]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
kvm/x86/svm: Support Secure Memory Encryption within KVM
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
1767e931
PG
32#include <linux/moduleparam.h>
33#include <linux/export.h>
448353ca 34#include <linux/swap.h>
05da4558 35#include <linux/hugetlb.h>
2f333bcb 36#include <linux/compiler.h>
bc6678a3 37#include <linux/srcu.h>
5a0e3ad6 38#include <linux/slab.h>
3f07c014 39#include <linux/sched/signal.h>
bf998156 40#include <linux/uaccess.h>
114df303 41#include <linux/hash.h>
f160c7b7 42#include <linux/kern_levels.h>
6aa8b732 43
e495606d
AK
44#include <asm/page.h>
45#include <asm/cmpxchg.h>
4e542370 46#include <asm/io.h>
13673a90 47#include <asm/vmx.h>
3d0c27ad 48#include <asm/kvm_page_track.h>
1261bfa3 49#include "trace.h"
6aa8b732 50
18552672
JR
51/*
52 * When setting this variable to true it enables Two-Dimensional-Paging
53 * where the hardware walks 2 page tables:
54 * 1. the guest-virtual to guest-physical
55 * 2. while doing 1. it walks guest-physical to host-physical
56 * If the hardware supports that we don't need to do shadow paging.
57 */
2f333bcb 58bool tdp_enabled = false;
18552672 59
8b1fe17c
XG
60enum {
61 AUDIT_PRE_PAGE_FAULT,
62 AUDIT_POST_PAGE_FAULT,
63 AUDIT_PRE_PTE_WRITE,
6903074c
XG
64 AUDIT_POST_PTE_WRITE,
65 AUDIT_PRE_SYNC,
66 AUDIT_POST_SYNC
8b1fe17c 67};
37a7d8b0 68
8b1fe17c 69#undef MMU_DEBUG
37a7d8b0
AK
70
71#ifdef MMU_DEBUG
fa4a2c08
PB
72static bool dbg = 0;
73module_param(dbg, bool, 0644);
37a7d8b0
AK
74
75#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
76#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 77#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 78#else
37a7d8b0
AK
79#define pgprintk(x...) do { } while (0)
80#define rmap_printk(x...) do { } while (0)
fa4a2c08 81#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 82#endif
6aa8b732 83
957ed9ef
XG
84#define PTE_PREFETCH_NUM 8
85
00763e41 86#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
87#define PT64_SECOND_AVAIL_BITS_SHIFT 52
88
6aa8b732
AK
89#define PT64_LEVEL_BITS 9
90
91#define PT64_LEVEL_SHIFT(level) \
d77c26fc 92 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 93
6aa8b732
AK
94#define PT64_INDEX(address, level)\
95 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
96
97
98#define PT32_LEVEL_BITS 10
99
100#define PT32_LEVEL_SHIFT(level) \
d77c26fc 101 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 102
e04da980
JR
103#define PT32_LVL_OFFSET_MASK(level) \
104 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
105 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
106
107#define PT32_INDEX(address, level)\
108 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
109
110
d0ec49d4 111#define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
6aa8b732
AK
112#define PT64_DIR_BASE_ADDR_MASK \
113 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
114#define PT64_LVL_ADDR_MASK(level) \
115 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
116 * PT64_LEVEL_BITS))) - 1))
117#define PT64_LVL_OFFSET_MASK(level) \
118 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
119 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
120
121#define PT32_BASE_ADDR_MASK PAGE_MASK
122#define PT32_DIR_BASE_ADDR_MASK \
123 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
124#define PT32_LVL_ADDR_MASK(level) \
125 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT32_LEVEL_BITS))) - 1))
6aa8b732 127
53166229 128#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 129 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 130
fe135d2c
AK
131#define ACC_EXEC_MASK 1
132#define ACC_WRITE_MASK PT_WRITABLE_MASK
133#define ACC_USER_MASK PT_USER_MASK
134#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
135
f160c7b7
JS
136/* The mask for the R/X bits in EPT PTEs */
137#define PT64_EPT_READABLE_MASK 0x1ull
138#define PT64_EPT_EXECUTABLE_MASK 0x4ull
139
90bb6fc5
AK
140#include <trace/events/kvm.h>
141
07420171
AK
142#define CREATE_TRACE_POINTS
143#include "mmutrace.h"
144
49fde340
XG
145#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
146#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 147
135f8c2b
AK
148#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
149
220f773a
TY
150/* make pte_list_desc fit well in cache line */
151#define PTE_LIST_EXT 3
152
53c07b18
XG
153struct pte_list_desc {
154 u64 *sptes[PTE_LIST_EXT];
155 struct pte_list_desc *more;
cd4a4e53
AK
156};
157
2d11123a
AK
158struct kvm_shadow_walk_iterator {
159 u64 addr;
160 hpa_t shadow_addr;
2d11123a 161 u64 *sptep;
dd3bfd59 162 int level;
2d11123a
AK
163 unsigned index;
164};
165
166#define for_each_shadow_entry(_vcpu, _addr, _walker) \
167 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
168 shadow_walk_okay(&(_walker)); \
169 shadow_walk_next(&(_walker)))
170
c2a2ac2b
XG
171#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
172 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
173 shadow_walk_okay(&(_walker)) && \
174 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
175 __shadow_walk_next(&(_walker), spte))
176
53c07b18 177static struct kmem_cache *pte_list_desc_cache;
d3d25b04 178static struct kmem_cache *mmu_page_header_cache;
45221ab6 179static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 180
7b52345e
SY
181static u64 __read_mostly shadow_nx_mask;
182static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
183static u64 __read_mostly shadow_user_mask;
184static u64 __read_mostly shadow_accessed_mask;
185static u64 __read_mostly shadow_dirty_mask;
ce88decf 186static u64 __read_mostly shadow_mmio_mask;
dcdca5fe 187static u64 __read_mostly shadow_mmio_value;
ffb128c8 188static u64 __read_mostly shadow_present_mask;
d0ec49d4 189static u64 __read_mostly shadow_me_mask;
ce88decf 190
f160c7b7 191/*
ac8d57e5
PF
192 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
193 * Non-present SPTEs with shadow_acc_track_value set are in place for access
194 * tracking.
f160c7b7
JS
195 */
196static u64 __read_mostly shadow_acc_track_mask;
197static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
198
199/*
200 * The mask/shift to use for saving the original R/X bits when marking the PTE
201 * as not-present for access tracking purposes. We do not save the W bit as the
202 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
203 * restored only when a write is attempted to the page.
204 */
205static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
206 PT64_EPT_EXECUTABLE_MASK;
207static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
208
ce88decf 209static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 210static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf 211
dcdca5fe 212void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
ce88decf 213{
dcdca5fe
PF
214 BUG_ON((mmio_mask & mmio_value) != mmio_value);
215 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
312b616b 216 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
ce88decf
XG
217}
218EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
219
ac8d57e5
PF
220static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
221{
222 return sp->role.ad_disabled;
223}
224
225static inline bool spte_ad_enabled(u64 spte)
226{
227 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
228 return !(spte & shadow_acc_track_value);
229}
230
231static inline u64 spte_shadow_accessed_mask(u64 spte)
232{
233 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
234 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
235}
236
237static inline u64 spte_shadow_dirty_mask(u64 spte)
238{
239 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
240 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
241}
242
f160c7b7
JS
243static inline bool is_access_track_spte(u64 spte)
244{
ac8d57e5 245 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
246}
247
f2fd125d 248/*
ee3d1570
DM
249 * the low bit of the generation number is always presumed to be zero.
250 * This disables mmio caching during memslot updates. The concept is
251 * similar to a seqcount but instead of retrying the access we just punt
252 * and ignore the cache.
253 *
254 * spte bits 3-11 are used as bits 1-9 of the generation number,
255 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 256 */
ee3d1570 257#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
258#define MMIO_SPTE_GEN_HIGH_SHIFT 52
259
ee3d1570
DM
260#define MMIO_GEN_SHIFT 20
261#define MMIO_GEN_LOW_SHIFT 10
262#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 263#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
264
265static u64 generation_mmio_spte_mask(unsigned int gen)
266{
267 u64 mask;
268
842bb26a 269 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
270
271 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
272 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
273 return mask;
274}
275
276static unsigned int get_mmio_spte_generation(u64 spte)
277{
278 unsigned int gen;
279
280 spte &= ~shadow_mmio_mask;
281
282 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
283 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
284 return gen;
285}
286
54bf36aa 287static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 288{
54bf36aa 289 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
290}
291
54bf36aa 292static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 293 unsigned access)
ce88decf 294{
54bf36aa 295 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 296 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 297
ce88decf 298 access &= ACC_WRITE_MASK | ACC_USER_MASK;
dcdca5fe 299 mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
f2fd125d 300
f8f55942 301 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 302 mmu_spte_set(sptep, mask);
ce88decf
XG
303}
304
305static bool is_mmio_spte(u64 spte)
306{
dcdca5fe 307 return (spte & shadow_mmio_mask) == shadow_mmio_value;
ce88decf
XG
308}
309
310static gfn_t get_mmio_spte_gfn(u64 spte)
311{
842bb26a 312 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 313 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
314}
315
316static unsigned get_mmio_spte_access(u64 spte)
317{
842bb26a 318 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 319 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
320}
321
54bf36aa 322static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 323 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
324{
325 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 326 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
327 return true;
328 }
329
330 return false;
331}
c7addb90 332
54bf36aa 333static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 334{
089504c0
XG
335 unsigned int kvm_gen, spte_gen;
336
54bf36aa 337 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
338 spte_gen = get_mmio_spte_generation(spte);
339
340 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
341 return likely(kvm_gen == spte_gen);
f8f55942
XG
342}
343
ce00053b
PF
344/*
345 * Sets the shadow PTE masks used by the MMU.
346 *
347 * Assumptions:
348 * - Setting either @accessed_mask or @dirty_mask requires setting both
349 * - At least one of @accessed_mask or @acc_track_mask must be set
350 */
7b52345e 351void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 352 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 353 u64 acc_track_mask, u64 me_mask)
7b52345e 354{
ce00053b
PF
355 BUG_ON(!dirty_mask != !accessed_mask);
356 BUG_ON(!accessed_mask && !acc_track_mask);
ac8d57e5 357 BUG_ON(acc_track_mask & shadow_acc_track_value);
312b616b 358
7b52345e
SY
359 shadow_user_mask = user_mask;
360 shadow_accessed_mask = accessed_mask;
361 shadow_dirty_mask = dirty_mask;
362 shadow_nx_mask = nx_mask;
363 shadow_x_mask = x_mask;
ffb128c8 364 shadow_present_mask = p_mask;
f160c7b7 365 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 366 shadow_me_mask = me_mask;
7b52345e
SY
367}
368EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
369
f160c7b7
JS
370void kvm_mmu_clear_all_pte_masks(void)
371{
372 shadow_user_mask = 0;
373 shadow_accessed_mask = 0;
374 shadow_dirty_mask = 0;
375 shadow_nx_mask = 0;
376 shadow_x_mask = 0;
377 shadow_mmio_mask = 0;
378 shadow_present_mask = 0;
379 shadow_acc_track_mask = 0;
380}
381
6aa8b732
AK
382static int is_cpuid_PSE36(void)
383{
384 return 1;
385}
386
73b1087e
AK
387static int is_nx(struct kvm_vcpu *vcpu)
388{
f6801dff 389 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
390}
391
c7addb90
AK
392static int is_shadow_present_pte(u64 pte)
393{
f160c7b7 394 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
395}
396
05da4558
MT
397static int is_large_pte(u64 pte)
398{
399 return pte & PT_PAGE_SIZE_MASK;
400}
401
776e6633
MT
402static int is_last_spte(u64 pte, int level)
403{
404 if (level == PT_PAGE_TABLE_LEVEL)
405 return 1;
852e3c19 406 if (is_large_pte(pte))
776e6633
MT
407 return 1;
408 return 0;
409}
410
d3e328f2
JS
411static bool is_executable_pte(u64 spte)
412{
413 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
414}
415
ba049e93 416static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 417{
35149e21 418 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
419}
420
da928521
AK
421static gfn_t pse36_gfn_delta(u32 gpte)
422{
423 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
424
425 return (gpte & PT32_DIR_PSE36_MASK) << shift;
426}
427
603e0651 428#ifdef CONFIG_X86_64
d555c333 429static void __set_spte(u64 *sptep, u64 spte)
e663ee64 430{
b19ee2ff 431 WRITE_ONCE(*sptep, spte);
e663ee64
AK
432}
433
603e0651 434static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 435{
b19ee2ff 436 WRITE_ONCE(*sptep, spte);
603e0651
XG
437}
438
439static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
440{
441 return xchg(sptep, spte);
442}
c2a2ac2b
XG
443
444static u64 __get_spte_lockless(u64 *sptep)
445{
446 return ACCESS_ONCE(*sptep);
447}
a9221dd5 448#else
603e0651
XG
449union split_spte {
450 struct {
451 u32 spte_low;
452 u32 spte_high;
453 };
454 u64 spte;
455};
a9221dd5 456
c2a2ac2b
XG
457static void count_spte_clear(u64 *sptep, u64 spte)
458{
459 struct kvm_mmu_page *sp = page_header(__pa(sptep));
460
461 if (is_shadow_present_pte(spte))
462 return;
463
464 /* Ensure the spte is completely set before we increase the count */
465 smp_wmb();
466 sp->clear_spte_count++;
467}
468
603e0651
XG
469static void __set_spte(u64 *sptep, u64 spte)
470{
471 union split_spte *ssptep, sspte;
a9221dd5 472
603e0651
XG
473 ssptep = (union split_spte *)sptep;
474 sspte = (union split_spte)spte;
475
476 ssptep->spte_high = sspte.spte_high;
477
478 /*
479 * If we map the spte from nonpresent to present, We should store
480 * the high bits firstly, then set present bit, so cpu can not
481 * fetch this spte while we are setting the spte.
482 */
483 smp_wmb();
484
b19ee2ff 485 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
486}
487
603e0651
XG
488static void __update_clear_spte_fast(u64 *sptep, u64 spte)
489{
490 union split_spte *ssptep, sspte;
491
492 ssptep = (union split_spte *)sptep;
493 sspte = (union split_spte)spte;
494
b19ee2ff 495 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
496
497 /*
498 * If we map the spte from present to nonpresent, we should clear
499 * present bit firstly to avoid vcpu fetch the old high bits.
500 */
501 smp_wmb();
502
503 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 504 count_spte_clear(sptep, spte);
603e0651
XG
505}
506
507static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
508{
509 union split_spte *ssptep, sspte, orig;
510
511 ssptep = (union split_spte *)sptep;
512 sspte = (union split_spte)spte;
513
514 /* xchg acts as a barrier before the setting of the high bits */
515 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
516 orig.spte_high = ssptep->spte_high;
517 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 518 count_spte_clear(sptep, spte);
603e0651
XG
519
520 return orig.spte;
521}
c2a2ac2b
XG
522
523/*
524 * The idea using the light way get the spte on x86_32 guest is from
525 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
526 *
527 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
528 * coalesces them and we are running out of the MMU lock. Therefore
529 * we need to protect against in-progress updates of the spte.
530 *
531 * Reading the spte while an update is in progress may get the old value
532 * for the high part of the spte. The race is fine for a present->non-present
533 * change (because the high part of the spte is ignored for non-present spte),
534 * but for a present->present change we must reread the spte.
535 *
536 * All such changes are done in two steps (present->non-present and
537 * non-present->present), hence it is enough to count the number of
538 * present->non-present updates: if it changed while reading the spte,
539 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
540 */
541static u64 __get_spte_lockless(u64 *sptep)
542{
543 struct kvm_mmu_page *sp = page_header(__pa(sptep));
544 union split_spte spte, *orig = (union split_spte *)sptep;
545 int count;
546
547retry:
548 count = sp->clear_spte_count;
549 smp_rmb();
550
551 spte.spte_low = orig->spte_low;
552 smp_rmb();
553
554 spte.spte_high = orig->spte_high;
555 smp_rmb();
556
557 if (unlikely(spte.spte_low != orig->spte_low ||
558 count != sp->clear_spte_count))
559 goto retry;
560
561 return spte.spte;
562}
603e0651
XG
563#endif
564
ea4114bc 565static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 566{
feb3eb70
GN
567 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
568 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
569}
570
8672b721
XG
571static bool spte_has_volatile_bits(u64 spte)
572{
f160c7b7
JS
573 if (!is_shadow_present_pte(spte))
574 return false;
575
c7ba5b48 576 /*
6a6256f9 577 * Always atomically update spte if it can be updated
c7ba5b48
XG
578 * out of mmu-lock, it can ensure dirty bit is not lost,
579 * also, it can help us to get a stable is_writable_pte()
580 * to ensure tlb flush is not missed.
581 */
f160c7b7
JS
582 if (spte_can_locklessly_be_made_writable(spte) ||
583 is_access_track_spte(spte))
c7ba5b48
XG
584 return true;
585
ac8d57e5 586 if (spte_ad_enabled(spte)) {
f160c7b7
JS
587 if ((spte & shadow_accessed_mask) == 0 ||
588 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
589 return true;
590 }
8672b721 591
f160c7b7 592 return false;
8672b721
XG
593}
594
83ef6c81 595static bool is_accessed_spte(u64 spte)
4132779b 596{
ac8d57e5
PF
597 u64 accessed_mask = spte_shadow_accessed_mask(spte);
598
599 return accessed_mask ? spte & accessed_mask
600 : !is_access_track_spte(spte);
4132779b
XG
601}
602
83ef6c81 603static bool is_dirty_spte(u64 spte)
7e71a59b 604{
ac8d57e5
PF
605 u64 dirty_mask = spte_shadow_dirty_mask(spte);
606
607 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
608}
609
1df9f2dc
XG
610/* Rules for using mmu_spte_set:
611 * Set the sptep from nonpresent to present.
612 * Note: the sptep being assigned *must* be either not present
613 * or in a state where the hardware will not attempt to update
614 * the spte.
615 */
616static void mmu_spte_set(u64 *sptep, u64 new_spte)
617{
618 WARN_ON(is_shadow_present_pte(*sptep));
619 __set_spte(sptep, new_spte);
620}
621
f39a058d
JS
622/*
623 * Update the SPTE (excluding the PFN), but do not track changes in its
624 * accessed/dirty status.
1df9f2dc 625 */
f39a058d 626static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 627{
c7ba5b48 628 u64 old_spte = *sptep;
4132779b 629
afd28fe1 630 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 631
6e7d0354
XG
632 if (!is_shadow_present_pte(old_spte)) {
633 mmu_spte_set(sptep, new_spte);
f39a058d 634 return old_spte;
6e7d0354 635 }
4132779b 636
c7ba5b48 637 if (!spte_has_volatile_bits(old_spte))
603e0651 638 __update_clear_spte_fast(sptep, new_spte);
4132779b 639 else
603e0651 640 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 641
83ef6c81
JS
642 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
643
f39a058d
JS
644 return old_spte;
645}
646
647/* Rules for using mmu_spte_update:
648 * Update the state bits, it means the mapped pfn is not changed.
649 *
650 * Whenever we overwrite a writable spte with a read-only one we
651 * should flush remote TLBs. Otherwise rmap_write_protect
652 * will find a read-only spte, even though the writable spte
653 * might be cached on a CPU's TLB, the return value indicates this
654 * case.
655 *
656 * Returns true if the TLB needs to be flushed
657 */
658static bool mmu_spte_update(u64 *sptep, u64 new_spte)
659{
660 bool flush = false;
661 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
662
663 if (!is_shadow_present_pte(old_spte))
664 return false;
665
c7ba5b48
XG
666 /*
667 * For the spte updated out of mmu-lock is safe, since
6a6256f9 668 * we always atomically update it, see the comments in
c7ba5b48
XG
669 * spte_has_volatile_bits().
670 */
ea4114bc 671 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 672 !is_writable_pte(new_spte))
83ef6c81 673 flush = true;
4132779b 674
7e71a59b 675 /*
83ef6c81 676 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
677 * to guarantee consistency between TLB and page tables.
678 */
7e71a59b 679
83ef6c81
JS
680 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
681 flush = true;
4132779b 682 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
683 }
684
685 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
686 flush = true;
4132779b 687 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 688 }
6e7d0354 689
83ef6c81 690 return flush;
b79b93f9
AK
691}
692
1df9f2dc
XG
693/*
694 * Rules for using mmu_spte_clear_track_bits:
695 * It sets the sptep from present to nonpresent, and track the
696 * state bits, it is used to clear the last level sptep.
83ef6c81 697 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
698 */
699static int mmu_spte_clear_track_bits(u64 *sptep)
700{
ba049e93 701 kvm_pfn_t pfn;
1df9f2dc
XG
702 u64 old_spte = *sptep;
703
704 if (!spte_has_volatile_bits(old_spte))
603e0651 705 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 706 else
603e0651 707 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 708
afd28fe1 709 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
710 return 0;
711
712 pfn = spte_to_pfn(old_spte);
86fde74c
XG
713
714 /*
715 * KVM does not hold the refcount of the page used by
716 * kvm mmu, before reclaiming the page, we should
717 * unmap it from mmu first.
718 */
bf4bea8e 719 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 720
83ef6c81 721 if (is_accessed_spte(old_spte))
1df9f2dc 722 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
723
724 if (is_dirty_spte(old_spte))
1df9f2dc 725 kvm_set_pfn_dirty(pfn);
83ef6c81 726
1df9f2dc
XG
727 return 1;
728}
729
730/*
731 * Rules for using mmu_spte_clear_no_track:
732 * Directly clear spte without caring the state bits of sptep,
733 * it is used to set the upper level spte.
734 */
735static void mmu_spte_clear_no_track(u64 *sptep)
736{
603e0651 737 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
738}
739
c2a2ac2b
XG
740static u64 mmu_spte_get_lockless(u64 *sptep)
741{
742 return __get_spte_lockless(sptep);
743}
744
f160c7b7
JS
745static u64 mark_spte_for_access_track(u64 spte)
746{
ac8d57e5 747 if (spte_ad_enabled(spte))
f160c7b7
JS
748 return spte & ~shadow_accessed_mask;
749
ac8d57e5 750 if (is_access_track_spte(spte))
f160c7b7
JS
751 return spte;
752
753 /*
20d65236
JS
754 * Making an Access Tracking PTE will result in removal of write access
755 * from the PTE. So, verify that we will be able to restore the write
756 * access in the fast page fault path later on.
f160c7b7
JS
757 */
758 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
759 !spte_can_locklessly_be_made_writable(spte),
760 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
761
762 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
763 shadow_acc_track_saved_bits_shift),
764 "kvm: Access Tracking saved bit locations are not zero\n");
765
766 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
767 shadow_acc_track_saved_bits_shift;
768 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
769
770 return spte;
771}
772
d3e328f2
JS
773/* Restore an acc-track PTE back to a regular PTE */
774static u64 restore_acc_track_spte(u64 spte)
775{
776 u64 new_spte = spte;
777 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
778 & shadow_acc_track_saved_bits_mask;
779
ac8d57e5 780 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
781 WARN_ON_ONCE(!is_access_track_spte(spte));
782
783 new_spte &= ~shadow_acc_track_mask;
784 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
785 shadow_acc_track_saved_bits_shift);
786 new_spte |= saved_bits;
787
788 return new_spte;
789}
790
f160c7b7
JS
791/* Returns the Accessed status of the PTE and resets it at the same time. */
792static bool mmu_spte_age(u64 *sptep)
793{
794 u64 spte = mmu_spte_get_lockless(sptep);
795
796 if (!is_accessed_spte(spte))
797 return false;
798
ac8d57e5 799 if (spte_ad_enabled(spte)) {
f160c7b7
JS
800 clear_bit((ffs(shadow_accessed_mask) - 1),
801 (unsigned long *)sptep);
802 } else {
803 /*
804 * Capture the dirty status of the page, so that it doesn't get
805 * lost when the SPTE is marked for access tracking.
806 */
807 if (is_writable_pte(spte))
808 kvm_set_pfn_dirty(spte_to_pfn(spte));
809
810 spte = mark_spte_for_access_track(spte);
811 mmu_spte_update_no_track(sptep, spte);
812 }
813
814 return true;
815}
816
c2a2ac2b
XG
817static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
818{
c142786c
AK
819 /*
820 * Prevent page table teardown by making any free-er wait during
821 * kvm_flush_remote_tlbs() IPI to all active vcpus.
822 */
823 local_irq_disable();
36ca7e0a 824
c142786c
AK
825 /*
826 * Make sure a following spte read is not reordered ahead of the write
827 * to vcpu->mode.
828 */
36ca7e0a 829 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
830}
831
832static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
833{
c142786c
AK
834 /*
835 * Make sure the write to vcpu->mode is not reordered in front of
836 * reads to sptes. If it does, kvm_commit_zap_page() can see us
837 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
838 */
36ca7e0a 839 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 840 local_irq_enable();
c2a2ac2b
XG
841}
842
e2dec939 843static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 844 struct kmem_cache *base_cache, int min)
714b93da
AK
845{
846 void *obj;
847
848 if (cache->nobjs >= min)
e2dec939 849 return 0;
714b93da 850 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 851 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 852 if (!obj)
e2dec939 853 return -ENOMEM;
714b93da
AK
854 cache->objects[cache->nobjs++] = obj;
855 }
e2dec939 856 return 0;
714b93da
AK
857}
858
f759e2b4
XG
859static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
860{
861 return cache->nobjs;
862}
863
e8ad9a70
XG
864static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
865 struct kmem_cache *cache)
714b93da
AK
866{
867 while (mc->nobjs)
e8ad9a70 868 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
869}
870
c1158e63 871static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 872 int min)
c1158e63 873{
842f22ed 874 void *page;
c1158e63
AK
875
876 if (cache->nobjs >= min)
877 return 0;
878 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 879 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
880 if (!page)
881 return -ENOMEM;
842f22ed 882 cache->objects[cache->nobjs++] = page;
c1158e63
AK
883 }
884 return 0;
885}
886
887static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
888{
889 while (mc->nobjs)
c4d198d5 890 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
891}
892
2e3e5882 893static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 894{
e2dec939
AK
895 int r;
896
53c07b18 897 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 898 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
899 if (r)
900 goto out;
ad312c7c 901 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
902 if (r)
903 goto out;
ad312c7c 904 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 905 mmu_page_header_cache, 4);
e2dec939
AK
906out:
907 return r;
714b93da
AK
908}
909
910static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
911{
53c07b18
XG
912 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
913 pte_list_desc_cache);
ad312c7c 914 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
915 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
916 mmu_page_header_cache);
714b93da
AK
917}
918
80feb89a 919static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
920{
921 void *p;
922
923 BUG_ON(!mc->nobjs);
924 p = mc->objects[--mc->nobjs];
714b93da
AK
925 return p;
926}
927
53c07b18 928static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 929{
80feb89a 930 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
931}
932
53c07b18 933static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 934{
53c07b18 935 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
936}
937
2032a93d
LJ
938static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
939{
940 if (!sp->role.direct)
941 return sp->gfns[index];
942
943 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
944}
945
946static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
947{
948 if (sp->role.direct)
949 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
950 else
951 sp->gfns[index] = gfn;
952}
953
05da4558 954/*
d4dbf470
TY
955 * Return the pointer to the large page information for a given gfn,
956 * handling slots that are not large page aligned.
05da4558 957 */
d4dbf470
TY
958static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
959 struct kvm_memory_slot *slot,
960 int level)
05da4558
MT
961{
962 unsigned long idx;
963
fb03cb6f 964 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 965 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
966}
967
547ffaed
XG
968static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
969 gfn_t gfn, int count)
970{
971 struct kvm_lpage_info *linfo;
972 int i;
973
974 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
975 linfo = lpage_info_slot(gfn, slot, i);
976 linfo->disallow_lpage += count;
977 WARN_ON(linfo->disallow_lpage < 0);
978 }
979}
980
981void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
982{
983 update_gfn_disallow_lpage_count(slot, gfn, 1);
984}
985
986void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
987{
988 update_gfn_disallow_lpage_count(slot, gfn, -1);
989}
990
3ed1a478 991static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 992{
699023e2 993 struct kvm_memslots *slots;
d25797b2 994 struct kvm_memory_slot *slot;
3ed1a478 995 gfn_t gfn;
05da4558 996
56ca57f9 997 kvm->arch.indirect_shadow_pages++;
3ed1a478 998 gfn = sp->gfn;
699023e2
PB
999 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1000 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1001
1002 /* the non-leaf shadow pages are keeping readonly. */
1003 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1004 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1005 KVM_PAGE_TRACK_WRITE);
1006
547ffaed 1007 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1008}
1009
3ed1a478 1010static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1011{
699023e2 1012 struct kvm_memslots *slots;
d25797b2 1013 struct kvm_memory_slot *slot;
3ed1a478 1014 gfn_t gfn;
05da4558 1015
56ca57f9 1016 kvm->arch.indirect_shadow_pages--;
3ed1a478 1017 gfn = sp->gfn;
699023e2
PB
1018 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1019 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1020 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1021 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1022 KVM_PAGE_TRACK_WRITE);
1023
547ffaed 1024 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1025}
1026
92f94f1e
XG
1027static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1028 struct kvm_memory_slot *slot)
05da4558 1029{
d4dbf470 1030 struct kvm_lpage_info *linfo;
05da4558
MT
1031
1032 if (slot) {
d4dbf470 1033 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 1034 return !!linfo->disallow_lpage;
05da4558
MT
1035 }
1036
92f94f1e 1037 return true;
05da4558
MT
1038}
1039
92f94f1e
XG
1040static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1041 int level)
5225fdf8
TY
1042{
1043 struct kvm_memory_slot *slot;
1044
1045 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 1046 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
1047}
1048
d25797b2 1049static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 1050{
8f0b1ab6 1051 unsigned long page_size;
d25797b2 1052 int i, ret = 0;
05da4558 1053
8f0b1ab6 1054 page_size = kvm_host_page_size(kvm, gfn);
05da4558 1055
8a3d08f1 1056 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
1057 if (page_size >= KVM_HPAGE_SIZE(i))
1058 ret = i;
1059 else
1060 break;
1061 }
1062
4c2155ce 1063 return ret;
05da4558
MT
1064}
1065
d8aacf5d
TY
1066static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1067 bool no_dirty_log)
1068{
1069 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1070 return false;
1071 if (no_dirty_log && slot->dirty_bitmap)
1072 return false;
1073
1074 return true;
1075}
1076
5d163b1c
XG
1077static struct kvm_memory_slot *
1078gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1079 bool no_dirty_log)
05da4558
MT
1080{
1081 struct kvm_memory_slot *slot;
5d163b1c 1082
54bf36aa 1083 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 1084 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
1085 slot = NULL;
1086
1087 return slot;
1088}
1089
fd136902
TY
1090static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1091 bool *force_pt_level)
936a5fe6
AA
1092{
1093 int host_level, level, max_level;
d8aacf5d
TY
1094 struct kvm_memory_slot *slot;
1095
8c85ac1c
TY
1096 if (unlikely(*force_pt_level))
1097 return PT_PAGE_TABLE_LEVEL;
05da4558 1098
8c85ac1c
TY
1099 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1100 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
1101 if (unlikely(*force_pt_level))
1102 return PT_PAGE_TABLE_LEVEL;
1103
d25797b2
JR
1104 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1105
1106 if (host_level == PT_PAGE_TABLE_LEVEL)
1107 return host_level;
1108
55dd98c3 1109 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
1110
1111 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 1112 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 1113 break;
d25797b2
JR
1114
1115 return level - 1;
05da4558
MT
1116}
1117
290fc38d 1118/*
018aabb5 1119 * About rmap_head encoding:
cd4a4e53 1120 *
018aabb5
TY
1121 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1122 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1123 * pte_list_desc containing more mappings.
018aabb5
TY
1124 */
1125
1126/*
1127 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1128 */
53c07b18 1129static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1130 struct kvm_rmap_head *rmap_head)
cd4a4e53 1131{
53c07b18 1132 struct pte_list_desc *desc;
53a27b39 1133 int i, count = 0;
cd4a4e53 1134
018aabb5 1135 if (!rmap_head->val) {
53c07b18 1136 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1137 rmap_head->val = (unsigned long)spte;
1138 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1139 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1140 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1141 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1142 desc->sptes[1] = spte;
018aabb5 1143 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1144 ++count;
cd4a4e53 1145 } else {
53c07b18 1146 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1147 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1148 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1149 desc = desc->more;
53c07b18 1150 count += PTE_LIST_EXT;
53a27b39 1151 }
53c07b18
XG
1152 if (desc->sptes[PTE_LIST_EXT-1]) {
1153 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1154 desc = desc->more;
1155 }
d555c333 1156 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1157 ++count;
d555c333 1158 desc->sptes[i] = spte;
cd4a4e53 1159 }
53a27b39 1160 return count;
cd4a4e53
AK
1161}
1162
53c07b18 1163static void
018aabb5
TY
1164pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1165 struct pte_list_desc *desc, int i,
1166 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1167{
1168 int j;
1169
53c07b18 1170 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1171 ;
d555c333
AK
1172 desc->sptes[i] = desc->sptes[j];
1173 desc->sptes[j] = NULL;
cd4a4e53
AK
1174 if (j != 0)
1175 return;
1176 if (!prev_desc && !desc->more)
018aabb5 1177 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
1178 else
1179 if (prev_desc)
1180 prev_desc->more = desc->more;
1181 else
018aabb5 1182 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1183 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1184}
1185
018aabb5 1186static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1187{
53c07b18
XG
1188 struct pte_list_desc *desc;
1189 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1190 int i;
1191
018aabb5 1192 if (!rmap_head->val) {
53c07b18 1193 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 1194 BUG();
018aabb5 1195 } else if (!(rmap_head->val & 1)) {
53c07b18 1196 rmap_printk("pte_list_remove: %p 1->0\n", spte);
018aabb5 1197 if ((u64 *)rmap_head->val != spte) {
53c07b18 1198 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
1199 BUG();
1200 }
018aabb5 1201 rmap_head->val = 0;
cd4a4e53 1202 } else {
53c07b18 1203 rmap_printk("pte_list_remove: %p many->many\n", spte);
018aabb5 1204 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1205 prev_desc = NULL;
1206 while (desc) {
018aabb5 1207 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1208 if (desc->sptes[i] == spte) {
018aabb5
TY
1209 pte_list_desc_remove_entry(rmap_head,
1210 desc, i, prev_desc);
cd4a4e53
AK
1211 return;
1212 }
018aabb5 1213 }
cd4a4e53
AK
1214 prev_desc = desc;
1215 desc = desc->more;
1216 }
53c07b18 1217 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1218 BUG();
1219 }
1220}
1221
018aabb5
TY
1222static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1223 struct kvm_memory_slot *slot)
53c07b18 1224{
77d11309 1225 unsigned long idx;
53c07b18 1226
77d11309 1227 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1228 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1229}
1230
018aabb5
TY
1231static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1232 struct kvm_mmu_page *sp)
9b9b1492 1233{
699023e2 1234 struct kvm_memslots *slots;
9b9b1492
TY
1235 struct kvm_memory_slot *slot;
1236
699023e2
PB
1237 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1238 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1239 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1240}
1241
f759e2b4
XG
1242static bool rmap_can_add(struct kvm_vcpu *vcpu)
1243{
1244 struct kvm_mmu_memory_cache *cache;
1245
1246 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1247 return mmu_memory_cache_free_objects(cache);
1248}
1249
53c07b18
XG
1250static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1251{
1252 struct kvm_mmu_page *sp;
018aabb5 1253 struct kvm_rmap_head *rmap_head;
53c07b18 1254
53c07b18
XG
1255 sp = page_header(__pa(spte));
1256 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1257 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1258 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1259}
1260
53c07b18
XG
1261static void rmap_remove(struct kvm *kvm, u64 *spte)
1262{
1263 struct kvm_mmu_page *sp;
1264 gfn_t gfn;
018aabb5 1265 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1266
1267 sp = page_header(__pa(spte));
1268 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5
TY
1269 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1270 pte_list_remove(spte, rmap_head);
53c07b18
XG
1271}
1272
1e3f42f0
TY
1273/*
1274 * Used by the following functions to iterate through the sptes linked by a
1275 * rmap. All fields are private and not assumed to be used outside.
1276 */
1277struct rmap_iterator {
1278 /* private fields */
1279 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1280 int pos; /* index of the sptep */
1281};
1282
1283/*
1284 * Iteration must be started by this function. This should also be used after
1285 * removing/dropping sptes from the rmap link because in such cases the
1286 * information in the itererator may not be valid.
1287 *
1288 * Returns sptep if found, NULL otherwise.
1289 */
018aabb5
TY
1290static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1291 struct rmap_iterator *iter)
1e3f42f0 1292{
77fbbbd2
TY
1293 u64 *sptep;
1294
018aabb5 1295 if (!rmap_head->val)
1e3f42f0
TY
1296 return NULL;
1297
018aabb5 1298 if (!(rmap_head->val & 1)) {
1e3f42f0 1299 iter->desc = NULL;
77fbbbd2
TY
1300 sptep = (u64 *)rmap_head->val;
1301 goto out;
1e3f42f0
TY
1302 }
1303
018aabb5 1304 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1305 iter->pos = 0;
77fbbbd2
TY
1306 sptep = iter->desc->sptes[iter->pos];
1307out:
1308 BUG_ON(!is_shadow_present_pte(*sptep));
1309 return sptep;
1e3f42f0
TY
1310}
1311
1312/*
1313 * Must be used with a valid iterator: e.g. after rmap_get_first().
1314 *
1315 * Returns sptep if found, NULL otherwise.
1316 */
1317static u64 *rmap_get_next(struct rmap_iterator *iter)
1318{
77fbbbd2
TY
1319 u64 *sptep;
1320
1e3f42f0
TY
1321 if (iter->desc) {
1322 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1323 ++iter->pos;
1324 sptep = iter->desc->sptes[iter->pos];
1325 if (sptep)
77fbbbd2 1326 goto out;
1e3f42f0
TY
1327 }
1328
1329 iter->desc = iter->desc->more;
1330
1331 if (iter->desc) {
1332 iter->pos = 0;
1333 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1334 sptep = iter->desc->sptes[iter->pos];
1335 goto out;
1e3f42f0
TY
1336 }
1337 }
1338
1339 return NULL;
77fbbbd2
TY
1340out:
1341 BUG_ON(!is_shadow_present_pte(*sptep));
1342 return sptep;
1e3f42f0
TY
1343}
1344
018aabb5
TY
1345#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1346 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1347 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1348
c3707958 1349static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1350{
1df9f2dc 1351 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1352 rmap_remove(kvm, sptep);
be38d276
AK
1353}
1354
8e22f955
XG
1355
1356static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1357{
1358 if (is_large_pte(*sptep)) {
1359 WARN_ON(page_header(__pa(sptep))->role.level ==
1360 PT_PAGE_TABLE_LEVEL);
1361 drop_spte(kvm, sptep);
1362 --kvm->stat.lpages;
1363 return true;
1364 }
1365
1366 return false;
1367}
1368
1369static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1370{
1371 if (__drop_large_spte(vcpu->kvm, sptep))
1372 kvm_flush_remote_tlbs(vcpu->kvm);
1373}
1374
1375/*
49fde340 1376 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1377 * spte write-protection is caused by protecting shadow page table.
49fde340 1378 *
b4619660 1379 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1380 * protection:
1381 * - for dirty logging, the spte can be set to writable at anytime if
1382 * its dirty bitmap is properly set.
1383 * - for spte protection, the spte can be writable only after unsync-ing
1384 * shadow page.
8e22f955 1385 *
c126d94f 1386 * Return true if tlb need be flushed.
8e22f955 1387 */
c4f138b4 1388static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1389{
1390 u64 spte = *sptep;
1391
49fde340 1392 if (!is_writable_pte(spte) &&
ea4114bc 1393 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1394 return false;
1395
1396 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1397
49fde340
XG
1398 if (pt_protect)
1399 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1400 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1401
c126d94f 1402 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1403}
1404
018aabb5
TY
1405static bool __rmap_write_protect(struct kvm *kvm,
1406 struct kvm_rmap_head *rmap_head,
245c3912 1407 bool pt_protect)
98348e95 1408{
1e3f42f0
TY
1409 u64 *sptep;
1410 struct rmap_iterator iter;
d13bc5b5 1411 bool flush = false;
374cbac0 1412
018aabb5 1413 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1414 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1415
d13bc5b5 1416 return flush;
a0ed4607
TY
1417}
1418
c4f138b4 1419static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1420{
1421 u64 spte = *sptep;
1422
1423 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1424
1425 spte &= ~shadow_dirty_mask;
1426
1427 return mmu_spte_update(sptep, spte);
1428}
1429
ac8d57e5
PF
1430static bool wrprot_ad_disabled_spte(u64 *sptep)
1431{
1432 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1433 (unsigned long *)sptep);
1434 if (was_writable)
1435 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1436
1437 return was_writable;
1438}
1439
1440/*
1441 * Gets the GFN ready for another round of dirty logging by clearing the
1442 * - D bit on ad-enabled SPTEs, and
1443 * - W bit on ad-disabled SPTEs.
1444 * Returns true iff any D or W bits were cleared.
1445 */
018aabb5 1446static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1447{
1448 u64 *sptep;
1449 struct rmap_iterator iter;
1450 bool flush = false;
1451
018aabb5 1452 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1453 if (spte_ad_enabled(*sptep))
1454 flush |= spte_clear_dirty(sptep);
1455 else
1456 flush |= wrprot_ad_disabled_spte(sptep);
f4b4b180
KH
1457
1458 return flush;
1459}
1460
c4f138b4 1461static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1462{
1463 u64 spte = *sptep;
1464
1465 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1466
1467 spte |= shadow_dirty_mask;
1468
1469 return mmu_spte_update(sptep, spte);
1470}
1471
018aabb5 1472static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1473{
1474 u64 *sptep;
1475 struct rmap_iterator iter;
1476 bool flush = false;
1477
018aabb5 1478 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1479 if (spte_ad_enabled(*sptep))
1480 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1481
1482 return flush;
1483}
1484
5dc99b23 1485/**
3b0f1d01 1486 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1487 * @kvm: kvm instance
1488 * @slot: slot to protect
1489 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1490 * @mask: indicates which pages we should protect
1491 *
1492 * Used when we do not need to care about huge page mappings: e.g. during dirty
1493 * logging we do not have any such mappings.
1494 */
3b0f1d01 1495static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1496 struct kvm_memory_slot *slot,
1497 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1498{
018aabb5 1499 struct kvm_rmap_head *rmap_head;
a0ed4607 1500
5dc99b23 1501 while (mask) {
018aabb5
TY
1502 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1503 PT_PAGE_TABLE_LEVEL, slot);
1504 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1505
5dc99b23
TY
1506 /* clear the first set bit */
1507 mask &= mask - 1;
1508 }
374cbac0
AK
1509}
1510
f4b4b180 1511/**
ac8d57e5
PF
1512 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1513 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1514 * @kvm: kvm instance
1515 * @slot: slot to clear D-bit
1516 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1517 * @mask: indicates which pages we should clear D-bit
1518 *
1519 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1520 */
1521void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1522 struct kvm_memory_slot *slot,
1523 gfn_t gfn_offset, unsigned long mask)
1524{
018aabb5 1525 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1526
1527 while (mask) {
018aabb5
TY
1528 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1529 PT_PAGE_TABLE_LEVEL, slot);
1530 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1531
1532 /* clear the first set bit */
1533 mask &= mask - 1;
1534 }
1535}
1536EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1537
3b0f1d01
KH
1538/**
1539 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1540 * PT level pages.
1541 *
1542 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1543 * enable dirty logging for them.
1544 *
1545 * Used when we do not need to care about huge page mappings: e.g. during dirty
1546 * logging we do not have any such mappings.
1547 */
1548void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1549 struct kvm_memory_slot *slot,
1550 gfn_t gfn_offset, unsigned long mask)
1551{
88178fd4
KH
1552 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1553 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1554 mask);
1555 else
1556 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1557}
1558
bab4165e
BD
1559/**
1560 * kvm_arch_write_log_dirty - emulate dirty page logging
1561 * @vcpu: Guest mode vcpu
1562 *
1563 * Emulate arch specific page modification logging for the
1564 * nested hypervisor
1565 */
1566int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1567{
1568 if (kvm_x86_ops->write_log_dirty)
1569 return kvm_x86_ops->write_log_dirty(vcpu);
1570
1571 return 0;
1572}
1573
aeecee2e
XG
1574bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1575 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1576{
018aabb5 1577 struct kvm_rmap_head *rmap_head;
5dc99b23 1578 int i;
2f84569f 1579 bool write_protected = false;
95d4c16c 1580
8a3d08f1 1581 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1582 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1583 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1584 }
1585
1586 return write_protected;
95d4c16c
TY
1587}
1588
aeecee2e
XG
1589static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1590{
1591 struct kvm_memory_slot *slot;
1592
1593 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1594 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1595}
1596
018aabb5 1597static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1598{
1e3f42f0
TY
1599 u64 *sptep;
1600 struct rmap_iterator iter;
6a49f85c 1601 bool flush = false;
e930bffe 1602
018aabb5 1603 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1604 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1605
1606 drop_spte(kvm, sptep);
6a49f85c 1607 flush = true;
e930bffe 1608 }
1e3f42f0 1609
6a49f85c
XG
1610 return flush;
1611}
1612
018aabb5 1613static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1614 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1615 unsigned long data)
1616{
018aabb5 1617 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1618}
1619
018aabb5 1620static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1621 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1622 unsigned long data)
3da0dd43 1623{
1e3f42f0
TY
1624 u64 *sptep;
1625 struct rmap_iterator iter;
3da0dd43 1626 int need_flush = 0;
1e3f42f0 1627 u64 new_spte;
3da0dd43 1628 pte_t *ptep = (pte_t *)data;
ba049e93 1629 kvm_pfn_t new_pfn;
3da0dd43
IE
1630
1631 WARN_ON(pte_huge(*ptep));
1632 new_pfn = pte_pfn(*ptep);
1e3f42f0 1633
0d536790 1634restart:
018aabb5 1635 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1636 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1637 sptep, *sptep, gfn, level);
1e3f42f0 1638
3da0dd43 1639 need_flush = 1;
1e3f42f0 1640
3da0dd43 1641 if (pte_write(*ptep)) {
1e3f42f0 1642 drop_spte(kvm, sptep);
0d536790 1643 goto restart;
3da0dd43 1644 } else {
1e3f42f0 1645 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1646 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1647
1648 new_spte &= ~PT_WRITABLE_MASK;
1649 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1650
1651 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1652
1653 mmu_spte_clear_track_bits(sptep);
1654 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1655 }
1656 }
1e3f42f0 1657
3da0dd43
IE
1658 if (need_flush)
1659 kvm_flush_remote_tlbs(kvm);
1660
1661 return 0;
1662}
1663
6ce1f4e2
XG
1664struct slot_rmap_walk_iterator {
1665 /* input fields. */
1666 struct kvm_memory_slot *slot;
1667 gfn_t start_gfn;
1668 gfn_t end_gfn;
1669 int start_level;
1670 int end_level;
1671
1672 /* output fields. */
1673 gfn_t gfn;
018aabb5 1674 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1675 int level;
1676
1677 /* private field. */
018aabb5 1678 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1679};
1680
1681static void
1682rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1683{
1684 iterator->level = level;
1685 iterator->gfn = iterator->start_gfn;
1686 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1687 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1688 iterator->slot);
1689}
1690
1691static void
1692slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1693 struct kvm_memory_slot *slot, int start_level,
1694 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1695{
1696 iterator->slot = slot;
1697 iterator->start_level = start_level;
1698 iterator->end_level = end_level;
1699 iterator->start_gfn = start_gfn;
1700 iterator->end_gfn = end_gfn;
1701
1702 rmap_walk_init_level(iterator, iterator->start_level);
1703}
1704
1705static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1706{
1707 return !!iterator->rmap;
1708}
1709
1710static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1711{
1712 if (++iterator->rmap <= iterator->end_rmap) {
1713 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1714 return;
1715 }
1716
1717 if (++iterator->level > iterator->end_level) {
1718 iterator->rmap = NULL;
1719 return;
1720 }
1721
1722 rmap_walk_init_level(iterator, iterator->level);
1723}
1724
1725#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1726 _start_gfn, _end_gfn, _iter_) \
1727 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1728 _end_level_, _start_gfn, _end_gfn); \
1729 slot_rmap_walk_okay(_iter_); \
1730 slot_rmap_walk_next(_iter_))
1731
84504ef3
TY
1732static int kvm_handle_hva_range(struct kvm *kvm,
1733 unsigned long start,
1734 unsigned long end,
1735 unsigned long data,
1736 int (*handler)(struct kvm *kvm,
018aabb5 1737 struct kvm_rmap_head *rmap_head,
048212d0 1738 struct kvm_memory_slot *slot,
8a9522d2
ALC
1739 gfn_t gfn,
1740 int level,
84504ef3 1741 unsigned long data))
e930bffe 1742{
bc6678a3 1743 struct kvm_memslots *slots;
be6ba0f0 1744 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1745 struct slot_rmap_walk_iterator iterator;
1746 int ret = 0;
9da0e4d5 1747 int i;
bc6678a3 1748
9da0e4d5
PB
1749 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1750 slots = __kvm_memslots(kvm, i);
1751 kvm_for_each_memslot(memslot, slots) {
1752 unsigned long hva_start, hva_end;
1753 gfn_t gfn_start, gfn_end;
e930bffe 1754
9da0e4d5
PB
1755 hva_start = max(start, memslot->userspace_addr);
1756 hva_end = min(end, memslot->userspace_addr +
1757 (memslot->npages << PAGE_SHIFT));
1758 if (hva_start >= hva_end)
1759 continue;
1760 /*
1761 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1762 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1763 */
1764 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1765 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1766
1767 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1768 PT_MAX_HUGEPAGE_LEVEL,
1769 gfn_start, gfn_end - 1,
1770 &iterator)
1771 ret |= handler(kvm, iterator.rmap, memslot,
1772 iterator.gfn, iterator.level, data);
1773 }
e930bffe
AA
1774 }
1775
f395302e 1776 return ret;
e930bffe
AA
1777}
1778
84504ef3
TY
1779static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1780 unsigned long data,
018aabb5
TY
1781 int (*handler)(struct kvm *kvm,
1782 struct kvm_rmap_head *rmap_head,
048212d0 1783 struct kvm_memory_slot *slot,
8a9522d2 1784 gfn_t gfn, int level,
84504ef3
TY
1785 unsigned long data))
1786{
1787 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1788}
1789
1790int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1791{
3da0dd43
IE
1792 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1793}
1794
b3ae2096
TY
1795int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1796{
1797 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1798}
1799
3da0dd43
IE
1800void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1801{
8a8365c5 1802 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1803}
1804
018aabb5 1805static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1806 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1807 unsigned long data)
e930bffe 1808{
1e3f42f0 1809 u64 *sptep;
79f702a6 1810 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1811 int young = 0;
1812
f160c7b7
JS
1813 for_each_rmap_spte(rmap_head, &iter, sptep)
1814 young |= mmu_spte_age(sptep);
0d536790 1815
8a9522d2 1816 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1817 return young;
1818}
1819
018aabb5 1820static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1821 struct kvm_memory_slot *slot, gfn_t gfn,
1822 int level, unsigned long data)
8ee53820 1823{
1e3f42f0
TY
1824 u64 *sptep;
1825 struct rmap_iterator iter;
8ee53820 1826
83ef6c81
JS
1827 for_each_rmap_spte(rmap_head, &iter, sptep)
1828 if (is_accessed_spte(*sptep))
1829 return 1;
83ef6c81 1830 return 0;
8ee53820
AA
1831}
1832
53a27b39
MT
1833#define RMAP_RECYCLE_THRESHOLD 1000
1834
852e3c19 1835static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1836{
018aabb5 1837 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1838 struct kvm_mmu_page *sp;
1839
1840 sp = page_header(__pa(spte));
53a27b39 1841
018aabb5 1842 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1843
018aabb5 1844 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1845 kvm_flush_remote_tlbs(vcpu->kvm);
1846}
1847
57128468 1848int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1849{
57128468 1850 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1851}
1852
8ee53820
AA
1853int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1854{
1855 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1856}
1857
d6c69ee9 1858#ifdef MMU_DEBUG
47ad8e68 1859static int is_empty_shadow_page(u64 *spt)
6aa8b732 1860{
139bdb2d
AK
1861 u64 *pos;
1862 u64 *end;
1863
47ad8e68 1864 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1865 if (is_shadow_present_pte(*pos)) {
b8688d51 1866 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1867 pos, *pos);
6aa8b732 1868 return 0;
139bdb2d 1869 }
6aa8b732
AK
1870 return 1;
1871}
d6c69ee9 1872#endif
6aa8b732 1873
45221ab6
DH
1874/*
1875 * This value is the sum of all of the kvm instances's
1876 * kvm->arch.n_used_mmu_pages values. We need a global,
1877 * aggregate version in order to make the slab shrinker
1878 * faster
1879 */
1880static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1881{
1882 kvm->arch.n_used_mmu_pages += nr;
1883 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1884}
1885
834be0d8 1886static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1887{
fa4a2c08 1888 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1889 hlist_del(&sp->hash_link);
bd4c86ea
XG
1890 list_del(&sp->link);
1891 free_page((unsigned long)sp->spt);
834be0d8
GN
1892 if (!sp->role.direct)
1893 free_page((unsigned long)sp->gfns);
e8ad9a70 1894 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1895}
1896
cea0f0e7
AK
1897static unsigned kvm_page_table_hashfn(gfn_t gfn)
1898{
114df303 1899 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1900}
1901
714b93da 1902static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1903 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1904{
cea0f0e7
AK
1905 if (!parent_pte)
1906 return;
cea0f0e7 1907
67052b35 1908 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1909}
1910
4db35314 1911static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1912 u64 *parent_pte)
1913{
67052b35 1914 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1915}
1916
bcdd9a93
XG
1917static void drop_parent_pte(struct kvm_mmu_page *sp,
1918 u64 *parent_pte)
1919{
1920 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1921 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1922}
1923
47005792 1924static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1925{
67052b35 1926 struct kvm_mmu_page *sp;
7ddca7e4 1927
80feb89a
TY
1928 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1929 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1930 if (!direct)
80feb89a 1931 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1932 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1933
1934 /*
1935 * The active_mmu_pages list is the FIFO list, do not move the
1936 * page until it is zapped. kvm_zap_obsolete_pages depends on
1937 * this feature. See the comments in kvm_zap_obsolete_pages().
1938 */
67052b35 1939 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1940 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1941 return sp;
ad8cfbe3
MT
1942}
1943
67052b35 1944static void mark_unsync(u64 *spte);
1047df1f 1945static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1946{
74c4e63a
TY
1947 u64 *sptep;
1948 struct rmap_iterator iter;
1949
1950 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1951 mark_unsync(sptep);
1952 }
0074ff63
MT
1953}
1954
67052b35 1955static void mark_unsync(u64 *spte)
0074ff63 1956{
67052b35 1957 struct kvm_mmu_page *sp;
1047df1f 1958 unsigned int index;
0074ff63 1959
67052b35 1960 sp = page_header(__pa(spte));
1047df1f
XG
1961 index = spte - sp->spt;
1962 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1963 return;
1047df1f 1964 if (sp->unsync_children++)
0074ff63 1965 return;
1047df1f 1966 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1967}
1968
e8bc217a 1969static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1970 struct kvm_mmu_page *sp)
e8bc217a 1971{
1f50f1b3 1972 return 0;
e8bc217a
MT
1973}
1974
a7052897
MT
1975static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1976{
1977}
1978
0f53b5b1
XG
1979static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1980 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1981 const void *pte)
0f53b5b1
XG
1982{
1983 WARN_ON(1);
1984}
1985
60c8aec6
MT
1986#define KVM_PAGE_ARRAY_NR 16
1987
1988struct kvm_mmu_pages {
1989 struct mmu_page_and_offset {
1990 struct kvm_mmu_page *sp;
1991 unsigned int idx;
1992 } page[KVM_PAGE_ARRAY_NR];
1993 unsigned int nr;
1994};
1995
cded19f3
HE
1996static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1997 int idx)
4731d4c7 1998{
60c8aec6 1999 int i;
4731d4c7 2000
60c8aec6
MT
2001 if (sp->unsync)
2002 for (i=0; i < pvec->nr; i++)
2003 if (pvec->page[i].sp == sp)
2004 return 0;
2005
2006 pvec->page[pvec->nr].sp = sp;
2007 pvec->page[pvec->nr].idx = idx;
2008 pvec->nr++;
2009 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2010}
2011
fd951457
TY
2012static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2013{
2014 --sp->unsync_children;
2015 WARN_ON((int)sp->unsync_children < 0);
2016 __clear_bit(idx, sp->unsync_child_bitmap);
2017}
2018
60c8aec6
MT
2019static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2020 struct kvm_mmu_pages *pvec)
2021{
2022 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2023
37178b8b 2024 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2025 struct kvm_mmu_page *child;
4731d4c7
MT
2026 u64 ent = sp->spt[i];
2027
fd951457
TY
2028 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2029 clear_unsync_child_bit(sp, i);
2030 continue;
2031 }
7a8f1a74
XG
2032
2033 child = page_header(ent & PT64_BASE_ADDR_MASK);
2034
2035 if (child->unsync_children) {
2036 if (mmu_pages_add(pvec, child, i))
2037 return -ENOSPC;
2038
2039 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2040 if (!ret) {
2041 clear_unsync_child_bit(sp, i);
2042 continue;
2043 } else if (ret > 0) {
7a8f1a74 2044 nr_unsync_leaf += ret;
fd951457 2045 } else
7a8f1a74
XG
2046 return ret;
2047 } else if (child->unsync) {
2048 nr_unsync_leaf++;
2049 if (mmu_pages_add(pvec, child, i))
2050 return -ENOSPC;
2051 } else
fd951457 2052 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2053 }
2054
60c8aec6
MT
2055 return nr_unsync_leaf;
2056}
2057
e23d3fef
XG
2058#define INVALID_INDEX (-1)
2059
60c8aec6
MT
2060static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2061 struct kvm_mmu_pages *pvec)
2062{
0a47cd85 2063 pvec->nr = 0;
60c8aec6
MT
2064 if (!sp->unsync_children)
2065 return 0;
2066
e23d3fef 2067 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2068 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2069}
2070
4731d4c7
MT
2071static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2072{
2073 WARN_ON(!sp->unsync);
5e1b3ddb 2074 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2075 sp->unsync = 0;
2076 --kvm->stat.mmu_unsync;
2077}
2078
7775834a
XG
2079static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2080 struct list_head *invalid_list);
2081static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2082 struct list_head *invalid_list);
4731d4c7 2083
f34d251d
XG
2084/*
2085 * NOTE: we should pay more attention on the zapped-obsolete page
2086 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2087 * since it has been deleted from active_mmu_pages but still can be found
2088 * at hast list.
2089 *
f3414bc7 2090 * for_each_valid_sp() has skipped that kind of pages.
f34d251d 2091 */
f3414bc7 2092#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2093 hlist_for_each_entry(_sp, \
2094 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
f3414bc7
DM
2095 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2096 } else
1044b030
TY
2097
2098#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2099 for_each_valid_sp(_kvm, _sp, _gfn) \
2100 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2101
f918b443 2102/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2103static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2104 struct list_head *invalid_list)
4731d4c7 2105{
5b7e0102 2106 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 2107 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2108 return false;
4731d4c7
MT
2109 }
2110
1f50f1b3 2111 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
d98ba053 2112 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2113 return false;
4731d4c7
MT
2114 }
2115
1f50f1b3 2116 return true;
4731d4c7
MT
2117}
2118
35a70510
PB
2119static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2120 struct list_head *invalid_list,
2121 bool remote_flush, bool local_flush)
1d9dc7e0 2122{
35a70510
PB
2123 if (!list_empty(invalid_list)) {
2124 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2125 return;
2126 }
d98ba053 2127
35a70510
PB
2128 if (remote_flush)
2129 kvm_flush_remote_tlbs(vcpu->kvm);
2130 else if (local_flush)
2131 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2132}
2133
e37fa785
XG
2134#ifdef CONFIG_KVM_MMU_AUDIT
2135#include "mmu_audit.c"
2136#else
2137static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2138static void mmu_audit_disable(void) { }
2139#endif
2140
46971a2f
XG
2141static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2142{
2143 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2144}
2145
1f50f1b3 2146static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2147 struct list_head *invalid_list)
1d9dc7e0 2148{
9a43c5d9
PB
2149 kvm_unlink_unsync_page(vcpu->kvm, sp);
2150 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2151}
2152
9f1a122f 2153/* @gfn should be write-protected at the call site */
2a74003a
PB
2154static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2155 struct list_head *invalid_list)
9f1a122f 2156{
9f1a122f 2157 struct kvm_mmu_page *s;
2a74003a 2158 bool ret = false;
9f1a122f 2159
b67bfe0d 2160 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2161 if (!s->unsync)
9f1a122f
XG
2162 continue;
2163
2164 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2165 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2166 }
2167
2a74003a 2168 return ret;
9f1a122f
XG
2169}
2170
60c8aec6 2171struct mmu_page_path {
0a47cd85
PB
2172 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
2173 unsigned int idx[PT64_ROOT_LEVEL];
4731d4c7
MT
2174};
2175
60c8aec6 2176#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2177 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2178 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2179 i = mmu_pages_next(&pvec, &parents, i))
2180
cded19f3
HE
2181static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2182 struct mmu_page_path *parents,
2183 int i)
60c8aec6
MT
2184{
2185 int n;
2186
2187 for (n = i+1; n < pvec->nr; n++) {
2188 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2189 unsigned idx = pvec->page[n].idx;
2190 int level = sp->role.level;
60c8aec6 2191
0a47cd85
PB
2192 parents->idx[level-1] = idx;
2193 if (level == PT_PAGE_TABLE_LEVEL)
2194 break;
60c8aec6 2195
0a47cd85 2196 parents->parent[level-2] = sp;
60c8aec6
MT
2197 }
2198
2199 return n;
2200}
2201
0a47cd85
PB
2202static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2203 struct mmu_page_path *parents)
2204{
2205 struct kvm_mmu_page *sp;
2206 int level;
2207
2208 if (pvec->nr == 0)
2209 return 0;
2210
e23d3fef
XG
2211 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2212
0a47cd85
PB
2213 sp = pvec->page[0].sp;
2214 level = sp->role.level;
2215 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2216
2217 parents->parent[level-2] = sp;
2218
2219 /* Also set up a sentinel. Further entries in pvec are all
2220 * children of sp, so this element is never overwritten.
2221 */
2222 parents->parent[level-1] = NULL;
2223 return mmu_pages_next(pvec, parents, 0);
2224}
2225
cded19f3 2226static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2227{
60c8aec6
MT
2228 struct kvm_mmu_page *sp;
2229 unsigned int level = 0;
2230
2231 do {
2232 unsigned int idx = parents->idx[level];
60c8aec6
MT
2233 sp = parents->parent[level];
2234 if (!sp)
2235 return;
2236
e23d3fef 2237 WARN_ON(idx == INVALID_INDEX);
fd951457 2238 clear_unsync_child_bit(sp, idx);
60c8aec6 2239 level++;
0a47cd85 2240 } while (!sp->unsync_children);
60c8aec6 2241}
4731d4c7 2242
60c8aec6
MT
2243static void mmu_sync_children(struct kvm_vcpu *vcpu,
2244 struct kvm_mmu_page *parent)
2245{
2246 int i;
2247 struct kvm_mmu_page *sp;
2248 struct mmu_page_path parents;
2249 struct kvm_mmu_pages pages;
d98ba053 2250 LIST_HEAD(invalid_list);
50c9e6f3 2251 bool flush = false;
60c8aec6 2252
60c8aec6 2253 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2254 bool protected = false;
b1a36821
MT
2255
2256 for_each_sp(pages, sp, parents, i)
54bf36aa 2257 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2258
50c9e6f3 2259 if (protected) {
b1a36821 2260 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2261 flush = false;
2262 }
b1a36821 2263
60c8aec6 2264 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2265 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2266 mmu_pages_clear_parents(&parents);
2267 }
50c9e6f3
PB
2268 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2269 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2270 cond_resched_lock(&vcpu->kvm->mmu_lock);
2271 flush = false;
2272 }
60c8aec6 2273 }
50c9e6f3
PB
2274
2275 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2276}
2277
a30f47cb
XG
2278static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2279{
e5691a81 2280 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2281}
2282
2283static void clear_sp_write_flooding_count(u64 *spte)
2284{
2285 struct kvm_mmu_page *sp = page_header(__pa(spte));
2286
2287 __clear_sp_write_flooding_count(sp);
2288}
2289
cea0f0e7
AK
2290static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2291 gfn_t gfn,
2292 gva_t gaddr,
2293 unsigned level,
f6e2c02b 2294 int direct,
bb11c6c9 2295 unsigned access)
cea0f0e7
AK
2296{
2297 union kvm_mmu_page_role role;
cea0f0e7 2298 unsigned quadrant;
9f1a122f 2299 struct kvm_mmu_page *sp;
9f1a122f 2300 bool need_sync = false;
2a74003a 2301 bool flush = false;
f3414bc7 2302 int collisions = 0;
2a74003a 2303 LIST_HEAD(invalid_list);
cea0f0e7 2304
a770f6f2 2305 role = vcpu->arch.mmu.base_role;
cea0f0e7 2306 role.level = level;
f6e2c02b 2307 role.direct = direct;
84b0c8c6 2308 if (role.direct)
5b7e0102 2309 role.cr4_pae = 0;
41074d07 2310 role.access = access;
c5a78f2b
JR
2311 if (!vcpu->arch.mmu.direct_map
2312 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2313 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2314 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2315 role.quadrant = quadrant;
2316 }
f3414bc7
DM
2317 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2318 if (sp->gfn != gfn) {
2319 collisions++;
2320 continue;
2321 }
2322
7ae680eb
XG
2323 if (!need_sync && sp->unsync)
2324 need_sync = true;
4731d4c7 2325
7ae680eb
XG
2326 if (sp->role.word != role.word)
2327 continue;
4731d4c7 2328
2a74003a
PB
2329 if (sp->unsync) {
2330 /* The page is good, but __kvm_sync_page might still end
2331 * up zapping it. If so, break in order to rebuild it.
2332 */
2333 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2334 break;
2335
2336 WARN_ON(!list_empty(&invalid_list));
2337 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2338 }
e02aa901 2339
98bba238 2340 if (sp->unsync_children)
a8eeb04a 2341 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2342
a30f47cb 2343 __clear_sp_write_flooding_count(sp);
7ae680eb 2344 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2345 goto out;
7ae680eb 2346 }
47005792 2347
dfc5aa00 2348 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2349
2350 sp = kvm_mmu_alloc_page(vcpu, direct);
2351
4db35314
AK
2352 sp->gfn = gfn;
2353 sp->role = role;
7ae680eb
XG
2354 hlist_add_head(&sp->hash_link,
2355 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2356 if (!direct) {
56ca57f9
XG
2357 /*
2358 * we should do write protection before syncing pages
2359 * otherwise the content of the synced shadow page may
2360 * be inconsistent with guest page table.
2361 */
2362 account_shadowed(vcpu->kvm, sp);
2363 if (level == PT_PAGE_TABLE_LEVEL &&
2364 rmap_write_protect(vcpu, gfn))
b1a36821 2365 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f 2366
9f1a122f 2367 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2368 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2369 }
5304b8d3 2370 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2371 clear_page(sp->spt);
f691fe1d 2372 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2373
2374 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2375out:
2376 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2377 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2378 return sp;
cea0f0e7
AK
2379}
2380
2d11123a
AK
2381static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2382 struct kvm_vcpu *vcpu, u64 addr)
2383{
2384 iterator->addr = addr;
2385 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2386 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2387
2388 if (iterator->level == PT64_ROOT_LEVEL &&
2389 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2390 !vcpu->arch.mmu.direct_map)
2391 --iterator->level;
2392
2d11123a
AK
2393 if (iterator->level == PT32E_ROOT_LEVEL) {
2394 iterator->shadow_addr
2395 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2396 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2397 --iterator->level;
2398 if (!iterator->shadow_addr)
2399 iterator->level = 0;
2400 }
2401}
2402
2403static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2404{
2405 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2406 return false;
4d88954d 2407
2d11123a
AK
2408 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2409 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2410 return true;
2411}
2412
c2a2ac2b
XG
2413static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2414 u64 spte)
2d11123a 2415{
c2a2ac2b 2416 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2417 iterator->level = 0;
2418 return;
2419 }
2420
c2a2ac2b 2421 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2422 --iterator->level;
2423}
2424
c2a2ac2b
XG
2425static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2426{
2427 return __shadow_walk_next(iterator, *iterator->sptep);
2428}
2429
98bba238
TY
2430static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2431 struct kvm_mmu_page *sp)
32ef26a3
AK
2432{
2433 u64 spte;
2434
ffb128c8 2435 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2436
ffb128c8 2437 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2438 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2439
2440 if (sp_ad_disabled(sp))
2441 spte |= shadow_acc_track_value;
2442 else
2443 spte |= shadow_accessed_mask;
24db2734 2444
1df9f2dc 2445 mmu_spte_set(sptep, spte);
98bba238
TY
2446
2447 mmu_page_add_parent_pte(vcpu, sp, sptep);
2448
2449 if (sp->unsync_children || sp->unsync)
2450 mark_unsync(sptep);
32ef26a3
AK
2451}
2452
a357bd22
AK
2453static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2454 unsigned direct_access)
2455{
2456 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2457 struct kvm_mmu_page *child;
2458
2459 /*
2460 * For the direct sp, if the guest pte's dirty bit
2461 * changed form clean to dirty, it will corrupt the
2462 * sp's access: allow writable in the read-only sp,
2463 * so we should update the spte at this point to get
2464 * a new sp with the correct access.
2465 */
2466 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2467 if (child->role.access == direct_access)
2468 return;
2469
bcdd9a93 2470 drop_parent_pte(child, sptep);
a357bd22
AK
2471 kvm_flush_remote_tlbs(vcpu->kvm);
2472 }
2473}
2474
505aef8f 2475static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2476 u64 *spte)
2477{
2478 u64 pte;
2479 struct kvm_mmu_page *child;
2480
2481 pte = *spte;
2482 if (is_shadow_present_pte(pte)) {
505aef8f 2483 if (is_last_spte(pte, sp->role.level)) {
c3707958 2484 drop_spte(kvm, spte);
505aef8f
XG
2485 if (is_large_pte(pte))
2486 --kvm->stat.lpages;
2487 } else {
38e3b2b2 2488 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2489 drop_parent_pte(child, spte);
38e3b2b2 2490 }
505aef8f
XG
2491 return true;
2492 }
2493
2494 if (is_mmio_spte(pte))
ce88decf 2495 mmu_spte_clear_no_track(spte);
c3707958 2496
505aef8f 2497 return false;
38e3b2b2
XG
2498}
2499
90cb0529 2500static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2501 struct kvm_mmu_page *sp)
a436036b 2502{
697fe2e2 2503 unsigned i;
697fe2e2 2504
38e3b2b2
XG
2505 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2506 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2507}
2508
31aa2b44 2509static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2510{
1e3f42f0
TY
2511 u64 *sptep;
2512 struct rmap_iterator iter;
a436036b 2513
018aabb5 2514 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2515 drop_parent_pte(sp, sptep);
31aa2b44
AK
2516}
2517
60c8aec6 2518static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2519 struct kvm_mmu_page *parent,
2520 struct list_head *invalid_list)
4731d4c7 2521{
60c8aec6
MT
2522 int i, zapped = 0;
2523 struct mmu_page_path parents;
2524 struct kvm_mmu_pages pages;
4731d4c7 2525
60c8aec6 2526 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2527 return 0;
60c8aec6 2528
60c8aec6
MT
2529 while (mmu_unsync_walk(parent, &pages)) {
2530 struct kvm_mmu_page *sp;
2531
2532 for_each_sp(pages, sp, parents, i) {
7775834a 2533 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2534 mmu_pages_clear_parents(&parents);
77662e00 2535 zapped++;
60c8aec6 2536 }
60c8aec6
MT
2537 }
2538
2539 return zapped;
4731d4c7
MT
2540}
2541
7775834a
XG
2542static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2543 struct list_head *invalid_list)
31aa2b44 2544{
4731d4c7 2545 int ret;
f691fe1d 2546
7775834a 2547 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2548 ++kvm->stat.mmu_shadow_zapped;
7775834a 2549 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2550 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2551 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2552
f6e2c02b 2553 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2554 unaccount_shadowed(kvm, sp);
5304b8d3 2555
4731d4c7
MT
2556 if (sp->unsync)
2557 kvm_unlink_unsync_page(kvm, sp);
4db35314 2558 if (!sp->root_count) {
54a4f023
GJ
2559 /* Count self */
2560 ret++;
7775834a 2561 list_move(&sp->link, invalid_list);
aa6bd187 2562 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2563 } else {
5b5c6a5a 2564 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2565
2566 /*
2567 * The obsolete pages can not be used on any vcpus.
2568 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2569 */
2570 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2571 kvm_reload_remote_mmus(kvm);
2e53d63a 2572 }
7775834a
XG
2573
2574 sp->role.invalid = 1;
4731d4c7 2575 return ret;
a436036b
AK
2576}
2577
7775834a
XG
2578static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2579 struct list_head *invalid_list)
2580{
945315b9 2581 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2582
2583 if (list_empty(invalid_list))
2584 return;
2585
c142786c 2586 /*
9753f529
LT
2587 * We need to make sure everyone sees our modifications to
2588 * the page tables and see changes to vcpu->mode here. The barrier
2589 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2590 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2591 *
2592 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2593 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2594 */
2595 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2596
945315b9 2597 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2598 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2599 kvm_mmu_free_page(sp);
945315b9 2600 }
7775834a
XG
2601}
2602
5da59607
TY
2603static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2604 struct list_head *invalid_list)
2605{
2606 struct kvm_mmu_page *sp;
2607
2608 if (list_empty(&kvm->arch.active_mmu_pages))
2609 return false;
2610
d74c0e6b
GT
2611 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2612 struct kvm_mmu_page, link);
5da59607
TY
2613 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2614
2615 return true;
2616}
2617
82ce2c96
IE
2618/*
2619 * Changing the number of mmu pages allocated to the vm
49d5ca26 2620 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2621 */
49d5ca26 2622void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2623{
d98ba053 2624 LIST_HEAD(invalid_list);
82ce2c96 2625
b34cb590
TY
2626 spin_lock(&kvm->mmu_lock);
2627
49d5ca26 2628 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2629 /* Need to free some mmu pages to achieve the goal. */
2630 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2631 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2632 break;
82ce2c96 2633
aa6bd187 2634 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2635 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2636 }
82ce2c96 2637
49d5ca26 2638 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2639
2640 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2641}
2642
1cb3f3ae 2643int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2644{
4db35314 2645 struct kvm_mmu_page *sp;
d98ba053 2646 LIST_HEAD(invalid_list);
a436036b
AK
2647 int r;
2648
9ad17b10 2649 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2650 r = 0;
1cb3f3ae 2651 spin_lock(&kvm->mmu_lock);
b67bfe0d 2652 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2653 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2654 sp->role.word);
2655 r = 1;
f41d335a 2656 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2657 }
d98ba053 2658 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2659 spin_unlock(&kvm->mmu_lock);
2660
a436036b 2661 return r;
cea0f0e7 2662}
1cb3f3ae 2663EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2664
5c520e90 2665static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2666{
2667 trace_kvm_mmu_unsync_page(sp);
2668 ++vcpu->kvm->stat.mmu_unsync;
2669 sp->unsync = 1;
2670
2671 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2672}
2673
3d0c27ad
XG
2674static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2675 bool can_unsync)
4731d4c7 2676{
5c520e90 2677 struct kvm_mmu_page *sp;
4731d4c7 2678
3d0c27ad
XG
2679 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2680 return true;
9cf5cf5a 2681
5c520e90 2682 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2683 if (!can_unsync)
3d0c27ad 2684 return true;
36a2e677 2685
5c520e90
XG
2686 if (sp->unsync)
2687 continue;
9cf5cf5a 2688
5c520e90
XG
2689 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2690 kvm_unsync_page(vcpu, sp);
4731d4c7 2691 }
3d0c27ad
XG
2692
2693 return false;
4731d4c7
MT
2694}
2695
ba049e93 2696static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2697{
2698 if (pfn_valid(pfn))
2699 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2700
2701 return true;
2702}
2703
d555c333 2704static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2705 unsigned pte_access, int level,
ba049e93 2706 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2707 bool can_unsync, bool host_writable)
1c4f1fd6 2708{
ffb128c8 2709 u64 spte = 0;
1e73f9dd 2710 int ret = 0;
ac8d57e5 2711 struct kvm_mmu_page *sp;
64d4d521 2712
54bf36aa 2713 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2714 return 0;
2715
ac8d57e5
PF
2716 sp = page_header(__pa(sptep));
2717 if (sp_ad_disabled(sp))
2718 spte |= shadow_acc_track_value;
2719
d95c5568
BD
2720 /*
2721 * For the EPT case, shadow_present_mask is 0 if hardware
2722 * supports exec-only page table entries. In that case,
2723 * ACC_USER_MASK and shadow_user_mask are used to represent
2724 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2725 */
ffb128c8 2726 spte |= shadow_present_mask;
947da538 2727 if (!speculative)
ac8d57e5 2728 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 2729
7b52345e
SY
2730 if (pte_access & ACC_EXEC_MASK)
2731 spte |= shadow_x_mask;
2732 else
2733 spte |= shadow_nx_mask;
49fde340 2734
1c4f1fd6 2735 if (pte_access & ACC_USER_MASK)
7b52345e 2736 spte |= shadow_user_mask;
49fde340 2737
852e3c19 2738 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2739 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2740 if (tdp_enabled)
4b12f0de 2741 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2742 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2743
9bdbba13 2744 if (host_writable)
1403283a 2745 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2746 else
2747 pte_access &= ~ACC_WRITE_MASK;
1403283a 2748
35149e21 2749 spte |= (u64)pfn << PAGE_SHIFT;
d0ec49d4 2750 spte |= shadow_me_mask;
1c4f1fd6 2751
c2288505 2752 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2753
c2193463 2754 /*
7751babd
XG
2755 * Other vcpu creates new sp in the window between
2756 * mapping_level() and acquiring mmu-lock. We can
2757 * allow guest to retry the access, the mapping can
2758 * be fixed if guest refault.
c2193463 2759 */
852e3c19 2760 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2761 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2762 goto done;
38187c83 2763
49fde340 2764 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2765
ecc5589f
MT
2766 /*
2767 * Optimization: for pte sync, if spte was writable the hash
2768 * lookup is unnecessary (and expensive). Write protection
2769 * is responsibility of mmu_get_page / kvm_sync_page.
2770 * Same reasoning can be applied to dirty page accounting.
2771 */
8dae4445 2772 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2773 goto set_pte;
2774
4731d4c7 2775 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2776 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2777 __func__, gfn);
1e73f9dd 2778 ret = 1;
1c4f1fd6 2779 pte_access &= ~ACC_WRITE_MASK;
49fde340 2780 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2781 }
2782 }
2783
9b51a630 2784 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2785 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 2786 spte |= spte_shadow_dirty_mask(spte);
9b51a630 2787 }
1c4f1fd6 2788
f160c7b7
JS
2789 if (speculative)
2790 spte = mark_spte_for_access_track(spte);
2791
38187c83 2792set_pte:
6e7d0354 2793 if (mmu_spte_update(sptep, spte))
b330aa0c 2794 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2795done:
1e73f9dd
MT
2796 return ret;
2797}
2798
029499b4 2799static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
ba049e93 2800 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
029499b4 2801 bool speculative, bool host_writable)
1e73f9dd
MT
2802{
2803 int was_rmapped = 0;
53a27b39 2804 int rmap_count;
029499b4 2805 bool emulate = false;
1e73f9dd 2806
f7616203
XG
2807 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2808 *sptep, write_fault, gfn);
1e73f9dd 2809
afd28fe1 2810 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2811 /*
2812 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2813 * the parent of the now unreachable PTE.
2814 */
852e3c19
JR
2815 if (level > PT_PAGE_TABLE_LEVEL &&
2816 !is_large_pte(*sptep)) {
1e73f9dd 2817 struct kvm_mmu_page *child;
d555c333 2818 u64 pte = *sptep;
1e73f9dd
MT
2819
2820 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2821 drop_parent_pte(child, sptep);
3be2264b 2822 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2823 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2824 pgprintk("hfn old %llx new %llx\n",
d555c333 2825 spte_to_pfn(*sptep), pfn);
c3707958 2826 drop_spte(vcpu->kvm, sptep);
91546356 2827 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2828 } else
2829 was_rmapped = 1;
1e73f9dd 2830 }
852e3c19 2831
c2288505
XG
2832 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2833 true, host_writable)) {
1e73f9dd 2834 if (write_fault)
029499b4 2835 emulate = true;
77c3913b 2836 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2837 }
1e73f9dd 2838
029499b4
TY
2839 if (unlikely(is_mmio_spte(*sptep)))
2840 emulate = true;
ce88decf 2841
d555c333 2842 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2843 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2844 is_large_pte(*sptep)? "2MB" : "4kB",
f160c7b7 2845 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
a205bc19 2846 *sptep, sptep);
d555c333 2847 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2848 ++vcpu->kvm->stat.lpages;
2849
ffb61bb3 2850 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2851 if (!was_rmapped) {
2852 rmap_count = rmap_add(vcpu, sptep, gfn);
2853 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2854 rmap_recycle(vcpu, sptep, gfn);
2855 }
1c4f1fd6 2856 }
cb9aaa30 2857
f3ac1a4b 2858 kvm_release_pfn_clean(pfn);
029499b4
TY
2859
2860 return emulate;
1c4f1fd6
AK
2861}
2862
ba049e93 2863static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2864 bool no_dirty_log)
2865{
2866 struct kvm_memory_slot *slot;
957ed9ef 2867
5d163b1c 2868 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2869 if (!slot)
6c8ee57b 2870 return KVM_PFN_ERR_FAULT;
957ed9ef 2871
037d92dc 2872 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2873}
2874
2875static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2876 struct kvm_mmu_page *sp,
2877 u64 *start, u64 *end)
2878{
2879 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2880 struct kvm_memory_slot *slot;
957ed9ef
XG
2881 unsigned access = sp->role.access;
2882 int i, ret;
2883 gfn_t gfn;
2884
2885 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2886 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2887 if (!slot)
957ed9ef
XG
2888 return -1;
2889
d9ef13c2 2890 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2891 if (ret <= 0)
2892 return -1;
2893
2894 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
2895 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2896 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
2897
2898 return 0;
2899}
2900
2901static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2902 struct kvm_mmu_page *sp, u64 *sptep)
2903{
2904 u64 *spte, *start = NULL;
2905 int i;
2906
2907 WARN_ON(!sp->role.direct);
2908
2909 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2910 spte = sp->spt + i;
2911
2912 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2913 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2914 if (!start)
2915 continue;
2916 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2917 break;
2918 start = NULL;
2919 } else if (!start)
2920 start = spte;
2921 }
2922}
2923
2924static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2925{
2926 struct kvm_mmu_page *sp;
2927
ac8d57e5
PF
2928 sp = page_header(__pa(sptep));
2929
957ed9ef 2930 /*
ac8d57e5
PF
2931 * Without accessed bits, there's no way to distinguish between
2932 * actually accessed translations and prefetched, so disable pte
2933 * prefetch if accessed bits aren't available.
957ed9ef 2934 */
ac8d57e5 2935 if (sp_ad_disabled(sp))
957ed9ef
XG
2936 return;
2937
957ed9ef
XG
2938 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2939 return;
2940
2941 __direct_pte_prefetch(vcpu, sp, sptep);
2942}
2943
7ee0e5b2 2944static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 2945 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 2946{
9f652d21 2947 struct kvm_shadow_walk_iterator iterator;
140754bc 2948 struct kvm_mmu_page *sp;
b90a0e6c 2949 int emulate = 0;
140754bc 2950 gfn_t pseudo_gfn;
6aa8b732 2951
989c6b34
MT
2952 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2953 return 0;
2954
9f652d21 2955 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2956 if (iterator.level == level) {
029499b4
TY
2957 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2958 write, level, gfn, pfn, prefault,
2959 map_writable);
957ed9ef 2960 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2961 ++vcpu->stat.pf_fixed;
2962 break;
6aa8b732
AK
2963 }
2964
404381c5 2965 drop_large_spte(vcpu, iterator.sptep);
c3707958 2966 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2967 u64 base_addr = iterator.addr;
2968
2969 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2970 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 2971 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 2972 iterator.level - 1, 1, ACC_ALL);
140754bc 2973
98bba238 2974 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
2975 }
2976 }
b90a0e6c 2977 return emulate;
6aa8b732
AK
2978}
2979
77db5cbd 2980static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2981{
77db5cbd
HY
2982 siginfo_t info;
2983
2984 info.si_signo = SIGBUS;
2985 info.si_errno = 0;
2986 info.si_code = BUS_MCEERR_AR;
2987 info.si_addr = (void __user *)address;
2988 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2989
77db5cbd 2990 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2991}
2992
ba049e93 2993static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2994{
4d8b81ab
XG
2995 /*
2996 * Do not cache the mmio info caused by writing the readonly gfn
2997 * into the spte otherwise read access on readonly gfn also can
2998 * caused mmio page fault and treat it as mmio access.
2999 * Return 1 to tell kvm to emulate it.
3000 */
3001 if (pfn == KVM_PFN_ERR_RO_FAULT)
3002 return 1;
3003
e6c1502b 3004 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3005 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
bf998156 3006 return 0;
d7c55201 3007 }
edba23e5 3008
d7c55201 3009 return -EFAULT;
bf998156
HY
3010}
3011
936a5fe6 3012static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
3013 gfn_t *gfnp, kvm_pfn_t *pfnp,
3014 int *levelp)
936a5fe6 3015{
ba049e93 3016 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
3017 gfn_t gfn = *gfnp;
3018 int level = *levelp;
3019
3020 /*
3021 * Check if it's a transparent hugepage. If this would be an
3022 * hugetlbfs page, level wouldn't be set to
3023 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3024 * here.
3025 */
bf4bea8e 3026 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6 3027 level == PT_PAGE_TABLE_LEVEL &&
127393fb 3028 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 3029 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
3030 unsigned long mask;
3031 /*
3032 * mmu_notifier_retry was successful and we hold the
3033 * mmu_lock here, so the pmd can't become splitting
3034 * from under us, and in turn
3035 * __split_huge_page_refcount() can't run from under
3036 * us and we can safely transfer the refcount from
3037 * PG_tail to PG_head as we switch the pfn to tail to
3038 * head.
3039 */
3040 *levelp = level = PT_DIRECTORY_LEVEL;
3041 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3042 VM_BUG_ON((gfn & mask) != (pfn & mask));
3043 if (pfn & mask) {
3044 gfn &= ~mask;
3045 *gfnp = gfn;
3046 kvm_release_pfn_clean(pfn);
3047 pfn &= ~mask;
c3586667 3048 kvm_get_pfn(pfn);
936a5fe6
AA
3049 *pfnp = pfn;
3050 }
3051 }
3052}
3053
d7c55201 3054static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 3055 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 3056{
d7c55201 3057 /* The pfn is invalid, report the error! */
81c52c56 3058 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3059 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3060 return true;
d7c55201
XG
3061 }
3062
ce88decf 3063 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 3064 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 3065
798e88b3 3066 return false;
d7c55201
XG
3067}
3068
e5552fd2 3069static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3070{
1c118b82
XG
3071 /*
3072 * Do not fix the mmio spte with invalid generation number which
3073 * need to be updated by slow page fault path.
3074 */
3075 if (unlikely(error_code & PFERR_RSVD_MASK))
3076 return false;
3077
f160c7b7
JS
3078 /* See if the page fault is due to an NX violation */
3079 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3080 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3081 return false;
3082
c7ba5b48 3083 /*
f160c7b7
JS
3084 * #PF can be fast if:
3085 * 1. The shadow page table entry is not present, which could mean that
3086 * the fault is potentially caused by access tracking (if enabled).
3087 * 2. The shadow page table entry is present and the fault
3088 * is caused by write-protect, that means we just need change the W
3089 * bit of the spte which can be done out of mmu-lock.
3090 *
3091 * However, if access tracking is disabled we know that a non-present
3092 * page must be a genuine page fault where we have to create a new SPTE.
3093 * So, if access tracking is disabled, we return true only for write
3094 * accesses to a present page.
c7ba5b48 3095 */
c7ba5b48 3096
f160c7b7
JS
3097 return shadow_acc_track_mask != 0 ||
3098 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3099 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3100}
3101
97dceba2
JS
3102/*
3103 * Returns true if the SPTE was fixed successfully. Otherwise,
3104 * someone else modified the SPTE from its original value.
3105 */
c7ba5b48 3106static bool
92a476cb 3107fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3108 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3109{
c7ba5b48
XG
3110 gfn_t gfn;
3111
3112 WARN_ON(!sp->role.direct);
3113
9b51a630
KH
3114 /*
3115 * Theoretically we could also set dirty bit (and flush TLB) here in
3116 * order to eliminate unnecessary PML logging. See comments in
3117 * set_spte. But fast_page_fault is very unlikely to happen with PML
3118 * enabled, so we do not do this. This might result in the same GPA
3119 * to be logged in PML buffer again when the write really happens, and
3120 * eventually to be called by mark_page_dirty twice. But it's also no
3121 * harm. This also avoids the TLB flush needed after setting dirty bit
3122 * so non-PML cases won't be impacted.
3123 *
3124 * Compare with set_spte where instead shadow_dirty_mask is set.
3125 */
f160c7b7 3126 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3127 return false;
3128
d3e328f2 3129 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3130 /*
3131 * The gfn of direct spte is stable since it is
3132 * calculated by sp->gfn.
3133 */
3134 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3135 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3136 }
c7ba5b48
XG
3137
3138 return true;
3139}
3140
d3e328f2
JS
3141static bool is_access_allowed(u32 fault_err_code, u64 spte)
3142{
3143 if (fault_err_code & PFERR_FETCH_MASK)
3144 return is_executable_pte(spte);
3145
3146 if (fault_err_code & PFERR_WRITE_MASK)
3147 return is_writable_pte(spte);
3148
3149 /* Fault was on Read access */
3150 return spte & PT_PRESENT_MASK;
3151}
3152
c7ba5b48
XG
3153/*
3154 * Return value:
3155 * - true: let the vcpu to access on the same address again.
3156 * - false: let the real page fault path to fix it.
3157 */
3158static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3159 u32 error_code)
3160{
3161 struct kvm_shadow_walk_iterator iterator;
92a476cb 3162 struct kvm_mmu_page *sp;
97dceba2 3163 bool fault_handled = false;
c7ba5b48 3164 u64 spte = 0ull;
97dceba2 3165 uint retry_count = 0;
c7ba5b48 3166
37f6a4e2
MT
3167 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3168 return false;
3169
e5552fd2 3170 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3171 return false;
3172
3173 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3174
97dceba2 3175 do {
d3e328f2 3176 u64 new_spte;
c7ba5b48 3177
d162f30a
JS
3178 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3179 if (!is_shadow_present_pte(spte) ||
3180 iterator.level < level)
3181 break;
3182
97dceba2
JS
3183 sp = page_header(__pa(iterator.sptep));
3184 if (!is_last_spte(spte, sp->role.level))
3185 break;
c7ba5b48 3186
97dceba2 3187 /*
f160c7b7
JS
3188 * Check whether the memory access that caused the fault would
3189 * still cause it if it were to be performed right now. If not,
3190 * then this is a spurious fault caused by TLB lazily flushed,
3191 * or some other CPU has already fixed the PTE after the
3192 * current CPU took the fault.
97dceba2
JS
3193 *
3194 * Need not check the access of upper level table entries since
3195 * they are always ACC_ALL.
3196 */
d3e328f2
JS
3197 if (is_access_allowed(error_code, spte)) {
3198 fault_handled = true;
3199 break;
3200 }
f160c7b7 3201
d3e328f2
JS
3202 new_spte = spte;
3203
3204 if (is_access_track_spte(spte))
3205 new_spte = restore_acc_track_spte(new_spte);
3206
3207 /*
3208 * Currently, to simplify the code, write-protection can
3209 * be removed in the fast path only if the SPTE was
3210 * write-protected for dirty-logging or access tracking.
3211 */
3212 if ((error_code & PFERR_WRITE_MASK) &&
3213 spte_can_locklessly_be_made_writable(spte))
3214 {
3215 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3216
3217 /*
d3e328f2
JS
3218 * Do not fix write-permission on the large spte. Since
3219 * we only dirty the first page into the dirty-bitmap in
3220 * fast_pf_fix_direct_spte(), other pages are missed
3221 * if its slot has dirty logging enabled.
3222 *
3223 * Instead, we let the slow page fault path create a
3224 * normal spte to fix the access.
3225 *
3226 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3227 */
d3e328f2 3228 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3229 break;
97dceba2 3230 }
c7ba5b48 3231
f160c7b7 3232 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3233 if (new_spte == spte ||
3234 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3235 break;
3236
3237 /*
3238 * Currently, fast page fault only works for direct mapping
3239 * since the gfn is not stable for indirect shadow page. See
3240 * Documentation/virtual/kvm/locking.txt to get more detail.
3241 */
3242 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3243 iterator.sptep, spte,
d3e328f2 3244 new_spte);
97dceba2
JS
3245 if (fault_handled)
3246 break;
3247
3248 if (++retry_count > 4) {
3249 printk_once(KERN_WARNING
3250 "kvm: Fast #PF retrying more than 4 times.\n");
3251 break;
3252 }
3253
97dceba2 3254 } while (true);
c126d94f 3255
a72faf25 3256 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
97dceba2 3257 spte, fault_handled);
c7ba5b48
XG
3258 walk_shadow_page_lockless_end(vcpu);
3259
97dceba2 3260 return fault_handled;
c7ba5b48
XG
3261}
3262
78b2c54a 3263static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3264 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
450e0b41 3265static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3266
c7ba5b48
XG
3267static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3268 gfn_t gfn, bool prefault)
10589a46
MT
3269{
3270 int r;
852e3c19 3271 int level;
fd136902 3272 bool force_pt_level = false;
ba049e93 3273 kvm_pfn_t pfn;
e930bffe 3274 unsigned long mmu_seq;
c7ba5b48 3275 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3276
fd136902 3277 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3278 if (likely(!force_pt_level)) {
936a5fe6
AA
3279 /*
3280 * This path builds a PAE pagetable - so we can map
3281 * 2mb pages at maximum. Therefore check if the level
3282 * is larger than that.
3283 */
3284 if (level > PT_DIRECTORY_LEVEL)
3285 level = PT_DIRECTORY_LEVEL;
852e3c19 3286
936a5fe6 3287 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3288 }
05da4558 3289
c7ba5b48
XG
3290 if (fast_page_fault(vcpu, v, level, error_code))
3291 return 0;
3292
e930bffe 3293 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3294 smp_rmb();
060c2abe 3295
78b2c54a 3296 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3297 return 0;
aaee2c94 3298
d7c55201
XG
3299 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3300 return r;
d196e343 3301
aaee2c94 3302 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3303 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3304 goto out_unlock;
450e0b41 3305 make_mmu_pages_available(vcpu);
936a5fe6
AA
3306 if (likely(!force_pt_level))
3307 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3308 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3309 spin_unlock(&vcpu->kvm->mmu_lock);
3310
10589a46 3311 return r;
e930bffe
AA
3312
3313out_unlock:
3314 spin_unlock(&vcpu->kvm->mmu_lock);
3315 kvm_release_pfn_clean(pfn);
3316 return 0;
10589a46
MT
3317}
3318
3319
17ac10ad
AK
3320static void mmu_free_roots(struct kvm_vcpu *vcpu)
3321{
3322 int i;
4db35314 3323 struct kvm_mmu_page *sp;
d98ba053 3324 LIST_HEAD(invalid_list);
17ac10ad 3325
ad312c7c 3326 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3327 return;
35af577a 3328
81407ca5
JR
3329 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3330 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3331 vcpu->arch.mmu.direct_map)) {
ad312c7c 3332 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3333
35af577a 3334 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3335 sp = page_header(root);
3336 --sp->root_count;
d98ba053
XG
3337 if (!sp->root_count && sp->role.invalid) {
3338 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3339 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3340 }
aaee2c94 3341 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3342 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3343 return;
3344 }
35af577a
GN
3345
3346 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3347 for (i = 0; i < 4; ++i) {
ad312c7c 3348 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3349
417726a3 3350 if (root) {
417726a3 3351 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3352 sp = page_header(root);
3353 --sp->root_count;
2e53d63a 3354 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3355 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3356 &invalid_list);
417726a3 3357 }
ad312c7c 3358 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3359 }
d98ba053 3360 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3361 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3362 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3363}
3364
8986ecc0
MT
3365static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3366{
3367 int ret = 0;
3368
3369 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3370 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3371 ret = 1;
3372 }
3373
3374 return ret;
3375}
3376
651dd37a
JR
3377static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3378{
3379 struct kvm_mmu_page *sp;
7ebaf15e 3380 unsigned i;
651dd37a
JR
3381
3382 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3383 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3384 make_mmu_pages_available(vcpu);
bb11c6c9 3385 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3386 ++sp->root_count;
3387 spin_unlock(&vcpu->kvm->mmu_lock);
3388 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3389 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3390 for (i = 0; i < 4; ++i) {
3391 hpa_t root = vcpu->arch.mmu.pae_root[i];
3392
fa4a2c08 3393 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3394 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3395 make_mmu_pages_available(vcpu);
649497d1 3396 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3397 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3398 root = __pa(sp->spt);
3399 ++sp->root_count;
3400 spin_unlock(&vcpu->kvm->mmu_lock);
3401 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3402 }
6292757f 3403 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3404 } else
3405 BUG();
3406
3407 return 0;
3408}
3409
3410static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3411{
4db35314 3412 struct kvm_mmu_page *sp;
81407ca5
JR
3413 u64 pdptr, pm_mask;
3414 gfn_t root_gfn;
3415 int i;
3bb65a22 3416
5777ed34 3417 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3418
651dd37a
JR
3419 if (mmu_check_root(vcpu, root_gfn))
3420 return 1;
3421
3422 /*
3423 * Do we shadow a long mode page table? If so we need to
3424 * write-protect the guests page table root.
3425 */
3426 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3427 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3428
fa4a2c08 3429 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3430
8facbbff 3431 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3432 make_mmu_pages_available(vcpu);
651dd37a 3433 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
bb11c6c9 3434 0, ACC_ALL);
4db35314
AK
3435 root = __pa(sp->spt);
3436 ++sp->root_count;
8facbbff 3437 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3438 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3439 return 0;
17ac10ad 3440 }
f87f9288 3441
651dd37a
JR
3442 /*
3443 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3444 * or a PAE 3-level page table. In either case we need to be aware that
3445 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3446 */
81407ca5
JR
3447 pm_mask = PT_PRESENT_MASK;
3448 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3449 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3450
17ac10ad 3451 for (i = 0; i < 4; ++i) {
ad312c7c 3452 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3453
fa4a2c08 3454 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3455 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3456 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
812f30b2 3457 if (!(pdptr & PT_PRESENT_MASK)) {
ad312c7c 3458 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3459 continue;
3460 }
6de4f3ad 3461 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3462 if (mmu_check_root(vcpu, root_gfn))
3463 return 1;
5a7388c2 3464 }
8facbbff 3465 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3466 make_mmu_pages_available(vcpu);
bb11c6c9
TY
3467 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3468 0, ACC_ALL);
4db35314
AK
3469 root = __pa(sp->spt);
3470 ++sp->root_count;
8facbbff
AK
3471 spin_unlock(&vcpu->kvm->mmu_lock);
3472
81407ca5 3473 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3474 }
6292757f 3475 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3476
3477 /*
3478 * If we shadow a 32 bit page table with a long mode page
3479 * table we enter this path.
3480 */
3481 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3482 if (vcpu->arch.mmu.lm_root == NULL) {
3483 /*
3484 * The additional page necessary for this is only
3485 * allocated on demand.
3486 */
3487
3488 u64 *lm_root;
3489
3490 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3491 if (lm_root == NULL)
3492 return 1;
3493
3494 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3495
3496 vcpu->arch.mmu.lm_root = lm_root;
3497 }
3498
3499 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3500 }
3501
8986ecc0 3502 return 0;
17ac10ad
AK
3503}
3504
651dd37a
JR
3505static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3506{
3507 if (vcpu->arch.mmu.direct_map)
3508 return mmu_alloc_direct_roots(vcpu);
3509 else
3510 return mmu_alloc_shadow_roots(vcpu);
3511}
3512
0ba73cda
MT
3513static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3514{
3515 int i;
3516 struct kvm_mmu_page *sp;
3517
81407ca5
JR
3518 if (vcpu->arch.mmu.direct_map)
3519 return;
3520
0ba73cda
MT
3521 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3522 return;
6903074c 3523
56f17dd3 3524 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3525 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3526 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3527 hpa_t root = vcpu->arch.mmu.root_hpa;
3528 sp = page_header(root);
3529 mmu_sync_children(vcpu, sp);
0375f7fa 3530 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3531 return;
3532 }
3533 for (i = 0; i < 4; ++i) {
3534 hpa_t root = vcpu->arch.mmu.pae_root[i];
3535
8986ecc0 3536 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3537 root &= PT64_BASE_ADDR_MASK;
3538 sp = page_header(root);
3539 mmu_sync_children(vcpu, sp);
3540 }
3541 }
0375f7fa 3542 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3543}
3544
3545void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3546{
3547 spin_lock(&vcpu->kvm->mmu_lock);
3548 mmu_sync_roots(vcpu);
6cffe8ca 3549 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3550}
bfd0a56b 3551EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3552
1871c602 3553static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3554 u32 access, struct x86_exception *exception)
6aa8b732 3555{
ab9ae313
AK
3556 if (exception)
3557 exception->error_code = 0;
6aa8b732
AK
3558 return vaddr;
3559}
3560
6539e738 3561static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3562 u32 access,
3563 struct x86_exception *exception)
6539e738 3564{
ab9ae313
AK
3565 if (exception)
3566 exception->error_code = 0;
54987b7a 3567 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3568}
3569
d625b155
XG
3570static bool
3571__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3572{
3573 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3574
3575 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3576 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3577}
3578
3579static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3580{
3581 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3582}
3583
3584static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3585{
3586 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3587}
3588
ded58749 3589static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3590{
3591 if (direct)
3592 return vcpu_match_mmio_gpa(vcpu, addr);
3593
3594 return vcpu_match_mmio_gva(vcpu, addr);
3595}
3596
47ab8751
XG
3597/* return true if reserved bit is detected on spte. */
3598static bool
3599walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3600{
3601 struct kvm_shadow_walk_iterator iterator;
47ab8751
XG
3602 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3603 int root, leaf;
3604 bool reserved = false;
ce88decf 3605
37f6a4e2 3606 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3607 goto exit;
37f6a4e2 3608
ce88decf 3609 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3610
29ecd660
PB
3611 for (shadow_walk_init(&iterator, vcpu, addr),
3612 leaf = root = iterator.level;
47ab8751
XG
3613 shadow_walk_okay(&iterator);
3614 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3615 spte = mmu_spte_get_lockless(iterator.sptep);
3616
3617 sptes[leaf - 1] = spte;
29ecd660 3618 leaf--;
47ab8751 3619
ce88decf
XG
3620 if (!is_shadow_present_pte(spte))
3621 break;
47ab8751
XG
3622
3623 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
58c95070 3624 iterator.level);
47ab8751
XG
3625 }
3626
ce88decf
XG
3627 walk_shadow_page_lockless_end(vcpu);
3628
47ab8751
XG
3629 if (reserved) {
3630 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3631 __func__, addr);
29ecd660 3632 while (root > leaf) {
47ab8751
XG
3633 pr_err("------ spte 0x%llx level %d.\n",
3634 sptes[root - 1], root);
3635 root--;
3636 }
3637 }
3638exit:
3639 *sptep = spte;
3640 return reserved;
ce88decf
XG
3641}
3642
450869d6 3643int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3644{
3645 u64 spte;
47ab8751 3646 bool reserved;
ce88decf 3647
ded58749 3648 if (mmio_info_in_cache(vcpu, addr, direct))
b37fbea6 3649 return RET_MMIO_PF_EMULATE;
ce88decf 3650
47ab8751 3651 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3652 if (WARN_ON(reserved))
47ab8751 3653 return RET_MMIO_PF_BUG;
ce88decf
XG
3654
3655 if (is_mmio_spte(spte)) {
3656 gfn_t gfn = get_mmio_spte_gfn(spte);
3657 unsigned access = get_mmio_spte_access(spte);
3658
54bf36aa 3659 if (!check_mmio_spte(vcpu, spte))
f8f55942
XG
3660 return RET_MMIO_PF_INVALID;
3661
ce88decf
XG
3662 if (direct)
3663 addr = 0;
4f022648
XG
3664
3665 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3666 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3667 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3668 }
3669
ce88decf
XG
3670 /*
3671 * If the page table is zapped by other cpus, let CPU fault again on
3672 * the address.
3673 */
b37fbea6 3674 return RET_MMIO_PF_RETRY;
ce88decf 3675}
450869d6 3676EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
ce88decf 3677
3d0c27ad
XG
3678static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3679 u32 error_code, gfn_t gfn)
3680{
3681 if (unlikely(error_code & PFERR_RSVD_MASK))
3682 return false;
3683
3684 if (!(error_code & PFERR_PRESENT_MASK) ||
3685 !(error_code & PFERR_WRITE_MASK))
3686 return false;
3687
3688 /*
3689 * guest is writing the page which is write tracked which can
3690 * not be fixed by page fault handler.
3691 */
3692 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3693 return true;
3694
3695 return false;
3696}
3697
e5691a81
XG
3698static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3699{
3700 struct kvm_shadow_walk_iterator iterator;
3701 u64 spte;
3702
3703 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3704 return;
3705
3706 walk_shadow_page_lockless_begin(vcpu);
3707 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3708 clear_sp_write_flooding_count(iterator.sptep);
3709 if (!is_shadow_present_pte(spte))
3710 break;
3711 }
3712 walk_shadow_page_lockless_end(vcpu);
3713}
3714
6aa8b732 3715static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3716 u32 error_code, bool prefault)
6aa8b732 3717{
3d0c27ad 3718 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3719 int r;
6aa8b732 3720
b8688d51 3721 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3722
3d0c27ad
XG
3723 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3724 return 1;
ce88decf 3725
e2dec939
AK
3726 r = mmu_topup_memory_caches(vcpu);
3727 if (r)
3728 return r;
714b93da 3729
fa4a2c08 3730 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3731
6aa8b732 3732
e833240f 3733 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3734 error_code, gfn, prefault);
6aa8b732
AK
3735}
3736
7e1fbeac 3737static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3738{
3739 struct kvm_arch_async_pf arch;
fb67e14f 3740
7c90705b 3741 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3742 arch.gfn = gfn;
c4806acd 3743 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3744 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3745
54bf36aa 3746 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3747}
3748
9bc1f09f 3749bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
af585b92 3750{
35754c98 3751 if (unlikely(!lapic_in_kernel(vcpu) ||
af585b92
GN
3752 kvm_event_needs_reinjection(vcpu)))
3753 return false;
3754
52a5c155 3755 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
9bc1f09f
WL
3756 return false;
3757
af585b92
GN
3758 return kvm_x86_ops->interrupt_allowed(vcpu);
3759}
3760
78b2c54a 3761static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3762 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 3763{
3520469d 3764 struct kvm_memory_slot *slot;
af585b92
GN
3765 bool async;
3766
54bf36aa 3767 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3768 async = false;
3769 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3770 if (!async)
3771 return false; /* *pfn has correct page already */
3772
9bc1f09f 3773 if (!prefault && kvm_can_do_async_pf(vcpu)) {
c9b263d2 3774 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3775 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3776 trace_kvm_async_pf_doublefault(gva, gfn);
3777 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3778 return true;
3779 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3780 return true;
3781 }
3782
3520469d 3783 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3784 return false;
3785}
3786
1261bfa3
WL
3787int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3788 u64 fault_address, char *insn, int insn_len,
3789 bool need_unprotect)
3790{
3791 int r = 1;
3792
3793 switch (vcpu->arch.apf.host_apf_reason) {
3794 default:
3795 trace_kvm_page_fault(fault_address, error_code);
3796
3797 if (need_unprotect && kvm_event_needs_reinjection(vcpu))
3798 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3799 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3800 insn_len);
3801 break;
3802 case KVM_PV_REASON_PAGE_NOT_PRESENT:
3803 vcpu->arch.apf.host_apf_reason = 0;
3804 local_irq_disable();
3805 kvm_async_pf_task_wait(fault_address);
3806 local_irq_enable();
3807 break;
3808 case KVM_PV_REASON_PAGE_READY:
3809 vcpu->arch.apf.host_apf_reason = 0;
3810 local_irq_disable();
3811 kvm_async_pf_task_wake(fault_address);
3812 local_irq_enable();
3813 break;
3814 }
3815 return r;
3816}
3817EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3818
6a39bbc5
XG
3819static bool
3820check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3821{
3822 int page_num = KVM_PAGES_PER_HPAGE(level);
3823
3824 gfn &= ~(page_num - 1);
3825
3826 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3827}
3828
56028d08 3829static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3830 bool prefault)
fb72d167 3831{
ba049e93 3832 kvm_pfn_t pfn;
fb72d167 3833 int r;
852e3c19 3834 int level;
cd1872f0 3835 bool force_pt_level;
05da4558 3836 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3837 unsigned long mmu_seq;
612819c3
MT
3838 int write = error_code & PFERR_WRITE_MASK;
3839 bool map_writable;
fb72d167 3840
fa4a2c08 3841 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3842
3d0c27ad
XG
3843 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3844 return 1;
ce88decf 3845
fb72d167
JR
3846 r = mmu_topup_memory_caches(vcpu);
3847 if (r)
3848 return r;
3849
fd136902
TY
3850 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3851 PT_DIRECTORY_LEVEL);
3852 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3853 if (likely(!force_pt_level)) {
6a39bbc5
XG
3854 if (level > PT_DIRECTORY_LEVEL &&
3855 !check_hugepage_cache_consistency(vcpu, gfn, level))
3856 level = PT_DIRECTORY_LEVEL;
936a5fe6 3857 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3858 }
852e3c19 3859
c7ba5b48
XG
3860 if (fast_page_fault(vcpu, gpa, level, error_code))
3861 return 0;
3862
e930bffe 3863 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3864 smp_rmb();
af585b92 3865
78b2c54a 3866 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3867 return 0;
3868
d7c55201
XG
3869 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3870 return r;
3871
fb72d167 3872 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3873 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3874 goto out_unlock;
450e0b41 3875 make_mmu_pages_available(vcpu);
936a5fe6
AA
3876 if (likely(!force_pt_level))
3877 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3878 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 3879 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3880
3881 return r;
e930bffe
AA
3882
3883out_unlock:
3884 spin_unlock(&vcpu->kvm->mmu_lock);
3885 kvm_release_pfn_clean(pfn);
3886 return 0;
fb72d167
JR
3887}
3888
8a3c1a33
PB
3889static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3890 struct kvm_mmu *context)
6aa8b732 3891{
6aa8b732 3892 context->page_fault = nonpaging_page_fault;
6aa8b732 3893 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3894 context->sync_page = nonpaging_sync_page;
a7052897 3895 context->invlpg = nonpaging_invlpg;
0f53b5b1 3896 context->update_pte = nonpaging_update_pte;
cea0f0e7 3897 context->root_level = 0;
6aa8b732 3898 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3899 context->root_hpa = INVALID_PAGE;
c5a78f2b 3900 context->direct_map = true;
2d48a985 3901 context->nx = false;
6aa8b732
AK
3902}
3903
d8d173da 3904void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3905{
cea0f0e7 3906 mmu_free_roots(vcpu);
6aa8b732
AK
3907}
3908
5777ed34
JR
3909static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3910{
9f8fe504 3911 return kvm_read_cr3(vcpu);
5777ed34
JR
3912}
3913
6389ee94
AK
3914static void inject_page_fault(struct kvm_vcpu *vcpu,
3915 struct x86_exception *fault)
6aa8b732 3916{
6389ee94 3917 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3918}
3919
54bf36aa 3920static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3921 unsigned access, int *nr_present)
ce88decf
XG
3922{
3923 if (unlikely(is_mmio_spte(*sptep))) {
3924 if (gfn != get_mmio_spte_gfn(*sptep)) {
3925 mmu_spte_clear_no_track(sptep);
3926 return true;
3927 }
3928
3929 (*nr_present)++;
54bf36aa 3930 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3931 return true;
3932 }
3933
3934 return false;
3935}
3936
6bb69c9b
PB
3937static inline bool is_last_gpte(struct kvm_mmu *mmu,
3938 unsigned level, unsigned gpte)
6fd01b71 3939{
6bb69c9b
PB
3940 /*
3941 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3942 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3943 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3944 */
3945 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
6fd01b71 3946
6bb69c9b
PB
3947 /*
3948 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3949 * If it is clear, there are no large pages at this level, so clear
3950 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3951 */
3952 gpte &= level - mmu->last_nonleaf_level;
3953
3954 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
3955}
3956
37406aaa
NHE
3957#define PTTYPE_EPT 18 /* arbitrary */
3958#define PTTYPE PTTYPE_EPT
3959#include "paging_tmpl.h"
3960#undef PTTYPE
3961
6aa8b732
AK
3962#define PTTYPE 64
3963#include "paging_tmpl.h"
3964#undef PTTYPE
3965
3966#define PTTYPE 32
3967#include "paging_tmpl.h"
3968#undef PTTYPE
3969
6dc98b86
XG
3970static void
3971__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3972 struct rsvd_bits_validate *rsvd_check,
3973 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3974 bool pse, bool amd)
82725b20 3975{
82725b20 3976 u64 exb_bit_rsvd = 0;
5f7dde7b 3977 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3978 u64 nonleaf_bit8_rsvd = 0;
82725b20 3979
a0a64f50 3980 rsvd_check->bad_mt_xwr = 0;
25d92081 3981
6dc98b86 3982 if (!nx)
82725b20 3983 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3984 if (!gbpages)
5f7dde7b 3985 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3986
3987 /*
3988 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3989 * leaf entries) on AMD CPUs only.
3990 */
6fec2144 3991 if (amd)
a0c0feb5
PB
3992 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3993
6dc98b86 3994 switch (level) {
82725b20
DE
3995 case PT32_ROOT_LEVEL:
3996 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3997 rsvd_check->rsvd_bits_mask[0][1] = 0;
3998 rsvd_check->rsvd_bits_mask[0][0] = 0;
3999 rsvd_check->rsvd_bits_mask[1][0] =
4000 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4001
6dc98b86 4002 if (!pse) {
a0a64f50 4003 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4004 break;
4005 }
4006
82725b20
DE
4007 if (is_cpuid_PSE36())
4008 /* 36bits PSE 4MB page */
a0a64f50 4009 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4010 else
4011 /* 32 bits PSE 4MB page */
a0a64f50 4012 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4013 break;
4014 case PT32E_ROOT_LEVEL:
a0a64f50 4015 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4016 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4017 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4018 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4019 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4020 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4021 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4022 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4023 rsvd_bits(maxphyaddr, 62) |
4024 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4025 rsvd_check->rsvd_bits_mask[1][0] =
4026 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4027 break;
4028 case PT64_ROOT_LEVEL:
a0a64f50
XG
4029 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4030 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4031 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4032 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4033 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 4034 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4035 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4036 rsvd_bits(maxphyaddr, 51);
4037 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4038 rsvd_bits(maxphyaddr, 51);
4039 rsvd_check->rsvd_bits_mask[1][3] =
4040 rsvd_check->rsvd_bits_mask[0][3];
4041 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4042 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4043 rsvd_bits(13, 29);
a0a64f50 4044 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4045 rsvd_bits(maxphyaddr, 51) |
4046 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4047 rsvd_check->rsvd_bits_mask[1][0] =
4048 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4049 break;
4050 }
4051}
4052
6dc98b86
XG
4053static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4054 struct kvm_mmu *context)
4055{
4056 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4057 cpuid_maxphyaddr(vcpu), context->root_level,
4058 context->nx, guest_cpuid_has_gbpages(vcpu),
6fec2144 4059 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
4060}
4061
81b8eebb
XG
4062static void
4063__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4064 int maxphyaddr, bool execonly)
25d92081 4065{
951f9fd7 4066 u64 bad_mt_xwr;
25d92081 4067
a0a64f50 4068 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4069 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4070 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4071 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4072 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4073 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4074 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4075
4076 /* large page */
a0a64f50
XG
4077 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4078 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4079 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4080 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4081 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4082 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4083
951f9fd7
PB
4084 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4085 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4086 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4087 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4088 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4089 if (!execonly) {
4090 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4091 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4092 }
951f9fd7 4093 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4094}
4095
81b8eebb
XG
4096static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4097 struct kvm_mmu *context, bool execonly)
4098{
4099 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4100 cpuid_maxphyaddr(vcpu), execonly);
4101}
4102
c258b62b
XG
4103/*
4104 * the page table on host is the shadow page table for the page
4105 * table in guest or amd nested guest, its mmu features completely
4106 * follow the features in guest.
4107 */
4108void
4109reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4110{
5f0b8199
PB
4111 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4112
6fec2144
PB
4113 /*
4114 * Passing "true" to the last argument is okay; it adds a check
4115 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4116 */
c258b62b
XG
4117 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4118 boot_cpu_data.x86_phys_bits,
5f0b8199 4119 context->shadow_root_level, uses_nx,
6fec2144
PB
4120 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
4121 true);
c258b62b
XG
4122}
4123EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4124
6fec2144
PB
4125static inline bool boot_cpu_is_amd(void)
4126{
4127 WARN_ON_ONCE(!tdp_enabled);
4128 return shadow_x_mask == 0;
4129}
4130
c258b62b
XG
4131/*
4132 * the direct page table on host, use as much mmu features as
4133 * possible, however, kvm currently does not do execution-protection.
4134 */
4135static void
4136reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4137 struct kvm_mmu *context)
4138{
6fec2144 4139 if (boot_cpu_is_amd())
c258b62b
XG
4140 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4141 boot_cpu_data.x86_phys_bits,
4142 context->shadow_root_level, false,
b8291adc
BP
4143 boot_cpu_has(X86_FEATURE_GBPAGES),
4144 true, true);
c258b62b
XG
4145 else
4146 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4147 boot_cpu_data.x86_phys_bits,
4148 false);
4149
4150}
4151
4152/*
4153 * as the comments in reset_shadow_zero_bits_mask() except it
4154 * is the shadow page table for intel nested guest.
4155 */
4156static void
4157reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4158 struct kvm_mmu *context, bool execonly)
4159{
4160 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4161 boot_cpu_data.x86_phys_bits, execonly);
4162}
4163
edc90b7d
XG
4164static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4165 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
4166{
4167 unsigned bit, byte, pfec;
4168 u8 map;
66386ade 4169 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 4170
66386ade 4171 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 4172 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
4173 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4174 pfec = byte << 1;
4175 map = 0;
4176 wf = pfec & PFERR_WRITE_MASK;
4177 uf = pfec & PFERR_USER_MASK;
4178 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
4179 /*
4180 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
4181 * subject to SMAP restrictions, and cleared otherwise. The
4182 * bit is only meaningful if the SMAP bit is set in CR4.
4183 */
4184 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
4185 for (bit = 0; bit < 8; ++bit) {
4186 x = bit & ACC_EXEC_MASK;
4187 w = bit & ACC_WRITE_MASK;
4188 u = bit & ACC_USER_MASK;
4189
25d92081
YZ
4190 if (!ept) {
4191 /* Not really needed: !nx will cause pte.nx to fault */
4192 x |= !mmu->nx;
4193 /* Allow supervisor writes if !cr0.wp */
4194 w |= !is_write_protection(vcpu) && !uf;
4195 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 4196 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
4197
4198 /*
4199 * SMAP:kernel-mode data accesses from user-mode
4200 * mappings should fault. A fault is considered
4201 * as a SMAP violation if all of the following
4202 * conditions are ture:
4203 * - X86_CR4_SMAP is set in CR4
9332ef9d 4204 * - A user page is accessed
97ec8c06
FW
4205 * - Page fault in kernel mode
4206 * - if CPL = 3 or X86_EFLAGS_AC is clear
4207 *
4208 * Here, we cover the first three conditions.
4209 * The fourth is computed dynamically in
4210 * permission_fault() and is in smapf.
4211 *
4212 * Also, SMAP does not affect instruction
4213 * fetches, add the !ff check here to make it
4214 * clearer.
4215 */
4216 smap = cr4_smap && u && !uf && !ff;
d95c5568 4217 }
97d64b78 4218
97ec8c06
FW
4219 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
4220 (smapf && smap);
97d64b78
AK
4221 map |= fault << bit;
4222 }
4223 mmu->permissions[byte] = map;
4224 }
4225}
4226
2d344105
HH
4227/*
4228* PKU is an additional mechanism by which the paging controls access to
4229* user-mode addresses based on the value in the PKRU register. Protection
4230* key violations are reported through a bit in the page fault error code.
4231* Unlike other bits of the error code, the PK bit is not known at the
4232* call site of e.g. gva_to_gpa; it must be computed directly in
4233* permission_fault based on two bits of PKRU, on some machine state (CR4,
4234* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4235*
4236* In particular the following conditions come from the error code, the
4237* page tables and the machine state:
4238* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4239* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4240* - PK is always zero if U=0 in the page tables
4241* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4242*
4243* The PKRU bitmask caches the result of these four conditions. The error
4244* code (minus the P bit) and the page table's U bit form an index into the
4245* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4246* with the two bits of the PKRU register corresponding to the protection key.
4247* For the first three conditions above the bits will be 00, thus masking
4248* away both AD and WD. For all reads or if the last condition holds, WD
4249* only will be masked away.
4250*/
4251static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4252 bool ept)
4253{
4254 unsigned bit;
4255 bool wp;
4256
4257 if (ept) {
4258 mmu->pkru_mask = 0;
4259 return;
4260 }
4261
4262 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4263 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4264 mmu->pkru_mask = 0;
4265 return;
4266 }
4267
4268 wp = is_write_protection(vcpu);
4269
4270 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4271 unsigned pfec, pkey_bits;
4272 bool check_pkey, check_write, ff, uf, wf, pte_user;
4273
4274 pfec = bit << 1;
4275 ff = pfec & PFERR_FETCH_MASK;
4276 uf = pfec & PFERR_USER_MASK;
4277 wf = pfec & PFERR_WRITE_MASK;
4278
4279 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4280 pte_user = pfec & PFERR_RSVD_MASK;
4281
4282 /*
4283 * Only need to check the access which is not an
4284 * instruction fetch and is to a user page.
4285 */
4286 check_pkey = (!ff && pte_user);
4287 /*
4288 * write access is controlled by PKRU if it is a
4289 * user access or CR0.WP = 1.
4290 */
4291 check_write = check_pkey && wf && (uf || wp);
4292
4293 /* PKRU.AD stops both read and write access. */
4294 pkey_bits = !!check_pkey;
4295 /* PKRU.WD stops write access. */
4296 pkey_bits |= (!!check_write) << 1;
4297
4298 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4299 }
4300}
4301
6bb69c9b 4302static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4303{
6bb69c9b
PB
4304 unsigned root_level = mmu->root_level;
4305
4306 mmu->last_nonleaf_level = root_level;
4307 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4308 mmu->last_nonleaf_level++;
6fd01b71
AK
4309}
4310
8a3c1a33
PB
4311static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4312 struct kvm_mmu *context,
4313 int level)
6aa8b732 4314{
2d48a985 4315 context->nx = is_nx(vcpu);
4d6931c3 4316 context->root_level = level;
2d48a985 4317
4d6931c3 4318 reset_rsvds_bits_mask(vcpu, context);
25d92081 4319 update_permission_bitmask(vcpu, context, false);
2d344105 4320 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4321 update_last_nonleaf_level(vcpu, context);
6aa8b732 4322
fa4a2c08 4323 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4324 context->page_fault = paging64_page_fault;
6aa8b732 4325 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4326 context->sync_page = paging64_sync_page;
a7052897 4327 context->invlpg = paging64_invlpg;
0f53b5b1 4328 context->update_pte = paging64_update_pte;
17ac10ad 4329 context->shadow_root_level = level;
17c3ba9d 4330 context->root_hpa = INVALID_PAGE;
c5a78f2b 4331 context->direct_map = false;
6aa8b732
AK
4332}
4333
8a3c1a33
PB
4334static void paging64_init_context(struct kvm_vcpu *vcpu,
4335 struct kvm_mmu *context)
17ac10ad 4336{
8a3c1a33 4337 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
4338}
4339
8a3c1a33
PB
4340static void paging32_init_context(struct kvm_vcpu *vcpu,
4341 struct kvm_mmu *context)
6aa8b732 4342{
2d48a985 4343 context->nx = false;
4d6931c3 4344 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4345
4d6931c3 4346 reset_rsvds_bits_mask(vcpu, context);
25d92081 4347 update_permission_bitmask(vcpu, context, false);
2d344105 4348 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4349 update_last_nonleaf_level(vcpu, context);
6aa8b732 4350
6aa8b732 4351 context->page_fault = paging32_page_fault;
6aa8b732 4352 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4353 context->sync_page = paging32_sync_page;
a7052897 4354 context->invlpg = paging32_invlpg;
0f53b5b1 4355 context->update_pte = paging32_update_pte;
6aa8b732 4356 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 4357 context->root_hpa = INVALID_PAGE;
c5a78f2b 4358 context->direct_map = false;
6aa8b732
AK
4359}
4360
8a3c1a33
PB
4361static void paging32E_init_context(struct kvm_vcpu *vcpu,
4362 struct kvm_mmu *context)
6aa8b732 4363{
8a3c1a33 4364 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4365}
4366
8a3c1a33 4367static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4368{
ad896af0 4369 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 4370
c445f8ef 4371 context->base_role.word = 0;
699023e2 4372 context->base_role.smm = is_smm(vcpu);
ac8d57e5 4373 context->base_role.ad_disabled = (shadow_accessed_mask == 0);
fb72d167 4374 context->page_fault = tdp_page_fault;
e8bc217a 4375 context->sync_page = nonpaging_sync_page;
a7052897 4376 context->invlpg = nonpaging_invlpg;
0f53b5b1 4377 context->update_pte = nonpaging_update_pte;
67253af5 4378 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 4379 context->root_hpa = INVALID_PAGE;
c5a78f2b 4380 context->direct_map = true;
1c97f0a0 4381 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4382 context->get_cr3 = get_cr3;
e4e517b4 4383 context->get_pdptr = kvm_pdptr_read;
cb659db8 4384 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4385
4386 if (!is_paging(vcpu)) {
2d48a985 4387 context->nx = false;
fb72d167
JR
4388 context->gva_to_gpa = nonpaging_gva_to_gpa;
4389 context->root_level = 0;
4390 } else if (is_long_mode(vcpu)) {
2d48a985 4391 context->nx = is_nx(vcpu);
fb72d167 4392 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
4393 reset_rsvds_bits_mask(vcpu, context);
4394 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4395 } else if (is_pae(vcpu)) {
2d48a985 4396 context->nx = is_nx(vcpu);
fb72d167 4397 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4398 reset_rsvds_bits_mask(vcpu, context);
4399 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4400 } else {
2d48a985 4401 context->nx = false;
fb72d167 4402 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4403 reset_rsvds_bits_mask(vcpu, context);
4404 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4405 }
4406
25d92081 4407 update_permission_bitmask(vcpu, context, false);
2d344105 4408 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4409 update_last_nonleaf_level(vcpu, context);
c258b62b 4410 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4411}
4412
ad896af0 4413void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 4414{
411c588d 4415 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 4416 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
4417 struct kvm_mmu *context = &vcpu->arch.mmu;
4418
fa4a2c08 4419 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
4420
4421 if (!is_paging(vcpu))
8a3c1a33 4422 nonpaging_init_context(vcpu, context);
a9058ecd 4423 else if (is_long_mode(vcpu))
8a3c1a33 4424 paging64_init_context(vcpu, context);
6aa8b732 4425 else if (is_pae(vcpu))
8a3c1a33 4426 paging32E_init_context(vcpu, context);
6aa8b732 4427 else
8a3c1a33 4428 paging32_init_context(vcpu, context);
a770f6f2 4429
ad896af0
PB
4430 context->base_role.nxe = is_nx(vcpu);
4431 context->base_role.cr4_pae = !!is_pae(vcpu);
4432 context->base_role.cr0_wp = is_write_protection(vcpu);
4433 context->base_role.smep_andnot_wp
411c588d 4434 = smep && !is_write_protection(vcpu);
edc90b7d
XG
4435 context->base_role.smap_andnot_wp
4436 = smap && !is_write_protection(vcpu);
699023e2 4437 context->base_role.smm = is_smm(vcpu);
c258b62b 4438 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4439}
4440EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4441
ae1e2d10
PB
4442void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4443 bool accessed_dirty)
155a97a3 4444{
ad896af0
PB
4445 struct kvm_mmu *context = &vcpu->arch.mmu;
4446
fa4a2c08 4447 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
4448
4449 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4450
4451 context->nx = true;
ae1e2d10 4452 context->ept_ad = accessed_dirty;
155a97a3
NHE
4453 context->page_fault = ept_page_fault;
4454 context->gva_to_gpa = ept_gva_to_gpa;
4455 context->sync_page = ept_sync_page;
4456 context->invlpg = ept_invlpg;
4457 context->update_pte = ept_update_pte;
155a97a3
NHE
4458 context->root_level = context->shadow_root_level;
4459 context->root_hpa = INVALID_PAGE;
4460 context->direct_map = false;
995f00a6 4461 context->base_role.ad_disabled = !accessed_dirty;
155a97a3
NHE
4462
4463 update_permission_bitmask(vcpu, context, true);
2d344105 4464 update_pkru_bitmask(vcpu, context, true);
155a97a3 4465 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4466 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4467}
4468EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4469
8a3c1a33 4470static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4471{
ad896af0
PB
4472 struct kvm_mmu *context = &vcpu->arch.mmu;
4473
4474 kvm_init_shadow_mmu(vcpu);
4475 context->set_cr3 = kvm_x86_ops->set_cr3;
4476 context->get_cr3 = get_cr3;
4477 context->get_pdptr = kvm_pdptr_read;
4478 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4479}
4480
8a3c1a33 4481static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4482{
4483 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4484
4485 g_context->get_cr3 = get_cr3;
e4e517b4 4486 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4487 g_context->inject_page_fault = kvm_inject_page_fault;
4488
4489 /*
0af2593b
DM
4490 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4491 * L1's nested page tables (e.g. EPT12). The nested translation
4492 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4493 * L2's page tables as the first level of translation and L1's
4494 * nested page tables as the second level of translation. Basically
4495 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4496 */
4497 if (!is_paging(vcpu)) {
2d48a985 4498 g_context->nx = false;
02f59dc9
JR
4499 g_context->root_level = 0;
4500 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4501 } else if (is_long_mode(vcpu)) {
2d48a985 4502 g_context->nx = is_nx(vcpu);
02f59dc9 4503 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4504 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4505 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4506 } else if (is_pae(vcpu)) {
2d48a985 4507 g_context->nx = is_nx(vcpu);
02f59dc9 4508 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4509 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4510 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4511 } else {
2d48a985 4512 g_context->nx = false;
02f59dc9 4513 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4514 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4515 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4516 }
4517
25d92081 4518 update_permission_bitmask(vcpu, g_context, false);
2d344105 4519 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4520 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4521}
4522
8a3c1a33 4523static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4524{
02f59dc9 4525 if (mmu_is_nested(vcpu))
e0c6db3e 4526 init_kvm_nested_mmu(vcpu);
02f59dc9 4527 else if (tdp_enabled)
e0c6db3e 4528 init_kvm_tdp_mmu(vcpu);
fb72d167 4529 else
e0c6db3e 4530 init_kvm_softmmu(vcpu);
fb72d167
JR
4531}
4532
8a3c1a33 4533void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4534{
95f93af4 4535 kvm_mmu_unload(vcpu);
8a3c1a33 4536 init_kvm_mmu(vcpu);
17c3ba9d 4537}
8668a3c4 4538EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4539
4540int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4541{
714b93da
AK
4542 int r;
4543
e2dec939 4544 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4545 if (r)
4546 goto out;
8986ecc0 4547 r = mmu_alloc_roots(vcpu);
e2858b4a 4548 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4549 if (r)
4550 goto out;
3662cb1c 4551 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4552 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4553out:
4554 return r;
6aa8b732 4555}
17c3ba9d
AK
4556EXPORT_SYMBOL_GPL(kvm_mmu_load);
4557
4558void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4559{
4560 mmu_free_roots(vcpu);
95f93af4 4561 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4562}
4b16184c 4563EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4564
0028425f 4565static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4566 struct kvm_mmu_page *sp, u64 *spte,
4567 const void *new)
0028425f 4568{
30945387 4569 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4570 ++vcpu->kvm->stat.mmu_pde_zapped;
4571 return;
30945387 4572 }
0028425f 4573
4cee5764 4574 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4575 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4576}
4577
79539cec
AK
4578static bool need_remote_flush(u64 old, u64 new)
4579{
4580 if (!is_shadow_present_pte(old))
4581 return false;
4582 if (!is_shadow_present_pte(new))
4583 return true;
4584 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4585 return true;
53166229
GN
4586 old ^= shadow_nx_mask;
4587 new ^= shadow_nx_mask;
79539cec
AK
4588 return (old & ~new & PT64_PERM_MASK) != 0;
4589}
4590
889e5cbc
XG
4591static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4592 const u8 *new, int *bytes)
da4a00f0 4593{
889e5cbc
XG
4594 u64 gentry;
4595 int r;
72016f3a 4596
72016f3a
AK
4597 /*
4598 * Assume that the pte write on a page table of the same type
49b26e26
XG
4599 * as the current vcpu paging mode since we update the sptes only
4600 * when they have the same mode.
72016f3a 4601 */
889e5cbc 4602 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4603 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4604 *gpa &= ~(gpa_t)7;
4605 *bytes = 8;
54bf36aa 4606 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4607 if (r)
4608 gentry = 0;
08e850c6
AK
4609 new = (const u8 *)&gentry;
4610 }
4611
889e5cbc 4612 switch (*bytes) {
08e850c6
AK
4613 case 4:
4614 gentry = *(const u32 *)new;
4615 break;
4616 case 8:
4617 gentry = *(const u64 *)new;
4618 break;
4619 default:
4620 gentry = 0;
4621 break;
72016f3a
AK
4622 }
4623
889e5cbc
XG
4624 return gentry;
4625}
4626
4627/*
4628 * If we're seeing too many writes to a page, it may no longer be a page table,
4629 * or we may be forking, in which case it is better to unmap the page.
4630 */
a138fe75 4631static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4632{
a30f47cb
XG
4633 /*
4634 * Skip write-flooding detected for the sp whose level is 1, because
4635 * it can become unsync, then the guest page is not write-protected.
4636 */
f71fa31f 4637 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4638 return false;
3246af0e 4639
e5691a81
XG
4640 atomic_inc(&sp->write_flooding_count);
4641 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4642}
4643
4644/*
4645 * Misaligned accesses are too much trouble to fix up; also, they usually
4646 * indicate a page is not used as a page table.
4647 */
4648static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4649 int bytes)
4650{
4651 unsigned offset, pte_size, misaligned;
4652
4653 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4654 gpa, bytes, sp->role.word);
4655
4656 offset = offset_in_page(gpa);
4657 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4658
4659 /*
4660 * Sometimes, the OS only writes the last one bytes to update status
4661 * bits, for example, in linux, andb instruction is used in clear_bit().
4662 */
4663 if (!(offset & (pte_size - 1)) && bytes == 1)
4664 return false;
4665
889e5cbc
XG
4666 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4667 misaligned |= bytes < 4;
4668
4669 return misaligned;
4670}
4671
4672static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4673{
4674 unsigned page_offset, quadrant;
4675 u64 *spte;
4676 int level;
4677
4678 page_offset = offset_in_page(gpa);
4679 level = sp->role.level;
4680 *nspte = 1;
4681 if (!sp->role.cr4_pae) {
4682 page_offset <<= 1; /* 32->64 */
4683 /*
4684 * A 32-bit pde maps 4MB while the shadow pdes map
4685 * only 2MB. So we need to double the offset again
4686 * and zap two pdes instead of one.
4687 */
4688 if (level == PT32_ROOT_LEVEL) {
4689 page_offset &= ~7; /* kill rounding error */
4690 page_offset <<= 1;
4691 *nspte = 2;
4692 }
4693 quadrant = page_offset >> PAGE_SHIFT;
4694 page_offset &= ~PAGE_MASK;
4695 if (quadrant != sp->role.quadrant)
4696 return NULL;
4697 }
4698
4699 spte = &sp->spt[page_offset / sizeof(*spte)];
4700 return spte;
4701}
4702
13d268ca 4703static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
4704 const u8 *new, int bytes,
4705 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
4706{
4707 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4708 struct kvm_mmu_page *sp;
889e5cbc
XG
4709 LIST_HEAD(invalid_list);
4710 u64 entry, gentry, *spte;
4711 int npte;
b8c67b7a 4712 bool remote_flush, local_flush;
4141259b
AM
4713 union kvm_mmu_page_role mask = { };
4714
4715 mask.cr0_wp = 1;
4716 mask.cr4_pae = 1;
4717 mask.nxe = 1;
4718 mask.smep_andnot_wp = 1;
4719 mask.smap_andnot_wp = 1;
699023e2 4720 mask.smm = 1;
ac8d57e5 4721 mask.ad_disabled = 1;
889e5cbc
XG
4722
4723 /*
4724 * If we don't have indirect shadow pages, it means no page is
4725 * write-protected, so we can exit simply.
4726 */
4727 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4728 return;
4729
b8c67b7a 4730 remote_flush = local_flush = false;
889e5cbc
XG
4731
4732 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4733
4734 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4735
4736 /*
4737 * No need to care whether allocation memory is successful
4738 * or not since pte prefetch is skiped if it does not have
4739 * enough objects in the cache.
4740 */
4741 mmu_topup_memory_caches(vcpu);
4742
4743 spin_lock(&vcpu->kvm->mmu_lock);
4744 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4745 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4746
b67bfe0d 4747 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4748 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4749 detect_write_flooding(sp)) {
b8c67b7a 4750 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4751 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4752 continue;
4753 }
889e5cbc
XG
4754
4755 spte = get_written_sptes(sp, gpa, &npte);
4756 if (!spte)
4757 continue;
4758
0671a8e7 4759 local_flush = true;
ac1b714e 4760 while (npte--) {
79539cec 4761 entry = *spte;
38e3b2b2 4762 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4763 if (gentry &&
4764 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4765 & mask.word) && rmap_can_add(vcpu))
7c562522 4766 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4767 if (need_remote_flush(entry, *spte))
0671a8e7 4768 remote_flush = true;
ac1b714e 4769 ++spte;
9b7a0325 4770 }
9b7a0325 4771 }
b8c67b7a 4772 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 4773 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4774 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4775}
4776
a436036b
AK
4777int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4778{
10589a46
MT
4779 gpa_t gpa;
4780 int r;
a436036b 4781
c5a78f2b 4782 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4783 return 0;
4784
1871c602 4785 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4786
10589a46 4787 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4788
10589a46 4789 return r;
a436036b 4790}
577bdc49 4791EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4792
81f4f76b 4793static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4794{
d98ba053 4795 LIST_HEAD(invalid_list);
103ad25a 4796
81f4f76b
TY
4797 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4798 return;
4799
5da59607
TY
4800 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4801 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4802 break;
ebeace86 4803
4cee5764 4804 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4805 }
aa6bd187 4806 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4807}
ebeace86 4808
14727754 4809int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
dc25e89e 4810 void *insn, int insn_len)
3067714c 4811{
1cb3f3ae 4812 int r, emulation_type = EMULTYPE_RETRY;
3067714c 4813 enum emulation_result er;
ded58749 4814 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
3067714c 4815
e9ee956e
TY
4816 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4817 r = handle_mmio_page_fault(vcpu, cr2, direct);
4818 if (r == RET_MMIO_PF_EMULATE) {
4819 emulation_type = 0;
4820 goto emulate;
4821 }
4822 if (r == RET_MMIO_PF_RETRY)
4823 return 1;
4824 if (r < 0)
4825 return r;
4826 }
3067714c 4827
14727754
TL
4828 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4829 false);
3067714c 4830 if (r < 0)
e9ee956e
TY
4831 return r;
4832 if (!r)
4833 return 1;
3067714c 4834
14727754
TL
4835 /*
4836 * Before emulating the instruction, check if the error code
4837 * was due to a RO violation while translating the guest page.
4838 * This can occur when using nested virtualization with nested
4839 * paging in both guests. If true, we simply unprotect the page
4840 * and resume the guest.
4841 *
4842 * Note: AMD only (since it supports the PFERR_GUEST_PAGE_MASK used
4843 * in PFERR_NEXT_GUEST_PAGE)
4844 */
4845 if (error_code == PFERR_NESTED_GUEST_PAGE) {
4846 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4847 return 1;
4848 }
4849
ded58749 4850 if (mmio_info_in_cache(vcpu, cr2, direct))
1cb3f3ae 4851 emulation_type = 0;
e9ee956e 4852emulate:
1cb3f3ae 4853 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4854
4855 switch (er) {
4856 case EMULATE_DONE:
4857 return 1;
ac0a48c3 4858 case EMULATE_USER_EXIT:
3067714c 4859 ++vcpu->stat.mmio_exits;
6d77dbfc 4860 /* fall through */
3067714c 4861 case EMULATE_FAIL:
3f5d18a9 4862 return 0;
3067714c
AK
4863 default:
4864 BUG();
4865 }
3067714c
AK
4866}
4867EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4868
a7052897
MT
4869void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4870{
a7052897 4871 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4872 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4873 ++vcpu->stat.invlpg;
4874}
4875EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4876
18552672
JR
4877void kvm_enable_tdp(void)
4878{
4879 tdp_enabled = true;
4880}
4881EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4882
5f4cb662
JR
4883void kvm_disable_tdp(void)
4884{
4885 tdp_enabled = false;
4886}
4887EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4888
6aa8b732
AK
4889static void free_mmu_pages(struct kvm_vcpu *vcpu)
4890{
ad312c7c 4891 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4892 if (vcpu->arch.mmu.lm_root != NULL)
4893 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4894}
4895
4896static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4897{
17ac10ad 4898 struct page *page;
6aa8b732
AK
4899 int i;
4900
17ac10ad
AK
4901 /*
4902 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4903 * Therefore we need to allocate shadow page tables in the first
4904 * 4GB of memory, which happens to fit the DMA32 zone.
4905 */
4906 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4907 if (!page)
d7fa6ab2
WY
4908 return -ENOMEM;
4909
ad312c7c 4910 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4911 for (i = 0; i < 4; ++i)
ad312c7c 4912 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4913
6aa8b732 4914 return 0;
6aa8b732
AK
4915}
4916
8018c27b 4917int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4918{
e459e322
XG
4919 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4920 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4921 vcpu->arch.mmu.translate_gpa = translate_gpa;
4922 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4923
8018c27b
IM
4924 return alloc_mmu_pages(vcpu);
4925}
6aa8b732 4926
8a3c1a33 4927void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4928{
fa4a2c08 4929 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4930
8a3c1a33 4931 init_kvm_mmu(vcpu);
6aa8b732
AK
4932}
4933
b5f5fdca 4934static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
4935 struct kvm_memory_slot *slot,
4936 struct kvm_page_track_notifier_node *node)
b5f5fdca
XC
4937{
4938 kvm_mmu_invalidate_zap_all_pages(kvm);
4939}
4940
13d268ca
XG
4941void kvm_mmu_init_vm(struct kvm *kvm)
4942{
4943 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4944
4945 node->track_write = kvm_mmu_pte_write;
b5f5fdca 4946 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca
XG
4947 kvm_page_track_register_notifier(kvm, node);
4948}
4949
4950void kvm_mmu_uninit_vm(struct kvm *kvm)
4951{
4952 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4953
4954 kvm_page_track_unregister_notifier(kvm, node);
4955}
4956
1bad2b2a 4957/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 4958typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
4959
4960/* The caller should hold mmu-lock before calling this function. */
4961static bool
4962slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4963 slot_level_handler fn, int start_level, int end_level,
4964 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4965{
4966 struct slot_rmap_walk_iterator iterator;
4967 bool flush = false;
4968
4969 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4970 end_gfn, &iterator) {
4971 if (iterator.rmap)
4972 flush |= fn(kvm, iterator.rmap);
4973
4974 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4975 if (flush && lock_flush_tlb) {
4976 kvm_flush_remote_tlbs(kvm);
4977 flush = false;
4978 }
4979 cond_resched_lock(&kvm->mmu_lock);
4980 }
4981 }
4982
4983 if (flush && lock_flush_tlb) {
4984 kvm_flush_remote_tlbs(kvm);
4985 flush = false;
4986 }
4987
4988 return flush;
4989}
4990
4991static bool
4992slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4993 slot_level_handler fn, int start_level, int end_level,
4994 bool lock_flush_tlb)
4995{
4996 return slot_handle_level_range(kvm, memslot, fn, start_level,
4997 end_level, memslot->base_gfn,
4998 memslot->base_gfn + memslot->npages - 1,
4999 lock_flush_tlb);
5000}
5001
5002static bool
5003slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5004 slot_level_handler fn, bool lock_flush_tlb)
5005{
5006 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5007 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5008}
5009
5010static bool
5011slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5012 slot_level_handler fn, bool lock_flush_tlb)
5013{
5014 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5015 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5016}
5017
5018static bool
5019slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5020 slot_level_handler fn, bool lock_flush_tlb)
5021{
5022 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5023 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5024}
5025
efdfe536
XG
5026void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5027{
5028 struct kvm_memslots *slots;
5029 struct kvm_memory_slot *memslot;
9da0e4d5 5030 int i;
efdfe536
XG
5031
5032 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5033 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5034 slots = __kvm_memslots(kvm, i);
5035 kvm_for_each_memslot(memslot, slots) {
5036 gfn_t start, end;
5037
5038 start = max(gfn_start, memslot->base_gfn);
5039 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5040 if (start >= end)
5041 continue;
efdfe536 5042
9da0e4d5
PB
5043 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5044 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5045 start, end - 1, true);
5046 }
efdfe536
XG
5047 }
5048
5049 spin_unlock(&kvm->mmu_lock);
5050}
5051
018aabb5
TY
5052static bool slot_rmap_write_protect(struct kvm *kvm,
5053 struct kvm_rmap_head *rmap_head)
d77aa73c 5054{
018aabb5 5055 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5056}
5057
1c91cad4
KH
5058void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5059 struct kvm_memory_slot *memslot)
6aa8b732 5060{
d77aa73c 5061 bool flush;
6aa8b732 5062
9d1beefb 5063 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5064 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5065 false);
9d1beefb 5066 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
5067
5068 /*
5069 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5070 * which do tlb flush out of mmu-lock should be serialized by
5071 * kvm->slots_lock otherwise tlb flush would be missed.
5072 */
5073 lockdep_assert_held(&kvm->slots_lock);
5074
5075 /*
5076 * We can flush all the TLBs out of the mmu lock without TLB
5077 * corruption since we just change the spte from writable to
5078 * readonly so that we only need to care the case of changing
5079 * spte from present to present (changing the spte from present
5080 * to nonpresent will flush all the TLBs immediately), in other
5081 * words, the only case we care is mmu_spte_update() where we
5082 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5083 * instead of PT_WRITABLE_MASK, that means it does not depend
5084 * on PT_WRITABLE_MASK anymore.
5085 */
d91ffee9
KH
5086 if (flush)
5087 kvm_flush_remote_tlbs(kvm);
6aa8b732 5088}
37a7d8b0 5089
3ea3b7fa 5090static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5091 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5092{
5093 u64 *sptep;
5094 struct rmap_iterator iter;
5095 int need_tlb_flush = 0;
ba049e93 5096 kvm_pfn_t pfn;
3ea3b7fa
WL
5097 struct kvm_mmu_page *sp;
5098
0d536790 5099restart:
018aabb5 5100 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
5101 sp = page_header(__pa(sptep));
5102 pfn = spte_to_pfn(*sptep);
5103
5104 /*
decf6333
XG
5105 * We cannot do huge page mapping for indirect shadow pages,
5106 * which are found on the last rmap (level = 1) when not using
5107 * tdp; such shadow pages are synced with the page table in
5108 * the guest, and the guest page table is using 4K page size
5109 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
5110 */
5111 if (sp->role.direct &&
5112 !kvm_is_reserved_pfn(pfn) &&
127393fb 5113 PageTransCompoundMap(pfn_to_page(pfn))) {
3ea3b7fa 5114 drop_spte(kvm, sptep);
3ea3b7fa 5115 need_tlb_flush = 1;
0d536790
XG
5116 goto restart;
5117 }
3ea3b7fa
WL
5118 }
5119
5120 return need_tlb_flush;
5121}
5122
5123void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5124 const struct kvm_memory_slot *memslot)
3ea3b7fa 5125{
f36f3f28 5126 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5127 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5128 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5129 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5130 spin_unlock(&kvm->mmu_lock);
5131}
5132
f4b4b180
KH
5133void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5134 struct kvm_memory_slot *memslot)
5135{
d77aa73c 5136 bool flush;
f4b4b180
KH
5137
5138 spin_lock(&kvm->mmu_lock);
d77aa73c 5139 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5140 spin_unlock(&kvm->mmu_lock);
5141
5142 lockdep_assert_held(&kvm->slots_lock);
5143
5144 /*
5145 * It's also safe to flush TLBs out of mmu lock here as currently this
5146 * function is only used for dirty logging, in which case flushing TLB
5147 * out of mmu lock also guarantees no dirty pages will be lost in
5148 * dirty_bitmap.
5149 */
5150 if (flush)
5151 kvm_flush_remote_tlbs(kvm);
5152}
5153EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5154
5155void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5156 struct kvm_memory_slot *memslot)
5157{
d77aa73c 5158 bool flush;
f4b4b180
KH
5159
5160 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5161 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5162 false);
f4b4b180
KH
5163 spin_unlock(&kvm->mmu_lock);
5164
5165 /* see kvm_mmu_slot_remove_write_access */
5166 lockdep_assert_held(&kvm->slots_lock);
5167
5168 if (flush)
5169 kvm_flush_remote_tlbs(kvm);
5170}
5171EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5172
5173void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5174 struct kvm_memory_slot *memslot)
5175{
d77aa73c 5176 bool flush;
f4b4b180
KH
5177
5178 spin_lock(&kvm->mmu_lock);
d77aa73c 5179 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
5180 spin_unlock(&kvm->mmu_lock);
5181
5182 lockdep_assert_held(&kvm->slots_lock);
5183
5184 /* see kvm_mmu_slot_leaf_clear_dirty */
5185 if (flush)
5186 kvm_flush_remote_tlbs(kvm);
5187}
5188EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5189
e7d11c7a 5190#define BATCH_ZAP_PAGES 10
5304b8d3
XG
5191static void kvm_zap_obsolete_pages(struct kvm *kvm)
5192{
5193 struct kvm_mmu_page *sp, *node;
e7d11c7a 5194 int batch = 0;
5304b8d3
XG
5195
5196restart:
5197 list_for_each_entry_safe_reverse(sp, node,
5198 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
5199 int ret;
5200
5304b8d3
XG
5201 /*
5202 * No obsolete page exists before new created page since
5203 * active_mmu_pages is the FIFO list.
5204 */
5205 if (!is_obsolete_sp(kvm, sp))
5206 break;
5207
5208 /*
5304b8d3
XG
5209 * Since we are reversely walking the list and the invalid
5210 * list will be moved to the head, skip the invalid page
5211 * can help us to avoid the infinity list walking.
5212 */
5213 if (sp->role.invalid)
5214 continue;
5215
f34d251d
XG
5216 /*
5217 * Need not flush tlb since we only zap the sp with invalid
5218 * generation number.
5219 */
e7d11c7a 5220 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 5221 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 5222 batch = 0;
5304b8d3
XG
5223 goto restart;
5224 }
5225
365c8868
XG
5226 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5227 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
5228 batch += ret;
5229
5230 if (ret)
5304b8d3
XG
5231 goto restart;
5232 }
5233
f34d251d
XG
5234 /*
5235 * Should flush tlb before free page tables since lockless-walking
5236 * may use the pages.
5237 */
365c8868 5238 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
5239}
5240
5241/*
5242 * Fast invalidate all shadow pages and use lock-break technique
5243 * to zap obsolete pages.
5244 *
5245 * It's required when memslot is being deleted or VM is being
5246 * destroyed, in these cases, we should ensure that KVM MMU does
5247 * not use any resource of the being-deleted slot or all slots
5248 * after calling the function.
5249 */
5250void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5251{
5252 spin_lock(&kvm->mmu_lock);
35006126 5253 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
5254 kvm->arch.mmu_valid_gen++;
5255
f34d251d
XG
5256 /*
5257 * Notify all vcpus to reload its shadow page table
5258 * and flush TLB. Then all vcpus will switch to new
5259 * shadow page table with the new mmu_valid_gen.
5260 *
5261 * Note: we should do this under the protection of
5262 * mmu-lock, otherwise, vcpu would purge shadow page
5263 * but miss tlb flush.
5264 */
5265 kvm_reload_remote_mmus(kvm);
5266
5304b8d3
XG
5267 kvm_zap_obsolete_pages(kvm);
5268 spin_unlock(&kvm->mmu_lock);
5269}
5270
365c8868
XG
5271static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5272{
5273 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5274}
5275
54bf36aa 5276void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
5277{
5278 /*
5279 * The very rare case: if the generation-number is round,
5280 * zap all shadow pages.
f8f55942 5281 */
54bf36aa 5282 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
ae0f5499 5283 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 5284 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 5285 }
f8f55942
XG
5286}
5287
70534a73
DC
5288static unsigned long
5289mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5290{
5291 struct kvm *kvm;
1495f230 5292 int nr_to_scan = sc->nr_to_scan;
70534a73 5293 unsigned long freed = 0;
3ee16c81 5294
2f303b74 5295 spin_lock(&kvm_lock);
3ee16c81
IE
5296
5297 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5298 int idx;
d98ba053 5299 LIST_HEAD(invalid_list);
3ee16c81 5300
35f2d16b
TY
5301 /*
5302 * Never scan more than sc->nr_to_scan VM instances.
5303 * Will not hit this condition practically since we do not try
5304 * to shrink more than one VM and it is very unlikely to see
5305 * !n_used_mmu_pages so many times.
5306 */
5307 if (!nr_to_scan--)
5308 break;
19526396
GN
5309 /*
5310 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5311 * here. We may skip a VM instance errorneosly, but we do not
5312 * want to shrink a VM that only started to populate its MMU
5313 * anyway.
5314 */
365c8868
XG
5315 if (!kvm->arch.n_used_mmu_pages &&
5316 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5317 continue;
19526396 5318
f656ce01 5319 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5320 spin_lock(&kvm->mmu_lock);
3ee16c81 5321
365c8868
XG
5322 if (kvm_has_zapped_obsolete_pages(kvm)) {
5323 kvm_mmu_commit_zap_page(kvm,
5324 &kvm->arch.zapped_obsolete_pages);
5325 goto unlock;
5326 }
5327
70534a73
DC
5328 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5329 freed++;
d98ba053 5330 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 5331
365c8868 5332unlock:
3ee16c81 5333 spin_unlock(&kvm->mmu_lock);
f656ce01 5334 srcu_read_unlock(&kvm->srcu, idx);
19526396 5335
70534a73
DC
5336 /*
5337 * unfair on small ones
5338 * per-vm shrinkers cry out
5339 * sadness comes quickly
5340 */
19526396
GN
5341 list_move_tail(&kvm->vm_list, &vm_list);
5342 break;
3ee16c81 5343 }
3ee16c81 5344
2f303b74 5345 spin_unlock(&kvm_lock);
70534a73 5346 return freed;
70534a73
DC
5347}
5348
5349static unsigned long
5350mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5351{
45221ab6 5352 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5353}
5354
5355static struct shrinker mmu_shrinker = {
70534a73
DC
5356 .count_objects = mmu_shrink_count,
5357 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5358 .seeks = DEFAULT_SEEKS * 10,
5359};
5360
2ddfd20e 5361static void mmu_destroy_caches(void)
b5a33a75 5362{
53c07b18
XG
5363 if (pte_list_desc_cache)
5364 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
5365 if (mmu_page_header_cache)
5366 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5367}
5368
5369int kvm_mmu_module_init(void)
5370{
f160c7b7
JS
5371 kvm_mmu_clear_all_pte_masks();
5372
53c07b18
XG
5373 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5374 sizeof(struct pte_list_desc),
20c2df83 5375 0, 0, NULL);
53c07b18 5376 if (!pte_list_desc_cache)
b5a33a75
AK
5377 goto nomem;
5378
d3d25b04
AK
5379 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5380 sizeof(struct kvm_mmu_page),
20c2df83 5381 0, 0, NULL);
d3d25b04
AK
5382 if (!mmu_page_header_cache)
5383 goto nomem;
5384
908c7f19 5385 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
5386 goto nomem;
5387
3ee16c81
IE
5388 register_shrinker(&mmu_shrinker);
5389
b5a33a75
AK
5390 return 0;
5391
5392nomem:
3ee16c81 5393 mmu_destroy_caches();
b5a33a75
AK
5394 return -ENOMEM;
5395}
5396
3ad82a7e
ZX
5397/*
5398 * Caculate mmu pages needed for kvm.
5399 */
5400unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5401{
3ad82a7e
ZX
5402 unsigned int nr_mmu_pages;
5403 unsigned int nr_pages = 0;
bc6678a3 5404 struct kvm_memslots *slots;
be6ba0f0 5405 struct kvm_memory_slot *memslot;
9da0e4d5 5406 int i;
3ad82a7e 5407
9da0e4d5
PB
5408 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5409 slots = __kvm_memslots(kvm, i);
90d83dc3 5410
9da0e4d5
PB
5411 kvm_for_each_memslot(memslot, slots)
5412 nr_pages += memslot->npages;
5413 }
3ad82a7e
ZX
5414
5415 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5416 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 5417 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5418
5419 return nr_mmu_pages;
5420}
5421
c42fffe3
XG
5422void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5423{
95f93af4 5424 kvm_mmu_unload(vcpu);
c42fffe3
XG
5425 free_mmu_pages(vcpu);
5426 mmu_free_memory_caches(vcpu);
b034cf01
XG
5427}
5428
b034cf01
XG
5429void kvm_mmu_module_exit(void)
5430{
5431 mmu_destroy_caches();
5432 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5433 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5434 mmu_audit_disable();
5435}