]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: x86: remove now unneeded hugepage gfn adjustment
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
1767e931
PG
32#include <linux/moduleparam.h>
33#include <linux/export.h>
448353ca 34#include <linux/swap.h>
05da4558 35#include <linux/hugetlb.h>
2f333bcb 36#include <linux/compiler.h>
bc6678a3 37#include <linux/srcu.h>
5a0e3ad6 38#include <linux/slab.h>
3f07c014 39#include <linux/sched/signal.h>
bf998156 40#include <linux/uaccess.h>
114df303 41#include <linux/hash.h>
f160c7b7 42#include <linux/kern_levels.h>
6aa8b732 43
e495606d 44#include <asm/page.h>
aa2e063a 45#include <asm/pat.h>
e495606d 46#include <asm/cmpxchg.h>
0c55671f 47#include <asm/e820/api.h>
4e542370 48#include <asm/io.h>
13673a90 49#include <asm/vmx.h>
3d0c27ad 50#include <asm/kvm_page_track.h>
1261bfa3 51#include "trace.h"
6aa8b732 52
18552672
JR
53/*
54 * When setting this variable to true it enables Two-Dimensional-Paging
55 * where the hardware walks 2 page tables:
56 * 1. the guest-virtual to guest-physical
57 * 2. while doing 1. it walks guest-physical to host-physical
58 * If the hardware supports that we don't need to do shadow paging.
59 */
2f333bcb 60bool tdp_enabled = false;
18552672 61
8b1fe17c
XG
62enum {
63 AUDIT_PRE_PAGE_FAULT,
64 AUDIT_POST_PAGE_FAULT,
65 AUDIT_PRE_PTE_WRITE,
6903074c
XG
66 AUDIT_POST_PTE_WRITE,
67 AUDIT_PRE_SYNC,
68 AUDIT_POST_SYNC
8b1fe17c 69};
37a7d8b0 70
8b1fe17c 71#undef MMU_DEBUG
37a7d8b0
AK
72
73#ifdef MMU_DEBUG
fa4a2c08
PB
74static bool dbg = 0;
75module_param(dbg, bool, 0644);
37a7d8b0
AK
76
77#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
78#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 79#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 80#else
37a7d8b0
AK
81#define pgprintk(x...) do { } while (0)
82#define rmap_printk(x...) do { } while (0)
fa4a2c08 83#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 84#endif
6aa8b732 85
957ed9ef
XG
86#define PTE_PREFETCH_NUM 8
87
00763e41 88#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
89#define PT64_SECOND_AVAIL_BITS_SHIFT 52
90
6aa8b732
AK
91#define PT64_LEVEL_BITS 9
92
93#define PT64_LEVEL_SHIFT(level) \
d77c26fc 94 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 95
6aa8b732
AK
96#define PT64_INDEX(address, level)\
97 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
98
99
100#define PT32_LEVEL_BITS 10
101
102#define PT32_LEVEL_SHIFT(level) \
d77c26fc 103 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 104
e04da980
JR
105#define PT32_LVL_OFFSET_MASK(level) \
106 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
107 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
108
109#define PT32_INDEX(address, level)\
110 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
111
112
8acc0993
KH
113#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
114#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
115#else
116#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
117#endif
e04da980
JR
118#define PT64_LVL_ADDR_MASK(level) \
119 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT64_LEVEL_BITS))) - 1))
121#define PT64_LVL_OFFSET_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
124
125#define PT32_BASE_ADDR_MASK PAGE_MASK
126#define PT32_DIR_BASE_ADDR_MASK \
127 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
128#define PT32_LVL_ADDR_MASK(level) \
129 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
130 * PT32_LEVEL_BITS))) - 1))
6aa8b732 131
53166229 132#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 133 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 134
fe135d2c
AK
135#define ACC_EXEC_MASK 1
136#define ACC_WRITE_MASK PT_WRITABLE_MASK
137#define ACC_USER_MASK PT_USER_MASK
138#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
139
f160c7b7
JS
140/* The mask for the R/X bits in EPT PTEs */
141#define PT64_EPT_READABLE_MASK 0x1ull
142#define PT64_EPT_EXECUTABLE_MASK 0x4ull
143
90bb6fc5
AK
144#include <trace/events/kvm.h>
145
07420171
AK
146#define CREATE_TRACE_POINTS
147#include "mmutrace.h"
148
49fde340
XG
149#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
150#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 151
135f8c2b
AK
152#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153
220f773a
TY
154/* make pte_list_desc fit well in cache line */
155#define PTE_LIST_EXT 3
156
9b8ebbdb
PB
157/*
158 * Return values of handle_mmio_page_fault and mmu.page_fault:
159 * RET_PF_RETRY: let CPU fault again on the address.
160 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
161 *
162 * For handle_mmio_page_fault only:
163 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
164 */
165enum {
166 RET_PF_RETRY = 0,
167 RET_PF_EMULATE = 1,
168 RET_PF_INVALID = 2,
169};
170
53c07b18
XG
171struct pte_list_desc {
172 u64 *sptes[PTE_LIST_EXT];
173 struct pte_list_desc *more;
cd4a4e53
AK
174};
175
2d11123a
AK
176struct kvm_shadow_walk_iterator {
177 u64 addr;
178 hpa_t shadow_addr;
2d11123a 179 u64 *sptep;
dd3bfd59 180 int level;
2d11123a
AK
181 unsigned index;
182};
183
9fa72119
JS
184static const union kvm_mmu_page_role mmu_base_role_mask = {
185 .cr0_wp = 1,
47c42e6b 186 .gpte_is_8_bytes = 1,
9fa72119
JS
187 .nxe = 1,
188 .smep_andnot_wp = 1,
189 .smap_andnot_wp = 1,
190 .smm = 1,
191 .guest_mode = 1,
192 .ad_disabled = 1,
193};
194
7eb77e9f
JS
195#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
196 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
197 (_root), (_addr)); \
198 shadow_walk_okay(&(_walker)); \
199 shadow_walk_next(&(_walker)))
200
201#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
202 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
203 shadow_walk_okay(&(_walker)); \
204 shadow_walk_next(&(_walker)))
205
c2a2ac2b
XG
206#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
207 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
208 shadow_walk_okay(&(_walker)) && \
209 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
210 __shadow_walk_next(&(_walker), spte))
211
53c07b18 212static struct kmem_cache *pte_list_desc_cache;
d3d25b04 213static struct kmem_cache *mmu_page_header_cache;
45221ab6 214static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 215
7b52345e
SY
216static u64 __read_mostly shadow_nx_mask;
217static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
218static u64 __read_mostly shadow_user_mask;
219static u64 __read_mostly shadow_accessed_mask;
220static u64 __read_mostly shadow_dirty_mask;
ce88decf 221static u64 __read_mostly shadow_mmio_mask;
dcdca5fe 222static u64 __read_mostly shadow_mmio_value;
ffb128c8 223static u64 __read_mostly shadow_present_mask;
d0ec49d4 224static u64 __read_mostly shadow_me_mask;
ce88decf 225
f160c7b7 226/*
ac8d57e5
PF
227 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
228 * Non-present SPTEs with shadow_acc_track_value set are in place for access
229 * tracking.
f160c7b7
JS
230 */
231static u64 __read_mostly shadow_acc_track_mask;
232static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
233
234/*
235 * The mask/shift to use for saving the original R/X bits when marking the PTE
236 * as not-present for access tracking purposes. We do not save the W bit as the
237 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
238 * restored only when a write is attempted to the page.
239 */
240static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
241 PT64_EPT_EXECUTABLE_MASK;
242static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
243
28a1f3ac
JS
244/*
245 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
246 * to guard against L1TF attacks.
247 */
248static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
249
250/*
251 * The number of high-order 1 bits to use in the mask above.
252 */
253static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
254
daa07cbc
SC
255/*
256 * In some cases, we need to preserve the GFN of a non-present or reserved
257 * SPTE when we usurp the upper five bits of the physical address space to
258 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
259 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
260 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
261 * high and low parts. This mask covers the lower bits of the GFN.
262 */
263static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
264
f3ecb59d
KH
265/*
266 * The number of non-reserved physical address bits irrespective of features
267 * that repurpose legal bits, e.g. MKTME.
268 */
269static u8 __read_mostly shadow_phys_bits;
daa07cbc 270
ce88decf 271static void mmu_spte_set(u64 *sptep, u64 spte);
9fa72119
JS
272static union kvm_mmu_page_role
273kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 274
40ef75a7
LT
275
276static inline bool kvm_available_flush_tlb_with_range(void)
277{
278 return kvm_x86_ops->tlb_remote_flush_with_range;
279}
280
281static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
282 struct kvm_tlb_range *range)
283{
284 int ret = -ENOTSUPP;
285
286 if (range && kvm_x86_ops->tlb_remote_flush_with_range)
287 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
288
289 if (ret)
290 kvm_flush_remote_tlbs(kvm);
291}
292
293static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
294 u64 start_gfn, u64 pages)
295{
296 struct kvm_tlb_range range;
297
298 range.start_gfn = start_gfn;
299 range.pages = pages;
300
301 kvm_flush_remote_tlbs_with_range(kvm, &range);
302}
303
dcdca5fe 304void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
ce88decf 305{
dcdca5fe
PF
306 BUG_ON((mmio_mask & mmio_value) != mmio_value);
307 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
312b616b 308 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
ce88decf
XG
309}
310EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
311
ac8d57e5
PF
312static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
313{
314 return sp->role.ad_disabled;
315}
316
317static inline bool spte_ad_enabled(u64 spte)
318{
319 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
320 return !(spte & shadow_acc_track_value);
321}
322
323static inline u64 spte_shadow_accessed_mask(u64 spte)
324{
325 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
326 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
327}
328
329static inline u64 spte_shadow_dirty_mask(u64 spte)
330{
331 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
332 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
333}
334
f160c7b7
JS
335static inline bool is_access_track_spte(u64 spte)
336{
ac8d57e5 337 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
338}
339
f2fd125d 340/*
cae7ed3c
SC
341 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
342 * the memslots generation and is derived as follows:
ee3d1570 343 *
164bf7e5
SC
344 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
345 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
cae7ed3c 346 *
164bf7e5
SC
347 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
348 * the MMIO generation number, as doing so would require stealing a bit from
349 * the "real" generation number and thus effectively halve the maximum number
350 * of MMIO generations that can be handled before encountering a wrap (which
351 * requires a full MMU zap). The flag is instead explicitly queried when
352 * checking for MMIO spte cache hits.
f2fd125d 353 */
164bf7e5 354#define MMIO_SPTE_GEN_MASK GENMASK_ULL(18, 0)
f2fd125d 355
cae7ed3c
SC
356#define MMIO_SPTE_GEN_LOW_START 3
357#define MMIO_SPTE_GEN_LOW_END 11
358#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
359 MMIO_SPTE_GEN_LOW_START)
f2fd125d 360
cae7ed3c
SC
361#define MMIO_SPTE_GEN_HIGH_START 52
362#define MMIO_SPTE_GEN_HIGH_END 61
363#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
364 MMIO_SPTE_GEN_HIGH_START)
5192f9b9 365static u64 generation_mmio_spte_mask(u64 gen)
f2fd125d
XG
366{
367 u64 mask;
368
cae7ed3c 369 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
f2fd125d 370
cae7ed3c
SC
371 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
372 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
f2fd125d
XG
373 return mask;
374}
375
5192f9b9 376static u64 get_mmio_spte_generation(u64 spte)
f2fd125d 377{
5192f9b9 378 u64 gen;
f2fd125d
XG
379
380 spte &= ~shadow_mmio_mask;
381
cae7ed3c
SC
382 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
383 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
f2fd125d
XG
384 return gen;
385}
386
54bf36aa 387static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 388 unsigned access)
ce88decf 389{
cae7ed3c 390 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
f8f55942 391 u64 mask = generation_mmio_spte_mask(gen);
28a1f3ac 392 u64 gpa = gfn << PAGE_SHIFT;
95b0430d 393
ce88decf 394 access &= ACC_WRITE_MASK | ACC_USER_MASK;
28a1f3ac
JS
395 mask |= shadow_mmio_value | access;
396 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
397 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
398 << shadow_nonpresent_or_rsvd_mask_len;
f2fd125d 399
4771450c
SC
400 page_header(__pa(sptep))->mmio_cached = true;
401
f8f55942 402 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 403 mmu_spte_set(sptep, mask);
ce88decf
XG
404}
405
406static bool is_mmio_spte(u64 spte)
407{
dcdca5fe 408 return (spte & shadow_mmio_mask) == shadow_mmio_value;
ce88decf
XG
409}
410
411static gfn_t get_mmio_spte_gfn(u64 spte)
412{
daa07cbc 413 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac
JS
414
415 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
416 & shadow_nonpresent_or_rsvd_mask;
417
418 return gpa >> PAGE_SHIFT;
ce88decf
XG
419}
420
421static unsigned get_mmio_spte_access(u64 spte)
422{
cae7ed3c 423 u64 mask = generation_mmio_spte_mask(MMIO_SPTE_GEN_MASK) | shadow_mmio_mask;
f2fd125d 424 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
425}
426
54bf36aa 427static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 428 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
429{
430 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 431 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
432 return true;
433 }
434
435 return false;
436}
c7addb90 437
54bf36aa 438static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 439{
cae7ed3c 440 u64 kvm_gen, spte_gen, gen;
089504c0 441
cae7ed3c
SC
442 gen = kvm_vcpu_memslots(vcpu)->generation;
443 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
444 return false;
089504c0 445
cae7ed3c 446 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
447 spte_gen = get_mmio_spte_generation(spte);
448
449 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
450 return likely(kvm_gen == spte_gen);
f8f55942
XG
451}
452
ce00053b
PF
453/*
454 * Sets the shadow PTE masks used by the MMU.
455 *
456 * Assumptions:
457 * - Setting either @accessed_mask or @dirty_mask requires setting both
458 * - At least one of @accessed_mask or @acc_track_mask must be set
459 */
7b52345e 460void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 461 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 462 u64 acc_track_mask, u64 me_mask)
7b52345e 463{
ce00053b
PF
464 BUG_ON(!dirty_mask != !accessed_mask);
465 BUG_ON(!accessed_mask && !acc_track_mask);
ac8d57e5 466 BUG_ON(acc_track_mask & shadow_acc_track_value);
312b616b 467
7b52345e
SY
468 shadow_user_mask = user_mask;
469 shadow_accessed_mask = accessed_mask;
470 shadow_dirty_mask = dirty_mask;
471 shadow_nx_mask = nx_mask;
472 shadow_x_mask = x_mask;
ffb128c8 473 shadow_present_mask = p_mask;
f160c7b7 474 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 475 shadow_me_mask = me_mask;
7b52345e
SY
476}
477EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
478
f3ecb59d
KH
479static u8 kvm_get_shadow_phys_bits(void)
480{
481 /*
482 * boot_cpu_data.x86_phys_bits is reduced when MKTME is detected
483 * in CPU detection code, but MKTME treats those reduced bits as
484 * 'keyID' thus they are not reserved bits. Therefore for MKTME
485 * we should still return physical address bits reported by CPUID.
486 */
487 if (!boot_cpu_has(X86_FEATURE_TME) ||
488 WARN_ON_ONCE(boot_cpu_data.extended_cpuid_level < 0x80000008))
489 return boot_cpu_data.x86_phys_bits;
490
491 return cpuid_eax(0x80000008) & 0xff;
492}
493
28a1f3ac 494static void kvm_mmu_reset_all_pte_masks(void)
f160c7b7 495{
daa07cbc
SC
496 u8 low_phys_bits;
497
f160c7b7
JS
498 shadow_user_mask = 0;
499 shadow_accessed_mask = 0;
500 shadow_dirty_mask = 0;
501 shadow_nx_mask = 0;
502 shadow_x_mask = 0;
503 shadow_mmio_mask = 0;
504 shadow_present_mask = 0;
505 shadow_acc_track_mask = 0;
28a1f3ac 506
f3ecb59d
KH
507 shadow_phys_bits = kvm_get_shadow_phys_bits();
508
28a1f3ac
JS
509 /*
510 * If the CPU has 46 or less physical address bits, then set an
511 * appropriate mask to guard against L1TF attacks. Otherwise, it is
512 * assumed that the CPU is not vulnerable to L1TF.
61455bf2
KH
513 *
514 * Some Intel CPUs address the L1 cache using more PA bits than are
515 * reported by CPUID. Use the PA width of the L1 cache when possible
516 * to achieve more effective mitigation, e.g. if system RAM overlaps
517 * the most significant bits of legal physical address space.
28a1f3ac 518 */
61455bf2
KH
519 shadow_nonpresent_or_rsvd_mask = 0;
520 low_phys_bits = boot_cpu_data.x86_cache_bits;
521 if (boot_cpu_data.x86_cache_bits <
daa07cbc 522 52 - shadow_nonpresent_or_rsvd_mask_len) {
28a1f3ac 523 shadow_nonpresent_or_rsvd_mask =
61455bf2 524 rsvd_bits(boot_cpu_data.x86_cache_bits -
28a1f3ac 525 shadow_nonpresent_or_rsvd_mask_len,
61455bf2 526 boot_cpu_data.x86_cache_bits - 1);
daa07cbc 527 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
61455bf2
KH
528 } else
529 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
530
daa07cbc
SC
531 shadow_nonpresent_or_rsvd_lower_gfn_mask =
532 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
f160c7b7
JS
533}
534
6aa8b732
AK
535static int is_cpuid_PSE36(void)
536{
537 return 1;
538}
539
73b1087e
AK
540static int is_nx(struct kvm_vcpu *vcpu)
541{
f6801dff 542 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
543}
544
c7addb90
AK
545static int is_shadow_present_pte(u64 pte)
546{
f160c7b7 547 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
548}
549
05da4558
MT
550static int is_large_pte(u64 pte)
551{
552 return pte & PT_PAGE_SIZE_MASK;
553}
554
776e6633
MT
555static int is_last_spte(u64 pte, int level)
556{
557 if (level == PT_PAGE_TABLE_LEVEL)
558 return 1;
852e3c19 559 if (is_large_pte(pte))
776e6633
MT
560 return 1;
561 return 0;
562}
563
d3e328f2
JS
564static bool is_executable_pte(u64 spte)
565{
566 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
567}
568
ba049e93 569static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 570{
35149e21 571 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
572}
573
da928521
AK
574static gfn_t pse36_gfn_delta(u32 gpte)
575{
576 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
577
578 return (gpte & PT32_DIR_PSE36_MASK) << shift;
579}
580
603e0651 581#ifdef CONFIG_X86_64
d555c333 582static void __set_spte(u64 *sptep, u64 spte)
e663ee64 583{
b19ee2ff 584 WRITE_ONCE(*sptep, spte);
e663ee64
AK
585}
586
603e0651 587static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 588{
b19ee2ff 589 WRITE_ONCE(*sptep, spte);
603e0651
XG
590}
591
592static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
593{
594 return xchg(sptep, spte);
595}
c2a2ac2b
XG
596
597static u64 __get_spte_lockless(u64 *sptep)
598{
6aa7de05 599 return READ_ONCE(*sptep);
c2a2ac2b 600}
a9221dd5 601#else
603e0651
XG
602union split_spte {
603 struct {
604 u32 spte_low;
605 u32 spte_high;
606 };
607 u64 spte;
608};
a9221dd5 609
c2a2ac2b
XG
610static void count_spte_clear(u64 *sptep, u64 spte)
611{
612 struct kvm_mmu_page *sp = page_header(__pa(sptep));
613
614 if (is_shadow_present_pte(spte))
615 return;
616
617 /* Ensure the spte is completely set before we increase the count */
618 smp_wmb();
619 sp->clear_spte_count++;
620}
621
603e0651
XG
622static void __set_spte(u64 *sptep, u64 spte)
623{
624 union split_spte *ssptep, sspte;
a9221dd5 625
603e0651
XG
626 ssptep = (union split_spte *)sptep;
627 sspte = (union split_spte)spte;
628
629 ssptep->spte_high = sspte.spte_high;
630
631 /*
632 * If we map the spte from nonpresent to present, We should store
633 * the high bits firstly, then set present bit, so cpu can not
634 * fetch this spte while we are setting the spte.
635 */
636 smp_wmb();
637
b19ee2ff 638 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
639}
640
603e0651
XG
641static void __update_clear_spte_fast(u64 *sptep, u64 spte)
642{
643 union split_spte *ssptep, sspte;
644
645 ssptep = (union split_spte *)sptep;
646 sspte = (union split_spte)spte;
647
b19ee2ff 648 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
649
650 /*
651 * If we map the spte from present to nonpresent, we should clear
652 * present bit firstly to avoid vcpu fetch the old high bits.
653 */
654 smp_wmb();
655
656 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 657 count_spte_clear(sptep, spte);
603e0651
XG
658}
659
660static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
661{
662 union split_spte *ssptep, sspte, orig;
663
664 ssptep = (union split_spte *)sptep;
665 sspte = (union split_spte)spte;
666
667 /* xchg acts as a barrier before the setting of the high bits */
668 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
669 orig.spte_high = ssptep->spte_high;
670 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 671 count_spte_clear(sptep, spte);
603e0651
XG
672
673 return orig.spte;
674}
c2a2ac2b
XG
675
676/*
677 * The idea using the light way get the spte on x86_32 guest is from
678 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
679 *
680 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
681 * coalesces them and we are running out of the MMU lock. Therefore
682 * we need to protect against in-progress updates of the spte.
683 *
684 * Reading the spte while an update is in progress may get the old value
685 * for the high part of the spte. The race is fine for a present->non-present
686 * change (because the high part of the spte is ignored for non-present spte),
687 * but for a present->present change we must reread the spte.
688 *
689 * All such changes are done in two steps (present->non-present and
690 * non-present->present), hence it is enough to count the number of
691 * present->non-present updates: if it changed while reading the spte,
692 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
693 */
694static u64 __get_spte_lockless(u64 *sptep)
695{
696 struct kvm_mmu_page *sp = page_header(__pa(sptep));
697 union split_spte spte, *orig = (union split_spte *)sptep;
698 int count;
699
700retry:
701 count = sp->clear_spte_count;
702 smp_rmb();
703
704 spte.spte_low = orig->spte_low;
705 smp_rmb();
706
707 spte.spte_high = orig->spte_high;
708 smp_rmb();
709
710 if (unlikely(spte.spte_low != orig->spte_low ||
711 count != sp->clear_spte_count))
712 goto retry;
713
714 return spte.spte;
715}
603e0651
XG
716#endif
717
ea4114bc 718static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 719{
feb3eb70
GN
720 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
721 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
722}
723
8672b721
XG
724static bool spte_has_volatile_bits(u64 spte)
725{
f160c7b7
JS
726 if (!is_shadow_present_pte(spte))
727 return false;
728
c7ba5b48 729 /*
6a6256f9 730 * Always atomically update spte if it can be updated
c7ba5b48
XG
731 * out of mmu-lock, it can ensure dirty bit is not lost,
732 * also, it can help us to get a stable is_writable_pte()
733 * to ensure tlb flush is not missed.
734 */
f160c7b7
JS
735 if (spte_can_locklessly_be_made_writable(spte) ||
736 is_access_track_spte(spte))
c7ba5b48
XG
737 return true;
738
ac8d57e5 739 if (spte_ad_enabled(spte)) {
f160c7b7
JS
740 if ((spte & shadow_accessed_mask) == 0 ||
741 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
742 return true;
743 }
8672b721 744
f160c7b7 745 return false;
8672b721
XG
746}
747
83ef6c81 748static bool is_accessed_spte(u64 spte)
4132779b 749{
ac8d57e5
PF
750 u64 accessed_mask = spte_shadow_accessed_mask(spte);
751
752 return accessed_mask ? spte & accessed_mask
753 : !is_access_track_spte(spte);
4132779b
XG
754}
755
83ef6c81 756static bool is_dirty_spte(u64 spte)
7e71a59b 757{
ac8d57e5
PF
758 u64 dirty_mask = spte_shadow_dirty_mask(spte);
759
760 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
761}
762
1df9f2dc
XG
763/* Rules for using mmu_spte_set:
764 * Set the sptep from nonpresent to present.
765 * Note: the sptep being assigned *must* be either not present
766 * or in a state where the hardware will not attempt to update
767 * the spte.
768 */
769static void mmu_spte_set(u64 *sptep, u64 new_spte)
770{
771 WARN_ON(is_shadow_present_pte(*sptep));
772 __set_spte(sptep, new_spte);
773}
774
f39a058d
JS
775/*
776 * Update the SPTE (excluding the PFN), but do not track changes in its
777 * accessed/dirty status.
1df9f2dc 778 */
f39a058d 779static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 780{
c7ba5b48 781 u64 old_spte = *sptep;
4132779b 782
afd28fe1 783 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 784
6e7d0354
XG
785 if (!is_shadow_present_pte(old_spte)) {
786 mmu_spte_set(sptep, new_spte);
f39a058d 787 return old_spte;
6e7d0354 788 }
4132779b 789
c7ba5b48 790 if (!spte_has_volatile_bits(old_spte))
603e0651 791 __update_clear_spte_fast(sptep, new_spte);
4132779b 792 else
603e0651 793 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 794
83ef6c81
JS
795 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
796
f39a058d
JS
797 return old_spte;
798}
799
800/* Rules for using mmu_spte_update:
801 * Update the state bits, it means the mapped pfn is not changed.
802 *
803 * Whenever we overwrite a writable spte with a read-only one we
804 * should flush remote TLBs. Otherwise rmap_write_protect
805 * will find a read-only spte, even though the writable spte
806 * might be cached on a CPU's TLB, the return value indicates this
807 * case.
808 *
809 * Returns true if the TLB needs to be flushed
810 */
811static bool mmu_spte_update(u64 *sptep, u64 new_spte)
812{
813 bool flush = false;
814 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
815
816 if (!is_shadow_present_pte(old_spte))
817 return false;
818
c7ba5b48
XG
819 /*
820 * For the spte updated out of mmu-lock is safe, since
6a6256f9 821 * we always atomically update it, see the comments in
c7ba5b48
XG
822 * spte_has_volatile_bits().
823 */
ea4114bc 824 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 825 !is_writable_pte(new_spte))
83ef6c81 826 flush = true;
4132779b 827
7e71a59b 828 /*
83ef6c81 829 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
830 * to guarantee consistency between TLB and page tables.
831 */
7e71a59b 832
83ef6c81
JS
833 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
834 flush = true;
4132779b 835 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
836 }
837
838 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
839 flush = true;
4132779b 840 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 841 }
6e7d0354 842
83ef6c81 843 return flush;
b79b93f9
AK
844}
845
1df9f2dc
XG
846/*
847 * Rules for using mmu_spte_clear_track_bits:
848 * It sets the sptep from present to nonpresent, and track the
849 * state bits, it is used to clear the last level sptep.
83ef6c81 850 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
851 */
852static int mmu_spte_clear_track_bits(u64 *sptep)
853{
ba049e93 854 kvm_pfn_t pfn;
1df9f2dc
XG
855 u64 old_spte = *sptep;
856
857 if (!spte_has_volatile_bits(old_spte))
603e0651 858 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 859 else
603e0651 860 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 861
afd28fe1 862 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
863 return 0;
864
865 pfn = spte_to_pfn(old_spte);
86fde74c
XG
866
867 /*
868 * KVM does not hold the refcount of the page used by
869 * kvm mmu, before reclaiming the page, we should
870 * unmap it from mmu first.
871 */
bf4bea8e 872 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 873
83ef6c81 874 if (is_accessed_spte(old_spte))
1df9f2dc 875 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
876
877 if (is_dirty_spte(old_spte))
1df9f2dc 878 kvm_set_pfn_dirty(pfn);
83ef6c81 879
1df9f2dc
XG
880 return 1;
881}
882
883/*
884 * Rules for using mmu_spte_clear_no_track:
885 * Directly clear spte without caring the state bits of sptep,
886 * it is used to set the upper level spte.
887 */
888static void mmu_spte_clear_no_track(u64 *sptep)
889{
603e0651 890 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
891}
892
c2a2ac2b
XG
893static u64 mmu_spte_get_lockless(u64 *sptep)
894{
895 return __get_spte_lockless(sptep);
896}
897
f160c7b7
JS
898static u64 mark_spte_for_access_track(u64 spte)
899{
ac8d57e5 900 if (spte_ad_enabled(spte))
f160c7b7
JS
901 return spte & ~shadow_accessed_mask;
902
ac8d57e5 903 if (is_access_track_spte(spte))
f160c7b7
JS
904 return spte;
905
906 /*
20d65236
JS
907 * Making an Access Tracking PTE will result in removal of write access
908 * from the PTE. So, verify that we will be able to restore the write
909 * access in the fast page fault path later on.
f160c7b7
JS
910 */
911 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
912 !spte_can_locklessly_be_made_writable(spte),
913 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
914
915 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
916 shadow_acc_track_saved_bits_shift),
917 "kvm: Access Tracking saved bit locations are not zero\n");
918
919 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
920 shadow_acc_track_saved_bits_shift;
921 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
922
923 return spte;
924}
925
d3e328f2
JS
926/* Restore an acc-track PTE back to a regular PTE */
927static u64 restore_acc_track_spte(u64 spte)
928{
929 u64 new_spte = spte;
930 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
931 & shadow_acc_track_saved_bits_mask;
932
ac8d57e5 933 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
934 WARN_ON_ONCE(!is_access_track_spte(spte));
935
936 new_spte &= ~shadow_acc_track_mask;
937 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
938 shadow_acc_track_saved_bits_shift);
939 new_spte |= saved_bits;
940
941 return new_spte;
942}
943
f160c7b7
JS
944/* Returns the Accessed status of the PTE and resets it at the same time. */
945static bool mmu_spte_age(u64 *sptep)
946{
947 u64 spte = mmu_spte_get_lockless(sptep);
948
949 if (!is_accessed_spte(spte))
950 return false;
951
ac8d57e5 952 if (spte_ad_enabled(spte)) {
f160c7b7
JS
953 clear_bit((ffs(shadow_accessed_mask) - 1),
954 (unsigned long *)sptep);
955 } else {
956 /*
957 * Capture the dirty status of the page, so that it doesn't get
958 * lost when the SPTE is marked for access tracking.
959 */
960 if (is_writable_pte(spte))
961 kvm_set_pfn_dirty(spte_to_pfn(spte));
962
963 spte = mark_spte_for_access_track(spte);
964 mmu_spte_update_no_track(sptep, spte);
965 }
966
967 return true;
968}
969
c2a2ac2b
XG
970static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
971{
c142786c
AK
972 /*
973 * Prevent page table teardown by making any free-er wait during
974 * kvm_flush_remote_tlbs() IPI to all active vcpus.
975 */
976 local_irq_disable();
36ca7e0a 977
c142786c
AK
978 /*
979 * Make sure a following spte read is not reordered ahead of the write
980 * to vcpu->mode.
981 */
36ca7e0a 982 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
983}
984
985static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
986{
c142786c
AK
987 /*
988 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 989 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
990 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
991 */
36ca7e0a 992 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 993 local_irq_enable();
c2a2ac2b
XG
994}
995
e2dec939 996static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 997 struct kmem_cache *base_cache, int min)
714b93da
AK
998{
999 void *obj;
1000
1001 if (cache->nobjs >= min)
e2dec939 1002 return 0;
714b93da 1003 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
254272ce 1004 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
714b93da 1005 if (!obj)
daefb794 1006 return cache->nobjs >= min ? 0 : -ENOMEM;
714b93da
AK
1007 cache->objects[cache->nobjs++] = obj;
1008 }
e2dec939 1009 return 0;
714b93da
AK
1010}
1011
f759e2b4
XG
1012static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1013{
1014 return cache->nobjs;
1015}
1016
e8ad9a70
XG
1017static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1018 struct kmem_cache *cache)
714b93da
AK
1019{
1020 while (mc->nobjs)
e8ad9a70 1021 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
1022}
1023
c1158e63 1024static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 1025 int min)
c1158e63 1026{
842f22ed 1027 void *page;
c1158e63
AK
1028
1029 if (cache->nobjs >= min)
1030 return 0;
1031 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
d97e5e61 1032 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
c1158e63 1033 if (!page)
daefb794 1034 return cache->nobjs >= min ? 0 : -ENOMEM;
842f22ed 1035 cache->objects[cache->nobjs++] = page;
c1158e63
AK
1036 }
1037 return 0;
1038}
1039
1040static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1041{
1042 while (mc->nobjs)
c4d198d5 1043 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
1044}
1045
2e3e5882 1046static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 1047{
e2dec939
AK
1048 int r;
1049
53c07b18 1050 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 1051 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
1052 if (r)
1053 goto out;
ad312c7c 1054 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
1055 if (r)
1056 goto out;
ad312c7c 1057 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 1058 mmu_page_header_cache, 4);
e2dec939
AK
1059out:
1060 return r;
714b93da
AK
1061}
1062
1063static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1064{
53c07b18
XG
1065 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1066 pte_list_desc_cache);
ad312c7c 1067 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
1068 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1069 mmu_page_header_cache);
714b93da
AK
1070}
1071
80feb89a 1072static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
1073{
1074 void *p;
1075
1076 BUG_ON(!mc->nobjs);
1077 p = mc->objects[--mc->nobjs];
714b93da
AK
1078 return p;
1079}
1080
53c07b18 1081static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 1082{
80feb89a 1083 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
1084}
1085
53c07b18 1086static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 1087{
53c07b18 1088 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
1089}
1090
2032a93d
LJ
1091static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1092{
1093 if (!sp->role.direct)
1094 return sp->gfns[index];
1095
1096 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1097}
1098
1099static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1100{
1101 if (sp->role.direct)
1102 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
1103 else
1104 sp->gfns[index] = gfn;
1105}
1106
05da4558 1107/*
d4dbf470
TY
1108 * Return the pointer to the large page information for a given gfn,
1109 * handling slots that are not large page aligned.
05da4558 1110 */
d4dbf470
TY
1111static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1112 struct kvm_memory_slot *slot,
1113 int level)
05da4558
MT
1114{
1115 unsigned long idx;
1116
fb03cb6f 1117 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 1118 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
1119}
1120
547ffaed
XG
1121static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1122 gfn_t gfn, int count)
1123{
1124 struct kvm_lpage_info *linfo;
1125 int i;
1126
1127 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1128 linfo = lpage_info_slot(gfn, slot, i);
1129 linfo->disallow_lpage += count;
1130 WARN_ON(linfo->disallow_lpage < 0);
1131 }
1132}
1133
1134void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1135{
1136 update_gfn_disallow_lpage_count(slot, gfn, 1);
1137}
1138
1139void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1140{
1141 update_gfn_disallow_lpage_count(slot, gfn, -1);
1142}
1143
3ed1a478 1144static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1145{
699023e2 1146 struct kvm_memslots *slots;
d25797b2 1147 struct kvm_memory_slot *slot;
3ed1a478 1148 gfn_t gfn;
05da4558 1149
56ca57f9 1150 kvm->arch.indirect_shadow_pages++;
3ed1a478 1151 gfn = sp->gfn;
699023e2
PB
1152 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1153 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1154
1155 /* the non-leaf shadow pages are keeping readonly. */
1156 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1157 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1158 KVM_PAGE_TRACK_WRITE);
1159
547ffaed 1160 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1161}
1162
3ed1a478 1163static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1164{
699023e2 1165 struct kvm_memslots *slots;
d25797b2 1166 struct kvm_memory_slot *slot;
3ed1a478 1167 gfn_t gfn;
05da4558 1168
56ca57f9 1169 kvm->arch.indirect_shadow_pages--;
3ed1a478 1170 gfn = sp->gfn;
699023e2
PB
1171 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1172 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1173 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1174 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1175 KVM_PAGE_TRACK_WRITE);
1176
547ffaed 1177 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1178}
1179
92f94f1e
XG
1180static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1181 struct kvm_memory_slot *slot)
05da4558 1182{
d4dbf470 1183 struct kvm_lpage_info *linfo;
05da4558
MT
1184
1185 if (slot) {
d4dbf470 1186 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 1187 return !!linfo->disallow_lpage;
05da4558
MT
1188 }
1189
92f94f1e 1190 return true;
05da4558
MT
1191}
1192
92f94f1e
XG
1193static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1194 int level)
5225fdf8
TY
1195{
1196 struct kvm_memory_slot *slot;
1197
1198 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 1199 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
1200}
1201
d25797b2 1202static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 1203{
8f0b1ab6 1204 unsigned long page_size;
d25797b2 1205 int i, ret = 0;
05da4558 1206
8f0b1ab6 1207 page_size = kvm_host_page_size(kvm, gfn);
05da4558 1208
8a3d08f1 1209 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
1210 if (page_size >= KVM_HPAGE_SIZE(i))
1211 ret = i;
1212 else
1213 break;
1214 }
1215
4c2155ce 1216 return ret;
05da4558
MT
1217}
1218
d8aacf5d
TY
1219static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1220 bool no_dirty_log)
1221{
1222 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1223 return false;
1224 if (no_dirty_log && slot->dirty_bitmap)
1225 return false;
1226
1227 return true;
1228}
1229
5d163b1c
XG
1230static struct kvm_memory_slot *
1231gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1232 bool no_dirty_log)
05da4558
MT
1233{
1234 struct kvm_memory_slot *slot;
5d163b1c 1235
54bf36aa 1236 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 1237 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
1238 slot = NULL;
1239
1240 return slot;
1241}
1242
fd136902
TY
1243static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1244 bool *force_pt_level)
936a5fe6
AA
1245{
1246 int host_level, level, max_level;
d8aacf5d
TY
1247 struct kvm_memory_slot *slot;
1248
8c85ac1c
TY
1249 if (unlikely(*force_pt_level))
1250 return PT_PAGE_TABLE_LEVEL;
05da4558 1251
8c85ac1c
TY
1252 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1253 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
1254 if (unlikely(*force_pt_level))
1255 return PT_PAGE_TABLE_LEVEL;
1256
d25797b2
JR
1257 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1258
1259 if (host_level == PT_PAGE_TABLE_LEVEL)
1260 return host_level;
1261
55dd98c3 1262 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
1263
1264 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 1265 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 1266 break;
d25797b2
JR
1267
1268 return level - 1;
05da4558
MT
1269}
1270
290fc38d 1271/*
018aabb5 1272 * About rmap_head encoding:
cd4a4e53 1273 *
018aabb5
TY
1274 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1275 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1276 * pte_list_desc containing more mappings.
018aabb5
TY
1277 */
1278
1279/*
1280 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1281 */
53c07b18 1282static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1283 struct kvm_rmap_head *rmap_head)
cd4a4e53 1284{
53c07b18 1285 struct pte_list_desc *desc;
53a27b39 1286 int i, count = 0;
cd4a4e53 1287
018aabb5 1288 if (!rmap_head->val) {
53c07b18 1289 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1290 rmap_head->val = (unsigned long)spte;
1291 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1292 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1293 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1294 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1295 desc->sptes[1] = spte;
018aabb5 1296 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1297 ++count;
cd4a4e53 1298 } else {
53c07b18 1299 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1300 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1301 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1302 desc = desc->more;
53c07b18 1303 count += PTE_LIST_EXT;
53a27b39 1304 }
53c07b18
XG
1305 if (desc->sptes[PTE_LIST_EXT-1]) {
1306 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1307 desc = desc->more;
1308 }
d555c333 1309 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1310 ++count;
d555c333 1311 desc->sptes[i] = spte;
cd4a4e53 1312 }
53a27b39 1313 return count;
cd4a4e53
AK
1314}
1315
53c07b18 1316static void
018aabb5
TY
1317pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1318 struct pte_list_desc *desc, int i,
1319 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1320{
1321 int j;
1322
53c07b18 1323 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1324 ;
d555c333
AK
1325 desc->sptes[i] = desc->sptes[j];
1326 desc->sptes[j] = NULL;
cd4a4e53
AK
1327 if (j != 0)
1328 return;
1329 if (!prev_desc && !desc->more)
018aabb5 1330 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
1331 else
1332 if (prev_desc)
1333 prev_desc->more = desc->more;
1334 else
018aabb5 1335 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1336 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1337}
1338
8daf3462 1339static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1340{
53c07b18
XG
1341 struct pte_list_desc *desc;
1342 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1343 int i;
1344
018aabb5 1345 if (!rmap_head->val) {
8daf3462 1346 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 1347 BUG();
018aabb5 1348 } else if (!(rmap_head->val & 1)) {
8daf3462 1349 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 1350 if ((u64 *)rmap_head->val != spte) {
8daf3462 1351 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
1352 BUG();
1353 }
018aabb5 1354 rmap_head->val = 0;
cd4a4e53 1355 } else {
8daf3462 1356 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 1357 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1358 prev_desc = NULL;
1359 while (desc) {
018aabb5 1360 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1361 if (desc->sptes[i] == spte) {
018aabb5
TY
1362 pte_list_desc_remove_entry(rmap_head,
1363 desc, i, prev_desc);
cd4a4e53
AK
1364 return;
1365 }
018aabb5 1366 }
cd4a4e53
AK
1367 prev_desc = desc;
1368 desc = desc->more;
1369 }
8daf3462 1370 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
1371 BUG();
1372 }
1373}
1374
e7912386
WY
1375static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1376{
1377 mmu_spte_clear_track_bits(sptep);
1378 __pte_list_remove(sptep, rmap_head);
1379}
1380
018aabb5
TY
1381static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1382 struct kvm_memory_slot *slot)
53c07b18 1383{
77d11309 1384 unsigned long idx;
53c07b18 1385
77d11309 1386 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1387 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1388}
1389
018aabb5
TY
1390static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1391 struct kvm_mmu_page *sp)
9b9b1492 1392{
699023e2 1393 struct kvm_memslots *slots;
9b9b1492
TY
1394 struct kvm_memory_slot *slot;
1395
699023e2
PB
1396 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1397 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1398 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1399}
1400
f759e2b4
XG
1401static bool rmap_can_add(struct kvm_vcpu *vcpu)
1402{
1403 struct kvm_mmu_memory_cache *cache;
1404
1405 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1406 return mmu_memory_cache_free_objects(cache);
1407}
1408
53c07b18
XG
1409static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1410{
1411 struct kvm_mmu_page *sp;
018aabb5 1412 struct kvm_rmap_head *rmap_head;
53c07b18 1413
53c07b18
XG
1414 sp = page_header(__pa(spte));
1415 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1416 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1417 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1418}
1419
53c07b18
XG
1420static void rmap_remove(struct kvm *kvm, u64 *spte)
1421{
1422 struct kvm_mmu_page *sp;
1423 gfn_t gfn;
018aabb5 1424 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1425
1426 sp = page_header(__pa(spte));
1427 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 1428 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 1429 __pte_list_remove(spte, rmap_head);
53c07b18
XG
1430}
1431
1e3f42f0
TY
1432/*
1433 * Used by the following functions to iterate through the sptes linked by a
1434 * rmap. All fields are private and not assumed to be used outside.
1435 */
1436struct rmap_iterator {
1437 /* private fields */
1438 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1439 int pos; /* index of the sptep */
1440};
1441
1442/*
1443 * Iteration must be started by this function. This should also be used after
1444 * removing/dropping sptes from the rmap link because in such cases the
1445 * information in the itererator may not be valid.
1446 *
1447 * Returns sptep if found, NULL otherwise.
1448 */
018aabb5
TY
1449static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1450 struct rmap_iterator *iter)
1e3f42f0 1451{
77fbbbd2
TY
1452 u64 *sptep;
1453
018aabb5 1454 if (!rmap_head->val)
1e3f42f0
TY
1455 return NULL;
1456
018aabb5 1457 if (!(rmap_head->val & 1)) {
1e3f42f0 1458 iter->desc = NULL;
77fbbbd2
TY
1459 sptep = (u64 *)rmap_head->val;
1460 goto out;
1e3f42f0
TY
1461 }
1462
018aabb5 1463 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1464 iter->pos = 0;
77fbbbd2
TY
1465 sptep = iter->desc->sptes[iter->pos];
1466out:
1467 BUG_ON(!is_shadow_present_pte(*sptep));
1468 return sptep;
1e3f42f0
TY
1469}
1470
1471/*
1472 * Must be used with a valid iterator: e.g. after rmap_get_first().
1473 *
1474 * Returns sptep if found, NULL otherwise.
1475 */
1476static u64 *rmap_get_next(struct rmap_iterator *iter)
1477{
77fbbbd2
TY
1478 u64 *sptep;
1479
1e3f42f0
TY
1480 if (iter->desc) {
1481 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1482 ++iter->pos;
1483 sptep = iter->desc->sptes[iter->pos];
1484 if (sptep)
77fbbbd2 1485 goto out;
1e3f42f0
TY
1486 }
1487
1488 iter->desc = iter->desc->more;
1489
1490 if (iter->desc) {
1491 iter->pos = 0;
1492 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1493 sptep = iter->desc->sptes[iter->pos];
1494 goto out;
1e3f42f0
TY
1495 }
1496 }
1497
1498 return NULL;
77fbbbd2
TY
1499out:
1500 BUG_ON(!is_shadow_present_pte(*sptep));
1501 return sptep;
1e3f42f0
TY
1502}
1503
018aabb5
TY
1504#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1505 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1506 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1507
c3707958 1508static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1509{
1df9f2dc 1510 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1511 rmap_remove(kvm, sptep);
be38d276
AK
1512}
1513
8e22f955
XG
1514
1515static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1516{
1517 if (is_large_pte(*sptep)) {
1518 WARN_ON(page_header(__pa(sptep))->role.level ==
1519 PT_PAGE_TABLE_LEVEL);
1520 drop_spte(kvm, sptep);
1521 --kvm->stat.lpages;
1522 return true;
1523 }
1524
1525 return false;
1526}
1527
1528static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1529{
c3134ce2
LT
1530 if (__drop_large_spte(vcpu->kvm, sptep)) {
1531 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1532
1533 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1534 KVM_PAGES_PER_HPAGE(sp->role.level));
1535 }
8e22f955
XG
1536}
1537
1538/*
49fde340 1539 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1540 * spte write-protection is caused by protecting shadow page table.
49fde340 1541 *
b4619660 1542 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1543 * protection:
1544 * - for dirty logging, the spte can be set to writable at anytime if
1545 * its dirty bitmap is properly set.
1546 * - for spte protection, the spte can be writable only after unsync-ing
1547 * shadow page.
8e22f955 1548 *
c126d94f 1549 * Return true if tlb need be flushed.
8e22f955 1550 */
c4f138b4 1551static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1552{
1553 u64 spte = *sptep;
1554
49fde340 1555 if (!is_writable_pte(spte) &&
ea4114bc 1556 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1557 return false;
1558
1559 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1560
49fde340
XG
1561 if (pt_protect)
1562 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1563 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1564
c126d94f 1565 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1566}
1567
018aabb5
TY
1568static bool __rmap_write_protect(struct kvm *kvm,
1569 struct kvm_rmap_head *rmap_head,
245c3912 1570 bool pt_protect)
98348e95 1571{
1e3f42f0
TY
1572 u64 *sptep;
1573 struct rmap_iterator iter;
d13bc5b5 1574 bool flush = false;
374cbac0 1575
018aabb5 1576 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1577 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1578
d13bc5b5 1579 return flush;
a0ed4607
TY
1580}
1581
c4f138b4 1582static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1583{
1584 u64 spte = *sptep;
1585
1586 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1587
1588 spte &= ~shadow_dirty_mask;
1589
1590 return mmu_spte_update(sptep, spte);
1591}
1592
ac8d57e5
PF
1593static bool wrprot_ad_disabled_spte(u64 *sptep)
1594{
1595 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1596 (unsigned long *)sptep);
1597 if (was_writable)
1598 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1599
1600 return was_writable;
1601}
1602
1603/*
1604 * Gets the GFN ready for another round of dirty logging by clearing the
1605 * - D bit on ad-enabled SPTEs, and
1606 * - W bit on ad-disabled SPTEs.
1607 * Returns true iff any D or W bits were cleared.
1608 */
018aabb5 1609static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1610{
1611 u64 *sptep;
1612 struct rmap_iterator iter;
1613 bool flush = false;
1614
018aabb5 1615 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1616 if (spte_ad_enabled(*sptep))
1617 flush |= spte_clear_dirty(sptep);
1618 else
1619 flush |= wrprot_ad_disabled_spte(sptep);
f4b4b180
KH
1620
1621 return flush;
1622}
1623
c4f138b4 1624static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1625{
1626 u64 spte = *sptep;
1627
1628 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1629
1630 spte |= shadow_dirty_mask;
1631
1632 return mmu_spte_update(sptep, spte);
1633}
1634
018aabb5 1635static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1636{
1637 u64 *sptep;
1638 struct rmap_iterator iter;
1639 bool flush = false;
1640
018aabb5 1641 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1642 if (spte_ad_enabled(*sptep))
1643 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1644
1645 return flush;
1646}
1647
5dc99b23 1648/**
3b0f1d01 1649 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1650 * @kvm: kvm instance
1651 * @slot: slot to protect
1652 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1653 * @mask: indicates which pages we should protect
1654 *
1655 * Used when we do not need to care about huge page mappings: e.g. during dirty
1656 * logging we do not have any such mappings.
1657 */
3b0f1d01 1658static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1659 struct kvm_memory_slot *slot,
1660 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1661{
018aabb5 1662 struct kvm_rmap_head *rmap_head;
a0ed4607 1663
5dc99b23 1664 while (mask) {
018aabb5
TY
1665 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1666 PT_PAGE_TABLE_LEVEL, slot);
1667 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1668
5dc99b23
TY
1669 /* clear the first set bit */
1670 mask &= mask - 1;
1671 }
374cbac0
AK
1672}
1673
f4b4b180 1674/**
ac8d57e5
PF
1675 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1676 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1677 * @kvm: kvm instance
1678 * @slot: slot to clear D-bit
1679 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1680 * @mask: indicates which pages we should clear D-bit
1681 *
1682 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1683 */
1684void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1685 struct kvm_memory_slot *slot,
1686 gfn_t gfn_offset, unsigned long mask)
1687{
018aabb5 1688 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1689
1690 while (mask) {
018aabb5
TY
1691 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1692 PT_PAGE_TABLE_LEVEL, slot);
1693 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1694
1695 /* clear the first set bit */
1696 mask &= mask - 1;
1697 }
1698}
1699EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1700
3b0f1d01
KH
1701/**
1702 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1703 * PT level pages.
1704 *
1705 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1706 * enable dirty logging for them.
1707 *
1708 * Used when we do not need to care about huge page mappings: e.g. during dirty
1709 * logging we do not have any such mappings.
1710 */
1711void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1712 struct kvm_memory_slot *slot,
1713 gfn_t gfn_offset, unsigned long mask)
1714{
88178fd4
KH
1715 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1716 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1717 mask);
1718 else
1719 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1720}
1721
bab4165e
BD
1722/**
1723 * kvm_arch_write_log_dirty - emulate dirty page logging
1724 * @vcpu: Guest mode vcpu
1725 *
1726 * Emulate arch specific page modification logging for the
1727 * nested hypervisor
1728 */
1729int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1730{
1731 if (kvm_x86_ops->write_log_dirty)
1732 return kvm_x86_ops->write_log_dirty(vcpu);
1733
1734 return 0;
1735}
1736
aeecee2e
XG
1737bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1738 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1739{
018aabb5 1740 struct kvm_rmap_head *rmap_head;
5dc99b23 1741 int i;
2f84569f 1742 bool write_protected = false;
95d4c16c 1743
8a3d08f1 1744 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1745 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1746 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1747 }
1748
1749 return write_protected;
95d4c16c
TY
1750}
1751
aeecee2e
XG
1752static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1753{
1754 struct kvm_memory_slot *slot;
1755
1756 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1757 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1758}
1759
018aabb5 1760static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1761{
1e3f42f0
TY
1762 u64 *sptep;
1763 struct rmap_iterator iter;
6a49f85c 1764 bool flush = false;
e930bffe 1765
018aabb5 1766 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1767 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1768
e7912386 1769 pte_list_remove(rmap_head, sptep);
6a49f85c 1770 flush = true;
e930bffe 1771 }
1e3f42f0 1772
6a49f85c
XG
1773 return flush;
1774}
1775
018aabb5 1776static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1777 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1778 unsigned long data)
1779{
018aabb5 1780 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1781}
1782
018aabb5 1783static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1784 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1785 unsigned long data)
3da0dd43 1786{
1e3f42f0
TY
1787 u64 *sptep;
1788 struct rmap_iterator iter;
3da0dd43 1789 int need_flush = 0;
1e3f42f0 1790 u64 new_spte;
3da0dd43 1791 pte_t *ptep = (pte_t *)data;
ba049e93 1792 kvm_pfn_t new_pfn;
3da0dd43
IE
1793
1794 WARN_ON(pte_huge(*ptep));
1795 new_pfn = pte_pfn(*ptep);
1e3f42f0 1796
0d536790 1797restart:
018aabb5 1798 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1799 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1800 sptep, *sptep, gfn, level);
1e3f42f0 1801
3da0dd43 1802 need_flush = 1;
1e3f42f0 1803
3da0dd43 1804 if (pte_write(*ptep)) {
e7912386 1805 pte_list_remove(rmap_head, sptep);
0d536790 1806 goto restart;
3da0dd43 1807 } else {
1e3f42f0 1808 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1809 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1810
1811 new_spte &= ~PT_WRITABLE_MASK;
1812 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1813
1814 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1815
1816 mmu_spte_clear_track_bits(sptep);
1817 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1818 }
1819 }
1e3f42f0 1820
3cc5ea94
LT
1821 if (need_flush && kvm_available_flush_tlb_with_range()) {
1822 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1823 return 0;
1824 }
1825
0cf853c5 1826 return need_flush;
3da0dd43
IE
1827}
1828
6ce1f4e2
XG
1829struct slot_rmap_walk_iterator {
1830 /* input fields. */
1831 struct kvm_memory_slot *slot;
1832 gfn_t start_gfn;
1833 gfn_t end_gfn;
1834 int start_level;
1835 int end_level;
1836
1837 /* output fields. */
1838 gfn_t gfn;
018aabb5 1839 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1840 int level;
1841
1842 /* private field. */
018aabb5 1843 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1844};
1845
1846static void
1847rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1848{
1849 iterator->level = level;
1850 iterator->gfn = iterator->start_gfn;
1851 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1852 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1853 iterator->slot);
1854}
1855
1856static void
1857slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1858 struct kvm_memory_slot *slot, int start_level,
1859 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1860{
1861 iterator->slot = slot;
1862 iterator->start_level = start_level;
1863 iterator->end_level = end_level;
1864 iterator->start_gfn = start_gfn;
1865 iterator->end_gfn = end_gfn;
1866
1867 rmap_walk_init_level(iterator, iterator->start_level);
1868}
1869
1870static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1871{
1872 return !!iterator->rmap;
1873}
1874
1875static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1876{
1877 if (++iterator->rmap <= iterator->end_rmap) {
1878 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1879 return;
1880 }
1881
1882 if (++iterator->level > iterator->end_level) {
1883 iterator->rmap = NULL;
1884 return;
1885 }
1886
1887 rmap_walk_init_level(iterator, iterator->level);
1888}
1889
1890#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1891 _start_gfn, _end_gfn, _iter_) \
1892 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1893 _end_level_, _start_gfn, _end_gfn); \
1894 slot_rmap_walk_okay(_iter_); \
1895 slot_rmap_walk_next(_iter_))
1896
84504ef3
TY
1897static int kvm_handle_hva_range(struct kvm *kvm,
1898 unsigned long start,
1899 unsigned long end,
1900 unsigned long data,
1901 int (*handler)(struct kvm *kvm,
018aabb5 1902 struct kvm_rmap_head *rmap_head,
048212d0 1903 struct kvm_memory_slot *slot,
8a9522d2
ALC
1904 gfn_t gfn,
1905 int level,
84504ef3 1906 unsigned long data))
e930bffe 1907{
bc6678a3 1908 struct kvm_memslots *slots;
be6ba0f0 1909 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1910 struct slot_rmap_walk_iterator iterator;
1911 int ret = 0;
9da0e4d5 1912 int i;
bc6678a3 1913
9da0e4d5
PB
1914 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1915 slots = __kvm_memslots(kvm, i);
1916 kvm_for_each_memslot(memslot, slots) {
1917 unsigned long hva_start, hva_end;
1918 gfn_t gfn_start, gfn_end;
e930bffe 1919
9da0e4d5
PB
1920 hva_start = max(start, memslot->userspace_addr);
1921 hva_end = min(end, memslot->userspace_addr +
1922 (memslot->npages << PAGE_SHIFT));
1923 if (hva_start >= hva_end)
1924 continue;
1925 /*
1926 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1927 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1928 */
1929 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1930 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1931
1932 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1933 PT_MAX_HUGEPAGE_LEVEL,
1934 gfn_start, gfn_end - 1,
1935 &iterator)
1936 ret |= handler(kvm, iterator.rmap, memslot,
1937 iterator.gfn, iterator.level, data);
1938 }
e930bffe
AA
1939 }
1940
f395302e 1941 return ret;
e930bffe
AA
1942}
1943
84504ef3
TY
1944static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1945 unsigned long data,
018aabb5
TY
1946 int (*handler)(struct kvm *kvm,
1947 struct kvm_rmap_head *rmap_head,
048212d0 1948 struct kvm_memory_slot *slot,
8a9522d2 1949 gfn_t gfn, int level,
84504ef3
TY
1950 unsigned long data))
1951{
1952 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1953}
1954
b3ae2096
TY
1955int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1956{
1957 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1958}
1959
748c0e31 1960int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1961{
0cf853c5 1962 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1963}
1964
018aabb5 1965static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1966 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1967 unsigned long data)
e930bffe 1968{
1e3f42f0 1969 u64 *sptep;
79f702a6 1970 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1971 int young = 0;
1972
f160c7b7
JS
1973 for_each_rmap_spte(rmap_head, &iter, sptep)
1974 young |= mmu_spte_age(sptep);
0d536790 1975
8a9522d2 1976 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1977 return young;
1978}
1979
018aabb5 1980static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1981 struct kvm_memory_slot *slot, gfn_t gfn,
1982 int level, unsigned long data)
8ee53820 1983{
1e3f42f0
TY
1984 u64 *sptep;
1985 struct rmap_iterator iter;
8ee53820 1986
83ef6c81
JS
1987 for_each_rmap_spte(rmap_head, &iter, sptep)
1988 if (is_accessed_spte(*sptep))
1989 return 1;
83ef6c81 1990 return 0;
8ee53820
AA
1991}
1992
53a27b39
MT
1993#define RMAP_RECYCLE_THRESHOLD 1000
1994
852e3c19 1995static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1996{
018aabb5 1997 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1998 struct kvm_mmu_page *sp;
1999
2000 sp = page_header(__pa(spte));
53a27b39 2001
018aabb5 2002 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 2003
018aabb5 2004 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
2005 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2006 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
2007}
2008
57128468 2009int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 2010{
57128468 2011 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
2012}
2013
8ee53820
AA
2014int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2015{
2016 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2017}
2018
d6c69ee9 2019#ifdef MMU_DEBUG
47ad8e68 2020static int is_empty_shadow_page(u64 *spt)
6aa8b732 2021{
139bdb2d
AK
2022 u64 *pos;
2023 u64 *end;
2024
47ad8e68 2025 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 2026 if (is_shadow_present_pte(*pos)) {
b8688d51 2027 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 2028 pos, *pos);
6aa8b732 2029 return 0;
139bdb2d 2030 }
6aa8b732
AK
2031 return 1;
2032}
d6c69ee9 2033#endif
6aa8b732 2034
45221ab6
DH
2035/*
2036 * This value is the sum of all of the kvm instances's
2037 * kvm->arch.n_used_mmu_pages values. We need a global,
2038 * aggregate version in order to make the slab shrinker
2039 * faster
2040 */
bc8a3d89 2041static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
2042{
2043 kvm->arch.n_used_mmu_pages += nr;
2044 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2045}
2046
834be0d8 2047static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 2048{
fa4a2c08 2049 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 2050 hlist_del(&sp->hash_link);
bd4c86ea
XG
2051 list_del(&sp->link);
2052 free_page((unsigned long)sp->spt);
834be0d8
GN
2053 if (!sp->role.direct)
2054 free_page((unsigned long)sp->gfns);
e8ad9a70 2055 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
2056}
2057
cea0f0e7
AK
2058static unsigned kvm_page_table_hashfn(gfn_t gfn)
2059{
114df303 2060 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
2061}
2062
714b93da 2063static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 2064 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2065{
cea0f0e7
AK
2066 if (!parent_pte)
2067 return;
cea0f0e7 2068
67052b35 2069 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2070}
2071
4db35314 2072static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
2073 u64 *parent_pte)
2074{
8daf3462 2075 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2076}
2077
bcdd9a93
XG
2078static void drop_parent_pte(struct kvm_mmu_page *sp,
2079 u64 *parent_pte)
2080{
2081 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 2082 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
2083}
2084
47005792 2085static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 2086{
67052b35 2087 struct kvm_mmu_page *sp;
7ddca7e4 2088
80feb89a
TY
2089 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2090 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2091 if (!direct)
80feb89a 2092 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
2093 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2094 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
2095 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2096 return sp;
ad8cfbe3
MT
2097}
2098
67052b35 2099static void mark_unsync(u64 *spte);
1047df1f 2100static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 2101{
74c4e63a
TY
2102 u64 *sptep;
2103 struct rmap_iterator iter;
2104
2105 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2106 mark_unsync(sptep);
2107 }
0074ff63
MT
2108}
2109
67052b35 2110static void mark_unsync(u64 *spte)
0074ff63 2111{
67052b35 2112 struct kvm_mmu_page *sp;
1047df1f 2113 unsigned int index;
0074ff63 2114
67052b35 2115 sp = page_header(__pa(spte));
1047df1f
XG
2116 index = spte - sp->spt;
2117 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 2118 return;
1047df1f 2119 if (sp->unsync_children++)
0074ff63 2120 return;
1047df1f 2121 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
2122}
2123
e8bc217a 2124static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 2125 struct kvm_mmu_page *sp)
e8bc217a 2126{
1f50f1b3 2127 return 0;
e8bc217a
MT
2128}
2129
7eb77e9f 2130static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
a7052897
MT
2131{
2132}
2133
0f53b5b1
XG
2134static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2135 struct kvm_mmu_page *sp, u64 *spte,
7c562522 2136 const void *pte)
0f53b5b1
XG
2137{
2138 WARN_ON(1);
2139}
2140
60c8aec6
MT
2141#define KVM_PAGE_ARRAY_NR 16
2142
2143struct kvm_mmu_pages {
2144 struct mmu_page_and_offset {
2145 struct kvm_mmu_page *sp;
2146 unsigned int idx;
2147 } page[KVM_PAGE_ARRAY_NR];
2148 unsigned int nr;
2149};
2150
cded19f3
HE
2151static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2152 int idx)
4731d4c7 2153{
60c8aec6 2154 int i;
4731d4c7 2155
60c8aec6
MT
2156 if (sp->unsync)
2157 for (i=0; i < pvec->nr; i++)
2158 if (pvec->page[i].sp == sp)
2159 return 0;
2160
2161 pvec->page[pvec->nr].sp = sp;
2162 pvec->page[pvec->nr].idx = idx;
2163 pvec->nr++;
2164 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2165}
2166
fd951457
TY
2167static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2168{
2169 --sp->unsync_children;
2170 WARN_ON((int)sp->unsync_children < 0);
2171 __clear_bit(idx, sp->unsync_child_bitmap);
2172}
2173
60c8aec6
MT
2174static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2175 struct kvm_mmu_pages *pvec)
2176{
2177 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2178
37178b8b 2179 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2180 struct kvm_mmu_page *child;
4731d4c7
MT
2181 u64 ent = sp->spt[i];
2182
fd951457
TY
2183 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2184 clear_unsync_child_bit(sp, i);
2185 continue;
2186 }
7a8f1a74
XG
2187
2188 child = page_header(ent & PT64_BASE_ADDR_MASK);
2189
2190 if (child->unsync_children) {
2191 if (mmu_pages_add(pvec, child, i))
2192 return -ENOSPC;
2193
2194 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2195 if (!ret) {
2196 clear_unsync_child_bit(sp, i);
2197 continue;
2198 } else if (ret > 0) {
7a8f1a74 2199 nr_unsync_leaf += ret;
fd951457 2200 } else
7a8f1a74
XG
2201 return ret;
2202 } else if (child->unsync) {
2203 nr_unsync_leaf++;
2204 if (mmu_pages_add(pvec, child, i))
2205 return -ENOSPC;
2206 } else
fd951457 2207 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2208 }
2209
60c8aec6
MT
2210 return nr_unsync_leaf;
2211}
2212
e23d3fef
XG
2213#define INVALID_INDEX (-1)
2214
60c8aec6
MT
2215static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2216 struct kvm_mmu_pages *pvec)
2217{
0a47cd85 2218 pvec->nr = 0;
60c8aec6
MT
2219 if (!sp->unsync_children)
2220 return 0;
2221
e23d3fef 2222 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2223 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2224}
2225
4731d4c7
MT
2226static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2227{
2228 WARN_ON(!sp->unsync);
5e1b3ddb 2229 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2230 sp->unsync = 0;
2231 --kvm->stat.mmu_unsync;
2232}
2233
83cdb568
SC
2234static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2235 struct list_head *invalid_list);
7775834a
XG
2236static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2237 struct list_head *invalid_list);
4731d4c7 2238
47c42e6b 2239
f3414bc7 2240#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2241 hlist_for_each_entry(_sp, \
2242 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
ea145aac 2243 if ((_sp)->role.invalid) { \
f3414bc7 2244 } else
1044b030
TY
2245
2246#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2247 for_each_valid_sp(_kvm, _sp, _gfn) \
2248 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2249
47c42e6b
SC
2250static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2251{
2252 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2253}
2254
f918b443 2255/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2256static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2257 struct list_head *invalid_list)
4731d4c7 2258{
47c42e6b
SC
2259 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2260 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 2261 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2262 return false;
4731d4c7
MT
2263 }
2264
1f50f1b3 2265 return true;
4731d4c7
MT
2266}
2267
a2113634
SC
2268static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2269 struct list_head *invalid_list,
2270 bool remote_flush)
2271{
cfd32acf 2272 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
2273 return false;
2274
2275 if (!list_empty(invalid_list))
2276 kvm_mmu_commit_zap_page(kvm, invalid_list);
2277 else
2278 kvm_flush_remote_tlbs(kvm);
2279 return true;
2280}
2281
35a70510
PB
2282static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2283 struct list_head *invalid_list,
2284 bool remote_flush, bool local_flush)
1d9dc7e0 2285{
a2113634 2286 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 2287 return;
d98ba053 2288
a2113634 2289 if (local_flush)
35a70510 2290 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2291}
2292
e37fa785
XG
2293#ifdef CONFIG_KVM_MMU_AUDIT
2294#include "mmu_audit.c"
2295#else
2296static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2297static void mmu_audit_disable(void) { }
2298#endif
2299
1f50f1b3 2300static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2301 struct list_head *invalid_list)
1d9dc7e0 2302{
9a43c5d9
PB
2303 kvm_unlink_unsync_page(vcpu->kvm, sp);
2304 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2305}
2306
9f1a122f 2307/* @gfn should be write-protected at the call site */
2a74003a
PB
2308static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2309 struct list_head *invalid_list)
9f1a122f 2310{
9f1a122f 2311 struct kvm_mmu_page *s;
2a74003a 2312 bool ret = false;
9f1a122f 2313
b67bfe0d 2314 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2315 if (!s->unsync)
9f1a122f
XG
2316 continue;
2317
2318 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2319 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2320 }
2321
2a74003a 2322 return ret;
9f1a122f
XG
2323}
2324
60c8aec6 2325struct mmu_page_path {
2a7266a8
YZ
2326 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2327 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
2328};
2329
60c8aec6 2330#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2331 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2332 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2333 i = mmu_pages_next(&pvec, &parents, i))
2334
cded19f3
HE
2335static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2336 struct mmu_page_path *parents,
2337 int i)
60c8aec6
MT
2338{
2339 int n;
2340
2341 for (n = i+1; n < pvec->nr; n++) {
2342 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2343 unsigned idx = pvec->page[n].idx;
2344 int level = sp->role.level;
60c8aec6 2345
0a47cd85
PB
2346 parents->idx[level-1] = idx;
2347 if (level == PT_PAGE_TABLE_LEVEL)
2348 break;
60c8aec6 2349
0a47cd85 2350 parents->parent[level-2] = sp;
60c8aec6
MT
2351 }
2352
2353 return n;
2354}
2355
0a47cd85
PB
2356static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2357 struct mmu_page_path *parents)
2358{
2359 struct kvm_mmu_page *sp;
2360 int level;
2361
2362 if (pvec->nr == 0)
2363 return 0;
2364
e23d3fef
XG
2365 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2366
0a47cd85
PB
2367 sp = pvec->page[0].sp;
2368 level = sp->role.level;
2369 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2370
2371 parents->parent[level-2] = sp;
2372
2373 /* Also set up a sentinel. Further entries in pvec are all
2374 * children of sp, so this element is never overwritten.
2375 */
2376 parents->parent[level-1] = NULL;
2377 return mmu_pages_next(pvec, parents, 0);
2378}
2379
cded19f3 2380static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2381{
60c8aec6
MT
2382 struct kvm_mmu_page *sp;
2383 unsigned int level = 0;
2384
2385 do {
2386 unsigned int idx = parents->idx[level];
60c8aec6
MT
2387 sp = parents->parent[level];
2388 if (!sp)
2389 return;
2390
e23d3fef 2391 WARN_ON(idx == INVALID_INDEX);
fd951457 2392 clear_unsync_child_bit(sp, idx);
60c8aec6 2393 level++;
0a47cd85 2394 } while (!sp->unsync_children);
60c8aec6 2395}
4731d4c7 2396
60c8aec6
MT
2397static void mmu_sync_children(struct kvm_vcpu *vcpu,
2398 struct kvm_mmu_page *parent)
2399{
2400 int i;
2401 struct kvm_mmu_page *sp;
2402 struct mmu_page_path parents;
2403 struct kvm_mmu_pages pages;
d98ba053 2404 LIST_HEAD(invalid_list);
50c9e6f3 2405 bool flush = false;
60c8aec6 2406
60c8aec6 2407 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2408 bool protected = false;
b1a36821
MT
2409
2410 for_each_sp(pages, sp, parents, i)
54bf36aa 2411 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2412
50c9e6f3 2413 if (protected) {
b1a36821 2414 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2415 flush = false;
2416 }
b1a36821 2417
60c8aec6 2418 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2419 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2420 mmu_pages_clear_parents(&parents);
2421 }
50c9e6f3
PB
2422 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2423 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2424 cond_resched_lock(&vcpu->kvm->mmu_lock);
2425 flush = false;
2426 }
60c8aec6 2427 }
50c9e6f3
PB
2428
2429 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2430}
2431
a30f47cb
XG
2432static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2433{
e5691a81 2434 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2435}
2436
2437static void clear_sp_write_flooding_count(u64 *spte)
2438{
2439 struct kvm_mmu_page *sp = page_header(__pa(spte));
2440
2441 __clear_sp_write_flooding_count(sp);
2442}
2443
cea0f0e7
AK
2444static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2445 gfn_t gfn,
2446 gva_t gaddr,
2447 unsigned level,
f6e2c02b 2448 int direct,
bb11c6c9 2449 unsigned access)
cea0f0e7
AK
2450{
2451 union kvm_mmu_page_role role;
cea0f0e7 2452 unsigned quadrant;
9f1a122f 2453 struct kvm_mmu_page *sp;
9f1a122f 2454 bool need_sync = false;
2a74003a 2455 bool flush = false;
f3414bc7 2456 int collisions = 0;
2a74003a 2457 LIST_HEAD(invalid_list);
cea0f0e7 2458
36d9594d 2459 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2460 role.level = level;
f6e2c02b 2461 role.direct = direct;
84b0c8c6 2462 if (role.direct)
47c42e6b 2463 role.gpte_is_8_bytes = true;
41074d07 2464 role.access = access;
44dd3ffa
VK
2465 if (!vcpu->arch.mmu->direct_map
2466 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2467 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2468 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2469 role.quadrant = quadrant;
2470 }
f3414bc7
DM
2471 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2472 if (sp->gfn != gfn) {
2473 collisions++;
2474 continue;
2475 }
2476
7ae680eb
XG
2477 if (!need_sync && sp->unsync)
2478 need_sync = true;
4731d4c7 2479
7ae680eb
XG
2480 if (sp->role.word != role.word)
2481 continue;
4731d4c7 2482
2a74003a
PB
2483 if (sp->unsync) {
2484 /* The page is good, but __kvm_sync_page might still end
2485 * up zapping it. If so, break in order to rebuild it.
2486 */
2487 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2488 break;
2489
2490 WARN_ON(!list_empty(&invalid_list));
2491 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2492 }
e02aa901 2493
98bba238 2494 if (sp->unsync_children)
a8eeb04a 2495 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2496
a30f47cb 2497 __clear_sp_write_flooding_count(sp);
7ae680eb 2498 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2499 goto out;
7ae680eb 2500 }
47005792 2501
dfc5aa00 2502 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2503
2504 sp = kvm_mmu_alloc_page(vcpu, direct);
2505
4db35314
AK
2506 sp->gfn = gfn;
2507 sp->role = role;
7ae680eb
XG
2508 hlist_add_head(&sp->hash_link,
2509 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2510 if (!direct) {
56ca57f9
XG
2511 /*
2512 * we should do write protection before syncing pages
2513 * otherwise the content of the synced shadow page may
2514 * be inconsistent with guest page table.
2515 */
2516 account_shadowed(vcpu->kvm, sp);
2517 if (level == PT_PAGE_TABLE_LEVEL &&
2518 rmap_write_protect(vcpu, gfn))
c3134ce2 2519 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2520
9f1a122f 2521 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2522 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2523 }
77492664 2524 clear_page(sp->spt);
f691fe1d 2525 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2526
2527 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2528out:
2529 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2530 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2531 return sp;
cea0f0e7
AK
2532}
2533
7eb77e9f
JS
2534static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2535 struct kvm_vcpu *vcpu, hpa_t root,
2536 u64 addr)
2d11123a
AK
2537{
2538 iterator->addr = addr;
7eb77e9f 2539 iterator->shadow_addr = root;
44dd3ffa 2540 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2541
2a7266a8 2542 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2543 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2544 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2545 --iterator->level;
2546
2d11123a 2547 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2548 /*
2549 * prev_root is currently only used for 64-bit hosts. So only
2550 * the active root_hpa is valid here.
2551 */
44dd3ffa 2552 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2553
2d11123a 2554 iterator->shadow_addr
44dd3ffa 2555 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2556 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2557 --iterator->level;
2558 if (!iterator->shadow_addr)
2559 iterator->level = 0;
2560 }
2561}
2562
7eb77e9f
JS
2563static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2564 struct kvm_vcpu *vcpu, u64 addr)
2565{
44dd3ffa 2566 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2567 addr);
2568}
2569
2d11123a
AK
2570static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2571{
2572 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2573 return false;
4d88954d 2574
2d11123a
AK
2575 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2576 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2577 return true;
2578}
2579
c2a2ac2b
XG
2580static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2581 u64 spte)
2d11123a 2582{
c2a2ac2b 2583 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2584 iterator->level = 0;
2585 return;
2586 }
2587
c2a2ac2b 2588 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2589 --iterator->level;
2590}
2591
c2a2ac2b
XG
2592static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2593{
bb606a9b 2594 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2595}
2596
98bba238
TY
2597static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2598 struct kvm_mmu_page *sp)
32ef26a3
AK
2599{
2600 u64 spte;
2601
ffb128c8 2602 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2603
ffb128c8 2604 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2605 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2606
2607 if (sp_ad_disabled(sp))
2608 spte |= shadow_acc_track_value;
2609 else
2610 spte |= shadow_accessed_mask;
24db2734 2611
1df9f2dc 2612 mmu_spte_set(sptep, spte);
98bba238
TY
2613
2614 mmu_page_add_parent_pte(vcpu, sp, sptep);
2615
2616 if (sp->unsync_children || sp->unsync)
2617 mark_unsync(sptep);
32ef26a3
AK
2618}
2619
a357bd22
AK
2620static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2621 unsigned direct_access)
2622{
2623 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2624 struct kvm_mmu_page *child;
2625
2626 /*
2627 * For the direct sp, if the guest pte's dirty bit
2628 * changed form clean to dirty, it will corrupt the
2629 * sp's access: allow writable in the read-only sp,
2630 * so we should update the spte at this point to get
2631 * a new sp with the correct access.
2632 */
2633 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2634 if (child->role.access == direct_access)
2635 return;
2636
bcdd9a93 2637 drop_parent_pte(child, sptep);
c3134ce2 2638 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2639 }
2640}
2641
505aef8f 2642static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2643 u64 *spte)
2644{
2645 u64 pte;
2646 struct kvm_mmu_page *child;
2647
2648 pte = *spte;
2649 if (is_shadow_present_pte(pte)) {
505aef8f 2650 if (is_last_spte(pte, sp->role.level)) {
c3707958 2651 drop_spte(kvm, spte);
505aef8f
XG
2652 if (is_large_pte(pte))
2653 --kvm->stat.lpages;
2654 } else {
38e3b2b2 2655 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2656 drop_parent_pte(child, spte);
38e3b2b2 2657 }
505aef8f
XG
2658 return true;
2659 }
2660
2661 if (is_mmio_spte(pte))
ce88decf 2662 mmu_spte_clear_no_track(spte);
c3707958 2663
505aef8f 2664 return false;
38e3b2b2
XG
2665}
2666
90cb0529 2667static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2668 struct kvm_mmu_page *sp)
a436036b 2669{
697fe2e2 2670 unsigned i;
697fe2e2 2671
38e3b2b2
XG
2672 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2673 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2674}
2675
31aa2b44 2676static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2677{
1e3f42f0
TY
2678 u64 *sptep;
2679 struct rmap_iterator iter;
a436036b 2680
018aabb5 2681 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2682 drop_parent_pte(sp, sptep);
31aa2b44
AK
2683}
2684
60c8aec6 2685static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2686 struct kvm_mmu_page *parent,
2687 struct list_head *invalid_list)
4731d4c7 2688{
60c8aec6
MT
2689 int i, zapped = 0;
2690 struct mmu_page_path parents;
2691 struct kvm_mmu_pages pages;
4731d4c7 2692
60c8aec6 2693 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2694 return 0;
60c8aec6 2695
60c8aec6
MT
2696 while (mmu_unsync_walk(parent, &pages)) {
2697 struct kvm_mmu_page *sp;
2698
2699 for_each_sp(pages, sp, parents, i) {
7775834a 2700 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2701 mmu_pages_clear_parents(&parents);
77662e00 2702 zapped++;
60c8aec6 2703 }
60c8aec6
MT
2704 }
2705
2706 return zapped;
4731d4c7
MT
2707}
2708
83cdb568
SC
2709static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2710 struct kvm_mmu_page *sp,
2711 struct list_head *invalid_list,
2712 int *nr_zapped)
31aa2b44 2713{
83cdb568 2714 bool list_unstable;
f691fe1d 2715
7775834a 2716 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2717 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2718 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2719 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2720 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2721
83cdb568
SC
2722 /* Zapping children means active_mmu_pages has become unstable. */
2723 list_unstable = *nr_zapped;
2724
f6e2c02b 2725 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2726 unaccount_shadowed(kvm, sp);
5304b8d3 2727
4731d4c7
MT
2728 if (sp->unsync)
2729 kvm_unlink_unsync_page(kvm, sp);
4db35314 2730 if (!sp->root_count) {
54a4f023 2731 /* Count self */
83cdb568 2732 (*nr_zapped)++;
7775834a 2733 list_move(&sp->link, invalid_list);
aa6bd187 2734 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2735 } else {
5b5c6a5a 2736 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72 2737
5ff05683 2738 if (!sp->role.invalid)
05988d72 2739 kvm_reload_remote_mmus(kvm);
2e53d63a 2740 }
7775834a
XG
2741
2742 sp->role.invalid = 1;
83cdb568
SC
2743 return list_unstable;
2744}
2745
2746static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2747 struct list_head *invalid_list)
2748{
2749 int nr_zapped;
2750
2751 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2752 return nr_zapped;
a436036b
AK
2753}
2754
7775834a
XG
2755static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2756 struct list_head *invalid_list)
2757{
945315b9 2758 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2759
2760 if (list_empty(invalid_list))
2761 return;
2762
c142786c 2763 /*
9753f529
LT
2764 * We need to make sure everyone sees our modifications to
2765 * the page tables and see changes to vcpu->mode here. The barrier
2766 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2767 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2768 *
2769 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2770 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2771 */
2772 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2773
945315b9 2774 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2775 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2776 kvm_mmu_free_page(sp);
945315b9 2777 }
7775834a
XG
2778}
2779
5da59607
TY
2780static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2781 struct list_head *invalid_list)
2782{
2783 struct kvm_mmu_page *sp;
2784
2785 if (list_empty(&kvm->arch.active_mmu_pages))
2786 return false;
2787
d74c0e6b
GT
2788 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2789 struct kvm_mmu_page, link);
42bcbebf 2790 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
5da59607
TY
2791}
2792
82ce2c96
IE
2793/*
2794 * Changing the number of mmu pages allocated to the vm
49d5ca26 2795 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2796 */
bc8a3d89 2797void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2798{
d98ba053 2799 LIST_HEAD(invalid_list);
82ce2c96 2800
b34cb590
TY
2801 spin_lock(&kvm->mmu_lock);
2802
49d5ca26 2803 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2804 /* Need to free some mmu pages to achieve the goal. */
2805 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2806 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2807 break;
82ce2c96 2808
aa6bd187 2809 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2810 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2811 }
82ce2c96 2812
49d5ca26 2813 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2814
2815 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2816}
2817
1cb3f3ae 2818int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2819{
4db35314 2820 struct kvm_mmu_page *sp;
d98ba053 2821 LIST_HEAD(invalid_list);
a436036b
AK
2822 int r;
2823
9ad17b10 2824 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2825 r = 0;
1cb3f3ae 2826 spin_lock(&kvm->mmu_lock);
b67bfe0d 2827 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2828 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2829 sp->role.word);
2830 r = 1;
f41d335a 2831 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2832 }
d98ba053 2833 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2834 spin_unlock(&kvm->mmu_lock);
2835
a436036b 2836 return r;
cea0f0e7 2837}
1cb3f3ae 2838EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2839
5c520e90 2840static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2841{
2842 trace_kvm_mmu_unsync_page(sp);
2843 ++vcpu->kvm->stat.mmu_unsync;
2844 sp->unsync = 1;
2845
2846 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2847}
2848
3d0c27ad
XG
2849static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2850 bool can_unsync)
4731d4c7 2851{
5c520e90 2852 struct kvm_mmu_page *sp;
4731d4c7 2853
3d0c27ad
XG
2854 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2855 return true;
9cf5cf5a 2856
5c520e90 2857 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2858 if (!can_unsync)
3d0c27ad 2859 return true;
36a2e677 2860
5c520e90
XG
2861 if (sp->unsync)
2862 continue;
9cf5cf5a 2863
5c520e90
XG
2864 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2865 kvm_unsync_page(vcpu, sp);
4731d4c7 2866 }
3d0c27ad 2867
578e1c4d
JS
2868 /*
2869 * We need to ensure that the marking of unsync pages is visible
2870 * before the SPTE is updated to allow writes because
2871 * kvm_mmu_sync_roots() checks the unsync flags without holding
2872 * the MMU lock and so can race with this. If the SPTE was updated
2873 * before the page had been marked as unsync-ed, something like the
2874 * following could happen:
2875 *
2876 * CPU 1 CPU 2
2877 * ---------------------------------------------------------------------
2878 * 1.2 Host updates SPTE
2879 * to be writable
2880 * 2.1 Guest writes a GPTE for GVA X.
2881 * (GPTE being in the guest page table shadowed
2882 * by the SP from CPU 1.)
2883 * This reads SPTE during the page table walk.
2884 * Since SPTE.W is read as 1, there is no
2885 * fault.
2886 *
2887 * 2.2 Guest issues TLB flush.
2888 * That causes a VM Exit.
2889 *
2890 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2891 * Since it is false, so it just returns.
2892 *
2893 * 2.4 Guest accesses GVA X.
2894 * Since the mapping in the SP was not updated,
2895 * so the old mapping for GVA X incorrectly
2896 * gets used.
2897 * 1.1 Host marks SP
2898 * as unsync
2899 * (sp->unsync = true)
2900 *
2901 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2902 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2903 * pairs with this write barrier.
2904 */
2905 smp_wmb();
2906
3d0c27ad 2907 return false;
4731d4c7
MT
2908}
2909
ba049e93 2910static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2911{
2912 if (pfn_valid(pfn))
aa2e063a
HZ
2913 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2914 /*
2915 * Some reserved pages, such as those from NVDIMM
2916 * DAX devices, are not for MMIO, and can be mapped
2917 * with cached memory type for better performance.
2918 * However, the above check misconceives those pages
2919 * as MMIO, and results in KVM mapping them with UC
2920 * memory type, which would hurt the performance.
2921 * Therefore, we check the host memory type in addition
2922 * and only treat UC/UC-/WC pages as MMIO.
2923 */
2924 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
d1fe9219 2925
0c55671f
KA
2926 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2927 pfn_to_hpa(pfn + 1) - 1,
2928 E820_TYPE_RAM);
d1fe9219
PB
2929}
2930
5ce4786f
JS
2931/* Bits which may be returned by set_spte() */
2932#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2933#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2934
d555c333 2935static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2936 unsigned pte_access, int level,
ba049e93 2937 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2938 bool can_unsync, bool host_writable)
1c4f1fd6 2939{
ffb128c8 2940 u64 spte = 0;
1e73f9dd 2941 int ret = 0;
ac8d57e5 2942 struct kvm_mmu_page *sp;
64d4d521 2943
54bf36aa 2944 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2945 return 0;
2946
ac8d57e5
PF
2947 sp = page_header(__pa(sptep));
2948 if (sp_ad_disabled(sp))
2949 spte |= shadow_acc_track_value;
2950
d95c5568
BD
2951 /*
2952 * For the EPT case, shadow_present_mask is 0 if hardware
2953 * supports exec-only page table entries. In that case,
2954 * ACC_USER_MASK and shadow_user_mask are used to represent
2955 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2956 */
ffb128c8 2957 spte |= shadow_present_mask;
947da538 2958 if (!speculative)
ac8d57e5 2959 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 2960
7b52345e
SY
2961 if (pte_access & ACC_EXEC_MASK)
2962 spte |= shadow_x_mask;
2963 else
2964 spte |= shadow_nx_mask;
49fde340 2965
1c4f1fd6 2966 if (pte_access & ACC_USER_MASK)
7b52345e 2967 spte |= shadow_user_mask;
49fde340 2968
852e3c19 2969 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2970 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2971 if (tdp_enabled)
4b12f0de 2972 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2973 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2974
9bdbba13 2975 if (host_writable)
1403283a 2976 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2977 else
2978 pte_access &= ~ACC_WRITE_MASK;
1403283a 2979
daaf216c
TL
2980 if (!kvm_is_mmio_pfn(pfn))
2981 spte |= shadow_me_mask;
2982
35149e21 2983 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2984
c2288505 2985 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2986
c2193463 2987 /*
7751babd
XG
2988 * Other vcpu creates new sp in the window between
2989 * mapping_level() and acquiring mmu-lock. We can
2990 * allow guest to retry the access, the mapping can
2991 * be fixed if guest refault.
c2193463 2992 */
852e3c19 2993 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2994 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2995 goto done;
38187c83 2996
49fde340 2997 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2998
ecc5589f
MT
2999 /*
3000 * Optimization: for pte sync, if spte was writable the hash
3001 * lookup is unnecessary (and expensive). Write protection
3002 * is responsibility of mmu_get_page / kvm_sync_page.
3003 * Same reasoning can be applied to dirty page accounting.
3004 */
8dae4445 3005 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
3006 goto set_pte;
3007
4731d4c7 3008 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 3009 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 3010 __func__, gfn);
5ce4786f 3011 ret |= SET_SPTE_WRITE_PROTECTED_PT;
1c4f1fd6 3012 pte_access &= ~ACC_WRITE_MASK;
49fde340 3013 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
3014 }
3015 }
3016
9b51a630 3017 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 3018 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 3019 spte |= spte_shadow_dirty_mask(spte);
9b51a630 3020 }
1c4f1fd6 3021
f160c7b7
JS
3022 if (speculative)
3023 spte = mark_spte_for_access_track(spte);
3024
38187c83 3025set_pte:
6e7d0354 3026 if (mmu_spte_update(sptep, spte))
5ce4786f 3027 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
be38d276 3028done:
1e73f9dd
MT
3029 return ret;
3030}
3031
9b8ebbdb
PB
3032static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
3033 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
3034 bool speculative, bool host_writable)
1e73f9dd
MT
3035{
3036 int was_rmapped = 0;
53a27b39 3037 int rmap_count;
5ce4786f 3038 int set_spte_ret;
9b8ebbdb 3039 int ret = RET_PF_RETRY;
c2a4eadf 3040 bool flush = false;
1e73f9dd 3041
f7616203
XG
3042 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3043 *sptep, write_fault, gfn);
1e73f9dd 3044
afd28fe1 3045 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
3046 /*
3047 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3048 * the parent of the now unreachable PTE.
3049 */
852e3c19
JR
3050 if (level > PT_PAGE_TABLE_LEVEL &&
3051 !is_large_pte(*sptep)) {
1e73f9dd 3052 struct kvm_mmu_page *child;
d555c333 3053 u64 pte = *sptep;
1e73f9dd
MT
3054
3055 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 3056 drop_parent_pte(child, sptep);
c2a4eadf 3057 flush = true;
d555c333 3058 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 3059 pgprintk("hfn old %llx new %llx\n",
d555c333 3060 spte_to_pfn(*sptep), pfn);
c3707958 3061 drop_spte(vcpu->kvm, sptep);
c2a4eadf 3062 flush = true;
6bed6b9e
JR
3063 } else
3064 was_rmapped = 1;
1e73f9dd 3065 }
852e3c19 3066
5ce4786f
JS
3067 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3068 speculative, true, host_writable);
3069 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 3070 if (write_fault)
9b8ebbdb 3071 ret = RET_PF_EMULATE;
77c3913b 3072 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 3073 }
c3134ce2 3074
c2a4eadf 3075 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
3076 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3077 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 3078
029499b4 3079 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 3080 ret = RET_PF_EMULATE;
ce88decf 3081
d555c333 3082 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 3083 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 3084 is_large_pte(*sptep)? "2MB" : "4kB",
f160c7b7 3085 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
a205bc19 3086 *sptep, sptep);
d555c333 3087 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
3088 ++vcpu->kvm->stat.lpages;
3089
ffb61bb3 3090 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
3091 if (!was_rmapped) {
3092 rmap_count = rmap_add(vcpu, sptep, gfn);
3093 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3094 rmap_recycle(vcpu, sptep, gfn);
3095 }
1c4f1fd6 3096 }
cb9aaa30 3097
9b8ebbdb 3098 return ret;
1c4f1fd6
AK
3099}
3100
ba049e93 3101static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
3102 bool no_dirty_log)
3103{
3104 struct kvm_memory_slot *slot;
957ed9ef 3105
5d163b1c 3106 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 3107 if (!slot)
6c8ee57b 3108 return KVM_PFN_ERR_FAULT;
957ed9ef 3109
037d92dc 3110 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
3111}
3112
3113static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3114 struct kvm_mmu_page *sp,
3115 u64 *start, u64 *end)
3116{
3117 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 3118 struct kvm_memory_slot *slot;
957ed9ef
XG
3119 unsigned access = sp->role.access;
3120 int i, ret;
3121 gfn_t gfn;
3122
3123 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
3124 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3125 if (!slot)
957ed9ef
XG
3126 return -1;
3127
d9ef13c2 3128 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
3129 if (ret <= 0)
3130 return -1;
3131
43fdcda9 3132 for (i = 0; i < ret; i++, gfn++, start++) {
029499b4
TY
3133 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3134 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
3135 put_page(pages[i]);
3136 }
957ed9ef
XG
3137
3138 return 0;
3139}
3140
3141static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3142 struct kvm_mmu_page *sp, u64 *sptep)
3143{
3144 u64 *spte, *start = NULL;
3145 int i;
3146
3147 WARN_ON(!sp->role.direct);
3148
3149 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3150 spte = sp->spt + i;
3151
3152 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 3153 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
3154 if (!start)
3155 continue;
3156 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3157 break;
3158 start = NULL;
3159 } else if (!start)
3160 start = spte;
3161 }
3162}
3163
3164static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3165{
3166 struct kvm_mmu_page *sp;
3167
ac8d57e5
PF
3168 sp = page_header(__pa(sptep));
3169
957ed9ef 3170 /*
ac8d57e5
PF
3171 * Without accessed bits, there's no way to distinguish between
3172 * actually accessed translations and prefetched, so disable pte
3173 * prefetch if accessed bits aren't available.
957ed9ef 3174 */
ac8d57e5 3175 if (sp_ad_disabled(sp))
957ed9ef
XG
3176 return;
3177
957ed9ef
XG
3178 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3179 return;
3180
3181 __direct_pte_prefetch(vcpu, sp, sptep);
3182}
3183
3fcf2d1b
PB
3184static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3185 int map_writable, int level, kvm_pfn_t pfn,
3186 bool prefault)
140754bc 3187{
3fcf2d1b 3188 struct kvm_shadow_walk_iterator it;
140754bc 3189 struct kvm_mmu_page *sp;
3fcf2d1b
PB
3190 int ret;
3191 gfn_t gfn = gpa >> PAGE_SHIFT;
3192 gfn_t base_gfn = gfn;
6aa8b732 3193
44dd3ffa 3194 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3fcf2d1b 3195 return RET_PF_RETRY;
989c6b34 3196
3fcf2d1b
PB
3197 for_each_shadow_entry(vcpu, gpa, it) {
3198 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3199 if (it.level == level)
9f652d21 3200 break;
6aa8b732 3201
3fcf2d1b
PB
3202 drop_large_spte(vcpu, it.sptep);
3203 if (!is_shadow_present_pte(*it.sptep)) {
3204 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3205 it.level - 1, true, ACC_ALL);
c9fa0b3b 3206
3fcf2d1b 3207 link_shadow_page(vcpu, it.sptep, sp);
9f652d21
AK
3208 }
3209 }
3fcf2d1b
PB
3210
3211 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3212 write, level, base_gfn, pfn, prefault,
3213 map_writable);
3214 direct_pte_prefetch(vcpu, it.sptep);
3215 ++vcpu->stat.pf_fixed;
3216 return ret;
6aa8b732
AK
3217}
3218
77db5cbd 3219static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 3220{
585a8b9b 3221 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
3222}
3223
ba049e93 3224static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 3225{
4d8b81ab
XG
3226 /*
3227 * Do not cache the mmio info caused by writing the readonly gfn
3228 * into the spte otherwise read access on readonly gfn also can
3229 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
3230 */
3231 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 3232 return RET_PF_EMULATE;
4d8b81ab 3233
e6c1502b 3234 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3235 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 3236 return RET_PF_RETRY;
d7c55201 3237 }
edba23e5 3238
2c151b25 3239 return -EFAULT;
bf998156
HY
3240}
3241
936a5fe6 3242static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
d679b326 3243 gfn_t gfn, kvm_pfn_t *pfnp,
ba049e93 3244 int *levelp)
936a5fe6 3245{
ba049e93 3246 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
3247 int level = *levelp;
3248
3249 /*
3250 * Check if it's a transparent hugepage. If this would be an
3251 * hugetlbfs page, level wouldn't be set to
3252 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3253 * here.
3254 */
bf4bea8e 3255 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6 3256 level == PT_PAGE_TABLE_LEVEL &&
127393fb 3257 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 3258 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
3259 unsigned long mask;
3260 /*
3261 * mmu_notifier_retry was successful and we hold the
3262 * mmu_lock here, so the pmd can't become splitting
3263 * from under us, and in turn
3264 * __split_huge_page_refcount() can't run from under
3265 * us and we can safely transfer the refcount from
3266 * PG_tail to PG_head as we switch the pfn to tail to
3267 * head.
3268 */
3269 *levelp = level = PT_DIRECTORY_LEVEL;
3270 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3271 VM_BUG_ON((gfn & mask) != (pfn & mask));
3272 if (pfn & mask) {
936a5fe6
AA
3273 kvm_release_pfn_clean(pfn);
3274 pfn &= ~mask;
c3586667 3275 kvm_get_pfn(pfn);
936a5fe6
AA
3276 *pfnp = pfn;
3277 }
3278 }
3279}
3280
d7c55201 3281static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 3282 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 3283{
d7c55201 3284 /* The pfn is invalid, report the error! */
81c52c56 3285 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3286 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3287 return true;
d7c55201
XG
3288 }
3289
ce88decf 3290 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 3291 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 3292
798e88b3 3293 return false;
d7c55201
XG
3294}
3295
e5552fd2 3296static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3297{
1c118b82
XG
3298 /*
3299 * Do not fix the mmio spte with invalid generation number which
3300 * need to be updated by slow page fault path.
3301 */
3302 if (unlikely(error_code & PFERR_RSVD_MASK))
3303 return false;
3304
f160c7b7
JS
3305 /* See if the page fault is due to an NX violation */
3306 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3307 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3308 return false;
3309
c7ba5b48 3310 /*
f160c7b7
JS
3311 * #PF can be fast if:
3312 * 1. The shadow page table entry is not present, which could mean that
3313 * the fault is potentially caused by access tracking (if enabled).
3314 * 2. The shadow page table entry is present and the fault
3315 * is caused by write-protect, that means we just need change the W
3316 * bit of the spte which can be done out of mmu-lock.
3317 *
3318 * However, if access tracking is disabled we know that a non-present
3319 * page must be a genuine page fault where we have to create a new SPTE.
3320 * So, if access tracking is disabled, we return true only for write
3321 * accesses to a present page.
c7ba5b48 3322 */
c7ba5b48 3323
f160c7b7
JS
3324 return shadow_acc_track_mask != 0 ||
3325 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3326 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3327}
3328
97dceba2
JS
3329/*
3330 * Returns true if the SPTE was fixed successfully. Otherwise,
3331 * someone else modified the SPTE from its original value.
3332 */
c7ba5b48 3333static bool
92a476cb 3334fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3335 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3336{
c7ba5b48
XG
3337 gfn_t gfn;
3338
3339 WARN_ON(!sp->role.direct);
3340
9b51a630
KH
3341 /*
3342 * Theoretically we could also set dirty bit (and flush TLB) here in
3343 * order to eliminate unnecessary PML logging. See comments in
3344 * set_spte. But fast_page_fault is very unlikely to happen with PML
3345 * enabled, so we do not do this. This might result in the same GPA
3346 * to be logged in PML buffer again when the write really happens, and
3347 * eventually to be called by mark_page_dirty twice. But it's also no
3348 * harm. This also avoids the TLB flush needed after setting dirty bit
3349 * so non-PML cases won't be impacted.
3350 *
3351 * Compare with set_spte where instead shadow_dirty_mask is set.
3352 */
f160c7b7 3353 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3354 return false;
3355
d3e328f2 3356 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3357 /*
3358 * The gfn of direct spte is stable since it is
3359 * calculated by sp->gfn.
3360 */
3361 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3362 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3363 }
c7ba5b48
XG
3364
3365 return true;
3366}
3367
d3e328f2
JS
3368static bool is_access_allowed(u32 fault_err_code, u64 spte)
3369{
3370 if (fault_err_code & PFERR_FETCH_MASK)
3371 return is_executable_pte(spte);
3372
3373 if (fault_err_code & PFERR_WRITE_MASK)
3374 return is_writable_pte(spte);
3375
3376 /* Fault was on Read access */
3377 return spte & PT_PRESENT_MASK;
3378}
3379
c7ba5b48
XG
3380/*
3381 * Return value:
3382 * - true: let the vcpu to access on the same address again.
3383 * - false: let the real page fault path to fix it.
3384 */
3385static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3386 u32 error_code)
3387{
3388 struct kvm_shadow_walk_iterator iterator;
92a476cb 3389 struct kvm_mmu_page *sp;
97dceba2 3390 bool fault_handled = false;
c7ba5b48 3391 u64 spte = 0ull;
97dceba2 3392 uint retry_count = 0;
c7ba5b48 3393
44dd3ffa 3394 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
37f6a4e2
MT
3395 return false;
3396
e5552fd2 3397 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3398 return false;
3399
3400 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3401
97dceba2 3402 do {
d3e328f2 3403 u64 new_spte;
c7ba5b48 3404
d162f30a
JS
3405 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3406 if (!is_shadow_present_pte(spte) ||
3407 iterator.level < level)
3408 break;
3409
97dceba2
JS
3410 sp = page_header(__pa(iterator.sptep));
3411 if (!is_last_spte(spte, sp->role.level))
3412 break;
c7ba5b48 3413
97dceba2 3414 /*
f160c7b7
JS
3415 * Check whether the memory access that caused the fault would
3416 * still cause it if it were to be performed right now. If not,
3417 * then this is a spurious fault caused by TLB lazily flushed,
3418 * or some other CPU has already fixed the PTE after the
3419 * current CPU took the fault.
97dceba2
JS
3420 *
3421 * Need not check the access of upper level table entries since
3422 * they are always ACC_ALL.
3423 */
d3e328f2
JS
3424 if (is_access_allowed(error_code, spte)) {
3425 fault_handled = true;
3426 break;
3427 }
f160c7b7 3428
d3e328f2
JS
3429 new_spte = spte;
3430
3431 if (is_access_track_spte(spte))
3432 new_spte = restore_acc_track_spte(new_spte);
3433
3434 /*
3435 * Currently, to simplify the code, write-protection can
3436 * be removed in the fast path only if the SPTE was
3437 * write-protected for dirty-logging or access tracking.
3438 */
3439 if ((error_code & PFERR_WRITE_MASK) &&
3440 spte_can_locklessly_be_made_writable(spte))
3441 {
3442 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3443
3444 /*
d3e328f2
JS
3445 * Do not fix write-permission on the large spte. Since
3446 * we only dirty the first page into the dirty-bitmap in
3447 * fast_pf_fix_direct_spte(), other pages are missed
3448 * if its slot has dirty logging enabled.
3449 *
3450 * Instead, we let the slow page fault path create a
3451 * normal spte to fix the access.
3452 *
3453 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3454 */
d3e328f2 3455 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3456 break;
97dceba2 3457 }
c7ba5b48 3458
f160c7b7 3459 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3460 if (new_spte == spte ||
3461 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3462 break;
3463
3464 /*
3465 * Currently, fast page fault only works for direct mapping
3466 * since the gfn is not stable for indirect shadow page. See
3467 * Documentation/virtual/kvm/locking.txt to get more detail.
3468 */
3469 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3470 iterator.sptep, spte,
d3e328f2 3471 new_spte);
97dceba2
JS
3472 if (fault_handled)
3473 break;
3474
3475 if (++retry_count > 4) {
3476 printk_once(KERN_WARNING
3477 "kvm: Fast #PF retrying more than 4 times.\n");
3478 break;
3479 }
3480
97dceba2 3481 } while (true);
c126d94f 3482
a72faf25 3483 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
97dceba2 3484 spte, fault_handled);
c7ba5b48
XG
3485 walk_shadow_page_lockless_end(vcpu);
3486
97dceba2 3487 return fault_handled;
c7ba5b48
XG
3488}
3489
78b2c54a 3490static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3491 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
26eeb53c 3492static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3493
c7ba5b48
XG
3494static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3495 gfn_t gfn, bool prefault)
10589a46
MT
3496{
3497 int r;
852e3c19 3498 int level;
fd136902 3499 bool force_pt_level = false;
ba049e93 3500 kvm_pfn_t pfn;
e930bffe 3501 unsigned long mmu_seq;
c7ba5b48 3502 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3503
fd136902 3504 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3505 if (likely(!force_pt_level)) {
936a5fe6
AA
3506 /*
3507 * This path builds a PAE pagetable - so we can map
3508 * 2mb pages at maximum. Therefore check if the level
3509 * is larger than that.
3510 */
3511 if (level > PT_DIRECTORY_LEVEL)
3512 level = PT_DIRECTORY_LEVEL;
852e3c19 3513
936a5fe6 3514 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3515 }
05da4558 3516
c7ba5b48 3517 if (fast_page_fault(vcpu, v, level, error_code))
9b8ebbdb 3518 return RET_PF_RETRY;
c7ba5b48 3519
e930bffe 3520 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3521 smp_rmb();
060c2abe 3522
78b2c54a 3523 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
9b8ebbdb 3524 return RET_PF_RETRY;
aaee2c94 3525
d7c55201
XG
3526 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3527 return r;
d196e343 3528
43fdcda9 3529 r = RET_PF_RETRY;
aaee2c94 3530 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3531 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3532 goto out_unlock;
26eeb53c
WL
3533 if (make_mmu_pages_available(vcpu) < 0)
3534 goto out_unlock;
936a5fe6 3535 if (likely(!force_pt_level))
d679b326 3536 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
3fcf2d1b 3537 r = __direct_map(vcpu, v, write, map_writable, level, pfn, prefault);
e930bffe
AA
3538out_unlock:
3539 spin_unlock(&vcpu->kvm->mmu_lock);
3540 kvm_release_pfn_clean(pfn);
43fdcda9 3541 return r;
10589a46
MT
3542}
3543
74b566e6
JS
3544static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3545 struct list_head *invalid_list)
17ac10ad 3546{
4db35314 3547 struct kvm_mmu_page *sp;
17ac10ad 3548
74b566e6 3549 if (!VALID_PAGE(*root_hpa))
7b53aa56 3550 return;
35af577a 3551
74b566e6
JS
3552 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3553 --sp->root_count;
3554 if (!sp->root_count && sp->role.invalid)
3555 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
17ac10ad 3556
74b566e6
JS
3557 *root_hpa = INVALID_PAGE;
3558}
3559
08fb59d8 3560/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3561void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3562 ulong roots_to_free)
74b566e6
JS
3563{
3564 int i;
3565 LIST_HEAD(invalid_list);
08fb59d8 3566 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3567
b94742c9 3568 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3569
08fb59d8 3570 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3571 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3572 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3573 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3574 VALID_PAGE(mmu->prev_roots[i].hpa))
3575 break;
3576
3577 if (i == KVM_MMU_NUM_PREV_ROOTS)
3578 return;
3579 }
35af577a
GN
3580
3581 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3582
b94742c9
JS
3583 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3584 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3585 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3586 &invalid_list);
7c390d35 3587
08fb59d8
JS
3588 if (free_active_root) {
3589 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3590 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3591 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3592 &invalid_list);
3593 } else {
3594 for (i = 0; i < 4; ++i)
3595 if (mmu->pae_root[i] != 0)
3596 mmu_free_root_page(vcpu->kvm,
3597 &mmu->pae_root[i],
3598 &invalid_list);
3599 mmu->root_hpa = INVALID_PAGE;
3600 }
ad7dc69a 3601 mmu->root_cr3 = 0;
17ac10ad 3602 }
74b566e6 3603
d98ba053 3604 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3605 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad 3606}
74b566e6 3607EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3608
8986ecc0
MT
3609static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3610{
3611 int ret = 0;
3612
3613 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3614 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3615 ret = 1;
3616 }
3617
3618 return ret;
3619}
3620
651dd37a
JR
3621static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3622{
3623 struct kvm_mmu_page *sp;
7ebaf15e 3624 unsigned i;
651dd37a 3625
44dd3ffa 3626 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
651dd37a 3627 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3628 if(make_mmu_pages_available(vcpu) < 0) {
3629 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3630 return -ENOSPC;
26eeb53c 3631 }
855feb67 3632 sp = kvm_mmu_get_page(vcpu, 0, 0,
44dd3ffa 3633 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
651dd37a
JR
3634 ++sp->root_count;
3635 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa
VK
3636 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3637 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3638 for (i = 0; i < 4; ++i) {
44dd3ffa 3639 hpa_t root = vcpu->arch.mmu->pae_root[i];
651dd37a 3640
fa4a2c08 3641 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3642 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3643 if (make_mmu_pages_available(vcpu) < 0) {
3644 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3645 return -ENOSPC;
26eeb53c 3646 }
649497d1 3647 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3648 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3649 root = __pa(sp->spt);
3650 ++sp->root_count;
3651 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3652 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3653 }
44dd3ffa 3654 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3655 } else
3656 BUG();
ad7dc69a 3657 vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
651dd37a
JR
3658
3659 return 0;
3660}
3661
3662static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3663{
4db35314 3664 struct kvm_mmu_page *sp;
81407ca5 3665 u64 pdptr, pm_mask;
ad7dc69a 3666 gfn_t root_gfn, root_cr3;
81407ca5 3667 int i;
3bb65a22 3668
ad7dc69a
VK
3669 root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3670 root_gfn = root_cr3 >> PAGE_SHIFT;
17ac10ad 3671
651dd37a
JR
3672 if (mmu_check_root(vcpu, root_gfn))
3673 return 1;
3674
3675 /*
3676 * Do we shadow a long mode page table? If so we need to
3677 * write-protect the guests page table root.
3678 */
44dd3ffa
VK
3679 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3680 hpa_t root = vcpu->arch.mmu->root_hpa;
17ac10ad 3681
fa4a2c08 3682 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3683
8facbbff 3684 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3685 if (make_mmu_pages_available(vcpu) < 0) {
3686 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3687 return -ENOSPC;
26eeb53c 3688 }
855feb67 3689 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
44dd3ffa 3690 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
4db35314
AK
3691 root = __pa(sp->spt);
3692 ++sp->root_count;
8facbbff 3693 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3694 vcpu->arch.mmu->root_hpa = root;
ad7dc69a 3695 goto set_root_cr3;
17ac10ad 3696 }
f87f9288 3697
651dd37a
JR
3698 /*
3699 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3700 * or a PAE 3-level page table. In either case we need to be aware that
3701 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3702 */
81407ca5 3703 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3704 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3705 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3706
17ac10ad 3707 for (i = 0; i < 4; ++i) {
44dd3ffa 3708 hpa_t root = vcpu->arch.mmu->pae_root[i];
17ac10ad 3709
fa4a2c08 3710 MMU_WARN_ON(VALID_PAGE(root));
44dd3ffa
VK
3711 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3712 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3713 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3714 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3715 continue;
3716 }
6de4f3ad 3717 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3718 if (mmu_check_root(vcpu, root_gfn))
3719 return 1;
5a7388c2 3720 }
8facbbff 3721 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3722 if (make_mmu_pages_available(vcpu) < 0) {
3723 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3724 return -ENOSPC;
26eeb53c 3725 }
bb11c6c9
TY
3726 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3727 0, ACC_ALL);
4db35314
AK
3728 root = __pa(sp->spt);
3729 ++sp->root_count;
8facbbff
AK
3730 spin_unlock(&vcpu->kvm->mmu_lock);
3731
44dd3ffa 3732 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3733 }
44dd3ffa 3734 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3735
3736 /*
3737 * If we shadow a 32 bit page table with a long mode page
3738 * table we enter this path.
3739 */
44dd3ffa
VK
3740 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3741 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3742 /*
3743 * The additional page necessary for this is only
3744 * allocated on demand.
3745 */
3746
3747 u64 *lm_root;
3748
254272ce 3749 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3750 if (lm_root == NULL)
3751 return 1;
3752
44dd3ffa 3753 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3754
44dd3ffa 3755 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3756 }
3757
44dd3ffa 3758 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3759 }
3760
ad7dc69a
VK
3761set_root_cr3:
3762 vcpu->arch.mmu->root_cr3 = root_cr3;
3763
8986ecc0 3764 return 0;
17ac10ad
AK
3765}
3766
651dd37a
JR
3767static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3768{
44dd3ffa 3769 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3770 return mmu_alloc_direct_roots(vcpu);
3771 else
3772 return mmu_alloc_shadow_roots(vcpu);
3773}
3774
578e1c4d 3775void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3776{
3777 int i;
3778 struct kvm_mmu_page *sp;
3779
44dd3ffa 3780 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3781 return;
3782
44dd3ffa 3783 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3784 return;
6903074c 3785
56f17dd3 3786 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3787
44dd3ffa
VK
3788 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3789 hpa_t root = vcpu->arch.mmu->root_hpa;
0ba73cda 3790 sp = page_header(root);
578e1c4d
JS
3791
3792 /*
3793 * Even if another CPU was marking the SP as unsync-ed
3794 * simultaneously, any guest page table changes are not
3795 * guaranteed to be visible anyway until this VCPU issues a TLB
3796 * flush strictly after those changes are made. We only need to
3797 * ensure that the other CPU sets these flags before any actual
3798 * changes to the page tables are made. The comments in
3799 * mmu_need_write_protect() describe what could go wrong if this
3800 * requirement isn't satisfied.
3801 */
3802 if (!smp_load_acquire(&sp->unsync) &&
3803 !smp_load_acquire(&sp->unsync_children))
3804 return;
3805
3806 spin_lock(&vcpu->kvm->mmu_lock);
3807 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3808
0ba73cda 3809 mmu_sync_children(vcpu, sp);
578e1c4d 3810
0375f7fa 3811 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3812 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3813 return;
3814 }
578e1c4d
JS
3815
3816 spin_lock(&vcpu->kvm->mmu_lock);
3817 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3818
0ba73cda 3819 for (i = 0; i < 4; ++i) {
44dd3ffa 3820 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3821
8986ecc0 3822 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3823 root &= PT64_BASE_ADDR_MASK;
3824 sp = page_header(root);
3825 mmu_sync_children(vcpu, sp);
3826 }
3827 }
0ba73cda 3828
578e1c4d 3829 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3830 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3831}
bfd0a56b 3832EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3833
1871c602 3834static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3835 u32 access, struct x86_exception *exception)
6aa8b732 3836{
ab9ae313
AK
3837 if (exception)
3838 exception->error_code = 0;
6aa8b732
AK
3839 return vaddr;
3840}
3841
6539e738 3842static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3843 u32 access,
3844 struct x86_exception *exception)
6539e738 3845{
ab9ae313
AK
3846 if (exception)
3847 exception->error_code = 0;
54987b7a 3848 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3849}
3850
d625b155
XG
3851static bool
3852__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3853{
3854 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3855
3856 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3857 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3858}
3859
3860static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3861{
3862 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3863}
3864
3865static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3866{
3867 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3868}
3869
ded58749 3870static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3871{
9034e6e8
PB
3872 /*
3873 * A nested guest cannot use the MMIO cache if it is using nested
3874 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3875 */
3876 if (mmu_is_nested(vcpu))
3877 return false;
3878
ce88decf
XG
3879 if (direct)
3880 return vcpu_match_mmio_gpa(vcpu, addr);
3881
3882 return vcpu_match_mmio_gva(vcpu, addr);
3883}
3884
47ab8751
XG
3885/* return true if reserved bit is detected on spte. */
3886static bool
3887walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3888{
3889 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3890 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
47ab8751
XG
3891 int root, leaf;
3892 bool reserved = false;
ce88decf 3893
44dd3ffa 3894 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
47ab8751 3895 goto exit;
37f6a4e2 3896
ce88decf 3897 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3898
29ecd660
PB
3899 for (shadow_walk_init(&iterator, vcpu, addr),
3900 leaf = root = iterator.level;
47ab8751
XG
3901 shadow_walk_okay(&iterator);
3902 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3903 spte = mmu_spte_get_lockless(iterator.sptep);
3904
3905 sptes[leaf - 1] = spte;
29ecd660 3906 leaf--;
47ab8751 3907
ce88decf
XG
3908 if (!is_shadow_present_pte(spte))
3909 break;
47ab8751 3910
44dd3ffa 3911 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
58c95070 3912 iterator.level);
47ab8751
XG
3913 }
3914
ce88decf
XG
3915 walk_shadow_page_lockless_end(vcpu);
3916
47ab8751
XG
3917 if (reserved) {
3918 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3919 __func__, addr);
29ecd660 3920 while (root > leaf) {
47ab8751
XG
3921 pr_err("------ spte 0x%llx level %d.\n",
3922 sptes[root - 1], root);
3923 root--;
3924 }
3925 }
3926exit:
3927 *sptep = spte;
3928 return reserved;
ce88decf
XG
3929}
3930
e08d26f0 3931static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3932{
3933 u64 spte;
47ab8751 3934 bool reserved;
ce88decf 3935
ded58749 3936 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3937 return RET_PF_EMULATE;
ce88decf 3938
47ab8751 3939 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3940 if (WARN_ON(reserved))
9b8ebbdb 3941 return -EINVAL;
ce88decf
XG
3942
3943 if (is_mmio_spte(spte)) {
3944 gfn_t gfn = get_mmio_spte_gfn(spte);
3945 unsigned access = get_mmio_spte_access(spte);
3946
54bf36aa 3947 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3948 return RET_PF_INVALID;
f8f55942 3949
ce88decf
XG
3950 if (direct)
3951 addr = 0;
4f022648
XG
3952
3953 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3954 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3955 return RET_PF_EMULATE;
ce88decf
XG
3956 }
3957
ce88decf
XG
3958 /*
3959 * If the page table is zapped by other cpus, let CPU fault again on
3960 * the address.
3961 */
9b8ebbdb 3962 return RET_PF_RETRY;
ce88decf 3963}
ce88decf 3964
3d0c27ad
XG
3965static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3966 u32 error_code, gfn_t gfn)
3967{
3968 if (unlikely(error_code & PFERR_RSVD_MASK))
3969 return false;
3970
3971 if (!(error_code & PFERR_PRESENT_MASK) ||
3972 !(error_code & PFERR_WRITE_MASK))
3973 return false;
3974
3975 /*
3976 * guest is writing the page which is write tracked which can
3977 * not be fixed by page fault handler.
3978 */
3979 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3980 return true;
3981
3982 return false;
3983}
3984
e5691a81
XG
3985static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3986{
3987 struct kvm_shadow_walk_iterator iterator;
3988 u64 spte;
3989
44dd3ffa 3990 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
e5691a81
XG
3991 return;
3992
3993 walk_shadow_page_lockless_begin(vcpu);
3994 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3995 clear_sp_write_flooding_count(iterator.sptep);
3996 if (!is_shadow_present_pte(spte))
3997 break;
3998 }
3999 walk_shadow_page_lockless_end(vcpu);
4000}
4001
6aa8b732 4002static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 4003 u32 error_code, bool prefault)
6aa8b732 4004{
3d0c27ad 4005 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 4006 int r;
6aa8b732 4007
b8688d51 4008 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 4009
3d0c27ad 4010 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 4011 return RET_PF_EMULATE;
ce88decf 4012
e2dec939
AK
4013 r = mmu_topup_memory_caches(vcpu);
4014 if (r)
4015 return r;
714b93da 4016
44dd3ffa 4017 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
6aa8b732 4018
6aa8b732 4019
e833240f 4020 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 4021 error_code, gfn, prefault);
6aa8b732
AK
4022}
4023
7e1fbeac 4024static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
4025{
4026 struct kvm_arch_async_pf arch;
fb67e14f 4027
7c90705b 4028 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 4029 arch.gfn = gfn;
44dd3ffa
VK
4030 arch.direct_map = vcpu->arch.mmu->direct_map;
4031 arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
af585b92 4032
54bf36aa 4033 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
4034}
4035
78b2c54a 4036static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 4037 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 4038{
3520469d 4039 struct kvm_memory_slot *slot;
af585b92
GN
4040 bool async;
4041
3a2936de
JM
4042 /*
4043 * Don't expose private memslots to L2.
4044 */
4045 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4046 *pfn = KVM_PFN_NOSLOT;
4047 return false;
4048 }
4049
54bf36aa 4050 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
4051 async = false;
4052 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
4053 if (!async)
4054 return false; /* *pfn has correct page already */
4055
9bc1f09f 4056 if (!prefault && kvm_can_do_async_pf(vcpu)) {
c9b263d2 4057 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
4058 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4059 trace_kvm_async_pf_doublefault(gva, gfn);
4060 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4061 return true;
4062 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
4063 return true;
4064 }
4065
3520469d 4066 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
4067 return false;
4068}
4069
1261bfa3 4070int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 4071 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
4072{
4073 int r = 1;
4074
c595ceee 4075 vcpu->arch.l1tf_flush_l1d = true;
1261bfa3
WL
4076 switch (vcpu->arch.apf.host_apf_reason) {
4077 default:
4078 trace_kvm_page_fault(fault_address, error_code);
4079
d0006530 4080 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
4081 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4082 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4083 insn_len);
4084 break;
4085 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4086 vcpu->arch.apf.host_apf_reason = 0;
4087 local_irq_disable();
a2b7861b 4088 kvm_async_pf_task_wait(fault_address, 0);
1261bfa3
WL
4089 local_irq_enable();
4090 break;
4091 case KVM_PV_REASON_PAGE_READY:
4092 vcpu->arch.apf.host_apf_reason = 0;
4093 local_irq_disable();
4094 kvm_async_pf_task_wake(fault_address);
4095 local_irq_enable();
4096 break;
4097 }
4098 return r;
4099}
4100EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4101
6a39bbc5
XG
4102static bool
4103check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4104{
4105 int page_num = KVM_PAGES_PER_HPAGE(level);
4106
4107 gfn &= ~(page_num - 1);
4108
4109 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4110}
4111
56028d08 4112static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 4113 bool prefault)
fb72d167 4114{
ba049e93 4115 kvm_pfn_t pfn;
fb72d167 4116 int r;
852e3c19 4117 int level;
cd1872f0 4118 bool force_pt_level;
05da4558 4119 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 4120 unsigned long mmu_seq;
612819c3
MT
4121 int write = error_code & PFERR_WRITE_MASK;
4122 bool map_writable;
fb72d167 4123
44dd3ffa 4124 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
fb72d167 4125
3d0c27ad 4126 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 4127 return RET_PF_EMULATE;
ce88decf 4128
fb72d167
JR
4129 r = mmu_topup_memory_caches(vcpu);
4130 if (r)
4131 return r;
4132
fd136902
TY
4133 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4134 PT_DIRECTORY_LEVEL);
4135 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 4136 if (likely(!force_pt_level)) {
6a39bbc5
XG
4137 if (level > PT_DIRECTORY_LEVEL &&
4138 !check_hugepage_cache_consistency(vcpu, gfn, level))
4139 level = PT_DIRECTORY_LEVEL;
936a5fe6 4140 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 4141 }
852e3c19 4142
c7ba5b48 4143 if (fast_page_fault(vcpu, gpa, level, error_code))
9b8ebbdb 4144 return RET_PF_RETRY;
c7ba5b48 4145
e930bffe 4146 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 4147 smp_rmb();
af585b92 4148
78b2c54a 4149 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
9b8ebbdb 4150 return RET_PF_RETRY;
af585b92 4151
d7c55201
XG
4152 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4153 return r;
4154
43fdcda9 4155 r = RET_PF_RETRY;
fb72d167 4156 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 4157 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 4158 goto out_unlock;
26eeb53c
WL
4159 if (make_mmu_pages_available(vcpu) < 0)
4160 goto out_unlock;
936a5fe6 4161 if (likely(!force_pt_level))
d679b326 4162 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
3fcf2d1b 4163 r = __direct_map(vcpu, gpa, write, map_writable, level, pfn, prefault);
e930bffe
AA
4164out_unlock:
4165 spin_unlock(&vcpu->kvm->mmu_lock);
4166 kvm_release_pfn_clean(pfn);
43fdcda9 4167 return r;
fb72d167
JR
4168}
4169
8a3c1a33
PB
4170static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4171 struct kvm_mmu *context)
6aa8b732 4172{
6aa8b732 4173 context->page_fault = nonpaging_page_fault;
6aa8b732 4174 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 4175 context->sync_page = nonpaging_sync_page;
a7052897 4176 context->invlpg = nonpaging_invlpg;
0f53b5b1 4177 context->update_pte = nonpaging_update_pte;
cea0f0e7 4178 context->root_level = 0;
6aa8b732 4179 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4180 context->direct_map = true;
2d48a985 4181 context->nx = false;
6aa8b732
AK
4182}
4183
b94742c9
JS
4184/*
4185 * Find out if a previously cached root matching the new CR3/role is available.
4186 * The current root is also inserted into the cache.
4187 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4188 * returned.
4189 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4190 * false is returned. This root should now be freed by the caller.
4191 */
4192static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4193 union kvm_mmu_page_role new_role)
4194{
4195 uint i;
4196 struct kvm_mmu_root_info root;
44dd3ffa 4197 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 4198
ad7dc69a 4199 root.cr3 = mmu->root_cr3;
b94742c9
JS
4200 root.hpa = mmu->root_hpa;
4201
4202 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4203 swap(root, mmu->prev_roots[i]);
4204
4205 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4206 page_header(root.hpa) != NULL &&
4207 new_role.word == page_header(root.hpa)->role.word)
4208 break;
4209 }
4210
4211 mmu->root_hpa = root.hpa;
ad7dc69a 4212 mmu->root_cr3 = root.cr3;
b94742c9
JS
4213
4214 return i < KVM_MMU_NUM_PREV_ROOTS;
4215}
4216
0aab33e4 4217static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4218 union kvm_mmu_page_role new_role,
4219 bool skip_tlb_flush)
6aa8b732 4220{
44dd3ffa 4221 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
4222
4223 /*
4224 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4225 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4226 * later if necessary.
4227 */
4228 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4229 mmu->root_level >= PT64_ROOT_4LEVEL) {
7c390d35
JS
4230 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4231 return false;
4232
b94742c9 4233 if (cached_root_available(vcpu, new_cr3, new_role)) {
0aab33e4 4234 kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
956bf353
JS
4235 if (!skip_tlb_flush) {
4236 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
ade61e28 4237 kvm_x86_ops->tlb_flush(vcpu, true);
956bf353
JS
4238 }
4239
4240 /*
4241 * The last MMIO access's GVA and GPA are cached in the
4242 * VCPU. When switching to a new CR3, that GVA->GPA
4243 * mapping may no longer be valid. So clear any cached
4244 * MMIO info even when we don't need to sync the shadow
4245 * page tables.
4246 */
4247 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
ade61e28 4248
7c390d35
JS
4249 __clear_sp_write_flooding_count(
4250 page_header(mmu->root_hpa));
4251
7c390d35
JS
4252 return true;
4253 }
4254 }
4255
4256 return false;
6aa8b732
AK
4257}
4258
0aab33e4 4259static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4260 union kvm_mmu_page_role new_role,
4261 bool skip_tlb_flush)
6aa8b732 4262{
ade61e28 4263 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
6a82cd1c
VK
4264 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4265 KVM_MMU_ROOT_CURRENT);
6aa8b732
AK
4266}
4267
ade61e28 4268void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
0aab33e4 4269{
ade61e28
JS
4270 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4271 skip_tlb_flush);
0aab33e4 4272}
50c28f21 4273EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
0aab33e4 4274
5777ed34
JR
4275static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4276{
9f8fe504 4277 return kvm_read_cr3(vcpu);
5777ed34
JR
4278}
4279
6389ee94
AK
4280static void inject_page_fault(struct kvm_vcpu *vcpu,
4281 struct x86_exception *fault)
6aa8b732 4282{
44dd3ffa 4283 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
6aa8b732
AK
4284}
4285
54bf36aa 4286static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 4287 unsigned access, int *nr_present)
ce88decf
XG
4288{
4289 if (unlikely(is_mmio_spte(*sptep))) {
4290 if (gfn != get_mmio_spte_gfn(*sptep)) {
4291 mmu_spte_clear_no_track(sptep);
4292 return true;
4293 }
4294
4295 (*nr_present)++;
54bf36aa 4296 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
4297 return true;
4298 }
4299
4300 return false;
4301}
4302
6bb69c9b
PB
4303static inline bool is_last_gpte(struct kvm_mmu *mmu,
4304 unsigned level, unsigned gpte)
6fd01b71 4305{
6bb69c9b
PB
4306 /*
4307 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4308 * If it is clear, there are no large pages at this level, so clear
4309 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4310 */
4311 gpte &= level - mmu->last_nonleaf_level;
4312
829ee279
LP
4313 /*
4314 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4315 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4316 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4317 */
4318 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4319
6bb69c9b 4320 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4321}
4322
37406aaa
NHE
4323#define PTTYPE_EPT 18 /* arbitrary */
4324#define PTTYPE PTTYPE_EPT
4325#include "paging_tmpl.h"
4326#undef PTTYPE
4327
6aa8b732
AK
4328#define PTTYPE 64
4329#include "paging_tmpl.h"
4330#undef PTTYPE
4331
4332#define PTTYPE 32
4333#include "paging_tmpl.h"
4334#undef PTTYPE
4335
6dc98b86
XG
4336static void
4337__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4338 struct rsvd_bits_validate *rsvd_check,
4339 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 4340 bool pse, bool amd)
82725b20 4341{
82725b20 4342 u64 exb_bit_rsvd = 0;
5f7dde7b 4343 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4344 u64 nonleaf_bit8_rsvd = 0;
82725b20 4345
a0a64f50 4346 rsvd_check->bad_mt_xwr = 0;
25d92081 4347
6dc98b86 4348 if (!nx)
82725b20 4349 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 4350 if (!gbpages)
5f7dde7b 4351 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4352
4353 /*
4354 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4355 * leaf entries) on AMD CPUs only.
4356 */
6fec2144 4357 if (amd)
a0c0feb5
PB
4358 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4359
6dc98b86 4360 switch (level) {
82725b20
DE
4361 case PT32_ROOT_LEVEL:
4362 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4363 rsvd_check->rsvd_bits_mask[0][1] = 0;
4364 rsvd_check->rsvd_bits_mask[0][0] = 0;
4365 rsvd_check->rsvd_bits_mask[1][0] =
4366 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4367
6dc98b86 4368 if (!pse) {
a0a64f50 4369 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4370 break;
4371 }
4372
82725b20
DE
4373 if (is_cpuid_PSE36())
4374 /* 36bits PSE 4MB page */
a0a64f50 4375 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4376 else
4377 /* 32 bits PSE 4MB page */
a0a64f50 4378 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4379 break;
4380 case PT32E_ROOT_LEVEL:
a0a64f50 4381 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4382 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4383 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4384 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4385 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4386 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4387 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4388 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4389 rsvd_bits(maxphyaddr, 62) |
4390 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4391 rsvd_check->rsvd_bits_mask[1][0] =
4392 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4393 break;
855feb67
YZ
4394 case PT64_ROOT_5LEVEL:
4395 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4396 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4397 rsvd_bits(maxphyaddr, 51);
4398 rsvd_check->rsvd_bits_mask[1][4] =
4399 rsvd_check->rsvd_bits_mask[0][4];
b2869f28 4400 /* fall through */
2a7266a8 4401 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4402 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4403 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4404 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4405 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4406 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 4407 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4408 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4409 rsvd_bits(maxphyaddr, 51);
4410 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4411 rsvd_bits(maxphyaddr, 51);
4412 rsvd_check->rsvd_bits_mask[1][3] =
4413 rsvd_check->rsvd_bits_mask[0][3];
4414 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4415 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4416 rsvd_bits(13, 29);
a0a64f50 4417 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4418 rsvd_bits(maxphyaddr, 51) |
4419 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4420 rsvd_check->rsvd_bits_mask[1][0] =
4421 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4422 break;
4423 }
4424}
4425
6dc98b86
XG
4426static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4427 struct kvm_mmu *context)
4428{
4429 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4430 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4431 context->nx,
4432 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
6fec2144 4433 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
4434}
4435
81b8eebb
XG
4436static void
4437__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4438 int maxphyaddr, bool execonly)
25d92081 4439{
951f9fd7 4440 u64 bad_mt_xwr;
25d92081 4441
855feb67
YZ
4442 rsvd_check->rsvd_bits_mask[0][4] =
4443 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4444 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4445 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4446 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4447 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4448 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4449 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4450 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4451
4452 /* large page */
855feb67 4453 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4454 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4455 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4456 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4457 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4458 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4459 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4460
951f9fd7
PB
4461 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4462 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4463 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4464 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4465 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4466 if (!execonly) {
4467 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4468 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4469 }
951f9fd7 4470 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4471}
4472
81b8eebb
XG
4473static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4474 struct kvm_mmu *context, bool execonly)
4475{
4476 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4477 cpuid_maxphyaddr(vcpu), execonly);
4478}
4479
c258b62b
XG
4480/*
4481 * the page table on host is the shadow page table for the page
4482 * table in guest or amd nested guest, its mmu features completely
4483 * follow the features in guest.
4484 */
4485void
4486reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4487{
36d9594d
VK
4488 bool uses_nx = context->nx ||
4489 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4490 struct rsvd_bits_validate *shadow_zero_check;
4491 int i;
5f0b8199 4492
6fec2144
PB
4493 /*
4494 * Passing "true" to the last argument is okay; it adds a check
4495 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4496 */
ea2800dd
BS
4497 shadow_zero_check = &context->shadow_zero_check;
4498 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4499 shadow_phys_bits,
5f0b8199 4500 context->shadow_root_level, uses_nx,
d6321d49
RK
4501 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4502 is_pse(vcpu), true);
ea2800dd
BS
4503
4504 if (!shadow_me_mask)
4505 return;
4506
4507 for (i = context->shadow_root_level; --i >= 0;) {
4508 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4509 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4510 }
4511
c258b62b
XG
4512}
4513EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4514
6fec2144
PB
4515static inline bool boot_cpu_is_amd(void)
4516{
4517 WARN_ON_ONCE(!tdp_enabled);
4518 return shadow_x_mask == 0;
4519}
4520
c258b62b
XG
4521/*
4522 * the direct page table on host, use as much mmu features as
4523 * possible, however, kvm currently does not do execution-protection.
4524 */
4525static void
4526reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4527 struct kvm_mmu *context)
4528{
ea2800dd
BS
4529 struct rsvd_bits_validate *shadow_zero_check;
4530 int i;
4531
4532 shadow_zero_check = &context->shadow_zero_check;
4533
6fec2144 4534 if (boot_cpu_is_amd())
ea2800dd 4535 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4536 shadow_phys_bits,
c258b62b 4537 context->shadow_root_level, false,
b8291adc
BP
4538 boot_cpu_has(X86_FEATURE_GBPAGES),
4539 true, true);
c258b62b 4540 else
ea2800dd 4541 __reset_rsvds_bits_mask_ept(shadow_zero_check,
f3ecb59d 4542 shadow_phys_bits,
c258b62b
XG
4543 false);
4544
ea2800dd
BS
4545 if (!shadow_me_mask)
4546 return;
4547
4548 for (i = context->shadow_root_level; --i >= 0;) {
4549 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4550 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4551 }
c258b62b
XG
4552}
4553
4554/*
4555 * as the comments in reset_shadow_zero_bits_mask() except it
4556 * is the shadow page table for intel nested guest.
4557 */
4558static void
4559reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4560 struct kvm_mmu *context, bool execonly)
4561{
4562 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
f3ecb59d 4563 shadow_phys_bits, execonly);
c258b62b
XG
4564}
4565
09f037aa
PB
4566#define BYTE_MASK(access) \
4567 ((1 & (access) ? 2 : 0) | \
4568 (2 & (access) ? 4 : 0) | \
4569 (3 & (access) ? 8 : 0) | \
4570 (4 & (access) ? 16 : 0) | \
4571 (5 & (access) ? 32 : 0) | \
4572 (6 & (access) ? 64 : 0) | \
4573 (7 & (access) ? 128 : 0))
4574
4575
edc90b7d
XG
4576static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4577 struct kvm_mmu *mmu, bool ept)
97d64b78 4578{
09f037aa
PB
4579 unsigned byte;
4580
4581 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4582 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4583 const u8 u = BYTE_MASK(ACC_USER_MASK);
4584
4585 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4586 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4587 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4588
97d64b78 4589 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4590 unsigned pfec = byte << 1;
4591
97ec8c06 4592 /*
09f037aa
PB
4593 * Each "*f" variable has a 1 bit for each UWX value
4594 * that causes a fault with the given PFEC.
97ec8c06 4595 */
97d64b78 4596
09f037aa
PB
4597 /* Faults from writes to non-writable pages */
4598 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4599 /* Faults from user mode accesses to supervisor pages */
4600 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4601 /* Faults from fetches of non-executable pages*/
4602 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4603 /* Faults from kernel mode fetches of user pages */
4604 u8 smepf = 0;
4605 /* Faults from kernel mode accesses of user pages */
4606 u8 smapf = 0;
4607
4608 if (!ept) {
4609 /* Faults from kernel mode accesses to user pages */
4610 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4611
4612 /* Not really needed: !nx will cause pte.nx to fault */
4613 if (!mmu->nx)
4614 ff = 0;
4615
4616 /* Allow supervisor writes if !cr0.wp */
4617 if (!cr0_wp)
4618 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4619
4620 /* Disallow supervisor fetches of user code if cr4.smep */
4621 if (cr4_smep)
4622 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4623
4624 /*
4625 * SMAP:kernel-mode data accesses from user-mode
4626 * mappings should fault. A fault is considered
4627 * as a SMAP violation if all of the following
39337ad1 4628 * conditions are true:
09f037aa
PB
4629 * - X86_CR4_SMAP is set in CR4
4630 * - A user page is accessed
4631 * - The access is not a fetch
4632 * - Page fault in kernel mode
4633 * - if CPL = 3 or X86_EFLAGS_AC is clear
4634 *
4635 * Here, we cover the first three conditions.
4636 * The fourth is computed dynamically in permission_fault();
4637 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4638 * *not* subject to SMAP restrictions.
4639 */
4640 if (cr4_smap)
4641 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4642 }
09f037aa
PB
4643
4644 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4645 }
4646}
4647
2d344105
HH
4648/*
4649* PKU is an additional mechanism by which the paging controls access to
4650* user-mode addresses based on the value in the PKRU register. Protection
4651* key violations are reported through a bit in the page fault error code.
4652* Unlike other bits of the error code, the PK bit is not known at the
4653* call site of e.g. gva_to_gpa; it must be computed directly in
4654* permission_fault based on two bits of PKRU, on some machine state (CR4,
4655* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4656*
4657* In particular the following conditions come from the error code, the
4658* page tables and the machine state:
4659* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4660* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4661* - PK is always zero if U=0 in the page tables
4662* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4663*
4664* The PKRU bitmask caches the result of these four conditions. The error
4665* code (minus the P bit) and the page table's U bit form an index into the
4666* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4667* with the two bits of the PKRU register corresponding to the protection key.
4668* For the first three conditions above the bits will be 00, thus masking
4669* away both AD and WD. For all reads or if the last condition holds, WD
4670* only will be masked away.
4671*/
4672static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4673 bool ept)
4674{
4675 unsigned bit;
4676 bool wp;
4677
4678 if (ept) {
4679 mmu->pkru_mask = 0;
4680 return;
4681 }
4682
4683 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4684 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4685 mmu->pkru_mask = 0;
4686 return;
4687 }
4688
4689 wp = is_write_protection(vcpu);
4690
4691 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4692 unsigned pfec, pkey_bits;
4693 bool check_pkey, check_write, ff, uf, wf, pte_user;
4694
4695 pfec = bit << 1;
4696 ff = pfec & PFERR_FETCH_MASK;
4697 uf = pfec & PFERR_USER_MASK;
4698 wf = pfec & PFERR_WRITE_MASK;
4699
4700 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4701 pte_user = pfec & PFERR_RSVD_MASK;
4702
4703 /*
4704 * Only need to check the access which is not an
4705 * instruction fetch and is to a user page.
4706 */
4707 check_pkey = (!ff && pte_user);
4708 /*
4709 * write access is controlled by PKRU if it is a
4710 * user access or CR0.WP = 1.
4711 */
4712 check_write = check_pkey && wf && (uf || wp);
4713
4714 /* PKRU.AD stops both read and write access. */
4715 pkey_bits = !!check_pkey;
4716 /* PKRU.WD stops write access. */
4717 pkey_bits |= (!!check_write) << 1;
4718
4719 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4720 }
4721}
4722
6bb69c9b 4723static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4724{
6bb69c9b
PB
4725 unsigned root_level = mmu->root_level;
4726
4727 mmu->last_nonleaf_level = root_level;
4728 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4729 mmu->last_nonleaf_level++;
6fd01b71
AK
4730}
4731
8a3c1a33
PB
4732static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4733 struct kvm_mmu *context,
4734 int level)
6aa8b732 4735{
2d48a985 4736 context->nx = is_nx(vcpu);
4d6931c3 4737 context->root_level = level;
2d48a985 4738
4d6931c3 4739 reset_rsvds_bits_mask(vcpu, context);
25d92081 4740 update_permission_bitmask(vcpu, context, false);
2d344105 4741 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4742 update_last_nonleaf_level(vcpu, context);
6aa8b732 4743
fa4a2c08 4744 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4745 context->page_fault = paging64_page_fault;
6aa8b732 4746 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4747 context->sync_page = paging64_sync_page;
a7052897 4748 context->invlpg = paging64_invlpg;
0f53b5b1 4749 context->update_pte = paging64_update_pte;
17ac10ad 4750 context->shadow_root_level = level;
c5a78f2b 4751 context->direct_map = false;
6aa8b732
AK
4752}
4753
8a3c1a33
PB
4754static void paging64_init_context(struct kvm_vcpu *vcpu,
4755 struct kvm_mmu *context)
17ac10ad 4756{
855feb67
YZ
4757 int root_level = is_la57_mode(vcpu) ?
4758 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4759
4760 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4761}
4762
8a3c1a33
PB
4763static void paging32_init_context(struct kvm_vcpu *vcpu,
4764 struct kvm_mmu *context)
6aa8b732 4765{
2d48a985 4766 context->nx = false;
4d6931c3 4767 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4768
4d6931c3 4769 reset_rsvds_bits_mask(vcpu, context);
25d92081 4770 update_permission_bitmask(vcpu, context, false);
2d344105 4771 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4772 update_last_nonleaf_level(vcpu, context);
6aa8b732 4773
6aa8b732 4774 context->page_fault = paging32_page_fault;
6aa8b732 4775 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4776 context->sync_page = paging32_sync_page;
a7052897 4777 context->invlpg = paging32_invlpg;
0f53b5b1 4778 context->update_pte = paging32_update_pte;
6aa8b732 4779 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4780 context->direct_map = false;
6aa8b732
AK
4781}
4782
8a3c1a33
PB
4783static void paging32E_init_context(struct kvm_vcpu *vcpu,
4784 struct kvm_mmu *context)
6aa8b732 4785{
8a3c1a33 4786 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4787}
4788
a336282d
VK
4789static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4790{
4791 union kvm_mmu_extended_role ext = {0};
4792
7dcd5755 4793 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4794 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4795 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4796 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4797 ext.cr4_pse = !!is_pse(vcpu);
4798 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
7dcd5755 4799 ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
de3ccd26 4800 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4801
4802 ext.valid = 1;
4803
4804 return ext;
4805}
4806
7dcd5755
VK
4807static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4808 bool base_only)
4809{
4810 union kvm_mmu_role role = {0};
4811
4812 role.base.access = ACC_ALL;
4813 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4814 role.base.cr0_wp = is_write_protection(vcpu);
4815 role.base.smm = is_smm(vcpu);
4816 role.base.guest_mode = is_guest_mode(vcpu);
4817
4818 if (base_only)
4819 return role;
4820
4821 role.ext = kvm_calc_mmu_role_ext(vcpu);
4822
4823 return role;
4824}
4825
4826static union kvm_mmu_role
4827kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4828{
7dcd5755 4829 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4830
7dcd5755
VK
4831 role.base.ad_disabled = (shadow_accessed_mask == 0);
4832 role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4833 role.base.direct = true;
47c42e6b 4834 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4835
4836 return role;
4837}
4838
8a3c1a33 4839static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4840{
44dd3ffa 4841 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4842 union kvm_mmu_role new_role =
4843 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4844
7dcd5755
VK
4845 new_role.base.word &= mmu_base_role_mask.word;
4846 if (new_role.as_u64 == context->mmu_role.as_u64)
4847 return;
4848
4849 context->mmu_role.as_u64 = new_role.as_u64;
fb72d167 4850 context->page_fault = tdp_page_fault;
e8bc217a 4851 context->sync_page = nonpaging_sync_page;
a7052897 4852 context->invlpg = nonpaging_invlpg;
0f53b5b1 4853 context->update_pte = nonpaging_update_pte;
855feb67 4854 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
c5a78f2b 4855 context->direct_map = true;
1c97f0a0 4856 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4857 context->get_cr3 = get_cr3;
e4e517b4 4858 context->get_pdptr = kvm_pdptr_read;
cb659db8 4859 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4860
4861 if (!is_paging(vcpu)) {
2d48a985 4862 context->nx = false;
fb72d167
JR
4863 context->gva_to_gpa = nonpaging_gva_to_gpa;
4864 context->root_level = 0;
4865 } else if (is_long_mode(vcpu)) {
2d48a985 4866 context->nx = is_nx(vcpu);
855feb67
YZ
4867 context->root_level = is_la57_mode(vcpu) ?
4868 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4869 reset_rsvds_bits_mask(vcpu, context);
4870 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4871 } else if (is_pae(vcpu)) {
2d48a985 4872 context->nx = is_nx(vcpu);
fb72d167 4873 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4874 reset_rsvds_bits_mask(vcpu, context);
4875 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4876 } else {
2d48a985 4877 context->nx = false;
fb72d167 4878 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4879 reset_rsvds_bits_mask(vcpu, context);
4880 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4881 }
4882
25d92081 4883 update_permission_bitmask(vcpu, context, false);
2d344105 4884 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4885 update_last_nonleaf_level(vcpu, context);
c258b62b 4886 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4887}
4888
7dcd5755
VK
4889static union kvm_mmu_role
4890kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4891{
4892 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4893
4894 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4895 !is_write_protection(vcpu);
4896 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4897 !is_write_protection(vcpu);
4898 role.base.direct = !is_paging(vcpu);
47c42e6b 4899 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119
JS
4900
4901 if (!is_long_mode(vcpu))
7dcd5755 4902 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4903 else if (is_la57_mode(vcpu))
7dcd5755 4904 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4905 else
7dcd5755 4906 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4907
4908 return role;
4909}
4910
4911void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4912{
44dd3ffa 4913 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4914 union kvm_mmu_role new_role =
4915 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4916
4917 new_role.base.word &= mmu_base_role_mask.word;
4918 if (new_role.as_u64 == context->mmu_role.as_u64)
4919 return;
6aa8b732
AK
4920
4921 if (!is_paging(vcpu))
8a3c1a33 4922 nonpaging_init_context(vcpu, context);
a9058ecd 4923 else if (is_long_mode(vcpu))
8a3c1a33 4924 paging64_init_context(vcpu, context);
6aa8b732 4925 else if (is_pae(vcpu))
8a3c1a33 4926 paging32E_init_context(vcpu, context);
6aa8b732 4927 else
8a3c1a33 4928 paging32_init_context(vcpu, context);
a770f6f2 4929
7dcd5755 4930 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4931 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4932}
4933EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4934
a336282d
VK
4935static union kvm_mmu_role
4936kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4937 bool execonly)
9fa72119 4938{
552c69b1 4939 union kvm_mmu_role role = {0};
14c07ad8 4940
47c42e6b
SC
4941 /* SMM flag is inherited from root_mmu */
4942 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 4943
a336282d 4944 role.base.level = PT64_ROOT_4LEVEL;
47c42e6b 4945 role.base.gpte_is_8_bytes = true;
a336282d
VK
4946 role.base.direct = false;
4947 role.base.ad_disabled = !accessed_dirty;
4948 role.base.guest_mode = true;
4949 role.base.access = ACC_ALL;
9fa72119 4950
47c42e6b
SC
4951 /*
4952 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4953 * SMAP variation to denote shadow EPT entries.
4954 */
4955 role.base.cr0_wp = true;
4956 role.base.smap_andnot_wp = true;
4957
552c69b1 4958 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 4959 role.ext.execonly = execonly;
9fa72119
JS
4960
4961 return role;
4962}
4963
ae1e2d10 4964void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4965 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4966{
44dd3ffa 4967 struct kvm_mmu *context = vcpu->arch.mmu;
a336282d
VK
4968 union kvm_mmu_role new_role =
4969 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4970 execonly);
4971
4972 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
4973
4974 new_role.base.word &= mmu_base_role_mask.word;
4975 if (new_role.as_u64 == context->mmu_role.as_u64)
4976 return;
ad896af0 4977
855feb67 4978 context->shadow_root_level = PT64_ROOT_4LEVEL;
155a97a3
NHE
4979
4980 context->nx = true;
ae1e2d10 4981 context->ept_ad = accessed_dirty;
155a97a3
NHE
4982 context->page_fault = ept_page_fault;
4983 context->gva_to_gpa = ept_gva_to_gpa;
4984 context->sync_page = ept_sync_page;
4985 context->invlpg = ept_invlpg;
4986 context->update_pte = ept_update_pte;
855feb67 4987 context->root_level = PT64_ROOT_4LEVEL;
155a97a3 4988 context->direct_map = false;
a336282d 4989 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4990
155a97a3 4991 update_permission_bitmask(vcpu, context, true);
2d344105 4992 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4993 update_last_nonleaf_level(vcpu, context);
155a97a3 4994 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4995 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4996}
4997EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4998
8a3c1a33 4999static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 5000{
44dd3ffa 5001 struct kvm_mmu *context = vcpu->arch.mmu;
ad896af0
PB
5002
5003 kvm_init_shadow_mmu(vcpu);
5004 context->set_cr3 = kvm_x86_ops->set_cr3;
5005 context->get_cr3 = get_cr3;
5006 context->get_pdptr = kvm_pdptr_read;
5007 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
5008}
5009
8a3c1a33 5010static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 5011{
bf627a92 5012 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
5013 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5014
bf627a92
VK
5015 new_role.base.word &= mmu_base_role_mask.word;
5016 if (new_role.as_u64 == g_context->mmu_role.as_u64)
5017 return;
5018
5019 g_context->mmu_role.as_u64 = new_role.as_u64;
02f59dc9 5020 g_context->get_cr3 = get_cr3;
e4e517b4 5021 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
5022 g_context->inject_page_fault = kvm_inject_page_fault;
5023
5024 /*
44dd3ffa 5025 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
5026 * L1's nested page tables (e.g. EPT12). The nested translation
5027 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5028 * L2's page tables as the first level of translation and L1's
5029 * nested page tables as the second level of translation. Basically
5030 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
5031 */
5032 if (!is_paging(vcpu)) {
2d48a985 5033 g_context->nx = false;
02f59dc9
JR
5034 g_context->root_level = 0;
5035 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5036 } else if (is_long_mode(vcpu)) {
2d48a985 5037 g_context->nx = is_nx(vcpu);
855feb67
YZ
5038 g_context->root_level = is_la57_mode(vcpu) ?
5039 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 5040 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5041 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5042 } else if (is_pae(vcpu)) {
2d48a985 5043 g_context->nx = is_nx(vcpu);
02f59dc9 5044 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 5045 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5046 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5047 } else {
2d48a985 5048 g_context->nx = false;
02f59dc9 5049 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 5050 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5051 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5052 }
5053
25d92081 5054 update_permission_bitmask(vcpu, g_context, false);
2d344105 5055 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 5056 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
5057}
5058
1c53da3f 5059void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 5060{
1c53da3f 5061 if (reset_roots) {
b94742c9
JS
5062 uint i;
5063
44dd3ffa 5064 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
5065
5066 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5067 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
5068 }
5069
02f59dc9 5070 if (mmu_is_nested(vcpu))
e0c6db3e 5071 init_kvm_nested_mmu(vcpu);
02f59dc9 5072 else if (tdp_enabled)
e0c6db3e 5073 init_kvm_tdp_mmu(vcpu);
fb72d167 5074 else
e0c6db3e 5075 init_kvm_softmmu(vcpu);
fb72d167 5076}
1c53da3f 5077EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 5078
9fa72119
JS
5079static union kvm_mmu_page_role
5080kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5081{
7dcd5755
VK
5082 union kvm_mmu_role role;
5083
9fa72119 5084 if (tdp_enabled)
7dcd5755 5085 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 5086 else
7dcd5755
VK
5087 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5088
5089 return role.base;
9fa72119 5090}
fb72d167 5091
8a3c1a33 5092void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 5093{
95f93af4 5094 kvm_mmu_unload(vcpu);
1c53da3f 5095 kvm_init_mmu(vcpu, true);
17c3ba9d 5096}
8668a3c4 5097EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
5098
5099int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 5100{
714b93da
AK
5101 int r;
5102
e2dec939 5103 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
5104 if (r)
5105 goto out;
8986ecc0 5106 r = mmu_alloc_roots(vcpu);
e2858b4a 5107 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
5108 if (r)
5109 goto out;
6e42782f 5110 kvm_mmu_load_cr3(vcpu);
afe828d1 5111 kvm_x86_ops->tlb_flush(vcpu, true);
714b93da
AK
5112out:
5113 return r;
6aa8b732 5114}
17c3ba9d
AK
5115EXPORT_SYMBOL_GPL(kvm_mmu_load);
5116
5117void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5118{
14c07ad8
VK
5119 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5120 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5121 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5122 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 5123}
4b16184c 5124EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 5125
0028425f 5126static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
5127 struct kvm_mmu_page *sp, u64 *spte,
5128 const void *new)
0028425f 5129{
30945387 5130 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
5131 ++vcpu->kvm->stat.mmu_pde_zapped;
5132 return;
30945387 5133 }
0028425f 5134
4cee5764 5135 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 5136 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
5137}
5138
79539cec
AK
5139static bool need_remote_flush(u64 old, u64 new)
5140{
5141 if (!is_shadow_present_pte(old))
5142 return false;
5143 if (!is_shadow_present_pte(new))
5144 return true;
5145 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5146 return true;
53166229
GN
5147 old ^= shadow_nx_mask;
5148 new ^= shadow_nx_mask;
79539cec
AK
5149 return (old & ~new & PT64_PERM_MASK) != 0;
5150}
5151
889e5cbc 5152static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 5153 int *bytes)
da4a00f0 5154{
0e0fee5c 5155 u64 gentry = 0;
889e5cbc 5156 int r;
72016f3a 5157
72016f3a
AK
5158 /*
5159 * Assume that the pte write on a page table of the same type
49b26e26
XG
5160 * as the current vcpu paging mode since we update the sptes only
5161 * when they have the same mode.
72016f3a 5162 */
889e5cbc 5163 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 5164 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
5165 *gpa &= ~(gpa_t)7;
5166 *bytes = 8;
08e850c6
AK
5167 }
5168
0e0fee5c
JS
5169 if (*bytes == 4 || *bytes == 8) {
5170 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5171 if (r)
5172 gentry = 0;
72016f3a
AK
5173 }
5174
889e5cbc
XG
5175 return gentry;
5176}
5177
5178/*
5179 * If we're seeing too many writes to a page, it may no longer be a page table,
5180 * or we may be forking, in which case it is better to unmap the page.
5181 */
a138fe75 5182static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 5183{
a30f47cb
XG
5184 /*
5185 * Skip write-flooding detected for the sp whose level is 1, because
5186 * it can become unsync, then the guest page is not write-protected.
5187 */
f71fa31f 5188 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 5189 return false;
3246af0e 5190
e5691a81
XG
5191 atomic_inc(&sp->write_flooding_count);
5192 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
5193}
5194
5195/*
5196 * Misaligned accesses are too much trouble to fix up; also, they usually
5197 * indicate a page is not used as a page table.
5198 */
5199static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5200 int bytes)
5201{
5202 unsigned offset, pte_size, misaligned;
5203
5204 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5205 gpa, bytes, sp->role.word);
5206
5207 offset = offset_in_page(gpa);
47c42e6b 5208 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
5209
5210 /*
5211 * Sometimes, the OS only writes the last one bytes to update status
5212 * bits, for example, in linux, andb instruction is used in clear_bit().
5213 */
5214 if (!(offset & (pte_size - 1)) && bytes == 1)
5215 return false;
5216
889e5cbc
XG
5217 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5218 misaligned |= bytes < 4;
5219
5220 return misaligned;
5221}
5222
5223static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5224{
5225 unsigned page_offset, quadrant;
5226 u64 *spte;
5227 int level;
5228
5229 page_offset = offset_in_page(gpa);
5230 level = sp->role.level;
5231 *nspte = 1;
47c42e6b 5232 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
5233 page_offset <<= 1; /* 32->64 */
5234 /*
5235 * A 32-bit pde maps 4MB while the shadow pdes map
5236 * only 2MB. So we need to double the offset again
5237 * and zap two pdes instead of one.
5238 */
5239 if (level == PT32_ROOT_LEVEL) {
5240 page_offset &= ~7; /* kill rounding error */
5241 page_offset <<= 1;
5242 *nspte = 2;
5243 }
5244 quadrant = page_offset >> PAGE_SHIFT;
5245 page_offset &= ~PAGE_MASK;
5246 if (quadrant != sp->role.quadrant)
5247 return NULL;
5248 }
5249
5250 spte = &sp->spt[page_offset / sizeof(*spte)];
5251 return spte;
5252}
5253
13d268ca 5254static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
5255 const u8 *new, int bytes,
5256 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
5257{
5258 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 5259 struct kvm_mmu_page *sp;
889e5cbc
XG
5260 LIST_HEAD(invalid_list);
5261 u64 entry, gentry, *spte;
5262 int npte;
b8c67b7a 5263 bool remote_flush, local_flush;
889e5cbc
XG
5264
5265 /*
5266 * If we don't have indirect shadow pages, it means no page is
5267 * write-protected, so we can exit simply.
5268 */
6aa7de05 5269 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
5270 return;
5271
b8c67b7a 5272 remote_flush = local_flush = false;
889e5cbc
XG
5273
5274 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5275
889e5cbc
XG
5276 /*
5277 * No need to care whether allocation memory is successful
5278 * or not since pte prefetch is skiped if it does not have
5279 * enough objects in the cache.
5280 */
5281 mmu_topup_memory_caches(vcpu);
5282
5283 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
5284
5285 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5286
889e5cbc 5287 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5288 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5289
b67bfe0d 5290 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5291 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5292 detect_write_flooding(sp)) {
b8c67b7a 5293 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5294 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5295 continue;
5296 }
889e5cbc
XG
5297
5298 spte = get_written_sptes(sp, gpa, &npte);
5299 if (!spte)
5300 continue;
5301
0671a8e7 5302 local_flush = true;
ac1b714e 5303 while (npte--) {
36d9594d
VK
5304 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5305
79539cec 5306 entry = *spte;
38e3b2b2 5307 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf 5308 if (gentry &&
36d9594d 5309 !((sp->role.word ^ base_role)
9fa72119 5310 & mmu_base_role_mask.word) && rmap_can_add(vcpu))
7c562522 5311 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 5312 if (need_remote_flush(entry, *spte))
0671a8e7 5313 remote_flush = true;
ac1b714e 5314 ++spte;
9b7a0325 5315 }
9b7a0325 5316 }
b8c67b7a 5317 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5318 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 5319 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5320}
5321
a436036b
AK
5322int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5323{
10589a46
MT
5324 gpa_t gpa;
5325 int r;
a436036b 5326
44dd3ffa 5327 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5328 return 0;
5329
1871c602 5330 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5331
10589a46 5332 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5333
10589a46 5334 return r;
a436036b 5335}
577bdc49 5336EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5337
26eeb53c 5338static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 5339{
d98ba053 5340 LIST_HEAD(invalid_list);
103ad25a 5341
81f4f76b 5342 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
26eeb53c 5343 return 0;
81f4f76b 5344
5da59607
TY
5345 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5346 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5347 break;
ebeace86 5348
4cee5764 5349 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 5350 }
aa6bd187 5351 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
26eeb53c
WL
5352
5353 if (!kvm_mmu_available_pages(vcpu->kvm))
5354 return -ENOSPC;
5355 return 0;
ebeace86 5356}
ebeace86 5357
14727754 5358int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
dc25e89e 5359 void *insn, int insn_len)
3067714c 5360{
472faffa 5361 int r, emulation_type = 0;
3067714c 5362 enum emulation_result er;
44dd3ffa 5363 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5364
618232e2 5365 /* With shadow page tables, fault_address contains a GVA or nGPA. */
44dd3ffa 5366 if (vcpu->arch.mmu->direct_map) {
618232e2
BS
5367 vcpu->arch.gpa_available = true;
5368 vcpu->arch.gpa_val = cr2;
5369 }
3067714c 5370
9b8ebbdb 5371 r = RET_PF_INVALID;
e9ee956e
TY
5372 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5373 r = handle_mmio_page_fault(vcpu, cr2, direct);
472faffa 5374 if (r == RET_PF_EMULATE)
e9ee956e 5375 goto emulate;
e9ee956e 5376 }
3067714c 5377
9b8ebbdb 5378 if (r == RET_PF_INVALID) {
44dd3ffa
VK
5379 r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5380 lower_32_bits(error_code),
5381 false);
9b8ebbdb
PB
5382 WARN_ON(r == RET_PF_INVALID);
5383 }
5384
5385 if (r == RET_PF_RETRY)
5386 return 1;
3067714c 5387 if (r < 0)
e9ee956e 5388 return r;
3067714c 5389
14727754
TL
5390 /*
5391 * Before emulating the instruction, check if the error code
5392 * was due to a RO violation while translating the guest page.
5393 * This can occur when using nested virtualization with nested
5394 * paging in both guests. If true, we simply unprotect the page
5395 * and resume the guest.
14727754 5396 */
44dd3ffa 5397 if (vcpu->arch.mmu->direct_map &&
eebed243 5398 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
14727754
TL
5399 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5400 return 1;
5401 }
5402
472faffa
SC
5403 /*
5404 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5405 * optimistically try to just unprotect the page and let the processor
5406 * re-execute the instruction that caused the page fault. Do not allow
5407 * retrying MMIO emulation, as it's not only pointless but could also
5408 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5409 * faulting on the non-existent MMIO address. Retrying an instruction
5410 * from a nested guest is also pointless and dangerous as we are only
5411 * explicitly shadowing L1's page tables, i.e. unprotecting something
5412 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5413 */
6c3dfeb6 5414 if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
472faffa 5415 emulation_type = EMULTYPE_ALLOW_RETRY;
e9ee956e 5416emulate:
00b10fe1
BS
5417 /*
5418 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5419 * This can happen if a guest gets a page-fault on data access but the HW
5420 * table walker is not able to read the instruction page (e.g instruction
5421 * page is not present in memory). In those cases we simply restart the
05d5a486 5422 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
00b10fe1 5423 */
05d5a486
SB
5424 if (unlikely(insn && !insn_len)) {
5425 if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
5426 return 1;
5427 }
00b10fe1 5428
1cb3f3ae 5429 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
5430
5431 switch (er) {
5432 case EMULATE_DONE:
5433 return 1;
ac0a48c3 5434 case EMULATE_USER_EXIT:
3067714c 5435 ++vcpu->stat.mmio_exits;
6d77dbfc 5436 /* fall through */
3067714c 5437 case EMULATE_FAIL:
3f5d18a9 5438 return 0;
3067714c
AK
5439 default:
5440 BUG();
5441 }
3067714c
AK
5442}
5443EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5444
a7052897
MT
5445void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5446{
44dd3ffa 5447 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 5448 int i;
7eb77e9f 5449
faff8758
JS
5450 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
5451 if (is_noncanonical_address(gva, vcpu))
5452 return;
5453
7eb77e9f 5454 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353
JS
5455
5456 /*
5457 * INVLPG is required to invalidate any global mappings for the VA,
5458 * irrespective of PCID. Since it would take us roughly similar amount
b94742c9
JS
5459 * of work to determine whether any of the prev_root mappings of the VA
5460 * is marked global, or to just sync it blindly, so we might as well
5461 * just always sync it.
956bf353 5462 *
b94742c9
JS
5463 * Mappings not reachable via the current cr3 or the prev_roots will be
5464 * synced when switching to that cr3, so nothing needs to be done here
5465 * for them.
956bf353 5466 */
b94742c9
JS
5467 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5468 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5469 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
956bf353 5470
faff8758 5471 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
a7052897
MT
5472 ++vcpu->stat.invlpg;
5473}
5474EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5475
eb4b248e
JS
5476void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5477{
44dd3ffa 5478 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5479 bool tlb_flush = false;
b94742c9 5480 uint i;
eb4b248e
JS
5481
5482 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5483 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5484 tlb_flush = true;
eb4b248e
JS
5485 }
5486
b94742c9
JS
5487 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5488 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5489 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5490 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5491 tlb_flush = true;
5492 }
956bf353 5493 }
ade61e28 5494
faff8758
JS
5495 if (tlb_flush)
5496 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5497
eb4b248e
JS
5498 ++vcpu->stat.invlpg;
5499
5500 /*
b94742c9
JS
5501 * Mappings not reachable via the current cr3 or the prev_roots will be
5502 * synced when switching to that cr3, so nothing needs to be done here
5503 * for them.
eb4b248e
JS
5504 */
5505}
5506EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5507
18552672
JR
5508void kvm_enable_tdp(void)
5509{
5510 tdp_enabled = true;
5511}
5512EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5513
5f4cb662
JR
5514void kvm_disable_tdp(void)
5515{
5516 tdp_enabled = false;
5517}
5518EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5519
85875a13
SC
5520
5521/* The return value indicates if tlb flush on all vcpus is needed. */
5522typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5523
5524/* The caller should hold mmu-lock before calling this function. */
5525static __always_inline bool
5526slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5527 slot_level_handler fn, int start_level, int end_level,
5528 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5529{
5530 struct slot_rmap_walk_iterator iterator;
5531 bool flush = false;
5532
5533 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5534 end_gfn, &iterator) {
5535 if (iterator.rmap)
5536 flush |= fn(kvm, iterator.rmap);
5537
5538 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5539 if (flush && lock_flush_tlb) {
f285c633
BG
5540 kvm_flush_remote_tlbs_with_address(kvm,
5541 start_gfn,
5542 iterator.gfn - start_gfn + 1);
85875a13
SC
5543 flush = false;
5544 }
5545 cond_resched_lock(&kvm->mmu_lock);
5546 }
5547 }
5548
5549 if (flush && lock_flush_tlb) {
f285c633
BG
5550 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5551 end_gfn - start_gfn + 1);
85875a13
SC
5552 flush = false;
5553 }
5554
5555 return flush;
5556}
5557
5558static __always_inline bool
5559slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5560 slot_level_handler fn, int start_level, int end_level,
5561 bool lock_flush_tlb)
5562{
5563 return slot_handle_level_range(kvm, memslot, fn, start_level,
5564 end_level, memslot->base_gfn,
5565 memslot->base_gfn + memslot->npages - 1,
5566 lock_flush_tlb);
5567}
5568
5569static __always_inline bool
5570slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5571 slot_level_handler fn, bool lock_flush_tlb)
5572{
5573 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5574 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5575}
5576
5577static __always_inline bool
5578slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5579 slot_level_handler fn, bool lock_flush_tlb)
5580{
5581 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5582 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5583}
5584
5585static __always_inline bool
5586slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5587 slot_level_handler fn, bool lock_flush_tlb)
5588{
5589 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5590 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5591}
5592
6aa8b732
AK
5593static void free_mmu_pages(struct kvm_vcpu *vcpu)
5594{
44dd3ffa
VK
5595 free_page((unsigned long)vcpu->arch.mmu->pae_root);
5596 free_page((unsigned long)vcpu->arch.mmu->lm_root);
6aa8b732
AK
5597}
5598
5599static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5600{
17ac10ad 5601 struct page *page;
6aa8b732
AK
5602 int i;
5603
ee6268ba
LC
5604 if (tdp_enabled)
5605 return 0;
5606
17ac10ad
AK
5607 /*
5608 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5609 * Therefore we need to allocate shadow page tables in the first
5610 * 4GB of memory, which happens to fit the DMA32 zone.
5611 */
254272ce 5612 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5613 if (!page)
d7fa6ab2
WY
5614 return -ENOMEM;
5615
44dd3ffa 5616 vcpu->arch.mmu->pae_root = page_address(page);
17ac10ad 5617 for (i = 0; i < 4; ++i)
44dd3ffa 5618 vcpu->arch.mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5619
6aa8b732 5620 return 0;
6aa8b732
AK
5621}
5622
8018c27b 5623int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5624{
b94742c9
JS
5625 uint i;
5626
44dd3ffa
VK
5627 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5628 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5629
44dd3ffa 5630 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
ad7dc69a 5631 vcpu->arch.root_mmu.root_cr3 = 0;
44dd3ffa 5632 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
b94742c9 5633 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5634 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6aa8b732 5635
14c07ad8 5636 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
ad7dc69a 5637 vcpu->arch.guest_mmu.root_cr3 = 0;
14c07ad8
VK
5638 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5639 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5640 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
2c264957 5641
14c07ad8 5642 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
8018c27b 5643 return alloc_mmu_pages(vcpu);
6aa8b732
AK
5644}
5645
b5f5fdca 5646static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5647 struct kvm_memory_slot *slot,
5648 struct kvm_page_track_notifier_node *node)
b5f5fdca 5649{
4e103134
SC
5650 struct kvm_mmu_page *sp;
5651 LIST_HEAD(invalid_list);
5652 unsigned long i;
5653 bool flush;
5654 gfn_t gfn;
13d268ca 5655
4e103134 5656 spin_lock(&kvm->mmu_lock);
13d268ca 5657
4e103134
SC
5658 if (list_empty(&kvm->arch.active_mmu_pages))
5659 goto out_unlock;
13d268ca 5660
4e103134 5661 flush = slot_handle_all_level(kvm, slot, kvm_zap_rmapp, false);
1bad2b2a 5662
4e103134
SC
5663 for (i = 0; i < slot->npages; i++) {
5664 gfn = slot->base_gfn + i;
1bad2b2a 5665
4e103134
SC
5666 for_each_valid_sp(kvm, sp, gfn) {
5667 if (sp->gfn != gfn)
5668 continue;
1bad2b2a 5669
4e103134
SC
5670 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5671 }
1bad2b2a 5672 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4e103134
SC
5673 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5674 flush = false;
1bad2b2a
XG
5675 cond_resched_lock(&kvm->mmu_lock);
5676 }
5677 }
4e103134 5678 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
1bad2b2a 5679
4e103134
SC
5680out_unlock:
5681 spin_unlock(&kvm->mmu_lock);
1bad2b2a
XG
5682}
5683
13d268ca 5684void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5685{
13d268ca 5686 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5687
13d268ca 5688 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5689 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5690 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5691}
5692
13d268ca 5693void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5694{
13d268ca 5695 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5696
13d268ca 5697 kvm_page_track_unregister_notifier(kvm, node);
1bad2b2a
XG
5698}
5699
efdfe536
XG
5700void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5701{
5702 struct kvm_memslots *slots;
5703 struct kvm_memory_slot *memslot;
9da0e4d5 5704 int i;
efdfe536
XG
5705
5706 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5707 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5708 slots = __kvm_memslots(kvm, i);
5709 kvm_for_each_memslot(memslot, slots) {
5710 gfn_t start, end;
5711
5712 start = max(gfn_start, memslot->base_gfn);
5713 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5714 if (start >= end)
5715 continue;
efdfe536 5716
92da008f
BG
5717 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5718 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5719 start, end - 1, true);
9da0e4d5 5720 }
efdfe536
XG
5721 }
5722
5723 spin_unlock(&kvm->mmu_lock);
5724}
5725
018aabb5
TY
5726static bool slot_rmap_write_protect(struct kvm *kvm,
5727 struct kvm_rmap_head *rmap_head)
d77aa73c 5728{
018aabb5 5729 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5730}
5731
1c91cad4
KH
5732void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5733 struct kvm_memory_slot *memslot)
6aa8b732 5734{
d77aa73c 5735 bool flush;
6aa8b732 5736
9d1beefb 5737 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5738 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5739 false);
9d1beefb 5740 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
5741
5742 /*
5743 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5744 * which do tlb flush out of mmu-lock should be serialized by
5745 * kvm->slots_lock otherwise tlb flush would be missed.
5746 */
5747 lockdep_assert_held(&kvm->slots_lock);
5748
5749 /*
5750 * We can flush all the TLBs out of the mmu lock without TLB
5751 * corruption since we just change the spte from writable to
5752 * readonly so that we only need to care the case of changing
5753 * spte from present to present (changing the spte from present
5754 * to nonpresent will flush all the TLBs immediately), in other
5755 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5756 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5757 * instead of PT_WRITABLE_MASK, that means it does not depend
5758 * on PT_WRITABLE_MASK anymore.
5759 */
d91ffee9 5760 if (flush)
c3134ce2
LT
5761 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5762 memslot->npages);
6aa8b732 5763}
37a7d8b0 5764
3ea3b7fa 5765static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5766 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5767{
5768 u64 *sptep;
5769 struct rmap_iterator iter;
5770 int need_tlb_flush = 0;
ba049e93 5771 kvm_pfn_t pfn;
3ea3b7fa
WL
5772 struct kvm_mmu_page *sp;
5773
0d536790 5774restart:
018aabb5 5775 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
5776 sp = page_header(__pa(sptep));
5777 pfn = spte_to_pfn(*sptep);
5778
5779 /*
decf6333
XG
5780 * We cannot do huge page mapping for indirect shadow pages,
5781 * which are found on the last rmap (level = 1) when not using
5782 * tdp; such shadow pages are synced with the page table in
5783 * the guest, and the guest page table is using 4K page size
5784 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
5785 */
5786 if (sp->role.direct &&
5787 !kvm_is_reserved_pfn(pfn) &&
127393fb 5788 PageTransCompoundMap(pfn_to_page(pfn))) {
e7912386 5789 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5790
5791 if (kvm_available_flush_tlb_with_range())
5792 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5793 KVM_PAGES_PER_HPAGE(sp->role.level));
5794 else
5795 need_tlb_flush = 1;
5796
0d536790
XG
5797 goto restart;
5798 }
3ea3b7fa
WL
5799 }
5800
5801 return need_tlb_flush;
5802}
5803
5804void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5805 const struct kvm_memory_slot *memslot)
3ea3b7fa 5806{
f36f3f28 5807 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5808 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5809 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5810 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5811 spin_unlock(&kvm->mmu_lock);
5812}
5813
f4b4b180
KH
5814void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5815 struct kvm_memory_slot *memslot)
5816{
d77aa73c 5817 bool flush;
f4b4b180
KH
5818
5819 spin_lock(&kvm->mmu_lock);
d77aa73c 5820 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5821 spin_unlock(&kvm->mmu_lock);
5822
5823 lockdep_assert_held(&kvm->slots_lock);
5824
5825 /*
5826 * It's also safe to flush TLBs out of mmu lock here as currently this
5827 * function is only used for dirty logging, in which case flushing TLB
5828 * out of mmu lock also guarantees no dirty pages will be lost in
5829 * dirty_bitmap.
5830 */
5831 if (flush)
c3134ce2
LT
5832 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5833 memslot->npages);
f4b4b180
KH
5834}
5835EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5836
5837void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5838 struct kvm_memory_slot *memslot)
5839{
d77aa73c 5840 bool flush;
f4b4b180
KH
5841
5842 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5843 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5844 false);
f4b4b180
KH
5845 spin_unlock(&kvm->mmu_lock);
5846
5847 /* see kvm_mmu_slot_remove_write_access */
5848 lockdep_assert_held(&kvm->slots_lock);
5849
5850 if (flush)
c3134ce2
LT
5851 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5852 memslot->npages);
f4b4b180
KH
5853}
5854EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5855
5856void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5857 struct kvm_memory_slot *memslot)
5858{
d77aa73c 5859 bool flush;
f4b4b180
KH
5860
5861 spin_lock(&kvm->mmu_lock);
d77aa73c 5862 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
5863 spin_unlock(&kvm->mmu_lock);
5864
5865 lockdep_assert_held(&kvm->slots_lock);
5866
5867 /* see kvm_mmu_slot_leaf_clear_dirty */
5868 if (flush)
c3134ce2
LT
5869 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5870 memslot->npages);
f4b4b180
KH
5871}
5872EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5873
8ab3c471 5874static void __kvm_mmu_zap_all(struct kvm *kvm, bool mmio_only)
5304b8d3
XG
5875{
5876 struct kvm_mmu_page *sp, *node;
7390de1e 5877 LIST_HEAD(invalid_list);
83cdb568 5878 int ign;
5304b8d3 5879
7390de1e 5880 spin_lock(&kvm->mmu_lock);
5304b8d3 5881restart:
8a674adc 5882 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
8ab3c471 5883 if (mmio_only && !sp->mmio_cached)
5304b8d3 5884 continue;
8ab3c471 5885 if (sp->role.invalid && sp->root_count)
4771450c 5886 continue;
24efe61f 5887 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) {
8ab3c471 5888 WARN_ON_ONCE(mmio_only);
5304b8d3
XG
5889 goto restart;
5890 }
24efe61f 5891 if (cond_resched_lock(&kvm->mmu_lock))
5304b8d3
XG
5892 goto restart;
5893 }
5894
4771450c 5895 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5304b8d3
XG
5896 spin_unlock(&kvm->mmu_lock);
5897}
5898
8ab3c471 5899void kvm_mmu_zap_all(struct kvm *kvm)
365c8868 5900{
8ab3c471 5901 return __kvm_mmu_zap_all(kvm, false);
365c8868
XG
5902}
5903
15248258 5904void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 5905{
164bf7e5 5906 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 5907
164bf7e5 5908 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 5909
f8f55942 5910 /*
e1359e2b
SC
5911 * Generation numbers are incremented in multiples of the number of
5912 * address spaces in order to provide unique generations across all
5913 * address spaces. Strip what is effectively the address space
5914 * modifier prior to checking for a wrap of the MMIO generation so
5915 * that a wrap in any address space is detected.
5916 */
5917 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5918
f8f55942 5919 /*
e1359e2b 5920 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 5921 * zap all shadow pages.
f8f55942 5922 */
e1359e2b 5923 if (unlikely(gen == 0)) {
ae0f5499 5924 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
8ab3c471 5925 __kvm_mmu_zap_all(kvm, true);
7a2e8aaf 5926 }
f8f55942
XG
5927}
5928
70534a73
DC
5929static unsigned long
5930mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5931{
5932 struct kvm *kvm;
1495f230 5933 int nr_to_scan = sc->nr_to_scan;
70534a73 5934 unsigned long freed = 0;
3ee16c81 5935
0d9ce162 5936 mutex_lock(&kvm_lock);
3ee16c81
IE
5937
5938 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5939 int idx;
d98ba053 5940 LIST_HEAD(invalid_list);
3ee16c81 5941
35f2d16b
TY
5942 /*
5943 * Never scan more than sc->nr_to_scan VM instances.
5944 * Will not hit this condition practically since we do not try
5945 * to shrink more than one VM and it is very unlikely to see
5946 * !n_used_mmu_pages so many times.
5947 */
5948 if (!nr_to_scan--)
5949 break;
19526396
GN
5950 /*
5951 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5952 * here. We may skip a VM instance errorneosly, but we do not
5953 * want to shrink a VM that only started to populate its MMU
5954 * anyway.
5955 */
52d5dedc 5956 if (!kvm->arch.n_used_mmu_pages)
19526396 5957 continue;
19526396 5958
f656ce01 5959 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5960 spin_lock(&kvm->mmu_lock);
3ee16c81 5961
70534a73
DC
5962 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5963 freed++;
d98ba053 5964 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 5965
3ee16c81 5966 spin_unlock(&kvm->mmu_lock);
f656ce01 5967 srcu_read_unlock(&kvm->srcu, idx);
19526396 5968
70534a73
DC
5969 /*
5970 * unfair on small ones
5971 * per-vm shrinkers cry out
5972 * sadness comes quickly
5973 */
19526396
GN
5974 list_move_tail(&kvm->vm_list, &vm_list);
5975 break;
3ee16c81 5976 }
3ee16c81 5977
0d9ce162 5978 mutex_unlock(&kvm_lock);
70534a73 5979 return freed;
70534a73
DC
5980}
5981
5982static unsigned long
5983mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5984{
45221ab6 5985 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5986}
5987
5988static struct shrinker mmu_shrinker = {
70534a73
DC
5989 .count_objects = mmu_shrink_count,
5990 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5991 .seeks = DEFAULT_SEEKS * 10,
5992};
5993
2ddfd20e 5994static void mmu_destroy_caches(void)
b5a33a75 5995{
c1bd743e
TH
5996 kmem_cache_destroy(pte_list_desc_cache);
5997 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5998}
5999
7b6f8a06
KH
6000static void kvm_set_mmio_spte_mask(void)
6001{
6002 u64 mask;
7b6f8a06
KH
6003
6004 /*
6005 * Set the reserved bits and the present bit of an paging-structure
6006 * entry to generate page fault with PFER.RSV = 1.
6007 */
6008
6009 /*
6010 * Mask the uppermost physical address bit, which would be reserved as
6011 * long as the supported physical address width is less than 52.
6012 */
6013 mask = 1ull << 51;
6014
6015 /* Set the present bit. */
6016 mask |= 1ull;
6017
6018 /*
6019 * If reserved bit is not supported, clear the present bit to disable
6020 * mmio page fault.
6021 */
f3ecb59d 6022 if (IS_ENABLED(CONFIG_X86_64) && shadow_phys_bits == 52)
7b6f8a06
KH
6023 mask &= ~1ull;
6024
6025 kvm_mmu_set_mmio_spte_mask(mask, mask);
6026}
6027
b5a33a75
AK
6028int kvm_mmu_module_init(void)
6029{
ab271bd4
AB
6030 int ret = -ENOMEM;
6031
36d9594d
VK
6032 /*
6033 * MMU roles use union aliasing which is, generally speaking, an
6034 * undefined behavior. However, we supposedly know how compilers behave
6035 * and the current status quo is unlikely to change. Guardians below are
6036 * supposed to let us know if the assumption becomes false.
6037 */
6038 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6039 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6040 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6041
28a1f3ac 6042 kvm_mmu_reset_all_pte_masks();
f160c7b7 6043
7b6f8a06
KH
6044 kvm_set_mmio_spte_mask();
6045
53c07b18
XG
6046 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6047 sizeof(struct pte_list_desc),
46bea48a 6048 0, SLAB_ACCOUNT, NULL);
53c07b18 6049 if (!pte_list_desc_cache)
ab271bd4 6050 goto out;
b5a33a75 6051
d3d25b04
AK
6052 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6053 sizeof(struct kvm_mmu_page),
46bea48a 6054 0, SLAB_ACCOUNT, NULL);
d3d25b04 6055 if (!mmu_page_header_cache)
ab271bd4 6056 goto out;
d3d25b04 6057
908c7f19 6058 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 6059 goto out;
45bf21a8 6060
ab271bd4
AB
6061 ret = register_shrinker(&mmu_shrinker);
6062 if (ret)
6063 goto out;
3ee16c81 6064
b5a33a75
AK
6065 return 0;
6066
ab271bd4 6067out:
3ee16c81 6068 mmu_destroy_caches();
ab271bd4 6069 return ret;
b5a33a75
AK
6070}
6071
3ad82a7e 6072/*
39337ad1 6073 * Calculate mmu pages needed for kvm.
3ad82a7e 6074 */
bc8a3d89 6075unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 6076{
bc8a3d89
BG
6077 unsigned long nr_mmu_pages;
6078 unsigned long nr_pages = 0;
bc6678a3 6079 struct kvm_memslots *slots;
be6ba0f0 6080 struct kvm_memory_slot *memslot;
9da0e4d5 6081 int i;
3ad82a7e 6082
9da0e4d5
PB
6083 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6084 slots = __kvm_memslots(kvm, i);
90d83dc3 6085
9da0e4d5
PB
6086 kvm_for_each_memslot(memslot, slots)
6087 nr_pages += memslot->npages;
6088 }
3ad82a7e
ZX
6089
6090 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 6091 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
6092
6093 return nr_mmu_pages;
6094}
6095
c42fffe3
XG
6096void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6097{
95f93af4 6098 kvm_mmu_unload(vcpu);
c42fffe3
XG
6099 free_mmu_pages(vcpu);
6100 mmu_free_memory_caches(vcpu);
b034cf01
XG
6101}
6102
b034cf01
XG
6103void kvm_mmu_module_exit(void)
6104{
6105 mmu_destroy_caches();
6106 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6107 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
6108 mmu_audit_disable();
6109}