow page table for intel nested guest.
4533 */
4534static void
4535reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4536 struct kvm_mmu *context, bool execonly)
4537{
4538 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4539 boot_cpu_data.x86_phys_bits, execonly);
4540}
4541
09f037aa
PB
4542#define BYTE_MASK(access) \
4543 ((1 & (access) ? 2 : 0) | \
4544 (2 & (access) ? 4 : 0) | \
4545 (3 & (access) ? 8 : 0) | \
4546 (4 & (access) ? 16 : 0) | \
4547 (5 & (access) ? 32 : 0) | \
4548 (6 & (access) ? 64 : 0) | \
4549 (7 & (access) ? 128 : 0))
4550
4551
edc90b7d
XG
4552static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4553 struct kvm_mmu *mmu, bool ept)
97d64b78 4554{
09f037aa
PB
4555 unsigned byte;
4556
4557 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4558 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4559 const u8 u = BYTE_MASK(ACC_USER_MASK);
4560
4561 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4562 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4563 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4564
97d64b78 4565 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4566 unsigned pfec = byte << 1;
4567
97ec8c06 4568 /*
09f037aa
PB
4569 * Each "*f" variable has a 1 bit for each UWX value
4570 * that causes a fault with the given PFEC.
97ec8c06 4571 */
97d64b78 4572
09f037aa
PB
4573 /* Faults from writes to non-writable pages */
4574 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4575 /* Faults from user mode accesses to supervisor pages */
4576 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4577 /* Faults from fetches of non-executable pages*/
4578 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4579 /* Faults from kernel mode fetches of user pages */
4580 u8 smepf = 0;
4581 /* Faults from kernel mode accesses of user pages */
4582 u8 smapf = 0;
4583
4584 if (!ept) {
4585 /* Faults from kernel mode accesses to user pages */
4586 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4587
4588 /* Not really needed: !nx will cause pte.nx to fault */
4589 if (!mmu->nx)
4590 ff = 0;
4591
4592 /* Allow supervisor writes if !cr0.wp */
4593 if (!cr0_wp)
4594 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4595
4596 /* Disallow supervisor fetches of user code if cr4.smep */
4597 if (cr4_smep)
4598 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4599
4600 /*
4601 * SMAP:kernel-mode data accesses from user-mode
4602 * mappings should fault. A fault is considered
4603 * as a SMAP violation if all of the following
39337ad1 4604 * conditions are true:
09f037aa
PB
4605 * - X86_CR4_SMAP is set in CR4
4606 * - A user page is accessed
4607 * - The access is not a fetch
4608 * - Page fault in kernel mode
4609 * - if CPL = 3 or X86_EFLAGS_AC is clear
4610 *
4611 * Here, we cover the first three conditions.
4612 * The fourth is computed dynamically in permission_fault();
4613 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4614 * *not* subject to SMAP restrictions.
4615 */
4616 if (cr4_smap)
4617 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4618 }
09f037aa
PB
4619
4620 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4621 }
4622}
4623
2d344105
HH
4624/*
4625* PKU is an additional mechanism by which the paging controls access to
4626* user-mode addresses based on the value in the PKRU register. Protection
4627* key violations are reported through a bit in the page fault error code.
4628* Unlike other bits of the error code, the PK bit is not known at the
4629* call site of e.g. gva_to_gpa; it must be computed directly in
4630* permission_fault based on two bits of PKRU, on some machine state (CR4,
4631* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4632*
4633* In particular the following conditions come from the error code, the
4634* page tables and the machine state:
4635* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4636* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4637* - PK is always zero if U=0 in the page tables
4638* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4639*
4640* The PKRU bitmask caches the result of these four conditions. The error
4641* code (minus the P bit) and the page table's U bit form an index into the
4642* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4643* with the two bits of the PKRU register corresponding to the protection key.
4644* For the first three conditions above the bits will be 00, thus masking
4645* away both AD and WD. For all reads or if the last condition holds, WD
4646* only will be masked away.
4647*/
4648static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4649 bool ept)
4650{
4651 unsigned bit;
4652 bool wp;
4653
4654 if (ept) {
4655 mmu->pkru_mask = 0;
4656 return;
4657 }
4658
4659 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4660 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4661 mmu->pkru_mask = 0;
4662 return;
4663 }
4664
4665 wp = is_write_protection(vcpu);
4666
4667 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4668 unsigned pfec, pkey_bits;
4669 bool check_pkey, check_write, ff, uf, wf, pte_user;
4670
4671 pfec = bit << 1;
4672 ff = pfec & PFERR_FETCH_MASK;
4673 uf = pfec & PFERR_USER_MASK;
4674 wf = pfec & PFERR_WRITE_MASK;
4675
4676 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4677 pte_user = pfec & PFERR_RSVD_MASK;
4678
4679 /*
4680 * Only need to check the access which is not an
4681 * instruction fetch and is to a user page.
4682 */
4683 check_pkey = (!ff && pte_user);
4684 /*
4685 * write access is controlled by PKRU if it is a
4686 * user access or CR0.WP = 1.
4687 */
4688 check_write = check_pkey && wf && (uf || wp);
4689
4690 /* PKRU.AD stops both read and write access. */
4691 pkey_bits = !!check_pkey;
4692 /* PKRU.WD stops write access. */
4693 pkey_bits |= (!!check_write) << 1;
4694
4695 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4696 }
4697}
4698
6bb69c9b 4699static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4700{
6bb69c9b
PB
4701 unsigned root_level = mmu->root_level;
4702
4703 mmu->last_nonleaf_level = root_level;
4704 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4705 mmu->last_nonleaf_level++;
6fd01b71
AK
4706}
4707
8a3c1a33
PB
4708static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4709 struct kvm_mmu *context,
4710 int level)
6aa8b732 4711{
2d48a985 4712 context->nx = is_nx(vcpu);
4d6931c3 4713 context->root_level = level;
2d48a985 4714
4d6931c3 4715 reset_rsvds_bits_mask(vcpu, context);
25d92081 4716 update_permission_bitmask(vcpu, context, false);
2d344105 4717 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4718 update_last_nonleaf_level(vcpu, context);
6aa8b732 4719
fa4a2c08 4720 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4721 context->page_fault = paging64_page_fault;
6aa8b732 4722 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4723 context->sync_page = paging64_sync_page;
a7052897 4724 context->invlpg = paging64_invlpg;
0f53b5b1 4725 context->update_pte = paging64_update_pte;
17ac10ad 4726 context->shadow_root_level = level;
c5a78f2b 4727 context->direct_map = false;
6aa8b732
AK
4728}
4729
8a3c1a33
PB
4730static void paging64_init_context(struct kvm_vcpu *vcpu,
4731 struct kvm_mmu *context)
17ac10ad 4732{
855feb67
YZ
4733 int root_level = is_la57_mode(vcpu) ?
4734 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4735
4736 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4737}
4738
8a3c1a33
PB
4739static void paging32_init_context(struct kvm_vcpu *vcpu,
4740 struct kvm_mmu *context)
6aa8b732 4741{
2d48a985 4742 context->nx = false;
4d6931c3 4743 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4744
4d6931c3 4745 reset_rsvds_bits_mask(vcpu, context);
25d92081 4746 update_permission_bitmask(vcpu, context, false);
2d344105 4747 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4748 update_last_nonleaf_level(vcpu, context);
6aa8b732 4749
6aa8b732 4750 context->page_fault = paging32_page_fault;
6aa8b732 4751 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4752 context->sync_page = paging32_sync_page;
a7052897 4753 context->invlpg = paging32_invlpg;
0f53b5b1 4754 context->update_pte = paging32_update_pte;
6aa8b732 4755 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4756 context->direct_map = false;
6aa8b732
AK
4757}
4758
8a3c1a33
PB
4759static void paging32E_init_context(struct kvm_vcpu *vcpu,
4760 struct kvm_mmu *context)
6aa8b732 4761{
8a3c1a33 4762 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4763}
4764
a336282d
VK
4765static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4766{
4767 union kvm_mmu_extended_role ext = {0};
4768
7dcd5755 4769 ext.cr0_pg = !!is_paging(vcpu);
a336282d
VK
4770 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4771 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4772 ext.cr4_pse = !!is_pse(vcpu);
4773 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
7dcd5755 4774 ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
a336282d
VK
4775
4776 ext.valid = 1;
4777
4778 return ext;
4779}
4780
7dcd5755
VK
4781static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4782 bool base_only)
4783{
4784 union kvm_mmu_role role = {0};
4785
4786 role.base.access = ACC_ALL;
4787 role.base.nxe = !!is_nx(vcpu);
4788 role.base.cr4_pae = !!is_pae(vcpu);
4789 role.base.cr0_wp = is_write_protection(vcpu);
4790 role.base.smm = is_smm(vcpu);
4791 role.base.guest_mode = is_guest_mode(vcpu);
4792
4793 if (base_only)
4794 return role;
4795
4796 role.ext = kvm_calc_mmu_role_ext(vcpu);
4797
4798 return role;
4799}
4800
4801static union kvm_mmu_role
4802kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4803{
7dcd5755 4804 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4805
7dcd5755
VK
4806 role.base.ad_disabled = (shadow_accessed_mask == 0);
4807 role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4808 role.base.direct = true;
9fa72119
JS
4809
4810 return role;
4811}
4812
8a3c1a33 4813static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4814{
44dd3ffa 4815 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4816 union kvm_mmu_role new_role =
4817 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4818
7dcd5755
VK
4819 new_role.base.word &= mmu_base_role_mask.word;
4820 if (new_role.as_u64 == context->mmu_role.as_u64)
4821 return;
4822
4823 context->mmu_role.as_u64 = new_role.as_u64;
fb72d167 4824 context->page_fault = tdp_page_fault;
e8bc217a 4825 context->sync_page = nonpaging_sync_page;
a7052897 4826 context->invlpg = nonpaging_invlpg;
0f53b5b1 4827 context->update_pte = nonpaging_update_pte;
855feb67 4828 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
c5a78f2b 4829 context->direct_map = true;
1c97f0a0 4830 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4831 context->get_cr3 = get_cr3;
e4e517b4 4832 context->get_pdptr = kvm_pdptr_read;
cb659db8 4833 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4834
4835 if (!is_paging(vcpu)) {
2d48a985 4836 context->nx = false;
fb72d167
JR
4837 context->gva_to_gpa = nonpaging_gva_to_gpa;
4838 context->root_level = 0;
4839 } else if (is_long_mode(vcpu)) {
2d48a985 4840 context->nx = is_nx(vcpu);
855feb67
YZ
4841 context->root_level = is_la57_mode(vcpu) ?
4842 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4843 reset_rsvds_bits_mask(vcpu, context);
4844 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4845 } else if (is_pae(vcpu)) {
2d48a985 4846 context->nx = is_nx(vcpu);
fb72d167 4847 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4848 reset_rsvds_bits_mask(vcpu, context);
4849 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4850 } else {
2d48a985 4851 context->nx = false;
fb72d167 4852 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4853 reset_rsvds_bits_mask(vcpu, context);
4854 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4855 }
4856
25d92081 4857 update_permission_bitmask(vcpu, context, false);
2d344105 4858 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4859 update_last_nonleaf_level(vcpu, context);
c258b62b 4860 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4861}
4862
7dcd5755
VK
4863static union kvm_mmu_role
4864kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4865{
4866 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4867
4868 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4869 !is_write_protection(vcpu);
4870 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4871 !is_write_protection(vcpu);
4872 role.base.direct = !is_paging(vcpu);
9fa72119
JS
4873
4874 if (!is_long_mode(vcpu))
7dcd5755 4875 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4876 else if (is_la57_mode(vcpu))
7dcd5755 4877 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4878 else
7dcd5755 4879 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4880
4881 return role;
4882}
4883
4884void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4885{
44dd3ffa 4886 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4887 union kvm_mmu_role new_role =
4888 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4889
4890 new_role.base.word &= mmu_base_role_mask.word;
4891 if (new_role.as_u64 == context->mmu_role.as_u64)
4892 return;
6aa8b732
AK
4893
4894 if (!is_paging(vcpu))
8a3c1a33 4895 nonpaging_init_context(vcpu, context);
a9058ecd 4896 else if (is_long_mode(vcpu))
8a3c1a33 4897 paging64_init_context(vcpu, context);
6aa8b732 4898 else if (is_pae(vcpu))
8a3c1a33 4899 paging32E_init_context(vcpu, context);
6aa8b732 4900 else
8a3c1a33 4901 paging32_init_context(vcpu, context);
a770f6f2 4902
7dcd5755 4903 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4904 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4905}
4906EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4907
a336282d
VK
4908static union kvm_mmu_role
4909kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4910 bool execonly)
9fa72119 4911{
a336282d 4912 union kvm_mmu_role role;
14c07ad8 4913
a336282d
VK
4914 /* Base role is inherited from root_mmu */
4915 role.base.word = vcpu->arch.root_mmu.mmu_role.base.word;
4916 role.ext = kvm_calc_mmu_role_ext(vcpu);
9fa72119 4917
a336282d
VK
4918 role.base.level = PT64_ROOT_4LEVEL;
4919 role.base.direct = false;
4920 role.base.ad_disabled = !accessed_dirty;
4921 role.base.guest_mode = true;
4922 role.base.access = ACC_ALL;
9fa72119 4923
a336282d 4924 role.ext.execonly = execonly;
9fa72119
JS
4925
4926 return role;
4927}
4928
ae1e2d10 4929void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4930 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4931{
44dd3ffa 4932 struct kvm_mmu *context = vcpu->arch.mmu;
a336282d
VK
4933 union kvm_mmu_role new_role =
4934 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4935 execonly);
4936
4937 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
4938
4939 new_role.base.word &= mmu_base_role_mask.word;
4940 if (new_role.as_u64 == context->mmu_role.as_u64)
4941 return;
ad896af0 4942
855feb67 4943 context->shadow_root_level = PT64_ROOT_4LEVEL;
155a97a3
NHE
4944
4945 context->nx = true;
ae1e2d10 4946 context->ept_ad = accessed_dirty;
155a97a3
NHE
4947 context->page_fault = ept_page_fault;
4948 context->gva_to_gpa = ept_gva_to_gpa;
4949 context->sync_page = ept_sync_page;
4950 context->invlpg = ept_invlpg;
4951 context->update_pte = ept_update_pte;
855feb67 4952 context->root_level = PT64_ROOT_4LEVEL;
155a97a3 4953 context->direct_map = false;
a336282d 4954 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4955
155a97a3 4956 update_permission_bitmask(vcpu, context, true);
2d344105 4957 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4958 update_last_nonleaf_level(vcpu, context);
155a97a3 4959 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4960 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4961}
4962EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4963
8a3c1a33 4964static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4965{
44dd3ffa 4966 struct kvm_mmu *context = vcpu->arch.mmu;
ad896af0
PB
4967
4968 kvm_init_shadow_mmu(vcpu);
4969 context->set_cr3 = kvm_x86_ops->set_cr3;
4970 context->get_cr3 = get_cr3;
4971 context->get_pdptr = kvm_pdptr_read;
4972 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4973}
4974
8a3c1a33 4975static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 4976{
bf627a92 4977 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
4978 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4979
bf627a92
VK
4980 new_role.base.word &= mmu_base_role_mask.word;
4981 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4982 return;
4983
4984 g_context->mmu_role.as_u64 = new_role.as_u64;
02f59dc9 4985 g_context->get_cr3 = get_cr3;
e4e517b4 4986 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4987 g_context->inject_page_fault = kvm_inject_page_fault;
4988
4989 /*
44dd3ffa 4990 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
4991 * L1's nested page tables (e.g. EPT12). The nested translation
4992 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4993 * L2's page tables as the first level of translation and L1's
4994 * nested page tables as the second level of translation. Basically
4995 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4996 */
4997 if (!is_paging(vcpu)) {
2d48a985 4998 g_context->nx = false;
02f59dc9
JR
4999 g_context->root_level = 0;
5000 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5001 } else if (is_long_mode(vcpu)) {
2d48a985 5002 g_context->nx = is_nx(vcpu);
855feb67
YZ
5003 g_context->root_level = is_la57_mode(vcpu) ?
5004 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 5005 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5006 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5007 } else if (is_pae(vcpu)) {
2d48a985 5008 g_context->nx = is_nx(vcpu);
02f59dc9 5009 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 5010 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5011 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5012 } else {
2d48a985 5013 g_context->nx = false;
02f59dc9 5014 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 5015 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5016 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5017 }
5018
25d92081 5019 update_permission_bitmask(vcpu, g_context, false);
2d344105 5020 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 5021 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
5022}
5023
1c53da3f 5024void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 5025{
1c53da3f 5026 if (reset_roots) {
b94742c9
JS
5027 uint i;
5028
44dd3ffa 5029 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
5030
5031 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5032 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
5033 }
5034
02f59dc9 5035 if (mmu_is_nested(vcpu))
e0c6db3e 5036 init_kvm_nested_mmu(vcpu);
02f59dc9 5037 else if (tdp_enabled)
e0c6db3e 5038 init_kvm_tdp_mmu(vcpu);
fb72d167 5039 else
e0c6db3e 5040 init_kvm_softmmu(vcpu);
fb72d167 5041}
1c53da3f 5042EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 5043
9fa72119
JS
5044static union kvm_mmu_page_role
5045kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5046{
7dcd5755
VK
5047 union kvm_mmu_role role;
5048
9fa72119 5049 if (tdp_enabled)
7dcd5755 5050 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 5051 else
7dcd5755
VK
5052 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5053
5054 return role.base;
9fa72119 5055}
fb72d167 5056
8a3c1a33 5057void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 5058{
95f93af4 5059 kvm_mmu_unload(vcpu);
1c53da3f 5060 kvm_init_mmu(vcpu, true);
17c3ba9d 5061}
8668a3c4 5062EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
5063
5064int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 5065{
714b93da
AK
5066 int r;
5067
e2dec939 5068 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
5069 if (r)
5070 goto out;
8986ecc0 5071 r = mmu_alloc_roots(vcpu);
e2858b4a 5072 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
5073 if (r)
5074 goto out;
6e42782f 5075 kvm_mmu_load_cr3(vcpu);
afe828d1 5076 kvm_x86_ops->tlb_flush(vcpu, true);
714b93da
AK
5077out:
5078 return r;
6aa8b732 5079}
17c3ba9d
AK
5080EXPORT_SYMBOL_GPL(kvm_mmu_load);
5081
5082void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5083{
14c07ad8
VK
5084 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5085 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5086 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5087 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 5088}
4b16184c 5089EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 5090
0028425f 5091static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
5092 struct kvm_mmu_page *sp, u64 *spte,
5093 const void *new)
0028425f 5094{
30945387 5095 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
5096 ++vcpu->kvm->stat.mmu_pde_zapped;
5097 return;
30945387 5098 }
0028425f 5099
4cee5764 5100 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 5101 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
5102}
5103
79539cec
AK
5104static bool need_remote_flush(u64 old, u64 new)
5105{
5106 if (!is_shadow_present_pte(old))
5107 return false;
5108 if (!is_shadow_present_pte(new))
5109 return true;
5110 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5111 return true;
53166229
GN
5112 old ^= shadow_nx_mask;
5113 new ^= shadow_nx_mask;
79539cec
AK
5114 return (old & ~new & PT64_PERM_MASK) != 0;
5115}
5116
889e5cbc 5117static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 5118 int *bytes)
da4a00f0 5119{
0e0fee5c 5120 u64 gentry = 0;
889e5cbc 5121 int r;
72016f3a 5122
72016f3a
AK
5123 /*
5124 * Assume that the pte write on a page table of the same type
49b26e26
XG
5125 * as the current vcpu paging mode since we update the sptes only
5126 * when they have the same mode.
72016f3a 5127 */
889e5cbc 5128 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 5129 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
5130 *gpa &= ~(gpa_t)7;
5131 *bytes = 8;
08e850c6
AK
5132 }
5133
0e0fee5c
JS
5134 if (*bytes == 4 || *bytes == 8) {
5135 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5136 if (r)
5137 gentry = 0;
72016f3a
AK
5138 }
5139
889e5cbc
XG
5140 return gentry;
5141}
5142
5143/*
5144 * If we're seeing too many writes to a page, it may no longer be a page table,
5145 * or we may be forking, in which case it is better to unmap the page.
5146 */
a138fe75 5147static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 5148{
a30f47cb
XG
5149 /*
5150 * Skip write-flooding detected for the sp whose level is 1, because
5151 * it can become unsync, then the guest page is not write-protected.
5152 */
f71fa31f 5153 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 5154 return false;
3246af0e 5155
e5691a81
XG
5156 atomic_inc(&sp->write_flooding_count);
5157 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
5158}
5159
5160/*
5161 * Misaligned accesses are too much trouble to fix up; also, they usually
5162 * indicate a page is not used as a page table.
5163 */
5164static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5165 int bytes)
5166{
5167 unsigned offset, pte_size, misaligned;
5168
5169 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5170 gpa, bytes, sp->role.word);
5171
5172 offset = offset_in_page(gpa);
5173 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
5174
5175 /*
5176 * Sometimes, the OS only writes the last one bytes to update status
5177 * bits, for example, in linux, andb instruction is used in clear_bit().
5178 */
5179 if (!(offset & (pte_size - 1)) && bytes == 1)
5180 return false;
5181
889e5cbc
XG
5182 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5183 misaligned |= bytes < 4;
5184
5185 return misaligned;
5186}
5187
5188static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5189{
5190 unsigned page_offset, quadrant;
5191 u64 *spte;
5192 int level;
5193
5194 page_offset = offset_in_page(gpa);
5195 level = sp->role.level;
5196 *nspte = 1;
5197 if (!sp->role.cr4_pae) {
5198 page_offset <<= 1; /* 32->64 */
5199 /*
5200 * A 32-bit pde maps 4MB while the shadow pdes map
5201 * only 2MB. So we need to double the offset again
5202 * and zap two pdes instead of one.
5203 */
5204 if (level == PT32_ROOT_LEVEL) {
5205 page_offset &= ~7; /* kill rounding error */
5206 page_offset <<= 1;
5207 *nspte = 2;
5208 }
5209 quadrant = page_offset >> PAGE_SHIFT;
5210 page_offset &= ~PAGE_MASK;
5211 if (quadrant != sp->role.quadrant)
5212 return NULL;
5213 }
5214
5215 spte = &sp->spt[page_offset / sizeof(*spte)];
5216 return spte;
5217}
5218
13d268ca 5219static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
5220 const u8 *new, int bytes,
5221 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
5222{
5223 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 5224 struct kvm_mmu_page *sp;
889e5cbc
XG
5225 LIST_HEAD(invalid_list);
5226 u64 entry, gentry, *spte;
5227 int npte;
b8c67b7a 5228 bool remote_flush, local_flush;
889e5cbc
XG
5229
5230 /*
5231 * If we don't have indirect shadow pages, it means no page is
5232 * write-protected, so we can exit simply.
5233 */
6aa7de05 5234 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
5235 return;
5236
b8c67b7a 5237 remote_flush = local_flush = false;
889e5cbc
XG
5238
5239 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5240
889e5cbc
XG
5241 /*
5242 * No need to care whether allocation memory is successful
5243 * or not since pte prefetch is skiped if it does not have
5244 * enough objects in the cache.
5245 */
5246 mmu_topup_memory_caches(vcpu);
5247
5248 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
5249
5250 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5251
889e5cbc 5252 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5253 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5254
b67bfe0d 5255 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5256 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5257 detect_write_flooding(sp)) {
b8c67b7a 5258 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5259 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5260 continue;
5261 }
889e5cbc
XG
5262
5263 spte = get_written_sptes(sp, gpa, &npte);
5264 if (!spte)
5265 continue;
5266
0671a8e7 5267 local_flush = true;
ac1b714e 5268 while (npte--) {
36d9594d
VK
5269 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5270
79539cec 5271 entry = *spte;
38e3b2b2 5272 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf 5273 if (gentry &&
36d9594d 5274 !((sp->role.word ^ base_role)
9fa72119 5275 & mmu_base_role_mask.word) && rmap_can_add(vcpu))
7c562522 5276 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 5277 if (need_remote_flush(entry, *spte))
0671a8e7 5278 remote_flush = true;
ac1b714e 5279 ++spte;
9b7a0325 5280 }
9b7a0325 5281 }
b8c67b7a 5282 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5283 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 5284 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5285}
5286
a436036b
AK
5287int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5288{
10589a46
MT
5289 gpa_t gpa;
5290 int r;
a436036b 5291
44dd3ffa 5292 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5293 return 0;
5294
1871c602 5295 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5296
10589a46 5297 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5298
10589a46 5299 return r;
a436036b 5300}
577bdc49 5301EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5302
26eeb53c 5303static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 5304{
d98ba053 5305 LIST_HEAD(invalid_list);
103ad25a 5306
81f4f76b 5307 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
26eeb53c 5308 return 0;
81f4f76b 5309
5da59607
TY
5310 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5311 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5312 break;
ebeace86 5313
4cee5764 5314 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 5315 }
aa6bd187 5316 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
26eeb53c
WL
5317
5318 if (!kvm_mmu_available_pages(vcpu->kvm))
5319 return -ENOSPC;
5320 return 0;
ebeace86 5321}
ebeace86 5322
14727754 5323int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
dc25e89e 5324 void *insn, int insn_len)
3067714c 5325{
472faffa 5326 int r, emulation_type = 0;
3067714c 5327 enum emulation_result er;
44dd3ffa 5328 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5329
618232e2 5330 /* With shadow page tables, fault_address contains a GVA or nGPA. */
44dd3ffa 5331 if (vcpu->arch.mmu->direct_map) {
618232e2
BS
5332 vcpu->arch.gpa_available = true;
5333 vcpu->arch.gpa_val = cr2;
5334 }
3067714c 5335
9b8ebbdb 5336 r = RET_PF_INVALID;
e9ee956e
TY
5337 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5338 r = handle_mmio_page_fault(vcpu, cr2, direct);
472faffa 5339 if (r == RET_PF_EMULATE)
e9ee956e 5340 goto emulate;
e9ee956e 5341 }
3067714c 5342
9b8ebbdb 5343 if (r == RET_PF_INVALID) {
44dd3ffa
VK
5344 r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5345 lower_32_bits(error_code),
5346 false);
9b8ebbdb
PB
5347 WARN_ON(r == RET_PF_INVALID);
5348 }
5349
5350 if (r == RET_PF_RETRY)
5351 return 1;
3067714c 5352 if (r < 0)
e9ee956e 5353 return r;
3067714c 5354
14727754
TL
5355 /*
5356 * Before emulating the instruction, check if the error code
5357 * was due to a RO violation while translating the guest page.
5358 * This can occur when using nested virtualization with nested
5359 * paging in both guests. If true, we simply unprotect the page
5360 * and resume the guest.
14727754 5361 */
44dd3ffa 5362 if (vcpu->arch.mmu->direct_map &&
eebed243 5363 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
14727754
TL
5364 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5365 return 1;
5366 }
5367
472faffa
SC
5368 /*
5369 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5370 * optimistically try to just unprotect the page and let the processor
5371 * re-execute the instruction that caused the page fault. Do not allow
5372 * retrying MMIO emulation, as it's not only pointless but could also
5373 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5374 * faulting on the non-existent MMIO address. Retrying an instruction
5375 * from a nested guest is also pointless and dangerous as we are only
5376 * explicitly shadowing L1's page tables, i.e. unprotecting something
5377 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5378 */
6c3dfeb6 5379 if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
472faffa 5380 emulation_type = EMULTYPE_ALLOW_RETRY;
e9ee956e 5381emulate:
00b10fe1
BS
5382 /*
5383 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5384 * This can happen if a guest gets a page-fault on data access but the HW
5385 * table walker is not able to read the instruction page (e.g instruction
5386 * page is not present in memory). In those cases we simply restart the
5387 * guest.
5388 */
5389 if (unlikely(insn && !insn_len))
5390 return 1;
5391
1cb3f3ae 5392 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
5393
5394 switch (er) {
5395 case EMULATE_DONE:
5396 return 1;
ac0a48c3 5397 case EMULATE_USER_EXIT:
3067714c 5398 ++vcpu->stat.mmio_exits;
6d77dbfc 5399 /* fall through */
3067714c 5400 case EMULATE_FAIL:
3f5d18a9 5401 return 0;
3067714c
AK
5402 default:
5403 BUG();
5404 }
3067714c
AK
5405}
5406EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5407
a7052897
MT
5408void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5409{
44dd3ffa 5410 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 5411 int i;
7eb77e9f 5412
faff8758
JS
5413 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
5414 if (is_noncanonical_address(gva, vcpu))
5415 return;
5416
7eb77e9f 5417 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353
JS
5418
5419 /*
5420 * INVLPG is required to invalidate any global mappings for the VA,
5421 * irrespective of PCID. Since it would take us roughly similar amount
b94742c9
JS
5422 * of work to determine whether any of the prev_root mappings of the VA
5423 * is marked global, or to just sync it blindly, so we might as well
5424 * just always sync it.
956bf353 5425 *
b94742c9
JS
5426 * Mappings not reachable via the current cr3 or the prev_roots will be
5427 * synced when switching to that cr3, so nothing needs to be done here
5428 * for them.
956bf353 5429 */
b94742c9
JS
5430 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5431 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5432 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
956bf353 5433
faff8758 5434 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
a7052897
MT
5435 ++vcpu->stat.invlpg;
5436}
5437EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5438
eb4b248e
JS
5439void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5440{
44dd3ffa 5441 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5442 bool tlb_flush = false;
b94742c9 5443 uint i;
eb4b248e
JS
5444
5445 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5446 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5447 tlb_flush = true;
eb4b248e
JS
5448 }
5449
b94742c9
JS
5450 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5451 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5452 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5453 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5454 tlb_flush = true;
5455 }
956bf353 5456 }
ade61e28 5457
faff8758
JS
5458 if (tlb_flush)
5459 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5460
eb4b248e
JS
5461 ++vcpu->stat.invlpg;
5462
5463 /*
b94742c9
JS
5464 * Mappings not reachable via the current cr3 or the prev_roots will be
5465 * synced when switching to that cr3, so nothing needs to be done here
5466 * for them.
eb4b248e
JS
5467 */
5468}
5469EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5470
18552672
JR
5471void kvm_enable_tdp(void)
5472{
5473 tdp_enabled = true;
5474}
5475EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5476
5f4cb662
JR
5477void kvm_disable_tdp(void)
5478{
5479 tdp_enabled = false;
5480}
5481EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5482
6aa8b732
AK
5483static void free_mmu_pages(struct kvm_vcpu *vcpu)
5484{
44dd3ffa
VK
5485 free_page((unsigned long)vcpu->arch.mmu->pae_root);
5486 free_page((unsigned long)vcpu->arch.mmu->lm_root);
6aa8b732
AK
5487}
5488
5489static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5490{
17ac10ad 5491 struct page *page;
6aa8b732
AK
5492 int i;
5493
ee6268ba
LC
5494 if (tdp_enabled)
5495 return 0;
5496
17ac10ad
AK
5497 /*
5498 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5499 * Therefore we need to allocate shadow page tables in the first
5500 * 4GB of memory, which happens to fit the DMA32 zone.
5501 */
5502 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5503 if (!page)
d7fa6ab2
WY
5504 return -ENOMEM;
5505
44dd3ffa 5506 vcpu->arch.mmu->pae_root = page_address(page);
17ac10ad 5507 for (i = 0; i < 4; ++i)
44dd3ffa 5508 vcpu->arch.mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5509
6aa8b732 5510 return 0;
6aa8b732
AK
5511}
5512
8018c27b 5513int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5514{
b94742c9
JS
5515 uint i;
5516
44dd3ffa
VK
5517 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5518 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5519
44dd3ffa
VK
5520 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5521 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
b94742c9 5522 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5523 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6aa8b732 5524
14c07ad8
VK
5525 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5526 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5527 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5528 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
2c264957 5529
14c07ad8 5530 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
8018c27b 5531 return alloc_mmu_pages(vcpu);
6aa8b732
AK
5532}
5533
b5f5fdca 5534static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5535 struct kvm_memory_slot *slot,
5536 struct kvm_page_track_notifier_node *node)
b5f5fdca
XC
5537{
5538 kvm_mmu_invalidate_zap_all_pages(kvm);
5539}
5540
13d268ca
XG
5541void kvm_mmu_init_vm(struct kvm *kvm)
5542{
5543 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5544
5545 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5546 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca
XG
5547 kvm_page_track_register_notifier(kvm, node);
5548}
5549
5550void kvm_mmu_uninit_vm(struct kvm *kvm)
5551{
5552 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5553
5554 kvm_page_track_unregister_notifier(kvm, node);
5555}
5556
1bad2b2a 5557/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 5558typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
5559
5560/* The caller should hold mmu-lock before calling this function. */
928a4c39 5561static __always_inline bool
1bad2b2a
XG
5562slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5563 slot_level_handler fn, int start_level, int end_level,
5564 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5565{
5566 struct slot_rmap_walk_iterator iterator;
5567 bool flush = false;
5568
5569 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5570 end_gfn, &iterator) {
5571 if (iterator.rmap)
5572 flush |= fn(kvm, iterator.rmap);
5573
5574 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5575 if (flush && lock_flush_tlb) {
5576 kvm_flush_remote_tlbs(kvm);
5577 flush = false;
5578 }
5579 cond_resched_lock(&kvm->mmu_lock);
5580 }
5581 }
5582
5583 if (flush && lock_flush_tlb) {
5584 kvm_flush_remote_tlbs(kvm);
5585 flush = false;
5586 }
5587
5588 return flush;
5589}
5590
928a4c39 5591static __always_inline bool
1bad2b2a
XG
5592slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5593 slot_level_handler fn, int start_level, int end_level,
5594 bool lock_flush_tlb)
5595{
5596 return slot_handle_level_range(kvm, memslot, fn, start_level,
5597 end_level, memslot->base_gfn,
5598 memslot->base_gfn + memslot->npages - 1,
5599 lock_flush_tlb);
5600}
5601
928a4c39 5602static __always_inline bool
1bad2b2a
XG
5603slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5604 slot_level_handler fn, bool lock_flush_tlb)
5605{
5606 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5607 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5608}
5609
928a4c39 5610static __always_inline bool
1bad2b2a
XG
5611slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5612 slot_level_handler fn, bool lock_flush_tlb)
5613{
5614 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5615 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5616}
5617
928a4c39 5618static __always_inline bool
1bad2b2a
XG
5619slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5620 slot_level_handler fn, bool lock_flush_tlb)
5621{
5622 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5623 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5624}
5625
efdfe536
XG
5626void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5627{
5628 struct kvm_memslots *slots;
5629 struct kvm_memory_slot *memslot;
71883a62
LT
5630 bool flush_tlb = true;
5631 bool flush = false;
9da0e4d5 5632 int i;
efdfe536 5633
71883a62
LT
5634 if (kvm_available_flush_tlb_with_range())
5635 flush_tlb = false;
5636
efdfe536 5637 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5638 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5639 slots = __kvm_memslots(kvm, i);
5640 kvm_for_each_memslot(memslot, slots) {
5641 gfn_t start, end;
5642
5643 start = max(gfn_start, memslot->base_gfn);
5644 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5645 if (start >= end)
5646 continue;
efdfe536 5647
71883a62
LT
5648 flush |= slot_handle_level_range(kvm, memslot,
5649 kvm_zap_rmapp, PT_PAGE_TABLE_LEVEL,
5650 PT_MAX_HUGEPAGE_LEVEL, start,
5651 end - 1, flush_tlb);
9da0e4d5 5652 }
efdfe536
XG
5653 }
5654
71883a62
LT
5655 if (flush)
5656 kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5657 gfn_end - gfn_start + 1);
5658
efdfe536
XG
5659 spin_unlock(&kvm->mmu_lock);
5660}
5661
018aabb5
TY
5662static bool slot_rmap_write_protect(struct kvm *kvm,
5663 struct kvm_rmap_head *rmap_head)
d77aa73c 5664{
018aabb5 5665 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5666}
5667
1c91cad4
KH
5668void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5669 struct kvm_memory_slot *memslot)
6aa8b732 5670{
d77aa73c 5671 bool flush;
6aa8b732 5672
9d1beefb 5673 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5674 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5675 false);
9d1beefb 5676 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
5677
5678 /*
5679 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5680 * which do tlb flush out of mmu-lock should be serialized by
5681 * kvm->slots_lock otherwise tlb flush would be missed.
5682 */
5683 lockdep_assert_held(&kvm->slots_lock);
5684
5685 /*
5686 * We can flush all the TLBs out of the mmu lock without TLB
5687 * corruption since we just change the spte from writable to
5688 * readonly so that we only need to care the case of changing
5689 * spte from present to present (changing the spte from present
5690 * to nonpresent will flush all the TLBs immediately), in other
5691 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5692 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5693 * instead of PT_WRITABLE_MASK, that means it does not depend
5694 * on PT_WRITABLE_MASK anymore.
5695 */
d91ffee9 5696 if (flush)
c3134ce2
LT
5697 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5698 memslot->npages);
6aa8b732 5699}
37a7d8b0 5700
3ea3b7fa 5701static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5702 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5703{
5704 u64 *sptep;
5705 struct rmap_iterator iter;
5706 int need_tlb_flush = 0;
ba049e93 5707 kvm_pfn_t pfn;
3ea3b7fa
WL
5708 struct kvm_mmu_page *sp;
5709
0d536790 5710restart:
018aabb5 5711 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
5712 sp = page_header(__pa(sptep));
5713 pfn = spte_to_pfn(*sptep);
5714
5715 /*
decf6333
XG
5716 * We cannot do huge page mapping for indirect shadow pages,
5717 * which are found on the last rmap (level = 1) when not using
5718 * tdp; such shadow pages are synced with the page table in
5719 * the guest, and the guest page table is using 4K page size
5720 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
5721 */
5722 if (sp->role.direct &&
5723 !kvm_is_reserved_pfn(pfn) &&
127393fb 5724 PageTransCompoundMap(pfn_to_page(pfn))) {
e7912386 5725 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5726
5727 if (kvm_available_flush_tlb_with_range())
5728 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5729 KVM_PAGES_PER_HPAGE(sp->role.level));
5730 else
5731 need_tlb_flush = 1;
5732
0d536790
XG
5733 goto restart;
5734 }
3ea3b7fa
WL
5735 }
5736
5737 return need_tlb_flush;
5738}
5739
5740void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5741 const struct kvm_memory_slot *memslot)
3ea3b7fa 5742{
f36f3f28 5743 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5744 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5745 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5746 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5747 spin_unlock(&kvm->mmu_lock);
5748}
5749
f4b4b180
KH
5750void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5751 struct kvm_memory_slot *memslot)
5752{
d77aa73c 5753 bool flush;
f4b4b180
KH
5754
5755 spin_lock(&kvm->mmu_lock);
d77aa73c 5756 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5757 spin_unlock(&kvm->mmu_lock);
5758
5759 lockdep_assert_held(&kvm->slots_lock);
5760
5761 /*
5762 * It's also safe to flush TLBs out of mmu lock here as currently this
5763 * function is only used for dirty logging, in which case flushing TLB
5764 * out of mmu lock also guarantees no dirty pages will be lost in
5765 * dirty_bitmap.
5766 */
5767 if (flush)
c3134ce2
LT
5768 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5769 memslot->npages);
f4b4b180
KH
5770}
5771EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5772
5773void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5774 struct kvm_memory_slot *memslot)
5775{
d77aa73c 5776 bool flush;
f4b4b180
KH
5777
5778 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5779 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5780 false);
f4b4b180
KH
5781 spin_unlock(&kvm->mmu_lock);
5782
5783 /* see kvm_mmu_slot_remove_write_access */
5784 lockdep_assert_held(&kvm->slots_lock);
5785
5786 if (flush)
c3134ce2
LT
5787 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5788 memslot->npages);
f4b4b180
KH
5789}
5790EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5791
5792void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5793 struct kvm_memory_slot *memslot)
5794{
d77aa73c 5795 bool flush;
f4b4b180
KH
5796
5797 spin_lock(&kvm->mmu_lock);
d77aa73c 5798 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
5799 spin_unlock(&kvm->mmu_lock);
5800
5801 lockdep_assert_held(&kvm->slots_lock);
5802
5803 /* see kvm_mmu_slot_leaf_clear_dirty */
5804 if (flush)
c3134ce2
LT
5805 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5806 memslot->npages);
f4b4b180
KH
5807}
5808EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5809
e7d11c7a 5810#define BATCH_ZAP_PAGES 10
5304b8d3
XG
5811static void kvm_zap_obsolete_pages(struct kvm *kvm)
5812{
5813 struct kvm_mmu_page *sp, *node;
e7d11c7a 5814 int batch = 0;
5304b8d3
XG
5815
5816restart:
5817 list_for_each_entry_safe_reverse(sp, node,
5818 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
5819 int ret;
5820
5304b8d3
XG
5821 /*
5822 * No obsolete page exists before new created page since
5823 * active_mmu_pages is the FIFO list.
5824 */
5825 if (!is_obsolete_sp(kvm, sp))
5826 break;
5827
5828 /*
5304b8d3
XG
5829 * Since we are reversely walking the list and the invalid
5830 * list will be moved to the head, skip the invalid page
5831 * can help us to avoid the infinity list walking.
5832 */
5833 if (sp->role.invalid)
5834 continue;
5835
f34d251d
XG
5836 /*
5837 * Need not flush tlb since we only zap the sp with invalid
5838 * generation number.
5839 */
e7d11c7a 5840 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 5841 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 5842 batch = 0;
5304b8d3
XG
5843 goto restart;
5844 }
5845
365c8868
XG
5846 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5847 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
5848 batch += ret;
5849
5850 if (ret)
5304b8d3
XG
5851 goto restart;
5852 }
5853
f34d251d
XG
5854 /*
5855 * Should flush tlb before free page tables since lockless-walking
5856 * may use the pages.
5857 */
365c8868 5858 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
5859}
5860
5861/*
5862 * Fast invalidate all shadow pages and use lock-break technique
5863 * to zap obsolete pages.
5864 *
5865 * It's required when memslot is being deleted or VM is being
5866 * destroyed, in these cases, we should ensure that KVM MMU does
5867 * not use any resource of the being-deleted slot or all slots
5868 * after calling the function.
5869 */
5870void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5871{
5872 spin_lock(&kvm->mmu_lock);
35006126 5873 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
5874 kvm->arch.mmu_valid_gen++;
5875
f34d251d
XG
5876 /*
5877 * Notify all vcpus to reload its shadow page table
5878 * and flush TLB. Then all vcpus will switch to new
5879 * shadow page table with the new mmu_valid_gen.
5880 *
5881 * Note: we should do this under the protection of
5882 * mmu-lock, otherwise, vcpu would purge shadow page
5883 * but miss tlb flush.
5884 */
5885 kvm_reload_remote_mmus(kvm);
5886
5304b8d3
XG
5887 kvm_zap_obsolete_pages(kvm);
5888 spin_unlock(&kvm->mmu_lock);
5889}
5890
365c8868
XG
5891static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5892{
5893 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5894}
5895
54bf36aa 5896void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
5897{
5898 /*
5899 * The very rare case: if the generation-number is round,
5900 * zap all shadow pages.
f8f55942 5901 */
54bf36aa 5902 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
ae0f5499 5903 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 5904 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 5905 }
f8f55942
XG
5906}
5907
70534a73
DC
5908static unsigned long
5909mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5910{
5911 struct kvm *kvm;
1495f230 5912 int nr_to_scan = sc->nr_to_scan;
70534a73 5913 unsigned long freed = 0;
3ee16c81 5914
2f303b74 5915 spin_lock(&kvm_lock);
3ee16c81
IE
5916
5917 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5918 int idx;
d98ba053 5919 LIST_HEAD(invalid_list);
3ee16c81 5920
35f2d16b
TY
5921 /*
5922 * Never scan more than sc->nr_to_scan VM instances.
5923 * Will not hit this condition practically since we do not try
5924 * to shrink more than one VM and it is very unlikely to see
5925 * !n_used_mmu_pages so many times.
5926 */
5927 if (!nr_to_scan--)
5928 break;
19526396
GN
5929 /*
5930 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5931 * here. We may skip a VM instance errorneosly, but we do not
5932 * want to shrink a VM that only started to populate its MMU
5933 * anyway.
5934 */
365c8868
XG
5935 if (!kvm->arch.n_used_mmu_pages &&
5936 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5937 continue;
19526396 5938
f656ce01 5939 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5940 spin_lock(&kvm->mmu_lock);
3ee16c81 5941
365c8868
XG
5942 if (kvm_has_zapped_obsolete_pages(kvm)) {
5943 kvm_mmu_commit_zap_page(kvm,
5944 &kvm->arch.zapped_obsolete_pages);
5945 goto unlock;
5946 }
5947
70534a73
DC
5948 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5949 freed++;
d98ba053 5950 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 5951
365c8868 5952unlock:
3ee16c81 5953 spin_unlock(&kvm->mmu_lock);
f656ce01 5954 srcu_read_unlock(&kvm->srcu, idx);
19526396 5955
70534a73
DC
5956 /*
5957 * unfair on small ones
5958 * per-vm shrinkers cry out
5959 * sadness comes quickly
5960 */
19526396
GN
5961 list_move_tail(&kvm->vm_list, &vm_list);
5962 break;
3ee16c81 5963 }
3ee16c81 5964
2f303b74 5965 spin_unlock(&kvm_lock);
70534a73 5966 return freed;
70534a73
DC
5967}
5968
5969static unsigned long
5970mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5971{
45221ab6 5972 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5973}
5974
5975static struct shrinker mmu_shrinker = {
70534a73
DC
5976 .count_objects = mmu_shrink_count,
5977 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5978 .seeks = DEFAULT_SEEKS * 10,
5979};
5980
2ddfd20e 5981static void mmu_destroy_caches(void)
b5a33a75 5982{
c1bd743e
TH
5983 kmem_cache_destroy(pte_list_desc_cache);
5984 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5985}
5986
5987int kvm_mmu_module_init(void)
5988{
ab271bd4
AB
5989 int ret = -ENOMEM;
5990
36d9594d
VK
5991 /*
5992 * MMU roles use union aliasing which is, generally speaking, an
5993 * undefined behavior. However, we supposedly know how compilers behave
5994 * and the current status quo is unlikely to change. Guardians below are
5995 * supposed to let us know if the assumption becomes false.
5996 */
5997 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5998 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5999 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6000
28a1f3ac 6001 kvm_mmu_reset_all_pte_masks();
f160c7b7 6002
53c07b18
XG
6003 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6004 sizeof(struct pte_list_desc),
46bea48a 6005 0, SLAB_ACCOUNT, NULL);
53c07b18 6006 if (!pte_list_desc_cache)
ab271bd4 6007 goto out;
b5a33a75 6008
d3d25b04
AK
6009 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6010 sizeof(struct kvm_mmu_page),
46bea48a 6011 0, SLAB_ACCOUNT, NULL);
d3d25b04 6012 if (!mmu_page_header_cache)
ab271bd4 6013 goto out;
d3d25b04 6014
908c7f19 6015 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 6016 goto out;
45bf21a8 6017
ab271bd4
AB
6018 ret = register_shrinker(&mmu_shrinker);
6019 if (ret)
6020 goto out;
3ee16c81 6021
b5a33a75
AK
6022 return 0;
6023
ab271bd4 6024out:
3ee16c81 6025 mmu_destroy_caches();
ab271bd4 6026 return ret;
b5a33a75
AK
6027}
6028
3ad82a7e 6029/*
39337ad1 6030 * Calculate mmu pages needed for kvm.
3ad82a7e
ZX
6031 */
6032unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
6033{
3ad82a7e
ZX
6034 unsigned int nr_mmu_pages;
6035 unsigned int nr_pages = 0;
bc6678a3 6036 struct kvm_memslots *slots;
be6ba0f0 6037 struct kvm_memory_slot *memslot;
9da0e4d5 6038 int i;
3ad82a7e 6039
9da0e4d5
PB
6040 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6041 slots = __kvm_memslots(kvm, i);
90d83dc3 6042
9da0e4d5
PB
6043 kvm_for_each_memslot(memslot, slots)
6044 nr_pages += memslot->npages;
6045 }
3ad82a7e
ZX
6046
6047 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6048 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 6049 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
6050
6051 return nr_mmu_pages;
6052}
6053
c42fffe3
XG
6054void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6055{
95f93af4 6056 kvm_mmu_unload(vcpu);
c42fffe3
XG
6057 free_mmu_pages(vcpu);
6058 mmu_free_memory_caches(vcpu);
b034cf01
XG
6059}
6060
b034cf01
XG
6061void kvm_mmu_module_exit(void)
6062{
6063 mmu_destroy_caches();
6064 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6065 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
6066 mmu_audit_disable();
6067}