]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: Introduce kvm_unmap_hva_range() for kvm_mmu_notifier_invalidate_range_start()
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201{
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
4f022648 204 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206}
207
208static bool is_mmio_spte(u64 spte)
209{
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211}
212
213static gfn_t get_mmio_spte_gfn(u64 spte)
214{
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216}
217
218static unsigned get_mmio_spte_access(u64 spte)
219{
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221}
222
223static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224{
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231}
c7addb90 232
82725b20
DE
233static inline u64 rsvd_bits(int s, int e)
234{
235 return ((1ULL << (e - s + 1)) - 1) << s;
236}
237
7b52345e 238void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
240{
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246}
247EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
6aa8b732
AK
249static int is_cpuid_PSE36(void)
250{
251 return 1;
252}
253
73b1087e
AK
254static int is_nx(struct kvm_vcpu *vcpu)
255{
f6801dff 256 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
257}
258
c7addb90
AK
259static int is_shadow_present_pte(u64 pte)
260{
ce88decf 261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
262}
263
05da4558
MT
264static int is_large_pte(u64 pte)
265{
266 return pte & PT_PAGE_SIZE_MASK;
267}
268
43a3795a 269static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 270{
439e218a 271 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
272}
273
43a3795a 274static int is_rmap_spte(u64 pte)
cd4a4e53 275{
4b1a80fa 276 return is_shadow_present_pte(pte);
cd4a4e53
AK
277}
278
776e6633
MT
279static int is_last_spte(u64 pte, int level)
280{
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
852e3c19 283 if (is_large_pte(pte))
776e6633
MT
284 return 1;
285 return 0;
286}
287
35149e21 288static pfn_t spte_to_pfn(u64 pte)
0b49ea86 289{
35149e21 290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
291}
292
da928521
AK
293static gfn_t pse36_gfn_delta(u32 gpte)
294{
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298}
299
603e0651 300#ifdef CONFIG_X86_64
d555c333 301static void __set_spte(u64 *sptep, u64 spte)
e663ee64 302{
603e0651 303 *sptep = spte;
e663ee64
AK
304}
305
603e0651 306static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 307{
603e0651
XG
308 *sptep = spte;
309}
310
311static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312{
313 return xchg(sptep, spte);
314}
c2a2ac2b
XG
315
316static u64 __get_spte_lockless(u64 *sptep)
317{
318 return ACCESS_ONCE(*sptep);
319}
ce88decf
XG
320
321static bool __check_direct_spte_mmio_pf(u64 spte)
322{
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325}
a9221dd5 326#else
603e0651
XG
327union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333};
a9221dd5 334
c2a2ac2b
XG
335static void count_spte_clear(u64 *sptep, u64 spte)
336{
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345}
346
603e0651
XG
347static void __set_spte(u64 *sptep, u64 spte)
348{
349 union split_spte *ssptep, sspte;
a9221dd5 350
603e0651
XG
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
364}
365
603e0651
XG
366static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367{
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 382 count_spte_clear(sptep, spte);
603e0651
XG
383}
384
385static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386{
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 396 count_spte_clear(sptep, spte);
603e0651
XG
397
398 return orig.spte;
399}
c2a2ac2b
XG
400
401/*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408static u64 __get_spte_lockless(u64 *sptep)
409{
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429}
ce88decf
XG
430
431static bool __check_direct_spte_mmio_pf(u64 spte)
432{
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446}
603e0651
XG
447#endif
448
c7ba5b48
XG
449static bool spte_is_locklessly_modifiable(u64 spte)
450{
451 return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
452}
453
8672b721
XG
454static bool spte_has_volatile_bits(u64 spte)
455{
c7ba5b48
XG
456 /*
457 * Always atomicly update spte if it can be updated
458 * out of mmu-lock, it can ensure dirty bit is not lost,
459 * also, it can help us to get a stable is_writable_pte()
460 * to ensure tlb flush is not missed.
461 */
462 if (spte_is_locklessly_modifiable(spte))
463 return true;
464
8672b721
XG
465 if (!shadow_accessed_mask)
466 return false;
467
468 if (!is_shadow_present_pte(spte))
469 return false;
470
4132779b
XG
471 if ((spte & shadow_accessed_mask) &&
472 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
473 return false;
474
475 return true;
476}
477
4132779b
XG
478static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
479{
480 return (old_spte & bit_mask) && !(new_spte & bit_mask);
481}
482
1df9f2dc
XG
483/* Rules for using mmu_spte_set:
484 * Set the sptep from nonpresent to present.
485 * Note: the sptep being assigned *must* be either not present
486 * or in a state where the hardware will not attempt to update
487 * the spte.
488 */
489static void mmu_spte_set(u64 *sptep, u64 new_spte)
490{
491 WARN_ON(is_shadow_present_pte(*sptep));
492 __set_spte(sptep, new_spte);
493}
494
495/* Rules for using mmu_spte_update:
496 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
497 *
498 * Whenever we overwrite a writable spte with a read-only one we
499 * should flush remote TLBs. Otherwise rmap_write_protect
500 * will find a read-only spte, even though the writable spte
501 * might be cached on a CPU's TLB, the return value indicates this
502 * case.
1df9f2dc 503 */
6e7d0354 504static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 505{
c7ba5b48 506 u64 old_spte = *sptep;
6e7d0354 507 bool ret = false;
4132779b
XG
508
509 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 510
6e7d0354
XG
511 if (!is_shadow_present_pte(old_spte)) {
512 mmu_spte_set(sptep, new_spte);
513 return ret;
514 }
1df9f2dc 515
c7ba5b48 516 if (!spte_has_volatile_bits(old_spte))
603e0651 517 __update_clear_spte_fast(sptep, new_spte);
4132779b 518 else
603e0651 519 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 520
c7ba5b48
XG
521 /*
522 * For the spte updated out of mmu-lock is safe, since
523 * we always atomicly update it, see the comments in
524 * spte_has_volatile_bits().
525 */
6e7d0354
XG
526 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
527 ret = true;
528
4132779b 529 if (!shadow_accessed_mask)
6e7d0354 530 return ret;
4132779b
XG
531
532 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
533 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
534 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
535 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
536
537 return ret;
b79b93f9
AK
538}
539
1df9f2dc
XG
540/*
541 * Rules for using mmu_spte_clear_track_bits:
542 * It sets the sptep from present to nonpresent, and track the
543 * state bits, it is used to clear the last level sptep.
544 */
545static int mmu_spte_clear_track_bits(u64 *sptep)
546{
547 pfn_t pfn;
548 u64 old_spte = *sptep;
549
550 if (!spte_has_volatile_bits(old_spte))
603e0651 551 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 552 else
603e0651 553 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
554
555 if (!is_rmap_spte(old_spte))
556 return 0;
557
558 pfn = spte_to_pfn(old_spte);
559 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
560 kvm_set_pfn_accessed(pfn);
561 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
562 kvm_set_pfn_dirty(pfn);
563 return 1;
564}
565
566/*
567 * Rules for using mmu_spte_clear_no_track:
568 * Directly clear spte without caring the state bits of sptep,
569 * it is used to set the upper level spte.
570 */
571static void mmu_spte_clear_no_track(u64 *sptep)
572{
603e0651 573 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
574}
575
c2a2ac2b
XG
576static u64 mmu_spte_get_lockless(u64 *sptep)
577{
578 return __get_spte_lockless(sptep);
579}
580
581static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
582{
c142786c
AK
583 /*
584 * Prevent page table teardown by making any free-er wait during
585 * kvm_flush_remote_tlbs() IPI to all active vcpus.
586 */
587 local_irq_disable();
588 vcpu->mode = READING_SHADOW_PAGE_TABLES;
589 /*
590 * Make sure a following spte read is not reordered ahead of the write
591 * to vcpu->mode.
592 */
593 smp_mb();
c2a2ac2b
XG
594}
595
596static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
597{
c142786c
AK
598 /*
599 * Make sure the write to vcpu->mode is not reordered in front of
600 * reads to sptes. If it does, kvm_commit_zap_page() can see us
601 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
602 */
603 smp_mb();
604 vcpu->mode = OUTSIDE_GUEST_MODE;
605 local_irq_enable();
c2a2ac2b
XG
606}
607
e2dec939 608static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 609 struct kmem_cache *base_cache, int min)
714b93da
AK
610{
611 void *obj;
612
613 if (cache->nobjs >= min)
e2dec939 614 return 0;
714b93da 615 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 616 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 617 if (!obj)
e2dec939 618 return -ENOMEM;
714b93da
AK
619 cache->objects[cache->nobjs++] = obj;
620 }
e2dec939 621 return 0;
714b93da
AK
622}
623
f759e2b4
XG
624static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
625{
626 return cache->nobjs;
627}
628
e8ad9a70
XG
629static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
630 struct kmem_cache *cache)
714b93da
AK
631{
632 while (mc->nobjs)
e8ad9a70 633 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
634}
635
c1158e63 636static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 637 int min)
c1158e63 638{
842f22ed 639 void *page;
c1158e63
AK
640
641 if (cache->nobjs >= min)
642 return 0;
643 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 644 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
645 if (!page)
646 return -ENOMEM;
842f22ed 647 cache->objects[cache->nobjs++] = page;
c1158e63
AK
648 }
649 return 0;
650}
651
652static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
653{
654 while (mc->nobjs)
c4d198d5 655 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
656}
657
2e3e5882 658static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 659{
e2dec939
AK
660 int r;
661
53c07b18 662 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 663 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
664 if (r)
665 goto out;
ad312c7c 666 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
667 if (r)
668 goto out;
ad312c7c 669 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 670 mmu_page_header_cache, 4);
e2dec939
AK
671out:
672 return r;
714b93da
AK
673}
674
675static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
676{
53c07b18
XG
677 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
678 pte_list_desc_cache);
ad312c7c 679 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
680 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
681 mmu_page_header_cache);
714b93da
AK
682}
683
80feb89a 684static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
685{
686 void *p;
687
688 BUG_ON(!mc->nobjs);
689 p = mc->objects[--mc->nobjs];
714b93da
AK
690 return p;
691}
692
53c07b18 693static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 694{
80feb89a 695 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
696}
697
53c07b18 698static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 699{
53c07b18 700 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
701}
702
2032a93d
LJ
703static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
704{
705 if (!sp->role.direct)
706 return sp->gfns[index];
707
708 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
709}
710
711static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
712{
713 if (sp->role.direct)
714 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
715 else
716 sp->gfns[index] = gfn;
717}
718
05da4558 719/*
d4dbf470
TY
720 * Return the pointer to the large page information for a given gfn,
721 * handling slots that are not large page aligned.
05da4558 722 */
d4dbf470
TY
723static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
724 struct kvm_memory_slot *slot,
725 int level)
05da4558
MT
726{
727 unsigned long idx;
728
fb03cb6f 729 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 730 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
731}
732
733static void account_shadowed(struct kvm *kvm, gfn_t gfn)
734{
d25797b2 735 struct kvm_memory_slot *slot;
d4dbf470 736 struct kvm_lpage_info *linfo;
d25797b2 737 int i;
05da4558 738
a1f4d395 739 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
740 for (i = PT_DIRECTORY_LEVEL;
741 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
742 linfo = lpage_info_slot(gfn, slot, i);
743 linfo->write_count += 1;
d25797b2 744 }
332b207d 745 kvm->arch.indirect_shadow_pages++;
05da4558
MT
746}
747
748static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
749{
d25797b2 750 struct kvm_memory_slot *slot;
d4dbf470 751 struct kvm_lpage_info *linfo;
d25797b2 752 int i;
05da4558 753
a1f4d395 754 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
755 for (i = PT_DIRECTORY_LEVEL;
756 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
757 linfo = lpage_info_slot(gfn, slot, i);
758 linfo->write_count -= 1;
759 WARN_ON(linfo->write_count < 0);
d25797b2 760 }
332b207d 761 kvm->arch.indirect_shadow_pages--;
05da4558
MT
762}
763
d25797b2
JR
764static int has_wrprotected_page(struct kvm *kvm,
765 gfn_t gfn,
766 int level)
05da4558 767{
2843099f 768 struct kvm_memory_slot *slot;
d4dbf470 769 struct kvm_lpage_info *linfo;
05da4558 770
a1f4d395 771 slot = gfn_to_memslot(kvm, gfn);
05da4558 772 if (slot) {
d4dbf470
TY
773 linfo = lpage_info_slot(gfn, slot, level);
774 return linfo->write_count;
05da4558
MT
775 }
776
777 return 1;
778}
779
d25797b2 780static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 781{
8f0b1ab6 782 unsigned long page_size;
d25797b2 783 int i, ret = 0;
05da4558 784
8f0b1ab6 785 page_size = kvm_host_page_size(kvm, gfn);
05da4558 786
d25797b2
JR
787 for (i = PT_PAGE_TABLE_LEVEL;
788 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
789 if (page_size >= KVM_HPAGE_SIZE(i))
790 ret = i;
791 else
792 break;
793 }
794
4c2155ce 795 return ret;
05da4558
MT
796}
797
5d163b1c
XG
798static struct kvm_memory_slot *
799gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
800 bool no_dirty_log)
05da4558
MT
801{
802 struct kvm_memory_slot *slot;
5d163b1c
XG
803
804 slot = gfn_to_memslot(vcpu->kvm, gfn);
805 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
806 (no_dirty_log && slot->dirty_bitmap))
807 slot = NULL;
808
809 return slot;
810}
811
812static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
813{
a0a8eaba 814 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
815}
816
817static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
818{
819 int host_level, level, max_level;
05da4558 820
d25797b2
JR
821 host_level = host_mapping_level(vcpu->kvm, large_gfn);
822
823 if (host_level == PT_PAGE_TABLE_LEVEL)
824 return host_level;
825
878403b7
SY
826 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
827 kvm_x86_ops->get_lpage_level() : host_level;
828
829 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
830 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
831 break;
d25797b2
JR
832
833 return level - 1;
05da4558
MT
834}
835
290fc38d 836/*
53c07b18 837 * Pte mapping structures:
cd4a4e53 838 *
53c07b18 839 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 840 *
53c07b18
XG
841 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
842 * pte_list_desc containing more mappings.
53a27b39 843 *
53c07b18 844 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
845 * the spte was not added.
846 *
cd4a4e53 847 */
53c07b18
XG
848static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
849 unsigned long *pte_list)
cd4a4e53 850{
53c07b18 851 struct pte_list_desc *desc;
53a27b39 852 int i, count = 0;
cd4a4e53 853
53c07b18
XG
854 if (!*pte_list) {
855 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
856 *pte_list = (unsigned long)spte;
857 } else if (!(*pte_list & 1)) {
858 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
859 desc = mmu_alloc_pte_list_desc(vcpu);
860 desc->sptes[0] = (u64 *)*pte_list;
d555c333 861 desc->sptes[1] = spte;
53c07b18 862 *pte_list = (unsigned long)desc | 1;
cb16a7b3 863 ++count;
cd4a4e53 864 } else {
53c07b18
XG
865 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
866 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
867 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 868 desc = desc->more;
53c07b18 869 count += PTE_LIST_EXT;
53a27b39 870 }
53c07b18
XG
871 if (desc->sptes[PTE_LIST_EXT-1]) {
872 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
873 desc = desc->more;
874 }
d555c333 875 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 876 ++count;
d555c333 877 desc->sptes[i] = spte;
cd4a4e53 878 }
53a27b39 879 return count;
cd4a4e53
AK
880}
881
53c07b18
XG
882static void
883pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
884 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
885{
886 int j;
887
53c07b18 888 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 889 ;
d555c333
AK
890 desc->sptes[i] = desc->sptes[j];
891 desc->sptes[j] = NULL;
cd4a4e53
AK
892 if (j != 0)
893 return;
894 if (!prev_desc && !desc->more)
53c07b18 895 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
896 else
897 if (prev_desc)
898 prev_desc->more = desc->more;
899 else
53c07b18
XG
900 *pte_list = (unsigned long)desc->more | 1;
901 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
902}
903
53c07b18 904static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 905{
53c07b18
XG
906 struct pte_list_desc *desc;
907 struct pte_list_desc *prev_desc;
cd4a4e53
AK
908 int i;
909
53c07b18
XG
910 if (!*pte_list) {
911 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 912 BUG();
53c07b18
XG
913 } else if (!(*pte_list & 1)) {
914 rmap_printk("pte_list_remove: %p 1->0\n", spte);
915 if ((u64 *)*pte_list != spte) {
916 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
917 BUG();
918 }
53c07b18 919 *pte_list = 0;
cd4a4e53 920 } else {
53c07b18
XG
921 rmap_printk("pte_list_remove: %p many->many\n", spte);
922 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
923 prev_desc = NULL;
924 while (desc) {
53c07b18 925 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 926 if (desc->sptes[i] == spte) {
53c07b18 927 pte_list_desc_remove_entry(pte_list,
714b93da 928 desc, i,
cd4a4e53
AK
929 prev_desc);
930 return;
931 }
932 prev_desc = desc;
933 desc = desc->more;
934 }
53c07b18 935 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
936 BUG();
937 }
938}
939
67052b35
XG
940typedef void (*pte_list_walk_fn) (u64 *spte);
941static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
942{
943 struct pte_list_desc *desc;
944 int i;
945
946 if (!*pte_list)
947 return;
948
949 if (!(*pte_list & 1))
950 return fn((u64 *)*pte_list);
951
952 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
953 while (desc) {
954 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
955 fn(desc->sptes[i]);
956 desc = desc->more;
957 }
958}
959
9373e2c0 960static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 961 struct kvm_memory_slot *slot)
53c07b18 962{
53c07b18
XG
963 struct kvm_lpage_info *linfo;
964
53c07b18
XG
965 if (likely(level == PT_PAGE_TABLE_LEVEL))
966 return &slot->rmap[gfn - slot->base_gfn];
967
968 linfo = lpage_info_slot(gfn, slot, level);
53c07b18
XG
969 return &linfo->rmap_pde;
970}
971
9b9b1492
TY
972/*
973 * Take gfn and return the reverse mapping to it.
974 */
975static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
976{
977 struct kvm_memory_slot *slot;
978
979 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 980 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
981}
982
f759e2b4
XG
983static bool rmap_can_add(struct kvm_vcpu *vcpu)
984{
985 struct kvm_mmu_memory_cache *cache;
986
987 cache = &vcpu->arch.mmu_pte_list_desc_cache;
988 return mmu_memory_cache_free_objects(cache);
989}
990
53c07b18
XG
991static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
992{
993 struct kvm_mmu_page *sp;
994 unsigned long *rmapp;
995
53c07b18
XG
996 sp = page_header(__pa(spte));
997 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
998 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
999 return pte_list_add(vcpu, spte, rmapp);
1000}
1001
53c07b18
XG
1002static void rmap_remove(struct kvm *kvm, u64 *spte)
1003{
1004 struct kvm_mmu_page *sp;
1005 gfn_t gfn;
1006 unsigned long *rmapp;
1007
1008 sp = page_header(__pa(spte));
1009 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1010 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1011 pte_list_remove(spte, rmapp);
1012}
1013
1e3f42f0
TY
1014/*
1015 * Used by the following functions to iterate through the sptes linked by a
1016 * rmap. All fields are private and not assumed to be used outside.
1017 */
1018struct rmap_iterator {
1019 /* private fields */
1020 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1021 int pos; /* index of the sptep */
1022};
1023
1024/*
1025 * Iteration must be started by this function. This should also be used after
1026 * removing/dropping sptes from the rmap link because in such cases the
1027 * information in the itererator may not be valid.
1028 *
1029 * Returns sptep if found, NULL otherwise.
1030 */
1031static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1032{
1033 if (!rmap)
1034 return NULL;
1035
1036 if (!(rmap & 1)) {
1037 iter->desc = NULL;
1038 return (u64 *)rmap;
1039 }
1040
1041 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1042 iter->pos = 0;
1043 return iter->desc->sptes[iter->pos];
1044}
1045
1046/*
1047 * Must be used with a valid iterator: e.g. after rmap_get_first().
1048 *
1049 * Returns sptep if found, NULL otherwise.
1050 */
1051static u64 *rmap_get_next(struct rmap_iterator *iter)
1052{
1053 if (iter->desc) {
1054 if (iter->pos < PTE_LIST_EXT - 1) {
1055 u64 *sptep;
1056
1057 ++iter->pos;
1058 sptep = iter->desc->sptes[iter->pos];
1059 if (sptep)
1060 return sptep;
1061 }
1062
1063 iter->desc = iter->desc->more;
1064
1065 if (iter->desc) {
1066 iter->pos = 0;
1067 /* desc->sptes[0] cannot be NULL */
1068 return iter->desc->sptes[iter->pos];
1069 }
1070 }
1071
1072 return NULL;
1073}
1074
c3707958 1075static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1076{
1df9f2dc 1077 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1078 rmap_remove(kvm, sptep);
be38d276
AK
1079}
1080
8e22f955
XG
1081
1082static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1083{
1084 if (is_large_pte(*sptep)) {
1085 WARN_ON(page_header(__pa(sptep))->role.level ==
1086 PT_PAGE_TABLE_LEVEL);
1087 drop_spte(kvm, sptep);
1088 --kvm->stat.lpages;
1089 return true;
1090 }
1091
1092 return false;
1093}
1094
1095static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1096{
1097 if (__drop_large_spte(vcpu->kvm, sptep))
1098 kvm_flush_remote_tlbs(vcpu->kvm);
1099}
1100
1101/*
49fde340
XG
1102 * Write-protect on the specified @sptep, @pt_protect indicates whether
1103 * spte writ-protection is caused by protecting shadow page table.
1104 * @flush indicates whether tlb need be flushed.
1105 *
1106 * Note: write protection is difference between drity logging and spte
1107 * protection:
1108 * - for dirty logging, the spte can be set to writable at anytime if
1109 * its dirty bitmap is properly set.
1110 * - for spte protection, the spte can be writable only after unsync-ing
1111 * shadow page.
8e22f955
XG
1112 *
1113 * Return true if the spte is dropped.
1114 */
49fde340
XG
1115static bool
1116spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
d13bc5b5
XG
1117{
1118 u64 spte = *sptep;
1119
49fde340
XG
1120 if (!is_writable_pte(spte) &&
1121 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1122 return false;
1123
1124 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1125
49fde340
XG
1126 if (__drop_large_spte(kvm, sptep)) {
1127 *flush |= true;
d13bc5b5 1128 return true;
49fde340 1129 }
d13bc5b5 1130
49fde340
XG
1131 if (pt_protect)
1132 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1133 spte = spte & ~PT_WRITABLE_MASK;
49fde340
XG
1134
1135 *flush |= mmu_spte_update(sptep, spte);
d13bc5b5
XG
1136 return false;
1137}
1138
49fde340
XG
1139static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1140 int level, bool pt_protect)
98348e95 1141{
1e3f42f0
TY
1142 u64 *sptep;
1143 struct rmap_iterator iter;
d13bc5b5 1144 bool flush = false;
374cbac0 1145
1e3f42f0
TY
1146 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1147 BUG_ON(!(*sptep & PT_PRESENT_MASK));
49fde340 1148 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1e3f42f0 1149 sptep = rmap_get_first(*rmapp, &iter);
d13bc5b5 1150 continue;
caa5b8a5 1151 }
a0ed4607 1152
d13bc5b5 1153 sptep = rmap_get_next(&iter);
374cbac0 1154 }
855149aa 1155
d13bc5b5 1156 return flush;
a0ed4607
TY
1157}
1158
5dc99b23
TY
1159/**
1160 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1161 * @kvm: kvm instance
1162 * @slot: slot to protect
1163 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1164 * @mask: indicates which pages we should protect
1165 *
1166 * Used when we do not need to care about huge page mappings: e.g. during dirty
1167 * logging we do not have any such mappings.
1168 */
1169void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1170 struct kvm_memory_slot *slot,
1171 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1172{
1173 unsigned long *rmapp;
a0ed4607 1174
5dc99b23
TY
1175 while (mask) {
1176 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
49fde340 1177 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
05da4558 1178
5dc99b23
TY
1179 /* clear the first set bit */
1180 mask &= mask - 1;
1181 }
374cbac0
AK
1182}
1183
2f84569f 1184static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1185{
1186 struct kvm_memory_slot *slot;
5dc99b23
TY
1187 unsigned long *rmapp;
1188 int i;
2f84569f 1189 bool write_protected = false;
95d4c16c
TY
1190
1191 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1192
1193 for (i = PT_PAGE_TABLE_LEVEL;
1194 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1195 rmapp = __gfn_to_rmap(gfn, i, slot);
49fde340 1196 write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
5dc99b23
TY
1197 }
1198
1199 return write_protected;
95d4c16c
TY
1200}
1201
8a8365c5
FD
1202static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1203 unsigned long data)
e930bffe 1204{
1e3f42f0
TY
1205 u64 *sptep;
1206 struct rmap_iterator iter;
e930bffe
AA
1207 int need_tlb_flush = 0;
1208
1e3f42f0
TY
1209 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1210 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1211 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1212
1213 drop_spte(kvm, sptep);
e930bffe
AA
1214 need_tlb_flush = 1;
1215 }
1e3f42f0 1216
e930bffe
AA
1217 return need_tlb_flush;
1218}
1219
8a8365c5
FD
1220static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1221 unsigned long data)
3da0dd43 1222{
1e3f42f0
TY
1223 u64 *sptep;
1224 struct rmap_iterator iter;
3da0dd43 1225 int need_flush = 0;
1e3f42f0 1226 u64 new_spte;
3da0dd43
IE
1227 pte_t *ptep = (pte_t *)data;
1228 pfn_t new_pfn;
1229
1230 WARN_ON(pte_huge(*ptep));
1231 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1232
1233 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1234 BUG_ON(!is_shadow_present_pte(*sptep));
1235 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1236
3da0dd43 1237 need_flush = 1;
1e3f42f0 1238
3da0dd43 1239 if (pte_write(*ptep)) {
1e3f42f0
TY
1240 drop_spte(kvm, sptep);
1241 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1242 } else {
1e3f42f0 1243 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1244 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1245
1246 new_spte &= ~PT_WRITABLE_MASK;
1247 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1248 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1249
1250 mmu_spte_clear_track_bits(sptep);
1251 mmu_spte_set(sptep, new_spte);
1252 sptep = rmap_get_next(&iter);
3da0dd43
IE
1253 }
1254 }
1e3f42f0 1255
3da0dd43
IE
1256 if (need_flush)
1257 kvm_flush_remote_tlbs(kvm);
1258
1259 return 0;
1260}
1261
84504ef3
TY
1262static int kvm_handle_hva_range(struct kvm *kvm,
1263 unsigned long start,
1264 unsigned long end,
1265 unsigned long data,
1266 int (*handler)(struct kvm *kvm,
1267 unsigned long *rmapp,
1268 unsigned long data))
e930bffe 1269{
be6ba0f0 1270 int j;
90bb6fc5 1271 int ret;
e930bffe 1272 int retval = 0;
bc6678a3 1273 struct kvm_memslots *slots;
be6ba0f0 1274 struct kvm_memory_slot *memslot;
bc6678a3 1275
90d83dc3 1276 slots = kvm_memslots(kvm);
e930bffe 1277
be6ba0f0 1278 kvm_for_each_memslot(memslot, slots) {
84504ef3
TY
1279 unsigned long hva_start, hva_end;
1280 gfn_t gfn, gfn_end;
852e3c19 1281
84504ef3
TY
1282 hva_start = max(start, memslot->userspace_addr);
1283 hva_end = min(end, memslot->userspace_addr +
1284 (memslot->npages << PAGE_SHIFT));
1285 if (hva_start >= hva_end)
1286 continue;
1287 /*
1288 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1289 * {gfn, gfn+1, ..., gfn_end-1}.
1290 */
1291 gfn = hva_to_gfn_memslot(hva_start, memslot);
1292 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1293
1294 for (; gfn < gfn_end; ++gfn) {
9594a498 1295 ret = 0;
852e3c19 1296
9594a498
TY
1297 for (j = PT_PAGE_TABLE_LEVEL;
1298 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1299 unsigned long *rmapp;
d4dbf470 1300
9594a498
TY
1301 rmapp = __gfn_to_rmap(gfn, j, memslot);
1302 ret |= handler(kvm, rmapp, data);
852e3c19 1303 }
84504ef3
TY
1304 trace_kvm_age_page(memslot->userspace_addr +
1305 (gfn - memslot->base_gfn) * PAGE_SIZE,
1306 memslot, ret);
90bb6fc5 1307 retval |= ret;
e930bffe
AA
1308 }
1309 }
1310
1311 return retval;
1312}
1313
84504ef3
TY
1314static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1315 unsigned long data,
1316 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1317 unsigned long data))
1318{
1319 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1320}
1321
e930bffe
AA
1322int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1323{
3da0dd43
IE
1324 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1325}
1326
b3ae2096
TY
1327int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1328{
1329 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1330}
1331
3da0dd43
IE
1332void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1333{
8a8365c5 1334 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1335}
1336
8a8365c5
FD
1337static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1338 unsigned long data)
e930bffe 1339{
1e3f42f0 1340 u64 *sptep;
79f702a6 1341 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1342 int young = 0;
1343
6316e1c8 1344 /*
3f6d8c8a
XH
1345 * In case of absence of EPT Access and Dirty Bits supports,
1346 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1347 * an EPT mapping, and clearing it if it does. On the next access,
1348 * a new EPT mapping will be established.
1349 * This has some overhead, but not as much as the cost of swapping
1350 * out actively used pages or breaking up actively used hugepages.
1351 */
534e38b4 1352 if (!shadow_accessed_mask)
6316e1c8 1353 return kvm_unmap_rmapp(kvm, rmapp, data);
534e38b4 1354
1e3f42f0
TY
1355 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1356 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1357 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1358
3f6d8c8a 1359 if (*sptep & shadow_accessed_mask) {
e930bffe 1360 young = 1;
3f6d8c8a
XH
1361 clear_bit((ffs(shadow_accessed_mask) - 1),
1362 (unsigned long *)sptep);
e930bffe 1363 }
e930bffe 1364 }
1e3f42f0 1365
e930bffe
AA
1366 return young;
1367}
1368
8ee53820
AA
1369static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1370 unsigned long data)
1371{
1e3f42f0
TY
1372 u64 *sptep;
1373 struct rmap_iterator iter;
8ee53820
AA
1374 int young = 0;
1375
1376 /*
1377 * If there's no access bit in the secondary pte set by the
1378 * hardware it's up to gup-fast/gup to set the access bit in
1379 * the primary pte or in the page structure.
1380 */
1381 if (!shadow_accessed_mask)
1382 goto out;
1383
1e3f42f0
TY
1384 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1385 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1386 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1387
3f6d8c8a 1388 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1389 young = 1;
1390 break;
1391 }
8ee53820
AA
1392 }
1393out:
1394 return young;
1395}
1396
53a27b39
MT
1397#define RMAP_RECYCLE_THRESHOLD 1000
1398
852e3c19 1399static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1400{
1401 unsigned long *rmapp;
852e3c19
JR
1402 struct kvm_mmu_page *sp;
1403
1404 sp = page_header(__pa(spte));
53a27b39 1405
852e3c19 1406 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1407
3da0dd43 1408 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
53a27b39
MT
1409 kvm_flush_remote_tlbs(vcpu->kvm);
1410}
1411
e930bffe
AA
1412int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1413{
3da0dd43 1414 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
e930bffe
AA
1415}
1416
8ee53820
AA
1417int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1418{
1419 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1420}
1421
d6c69ee9 1422#ifdef MMU_DEBUG
47ad8e68 1423static int is_empty_shadow_page(u64 *spt)
6aa8b732 1424{
139bdb2d
AK
1425 u64 *pos;
1426 u64 *end;
1427
47ad8e68 1428 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1429 if (is_shadow_present_pte(*pos)) {
b8688d51 1430 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1431 pos, *pos);
6aa8b732 1432 return 0;
139bdb2d 1433 }
6aa8b732
AK
1434 return 1;
1435}
d6c69ee9 1436#endif
6aa8b732 1437
45221ab6
DH
1438/*
1439 * This value is the sum of all of the kvm instances's
1440 * kvm->arch.n_used_mmu_pages values. We need a global,
1441 * aggregate version in order to make the slab shrinker
1442 * faster
1443 */
1444static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1445{
1446 kvm->arch.n_used_mmu_pages += nr;
1447 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1448}
1449
bd4c86ea
XG
1450/*
1451 * Remove the sp from shadow page cache, after call it,
1452 * we can not find this sp from the cache, and the shadow
1453 * page table is still valid.
1454 * It should be under the protection of mmu lock.
1455 */
1456static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1457{
4db35314 1458 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1459 hlist_del(&sp->hash_link);
2032a93d 1460 if (!sp->role.direct)
842f22ed 1461 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1462}
1463
1464/*
1465 * Free the shadow page table and the sp, we can do it
1466 * out of the protection of mmu lock.
1467 */
1468static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1469{
1470 list_del(&sp->link);
1471 free_page((unsigned long)sp->spt);
e8ad9a70 1472 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1473}
1474
cea0f0e7
AK
1475static unsigned kvm_page_table_hashfn(gfn_t gfn)
1476{
1ae0a13d 1477 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1478}
1479
714b93da 1480static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1481 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1482{
cea0f0e7
AK
1483 if (!parent_pte)
1484 return;
cea0f0e7 1485
67052b35 1486 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1487}
1488
4db35314 1489static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1490 u64 *parent_pte)
1491{
67052b35 1492 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1493}
1494
bcdd9a93
XG
1495static void drop_parent_pte(struct kvm_mmu_page *sp,
1496 u64 *parent_pte)
1497{
1498 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1499 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1500}
1501
67052b35
XG
1502static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1503 u64 *parent_pte, int direct)
ad8cfbe3 1504{
67052b35 1505 struct kvm_mmu_page *sp;
80feb89a
TY
1506 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1507 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1508 if (!direct)
80feb89a 1509 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
1510 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1511 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
93a5cef0 1512 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
67052b35
XG
1513 sp->parent_ptes = 0;
1514 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1515 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1516 return sp;
ad8cfbe3
MT
1517}
1518
67052b35 1519static void mark_unsync(u64 *spte);
1047df1f 1520static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1521{
67052b35 1522 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1523}
1524
67052b35 1525static void mark_unsync(u64 *spte)
0074ff63 1526{
67052b35 1527 struct kvm_mmu_page *sp;
1047df1f 1528 unsigned int index;
0074ff63 1529
67052b35 1530 sp = page_header(__pa(spte));
1047df1f
XG
1531 index = spte - sp->spt;
1532 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1533 return;
1047df1f 1534 if (sp->unsync_children++)
0074ff63 1535 return;
1047df1f 1536 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1537}
1538
e8bc217a 1539static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1540 struct kvm_mmu_page *sp)
e8bc217a
MT
1541{
1542 return 1;
1543}
1544
a7052897
MT
1545static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1546{
1547}
1548
0f53b5b1
XG
1549static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1550 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1551 const void *pte)
0f53b5b1
XG
1552{
1553 WARN_ON(1);
1554}
1555
60c8aec6
MT
1556#define KVM_PAGE_ARRAY_NR 16
1557
1558struct kvm_mmu_pages {
1559 struct mmu_page_and_offset {
1560 struct kvm_mmu_page *sp;
1561 unsigned int idx;
1562 } page[KVM_PAGE_ARRAY_NR];
1563 unsigned int nr;
1564};
1565
cded19f3
HE
1566static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1567 int idx)
4731d4c7 1568{
60c8aec6 1569 int i;
4731d4c7 1570
60c8aec6
MT
1571 if (sp->unsync)
1572 for (i=0; i < pvec->nr; i++)
1573 if (pvec->page[i].sp == sp)
1574 return 0;
1575
1576 pvec->page[pvec->nr].sp = sp;
1577 pvec->page[pvec->nr].idx = idx;
1578 pvec->nr++;
1579 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1580}
1581
1582static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1583 struct kvm_mmu_pages *pvec)
1584{
1585 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1586
37178b8b 1587 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1588 struct kvm_mmu_page *child;
4731d4c7
MT
1589 u64 ent = sp->spt[i];
1590
7a8f1a74
XG
1591 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1592 goto clear_child_bitmap;
1593
1594 child = page_header(ent & PT64_BASE_ADDR_MASK);
1595
1596 if (child->unsync_children) {
1597 if (mmu_pages_add(pvec, child, i))
1598 return -ENOSPC;
1599
1600 ret = __mmu_unsync_walk(child, pvec);
1601 if (!ret)
1602 goto clear_child_bitmap;
1603 else if (ret > 0)
1604 nr_unsync_leaf += ret;
1605 else
1606 return ret;
1607 } else if (child->unsync) {
1608 nr_unsync_leaf++;
1609 if (mmu_pages_add(pvec, child, i))
1610 return -ENOSPC;
1611 } else
1612 goto clear_child_bitmap;
1613
1614 continue;
1615
1616clear_child_bitmap:
1617 __clear_bit(i, sp->unsync_child_bitmap);
1618 sp->unsync_children--;
1619 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1620 }
1621
4731d4c7 1622
60c8aec6
MT
1623 return nr_unsync_leaf;
1624}
1625
1626static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1627 struct kvm_mmu_pages *pvec)
1628{
1629 if (!sp->unsync_children)
1630 return 0;
1631
1632 mmu_pages_add(pvec, sp, 0);
1633 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1634}
1635
4731d4c7
MT
1636static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1637{
1638 WARN_ON(!sp->unsync);
5e1b3ddb 1639 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1640 sp->unsync = 0;
1641 --kvm->stat.mmu_unsync;
1642}
1643
7775834a
XG
1644static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1645 struct list_head *invalid_list);
1646static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1647 struct list_head *invalid_list);
4731d4c7 1648
f41d335a
XG
1649#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1650 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1651 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1652 if ((sp)->gfn != (gfn)) {} else
1653
f41d335a
XG
1654#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1655 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1656 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1657 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1658 (sp)->role.invalid) {} else
1659
f918b443 1660/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1661static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1662 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1663{
5b7e0102 1664 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1665 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1666 return 1;
1667 }
1668
f918b443 1669 if (clear_unsync)
1d9dc7e0 1670 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1671
a4a8e6f7 1672 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1673 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1674 return 1;
1675 }
1676
1677 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1678 return 0;
1679}
1680
1d9dc7e0
XG
1681static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1682 struct kvm_mmu_page *sp)
1683{
d98ba053 1684 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1685 int ret;
1686
d98ba053 1687 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1688 if (ret)
d98ba053
XG
1689 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1690
1d9dc7e0
XG
1691 return ret;
1692}
1693
e37fa785
XG
1694#ifdef CONFIG_KVM_MMU_AUDIT
1695#include "mmu_audit.c"
1696#else
1697static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1698static void mmu_audit_disable(void) { }
1699#endif
1700
d98ba053
XG
1701static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1702 struct list_head *invalid_list)
1d9dc7e0 1703{
d98ba053 1704 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1705}
1706
9f1a122f
XG
1707/* @gfn should be write-protected at the call site */
1708static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1709{
9f1a122f 1710 struct kvm_mmu_page *s;
f41d335a 1711 struct hlist_node *node;
d98ba053 1712 LIST_HEAD(invalid_list);
9f1a122f
XG
1713 bool flush = false;
1714
f41d335a 1715 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1716 if (!s->unsync)
9f1a122f
XG
1717 continue;
1718
1719 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1720 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1721 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1722 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1723 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1724 continue;
1725 }
9f1a122f
XG
1726 flush = true;
1727 }
1728
d98ba053 1729 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1730 if (flush)
1731 kvm_mmu_flush_tlb(vcpu);
1732}
1733
60c8aec6
MT
1734struct mmu_page_path {
1735 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1736 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1737};
1738
60c8aec6
MT
1739#define for_each_sp(pvec, sp, parents, i) \
1740 for (i = mmu_pages_next(&pvec, &parents, -1), \
1741 sp = pvec.page[i].sp; \
1742 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1743 i = mmu_pages_next(&pvec, &parents, i))
1744
cded19f3
HE
1745static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1746 struct mmu_page_path *parents,
1747 int i)
60c8aec6
MT
1748{
1749 int n;
1750
1751 for (n = i+1; n < pvec->nr; n++) {
1752 struct kvm_mmu_page *sp = pvec->page[n].sp;
1753
1754 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1755 parents->idx[0] = pvec->page[n].idx;
1756 return n;
1757 }
1758
1759 parents->parent[sp->role.level-2] = sp;
1760 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1761 }
1762
1763 return n;
1764}
1765
cded19f3 1766static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1767{
60c8aec6
MT
1768 struct kvm_mmu_page *sp;
1769 unsigned int level = 0;
1770
1771 do {
1772 unsigned int idx = parents->idx[level];
4731d4c7 1773
60c8aec6
MT
1774 sp = parents->parent[level];
1775 if (!sp)
1776 return;
1777
1778 --sp->unsync_children;
1779 WARN_ON((int)sp->unsync_children < 0);
1780 __clear_bit(idx, sp->unsync_child_bitmap);
1781 level++;
1782 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1783}
1784
60c8aec6
MT
1785static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1786 struct mmu_page_path *parents,
1787 struct kvm_mmu_pages *pvec)
4731d4c7 1788{
60c8aec6
MT
1789 parents->parent[parent->role.level-1] = NULL;
1790 pvec->nr = 0;
1791}
4731d4c7 1792
60c8aec6
MT
1793static void mmu_sync_children(struct kvm_vcpu *vcpu,
1794 struct kvm_mmu_page *parent)
1795{
1796 int i;
1797 struct kvm_mmu_page *sp;
1798 struct mmu_page_path parents;
1799 struct kvm_mmu_pages pages;
d98ba053 1800 LIST_HEAD(invalid_list);
60c8aec6
MT
1801
1802 kvm_mmu_pages_init(parent, &parents, &pages);
1803 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1804 bool protected = false;
b1a36821
MT
1805
1806 for_each_sp(pages, sp, parents, i)
1807 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1808
1809 if (protected)
1810 kvm_flush_remote_tlbs(vcpu->kvm);
1811
60c8aec6 1812 for_each_sp(pages, sp, parents, i) {
d98ba053 1813 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1814 mmu_pages_clear_parents(&parents);
1815 }
d98ba053 1816 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1817 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1818 kvm_mmu_pages_init(parent, &parents, &pages);
1819 }
4731d4c7
MT
1820}
1821
c3707958
XG
1822static void init_shadow_page_table(struct kvm_mmu_page *sp)
1823{
1824 int i;
1825
1826 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1827 sp->spt[i] = 0ull;
1828}
1829
a30f47cb
XG
1830static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1831{
1832 sp->write_flooding_count = 0;
1833}
1834
1835static void clear_sp_write_flooding_count(u64 *spte)
1836{
1837 struct kvm_mmu_page *sp = page_header(__pa(spte));
1838
1839 __clear_sp_write_flooding_count(sp);
1840}
1841
cea0f0e7
AK
1842static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1843 gfn_t gfn,
1844 gva_t gaddr,
1845 unsigned level,
f6e2c02b 1846 int direct,
41074d07 1847 unsigned access,
f7d9c7b7 1848 u64 *parent_pte)
cea0f0e7
AK
1849{
1850 union kvm_mmu_page_role role;
cea0f0e7 1851 unsigned quadrant;
9f1a122f 1852 struct kvm_mmu_page *sp;
f41d335a 1853 struct hlist_node *node;
9f1a122f 1854 bool need_sync = false;
cea0f0e7 1855
a770f6f2 1856 role = vcpu->arch.mmu.base_role;
cea0f0e7 1857 role.level = level;
f6e2c02b 1858 role.direct = direct;
84b0c8c6 1859 if (role.direct)
5b7e0102 1860 role.cr4_pae = 0;
41074d07 1861 role.access = access;
c5a78f2b
JR
1862 if (!vcpu->arch.mmu.direct_map
1863 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1864 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1865 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1866 role.quadrant = quadrant;
1867 }
f41d335a 1868 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1869 if (!need_sync && sp->unsync)
1870 need_sync = true;
4731d4c7 1871
7ae680eb
XG
1872 if (sp->role.word != role.word)
1873 continue;
4731d4c7 1874
7ae680eb
XG
1875 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1876 break;
e02aa901 1877
7ae680eb
XG
1878 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1879 if (sp->unsync_children) {
a8eeb04a 1880 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1881 kvm_mmu_mark_parents_unsync(sp);
1882 } else if (sp->unsync)
1883 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1884
a30f47cb 1885 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1886 trace_kvm_mmu_get_page(sp, false);
1887 return sp;
1888 }
dfc5aa00 1889 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1890 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1891 if (!sp)
1892 return sp;
4db35314
AK
1893 sp->gfn = gfn;
1894 sp->role = role;
7ae680eb
XG
1895 hlist_add_head(&sp->hash_link,
1896 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1897 if (!direct) {
b1a36821
MT
1898 if (rmap_write_protect(vcpu->kvm, gfn))
1899 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1900 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1901 kvm_sync_pages(vcpu, gfn);
1902
4731d4c7
MT
1903 account_shadowed(vcpu->kvm, gfn);
1904 }
c3707958 1905 init_shadow_page_table(sp);
f691fe1d 1906 trace_kvm_mmu_get_page(sp, true);
4db35314 1907 return sp;
cea0f0e7
AK
1908}
1909
2d11123a
AK
1910static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1911 struct kvm_vcpu *vcpu, u64 addr)
1912{
1913 iterator->addr = addr;
1914 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1915 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1916
1917 if (iterator->level == PT64_ROOT_LEVEL &&
1918 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1919 !vcpu->arch.mmu.direct_map)
1920 --iterator->level;
1921
2d11123a
AK
1922 if (iterator->level == PT32E_ROOT_LEVEL) {
1923 iterator->shadow_addr
1924 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1925 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1926 --iterator->level;
1927 if (!iterator->shadow_addr)
1928 iterator->level = 0;
1929 }
1930}
1931
1932static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1933{
1934 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1935 return false;
4d88954d 1936
2d11123a
AK
1937 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1938 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1939 return true;
1940}
1941
c2a2ac2b
XG
1942static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1943 u64 spte)
2d11123a 1944{
c2a2ac2b 1945 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1946 iterator->level = 0;
1947 return;
1948 }
1949
c2a2ac2b 1950 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1951 --iterator->level;
1952}
1953
c2a2ac2b
XG
1954static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1955{
1956 return __shadow_walk_next(iterator, *iterator->sptep);
1957}
1958
32ef26a3
AK
1959static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1960{
1961 u64 spte;
1962
1963 spte = __pa(sp->spt)
1964 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1965 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1966 mmu_spte_set(sptep, spte);
32ef26a3
AK
1967}
1968
a357bd22
AK
1969static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1970 unsigned direct_access)
1971{
1972 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1973 struct kvm_mmu_page *child;
1974
1975 /*
1976 * For the direct sp, if the guest pte's dirty bit
1977 * changed form clean to dirty, it will corrupt the
1978 * sp's access: allow writable in the read-only sp,
1979 * so we should update the spte at this point to get
1980 * a new sp with the correct access.
1981 */
1982 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1983 if (child->role.access == direct_access)
1984 return;
1985
bcdd9a93 1986 drop_parent_pte(child, sptep);
a357bd22
AK
1987 kvm_flush_remote_tlbs(vcpu->kvm);
1988 }
1989}
1990
505aef8f 1991static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1992 u64 *spte)
1993{
1994 u64 pte;
1995 struct kvm_mmu_page *child;
1996
1997 pte = *spte;
1998 if (is_shadow_present_pte(pte)) {
505aef8f 1999 if (is_last_spte(pte, sp->role.level)) {
c3707958 2000 drop_spte(kvm, spte);
505aef8f
XG
2001 if (is_large_pte(pte))
2002 --kvm->stat.lpages;
2003 } else {
38e3b2b2 2004 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2005 drop_parent_pte(child, spte);
38e3b2b2 2006 }
505aef8f
XG
2007 return true;
2008 }
2009
2010 if (is_mmio_spte(pte))
ce88decf 2011 mmu_spte_clear_no_track(spte);
c3707958 2012
505aef8f 2013 return false;
38e3b2b2
XG
2014}
2015
90cb0529 2016static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2017 struct kvm_mmu_page *sp)
a436036b 2018{
697fe2e2 2019 unsigned i;
697fe2e2 2020
38e3b2b2
XG
2021 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2022 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2023}
2024
4db35314 2025static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2026{
4db35314 2027 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2028}
2029
31aa2b44 2030static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2031{
1e3f42f0
TY
2032 u64 *sptep;
2033 struct rmap_iterator iter;
a436036b 2034
1e3f42f0
TY
2035 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2036 drop_parent_pte(sp, sptep);
31aa2b44
AK
2037}
2038
60c8aec6 2039static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2040 struct kvm_mmu_page *parent,
2041 struct list_head *invalid_list)
4731d4c7 2042{
60c8aec6
MT
2043 int i, zapped = 0;
2044 struct mmu_page_path parents;
2045 struct kvm_mmu_pages pages;
4731d4c7 2046
60c8aec6 2047 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2048 return 0;
60c8aec6
MT
2049
2050 kvm_mmu_pages_init(parent, &parents, &pages);
2051 while (mmu_unsync_walk(parent, &pages)) {
2052 struct kvm_mmu_page *sp;
2053
2054 for_each_sp(pages, sp, parents, i) {
7775834a 2055 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2056 mmu_pages_clear_parents(&parents);
77662e00 2057 zapped++;
60c8aec6 2058 }
60c8aec6
MT
2059 kvm_mmu_pages_init(parent, &parents, &pages);
2060 }
2061
2062 return zapped;
4731d4c7
MT
2063}
2064
7775834a
XG
2065static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2066 struct list_head *invalid_list)
31aa2b44 2067{
4731d4c7 2068 int ret;
f691fe1d 2069
7775834a 2070 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2071 ++kvm->stat.mmu_shadow_zapped;
7775834a 2072 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2073 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2074 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 2075 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2076 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
2077 if (sp->unsync)
2078 kvm_unlink_unsync_page(kvm, sp);
4db35314 2079 if (!sp->root_count) {
54a4f023
GJ
2080 /* Count self */
2081 ret++;
7775834a 2082 list_move(&sp->link, invalid_list);
aa6bd187 2083 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2084 } else {
5b5c6a5a 2085 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
2086 kvm_reload_remote_mmus(kvm);
2087 }
7775834a
XG
2088
2089 sp->role.invalid = 1;
4731d4c7 2090 return ret;
a436036b
AK
2091}
2092
7775834a
XG
2093static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2094 struct list_head *invalid_list)
2095{
2096 struct kvm_mmu_page *sp;
2097
2098 if (list_empty(invalid_list))
2099 return;
2100
c142786c
AK
2101 /*
2102 * wmb: make sure everyone sees our modifications to the page tables
2103 * rmb: make sure we see changes to vcpu->mode
2104 */
2105 smp_mb();
4f022648 2106
c142786c
AK
2107 /*
2108 * Wait for all vcpus to exit guest mode and/or lockless shadow
2109 * page table walks.
2110 */
2111 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2112
7775834a
XG
2113 do {
2114 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2115 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 2116 kvm_mmu_isolate_page(sp);
aa6bd187 2117 kvm_mmu_free_page(sp);
7775834a 2118 } while (!list_empty(invalid_list));
7775834a
XG
2119}
2120
82ce2c96
IE
2121/*
2122 * Changing the number of mmu pages allocated to the vm
49d5ca26 2123 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2124 */
49d5ca26 2125void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2126{
d98ba053 2127 LIST_HEAD(invalid_list);
82ce2c96
IE
2128 /*
2129 * If we set the number of mmu pages to be smaller be than the
2130 * number of actived pages , we must to free some mmu pages before we
2131 * change the value
2132 */
2133
49d5ca26
DH
2134 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2135 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 2136 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
2137 struct kvm_mmu_page *page;
2138
f05e70ac 2139 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2140 struct kvm_mmu_page, link);
80b63faf 2141 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2142 }
aa6bd187 2143 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2144 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2145 }
82ce2c96 2146
49d5ca26 2147 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
2148}
2149
1cb3f3ae 2150int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2151{
4db35314 2152 struct kvm_mmu_page *sp;
f41d335a 2153 struct hlist_node *node;
d98ba053 2154 LIST_HEAD(invalid_list);
a436036b
AK
2155 int r;
2156
9ad17b10 2157 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2158 r = 0;
1cb3f3ae 2159 spin_lock(&kvm->mmu_lock);
f41d335a 2160 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2161 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2162 sp->role.word);
2163 r = 1;
f41d335a 2164 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2165 }
d98ba053 2166 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2167 spin_unlock(&kvm->mmu_lock);
2168
a436036b 2169 return r;
cea0f0e7 2170}
1cb3f3ae 2171EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2172
38c335f1 2173static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
6aa8b732 2174{
bc6678a3 2175 int slot = memslot_id(kvm, gfn);
4db35314 2176 struct kvm_mmu_page *sp = page_header(__pa(pte));
6aa8b732 2177
291f26bc 2178 __set_bit(slot, sp->slot_bitmap);
6aa8b732
AK
2179}
2180
74be52e3
SY
2181/*
2182 * The function is based on mtrr_type_lookup() in
2183 * arch/x86/kernel/cpu/mtrr/generic.c
2184 */
2185static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2186 u64 start, u64 end)
2187{
2188 int i;
2189 u64 base, mask;
2190 u8 prev_match, curr_match;
2191 int num_var_ranges = KVM_NR_VAR_MTRR;
2192
2193 if (!mtrr_state->enabled)
2194 return 0xFF;
2195
2196 /* Make end inclusive end, instead of exclusive */
2197 end--;
2198
2199 /* Look in fixed ranges. Just return the type as per start */
2200 if (mtrr_state->have_fixed && (start < 0x100000)) {
2201 int idx;
2202
2203 if (start < 0x80000) {
2204 idx = 0;
2205 idx += (start >> 16);
2206 return mtrr_state->fixed_ranges[idx];
2207 } else if (start < 0xC0000) {
2208 idx = 1 * 8;
2209 idx += ((start - 0x80000) >> 14);
2210 return mtrr_state->fixed_ranges[idx];
2211 } else if (start < 0x1000000) {
2212 idx = 3 * 8;
2213 idx += ((start - 0xC0000) >> 12);
2214 return mtrr_state->fixed_ranges[idx];
2215 }
2216 }
2217
2218 /*
2219 * Look in variable ranges
2220 * Look of multiple ranges matching this address and pick type
2221 * as per MTRR precedence
2222 */
2223 if (!(mtrr_state->enabled & 2))
2224 return mtrr_state->def_type;
2225
2226 prev_match = 0xFF;
2227 for (i = 0; i < num_var_ranges; ++i) {
2228 unsigned short start_state, end_state;
2229
2230 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2231 continue;
2232
2233 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2234 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2235 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2236 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2237
2238 start_state = ((start & mask) == (base & mask));
2239 end_state = ((end & mask) == (base & mask));
2240 if (start_state != end_state)
2241 return 0xFE;
2242
2243 if ((start & mask) != (base & mask))
2244 continue;
2245
2246 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2247 if (prev_match == 0xFF) {
2248 prev_match = curr_match;
2249 continue;
2250 }
2251
2252 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2253 curr_match == MTRR_TYPE_UNCACHABLE)
2254 return MTRR_TYPE_UNCACHABLE;
2255
2256 if ((prev_match == MTRR_TYPE_WRBACK &&
2257 curr_match == MTRR_TYPE_WRTHROUGH) ||
2258 (prev_match == MTRR_TYPE_WRTHROUGH &&
2259 curr_match == MTRR_TYPE_WRBACK)) {
2260 prev_match = MTRR_TYPE_WRTHROUGH;
2261 curr_match = MTRR_TYPE_WRTHROUGH;
2262 }
2263
2264 if (prev_match != curr_match)
2265 return MTRR_TYPE_UNCACHABLE;
2266 }
2267
2268 if (prev_match != 0xFF)
2269 return prev_match;
2270
2271 return mtrr_state->def_type;
2272}
2273
4b12f0de 2274u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2275{
2276 u8 mtrr;
2277
2278 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2279 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2280 if (mtrr == 0xfe || mtrr == 0xff)
2281 mtrr = MTRR_TYPE_WRBACK;
2282 return mtrr;
2283}
4b12f0de 2284EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2285
9cf5cf5a
XG
2286static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2287{
2288 trace_kvm_mmu_unsync_page(sp);
2289 ++vcpu->kvm->stat.mmu_unsync;
2290 sp->unsync = 1;
2291
2292 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2293}
2294
2295static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2296{
4731d4c7 2297 struct kvm_mmu_page *s;
f41d335a 2298 struct hlist_node *node;
9cf5cf5a 2299
f41d335a 2300 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2301 if (s->unsync)
4731d4c7 2302 continue;
9cf5cf5a
XG
2303 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2304 __kvm_unsync_page(vcpu, s);
4731d4c7 2305 }
4731d4c7
MT
2306}
2307
2308static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2309 bool can_unsync)
2310{
9cf5cf5a 2311 struct kvm_mmu_page *s;
f41d335a 2312 struct hlist_node *node;
9cf5cf5a
XG
2313 bool need_unsync = false;
2314
f41d335a 2315 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2316 if (!can_unsync)
2317 return 1;
2318
9cf5cf5a 2319 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2320 return 1;
9cf5cf5a
XG
2321
2322 if (!need_unsync && !s->unsync) {
9cf5cf5a
XG
2323 need_unsync = true;
2324 }
4731d4c7 2325 }
9cf5cf5a
XG
2326 if (need_unsync)
2327 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2328 return 0;
2329}
2330
d555c333 2331static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2332 unsigned pte_access, int user_fault,
640d9b0d 2333 int write_fault, int level,
c2d0ee46 2334 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2335 bool can_unsync, bool host_writable)
1c4f1fd6 2336{
6e7d0354 2337 u64 spte;
1e73f9dd 2338 int ret = 0;
64d4d521 2339
ce88decf
XG
2340 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2341 return 0;
2342
982c2565 2343 spte = PT_PRESENT_MASK;
947da538 2344 if (!speculative)
3201b5d9 2345 spte |= shadow_accessed_mask;
640d9b0d 2346
7b52345e
SY
2347 if (pte_access & ACC_EXEC_MASK)
2348 spte |= shadow_x_mask;
2349 else
2350 spte |= shadow_nx_mask;
49fde340 2351
1c4f1fd6 2352 if (pte_access & ACC_USER_MASK)
7b52345e 2353 spte |= shadow_user_mask;
49fde340 2354
852e3c19 2355 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2356 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2357 if (tdp_enabled)
4b12f0de
SY
2358 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2359 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2360
9bdbba13 2361 if (host_writable)
1403283a 2362 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2363 else
2364 pte_access &= ~ACC_WRITE_MASK;
1403283a 2365
35149e21 2366 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6
AK
2367
2368 if ((pte_access & ACC_WRITE_MASK)
c5a78f2b
JR
2369 || (!vcpu->arch.mmu.direct_map && write_fault
2370 && !is_write_protection(vcpu) && !user_fault)) {
1c4f1fd6 2371
852e3c19
JR
2372 if (level > PT_PAGE_TABLE_LEVEL &&
2373 has_wrprotected_page(vcpu->kvm, gfn, level)) {
38187c83 2374 ret = 1;
c3707958 2375 drop_spte(vcpu->kvm, sptep);
be38d276 2376 goto done;
38187c83
MT
2377 }
2378
49fde340 2379 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2380
c5a78f2b 2381 if (!vcpu->arch.mmu.direct_map
411c588d 2382 && !(pte_access & ACC_WRITE_MASK)) {
69325a12 2383 spte &= ~PT_USER_MASK;
411c588d
AK
2384 /*
2385 * If we converted a user page to a kernel page,
2386 * so that the kernel can write to it when cr0.wp=0,
2387 * then we should prevent the kernel from executing it
2388 * if SMEP is enabled.
2389 */
2390 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2391 spte |= PT64_NX_MASK;
2392 }
69325a12 2393
ecc5589f
MT
2394 /*
2395 * Optimization: for pte sync, if spte was writable the hash
2396 * lookup is unnecessary (and expensive). Write protection
2397 * is responsibility of mmu_get_page / kvm_sync_page.
2398 * Same reasoning can be applied to dirty page accounting.
2399 */
8dae4445 2400 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2401 goto set_pte;
2402
4731d4c7 2403 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2404 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2405 __func__, gfn);
1e73f9dd 2406 ret = 1;
1c4f1fd6 2407 pte_access &= ~ACC_WRITE_MASK;
49fde340 2408 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2409 }
2410 }
2411
1c4f1fd6
AK
2412 if (pte_access & ACC_WRITE_MASK)
2413 mark_page_dirty(vcpu->kvm, gfn);
2414
38187c83 2415set_pte:
6e7d0354 2416 if (mmu_spte_update(sptep, spte))
b330aa0c 2417 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2418done:
1e73f9dd
MT
2419 return ret;
2420}
2421
d555c333 2422static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2423 unsigned pt_access, unsigned pte_access,
640d9b0d 2424 int user_fault, int write_fault,
b90a0e6c 2425 int *emulate, int level, gfn_t gfn,
1403283a 2426 pfn_t pfn, bool speculative,
9bdbba13 2427 bool host_writable)
1e73f9dd
MT
2428{
2429 int was_rmapped = 0;
53a27b39 2430 int rmap_count;
1e73f9dd
MT
2431
2432 pgprintk("%s: spte %llx access %x write_fault %d"
9ad17b10 2433 " user_fault %d gfn %llx\n",
d555c333 2434 __func__, *sptep, pt_access,
1e73f9dd
MT
2435 write_fault, user_fault, gfn);
2436
d555c333 2437 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2438 /*
2439 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2440 * the parent of the now unreachable PTE.
2441 */
852e3c19
JR
2442 if (level > PT_PAGE_TABLE_LEVEL &&
2443 !is_large_pte(*sptep)) {
1e73f9dd 2444 struct kvm_mmu_page *child;
d555c333 2445 u64 pte = *sptep;
1e73f9dd
MT
2446
2447 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2448 drop_parent_pte(child, sptep);
3be2264b 2449 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2450 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2451 pgprintk("hfn old %llx new %llx\n",
d555c333 2452 spte_to_pfn(*sptep), pfn);
c3707958 2453 drop_spte(vcpu->kvm, sptep);
91546356 2454 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2455 } else
2456 was_rmapped = 1;
1e73f9dd 2457 }
852e3c19 2458
d555c333 2459 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
640d9b0d 2460 level, gfn, pfn, speculative, true,
9bdbba13 2461 host_writable)) {
1e73f9dd 2462 if (write_fault)
b90a0e6c 2463 *emulate = 1;
5304efde 2464 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2465 }
1e73f9dd 2466
ce88decf
XG
2467 if (unlikely(is_mmio_spte(*sptep) && emulate))
2468 *emulate = 1;
2469
d555c333 2470 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2471 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2472 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2473 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2474 *sptep, sptep);
d555c333 2475 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2476 ++vcpu->kvm->stat.lpages;
2477
ffb61bb3
XG
2478 if (is_shadow_present_pte(*sptep)) {
2479 page_header_update_slot(vcpu->kvm, sptep, gfn);
2480 if (!was_rmapped) {
2481 rmap_count = rmap_add(vcpu, sptep, gfn);
2482 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2483 rmap_recycle(vcpu, sptep, gfn);
2484 }
1c4f1fd6 2485 }
9ed5520d 2486 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2487}
2488
6aa8b732
AK
2489static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2490{
e676505a 2491 mmu_free_roots(vcpu);
6aa8b732
AK
2492}
2493
957ed9ef
XG
2494static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2495 bool no_dirty_log)
2496{
2497 struct kvm_memory_slot *slot;
2498 unsigned long hva;
2499
5d163b1c 2500 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
957ed9ef 2501 if (!slot) {
fce92dce
XG
2502 get_page(fault_page);
2503 return page_to_pfn(fault_page);
957ed9ef
XG
2504 }
2505
2506 hva = gfn_to_hva_memslot(slot, gfn);
2507
2508 return hva_to_pfn_atomic(vcpu->kvm, hva);
2509}
2510
2511static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2512 struct kvm_mmu_page *sp,
2513 u64 *start, u64 *end)
2514{
2515 struct page *pages[PTE_PREFETCH_NUM];
2516 unsigned access = sp->role.access;
2517 int i, ret;
2518 gfn_t gfn;
2519
2520 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2521 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2522 return -1;
2523
2524 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2525 if (ret <= 0)
2526 return -1;
2527
2528 for (i = 0; i < ret; i++, gfn++, start++)
2529 mmu_set_spte(vcpu, start, ACC_ALL,
640d9b0d 2530 access, 0, 0, NULL,
957ed9ef
XG
2531 sp->role.level, gfn,
2532 page_to_pfn(pages[i]), true, true);
2533
2534 return 0;
2535}
2536
2537static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2538 struct kvm_mmu_page *sp, u64 *sptep)
2539{
2540 u64 *spte, *start = NULL;
2541 int i;
2542
2543 WARN_ON(!sp->role.direct);
2544
2545 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2546 spte = sp->spt + i;
2547
2548 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2549 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2550 if (!start)
2551 continue;
2552 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2553 break;
2554 start = NULL;
2555 } else if (!start)
2556 start = spte;
2557 }
2558}
2559
2560static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2561{
2562 struct kvm_mmu_page *sp;
2563
2564 /*
2565 * Since it's no accessed bit on EPT, it's no way to
2566 * distinguish between actually accessed translations
2567 * and prefetched, so disable pte prefetch if EPT is
2568 * enabled.
2569 */
2570 if (!shadow_accessed_mask)
2571 return;
2572
2573 sp = page_header(__pa(sptep));
2574 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2575 return;
2576
2577 __direct_pte_prefetch(vcpu, sp, sptep);
2578}
2579
9f652d21 2580static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2581 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2582 bool prefault)
140754bc 2583{
9f652d21 2584 struct kvm_shadow_walk_iterator iterator;
140754bc 2585 struct kvm_mmu_page *sp;
b90a0e6c 2586 int emulate = 0;
140754bc 2587 gfn_t pseudo_gfn;
6aa8b732 2588
9f652d21 2589 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2590 if (iterator.level == level) {
612819c3
MT
2591 unsigned pte_access = ACC_ALL;
2592
612819c3 2593 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
b90a0e6c 2594 0, write, &emulate,
2ec4739d 2595 level, gfn, pfn, prefault, map_writable);
957ed9ef 2596 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2597 ++vcpu->stat.pf_fixed;
2598 break;
6aa8b732
AK
2599 }
2600
c3707958 2601 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2602 u64 base_addr = iterator.addr;
2603
2604 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2605 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2606 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2607 iterator.level - 1,
2608 1, ACC_ALL, iterator.sptep);
2609 if (!sp) {
2610 pgprintk("nonpaging_map: ENOMEM\n");
2611 kvm_release_pfn_clean(pfn);
2612 return -ENOMEM;
2613 }
140754bc 2614
1df9f2dc
XG
2615 mmu_spte_set(iterator.sptep,
2616 __pa(sp->spt)
2617 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2618 | shadow_user_mask | shadow_x_mask
2619 | shadow_accessed_mask);
9f652d21
AK
2620 }
2621 }
b90a0e6c 2622 return emulate;
6aa8b732
AK
2623}
2624
77db5cbd 2625static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2626{
77db5cbd
HY
2627 siginfo_t info;
2628
2629 info.si_signo = SIGBUS;
2630 info.si_errno = 0;
2631 info.si_code = BUS_MCEERR_AR;
2632 info.si_addr = (void __user *)address;
2633 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2634
77db5cbd 2635 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2636}
2637
d7c55201 2638static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156
HY
2639{
2640 kvm_release_pfn_clean(pfn);
2641 if (is_hwpoison_pfn(pfn)) {
bebb106a 2642 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2643 return 0;
d7c55201 2644 }
edba23e5 2645
d7c55201 2646 return -EFAULT;
bf998156
HY
2647}
2648
936a5fe6
AA
2649static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2650 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2651{
2652 pfn_t pfn = *pfnp;
2653 gfn_t gfn = *gfnp;
2654 int level = *levelp;
2655
2656 /*
2657 * Check if it's a transparent hugepage. If this would be an
2658 * hugetlbfs page, level wouldn't be set to
2659 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2660 * here.
2661 */
2662 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2663 level == PT_PAGE_TABLE_LEVEL &&
2664 PageTransCompound(pfn_to_page(pfn)) &&
2665 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2666 unsigned long mask;
2667 /*
2668 * mmu_notifier_retry was successful and we hold the
2669 * mmu_lock here, so the pmd can't become splitting
2670 * from under us, and in turn
2671 * __split_huge_page_refcount() can't run from under
2672 * us and we can safely transfer the refcount from
2673 * PG_tail to PG_head as we switch the pfn to tail to
2674 * head.
2675 */
2676 *levelp = level = PT_DIRECTORY_LEVEL;
2677 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2678 VM_BUG_ON((gfn & mask) != (pfn & mask));
2679 if (pfn & mask) {
2680 gfn &= ~mask;
2681 *gfnp = gfn;
2682 kvm_release_pfn_clean(pfn);
2683 pfn &= ~mask;
c3586667 2684 kvm_get_pfn(pfn);
936a5fe6
AA
2685 *pfnp = pfn;
2686 }
2687 }
2688}
2689
d7c55201
XG
2690static bool mmu_invalid_pfn(pfn_t pfn)
2691{
ce88decf 2692 return unlikely(is_invalid_pfn(pfn));
d7c55201
XG
2693}
2694
2695static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2696 pfn_t pfn, unsigned access, int *ret_val)
2697{
2698 bool ret = true;
2699
2700 /* The pfn is invalid, report the error! */
2701 if (unlikely(is_invalid_pfn(pfn))) {
2702 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2703 goto exit;
2704 }
2705
ce88decf 2706 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2707 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2708
2709 ret = false;
2710exit:
2711 return ret;
2712}
2713
c7ba5b48
XG
2714static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2715{
2716 /*
2717 * #PF can be fast only if the shadow page table is present and it
2718 * is caused by write-protect, that means we just need change the
2719 * W bit of the spte which can be done out of mmu-lock.
2720 */
2721 if (!(error_code & PFERR_PRESENT_MASK) ||
2722 !(error_code & PFERR_WRITE_MASK))
2723 return false;
2724
2725 return true;
2726}
2727
2728static bool
2729fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2730{
2731 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2732 gfn_t gfn;
2733
2734 WARN_ON(!sp->role.direct);
2735
2736 /*
2737 * The gfn of direct spte is stable since it is calculated
2738 * by sp->gfn.
2739 */
2740 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2741
2742 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2743 mark_page_dirty(vcpu->kvm, gfn);
2744
2745 return true;
2746}
2747
2748/*
2749 * Return value:
2750 * - true: let the vcpu to access on the same address again.
2751 * - false: let the real page fault path to fix it.
2752 */
2753static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2754 u32 error_code)
2755{
2756 struct kvm_shadow_walk_iterator iterator;
2757 bool ret = false;
2758 u64 spte = 0ull;
2759
2760 if (!page_fault_can_be_fast(vcpu, error_code))
2761 return false;
2762
2763 walk_shadow_page_lockless_begin(vcpu);
2764 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2765 if (!is_shadow_present_pte(spte) || iterator.level < level)
2766 break;
2767
2768 /*
2769 * If the mapping has been changed, let the vcpu fault on the
2770 * same address again.
2771 */
2772 if (!is_rmap_spte(spte)) {
2773 ret = true;
2774 goto exit;
2775 }
2776
2777 if (!is_last_spte(spte, level))
2778 goto exit;
2779
2780 /*
2781 * Check if it is a spurious fault caused by TLB lazily flushed.
2782 *
2783 * Need not check the access of upper level table entries since
2784 * they are always ACC_ALL.
2785 */
2786 if (is_writable_pte(spte)) {
2787 ret = true;
2788 goto exit;
2789 }
2790
2791 /*
2792 * Currently, to simplify the code, only the spte write-protected
2793 * by dirty-log can be fast fixed.
2794 */
2795 if (!spte_is_locklessly_modifiable(spte))
2796 goto exit;
2797
2798 /*
2799 * Currently, fast page fault only works for direct mapping since
2800 * the gfn is not stable for indirect shadow page.
2801 * See Documentation/virtual/kvm/locking.txt to get more detail.
2802 */
2803 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2804exit:
a72faf25
XG
2805 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2806 spte, ret);
c7ba5b48
XG
2807 walk_shadow_page_lockless_end(vcpu);
2808
2809 return ret;
2810}
2811
78b2c54a 2812static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2813 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2814
c7ba5b48
XG
2815static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2816 gfn_t gfn, bool prefault)
10589a46
MT
2817{
2818 int r;
852e3c19 2819 int level;
936a5fe6 2820 int force_pt_level;
35149e21 2821 pfn_t pfn;
e930bffe 2822 unsigned long mmu_seq;
c7ba5b48 2823 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2824
936a5fe6
AA
2825 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2826 if (likely(!force_pt_level)) {
2827 level = mapping_level(vcpu, gfn);
2828 /*
2829 * This path builds a PAE pagetable - so we can map
2830 * 2mb pages at maximum. Therefore check if the level
2831 * is larger than that.
2832 */
2833 if (level > PT_DIRECTORY_LEVEL)
2834 level = PT_DIRECTORY_LEVEL;
852e3c19 2835
936a5fe6
AA
2836 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2837 } else
2838 level = PT_PAGE_TABLE_LEVEL;
05da4558 2839
c7ba5b48
XG
2840 if (fast_page_fault(vcpu, v, level, error_code))
2841 return 0;
2842
e930bffe 2843 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2844 smp_rmb();
060c2abe 2845
78b2c54a 2846 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2847 return 0;
aaee2c94 2848
d7c55201
XG
2849 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2850 return r;
d196e343 2851
aaee2c94 2852 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
2853 if (mmu_notifier_retry(vcpu, mmu_seq))
2854 goto out_unlock;
eb787d10 2855 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2856 if (likely(!force_pt_level))
2857 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2858 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2859 prefault);
aaee2c94
MT
2860 spin_unlock(&vcpu->kvm->mmu_lock);
2861
aaee2c94 2862
10589a46 2863 return r;
e930bffe
AA
2864
2865out_unlock:
2866 spin_unlock(&vcpu->kvm->mmu_lock);
2867 kvm_release_pfn_clean(pfn);
2868 return 0;
10589a46
MT
2869}
2870
2871
17ac10ad
AK
2872static void mmu_free_roots(struct kvm_vcpu *vcpu)
2873{
2874 int i;
4db35314 2875 struct kvm_mmu_page *sp;
d98ba053 2876 LIST_HEAD(invalid_list);
17ac10ad 2877
ad312c7c 2878 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2879 return;
aaee2c94 2880 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2881 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2882 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2883 vcpu->arch.mmu.direct_map)) {
ad312c7c 2884 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2885
4db35314
AK
2886 sp = page_header(root);
2887 --sp->root_count;
d98ba053
XG
2888 if (!sp->root_count && sp->role.invalid) {
2889 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2890 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2891 }
ad312c7c 2892 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2893 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2894 return;
2895 }
17ac10ad 2896 for (i = 0; i < 4; ++i) {
ad312c7c 2897 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2898
417726a3 2899 if (root) {
417726a3 2900 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2901 sp = page_header(root);
2902 --sp->root_count;
2e53d63a 2903 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2904 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2905 &invalid_list);
417726a3 2906 }
ad312c7c 2907 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2908 }
d98ba053 2909 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2910 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2911 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2912}
2913
8986ecc0
MT
2914static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2915{
2916 int ret = 0;
2917
2918 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2919 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2920 ret = 1;
2921 }
2922
2923 return ret;
2924}
2925
651dd37a
JR
2926static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2927{
2928 struct kvm_mmu_page *sp;
7ebaf15e 2929 unsigned i;
651dd37a
JR
2930
2931 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2932 spin_lock(&vcpu->kvm->mmu_lock);
2933 kvm_mmu_free_some_pages(vcpu);
2934 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2935 1, ACC_ALL, NULL);
2936 ++sp->root_count;
2937 spin_unlock(&vcpu->kvm->mmu_lock);
2938 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2939 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2940 for (i = 0; i < 4; ++i) {
2941 hpa_t root = vcpu->arch.mmu.pae_root[i];
2942
2943 ASSERT(!VALID_PAGE(root));
2944 spin_lock(&vcpu->kvm->mmu_lock);
2945 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2946 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2947 i << 30,
651dd37a
JR
2948 PT32_ROOT_LEVEL, 1, ACC_ALL,
2949 NULL);
2950 root = __pa(sp->spt);
2951 ++sp->root_count;
2952 spin_unlock(&vcpu->kvm->mmu_lock);
2953 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2954 }
6292757f 2955 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2956 } else
2957 BUG();
2958
2959 return 0;
2960}
2961
2962static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2963{
4db35314 2964 struct kvm_mmu_page *sp;
81407ca5
JR
2965 u64 pdptr, pm_mask;
2966 gfn_t root_gfn;
2967 int i;
3bb65a22 2968
5777ed34 2969 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2970
651dd37a
JR
2971 if (mmu_check_root(vcpu, root_gfn))
2972 return 1;
2973
2974 /*
2975 * Do we shadow a long mode page table? If so we need to
2976 * write-protect the guests page table root.
2977 */
2978 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2979 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2980
2981 ASSERT(!VALID_PAGE(root));
651dd37a 2982
8facbbff 2983 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2984 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2985 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2986 0, ACC_ALL, NULL);
4db35314
AK
2987 root = __pa(sp->spt);
2988 ++sp->root_count;
8facbbff 2989 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2990 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2991 return 0;
17ac10ad 2992 }
f87f9288 2993
651dd37a
JR
2994 /*
2995 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2996 * or a PAE 3-level page table. In either case we need to be aware that
2997 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2998 */
81407ca5
JR
2999 pm_mask = PT_PRESENT_MASK;
3000 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3001 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3002
17ac10ad 3003 for (i = 0; i < 4; ++i) {
ad312c7c 3004 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
3005
3006 ASSERT(!VALID_PAGE(root));
ad312c7c 3007 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3008 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3009 if (!is_present_gpte(pdptr)) {
ad312c7c 3010 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3011 continue;
3012 }
6de4f3ad 3013 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3014 if (mmu_check_root(vcpu, root_gfn))
3015 return 1;
5a7388c2 3016 }
8facbbff 3017 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 3018 kvm_mmu_free_some_pages(vcpu);
4db35314 3019 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3020 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3021 ACC_ALL, NULL);
4db35314
AK
3022 root = __pa(sp->spt);
3023 ++sp->root_count;
8facbbff
AK
3024 spin_unlock(&vcpu->kvm->mmu_lock);
3025
81407ca5 3026 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3027 }
6292757f 3028 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3029
3030 /*
3031 * If we shadow a 32 bit page table with a long mode page
3032 * table we enter this path.
3033 */
3034 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3035 if (vcpu->arch.mmu.lm_root == NULL) {
3036 /*
3037 * The additional page necessary for this is only
3038 * allocated on demand.
3039 */
3040
3041 u64 *lm_root;
3042
3043 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3044 if (lm_root == NULL)
3045 return 1;
3046
3047 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3048
3049 vcpu->arch.mmu.lm_root = lm_root;
3050 }
3051
3052 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3053 }
3054
8986ecc0 3055 return 0;
17ac10ad
AK
3056}
3057
651dd37a
JR
3058static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3059{
3060 if (vcpu->arch.mmu.direct_map)
3061 return mmu_alloc_direct_roots(vcpu);
3062 else
3063 return mmu_alloc_shadow_roots(vcpu);
3064}
3065
0ba73cda
MT
3066static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3067{
3068 int i;
3069 struct kvm_mmu_page *sp;
3070
81407ca5
JR
3071 if (vcpu->arch.mmu.direct_map)
3072 return;
3073
0ba73cda
MT
3074 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3075 return;
6903074c 3076
bebb106a 3077 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3078 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3079 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3080 hpa_t root = vcpu->arch.mmu.root_hpa;
3081 sp = page_header(root);
3082 mmu_sync_children(vcpu, sp);
0375f7fa 3083 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3084 return;
3085 }
3086 for (i = 0; i < 4; ++i) {
3087 hpa_t root = vcpu->arch.mmu.pae_root[i];
3088
8986ecc0 3089 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3090 root &= PT64_BASE_ADDR_MASK;
3091 sp = page_header(root);
3092 mmu_sync_children(vcpu, sp);
3093 }
3094 }
0375f7fa 3095 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3096}
3097
3098void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3099{
3100 spin_lock(&vcpu->kvm->mmu_lock);
3101 mmu_sync_roots(vcpu);
6cffe8ca 3102 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3103}
3104
1871c602 3105static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3106 u32 access, struct x86_exception *exception)
6aa8b732 3107{
ab9ae313
AK
3108 if (exception)
3109 exception->error_code = 0;
6aa8b732
AK
3110 return vaddr;
3111}
3112
6539e738 3113static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3114 u32 access,
3115 struct x86_exception *exception)
6539e738 3116{
ab9ae313
AK
3117 if (exception)
3118 exception->error_code = 0;
6539e738
JR
3119 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3120}
3121
ce88decf
XG
3122static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3123{
3124 if (direct)
3125 return vcpu_match_mmio_gpa(vcpu, addr);
3126
3127 return vcpu_match_mmio_gva(vcpu, addr);
3128}
3129
3130
3131/*
3132 * On direct hosts, the last spte is only allows two states
3133 * for mmio page fault:
3134 * - It is the mmio spte
3135 * - It is zapped or it is being zapped.
3136 *
3137 * This function completely checks the spte when the last spte
3138 * is not the mmio spte.
3139 */
3140static bool check_direct_spte_mmio_pf(u64 spte)
3141{
3142 return __check_direct_spte_mmio_pf(spte);
3143}
3144
3145static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3146{
3147 struct kvm_shadow_walk_iterator iterator;
3148 u64 spte = 0ull;
3149
3150 walk_shadow_page_lockless_begin(vcpu);
3151 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3152 if (!is_shadow_present_pte(spte))
3153 break;
3154 walk_shadow_page_lockless_end(vcpu);
3155
3156 return spte;
3157}
3158
3159/*
3160 * If it is a real mmio page fault, return 1 and emulat the instruction
3161 * directly, return 0 to let CPU fault again on the address, -1 is
3162 * returned if bug is detected.
3163 */
3164int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3165{
3166 u64 spte;
3167
3168 if (quickly_check_mmio_pf(vcpu, addr, direct))
3169 return 1;
3170
3171 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3172
3173 if (is_mmio_spte(spte)) {
3174 gfn_t gfn = get_mmio_spte_gfn(spte);
3175 unsigned access = get_mmio_spte_access(spte);
3176
3177 if (direct)
3178 addr = 0;
4f022648
XG
3179
3180 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3181 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3182 return 1;
3183 }
3184
3185 /*
3186 * It's ok if the gva is remapped by other cpus on shadow guest,
3187 * it's a BUG if the gfn is not a mmio page.
3188 */
3189 if (direct && !check_direct_spte_mmio_pf(spte))
3190 return -1;
3191
3192 /*
3193 * If the page table is zapped by other cpus, let CPU fault again on
3194 * the address.
3195 */
3196 return 0;
3197}
3198EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3199
3200static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3201 u32 error_code, bool direct)
3202{
3203 int ret;
3204
3205 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3206 WARN_ON(ret < 0);
3207 return ret;
3208}
3209
6aa8b732 3210static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3211 u32 error_code, bool prefault)
6aa8b732 3212{
e833240f 3213 gfn_t gfn;
e2dec939 3214 int r;
6aa8b732 3215
b8688d51 3216 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3217
3218 if (unlikely(error_code & PFERR_RSVD_MASK))
3219 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3220
e2dec939
AK
3221 r = mmu_topup_memory_caches(vcpu);
3222 if (r)
3223 return r;
714b93da 3224
6aa8b732 3225 ASSERT(vcpu);
ad312c7c 3226 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3227
e833240f 3228 gfn = gva >> PAGE_SHIFT;
6aa8b732 3229
e833240f 3230 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3231 error_code, gfn, prefault);
6aa8b732
AK
3232}
3233
7e1fbeac 3234static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3235{
3236 struct kvm_arch_async_pf arch;
fb67e14f 3237
7c90705b 3238 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3239 arch.gfn = gfn;
c4806acd 3240 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3241 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3242
3243 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3244}
3245
3246static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3247{
3248 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3249 kvm_event_needs_reinjection(vcpu)))
3250 return false;
3251
3252 return kvm_x86_ops->interrupt_allowed(vcpu);
3253}
3254
78b2c54a 3255static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3256 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3257{
3258 bool async;
3259
612819c3 3260 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3261
3262 if (!async)
3263 return false; /* *pfn has correct page already */
3264
3265 put_page(pfn_to_page(*pfn));
3266
78b2c54a 3267 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3268 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3269 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3270 trace_kvm_async_pf_doublefault(gva, gfn);
3271 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3272 return true;
3273 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3274 return true;
3275 }
3276
612819c3 3277 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3278
3279 return false;
3280}
3281
56028d08 3282static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3283 bool prefault)
fb72d167 3284{
35149e21 3285 pfn_t pfn;
fb72d167 3286 int r;
852e3c19 3287 int level;
936a5fe6 3288 int force_pt_level;
05da4558 3289 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3290 unsigned long mmu_seq;
612819c3
MT
3291 int write = error_code & PFERR_WRITE_MASK;
3292 bool map_writable;
fb72d167
JR
3293
3294 ASSERT(vcpu);
3295 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3296
ce88decf
XG
3297 if (unlikely(error_code & PFERR_RSVD_MASK))
3298 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3299
fb72d167
JR
3300 r = mmu_topup_memory_caches(vcpu);
3301 if (r)
3302 return r;
3303
936a5fe6
AA
3304 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3305 if (likely(!force_pt_level)) {
3306 level = mapping_level(vcpu, gfn);
3307 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3308 } else
3309 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3310
c7ba5b48
XG
3311 if (fast_page_fault(vcpu, gpa, level, error_code))
3312 return 0;
3313
e930bffe 3314 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3315 smp_rmb();
af585b92 3316
78b2c54a 3317 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3318 return 0;
3319
d7c55201
XG
3320 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3321 return r;
3322
fb72d167 3323 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
3324 if (mmu_notifier_retry(vcpu, mmu_seq))
3325 goto out_unlock;
fb72d167 3326 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3327 if (likely(!force_pt_level))
3328 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3329 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3330 level, gfn, pfn, prefault);
fb72d167 3331 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3332
3333 return r;
e930bffe
AA
3334
3335out_unlock:
3336 spin_unlock(&vcpu->kvm->mmu_lock);
3337 kvm_release_pfn_clean(pfn);
3338 return 0;
fb72d167
JR
3339}
3340
6aa8b732
AK
3341static void nonpaging_free(struct kvm_vcpu *vcpu)
3342{
17ac10ad 3343 mmu_free_roots(vcpu);
6aa8b732
AK
3344}
3345
52fde8df
JR
3346static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3347 struct kvm_mmu *context)
6aa8b732 3348{
6aa8b732
AK
3349 context->new_cr3 = nonpaging_new_cr3;
3350 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3351 context->gva_to_gpa = nonpaging_gva_to_gpa;
3352 context->free = nonpaging_free;
e8bc217a 3353 context->sync_page = nonpaging_sync_page;
a7052897 3354 context->invlpg = nonpaging_invlpg;
0f53b5b1 3355 context->update_pte = nonpaging_update_pte;
cea0f0e7 3356 context->root_level = 0;
6aa8b732 3357 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3358 context->root_hpa = INVALID_PAGE;
c5a78f2b 3359 context->direct_map = true;
2d48a985 3360 context->nx = false;
6aa8b732
AK
3361 return 0;
3362}
3363
d835dfec 3364void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3365{
1165f5fe 3366 ++vcpu->stat.tlb_flush;
a8eeb04a 3367 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3368}
3369
3370static void paging_new_cr3(struct kvm_vcpu *vcpu)
3371{
9f8fe504 3372 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3373 mmu_free_roots(vcpu);
6aa8b732
AK
3374}
3375
5777ed34
JR
3376static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3377{
9f8fe504 3378 return kvm_read_cr3(vcpu);
5777ed34
JR
3379}
3380
6389ee94
AK
3381static void inject_page_fault(struct kvm_vcpu *vcpu,
3382 struct x86_exception *fault)
6aa8b732 3383{
6389ee94 3384 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3385}
3386
6aa8b732
AK
3387static void paging_free(struct kvm_vcpu *vcpu)
3388{
3389 nonpaging_free(vcpu);
3390}
3391
3241f22d 3392static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
82725b20
DE
3393{
3394 int bit7;
3395
3396 bit7 = (gpte >> 7) & 1;
3241f22d 3397 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
82725b20
DE
3398}
3399
ce88decf
XG
3400static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3401 int *nr_present)
3402{
3403 if (unlikely(is_mmio_spte(*sptep))) {
3404 if (gfn != get_mmio_spte_gfn(*sptep)) {
3405 mmu_spte_clear_no_track(sptep);
3406 return true;
3407 }
3408
3409 (*nr_present)++;
3410 mark_mmio_spte(sptep, gfn, access);
3411 return true;
3412 }
3413
3414 return false;
3415}
3416
6aa8b732
AK
3417#define PTTYPE 64
3418#include "paging_tmpl.h"
3419#undef PTTYPE
3420
3421#define PTTYPE 32
3422#include "paging_tmpl.h"
3423#undef PTTYPE
3424
52fde8df 3425static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3426 struct kvm_mmu *context)
82725b20 3427{
82725b20
DE
3428 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3429 u64 exb_bit_rsvd = 0;
3430
2d48a985 3431 if (!context->nx)
82725b20 3432 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3433 switch (context->root_level) {
82725b20
DE
3434 case PT32_ROOT_LEVEL:
3435 /* no rsvd bits for 2 level 4K page table entries */
3436 context->rsvd_bits_mask[0][1] = 0;
3437 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3438 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3439
3440 if (!is_pse(vcpu)) {
3441 context->rsvd_bits_mask[1][1] = 0;
3442 break;
3443 }
3444
82725b20
DE
3445 if (is_cpuid_PSE36())
3446 /* 36bits PSE 4MB page */
3447 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3448 else
3449 /* 32 bits PSE 4MB page */
3450 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3451 break;
3452 case PT32E_ROOT_LEVEL:
20c466b5
DE
3453 context->rsvd_bits_mask[0][2] =
3454 rsvd_bits(maxphyaddr, 63) |
3455 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3456 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3457 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3458 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3459 rsvd_bits(maxphyaddr, 62); /* PTE */
3460 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3461 rsvd_bits(maxphyaddr, 62) |
3462 rsvd_bits(13, 20); /* large page */
f815bce8 3463 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3464 break;
3465 case PT64_ROOT_LEVEL:
3466 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3467 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3468 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3469 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3470 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3471 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3472 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3473 rsvd_bits(maxphyaddr, 51);
3474 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3475 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3476 rsvd_bits(maxphyaddr, 51) |
3477 rsvd_bits(13, 29);
82725b20 3478 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3479 rsvd_bits(maxphyaddr, 51) |
3480 rsvd_bits(13, 20); /* large page */
f815bce8 3481 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3482 break;
3483 }
3484}
3485
52fde8df
JR
3486static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3487 struct kvm_mmu *context,
3488 int level)
6aa8b732 3489{
2d48a985 3490 context->nx = is_nx(vcpu);
4d6931c3 3491 context->root_level = level;
2d48a985 3492
4d6931c3 3493 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3494
3495 ASSERT(is_pae(vcpu));
3496 context->new_cr3 = paging_new_cr3;
3497 context->page_fault = paging64_page_fault;
6aa8b732 3498 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3499 context->sync_page = paging64_sync_page;
a7052897 3500 context->invlpg = paging64_invlpg;
0f53b5b1 3501 context->update_pte = paging64_update_pte;
6aa8b732 3502 context->free = paging_free;
17ac10ad 3503 context->shadow_root_level = level;
17c3ba9d 3504 context->root_hpa = INVALID_PAGE;
c5a78f2b 3505 context->direct_map = false;
6aa8b732
AK
3506 return 0;
3507}
3508
52fde8df
JR
3509static int paging64_init_context(struct kvm_vcpu *vcpu,
3510 struct kvm_mmu *context)
17ac10ad 3511{
52fde8df 3512 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3513}
3514
52fde8df
JR
3515static int paging32_init_context(struct kvm_vcpu *vcpu,
3516 struct kvm_mmu *context)
6aa8b732 3517{
2d48a985 3518 context->nx = false;
4d6931c3 3519 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3520
4d6931c3 3521 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3522
3523 context->new_cr3 = paging_new_cr3;
3524 context->page_fault = paging32_page_fault;
6aa8b732
AK
3525 context->gva_to_gpa = paging32_gva_to_gpa;
3526 context->free = paging_free;
e8bc217a 3527 context->sync_page = paging32_sync_page;
a7052897 3528 context->invlpg = paging32_invlpg;
0f53b5b1 3529 context->update_pte = paging32_update_pte;
6aa8b732 3530 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3531 context->root_hpa = INVALID_PAGE;
c5a78f2b 3532 context->direct_map = false;
6aa8b732
AK
3533 return 0;
3534}
3535
52fde8df
JR
3536static int paging32E_init_context(struct kvm_vcpu *vcpu,
3537 struct kvm_mmu *context)
6aa8b732 3538{
52fde8df 3539 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3540}
3541
fb72d167
JR
3542static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3543{
14dfe855 3544 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3545
c445f8ef 3546 context->base_role.word = 0;
fb72d167
JR
3547 context->new_cr3 = nonpaging_new_cr3;
3548 context->page_fault = tdp_page_fault;
3549 context->free = nonpaging_free;
e8bc217a 3550 context->sync_page = nonpaging_sync_page;
a7052897 3551 context->invlpg = nonpaging_invlpg;
0f53b5b1 3552 context->update_pte = nonpaging_update_pte;
67253af5 3553 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3554 context->root_hpa = INVALID_PAGE;
c5a78f2b 3555 context->direct_map = true;
1c97f0a0 3556 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3557 context->get_cr3 = get_cr3;
e4e517b4 3558 context->get_pdptr = kvm_pdptr_read;
cb659db8 3559 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3560
3561 if (!is_paging(vcpu)) {
2d48a985 3562 context->nx = false;
fb72d167
JR
3563 context->gva_to_gpa = nonpaging_gva_to_gpa;
3564 context->root_level = 0;
3565 } else if (is_long_mode(vcpu)) {
2d48a985 3566 context->nx = is_nx(vcpu);
fb72d167 3567 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3568 reset_rsvds_bits_mask(vcpu, context);
3569 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3570 } else if (is_pae(vcpu)) {
2d48a985 3571 context->nx = is_nx(vcpu);
fb72d167 3572 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3573 reset_rsvds_bits_mask(vcpu, context);
3574 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3575 } else {
2d48a985 3576 context->nx = false;
fb72d167 3577 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3578 reset_rsvds_bits_mask(vcpu, context);
3579 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3580 }
3581
3582 return 0;
3583}
3584
52fde8df 3585int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3586{
a770f6f2 3587 int r;
411c588d 3588 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3589 ASSERT(vcpu);
ad312c7c 3590 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3591
3592 if (!is_paging(vcpu))
52fde8df 3593 r = nonpaging_init_context(vcpu, context);
a9058ecd 3594 else if (is_long_mode(vcpu))
52fde8df 3595 r = paging64_init_context(vcpu, context);
6aa8b732 3596 else if (is_pae(vcpu))
52fde8df 3597 r = paging32E_init_context(vcpu, context);
6aa8b732 3598 else
52fde8df 3599 r = paging32_init_context(vcpu, context);
a770f6f2 3600
5b7e0102 3601 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3602 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3603 vcpu->arch.mmu.base_role.smep_andnot_wp
3604 = smep && !is_write_protection(vcpu);
52fde8df
JR
3605
3606 return r;
3607}
3608EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3609
3610static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3611{
14dfe855 3612 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3613
14dfe855
JR
3614 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3615 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3616 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3617 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3618
3619 return r;
6aa8b732
AK
3620}
3621
02f59dc9
JR
3622static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3623{
3624 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3625
3626 g_context->get_cr3 = get_cr3;
e4e517b4 3627 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3628 g_context->inject_page_fault = kvm_inject_page_fault;
3629
3630 /*
3631 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3632 * translation of l2_gpa to l1_gpa addresses is done using the
3633 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3634 * functions between mmu and nested_mmu are swapped.
3635 */
3636 if (!is_paging(vcpu)) {
2d48a985 3637 g_context->nx = false;
02f59dc9
JR
3638 g_context->root_level = 0;
3639 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3640 } else if (is_long_mode(vcpu)) {
2d48a985 3641 g_context->nx = is_nx(vcpu);
02f59dc9 3642 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3643 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3644 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3645 } else if (is_pae(vcpu)) {
2d48a985 3646 g_context->nx = is_nx(vcpu);
02f59dc9 3647 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3648 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3649 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3650 } else {
2d48a985 3651 g_context->nx = false;
02f59dc9 3652 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3653 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3654 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3655 }
3656
3657 return 0;
3658}
3659
fb72d167
JR
3660static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3661{
02f59dc9
JR
3662 if (mmu_is_nested(vcpu))
3663 return init_kvm_nested_mmu(vcpu);
3664 else if (tdp_enabled)
fb72d167
JR
3665 return init_kvm_tdp_mmu(vcpu);
3666 else
3667 return init_kvm_softmmu(vcpu);
3668}
3669
6aa8b732
AK
3670static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3671{
3672 ASSERT(vcpu);
62ad0755
SY
3673 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3674 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3675 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3676}
3677
3678int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3679{
3680 destroy_kvm_mmu(vcpu);
f8f7e5ee 3681 return init_kvm_mmu(vcpu);
17c3ba9d 3682}
8668a3c4 3683EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3684
3685int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3686{
714b93da
AK
3687 int r;
3688
e2dec939 3689 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3690 if (r)
3691 goto out;
8986ecc0 3692 r = mmu_alloc_roots(vcpu);
8facbbff 3693 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3694 mmu_sync_roots(vcpu);
aaee2c94 3695 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3696 if (r)
3697 goto out;
3662cb1c 3698 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3699 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3700out:
3701 return r;
6aa8b732 3702}
17c3ba9d
AK
3703EXPORT_SYMBOL_GPL(kvm_mmu_load);
3704
3705void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3706{
3707 mmu_free_roots(vcpu);
3708}
4b16184c 3709EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3710
0028425f 3711static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3712 struct kvm_mmu_page *sp, u64 *spte,
3713 const void *new)
0028425f 3714{
30945387 3715 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3716 ++vcpu->kvm->stat.mmu_pde_zapped;
3717 return;
30945387 3718 }
0028425f 3719
4cee5764 3720 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3721 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3722}
3723
79539cec
AK
3724static bool need_remote_flush(u64 old, u64 new)
3725{
3726 if (!is_shadow_present_pte(old))
3727 return false;
3728 if (!is_shadow_present_pte(new))
3729 return true;
3730 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3731 return true;
3732 old ^= PT64_NX_MASK;
3733 new ^= PT64_NX_MASK;
3734 return (old & ~new & PT64_PERM_MASK) != 0;
3735}
3736
0671a8e7
XG
3737static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3738 bool remote_flush, bool local_flush)
79539cec 3739{
0671a8e7
XG
3740 if (zap_page)
3741 return;
3742
3743 if (remote_flush)
79539cec 3744 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3745 else if (local_flush)
79539cec
AK
3746 kvm_mmu_flush_tlb(vcpu);
3747}
3748
889e5cbc
XG
3749static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3750 const u8 *new, int *bytes)
da4a00f0 3751{
889e5cbc
XG
3752 u64 gentry;
3753 int r;
72016f3a 3754
72016f3a
AK
3755 /*
3756 * Assume that the pte write on a page table of the same type
49b26e26
XG
3757 * as the current vcpu paging mode since we update the sptes only
3758 * when they have the same mode.
72016f3a 3759 */
889e5cbc 3760 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3761 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3762 *gpa &= ~(gpa_t)7;
3763 *bytes = 8;
3764 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
72016f3a
AK
3765 if (r)
3766 gentry = 0;
08e850c6
AK
3767 new = (const u8 *)&gentry;
3768 }
3769
889e5cbc 3770 switch (*bytes) {
08e850c6
AK
3771 case 4:
3772 gentry = *(const u32 *)new;
3773 break;
3774 case 8:
3775 gentry = *(const u64 *)new;
3776 break;
3777 default:
3778 gentry = 0;
3779 break;
72016f3a
AK
3780 }
3781
889e5cbc
XG
3782 return gentry;
3783}
3784
3785/*
3786 * If we're seeing too many writes to a page, it may no longer be a page table,
3787 * or we may be forking, in which case it is better to unmap the page.
3788 */
a138fe75 3789static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3790{
a30f47cb
XG
3791 /*
3792 * Skip write-flooding detected for the sp whose level is 1, because
3793 * it can become unsync, then the guest page is not write-protected.
3794 */
f71fa31f 3795 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3796 return false;
3246af0e 3797
a30f47cb 3798 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3799}
3800
3801/*
3802 * Misaligned accesses are too much trouble to fix up; also, they usually
3803 * indicate a page is not used as a page table.
3804 */
3805static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3806 int bytes)
3807{
3808 unsigned offset, pte_size, misaligned;
3809
3810 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3811 gpa, bytes, sp->role.word);
3812
3813 offset = offset_in_page(gpa);
3814 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3815
3816 /*
3817 * Sometimes, the OS only writes the last one bytes to update status
3818 * bits, for example, in linux, andb instruction is used in clear_bit().
3819 */
3820 if (!(offset & (pte_size - 1)) && bytes == 1)
3821 return false;
3822
889e5cbc
XG
3823 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3824 misaligned |= bytes < 4;
3825
3826 return misaligned;
3827}
3828
3829static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3830{
3831 unsigned page_offset, quadrant;
3832 u64 *spte;
3833 int level;
3834
3835 page_offset = offset_in_page(gpa);
3836 level = sp->role.level;
3837 *nspte = 1;
3838 if (!sp->role.cr4_pae) {
3839 page_offset <<= 1; /* 32->64 */
3840 /*
3841 * A 32-bit pde maps 4MB while the shadow pdes map
3842 * only 2MB. So we need to double the offset again
3843 * and zap two pdes instead of one.
3844 */
3845 if (level == PT32_ROOT_LEVEL) {
3846 page_offset &= ~7; /* kill rounding error */
3847 page_offset <<= 1;
3848 *nspte = 2;
3849 }
3850 quadrant = page_offset >> PAGE_SHIFT;
3851 page_offset &= ~PAGE_MASK;
3852 if (quadrant != sp->role.quadrant)
3853 return NULL;
3854 }
3855
3856 spte = &sp->spt[page_offset / sizeof(*spte)];
3857 return spte;
3858}
3859
3860void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3861 const u8 *new, int bytes)
3862{
3863 gfn_t gfn = gpa >> PAGE_SHIFT;
3864 union kvm_mmu_page_role mask = { .word = 0 };
3865 struct kvm_mmu_page *sp;
3866 struct hlist_node *node;
3867 LIST_HEAD(invalid_list);
3868 u64 entry, gentry, *spte;
3869 int npte;
a30f47cb 3870 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3871
3872 /*
3873 * If we don't have indirect shadow pages, it means no page is
3874 * write-protected, so we can exit simply.
3875 */
3876 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3877 return;
3878
3879 zap_page = remote_flush = local_flush = false;
3880
3881 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3882
3883 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3884
3885 /*
3886 * No need to care whether allocation memory is successful
3887 * or not since pte prefetch is skiped if it does not have
3888 * enough objects in the cache.
3889 */
3890 mmu_topup_memory_caches(vcpu);
3891
3892 spin_lock(&vcpu->kvm->mmu_lock);
3893 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3894 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3895
fa1de2bf 3896 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3897 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3898 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3899 detect_write_flooding(sp)) {
0671a8e7 3900 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3901 &invalid_list);
4cee5764 3902 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3903 continue;
3904 }
889e5cbc
XG
3905
3906 spte = get_written_sptes(sp, gpa, &npte);
3907 if (!spte)
3908 continue;
3909
0671a8e7 3910 local_flush = true;
ac1b714e 3911 while (npte--) {
79539cec 3912 entry = *spte;
38e3b2b2 3913 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3914 if (gentry &&
3915 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3916 & mask.word) && rmap_can_add(vcpu))
7c562522 3917 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
3918 if (!remote_flush && need_remote_flush(entry, *spte))
3919 remote_flush = true;
ac1b714e 3920 ++spte;
9b7a0325 3921 }
9b7a0325 3922 }
0671a8e7 3923 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3924 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3925 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3926 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3927}
3928
a436036b
AK
3929int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3930{
10589a46
MT
3931 gpa_t gpa;
3932 int r;
a436036b 3933
c5a78f2b 3934 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3935 return 0;
3936
1871c602 3937 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 3938
10589a46 3939 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 3940
10589a46 3941 return r;
a436036b 3942}
577bdc49 3943EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 3944
22d95b12 3945void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 3946{
d98ba053 3947 LIST_HEAD(invalid_list);
103ad25a 3948
e0df7b9f 3949 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 3950 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 3951 struct kvm_mmu_page *sp;
ebeace86 3952
f05e70ac 3953 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 3954 struct kvm_mmu_page, link);
e0df7b9f 3955 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 3956 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 3957 }
aa6bd187 3958 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 3959}
ebeace86 3960
1cb3f3ae
XG
3961static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3962{
3963 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3964 return vcpu_match_mmio_gpa(vcpu, addr);
3965
3966 return vcpu_match_mmio_gva(vcpu, addr);
3967}
3968
dc25e89e
AP
3969int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3970 void *insn, int insn_len)
3067714c 3971{
1cb3f3ae 3972 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
3973 enum emulation_result er;
3974
56028d08 3975 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
3976 if (r < 0)
3977 goto out;
3978
3979 if (!r) {
3980 r = 1;
3981 goto out;
3982 }
3983
1cb3f3ae
XG
3984 if (is_mmio_page_fault(vcpu, cr2))
3985 emulation_type = 0;
3986
3987 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
3988
3989 switch (er) {
3990 case EMULATE_DONE:
3991 return 1;
3992 case EMULATE_DO_MMIO:
3993 ++vcpu->stat.mmio_exits;
6d77dbfc 3994 /* fall through */
3067714c 3995 case EMULATE_FAIL:
3f5d18a9 3996 return 0;
3067714c
AK
3997 default:
3998 BUG();
3999 }
4000out:
3067714c
AK
4001 return r;
4002}
4003EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4004
a7052897
MT
4005void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4006{
a7052897 4007 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4008 kvm_mmu_flush_tlb(vcpu);
4009 ++vcpu->stat.invlpg;
4010}
4011EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4012
18552672
JR
4013void kvm_enable_tdp(void)
4014{
4015 tdp_enabled = true;
4016}
4017EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4018
5f4cb662
JR
4019void kvm_disable_tdp(void)
4020{
4021 tdp_enabled = false;
4022}
4023EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4024
6aa8b732
AK
4025static void free_mmu_pages(struct kvm_vcpu *vcpu)
4026{
ad312c7c 4027 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4028 if (vcpu->arch.mmu.lm_root != NULL)
4029 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4030}
4031
4032static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4033{
17ac10ad 4034 struct page *page;
6aa8b732
AK
4035 int i;
4036
4037 ASSERT(vcpu);
4038
17ac10ad
AK
4039 /*
4040 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4041 * Therefore we need to allocate shadow page tables in the first
4042 * 4GB of memory, which happens to fit the DMA32 zone.
4043 */
4044 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4045 if (!page)
d7fa6ab2
WY
4046 return -ENOMEM;
4047
ad312c7c 4048 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4049 for (i = 0; i < 4; ++i)
ad312c7c 4050 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4051
6aa8b732 4052 return 0;
6aa8b732
AK
4053}
4054
8018c27b 4055int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4056{
6aa8b732 4057 ASSERT(vcpu);
e459e322
XG
4058
4059 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4060 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4061 vcpu->arch.mmu.translate_gpa = translate_gpa;
4062 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4063
8018c27b
IM
4064 return alloc_mmu_pages(vcpu);
4065}
6aa8b732 4066
8018c27b
IM
4067int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4068{
4069 ASSERT(vcpu);
ad312c7c 4070 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4071
8018c27b 4072 return init_kvm_mmu(vcpu);
6aa8b732
AK
4073}
4074
90cb0529 4075void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4076{
4db35314 4077 struct kvm_mmu_page *sp;
d13bc5b5 4078 bool flush = false;
6aa8b732 4079
f05e70ac 4080 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
6aa8b732
AK
4081 int i;
4082 u64 *pt;
4083
291f26bc 4084 if (!test_bit(slot, sp->slot_bitmap))
6aa8b732
AK
4085 continue;
4086
4db35314 4087 pt = sp->spt;
8234b22e 4088 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
da8dc75f
XG
4089 if (!is_shadow_present_pte(pt[i]) ||
4090 !is_last_spte(pt[i], sp->role.level))
4091 continue;
4092
49fde340 4093 spte_write_protect(kvm, &pt[i], &flush, false);
8234b22e 4094 }
6aa8b732 4095 }
171d595d 4096 kvm_flush_remote_tlbs(kvm);
6aa8b732 4097}
37a7d8b0 4098
90cb0529 4099void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 4100{
4db35314 4101 struct kvm_mmu_page *sp, *node;
d98ba053 4102 LIST_HEAD(invalid_list);
e0fa826f 4103
aaee2c94 4104 spin_lock(&kvm->mmu_lock);
3246af0e 4105restart:
f05e70ac 4106 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 4107 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
4108 goto restart;
4109
d98ba053 4110 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 4111 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
4112}
4113
3d56cbdf
JK
4114static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4115 struct list_head *invalid_list)
3ee16c81
IE
4116{
4117 struct kvm_mmu_page *page;
4118
4119 page = container_of(kvm->arch.active_mmu_pages.prev,
4120 struct kvm_mmu_page, link);
3d56cbdf 4121 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
4122}
4123
1495f230 4124static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4125{
4126 struct kvm *kvm;
1495f230 4127 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
4128
4129 if (nr_to_scan == 0)
4130 goto out;
3ee16c81 4131
e935b837 4132 raw_spin_lock(&kvm_lock);
3ee16c81
IE
4133
4134 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4135 int idx;
d98ba053 4136 LIST_HEAD(invalid_list);
3ee16c81 4137
19526396
GN
4138 /*
4139 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4140 * here. We may skip a VM instance errorneosly, but we do not
4141 * want to shrink a VM that only started to populate its MMU
4142 * anyway.
4143 */
4144 if (kvm->arch.n_used_mmu_pages > 0) {
4145 if (!nr_to_scan--)
4146 break;
4147 continue;
4148 }
4149
f656ce01 4150 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4151 spin_lock(&kvm->mmu_lock);
3ee16c81 4152
19526396 4153 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
d98ba053 4154 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4155
3ee16c81 4156 spin_unlock(&kvm->mmu_lock);
f656ce01 4157 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
4158
4159 list_move_tail(&kvm->vm_list, &vm_list);
4160 break;
3ee16c81 4161 }
3ee16c81 4162
e935b837 4163 raw_spin_unlock(&kvm_lock);
3ee16c81 4164
45221ab6
DH
4165out:
4166 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4167}
4168
4169static struct shrinker mmu_shrinker = {
4170 .shrink = mmu_shrink,
4171 .seeks = DEFAULT_SEEKS * 10,
4172};
4173
2ddfd20e 4174static void mmu_destroy_caches(void)
b5a33a75 4175{
53c07b18
XG
4176 if (pte_list_desc_cache)
4177 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4178 if (mmu_page_header_cache)
4179 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4180}
4181
4182int kvm_mmu_module_init(void)
4183{
53c07b18
XG
4184 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4185 sizeof(struct pte_list_desc),
20c2df83 4186 0, 0, NULL);
53c07b18 4187 if (!pte_list_desc_cache)
b5a33a75
AK
4188 goto nomem;
4189
d3d25b04
AK
4190 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4191 sizeof(struct kvm_mmu_page),
20c2df83 4192 0, 0, NULL);
d3d25b04
AK
4193 if (!mmu_page_header_cache)
4194 goto nomem;
4195
45bf21a8
WY
4196 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4197 goto nomem;
4198
3ee16c81
IE
4199 register_shrinker(&mmu_shrinker);
4200
b5a33a75
AK
4201 return 0;
4202
4203nomem:
3ee16c81 4204 mmu_destroy_caches();
b5a33a75
AK
4205 return -ENOMEM;
4206}
4207
3ad82a7e
ZX
4208/*
4209 * Caculate mmu pages needed for kvm.
4210 */
4211unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4212{
3ad82a7e
ZX
4213 unsigned int nr_mmu_pages;
4214 unsigned int nr_pages = 0;
bc6678a3 4215 struct kvm_memslots *slots;
be6ba0f0 4216 struct kvm_memory_slot *memslot;
3ad82a7e 4217
90d83dc3
LJ
4218 slots = kvm_memslots(kvm);
4219
be6ba0f0
XG
4220 kvm_for_each_memslot(memslot, slots)
4221 nr_pages += memslot->npages;
3ad82a7e
ZX
4222
4223 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4224 nr_mmu_pages = max(nr_mmu_pages,
4225 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4226
4227 return nr_mmu_pages;
4228}
4229
94d8b056
MT
4230int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4231{
4232 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4233 u64 spte;
94d8b056
MT
4234 int nr_sptes = 0;
4235
c2a2ac2b
XG
4236 walk_shadow_page_lockless_begin(vcpu);
4237 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4238 sptes[iterator.level-1] = spte;
94d8b056 4239 nr_sptes++;
c2a2ac2b 4240 if (!is_shadow_present_pte(spte))
94d8b056
MT
4241 break;
4242 }
c2a2ac2b 4243 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4244
4245 return nr_sptes;
4246}
4247EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4248
c42fffe3
XG
4249void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4250{
4251 ASSERT(vcpu);
4252
4253 destroy_kvm_mmu(vcpu);
4254 free_mmu_pages(vcpu);
4255 mmu_free_memory_caches(vcpu);
b034cf01
XG
4256}
4257
b034cf01
XG
4258void kvm_mmu_module_exit(void)
4259{
4260 mmu_destroy_caches();
4261 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4262 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4263 mmu_audit_disable();
4264}