]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
kvm: fix potentially corrupt mmio cache
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
6aa8b732 44
18552672
JR
45/*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
2f333bcb 52bool tdp_enabled = false;
18552672 53
8b1fe17c
XG
54enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
6903074c
XG
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
8b1fe17c 61};
37a7d8b0 62
8b1fe17c 63#undef MMU_DEBUG
37a7d8b0
AK
64
65#ifdef MMU_DEBUG
66
67#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
68#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
69
70#else
71
72#define pgprintk(x...) do { } while (0)
73#define rmap_printk(x...) do { } while (0)
74
75#endif
76
8b1fe17c 77#ifdef MMU_DEBUG
476bc001 78static bool dbg = 0;
6ada8cca 79module_param(dbg, bool, 0644);
37a7d8b0 80#endif
6aa8b732 81
d6c69ee9
YD
82#ifndef MMU_DEBUG
83#define ASSERT(x) do { } while (0)
84#else
6aa8b732
AK
85#define ASSERT(x) \
86 if (!(x)) { \
87 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
88 __FILE__, __LINE__, #x); \
89 }
d6c69ee9 90#endif
6aa8b732 91
957ed9ef
XG
92#define PTE_PREFETCH_NUM 8
93
00763e41 94#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
95#define PT64_SECOND_AVAIL_BITS_SHIFT 52
96
6aa8b732
AK
97#define PT64_LEVEL_BITS 9
98
99#define PT64_LEVEL_SHIFT(level) \
d77c26fc 100 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 101
6aa8b732
AK
102#define PT64_INDEX(address, level)\
103 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
104
105
106#define PT32_LEVEL_BITS 10
107
108#define PT32_LEVEL_SHIFT(level) \
d77c26fc 109 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 110
e04da980
JR
111#define PT32_LVL_OFFSET_MASK(level) \
112 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
114
115#define PT32_INDEX(address, level)\
116 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
117
118
27aba766 119#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
120#define PT64_DIR_BASE_ADDR_MASK \
121 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
122#define PT64_LVL_ADDR_MASK(level) \
123 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT64_LEVEL_BITS))) - 1))
125#define PT64_LVL_OFFSET_MASK(level) \
126 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
128
129#define PT32_BASE_ADDR_MASK PAGE_MASK
130#define PT32_DIR_BASE_ADDR_MASK \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
132#define PT32_LVL_ADDR_MASK(level) \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 * PT32_LEVEL_BITS))) - 1))
6aa8b732 135
53166229
GN
136#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
137 | shadow_x_mask | shadow_nx_mask)
6aa8b732 138
fe135d2c
AK
139#define ACC_EXEC_MASK 1
140#define ACC_WRITE_MASK PT_WRITABLE_MASK
141#define ACC_USER_MASK PT_USER_MASK
142#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
143
90bb6fc5
AK
144#include <trace/events/kvm.h>
145
07420171
AK
146#define CREATE_TRACE_POINTS
147#include "mmutrace.h"
148
49fde340
XG
149#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
150#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 151
135f8c2b
AK
152#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153
220f773a
TY
154/* make pte_list_desc fit well in cache line */
155#define PTE_LIST_EXT 3
156
53c07b18
XG
157struct pte_list_desc {
158 u64 *sptes[PTE_LIST_EXT];
159 struct pte_list_desc *more;
cd4a4e53
AK
160};
161
2d11123a
AK
162struct kvm_shadow_walk_iterator {
163 u64 addr;
164 hpa_t shadow_addr;
2d11123a 165 u64 *sptep;
dd3bfd59 166 int level;
2d11123a
AK
167 unsigned index;
168};
169
170#define for_each_shadow_entry(_vcpu, _addr, _walker) \
171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
172 shadow_walk_okay(&(_walker)); \
173 shadow_walk_next(&(_walker)))
174
c2a2ac2b
XG
175#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
176 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
177 shadow_walk_okay(&(_walker)) && \
178 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
179 __shadow_walk_next(&(_walker), spte))
180
53c07b18 181static struct kmem_cache *pte_list_desc_cache;
d3d25b04 182static struct kmem_cache *mmu_page_header_cache;
45221ab6 183static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 184
7b52345e
SY
185static u64 __read_mostly shadow_nx_mask;
186static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
187static u64 __read_mostly shadow_user_mask;
188static u64 __read_mostly shadow_accessed_mask;
189static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
190static u64 __read_mostly shadow_mmio_mask;
191
192static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 193static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
194
195void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
196{
197 shadow_mmio_mask = mmio_mask;
198}
199EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
200
f2fd125d 201/*
ee3d1570
DM
202 * the low bit of the generation number is always presumed to be zero.
203 * This disables mmio caching during memslot updates. The concept is
204 * similar to a seqcount but instead of retrying the access we just punt
205 * and ignore the cache.
206 *
207 * spte bits 3-11 are used as bits 1-9 of the generation number,
208 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 209 */
ee3d1570 210#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
211#define MMIO_SPTE_GEN_HIGH_SHIFT 52
212
ee3d1570
DM
213#define MMIO_GEN_SHIFT 20
214#define MMIO_GEN_LOW_SHIFT 10
215#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942
XG
216#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
217#define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
218
219static u64 generation_mmio_spte_mask(unsigned int gen)
220{
221 u64 mask;
222
223 WARN_ON(gen > MMIO_MAX_GEN);
224
225 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
226 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
227 return mask;
228}
229
230static unsigned int get_mmio_spte_generation(u64 spte)
231{
232 unsigned int gen;
233
234 spte &= ~shadow_mmio_mask;
235
236 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
237 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
238 return gen;
239}
240
f8f55942
XG
241static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
242{
00f034a1 243 return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
f8f55942
XG
244}
245
f2fd125d
XG
246static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
247 unsigned access)
ce88decf 248{
f8f55942
XG
249 unsigned int gen = kvm_current_mmio_generation(kvm);
250 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 251
ce88decf 252 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 253 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 254
f8f55942 255 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 256 mmu_spte_set(sptep, mask);
ce88decf
XG
257}
258
259static bool is_mmio_spte(u64 spte)
260{
261 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
262}
263
264static gfn_t get_mmio_spte_gfn(u64 spte)
265{
f2fd125d
XG
266 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
267 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
268}
269
270static unsigned get_mmio_spte_access(u64 spte)
271{
f2fd125d
XG
272 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
273 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
274}
275
f2fd125d
XG
276static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
277 pfn_t pfn, unsigned access)
ce88decf
XG
278{
279 if (unlikely(is_noslot_pfn(pfn))) {
f2fd125d 280 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
281 return true;
282 }
283
284 return false;
285}
c7addb90 286
f8f55942
XG
287static bool check_mmio_spte(struct kvm *kvm, u64 spte)
288{
089504c0
XG
289 unsigned int kvm_gen, spte_gen;
290
291 kvm_gen = kvm_current_mmio_generation(kvm);
292 spte_gen = get_mmio_spte_generation(spte);
293
294 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
295 return likely(kvm_gen == spte_gen);
f8f55942
XG
296}
297
82725b20
DE
298static inline u64 rsvd_bits(int s, int e)
299{
300 return ((1ULL << (e - s + 1)) - 1) << s;
301}
302
7b52345e 303void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 304 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
305{
306 shadow_user_mask = user_mask;
307 shadow_accessed_mask = accessed_mask;
308 shadow_dirty_mask = dirty_mask;
309 shadow_nx_mask = nx_mask;
310 shadow_x_mask = x_mask;
311}
312EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
313
6aa8b732
AK
314static int is_cpuid_PSE36(void)
315{
316 return 1;
317}
318
73b1087e
AK
319static int is_nx(struct kvm_vcpu *vcpu)
320{
f6801dff 321 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
322}
323
c7addb90
AK
324static int is_shadow_present_pte(u64 pte)
325{
ce88decf 326 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
327}
328
05da4558
MT
329static int is_large_pte(u64 pte)
330{
331 return pte & PT_PAGE_SIZE_MASK;
332}
333
43a3795a 334static int is_rmap_spte(u64 pte)
cd4a4e53 335{
4b1a80fa 336 return is_shadow_present_pte(pte);
cd4a4e53
AK
337}
338
776e6633
MT
339static int is_last_spte(u64 pte, int level)
340{
341 if (level == PT_PAGE_TABLE_LEVEL)
342 return 1;
852e3c19 343 if (is_large_pte(pte))
776e6633
MT
344 return 1;
345 return 0;
346}
347
35149e21 348static pfn_t spte_to_pfn(u64 pte)
0b49ea86 349{
35149e21 350 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
351}
352
da928521
AK
353static gfn_t pse36_gfn_delta(u32 gpte)
354{
355 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
356
357 return (gpte & PT32_DIR_PSE36_MASK) << shift;
358}
359
603e0651 360#ifdef CONFIG_X86_64
d555c333 361static void __set_spte(u64 *sptep, u64 spte)
e663ee64 362{
603e0651 363 *sptep = spte;
e663ee64
AK
364}
365
603e0651 366static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 367{
603e0651
XG
368 *sptep = spte;
369}
370
371static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
372{
373 return xchg(sptep, spte);
374}
c2a2ac2b
XG
375
376static u64 __get_spte_lockless(u64 *sptep)
377{
378 return ACCESS_ONCE(*sptep);
379}
ce88decf
XG
380
381static bool __check_direct_spte_mmio_pf(u64 spte)
382{
383 /* It is valid if the spte is zapped. */
384 return spte == 0ull;
385}
a9221dd5 386#else
603e0651
XG
387union split_spte {
388 struct {
389 u32 spte_low;
390 u32 spte_high;
391 };
392 u64 spte;
393};
a9221dd5 394
c2a2ac2b
XG
395static void count_spte_clear(u64 *sptep, u64 spte)
396{
397 struct kvm_mmu_page *sp = page_header(__pa(sptep));
398
399 if (is_shadow_present_pte(spte))
400 return;
401
402 /* Ensure the spte is completely set before we increase the count */
403 smp_wmb();
404 sp->clear_spte_count++;
405}
406
603e0651
XG
407static void __set_spte(u64 *sptep, u64 spte)
408{
409 union split_spte *ssptep, sspte;
a9221dd5 410
603e0651
XG
411 ssptep = (union split_spte *)sptep;
412 sspte = (union split_spte)spte;
413
414 ssptep->spte_high = sspte.spte_high;
415
416 /*
417 * If we map the spte from nonpresent to present, We should store
418 * the high bits firstly, then set present bit, so cpu can not
419 * fetch this spte while we are setting the spte.
420 */
421 smp_wmb();
422
423 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
424}
425
603e0651
XG
426static void __update_clear_spte_fast(u64 *sptep, u64 spte)
427{
428 union split_spte *ssptep, sspte;
429
430 ssptep = (union split_spte *)sptep;
431 sspte = (union split_spte)spte;
432
433 ssptep->spte_low = sspte.spte_low;
434
435 /*
436 * If we map the spte from present to nonpresent, we should clear
437 * present bit firstly to avoid vcpu fetch the old high bits.
438 */
439 smp_wmb();
440
441 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 442 count_spte_clear(sptep, spte);
603e0651
XG
443}
444
445static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
446{
447 union split_spte *ssptep, sspte, orig;
448
449 ssptep = (union split_spte *)sptep;
450 sspte = (union split_spte)spte;
451
452 /* xchg acts as a barrier before the setting of the high bits */
453 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
454 orig.spte_high = ssptep->spte_high;
455 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 456 count_spte_clear(sptep, spte);
603e0651
XG
457
458 return orig.spte;
459}
c2a2ac2b
XG
460
461/*
462 * The idea using the light way get the spte on x86_32 guest is from
463 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
464 *
465 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
466 * coalesces them and we are running out of the MMU lock. Therefore
467 * we need to protect against in-progress updates of the spte.
468 *
469 * Reading the spte while an update is in progress may get the old value
470 * for the high part of the spte. The race is fine for a present->non-present
471 * change (because the high part of the spte is ignored for non-present spte),
472 * but for a present->present change we must reread the spte.
473 *
474 * All such changes are done in two steps (present->non-present and
475 * non-present->present), hence it is enough to count the number of
476 * present->non-present updates: if it changed while reading the spte,
477 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
478 */
479static u64 __get_spte_lockless(u64 *sptep)
480{
481 struct kvm_mmu_page *sp = page_header(__pa(sptep));
482 union split_spte spte, *orig = (union split_spte *)sptep;
483 int count;
484
485retry:
486 count = sp->clear_spte_count;
487 smp_rmb();
488
489 spte.spte_low = orig->spte_low;
490 smp_rmb();
491
492 spte.spte_high = orig->spte_high;
493 smp_rmb();
494
495 if (unlikely(spte.spte_low != orig->spte_low ||
496 count != sp->clear_spte_count))
497 goto retry;
498
499 return spte.spte;
500}
ce88decf
XG
501
502static bool __check_direct_spte_mmio_pf(u64 spte)
503{
504 union split_spte sspte = (union split_spte)spte;
505 u32 high_mmio_mask = shadow_mmio_mask >> 32;
506
507 /* It is valid if the spte is zapped. */
508 if (spte == 0ull)
509 return true;
510
511 /* It is valid if the spte is being zapped. */
512 if (sspte.spte_low == 0ull &&
513 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
514 return true;
515
516 return false;
517}
603e0651
XG
518#endif
519
c7ba5b48
XG
520static bool spte_is_locklessly_modifiable(u64 spte)
521{
feb3eb70
GN
522 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
523 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
524}
525
8672b721
XG
526static bool spte_has_volatile_bits(u64 spte)
527{
c7ba5b48
XG
528 /*
529 * Always atomicly update spte if it can be updated
530 * out of mmu-lock, it can ensure dirty bit is not lost,
531 * also, it can help us to get a stable is_writable_pte()
532 * to ensure tlb flush is not missed.
533 */
534 if (spte_is_locklessly_modifiable(spte))
535 return true;
536
8672b721
XG
537 if (!shadow_accessed_mask)
538 return false;
539
540 if (!is_shadow_present_pte(spte))
541 return false;
542
4132779b
XG
543 if ((spte & shadow_accessed_mask) &&
544 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
545 return false;
546
547 return true;
548}
549
4132779b
XG
550static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
551{
552 return (old_spte & bit_mask) && !(new_spte & bit_mask);
553}
554
1df9f2dc
XG
555/* Rules for using mmu_spte_set:
556 * Set the sptep from nonpresent to present.
557 * Note: the sptep being assigned *must* be either not present
558 * or in a state where the hardware will not attempt to update
559 * the spte.
560 */
561static void mmu_spte_set(u64 *sptep, u64 new_spte)
562{
563 WARN_ON(is_shadow_present_pte(*sptep));
564 __set_spte(sptep, new_spte);
565}
566
567/* Rules for using mmu_spte_update:
568 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
569 *
570 * Whenever we overwrite a writable spte with a read-only one we
571 * should flush remote TLBs. Otherwise rmap_write_protect
572 * will find a read-only spte, even though the writable spte
573 * might be cached on a CPU's TLB, the return value indicates this
574 * case.
1df9f2dc 575 */
6e7d0354 576static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 577{
c7ba5b48 578 u64 old_spte = *sptep;
6e7d0354 579 bool ret = false;
4132779b
XG
580
581 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 582
6e7d0354
XG
583 if (!is_shadow_present_pte(old_spte)) {
584 mmu_spte_set(sptep, new_spte);
585 return ret;
586 }
4132779b 587
c7ba5b48 588 if (!spte_has_volatile_bits(old_spte))
603e0651 589 __update_clear_spte_fast(sptep, new_spte);
4132779b 590 else
603e0651 591 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 592
c7ba5b48
XG
593 /*
594 * For the spte updated out of mmu-lock is safe, since
595 * we always atomicly update it, see the comments in
596 * spte_has_volatile_bits().
597 */
7f31c959
XG
598 if (spte_is_locklessly_modifiable(old_spte) &&
599 !is_writable_pte(new_spte))
6e7d0354
XG
600 ret = true;
601
4132779b 602 if (!shadow_accessed_mask)
6e7d0354 603 return ret;
4132779b
XG
604
605 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
606 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
607 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
608 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
609
610 return ret;
b79b93f9
AK
611}
612
1df9f2dc
XG
613/*
614 * Rules for using mmu_spte_clear_track_bits:
615 * It sets the sptep from present to nonpresent, and track the
616 * state bits, it is used to clear the last level sptep.
617 */
618static int mmu_spte_clear_track_bits(u64 *sptep)
619{
620 pfn_t pfn;
621 u64 old_spte = *sptep;
622
623 if (!spte_has_volatile_bits(old_spte))
603e0651 624 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 625 else
603e0651 626 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
627
628 if (!is_rmap_spte(old_spte))
629 return 0;
630
631 pfn = spte_to_pfn(old_spte);
86fde74c
XG
632
633 /*
634 * KVM does not hold the refcount of the page used by
635 * kvm mmu, before reclaiming the page, we should
636 * unmap it from mmu first.
637 */
638 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
639
1df9f2dc
XG
640 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
641 kvm_set_pfn_accessed(pfn);
642 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
643 kvm_set_pfn_dirty(pfn);
644 return 1;
645}
646
647/*
648 * Rules for using mmu_spte_clear_no_track:
649 * Directly clear spte without caring the state bits of sptep,
650 * it is used to set the upper level spte.
651 */
652static void mmu_spte_clear_no_track(u64 *sptep)
653{
603e0651 654 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
655}
656
c2a2ac2b
XG
657static u64 mmu_spte_get_lockless(u64 *sptep)
658{
659 return __get_spte_lockless(sptep);
660}
661
662static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
663{
c142786c
AK
664 /*
665 * Prevent page table teardown by making any free-er wait during
666 * kvm_flush_remote_tlbs() IPI to all active vcpus.
667 */
668 local_irq_disable();
669 vcpu->mode = READING_SHADOW_PAGE_TABLES;
670 /*
671 * Make sure a following spte read is not reordered ahead of the write
672 * to vcpu->mode.
673 */
674 smp_mb();
c2a2ac2b
XG
675}
676
677static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
678{
c142786c
AK
679 /*
680 * Make sure the write to vcpu->mode is not reordered in front of
681 * reads to sptes. If it does, kvm_commit_zap_page() can see us
682 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
683 */
684 smp_mb();
685 vcpu->mode = OUTSIDE_GUEST_MODE;
686 local_irq_enable();
c2a2ac2b
XG
687}
688
e2dec939 689static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 690 struct kmem_cache *base_cache, int min)
714b93da
AK
691{
692 void *obj;
693
694 if (cache->nobjs >= min)
e2dec939 695 return 0;
714b93da 696 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 697 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 698 if (!obj)
e2dec939 699 return -ENOMEM;
714b93da
AK
700 cache->objects[cache->nobjs++] = obj;
701 }
e2dec939 702 return 0;
714b93da
AK
703}
704
f759e2b4
XG
705static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
706{
707 return cache->nobjs;
708}
709
e8ad9a70
XG
710static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
711 struct kmem_cache *cache)
714b93da
AK
712{
713 while (mc->nobjs)
e8ad9a70 714 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
715}
716
c1158e63 717static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 718 int min)
c1158e63 719{
842f22ed 720 void *page;
c1158e63
AK
721
722 if (cache->nobjs >= min)
723 return 0;
724 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 725 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
726 if (!page)
727 return -ENOMEM;
842f22ed 728 cache->objects[cache->nobjs++] = page;
c1158e63
AK
729 }
730 return 0;
731}
732
733static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
734{
735 while (mc->nobjs)
c4d198d5 736 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
737}
738
2e3e5882 739static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 740{
e2dec939
AK
741 int r;
742
53c07b18 743 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 744 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
745 if (r)
746 goto out;
ad312c7c 747 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
748 if (r)
749 goto out;
ad312c7c 750 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 751 mmu_page_header_cache, 4);
e2dec939
AK
752out:
753 return r;
714b93da
AK
754}
755
756static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
757{
53c07b18
XG
758 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
759 pte_list_desc_cache);
ad312c7c 760 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
761 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
762 mmu_page_header_cache);
714b93da
AK
763}
764
80feb89a 765static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
766{
767 void *p;
768
769 BUG_ON(!mc->nobjs);
770 p = mc->objects[--mc->nobjs];
714b93da
AK
771 return p;
772}
773
53c07b18 774static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 775{
80feb89a 776 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
777}
778
53c07b18 779static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 780{
53c07b18 781 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
782}
783
2032a93d
LJ
784static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
785{
786 if (!sp->role.direct)
787 return sp->gfns[index];
788
789 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
790}
791
792static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
793{
794 if (sp->role.direct)
795 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
796 else
797 sp->gfns[index] = gfn;
798}
799
05da4558 800/*
d4dbf470
TY
801 * Return the pointer to the large page information for a given gfn,
802 * handling slots that are not large page aligned.
05da4558 803 */
d4dbf470
TY
804static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
805 struct kvm_memory_slot *slot,
806 int level)
05da4558
MT
807{
808 unsigned long idx;
809
fb03cb6f 810 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 811 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
812}
813
814static void account_shadowed(struct kvm *kvm, gfn_t gfn)
815{
d25797b2 816 struct kvm_memory_slot *slot;
d4dbf470 817 struct kvm_lpage_info *linfo;
d25797b2 818 int i;
05da4558 819
a1f4d395 820 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
821 for (i = PT_DIRECTORY_LEVEL;
822 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
823 linfo = lpage_info_slot(gfn, slot, i);
824 linfo->write_count += 1;
d25797b2 825 }
332b207d 826 kvm->arch.indirect_shadow_pages++;
05da4558
MT
827}
828
829static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
830{
d25797b2 831 struct kvm_memory_slot *slot;
d4dbf470 832 struct kvm_lpage_info *linfo;
d25797b2 833 int i;
05da4558 834
a1f4d395 835 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
836 for (i = PT_DIRECTORY_LEVEL;
837 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
838 linfo = lpage_info_slot(gfn, slot, i);
839 linfo->write_count -= 1;
840 WARN_ON(linfo->write_count < 0);
d25797b2 841 }
332b207d 842 kvm->arch.indirect_shadow_pages--;
05da4558
MT
843}
844
d25797b2
JR
845static int has_wrprotected_page(struct kvm *kvm,
846 gfn_t gfn,
847 int level)
05da4558 848{
2843099f 849 struct kvm_memory_slot *slot;
d4dbf470 850 struct kvm_lpage_info *linfo;
05da4558 851
a1f4d395 852 slot = gfn_to_memslot(kvm, gfn);
05da4558 853 if (slot) {
d4dbf470
TY
854 linfo = lpage_info_slot(gfn, slot, level);
855 return linfo->write_count;
05da4558
MT
856 }
857
858 return 1;
859}
860
d25797b2 861static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 862{
8f0b1ab6 863 unsigned long page_size;
d25797b2 864 int i, ret = 0;
05da4558 865
8f0b1ab6 866 page_size = kvm_host_page_size(kvm, gfn);
05da4558 867
d25797b2
JR
868 for (i = PT_PAGE_TABLE_LEVEL;
869 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
870 if (page_size >= KVM_HPAGE_SIZE(i))
871 ret = i;
872 else
873 break;
874 }
875
4c2155ce 876 return ret;
05da4558
MT
877}
878
5d163b1c
XG
879static struct kvm_memory_slot *
880gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
881 bool no_dirty_log)
05da4558
MT
882{
883 struct kvm_memory_slot *slot;
5d163b1c
XG
884
885 slot = gfn_to_memslot(vcpu->kvm, gfn);
886 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
887 (no_dirty_log && slot->dirty_bitmap))
888 slot = NULL;
889
890 return slot;
891}
892
893static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
894{
a0a8eaba 895 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
896}
897
898static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
899{
900 int host_level, level, max_level;
05da4558 901
d25797b2
JR
902 host_level = host_mapping_level(vcpu->kvm, large_gfn);
903
904 if (host_level == PT_PAGE_TABLE_LEVEL)
905 return host_level;
906
55dd98c3 907 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
908
909 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
910 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
911 break;
d25797b2
JR
912
913 return level - 1;
05da4558
MT
914}
915
290fc38d 916/*
53c07b18 917 * Pte mapping structures:
cd4a4e53 918 *
53c07b18 919 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 920 *
53c07b18
XG
921 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
922 * pte_list_desc containing more mappings.
53a27b39 923 *
53c07b18 924 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
925 * the spte was not added.
926 *
cd4a4e53 927 */
53c07b18
XG
928static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
929 unsigned long *pte_list)
cd4a4e53 930{
53c07b18 931 struct pte_list_desc *desc;
53a27b39 932 int i, count = 0;
cd4a4e53 933
53c07b18
XG
934 if (!*pte_list) {
935 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
936 *pte_list = (unsigned long)spte;
937 } else if (!(*pte_list & 1)) {
938 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
939 desc = mmu_alloc_pte_list_desc(vcpu);
940 desc->sptes[0] = (u64 *)*pte_list;
d555c333 941 desc->sptes[1] = spte;
53c07b18 942 *pte_list = (unsigned long)desc | 1;
cb16a7b3 943 ++count;
cd4a4e53 944 } else {
53c07b18
XG
945 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
946 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
947 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 948 desc = desc->more;
53c07b18 949 count += PTE_LIST_EXT;
53a27b39 950 }
53c07b18
XG
951 if (desc->sptes[PTE_LIST_EXT-1]) {
952 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
953 desc = desc->more;
954 }
d555c333 955 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 956 ++count;
d555c333 957 desc->sptes[i] = spte;
cd4a4e53 958 }
53a27b39 959 return count;
cd4a4e53
AK
960}
961
53c07b18
XG
962static void
963pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
964 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
965{
966 int j;
967
53c07b18 968 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 969 ;
d555c333
AK
970 desc->sptes[i] = desc->sptes[j];
971 desc->sptes[j] = NULL;
cd4a4e53
AK
972 if (j != 0)
973 return;
974 if (!prev_desc && !desc->more)
53c07b18 975 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
976 else
977 if (prev_desc)
978 prev_desc->more = desc->more;
979 else
53c07b18
XG
980 *pte_list = (unsigned long)desc->more | 1;
981 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
982}
983
53c07b18 984static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 985{
53c07b18
XG
986 struct pte_list_desc *desc;
987 struct pte_list_desc *prev_desc;
cd4a4e53
AK
988 int i;
989
53c07b18
XG
990 if (!*pte_list) {
991 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 992 BUG();
53c07b18
XG
993 } else if (!(*pte_list & 1)) {
994 rmap_printk("pte_list_remove: %p 1->0\n", spte);
995 if ((u64 *)*pte_list != spte) {
996 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
997 BUG();
998 }
53c07b18 999 *pte_list = 0;
cd4a4e53 1000 } else {
53c07b18
XG
1001 rmap_printk("pte_list_remove: %p many->many\n", spte);
1002 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
1003 prev_desc = NULL;
1004 while (desc) {
53c07b18 1005 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 1006 if (desc->sptes[i] == spte) {
53c07b18 1007 pte_list_desc_remove_entry(pte_list,
714b93da 1008 desc, i,
cd4a4e53
AK
1009 prev_desc);
1010 return;
1011 }
1012 prev_desc = desc;
1013 desc = desc->more;
1014 }
53c07b18 1015 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1016 BUG();
1017 }
1018}
1019
67052b35
XG
1020typedef void (*pte_list_walk_fn) (u64 *spte);
1021static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1022{
1023 struct pte_list_desc *desc;
1024 int i;
1025
1026 if (!*pte_list)
1027 return;
1028
1029 if (!(*pte_list & 1))
1030 return fn((u64 *)*pte_list);
1031
1032 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1033 while (desc) {
1034 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1035 fn(desc->sptes[i]);
1036 desc = desc->more;
1037 }
1038}
1039
9373e2c0 1040static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 1041 struct kvm_memory_slot *slot)
53c07b18 1042{
77d11309 1043 unsigned long idx;
53c07b18 1044
77d11309 1045 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1046 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1047}
1048
9b9b1492
TY
1049/*
1050 * Take gfn and return the reverse mapping to it.
1051 */
1052static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1053{
1054 struct kvm_memory_slot *slot;
1055
1056 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 1057 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
1058}
1059
f759e2b4
XG
1060static bool rmap_can_add(struct kvm_vcpu *vcpu)
1061{
1062 struct kvm_mmu_memory_cache *cache;
1063
1064 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1065 return mmu_memory_cache_free_objects(cache);
1066}
1067
53c07b18
XG
1068static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1069{
1070 struct kvm_mmu_page *sp;
1071 unsigned long *rmapp;
1072
53c07b18
XG
1073 sp = page_header(__pa(spte));
1074 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1075 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1076 return pte_list_add(vcpu, spte, rmapp);
1077}
1078
53c07b18
XG
1079static void rmap_remove(struct kvm *kvm, u64 *spte)
1080{
1081 struct kvm_mmu_page *sp;
1082 gfn_t gfn;
1083 unsigned long *rmapp;
1084
1085 sp = page_header(__pa(spte));
1086 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1087 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1088 pte_list_remove(spte, rmapp);
1089}
1090
1e3f42f0
TY
1091/*
1092 * Used by the following functions to iterate through the sptes linked by a
1093 * rmap. All fields are private and not assumed to be used outside.
1094 */
1095struct rmap_iterator {
1096 /* private fields */
1097 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1098 int pos; /* index of the sptep */
1099};
1100
1101/*
1102 * Iteration must be started by this function. This should also be used after
1103 * removing/dropping sptes from the rmap link because in such cases the
1104 * information in the itererator may not be valid.
1105 *
1106 * Returns sptep if found, NULL otherwise.
1107 */
1108static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1109{
1110 if (!rmap)
1111 return NULL;
1112
1113 if (!(rmap & 1)) {
1114 iter->desc = NULL;
1115 return (u64 *)rmap;
1116 }
1117
1118 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1119 iter->pos = 0;
1120 return iter->desc->sptes[iter->pos];
1121}
1122
1123/*
1124 * Must be used with a valid iterator: e.g. after rmap_get_first().
1125 *
1126 * Returns sptep if found, NULL otherwise.
1127 */
1128static u64 *rmap_get_next(struct rmap_iterator *iter)
1129{
1130 if (iter->desc) {
1131 if (iter->pos < PTE_LIST_EXT - 1) {
1132 u64 *sptep;
1133
1134 ++iter->pos;
1135 sptep = iter->desc->sptes[iter->pos];
1136 if (sptep)
1137 return sptep;
1138 }
1139
1140 iter->desc = iter->desc->more;
1141
1142 if (iter->desc) {
1143 iter->pos = 0;
1144 /* desc->sptes[0] cannot be NULL */
1145 return iter->desc->sptes[iter->pos];
1146 }
1147 }
1148
1149 return NULL;
1150}
1151
c3707958 1152static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1153{
1df9f2dc 1154 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1155 rmap_remove(kvm, sptep);
be38d276
AK
1156}
1157
8e22f955
XG
1158
1159static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1160{
1161 if (is_large_pte(*sptep)) {
1162 WARN_ON(page_header(__pa(sptep))->role.level ==
1163 PT_PAGE_TABLE_LEVEL);
1164 drop_spte(kvm, sptep);
1165 --kvm->stat.lpages;
1166 return true;
1167 }
1168
1169 return false;
1170}
1171
1172static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1173{
1174 if (__drop_large_spte(vcpu->kvm, sptep))
1175 kvm_flush_remote_tlbs(vcpu->kvm);
1176}
1177
1178/*
49fde340 1179 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1180 * spte write-protection is caused by protecting shadow page table.
49fde340
XG
1181 *
1182 * Note: write protection is difference between drity logging and spte
1183 * protection:
1184 * - for dirty logging, the spte can be set to writable at anytime if
1185 * its dirty bitmap is properly set.
1186 * - for spte protection, the spte can be writable only after unsync-ing
1187 * shadow page.
8e22f955 1188 *
c126d94f 1189 * Return true if tlb need be flushed.
8e22f955 1190 */
c126d94f 1191static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1192{
1193 u64 spte = *sptep;
1194
49fde340
XG
1195 if (!is_writable_pte(spte) &&
1196 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1197 return false;
1198
1199 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1200
49fde340
XG
1201 if (pt_protect)
1202 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1203 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1204
c126d94f 1205 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1206}
1207
49fde340 1208static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1209 bool pt_protect)
98348e95 1210{
1e3f42f0
TY
1211 u64 *sptep;
1212 struct rmap_iterator iter;
d13bc5b5 1213 bool flush = false;
374cbac0 1214
1e3f42f0
TY
1215 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1216 BUG_ON(!(*sptep & PT_PRESENT_MASK));
a0ed4607 1217
c126d94f 1218 flush |= spte_write_protect(kvm, sptep, pt_protect);
d13bc5b5 1219 sptep = rmap_get_next(&iter);
374cbac0 1220 }
855149aa 1221
d13bc5b5 1222 return flush;
a0ed4607
TY
1223}
1224
5dc99b23
TY
1225/**
1226 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1227 * @kvm: kvm instance
1228 * @slot: slot to protect
1229 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1230 * @mask: indicates which pages we should protect
1231 *
1232 * Used when we do not need to care about huge page mappings: e.g. during dirty
1233 * logging we do not have any such mappings.
1234 */
1235void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1236 struct kvm_memory_slot *slot,
1237 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1238{
1239 unsigned long *rmapp;
a0ed4607 1240
5dc99b23 1241 while (mask) {
65fbe37c
TY
1242 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1243 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1244 __rmap_write_protect(kvm, rmapp, false);
05da4558 1245
5dc99b23
TY
1246 /* clear the first set bit */
1247 mask &= mask - 1;
1248 }
374cbac0
AK
1249}
1250
2f84569f 1251static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1252{
1253 struct kvm_memory_slot *slot;
5dc99b23
TY
1254 unsigned long *rmapp;
1255 int i;
2f84569f 1256 bool write_protected = false;
95d4c16c
TY
1257
1258 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1259
1260 for (i = PT_PAGE_TABLE_LEVEL;
1261 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1262 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1263 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1264 }
1265
1266 return write_protected;
95d4c16c
TY
1267}
1268
8a8365c5 1269static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1270 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1271{
1e3f42f0
TY
1272 u64 *sptep;
1273 struct rmap_iterator iter;
e930bffe
AA
1274 int need_tlb_flush = 0;
1275
1e3f42f0
TY
1276 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1277 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1278 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1279
1280 drop_spte(kvm, sptep);
e930bffe
AA
1281 need_tlb_flush = 1;
1282 }
1e3f42f0 1283
e930bffe
AA
1284 return need_tlb_flush;
1285}
1286
8a8365c5 1287static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1288 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1289{
1e3f42f0
TY
1290 u64 *sptep;
1291 struct rmap_iterator iter;
3da0dd43 1292 int need_flush = 0;
1e3f42f0 1293 u64 new_spte;
3da0dd43
IE
1294 pte_t *ptep = (pte_t *)data;
1295 pfn_t new_pfn;
1296
1297 WARN_ON(pte_huge(*ptep));
1298 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1299
1300 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1301 BUG_ON(!is_shadow_present_pte(*sptep));
1302 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1303
3da0dd43 1304 need_flush = 1;
1e3f42f0 1305
3da0dd43 1306 if (pte_write(*ptep)) {
1e3f42f0
TY
1307 drop_spte(kvm, sptep);
1308 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1309 } else {
1e3f42f0 1310 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1311 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1312
1313 new_spte &= ~PT_WRITABLE_MASK;
1314 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1315 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1316
1317 mmu_spte_clear_track_bits(sptep);
1318 mmu_spte_set(sptep, new_spte);
1319 sptep = rmap_get_next(&iter);
3da0dd43
IE
1320 }
1321 }
1e3f42f0 1322
3da0dd43
IE
1323 if (need_flush)
1324 kvm_flush_remote_tlbs(kvm);
1325
1326 return 0;
1327}
1328
84504ef3
TY
1329static int kvm_handle_hva_range(struct kvm *kvm,
1330 unsigned long start,
1331 unsigned long end,
1332 unsigned long data,
1333 int (*handler)(struct kvm *kvm,
1334 unsigned long *rmapp,
048212d0 1335 struct kvm_memory_slot *slot,
84504ef3 1336 unsigned long data))
e930bffe 1337{
be6ba0f0 1338 int j;
f395302e 1339 int ret = 0;
bc6678a3 1340 struct kvm_memslots *slots;
be6ba0f0 1341 struct kvm_memory_slot *memslot;
bc6678a3 1342
90d83dc3 1343 slots = kvm_memslots(kvm);
e930bffe 1344
be6ba0f0 1345 kvm_for_each_memslot(memslot, slots) {
84504ef3 1346 unsigned long hva_start, hva_end;
bcd3ef58 1347 gfn_t gfn_start, gfn_end;
e930bffe 1348
84504ef3
TY
1349 hva_start = max(start, memslot->userspace_addr);
1350 hva_end = min(end, memslot->userspace_addr +
1351 (memslot->npages << PAGE_SHIFT));
1352 if (hva_start >= hva_end)
1353 continue;
1354 /*
1355 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1356 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1357 */
bcd3ef58 1358 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1359 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1360
bcd3ef58
TY
1361 for (j = PT_PAGE_TABLE_LEVEL;
1362 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1363 unsigned long idx, idx_end;
1364 unsigned long *rmapp;
d4dbf470 1365
bcd3ef58
TY
1366 /*
1367 * {idx(page_j) | page_j intersects with
1368 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1369 */
1370 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1371 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1372
bcd3ef58 1373 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1374
bcd3ef58
TY
1375 for (; idx <= idx_end; ++idx)
1376 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1377 }
1378 }
1379
f395302e 1380 return ret;
e930bffe
AA
1381}
1382
84504ef3
TY
1383static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1384 unsigned long data,
1385 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1386 struct kvm_memory_slot *slot,
84504ef3
TY
1387 unsigned long data))
1388{
1389 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1390}
1391
1392int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1393{
3da0dd43
IE
1394 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1395}
1396
b3ae2096
TY
1397int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1398{
1399 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1400}
1401
3da0dd43
IE
1402void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1403{
8a8365c5 1404 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1405}
1406
8a8365c5 1407static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1408 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1409{
1e3f42f0 1410 u64 *sptep;
79f702a6 1411 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1412 int young = 0;
1413
6316e1c8 1414 /*
3f6d8c8a
XH
1415 * In case of absence of EPT Access and Dirty Bits supports,
1416 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1417 * an EPT mapping, and clearing it if it does. On the next access,
1418 * a new EPT mapping will be established.
1419 * This has some overhead, but not as much as the cost of swapping
1420 * out actively used pages or breaking up actively used hugepages.
1421 */
f395302e
TY
1422 if (!shadow_accessed_mask) {
1423 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1424 goto out;
1425 }
534e38b4 1426
1e3f42f0
TY
1427 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1428 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1429 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1430
3f6d8c8a 1431 if (*sptep & shadow_accessed_mask) {
e930bffe 1432 young = 1;
3f6d8c8a
XH
1433 clear_bit((ffs(shadow_accessed_mask) - 1),
1434 (unsigned long *)sptep);
e930bffe 1435 }
e930bffe 1436 }
f395302e
TY
1437out:
1438 /* @data has hva passed to kvm_age_hva(). */
1439 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1440 return young;
1441}
1442
8ee53820 1443static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1444 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1445{
1e3f42f0
TY
1446 u64 *sptep;
1447 struct rmap_iterator iter;
8ee53820
AA
1448 int young = 0;
1449
1450 /*
1451 * If there's no access bit in the secondary pte set by the
1452 * hardware it's up to gup-fast/gup to set the access bit in
1453 * the primary pte or in the page structure.
1454 */
1455 if (!shadow_accessed_mask)
1456 goto out;
1457
1e3f42f0
TY
1458 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1459 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1460 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1461
3f6d8c8a 1462 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1463 young = 1;
1464 break;
1465 }
8ee53820
AA
1466 }
1467out:
1468 return young;
1469}
1470
53a27b39
MT
1471#define RMAP_RECYCLE_THRESHOLD 1000
1472
852e3c19 1473static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1474{
1475 unsigned long *rmapp;
852e3c19
JR
1476 struct kvm_mmu_page *sp;
1477
1478 sp = page_header(__pa(spte));
53a27b39 1479
852e3c19 1480 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1481
048212d0 1482 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1483 kvm_flush_remote_tlbs(vcpu->kvm);
1484}
1485
e930bffe
AA
1486int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1487{
f395302e 1488 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1489}
1490
8ee53820
AA
1491int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1492{
1493 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1494}
1495
d6c69ee9 1496#ifdef MMU_DEBUG
47ad8e68 1497static int is_empty_shadow_page(u64 *spt)
6aa8b732 1498{
139bdb2d
AK
1499 u64 *pos;
1500 u64 *end;
1501
47ad8e68 1502 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1503 if (is_shadow_present_pte(*pos)) {
b8688d51 1504 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1505 pos, *pos);
6aa8b732 1506 return 0;
139bdb2d 1507 }
6aa8b732
AK
1508 return 1;
1509}
d6c69ee9 1510#endif
6aa8b732 1511
45221ab6
DH
1512/*
1513 * This value is the sum of all of the kvm instances's
1514 * kvm->arch.n_used_mmu_pages values. We need a global,
1515 * aggregate version in order to make the slab shrinker
1516 * faster
1517 */
1518static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1519{
1520 kvm->arch.n_used_mmu_pages += nr;
1521 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1522}
1523
834be0d8 1524static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1525{
4db35314 1526 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1527 hlist_del(&sp->hash_link);
bd4c86ea
XG
1528 list_del(&sp->link);
1529 free_page((unsigned long)sp->spt);
834be0d8
GN
1530 if (!sp->role.direct)
1531 free_page((unsigned long)sp->gfns);
e8ad9a70 1532 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1533}
1534
cea0f0e7
AK
1535static unsigned kvm_page_table_hashfn(gfn_t gfn)
1536{
1ae0a13d 1537 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1538}
1539
714b93da 1540static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1541 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1542{
cea0f0e7
AK
1543 if (!parent_pte)
1544 return;
cea0f0e7 1545
67052b35 1546 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1547}
1548
4db35314 1549static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1550 u64 *parent_pte)
1551{
67052b35 1552 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1553}
1554
bcdd9a93
XG
1555static void drop_parent_pte(struct kvm_mmu_page *sp,
1556 u64 *parent_pte)
1557{
1558 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1559 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1560}
1561
67052b35
XG
1562static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1563 u64 *parent_pte, int direct)
ad8cfbe3 1564{
67052b35 1565 struct kvm_mmu_page *sp;
7ddca7e4 1566
80feb89a
TY
1567 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1568 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1569 if (!direct)
80feb89a 1570 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1571 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1572
1573 /*
1574 * The active_mmu_pages list is the FIFO list, do not move the
1575 * page until it is zapped. kvm_zap_obsolete_pages depends on
1576 * this feature. See the comments in kvm_zap_obsolete_pages().
1577 */
67052b35 1578 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1579 sp->parent_ptes = 0;
1580 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1581 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1582 return sp;
ad8cfbe3
MT
1583}
1584
67052b35 1585static void mark_unsync(u64 *spte);
1047df1f 1586static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1587{
67052b35 1588 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1589}
1590
67052b35 1591static void mark_unsync(u64 *spte)
0074ff63 1592{
67052b35 1593 struct kvm_mmu_page *sp;
1047df1f 1594 unsigned int index;
0074ff63 1595
67052b35 1596 sp = page_header(__pa(spte));
1047df1f
XG
1597 index = spte - sp->spt;
1598 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1599 return;
1047df1f 1600 if (sp->unsync_children++)
0074ff63 1601 return;
1047df1f 1602 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1603}
1604
e8bc217a 1605static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1606 struct kvm_mmu_page *sp)
e8bc217a
MT
1607{
1608 return 1;
1609}
1610
a7052897
MT
1611static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1612{
1613}
1614
0f53b5b1
XG
1615static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1616 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1617 const void *pte)
0f53b5b1
XG
1618{
1619 WARN_ON(1);
1620}
1621
60c8aec6
MT
1622#define KVM_PAGE_ARRAY_NR 16
1623
1624struct kvm_mmu_pages {
1625 struct mmu_page_and_offset {
1626 struct kvm_mmu_page *sp;
1627 unsigned int idx;
1628 } page[KVM_PAGE_ARRAY_NR];
1629 unsigned int nr;
1630};
1631
cded19f3
HE
1632static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1633 int idx)
4731d4c7 1634{
60c8aec6 1635 int i;
4731d4c7 1636
60c8aec6
MT
1637 if (sp->unsync)
1638 for (i=0; i < pvec->nr; i++)
1639 if (pvec->page[i].sp == sp)
1640 return 0;
1641
1642 pvec->page[pvec->nr].sp = sp;
1643 pvec->page[pvec->nr].idx = idx;
1644 pvec->nr++;
1645 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1646}
1647
1648static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1649 struct kvm_mmu_pages *pvec)
1650{
1651 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1652
37178b8b 1653 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1654 struct kvm_mmu_page *child;
4731d4c7
MT
1655 u64 ent = sp->spt[i];
1656
7a8f1a74
XG
1657 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1658 goto clear_child_bitmap;
1659
1660 child = page_header(ent & PT64_BASE_ADDR_MASK);
1661
1662 if (child->unsync_children) {
1663 if (mmu_pages_add(pvec, child, i))
1664 return -ENOSPC;
1665
1666 ret = __mmu_unsync_walk(child, pvec);
1667 if (!ret)
1668 goto clear_child_bitmap;
1669 else if (ret > 0)
1670 nr_unsync_leaf += ret;
1671 else
1672 return ret;
1673 } else if (child->unsync) {
1674 nr_unsync_leaf++;
1675 if (mmu_pages_add(pvec, child, i))
1676 return -ENOSPC;
1677 } else
1678 goto clear_child_bitmap;
1679
1680 continue;
1681
1682clear_child_bitmap:
1683 __clear_bit(i, sp->unsync_child_bitmap);
1684 sp->unsync_children--;
1685 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1686 }
1687
4731d4c7 1688
60c8aec6
MT
1689 return nr_unsync_leaf;
1690}
1691
1692static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1693 struct kvm_mmu_pages *pvec)
1694{
1695 if (!sp->unsync_children)
1696 return 0;
1697
1698 mmu_pages_add(pvec, sp, 0);
1699 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1700}
1701
4731d4c7
MT
1702static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1703{
1704 WARN_ON(!sp->unsync);
5e1b3ddb 1705 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1706 sp->unsync = 0;
1707 --kvm->stat.mmu_unsync;
1708}
1709
7775834a
XG
1710static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1711 struct list_head *invalid_list);
1712static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1713 struct list_head *invalid_list);
4731d4c7 1714
f34d251d
XG
1715/*
1716 * NOTE: we should pay more attention on the zapped-obsolete page
1717 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1718 * since it has been deleted from active_mmu_pages but still can be found
1719 * at hast list.
1720 *
1721 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1722 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1723 * all the obsolete pages.
1724 */
1044b030
TY
1725#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1726 hlist_for_each_entry(_sp, \
1727 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1728 if ((_sp)->gfn != (_gfn)) {} else
1729
1730#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1731 for_each_gfn_sp(_kvm, _sp, _gfn) \
1732 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1733
f918b443 1734/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1735static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1736 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1737{
5b7e0102 1738 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1739 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1740 return 1;
1741 }
1742
f918b443 1743 if (clear_unsync)
1d9dc7e0 1744 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1745
a4a8e6f7 1746 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1747 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1748 return 1;
1749 }
1750
1751 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1752 return 0;
1753}
1754
1d9dc7e0
XG
1755static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1756 struct kvm_mmu_page *sp)
1757{
d98ba053 1758 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1759 int ret;
1760
d98ba053 1761 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1762 if (ret)
d98ba053
XG
1763 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1764
1d9dc7e0
XG
1765 return ret;
1766}
1767
e37fa785
XG
1768#ifdef CONFIG_KVM_MMU_AUDIT
1769#include "mmu_audit.c"
1770#else
1771static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1772static void mmu_audit_disable(void) { }
1773#endif
1774
d98ba053
XG
1775static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1776 struct list_head *invalid_list)
1d9dc7e0 1777{
d98ba053 1778 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1779}
1780
9f1a122f
XG
1781/* @gfn should be write-protected at the call site */
1782static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1783{
9f1a122f 1784 struct kvm_mmu_page *s;
d98ba053 1785 LIST_HEAD(invalid_list);
9f1a122f
XG
1786 bool flush = false;
1787
b67bfe0d 1788 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1789 if (!s->unsync)
9f1a122f
XG
1790 continue;
1791
1792 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1793 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1794 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1795 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1796 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1797 continue;
1798 }
9f1a122f
XG
1799 flush = true;
1800 }
1801
d98ba053 1802 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1803 if (flush)
1804 kvm_mmu_flush_tlb(vcpu);
1805}
1806
60c8aec6
MT
1807struct mmu_page_path {
1808 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1809 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1810};
1811
60c8aec6
MT
1812#define for_each_sp(pvec, sp, parents, i) \
1813 for (i = mmu_pages_next(&pvec, &parents, -1), \
1814 sp = pvec.page[i].sp; \
1815 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1816 i = mmu_pages_next(&pvec, &parents, i))
1817
cded19f3
HE
1818static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1819 struct mmu_page_path *parents,
1820 int i)
60c8aec6
MT
1821{
1822 int n;
1823
1824 for (n = i+1; n < pvec->nr; n++) {
1825 struct kvm_mmu_page *sp = pvec->page[n].sp;
1826
1827 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1828 parents->idx[0] = pvec->page[n].idx;
1829 return n;
1830 }
1831
1832 parents->parent[sp->role.level-2] = sp;
1833 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1834 }
1835
1836 return n;
1837}
1838
cded19f3 1839static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1840{
60c8aec6
MT
1841 struct kvm_mmu_page *sp;
1842 unsigned int level = 0;
1843
1844 do {
1845 unsigned int idx = parents->idx[level];
4731d4c7 1846
60c8aec6
MT
1847 sp = parents->parent[level];
1848 if (!sp)
1849 return;
1850
1851 --sp->unsync_children;
1852 WARN_ON((int)sp->unsync_children < 0);
1853 __clear_bit(idx, sp->unsync_child_bitmap);
1854 level++;
1855 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1856}
1857
60c8aec6
MT
1858static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1859 struct mmu_page_path *parents,
1860 struct kvm_mmu_pages *pvec)
4731d4c7 1861{
60c8aec6
MT
1862 parents->parent[parent->role.level-1] = NULL;
1863 pvec->nr = 0;
1864}
4731d4c7 1865
60c8aec6
MT
1866static void mmu_sync_children(struct kvm_vcpu *vcpu,
1867 struct kvm_mmu_page *parent)
1868{
1869 int i;
1870 struct kvm_mmu_page *sp;
1871 struct mmu_page_path parents;
1872 struct kvm_mmu_pages pages;
d98ba053 1873 LIST_HEAD(invalid_list);
60c8aec6
MT
1874
1875 kvm_mmu_pages_init(parent, &parents, &pages);
1876 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1877 bool protected = false;
b1a36821
MT
1878
1879 for_each_sp(pages, sp, parents, i)
1880 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1881
1882 if (protected)
1883 kvm_flush_remote_tlbs(vcpu->kvm);
1884
60c8aec6 1885 for_each_sp(pages, sp, parents, i) {
d98ba053 1886 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1887 mmu_pages_clear_parents(&parents);
1888 }
d98ba053 1889 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1890 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1891 kvm_mmu_pages_init(parent, &parents, &pages);
1892 }
4731d4c7
MT
1893}
1894
c3707958
XG
1895static void init_shadow_page_table(struct kvm_mmu_page *sp)
1896{
1897 int i;
1898
1899 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1900 sp->spt[i] = 0ull;
1901}
1902
a30f47cb
XG
1903static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1904{
1905 sp->write_flooding_count = 0;
1906}
1907
1908static void clear_sp_write_flooding_count(u64 *spte)
1909{
1910 struct kvm_mmu_page *sp = page_header(__pa(spte));
1911
1912 __clear_sp_write_flooding_count(sp);
1913}
1914
5304b8d3
XG
1915static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1916{
1917 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1918}
1919
cea0f0e7
AK
1920static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1921 gfn_t gfn,
1922 gva_t gaddr,
1923 unsigned level,
f6e2c02b 1924 int direct,
41074d07 1925 unsigned access,
f7d9c7b7 1926 u64 *parent_pte)
cea0f0e7
AK
1927{
1928 union kvm_mmu_page_role role;
cea0f0e7 1929 unsigned quadrant;
9f1a122f 1930 struct kvm_mmu_page *sp;
9f1a122f 1931 bool need_sync = false;
cea0f0e7 1932
a770f6f2 1933 role = vcpu->arch.mmu.base_role;
cea0f0e7 1934 role.level = level;
f6e2c02b 1935 role.direct = direct;
84b0c8c6 1936 if (role.direct)
5b7e0102 1937 role.cr4_pae = 0;
41074d07 1938 role.access = access;
c5a78f2b
JR
1939 if (!vcpu->arch.mmu.direct_map
1940 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1941 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1942 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1943 role.quadrant = quadrant;
1944 }
b67bfe0d 1945 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
1946 if (is_obsolete_sp(vcpu->kvm, sp))
1947 continue;
1948
7ae680eb
XG
1949 if (!need_sync && sp->unsync)
1950 need_sync = true;
4731d4c7 1951
7ae680eb
XG
1952 if (sp->role.word != role.word)
1953 continue;
4731d4c7 1954
7ae680eb
XG
1955 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1956 break;
e02aa901 1957
7ae680eb
XG
1958 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1959 if (sp->unsync_children) {
a8eeb04a 1960 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1961 kvm_mmu_mark_parents_unsync(sp);
1962 } else if (sp->unsync)
1963 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1964
a30f47cb 1965 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1966 trace_kvm_mmu_get_page(sp, false);
1967 return sp;
1968 }
dfc5aa00 1969 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1970 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1971 if (!sp)
1972 return sp;
4db35314
AK
1973 sp->gfn = gfn;
1974 sp->role = role;
7ae680eb
XG
1975 hlist_add_head(&sp->hash_link,
1976 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1977 if (!direct) {
b1a36821
MT
1978 if (rmap_write_protect(vcpu->kvm, gfn))
1979 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1980 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1981 kvm_sync_pages(vcpu, gfn);
1982
4731d4c7
MT
1983 account_shadowed(vcpu->kvm, gfn);
1984 }
5304b8d3 1985 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
c3707958 1986 init_shadow_page_table(sp);
f691fe1d 1987 trace_kvm_mmu_get_page(sp, true);
4db35314 1988 return sp;
cea0f0e7
AK
1989}
1990
2d11123a
AK
1991static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1992 struct kvm_vcpu *vcpu, u64 addr)
1993{
1994 iterator->addr = addr;
1995 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1996 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1997
1998 if (iterator->level == PT64_ROOT_LEVEL &&
1999 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2000 !vcpu->arch.mmu.direct_map)
2001 --iterator->level;
2002
2d11123a
AK
2003 if (iterator->level == PT32E_ROOT_LEVEL) {
2004 iterator->shadow_addr
2005 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2006 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2007 --iterator->level;
2008 if (!iterator->shadow_addr)
2009 iterator->level = 0;
2010 }
2011}
2012
2013static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2014{
2015 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2016 return false;
4d88954d 2017
2d11123a
AK
2018 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2019 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2020 return true;
2021}
2022
c2a2ac2b
XG
2023static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2024 u64 spte)
2d11123a 2025{
c2a2ac2b 2026 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2027 iterator->level = 0;
2028 return;
2029 }
2030
c2a2ac2b 2031 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2032 --iterator->level;
2033}
2034
c2a2ac2b
XG
2035static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2036{
2037 return __shadow_walk_next(iterator, *iterator->sptep);
2038}
2039
7a1638ce 2040static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
32ef26a3
AK
2041{
2042 u64 spte;
2043
7a1638ce
YZ
2044 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2045 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2046
24db2734 2047 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
7a1638ce
YZ
2048 shadow_user_mask | shadow_x_mask;
2049
2050 if (accessed)
2051 spte |= shadow_accessed_mask;
24db2734 2052
1df9f2dc 2053 mmu_spte_set(sptep, spte);
32ef26a3
AK
2054}
2055
a357bd22
AK
2056static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2057 unsigned direct_access)
2058{
2059 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2060 struct kvm_mmu_page *child;
2061
2062 /*
2063 * For the direct sp, if the guest pte's dirty bit
2064 * changed form clean to dirty, it will corrupt the
2065 * sp's access: allow writable in the read-only sp,
2066 * so we should update the spte at this point to get
2067 * a new sp with the correct access.
2068 */
2069 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2070 if (child->role.access == direct_access)
2071 return;
2072
bcdd9a93 2073 drop_parent_pte(child, sptep);
a357bd22
AK
2074 kvm_flush_remote_tlbs(vcpu->kvm);
2075 }
2076}
2077
505aef8f 2078static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2079 u64 *spte)
2080{
2081 u64 pte;
2082 struct kvm_mmu_page *child;
2083
2084 pte = *spte;
2085 if (is_shadow_present_pte(pte)) {
505aef8f 2086 if (is_last_spte(pte, sp->role.level)) {
c3707958 2087 drop_spte(kvm, spte);
505aef8f
XG
2088 if (is_large_pte(pte))
2089 --kvm->stat.lpages;
2090 } else {
38e3b2b2 2091 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2092 drop_parent_pte(child, spte);
38e3b2b2 2093 }
505aef8f
XG
2094 return true;
2095 }
2096
2097 if (is_mmio_spte(pte))
ce88decf 2098 mmu_spte_clear_no_track(spte);
c3707958 2099
505aef8f 2100 return false;
38e3b2b2
XG
2101}
2102
90cb0529 2103static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2104 struct kvm_mmu_page *sp)
a436036b 2105{
697fe2e2 2106 unsigned i;
697fe2e2 2107
38e3b2b2
XG
2108 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2109 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2110}
2111
4db35314 2112static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2113{
4db35314 2114 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2115}
2116
31aa2b44 2117static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2118{
1e3f42f0
TY
2119 u64 *sptep;
2120 struct rmap_iterator iter;
a436036b 2121
1e3f42f0
TY
2122 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2123 drop_parent_pte(sp, sptep);
31aa2b44
AK
2124}
2125
60c8aec6 2126static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2127 struct kvm_mmu_page *parent,
2128 struct list_head *invalid_list)
4731d4c7 2129{
60c8aec6
MT
2130 int i, zapped = 0;
2131 struct mmu_page_path parents;
2132 struct kvm_mmu_pages pages;
4731d4c7 2133
60c8aec6 2134 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2135 return 0;
60c8aec6
MT
2136
2137 kvm_mmu_pages_init(parent, &parents, &pages);
2138 while (mmu_unsync_walk(parent, &pages)) {
2139 struct kvm_mmu_page *sp;
2140
2141 for_each_sp(pages, sp, parents, i) {
7775834a 2142 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2143 mmu_pages_clear_parents(&parents);
77662e00 2144 zapped++;
60c8aec6 2145 }
60c8aec6
MT
2146 kvm_mmu_pages_init(parent, &parents, &pages);
2147 }
2148
2149 return zapped;
4731d4c7
MT
2150}
2151
7775834a
XG
2152static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2153 struct list_head *invalid_list)
31aa2b44 2154{
4731d4c7 2155 int ret;
f691fe1d 2156
7775834a 2157 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2158 ++kvm->stat.mmu_shadow_zapped;
7775834a 2159 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2160 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2161 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2162
f6e2c02b 2163 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2164 unaccount_shadowed(kvm, sp->gfn);
5304b8d3 2165
4731d4c7
MT
2166 if (sp->unsync)
2167 kvm_unlink_unsync_page(kvm, sp);
4db35314 2168 if (!sp->root_count) {
54a4f023
GJ
2169 /* Count self */
2170 ret++;
7775834a 2171 list_move(&sp->link, invalid_list);
aa6bd187 2172 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2173 } else {
5b5c6a5a 2174 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2175
2176 /*
2177 * The obsolete pages can not be used on any vcpus.
2178 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2179 */
2180 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2181 kvm_reload_remote_mmus(kvm);
2e53d63a 2182 }
7775834a
XG
2183
2184 sp->role.invalid = 1;
4731d4c7 2185 return ret;
a436036b
AK
2186}
2187
7775834a
XG
2188static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2189 struct list_head *invalid_list)
2190{
945315b9 2191 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2192
2193 if (list_empty(invalid_list))
2194 return;
2195
c142786c
AK
2196 /*
2197 * wmb: make sure everyone sees our modifications to the page tables
2198 * rmb: make sure we see changes to vcpu->mode
2199 */
2200 smp_mb();
4f022648 2201
c142786c
AK
2202 /*
2203 * Wait for all vcpus to exit guest mode and/or lockless shadow
2204 * page table walks.
2205 */
2206 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2207
945315b9 2208 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2209 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2210 kvm_mmu_free_page(sp);
945315b9 2211 }
7775834a
XG
2212}
2213
5da59607
TY
2214static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2215 struct list_head *invalid_list)
2216{
2217 struct kvm_mmu_page *sp;
2218
2219 if (list_empty(&kvm->arch.active_mmu_pages))
2220 return false;
2221
2222 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2223 struct kvm_mmu_page, link);
2224 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2225
2226 return true;
2227}
2228
82ce2c96
IE
2229/*
2230 * Changing the number of mmu pages allocated to the vm
49d5ca26 2231 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2232 */
49d5ca26 2233void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2234{
d98ba053 2235 LIST_HEAD(invalid_list);
82ce2c96 2236
b34cb590
TY
2237 spin_lock(&kvm->mmu_lock);
2238
49d5ca26 2239 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2240 /* Need to free some mmu pages to achieve the goal. */
2241 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2242 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2243 break;
82ce2c96 2244
aa6bd187 2245 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2246 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2247 }
82ce2c96 2248
49d5ca26 2249 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2250
2251 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2252}
2253
1cb3f3ae 2254int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2255{
4db35314 2256 struct kvm_mmu_page *sp;
d98ba053 2257 LIST_HEAD(invalid_list);
a436036b
AK
2258 int r;
2259
9ad17b10 2260 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2261 r = 0;
1cb3f3ae 2262 spin_lock(&kvm->mmu_lock);
b67bfe0d 2263 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2264 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2265 sp->role.word);
2266 r = 1;
f41d335a 2267 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2268 }
d98ba053 2269 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2270 spin_unlock(&kvm->mmu_lock);
2271
a436036b 2272 return r;
cea0f0e7 2273}
1cb3f3ae 2274EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2275
74be52e3
SY
2276/*
2277 * The function is based on mtrr_type_lookup() in
2278 * arch/x86/kernel/cpu/mtrr/generic.c
2279 */
2280static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2281 u64 start, u64 end)
2282{
2283 int i;
2284 u64 base, mask;
2285 u8 prev_match, curr_match;
2286 int num_var_ranges = KVM_NR_VAR_MTRR;
2287
2288 if (!mtrr_state->enabled)
2289 return 0xFF;
2290
2291 /* Make end inclusive end, instead of exclusive */
2292 end--;
2293
2294 /* Look in fixed ranges. Just return the type as per start */
2295 if (mtrr_state->have_fixed && (start < 0x100000)) {
2296 int idx;
2297
2298 if (start < 0x80000) {
2299 idx = 0;
2300 idx += (start >> 16);
2301 return mtrr_state->fixed_ranges[idx];
2302 } else if (start < 0xC0000) {
2303 idx = 1 * 8;
2304 idx += ((start - 0x80000) >> 14);
2305 return mtrr_state->fixed_ranges[idx];
2306 } else if (start < 0x1000000) {
2307 idx = 3 * 8;
2308 idx += ((start - 0xC0000) >> 12);
2309 return mtrr_state->fixed_ranges[idx];
2310 }
2311 }
2312
2313 /*
2314 * Look in variable ranges
2315 * Look of multiple ranges matching this address and pick type
2316 * as per MTRR precedence
2317 */
2318 if (!(mtrr_state->enabled & 2))
2319 return mtrr_state->def_type;
2320
2321 prev_match = 0xFF;
2322 for (i = 0; i < num_var_ranges; ++i) {
2323 unsigned short start_state, end_state;
2324
2325 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2326 continue;
2327
2328 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2329 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2330 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2331 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2332
2333 start_state = ((start & mask) == (base & mask));
2334 end_state = ((end & mask) == (base & mask));
2335 if (start_state != end_state)
2336 return 0xFE;
2337
2338 if ((start & mask) != (base & mask))
2339 continue;
2340
2341 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2342 if (prev_match == 0xFF) {
2343 prev_match = curr_match;
2344 continue;
2345 }
2346
2347 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2348 curr_match == MTRR_TYPE_UNCACHABLE)
2349 return MTRR_TYPE_UNCACHABLE;
2350
2351 if ((prev_match == MTRR_TYPE_WRBACK &&
2352 curr_match == MTRR_TYPE_WRTHROUGH) ||
2353 (prev_match == MTRR_TYPE_WRTHROUGH &&
2354 curr_match == MTRR_TYPE_WRBACK)) {
2355 prev_match = MTRR_TYPE_WRTHROUGH;
2356 curr_match = MTRR_TYPE_WRTHROUGH;
2357 }
2358
2359 if (prev_match != curr_match)
2360 return MTRR_TYPE_UNCACHABLE;
2361 }
2362
2363 if (prev_match != 0xFF)
2364 return prev_match;
2365
2366 return mtrr_state->def_type;
2367}
2368
4b12f0de 2369u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2370{
2371 u8 mtrr;
2372
2373 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2374 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2375 if (mtrr == 0xfe || mtrr == 0xff)
2376 mtrr = MTRR_TYPE_WRBACK;
2377 return mtrr;
2378}
4b12f0de 2379EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2380
9cf5cf5a
XG
2381static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2382{
2383 trace_kvm_mmu_unsync_page(sp);
2384 ++vcpu->kvm->stat.mmu_unsync;
2385 sp->unsync = 1;
2386
2387 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2388}
2389
2390static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2391{
4731d4c7 2392 struct kvm_mmu_page *s;
9cf5cf5a 2393
b67bfe0d 2394 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2395 if (s->unsync)
4731d4c7 2396 continue;
9cf5cf5a
XG
2397 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2398 __kvm_unsync_page(vcpu, s);
4731d4c7 2399 }
4731d4c7
MT
2400}
2401
2402static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2403 bool can_unsync)
2404{
9cf5cf5a 2405 struct kvm_mmu_page *s;
9cf5cf5a
XG
2406 bool need_unsync = false;
2407
b67bfe0d 2408 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2409 if (!can_unsync)
2410 return 1;
2411
9cf5cf5a 2412 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2413 return 1;
9cf5cf5a 2414
9bb4f6b1 2415 if (!s->unsync)
9cf5cf5a 2416 need_unsync = true;
4731d4c7 2417 }
9cf5cf5a
XG
2418 if (need_unsync)
2419 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2420 return 0;
2421}
2422
d555c333 2423static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2424 unsigned pte_access, int level,
c2d0ee46 2425 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2426 bool can_unsync, bool host_writable)
1c4f1fd6 2427{
6e7d0354 2428 u64 spte;
1e73f9dd 2429 int ret = 0;
64d4d521 2430
f2fd125d 2431 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
ce88decf
XG
2432 return 0;
2433
982c2565 2434 spte = PT_PRESENT_MASK;
947da538 2435 if (!speculative)
3201b5d9 2436 spte |= shadow_accessed_mask;
640d9b0d 2437
7b52345e
SY
2438 if (pte_access & ACC_EXEC_MASK)
2439 spte |= shadow_x_mask;
2440 else
2441 spte |= shadow_nx_mask;
49fde340 2442
1c4f1fd6 2443 if (pte_access & ACC_USER_MASK)
7b52345e 2444 spte |= shadow_user_mask;
49fde340 2445
852e3c19 2446 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2447 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2448 if (tdp_enabled)
4b12f0de
SY
2449 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2450 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2451
9bdbba13 2452 if (host_writable)
1403283a 2453 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2454 else
2455 pte_access &= ~ACC_WRITE_MASK;
1403283a 2456
35149e21 2457 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2458
c2288505 2459 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2460
c2193463 2461 /*
7751babd
XG
2462 * Other vcpu creates new sp in the window between
2463 * mapping_level() and acquiring mmu-lock. We can
2464 * allow guest to retry the access, the mapping can
2465 * be fixed if guest refault.
c2193463 2466 */
852e3c19 2467 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2468 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2469 goto done;
38187c83 2470
49fde340 2471 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2472
ecc5589f
MT
2473 /*
2474 * Optimization: for pte sync, if spte was writable the hash
2475 * lookup is unnecessary (and expensive). Write protection
2476 * is responsibility of mmu_get_page / kvm_sync_page.
2477 * Same reasoning can be applied to dirty page accounting.
2478 */
8dae4445 2479 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2480 goto set_pte;
2481
4731d4c7 2482 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2483 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2484 __func__, gfn);
1e73f9dd 2485 ret = 1;
1c4f1fd6 2486 pte_access &= ~ACC_WRITE_MASK;
49fde340 2487 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2488 }
2489 }
2490
1c4f1fd6
AK
2491 if (pte_access & ACC_WRITE_MASK)
2492 mark_page_dirty(vcpu->kvm, gfn);
2493
38187c83 2494set_pte:
6e7d0354 2495 if (mmu_spte_update(sptep, spte))
b330aa0c 2496 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2497done:
1e73f9dd
MT
2498 return ret;
2499}
2500
d555c333 2501static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2502 unsigned pte_access, int write_fault, int *emulate,
2503 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2504 bool host_writable)
1e73f9dd
MT
2505{
2506 int was_rmapped = 0;
53a27b39 2507 int rmap_count;
1e73f9dd 2508
f7616203
XG
2509 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2510 *sptep, write_fault, gfn);
1e73f9dd 2511
d555c333 2512 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2513 /*
2514 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2515 * the parent of the now unreachable PTE.
2516 */
852e3c19
JR
2517 if (level > PT_PAGE_TABLE_LEVEL &&
2518 !is_large_pte(*sptep)) {
1e73f9dd 2519 struct kvm_mmu_page *child;
d555c333 2520 u64 pte = *sptep;
1e73f9dd
MT
2521
2522 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2523 drop_parent_pte(child, sptep);
3be2264b 2524 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2525 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2526 pgprintk("hfn old %llx new %llx\n",
d555c333 2527 spte_to_pfn(*sptep), pfn);
c3707958 2528 drop_spte(vcpu->kvm, sptep);
91546356 2529 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2530 } else
2531 was_rmapped = 1;
1e73f9dd 2532 }
852e3c19 2533
c2288505
XG
2534 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2535 true, host_writable)) {
1e73f9dd 2536 if (write_fault)
b90a0e6c 2537 *emulate = 1;
5304efde 2538 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2539 }
1e73f9dd 2540
ce88decf
XG
2541 if (unlikely(is_mmio_spte(*sptep) && emulate))
2542 *emulate = 1;
2543
d555c333 2544 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2545 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2546 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2547 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2548 *sptep, sptep);
d555c333 2549 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2550 ++vcpu->kvm->stat.lpages;
2551
ffb61bb3 2552 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2553 if (!was_rmapped) {
2554 rmap_count = rmap_add(vcpu, sptep, gfn);
2555 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2556 rmap_recycle(vcpu, sptep, gfn);
2557 }
1c4f1fd6 2558 }
cb9aaa30 2559
f3ac1a4b 2560 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2561}
2562
957ed9ef
XG
2563static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2564 bool no_dirty_log)
2565{
2566 struct kvm_memory_slot *slot;
957ed9ef 2567
5d163b1c 2568 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2569 if (!slot)
6c8ee57b 2570 return KVM_PFN_ERR_FAULT;
957ed9ef 2571
037d92dc 2572 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2573}
2574
2575static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2576 struct kvm_mmu_page *sp,
2577 u64 *start, u64 *end)
2578{
2579 struct page *pages[PTE_PREFETCH_NUM];
2580 unsigned access = sp->role.access;
2581 int i, ret;
2582 gfn_t gfn;
2583
2584 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2585 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2586 return -1;
2587
2588 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2589 if (ret <= 0)
2590 return -1;
2591
2592 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2593 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2594 sp->role.level, gfn, page_to_pfn(pages[i]),
2595 true, true);
957ed9ef
XG
2596
2597 return 0;
2598}
2599
2600static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2601 struct kvm_mmu_page *sp, u64 *sptep)
2602{
2603 u64 *spte, *start = NULL;
2604 int i;
2605
2606 WARN_ON(!sp->role.direct);
2607
2608 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2609 spte = sp->spt + i;
2610
2611 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2612 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2613 if (!start)
2614 continue;
2615 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2616 break;
2617 start = NULL;
2618 } else if (!start)
2619 start = spte;
2620 }
2621}
2622
2623static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2624{
2625 struct kvm_mmu_page *sp;
2626
2627 /*
2628 * Since it's no accessed bit on EPT, it's no way to
2629 * distinguish between actually accessed translations
2630 * and prefetched, so disable pte prefetch if EPT is
2631 * enabled.
2632 */
2633 if (!shadow_accessed_mask)
2634 return;
2635
2636 sp = page_header(__pa(sptep));
2637 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2638 return;
2639
2640 __direct_pte_prefetch(vcpu, sp, sptep);
2641}
2642
9f652d21 2643static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2644 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2645 bool prefault)
140754bc 2646{
9f652d21 2647 struct kvm_shadow_walk_iterator iterator;
140754bc 2648 struct kvm_mmu_page *sp;
b90a0e6c 2649 int emulate = 0;
140754bc 2650 gfn_t pseudo_gfn;
6aa8b732 2651
989c6b34
MT
2652 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2653 return 0;
2654
9f652d21 2655 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2656 if (iterator.level == level) {
f7616203 2657 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2658 write, &emulate, level, gfn, pfn,
2659 prefault, map_writable);
957ed9ef 2660 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2661 ++vcpu->stat.pf_fixed;
2662 break;
6aa8b732
AK
2663 }
2664
404381c5 2665 drop_large_spte(vcpu, iterator.sptep);
c3707958 2666 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2667 u64 base_addr = iterator.addr;
2668
2669 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2670 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2671 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2672 iterator.level - 1,
2673 1, ACC_ALL, iterator.sptep);
140754bc 2674
7a1638ce 2675 link_shadow_page(iterator.sptep, sp, true);
9f652d21
AK
2676 }
2677 }
b90a0e6c 2678 return emulate;
6aa8b732
AK
2679}
2680
77db5cbd 2681static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2682{
77db5cbd
HY
2683 siginfo_t info;
2684
2685 info.si_signo = SIGBUS;
2686 info.si_errno = 0;
2687 info.si_code = BUS_MCEERR_AR;
2688 info.si_addr = (void __user *)address;
2689 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2690
77db5cbd 2691 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2692}
2693
d7c55201 2694static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2695{
4d8b81ab
XG
2696 /*
2697 * Do not cache the mmio info caused by writing the readonly gfn
2698 * into the spte otherwise read access on readonly gfn also can
2699 * caused mmio page fault and treat it as mmio access.
2700 * Return 1 to tell kvm to emulate it.
2701 */
2702 if (pfn == KVM_PFN_ERR_RO_FAULT)
2703 return 1;
2704
e6c1502b 2705 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2706 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2707 return 0;
d7c55201 2708 }
edba23e5 2709
d7c55201 2710 return -EFAULT;
bf998156
HY
2711}
2712
936a5fe6
AA
2713static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2714 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2715{
2716 pfn_t pfn = *pfnp;
2717 gfn_t gfn = *gfnp;
2718 int level = *levelp;
2719
2720 /*
2721 * Check if it's a transparent hugepage. If this would be an
2722 * hugetlbfs page, level wouldn't be set to
2723 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2724 * here.
2725 */
81c52c56 2726 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
936a5fe6
AA
2727 level == PT_PAGE_TABLE_LEVEL &&
2728 PageTransCompound(pfn_to_page(pfn)) &&
2729 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2730 unsigned long mask;
2731 /*
2732 * mmu_notifier_retry was successful and we hold the
2733 * mmu_lock here, so the pmd can't become splitting
2734 * from under us, and in turn
2735 * __split_huge_page_refcount() can't run from under
2736 * us and we can safely transfer the refcount from
2737 * PG_tail to PG_head as we switch the pfn to tail to
2738 * head.
2739 */
2740 *levelp = level = PT_DIRECTORY_LEVEL;
2741 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2742 VM_BUG_ON((gfn & mask) != (pfn & mask));
2743 if (pfn & mask) {
2744 gfn &= ~mask;
2745 *gfnp = gfn;
2746 kvm_release_pfn_clean(pfn);
2747 pfn &= ~mask;
c3586667 2748 kvm_get_pfn(pfn);
936a5fe6
AA
2749 *pfnp = pfn;
2750 }
2751 }
2752}
2753
d7c55201
XG
2754static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2755 pfn_t pfn, unsigned access, int *ret_val)
2756{
2757 bool ret = true;
2758
2759 /* The pfn is invalid, report the error! */
81c52c56 2760 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2761 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2762 goto exit;
2763 }
2764
ce88decf 2765 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2766 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2767
2768 ret = false;
2769exit:
2770 return ret;
2771}
2772
e5552fd2 2773static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2774{
1c118b82
XG
2775 /*
2776 * Do not fix the mmio spte with invalid generation number which
2777 * need to be updated by slow page fault path.
2778 */
2779 if (unlikely(error_code & PFERR_RSVD_MASK))
2780 return false;
2781
c7ba5b48
XG
2782 /*
2783 * #PF can be fast only if the shadow page table is present and it
2784 * is caused by write-protect, that means we just need change the
2785 * W bit of the spte which can be done out of mmu-lock.
2786 */
2787 if (!(error_code & PFERR_PRESENT_MASK) ||
2788 !(error_code & PFERR_WRITE_MASK))
2789 return false;
2790
2791 return true;
2792}
2793
2794static bool
92a476cb
XG
2795fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2796 u64 *sptep, u64 spte)
c7ba5b48 2797{
c7ba5b48
XG
2798 gfn_t gfn;
2799
2800 WARN_ON(!sp->role.direct);
2801
2802 /*
2803 * The gfn of direct spte is stable since it is calculated
2804 * by sp->gfn.
2805 */
2806 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2807
2808 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2809 mark_page_dirty(vcpu->kvm, gfn);
2810
2811 return true;
2812}
2813
2814/*
2815 * Return value:
2816 * - true: let the vcpu to access on the same address again.
2817 * - false: let the real page fault path to fix it.
2818 */
2819static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2820 u32 error_code)
2821{
2822 struct kvm_shadow_walk_iterator iterator;
92a476cb 2823 struct kvm_mmu_page *sp;
c7ba5b48
XG
2824 bool ret = false;
2825 u64 spte = 0ull;
2826
37f6a4e2
MT
2827 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2828 return false;
2829
e5552fd2 2830 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2831 return false;
2832
2833 walk_shadow_page_lockless_begin(vcpu);
2834 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2835 if (!is_shadow_present_pte(spte) || iterator.level < level)
2836 break;
2837
2838 /*
2839 * If the mapping has been changed, let the vcpu fault on the
2840 * same address again.
2841 */
2842 if (!is_rmap_spte(spte)) {
2843 ret = true;
2844 goto exit;
2845 }
2846
92a476cb
XG
2847 sp = page_header(__pa(iterator.sptep));
2848 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2849 goto exit;
2850
2851 /*
2852 * Check if it is a spurious fault caused by TLB lazily flushed.
2853 *
2854 * Need not check the access of upper level table entries since
2855 * they are always ACC_ALL.
2856 */
2857 if (is_writable_pte(spte)) {
2858 ret = true;
2859 goto exit;
2860 }
2861
2862 /*
2863 * Currently, to simplify the code, only the spte write-protected
2864 * by dirty-log can be fast fixed.
2865 */
2866 if (!spte_is_locklessly_modifiable(spte))
2867 goto exit;
2868
c126d94f
XG
2869 /*
2870 * Do not fix write-permission on the large spte since we only dirty
2871 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2872 * that means other pages are missed if its slot is dirty-logged.
2873 *
2874 * Instead, we let the slow page fault path create a normal spte to
2875 * fix the access.
2876 *
2877 * See the comments in kvm_arch_commit_memory_region().
2878 */
2879 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2880 goto exit;
2881
c7ba5b48
XG
2882 /*
2883 * Currently, fast page fault only works for direct mapping since
2884 * the gfn is not stable for indirect shadow page.
2885 * See Documentation/virtual/kvm/locking.txt to get more detail.
2886 */
92a476cb 2887 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 2888exit:
a72faf25
XG
2889 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2890 spte, ret);
c7ba5b48
XG
2891 walk_shadow_page_lockless_end(vcpu);
2892
2893 return ret;
2894}
2895
78b2c54a 2896static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 2897 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 2898static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2899
c7ba5b48
XG
2900static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2901 gfn_t gfn, bool prefault)
10589a46
MT
2902{
2903 int r;
852e3c19 2904 int level;
936a5fe6 2905 int force_pt_level;
35149e21 2906 pfn_t pfn;
e930bffe 2907 unsigned long mmu_seq;
c7ba5b48 2908 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2909
936a5fe6
AA
2910 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2911 if (likely(!force_pt_level)) {
2912 level = mapping_level(vcpu, gfn);
2913 /*
2914 * This path builds a PAE pagetable - so we can map
2915 * 2mb pages at maximum. Therefore check if the level
2916 * is larger than that.
2917 */
2918 if (level > PT_DIRECTORY_LEVEL)
2919 level = PT_DIRECTORY_LEVEL;
852e3c19 2920
936a5fe6
AA
2921 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2922 } else
2923 level = PT_PAGE_TABLE_LEVEL;
05da4558 2924
c7ba5b48
XG
2925 if (fast_page_fault(vcpu, v, level, error_code))
2926 return 0;
2927
e930bffe 2928 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2929 smp_rmb();
060c2abe 2930
78b2c54a 2931 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2932 return 0;
aaee2c94 2933
d7c55201
XG
2934 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2935 return r;
d196e343 2936
aaee2c94 2937 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2938 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2939 goto out_unlock;
450e0b41 2940 make_mmu_pages_available(vcpu);
936a5fe6
AA
2941 if (likely(!force_pt_level))
2942 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2943 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2944 prefault);
aaee2c94
MT
2945 spin_unlock(&vcpu->kvm->mmu_lock);
2946
aaee2c94 2947
10589a46 2948 return r;
e930bffe
AA
2949
2950out_unlock:
2951 spin_unlock(&vcpu->kvm->mmu_lock);
2952 kvm_release_pfn_clean(pfn);
2953 return 0;
10589a46
MT
2954}
2955
2956
17ac10ad
AK
2957static void mmu_free_roots(struct kvm_vcpu *vcpu)
2958{
2959 int i;
4db35314 2960 struct kvm_mmu_page *sp;
d98ba053 2961 LIST_HEAD(invalid_list);
17ac10ad 2962
ad312c7c 2963 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2964 return;
35af577a 2965
81407ca5
JR
2966 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2967 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2968 vcpu->arch.mmu.direct_map)) {
ad312c7c 2969 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2970
35af577a 2971 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
2972 sp = page_header(root);
2973 --sp->root_count;
d98ba053
XG
2974 if (!sp->root_count && sp->role.invalid) {
2975 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2976 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2977 }
aaee2c94 2978 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 2979 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2980 return;
2981 }
35af577a
GN
2982
2983 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 2984 for (i = 0; i < 4; ++i) {
ad312c7c 2985 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2986
417726a3 2987 if (root) {
417726a3 2988 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2989 sp = page_header(root);
2990 --sp->root_count;
2e53d63a 2991 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2992 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2993 &invalid_list);
417726a3 2994 }
ad312c7c 2995 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2996 }
d98ba053 2997 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2998 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2999 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3000}
3001
8986ecc0
MT
3002static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3003{
3004 int ret = 0;
3005
3006 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3007 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3008 ret = 1;
3009 }
3010
3011 return ret;
3012}
3013
651dd37a
JR
3014static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3015{
3016 struct kvm_mmu_page *sp;
7ebaf15e 3017 unsigned i;
651dd37a
JR
3018
3019 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3020 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3021 make_mmu_pages_available(vcpu);
651dd37a
JR
3022 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3023 1, ACC_ALL, NULL);
3024 ++sp->root_count;
3025 spin_unlock(&vcpu->kvm->mmu_lock);
3026 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3027 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3028 for (i = 0; i < 4; ++i) {
3029 hpa_t root = vcpu->arch.mmu.pae_root[i];
3030
3031 ASSERT(!VALID_PAGE(root));
3032 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3033 make_mmu_pages_available(vcpu);
649497d1
AK
3034 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3035 i << 30,
651dd37a
JR
3036 PT32_ROOT_LEVEL, 1, ACC_ALL,
3037 NULL);
3038 root = __pa(sp->spt);
3039 ++sp->root_count;
3040 spin_unlock(&vcpu->kvm->mmu_lock);
3041 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3042 }
6292757f 3043 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3044 } else
3045 BUG();
3046
3047 return 0;
3048}
3049
3050static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3051{
4db35314 3052 struct kvm_mmu_page *sp;
81407ca5
JR
3053 u64 pdptr, pm_mask;
3054 gfn_t root_gfn;
3055 int i;
3bb65a22 3056
5777ed34 3057 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3058
651dd37a
JR
3059 if (mmu_check_root(vcpu, root_gfn))
3060 return 1;
3061
3062 /*
3063 * Do we shadow a long mode page table? If so we need to
3064 * write-protect the guests page table root.
3065 */
3066 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3067 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
3068
3069 ASSERT(!VALID_PAGE(root));
651dd37a 3070
8facbbff 3071 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3072 make_mmu_pages_available(vcpu);
651dd37a
JR
3073 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3074 0, ACC_ALL, NULL);
4db35314
AK
3075 root = __pa(sp->spt);
3076 ++sp->root_count;
8facbbff 3077 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3078 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3079 return 0;
17ac10ad 3080 }
f87f9288 3081
651dd37a
JR
3082 /*
3083 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3084 * or a PAE 3-level page table. In either case we need to be aware that
3085 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3086 */
81407ca5
JR
3087 pm_mask = PT_PRESENT_MASK;
3088 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3089 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3090
17ac10ad 3091 for (i = 0; i < 4; ++i) {
ad312c7c 3092 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
3093
3094 ASSERT(!VALID_PAGE(root));
ad312c7c 3095 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3096 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3097 if (!is_present_gpte(pdptr)) {
ad312c7c 3098 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3099 continue;
3100 }
6de4f3ad 3101 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3102 if (mmu_check_root(vcpu, root_gfn))
3103 return 1;
5a7388c2 3104 }
8facbbff 3105 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3106 make_mmu_pages_available(vcpu);
4db35314 3107 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3108 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3109 ACC_ALL, NULL);
4db35314
AK
3110 root = __pa(sp->spt);
3111 ++sp->root_count;
8facbbff
AK
3112 spin_unlock(&vcpu->kvm->mmu_lock);
3113
81407ca5 3114 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3115 }
6292757f 3116 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3117
3118 /*
3119 * If we shadow a 32 bit page table with a long mode page
3120 * table we enter this path.
3121 */
3122 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3123 if (vcpu->arch.mmu.lm_root == NULL) {
3124 /*
3125 * The additional page necessary for this is only
3126 * allocated on demand.
3127 */
3128
3129 u64 *lm_root;
3130
3131 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3132 if (lm_root == NULL)
3133 return 1;
3134
3135 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3136
3137 vcpu->arch.mmu.lm_root = lm_root;
3138 }
3139
3140 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3141 }
3142
8986ecc0 3143 return 0;
17ac10ad
AK
3144}
3145
651dd37a
JR
3146static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3147{
3148 if (vcpu->arch.mmu.direct_map)
3149 return mmu_alloc_direct_roots(vcpu);
3150 else
3151 return mmu_alloc_shadow_roots(vcpu);
3152}
3153
0ba73cda
MT
3154static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3155{
3156 int i;
3157 struct kvm_mmu_page *sp;
3158
81407ca5
JR
3159 if (vcpu->arch.mmu.direct_map)
3160 return;
3161
0ba73cda
MT
3162 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3163 return;
6903074c 3164
bebb106a 3165 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3166 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3167 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3168 hpa_t root = vcpu->arch.mmu.root_hpa;
3169 sp = page_header(root);
3170 mmu_sync_children(vcpu, sp);
0375f7fa 3171 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3172 return;
3173 }
3174 for (i = 0; i < 4; ++i) {
3175 hpa_t root = vcpu->arch.mmu.pae_root[i];
3176
8986ecc0 3177 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3178 root &= PT64_BASE_ADDR_MASK;
3179 sp = page_header(root);
3180 mmu_sync_children(vcpu, sp);
3181 }
3182 }
0375f7fa 3183 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3184}
3185
3186void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3187{
3188 spin_lock(&vcpu->kvm->mmu_lock);
3189 mmu_sync_roots(vcpu);
6cffe8ca 3190 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3191}
bfd0a56b 3192EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3193
1871c602 3194static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3195 u32 access, struct x86_exception *exception)
6aa8b732 3196{
ab9ae313
AK
3197 if (exception)
3198 exception->error_code = 0;
6aa8b732
AK
3199 return vaddr;
3200}
3201
6539e738 3202static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3203 u32 access,
3204 struct x86_exception *exception)
6539e738 3205{
ab9ae313
AK
3206 if (exception)
3207 exception->error_code = 0;
6539e738
JR
3208 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3209}
3210
ce88decf
XG
3211static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3212{
3213 if (direct)
3214 return vcpu_match_mmio_gpa(vcpu, addr);
3215
3216 return vcpu_match_mmio_gva(vcpu, addr);
3217}
3218
3219
3220/*
3221 * On direct hosts, the last spte is only allows two states
3222 * for mmio page fault:
3223 * - It is the mmio spte
3224 * - It is zapped or it is being zapped.
3225 *
3226 * This function completely checks the spte when the last spte
3227 * is not the mmio spte.
3228 */
3229static bool check_direct_spte_mmio_pf(u64 spte)
3230{
3231 return __check_direct_spte_mmio_pf(spte);
3232}
3233
3234static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3235{
3236 struct kvm_shadow_walk_iterator iterator;
3237 u64 spte = 0ull;
3238
37f6a4e2
MT
3239 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3240 return spte;
3241
ce88decf
XG
3242 walk_shadow_page_lockless_begin(vcpu);
3243 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3244 if (!is_shadow_present_pte(spte))
3245 break;
3246 walk_shadow_page_lockless_end(vcpu);
3247
3248 return spte;
3249}
3250
ce88decf
XG
3251int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3252{
3253 u64 spte;
3254
3255 if (quickly_check_mmio_pf(vcpu, addr, direct))
b37fbea6 3256 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3257
3258 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3259
3260 if (is_mmio_spte(spte)) {
3261 gfn_t gfn = get_mmio_spte_gfn(spte);
3262 unsigned access = get_mmio_spte_access(spte);
3263
f8f55942
XG
3264 if (!check_mmio_spte(vcpu->kvm, spte))
3265 return RET_MMIO_PF_INVALID;
3266
ce88decf
XG
3267 if (direct)
3268 addr = 0;
4f022648
XG
3269
3270 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3271 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3272 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3273 }
3274
3275 /*
3276 * It's ok if the gva is remapped by other cpus on shadow guest,
3277 * it's a BUG if the gfn is not a mmio page.
3278 */
3279 if (direct && !check_direct_spte_mmio_pf(spte))
b37fbea6 3280 return RET_MMIO_PF_BUG;
ce88decf
XG
3281
3282 /*
3283 * If the page table is zapped by other cpus, let CPU fault again on
3284 * the address.
3285 */
b37fbea6 3286 return RET_MMIO_PF_RETRY;
ce88decf
XG
3287}
3288EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3289
3290static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3291 u32 error_code, bool direct)
3292{
3293 int ret;
3294
3295 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
b37fbea6 3296 WARN_ON(ret == RET_MMIO_PF_BUG);
ce88decf
XG
3297 return ret;
3298}
3299
6aa8b732 3300static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3301 u32 error_code, bool prefault)
6aa8b732 3302{
e833240f 3303 gfn_t gfn;
e2dec939 3304 int r;
6aa8b732 3305
b8688d51 3306 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3307
f8f55942
XG
3308 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3309 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3310
3311 if (likely(r != RET_MMIO_PF_INVALID))
3312 return r;
3313 }
ce88decf 3314
e2dec939
AK
3315 r = mmu_topup_memory_caches(vcpu);
3316 if (r)
3317 return r;
714b93da 3318
6aa8b732 3319 ASSERT(vcpu);
ad312c7c 3320 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3321
e833240f 3322 gfn = gva >> PAGE_SHIFT;
6aa8b732 3323
e833240f 3324 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3325 error_code, gfn, prefault);
6aa8b732
AK
3326}
3327
7e1fbeac 3328static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3329{
3330 struct kvm_arch_async_pf arch;
fb67e14f 3331
7c90705b 3332 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3333 arch.gfn = gfn;
c4806acd 3334 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3335 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3336
e0ead41a 3337 return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
af585b92
GN
3338}
3339
3340static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3341{
3342 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3343 kvm_event_needs_reinjection(vcpu)))
3344 return false;
3345
3346 return kvm_x86_ops->interrupt_allowed(vcpu);
3347}
3348
78b2c54a 3349static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3350 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3351{
3352 bool async;
3353
612819c3 3354 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3355
3356 if (!async)
3357 return false; /* *pfn has correct page already */
3358
78b2c54a 3359 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3360 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3361 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3362 trace_kvm_async_pf_doublefault(gva, gfn);
3363 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3364 return true;
3365 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3366 return true;
3367 }
3368
612819c3 3369 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3370
3371 return false;
3372}
3373
56028d08 3374static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3375 bool prefault)
fb72d167 3376{
35149e21 3377 pfn_t pfn;
fb72d167 3378 int r;
852e3c19 3379 int level;
936a5fe6 3380 int force_pt_level;
05da4558 3381 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3382 unsigned long mmu_seq;
612819c3
MT
3383 int write = error_code & PFERR_WRITE_MASK;
3384 bool map_writable;
fb72d167
JR
3385
3386 ASSERT(vcpu);
3387 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3388
f8f55942
XG
3389 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3390 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3391
3392 if (likely(r != RET_MMIO_PF_INVALID))
3393 return r;
3394 }
ce88decf 3395
fb72d167
JR
3396 r = mmu_topup_memory_caches(vcpu);
3397 if (r)
3398 return r;
3399
936a5fe6
AA
3400 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3401 if (likely(!force_pt_level)) {
3402 level = mapping_level(vcpu, gfn);
3403 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3404 } else
3405 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3406
c7ba5b48
XG
3407 if (fast_page_fault(vcpu, gpa, level, error_code))
3408 return 0;
3409
e930bffe 3410 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3411 smp_rmb();
af585b92 3412
78b2c54a 3413 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3414 return 0;
3415
d7c55201
XG
3416 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3417 return r;
3418
fb72d167 3419 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3420 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3421 goto out_unlock;
450e0b41 3422 make_mmu_pages_available(vcpu);
936a5fe6
AA
3423 if (likely(!force_pt_level))
3424 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3425 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3426 level, gfn, pfn, prefault);
fb72d167 3427 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3428
3429 return r;
e930bffe
AA
3430
3431out_unlock:
3432 spin_unlock(&vcpu->kvm->mmu_lock);
3433 kvm_release_pfn_clean(pfn);
3434 return 0;
fb72d167
JR
3435}
3436
8a3c1a33
PB
3437static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3438 struct kvm_mmu *context)
6aa8b732 3439{
6aa8b732 3440 context->page_fault = nonpaging_page_fault;
6aa8b732 3441 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3442 context->sync_page = nonpaging_sync_page;
a7052897 3443 context->invlpg = nonpaging_invlpg;
0f53b5b1 3444 context->update_pte = nonpaging_update_pte;
cea0f0e7 3445 context->root_level = 0;
6aa8b732 3446 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3447 context->root_hpa = INVALID_PAGE;
c5a78f2b 3448 context->direct_map = true;
2d48a985 3449 context->nx = false;
6aa8b732
AK
3450}
3451
d835dfec 3452void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3453{
1165f5fe 3454 ++vcpu->stat.tlb_flush;
a8eeb04a 3455 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732 3456}
bfd0a56b 3457EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
6aa8b732 3458
d8d173da 3459void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3460{
cea0f0e7 3461 mmu_free_roots(vcpu);
6aa8b732
AK
3462}
3463
5777ed34
JR
3464static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3465{
9f8fe504 3466 return kvm_read_cr3(vcpu);
5777ed34
JR
3467}
3468
6389ee94
AK
3469static void inject_page_fault(struct kvm_vcpu *vcpu,
3470 struct x86_exception *fault)
6aa8b732 3471{
6389ee94 3472 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3473}
3474
f2fd125d
XG
3475static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3476 unsigned access, int *nr_present)
ce88decf
XG
3477{
3478 if (unlikely(is_mmio_spte(*sptep))) {
3479 if (gfn != get_mmio_spte_gfn(*sptep)) {
3480 mmu_spte_clear_no_track(sptep);
3481 return true;
3482 }
3483
3484 (*nr_present)++;
f2fd125d 3485 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
3486 return true;
3487 }
3488
3489 return false;
3490}
3491
6fd01b71
AK
3492static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3493{
3494 unsigned index;
3495
3496 index = level - 1;
3497 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3498 return mmu->last_pte_bitmap & (1 << index);
3499}
3500
37406aaa
NHE
3501#define PTTYPE_EPT 18 /* arbitrary */
3502#define PTTYPE PTTYPE_EPT
3503#include "paging_tmpl.h"
3504#undef PTTYPE
3505
6aa8b732
AK
3506#define PTTYPE 64
3507#include "paging_tmpl.h"
3508#undef PTTYPE
3509
3510#define PTTYPE 32
3511#include "paging_tmpl.h"
3512#undef PTTYPE
3513
52fde8df 3514static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3515 struct kvm_mmu *context)
82725b20 3516{
82725b20
DE
3517 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3518 u64 exb_bit_rsvd = 0;
5f7dde7b 3519 u64 gbpages_bit_rsvd = 0;
82725b20 3520
25d92081
YZ
3521 context->bad_mt_xwr = 0;
3522
2d48a985 3523 if (!context->nx)
82725b20 3524 exb_bit_rsvd = rsvd_bits(63, 63);
5f7dde7b
NA
3525 if (!guest_cpuid_has_gbpages(vcpu))
3526 gbpages_bit_rsvd = rsvd_bits(7, 7);
4d6931c3 3527 switch (context->root_level) {
82725b20
DE
3528 case PT32_ROOT_LEVEL:
3529 /* no rsvd bits for 2 level 4K page table entries */
3530 context->rsvd_bits_mask[0][1] = 0;
3531 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3532 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3533
3534 if (!is_pse(vcpu)) {
3535 context->rsvd_bits_mask[1][1] = 0;
3536 break;
3537 }
3538
82725b20
DE
3539 if (is_cpuid_PSE36())
3540 /* 36bits PSE 4MB page */
3541 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3542 else
3543 /* 32 bits PSE 4MB page */
3544 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3545 break;
3546 case PT32E_ROOT_LEVEL:
20c466b5
DE
3547 context->rsvd_bits_mask[0][2] =
3548 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3549 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3550 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3551 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3552 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3553 rsvd_bits(maxphyaddr, 62); /* PTE */
3554 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3555 rsvd_bits(maxphyaddr, 62) |
3556 rsvd_bits(13, 20); /* large page */
f815bce8 3557 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3558 break;
3559 case PT64_ROOT_LEVEL:
3560 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
cd9ae5fe 3561 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 7);
82725b20 3562 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
5f7dde7b 3563 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
82725b20 3564 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3565 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3566 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3567 rsvd_bits(maxphyaddr, 51);
3568 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980 3569 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3570 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3571 rsvd_bits(13, 29);
82725b20 3572 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3573 rsvd_bits(maxphyaddr, 51) |
3574 rsvd_bits(13, 20); /* large page */
f815bce8 3575 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3576 break;
3577 }
3578}
3579
25d92081
YZ
3580static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3581 struct kvm_mmu *context, bool execonly)
3582{
3583 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3584 int pte;
3585
3586 context->rsvd_bits_mask[0][3] =
3587 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3588 context->rsvd_bits_mask[0][2] =
3589 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3590 context->rsvd_bits_mask[0][1] =
3591 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3592 context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3593
3594 /* large page */
3595 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3596 context->rsvd_bits_mask[1][2] =
3597 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3598 context->rsvd_bits_mask[1][1] =
3599 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3600 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3601
3602 for (pte = 0; pte < 64; pte++) {
3603 int rwx_bits = pte & 7;
3604 int mt = pte >> 3;
3605 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3606 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3607 (rwx_bits == 0x4 && !execonly))
3608 context->bad_mt_xwr |= (1ull << pte);
3609 }
3610}
3611
97ec8c06 3612void update_permission_bitmask(struct kvm_vcpu *vcpu,
25d92081 3613 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3614{
3615 unsigned bit, byte, pfec;
3616 u8 map;
66386ade 3617 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3618
66386ade 3619 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3620 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3621 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3622 pfec = byte << 1;
3623 map = 0;
3624 wf = pfec & PFERR_WRITE_MASK;
3625 uf = pfec & PFERR_USER_MASK;
3626 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3627 /*
3628 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3629 * subject to SMAP restrictions, and cleared otherwise. The
3630 * bit is only meaningful if the SMAP bit is set in CR4.
3631 */
3632 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3633 for (bit = 0; bit < 8; ++bit) {
3634 x = bit & ACC_EXEC_MASK;
3635 w = bit & ACC_WRITE_MASK;
3636 u = bit & ACC_USER_MASK;
3637
25d92081
YZ
3638 if (!ept) {
3639 /* Not really needed: !nx will cause pte.nx to fault */
3640 x |= !mmu->nx;
3641 /* Allow supervisor writes if !cr0.wp */
3642 w |= !is_write_protection(vcpu) && !uf;
3643 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3644 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3645
3646 /*
3647 * SMAP:kernel-mode data accesses from user-mode
3648 * mappings should fault. A fault is considered
3649 * as a SMAP violation if all of the following
3650 * conditions are ture:
3651 * - X86_CR4_SMAP is set in CR4
3652 * - An user page is accessed
3653 * - Page fault in kernel mode
3654 * - if CPL = 3 or X86_EFLAGS_AC is clear
3655 *
3656 * Here, we cover the first three conditions.
3657 * The fourth is computed dynamically in
3658 * permission_fault() and is in smapf.
3659 *
3660 * Also, SMAP does not affect instruction
3661 * fetches, add the !ff check here to make it
3662 * clearer.
3663 */
3664 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3665 } else
3666 /* Not really needed: no U/S accesses on ept */
3667 u = 1;
97d64b78 3668
97ec8c06
FW
3669 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3670 (smapf && smap);
97d64b78
AK
3671 map |= fault << bit;
3672 }
3673 mmu->permissions[byte] = map;
3674 }
3675}
3676
6fd01b71
AK
3677static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3678{
3679 u8 map;
3680 unsigned level, root_level = mmu->root_level;
3681 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3682
3683 if (root_level == PT32E_ROOT_LEVEL)
3684 --root_level;
3685 /* PT_PAGE_TABLE_LEVEL always terminates */
3686 map = 1 | (1 << ps_set_index);
3687 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3688 if (level <= PT_PDPE_LEVEL
3689 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3690 map |= 1 << (ps_set_index | (level - 1));
3691 }
3692 mmu->last_pte_bitmap = map;
3693}
3694
8a3c1a33
PB
3695static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3696 struct kvm_mmu *context,
3697 int level)
6aa8b732 3698{
2d48a985 3699 context->nx = is_nx(vcpu);
4d6931c3 3700 context->root_level = level;
2d48a985 3701
4d6931c3 3702 reset_rsvds_bits_mask(vcpu, context);
25d92081 3703 update_permission_bitmask(vcpu, context, false);
6fd01b71 3704 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3705
3706 ASSERT(is_pae(vcpu));
6aa8b732 3707 context->page_fault = paging64_page_fault;
6aa8b732 3708 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3709 context->sync_page = paging64_sync_page;
a7052897 3710 context->invlpg = paging64_invlpg;
0f53b5b1 3711 context->update_pte = paging64_update_pte;
17ac10ad 3712 context->shadow_root_level = level;
17c3ba9d 3713 context->root_hpa = INVALID_PAGE;
c5a78f2b 3714 context->direct_map = false;
6aa8b732
AK
3715}
3716
8a3c1a33
PB
3717static void paging64_init_context(struct kvm_vcpu *vcpu,
3718 struct kvm_mmu *context)
17ac10ad 3719{
8a3c1a33 3720 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3721}
3722
8a3c1a33
PB
3723static void paging32_init_context(struct kvm_vcpu *vcpu,
3724 struct kvm_mmu *context)
6aa8b732 3725{
2d48a985 3726 context->nx = false;
4d6931c3 3727 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3728
4d6931c3 3729 reset_rsvds_bits_mask(vcpu, context);
25d92081 3730 update_permission_bitmask(vcpu, context, false);
6fd01b71 3731 update_last_pte_bitmap(vcpu, context);
6aa8b732 3732
6aa8b732 3733 context->page_fault = paging32_page_fault;
6aa8b732 3734 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3735 context->sync_page = paging32_sync_page;
a7052897 3736 context->invlpg = paging32_invlpg;
0f53b5b1 3737 context->update_pte = paging32_update_pte;
6aa8b732 3738 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3739 context->root_hpa = INVALID_PAGE;
c5a78f2b 3740 context->direct_map = false;
6aa8b732
AK
3741}
3742
8a3c1a33
PB
3743static void paging32E_init_context(struct kvm_vcpu *vcpu,
3744 struct kvm_mmu *context)
6aa8b732 3745{
8a3c1a33 3746 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3747}
3748
8a3c1a33 3749static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3750{
14dfe855 3751 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3752
c445f8ef 3753 context->base_role.word = 0;
fb72d167 3754 context->page_fault = tdp_page_fault;
e8bc217a 3755 context->sync_page = nonpaging_sync_page;
a7052897 3756 context->invlpg = nonpaging_invlpg;
0f53b5b1 3757 context->update_pte = nonpaging_update_pte;
67253af5 3758 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3759 context->root_hpa = INVALID_PAGE;
c5a78f2b 3760 context->direct_map = true;
1c97f0a0 3761 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3762 context->get_cr3 = get_cr3;
e4e517b4 3763 context->get_pdptr = kvm_pdptr_read;
cb659db8 3764 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3765
3766 if (!is_paging(vcpu)) {
2d48a985 3767 context->nx = false;
fb72d167
JR
3768 context->gva_to_gpa = nonpaging_gva_to_gpa;
3769 context->root_level = 0;
3770 } else if (is_long_mode(vcpu)) {
2d48a985 3771 context->nx = is_nx(vcpu);
fb72d167 3772 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3773 reset_rsvds_bits_mask(vcpu, context);
3774 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3775 } else if (is_pae(vcpu)) {
2d48a985 3776 context->nx = is_nx(vcpu);
fb72d167 3777 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3778 reset_rsvds_bits_mask(vcpu, context);
3779 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3780 } else {
2d48a985 3781 context->nx = false;
fb72d167 3782 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3783 reset_rsvds_bits_mask(vcpu, context);
3784 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3785 }
3786
25d92081 3787 update_permission_bitmask(vcpu, context, false);
6fd01b71 3788 update_last_pte_bitmap(vcpu, context);
fb72d167
JR
3789}
3790
8a3c1a33 3791void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3792{
411c588d 3793 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3794 ASSERT(vcpu);
ad312c7c 3795 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3796
3797 if (!is_paging(vcpu))
8a3c1a33 3798 nonpaging_init_context(vcpu, context);
a9058ecd 3799 else if (is_long_mode(vcpu))
8a3c1a33 3800 paging64_init_context(vcpu, context);
6aa8b732 3801 else if (is_pae(vcpu))
8a3c1a33 3802 paging32E_init_context(vcpu, context);
6aa8b732 3803 else
8a3c1a33 3804 paging32_init_context(vcpu, context);
a770f6f2 3805
2c9afa52 3806 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
5b7e0102 3807 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3808 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3809 vcpu->arch.mmu.base_role.smep_andnot_wp
3810 = smep && !is_write_protection(vcpu);
52fde8df
JR
3811}
3812EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3813
8a3c1a33 3814void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
155a97a3
NHE
3815 bool execonly)
3816{
3817 ASSERT(vcpu);
3818 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3819
3820 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3821
3822 context->nx = true;
155a97a3
NHE
3823 context->page_fault = ept_page_fault;
3824 context->gva_to_gpa = ept_gva_to_gpa;
3825 context->sync_page = ept_sync_page;
3826 context->invlpg = ept_invlpg;
3827 context->update_pte = ept_update_pte;
155a97a3
NHE
3828 context->root_level = context->shadow_root_level;
3829 context->root_hpa = INVALID_PAGE;
3830 context->direct_map = false;
3831
3832 update_permission_bitmask(vcpu, context, true);
3833 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
155a97a3
NHE
3834}
3835EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3836
8a3c1a33 3837static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 3838{
8a3c1a33 3839 kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
14dfe855
JR
3840 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3841 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3842 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3843 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
3844}
3845
8a3c1a33 3846static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
3847{
3848 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3849
3850 g_context->get_cr3 = get_cr3;
e4e517b4 3851 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3852 g_context->inject_page_fault = kvm_inject_page_fault;
3853
3854 /*
3855 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3856 * translation of l2_gpa to l1_gpa addresses is done using the
3857 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3858 * functions between mmu and nested_mmu are swapped.
3859 */
3860 if (!is_paging(vcpu)) {
2d48a985 3861 g_context->nx = false;
02f59dc9
JR
3862 g_context->root_level = 0;
3863 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3864 } else if (is_long_mode(vcpu)) {
2d48a985 3865 g_context->nx = is_nx(vcpu);
02f59dc9 3866 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3867 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3868 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3869 } else if (is_pae(vcpu)) {
2d48a985 3870 g_context->nx = is_nx(vcpu);
02f59dc9 3871 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3872 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3873 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3874 } else {
2d48a985 3875 g_context->nx = false;
02f59dc9 3876 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3877 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3878 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3879 }
3880
25d92081 3881 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 3882 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
3883}
3884
8a3c1a33 3885static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 3886{
02f59dc9
JR
3887 if (mmu_is_nested(vcpu))
3888 return init_kvm_nested_mmu(vcpu);
3889 else if (tdp_enabled)
fb72d167
JR
3890 return init_kvm_tdp_mmu(vcpu);
3891 else
3892 return init_kvm_softmmu(vcpu);
3893}
3894
8a3c1a33 3895void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732
AK
3896{
3897 ASSERT(vcpu);
6aa8b732 3898
95f93af4 3899 kvm_mmu_unload(vcpu);
8a3c1a33 3900 init_kvm_mmu(vcpu);
17c3ba9d 3901}
8668a3c4 3902EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3903
3904int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3905{
714b93da
AK
3906 int r;
3907
e2dec939 3908 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3909 if (r)
3910 goto out;
8986ecc0 3911 r = mmu_alloc_roots(vcpu);
e2858b4a 3912 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
3913 if (r)
3914 goto out;
3662cb1c 3915 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3916 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3917out:
3918 return r;
6aa8b732 3919}
17c3ba9d
AK
3920EXPORT_SYMBOL_GPL(kvm_mmu_load);
3921
3922void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3923{
3924 mmu_free_roots(vcpu);
95f93af4 3925 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 3926}
4b16184c 3927EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3928
0028425f 3929static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3930 struct kvm_mmu_page *sp, u64 *spte,
3931 const void *new)
0028425f 3932{
30945387 3933 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3934 ++vcpu->kvm->stat.mmu_pde_zapped;
3935 return;
30945387 3936 }
0028425f 3937
4cee5764 3938 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3939 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3940}
3941
79539cec
AK
3942static bool need_remote_flush(u64 old, u64 new)
3943{
3944 if (!is_shadow_present_pte(old))
3945 return false;
3946 if (!is_shadow_present_pte(new))
3947 return true;
3948 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3949 return true;
53166229
GN
3950 old ^= shadow_nx_mask;
3951 new ^= shadow_nx_mask;
79539cec
AK
3952 return (old & ~new & PT64_PERM_MASK) != 0;
3953}
3954
0671a8e7
XG
3955static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3956 bool remote_flush, bool local_flush)
79539cec 3957{
0671a8e7
XG
3958 if (zap_page)
3959 return;
3960
3961 if (remote_flush)
79539cec 3962 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3963 else if (local_flush)
79539cec
AK
3964 kvm_mmu_flush_tlb(vcpu);
3965}
3966
889e5cbc
XG
3967static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3968 const u8 *new, int *bytes)
da4a00f0 3969{
889e5cbc
XG
3970 u64 gentry;
3971 int r;
72016f3a 3972
72016f3a
AK
3973 /*
3974 * Assume that the pte write on a page table of the same type
49b26e26
XG
3975 * as the current vcpu paging mode since we update the sptes only
3976 * when they have the same mode.
72016f3a 3977 */
889e5cbc 3978 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3979 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3980 *gpa &= ~(gpa_t)7;
3981 *bytes = 8;
116eb3d3 3982 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
3983 if (r)
3984 gentry = 0;
08e850c6
AK
3985 new = (const u8 *)&gentry;
3986 }
3987
889e5cbc 3988 switch (*bytes) {
08e850c6
AK
3989 case 4:
3990 gentry = *(const u32 *)new;
3991 break;
3992 case 8:
3993 gentry = *(const u64 *)new;
3994 break;
3995 default:
3996 gentry = 0;
3997 break;
72016f3a
AK
3998 }
3999
889e5cbc
XG
4000 return gentry;
4001}
4002
4003/*
4004 * If we're seeing too many writes to a page, it may no longer be a page table,
4005 * or we may be forking, in which case it is better to unmap the page.
4006 */
a138fe75 4007static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4008{
a30f47cb
XG
4009 /*
4010 * Skip write-flooding detected for the sp whose level is 1, because
4011 * it can become unsync, then the guest page is not write-protected.
4012 */
f71fa31f 4013 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4014 return false;
3246af0e 4015
a30f47cb 4016 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
4017}
4018
4019/*
4020 * Misaligned accesses are too much trouble to fix up; also, they usually
4021 * indicate a page is not used as a page table.
4022 */
4023static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4024 int bytes)
4025{
4026 unsigned offset, pte_size, misaligned;
4027
4028 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4029 gpa, bytes, sp->role.word);
4030
4031 offset = offset_in_page(gpa);
4032 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4033
4034 /*
4035 * Sometimes, the OS only writes the last one bytes to update status
4036 * bits, for example, in linux, andb instruction is used in clear_bit().
4037 */
4038 if (!(offset & (pte_size - 1)) && bytes == 1)
4039 return false;
4040
889e5cbc
XG
4041 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4042 misaligned |= bytes < 4;
4043
4044 return misaligned;
4045}
4046
4047static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4048{
4049 unsigned page_offset, quadrant;
4050 u64 *spte;
4051 int level;
4052
4053 page_offset = offset_in_page(gpa);
4054 level = sp->role.level;
4055 *nspte = 1;
4056 if (!sp->role.cr4_pae) {
4057 page_offset <<= 1; /* 32->64 */
4058 /*
4059 * A 32-bit pde maps 4MB while the shadow pdes map
4060 * only 2MB. So we need to double the offset again
4061 * and zap two pdes instead of one.
4062 */
4063 if (level == PT32_ROOT_LEVEL) {
4064 page_offset &= ~7; /* kill rounding error */
4065 page_offset <<= 1;
4066 *nspte = 2;
4067 }
4068 quadrant = page_offset >> PAGE_SHIFT;
4069 page_offset &= ~PAGE_MASK;
4070 if (quadrant != sp->role.quadrant)
4071 return NULL;
4072 }
4073
4074 spte = &sp->spt[page_offset / sizeof(*spte)];
4075 return spte;
4076}
4077
4078void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4079 const u8 *new, int bytes)
4080{
4081 gfn_t gfn = gpa >> PAGE_SHIFT;
4082 union kvm_mmu_page_role mask = { .word = 0 };
4083 struct kvm_mmu_page *sp;
889e5cbc
XG
4084 LIST_HEAD(invalid_list);
4085 u64 entry, gentry, *spte;
4086 int npte;
a30f47cb 4087 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
4088
4089 /*
4090 * If we don't have indirect shadow pages, it means no page is
4091 * write-protected, so we can exit simply.
4092 */
4093 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4094 return;
4095
4096 zap_page = remote_flush = local_flush = false;
4097
4098 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4099
4100 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4101
4102 /*
4103 * No need to care whether allocation memory is successful
4104 * or not since pte prefetch is skiped if it does not have
4105 * enough objects in the cache.
4106 */
4107 mmu_topup_memory_caches(vcpu);
4108
4109 spin_lock(&vcpu->kvm->mmu_lock);
4110 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4111 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4112
fa1de2bf 4113 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
b67bfe0d 4114 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4115 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4116 detect_write_flooding(sp)) {
0671a8e7 4117 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4118 &invalid_list);
4cee5764 4119 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4120 continue;
4121 }
889e5cbc
XG
4122
4123 spte = get_written_sptes(sp, gpa, &npte);
4124 if (!spte)
4125 continue;
4126
0671a8e7 4127 local_flush = true;
ac1b714e 4128 while (npte--) {
79539cec 4129 entry = *spte;
38e3b2b2 4130 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4131 if (gentry &&
4132 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4133 & mask.word) && rmap_can_add(vcpu))
7c562522 4134 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4135 if (need_remote_flush(entry, *spte))
0671a8e7 4136 remote_flush = true;
ac1b714e 4137 ++spte;
9b7a0325 4138 }
9b7a0325 4139 }
0671a8e7 4140 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4141 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4142 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4143 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4144}
4145
a436036b
AK
4146int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4147{
10589a46
MT
4148 gpa_t gpa;
4149 int r;
a436036b 4150
c5a78f2b 4151 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4152 return 0;
4153
1871c602 4154 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4155
10589a46 4156 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4157
10589a46 4158 return r;
a436036b 4159}
577bdc49 4160EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4161
81f4f76b 4162static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4163{
d98ba053 4164 LIST_HEAD(invalid_list);
103ad25a 4165
81f4f76b
TY
4166 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4167 return;
4168
5da59607
TY
4169 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4170 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4171 break;
ebeace86 4172
4cee5764 4173 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4174 }
aa6bd187 4175 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4176}
ebeace86 4177
1cb3f3ae
XG
4178static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4179{
4180 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4181 return vcpu_match_mmio_gpa(vcpu, addr);
4182
4183 return vcpu_match_mmio_gva(vcpu, addr);
4184}
4185
dc25e89e
AP
4186int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4187 void *insn, int insn_len)
3067714c 4188{
1cb3f3ae 4189 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4190 enum emulation_result er;
4191
56028d08 4192 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4193 if (r < 0)
4194 goto out;
4195
4196 if (!r) {
4197 r = 1;
4198 goto out;
4199 }
4200
1cb3f3ae
XG
4201 if (is_mmio_page_fault(vcpu, cr2))
4202 emulation_type = 0;
4203
4204 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4205
4206 switch (er) {
4207 case EMULATE_DONE:
4208 return 1;
ac0a48c3 4209 case EMULATE_USER_EXIT:
3067714c 4210 ++vcpu->stat.mmio_exits;
6d77dbfc 4211 /* fall through */
3067714c 4212 case EMULATE_FAIL:
3f5d18a9 4213 return 0;
3067714c
AK
4214 default:
4215 BUG();
4216 }
4217out:
3067714c
AK
4218 return r;
4219}
4220EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4221
a7052897
MT
4222void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4223{
a7052897 4224 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4225 kvm_mmu_flush_tlb(vcpu);
4226 ++vcpu->stat.invlpg;
4227}
4228EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4229
18552672
JR
4230void kvm_enable_tdp(void)
4231{
4232 tdp_enabled = true;
4233}
4234EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4235
5f4cb662
JR
4236void kvm_disable_tdp(void)
4237{
4238 tdp_enabled = false;
4239}
4240EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4241
6aa8b732
AK
4242static void free_mmu_pages(struct kvm_vcpu *vcpu)
4243{
ad312c7c 4244 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4245 if (vcpu->arch.mmu.lm_root != NULL)
4246 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4247}
4248
4249static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4250{
17ac10ad 4251 struct page *page;
6aa8b732
AK
4252 int i;
4253
4254 ASSERT(vcpu);
4255
17ac10ad
AK
4256 /*
4257 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4258 * Therefore we need to allocate shadow page tables in the first
4259 * 4GB of memory, which happens to fit the DMA32 zone.
4260 */
4261 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4262 if (!page)
d7fa6ab2
WY
4263 return -ENOMEM;
4264
ad312c7c 4265 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4266 for (i = 0; i < 4; ++i)
ad312c7c 4267 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4268
6aa8b732 4269 return 0;
6aa8b732
AK
4270}
4271
8018c27b 4272int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4273{
6aa8b732 4274 ASSERT(vcpu);
e459e322
XG
4275
4276 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4277 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4278 vcpu->arch.mmu.translate_gpa = translate_gpa;
4279 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4280
8018c27b
IM
4281 return alloc_mmu_pages(vcpu);
4282}
6aa8b732 4283
8a3c1a33 4284void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b
IM
4285{
4286 ASSERT(vcpu);
ad312c7c 4287 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4288
8a3c1a33 4289 init_kvm_mmu(vcpu);
6aa8b732
AK
4290}
4291
90cb0529 4292void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4293{
b99db1d3
TY
4294 struct kvm_memory_slot *memslot;
4295 gfn_t last_gfn;
4296 int i;
6aa8b732 4297
b99db1d3
TY
4298 memslot = id_to_memslot(kvm->memslots, slot);
4299 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4300
9d1beefb
TY
4301 spin_lock(&kvm->mmu_lock);
4302
b99db1d3
TY
4303 for (i = PT_PAGE_TABLE_LEVEL;
4304 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4305 unsigned long *rmapp;
4306 unsigned long last_index, index;
6aa8b732 4307
b99db1d3
TY
4308 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4309 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4310
b99db1d3
TY
4311 for (index = 0; index <= last_index; ++index, ++rmapp) {
4312 if (*rmapp)
4313 __rmap_write_protect(kvm, rmapp, false);
6b81b05e 4314
198c74f4 4315 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
6b81b05e 4316 cond_resched_lock(&kvm->mmu_lock);
8234b22e 4317 }
6aa8b732 4318 }
b99db1d3 4319
9d1beefb 4320 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4321
4322 /*
4323 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4324 * which do tlb flush out of mmu-lock should be serialized by
4325 * kvm->slots_lock otherwise tlb flush would be missed.
4326 */
4327 lockdep_assert_held(&kvm->slots_lock);
4328
4329 /*
4330 * We can flush all the TLBs out of the mmu lock without TLB
4331 * corruption since we just change the spte from writable to
4332 * readonly so that we only need to care the case of changing
4333 * spte from present to present (changing the spte from present
4334 * to nonpresent will flush all the TLBs immediately), in other
4335 * words, the only case we care is mmu_spte_update() where we
4336 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4337 * instead of PT_WRITABLE_MASK, that means it does not depend
4338 * on PT_WRITABLE_MASK anymore.
4339 */
4340 kvm_flush_remote_tlbs(kvm);
6aa8b732 4341}
37a7d8b0 4342
e7d11c7a 4343#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4344static void kvm_zap_obsolete_pages(struct kvm *kvm)
4345{
4346 struct kvm_mmu_page *sp, *node;
e7d11c7a 4347 int batch = 0;
5304b8d3
XG
4348
4349restart:
4350 list_for_each_entry_safe_reverse(sp, node,
4351 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4352 int ret;
4353
5304b8d3
XG
4354 /*
4355 * No obsolete page exists before new created page since
4356 * active_mmu_pages is the FIFO list.
4357 */
4358 if (!is_obsolete_sp(kvm, sp))
4359 break;
4360
4361 /*
5304b8d3
XG
4362 * Since we are reversely walking the list and the invalid
4363 * list will be moved to the head, skip the invalid page
4364 * can help us to avoid the infinity list walking.
4365 */
4366 if (sp->role.invalid)
4367 continue;
4368
f34d251d
XG
4369 /*
4370 * Need not flush tlb since we only zap the sp with invalid
4371 * generation number.
4372 */
e7d11c7a 4373 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4374 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4375 batch = 0;
5304b8d3
XG
4376 goto restart;
4377 }
4378
365c8868
XG
4379 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4380 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4381 batch += ret;
4382
4383 if (ret)
5304b8d3
XG
4384 goto restart;
4385 }
4386
f34d251d
XG
4387 /*
4388 * Should flush tlb before free page tables since lockless-walking
4389 * may use the pages.
4390 */
365c8868 4391 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4392}
4393
4394/*
4395 * Fast invalidate all shadow pages and use lock-break technique
4396 * to zap obsolete pages.
4397 *
4398 * It's required when memslot is being deleted or VM is being
4399 * destroyed, in these cases, we should ensure that KVM MMU does
4400 * not use any resource of the being-deleted slot or all slots
4401 * after calling the function.
4402 */
4403void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4404{
4405 spin_lock(&kvm->mmu_lock);
35006126 4406 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4407 kvm->arch.mmu_valid_gen++;
4408
f34d251d
XG
4409 /*
4410 * Notify all vcpus to reload its shadow page table
4411 * and flush TLB. Then all vcpus will switch to new
4412 * shadow page table with the new mmu_valid_gen.
4413 *
4414 * Note: we should do this under the protection of
4415 * mmu-lock, otherwise, vcpu would purge shadow page
4416 * but miss tlb flush.
4417 */
4418 kvm_reload_remote_mmus(kvm);
4419
5304b8d3
XG
4420 kvm_zap_obsolete_pages(kvm);
4421 spin_unlock(&kvm->mmu_lock);
4422}
4423
365c8868
XG
4424static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4425{
4426 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4427}
4428
f8f55942
XG
4429void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4430{
4431 /*
4432 * The very rare case: if the generation-number is round,
4433 * zap all shadow pages.
f8f55942 4434 */
ee3d1570 4435 if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
7a2e8aaf 4436 printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4437 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4438 }
f8f55942
XG
4439}
4440
70534a73
DC
4441static unsigned long
4442mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4443{
4444 struct kvm *kvm;
1495f230 4445 int nr_to_scan = sc->nr_to_scan;
70534a73 4446 unsigned long freed = 0;
3ee16c81 4447
2f303b74 4448 spin_lock(&kvm_lock);
3ee16c81
IE
4449
4450 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4451 int idx;
d98ba053 4452 LIST_HEAD(invalid_list);
3ee16c81 4453
35f2d16b
TY
4454 /*
4455 * Never scan more than sc->nr_to_scan VM instances.
4456 * Will not hit this condition practically since we do not try
4457 * to shrink more than one VM and it is very unlikely to see
4458 * !n_used_mmu_pages so many times.
4459 */
4460 if (!nr_to_scan--)
4461 break;
19526396
GN
4462 /*
4463 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4464 * here. We may skip a VM instance errorneosly, but we do not
4465 * want to shrink a VM that only started to populate its MMU
4466 * anyway.
4467 */
365c8868
XG
4468 if (!kvm->arch.n_used_mmu_pages &&
4469 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4470 continue;
19526396 4471
f656ce01 4472 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4473 spin_lock(&kvm->mmu_lock);
3ee16c81 4474
365c8868
XG
4475 if (kvm_has_zapped_obsolete_pages(kvm)) {
4476 kvm_mmu_commit_zap_page(kvm,
4477 &kvm->arch.zapped_obsolete_pages);
4478 goto unlock;
4479 }
4480
70534a73
DC
4481 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4482 freed++;
d98ba053 4483 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4484
365c8868 4485unlock:
3ee16c81 4486 spin_unlock(&kvm->mmu_lock);
f656ce01 4487 srcu_read_unlock(&kvm->srcu, idx);
19526396 4488
70534a73
DC
4489 /*
4490 * unfair on small ones
4491 * per-vm shrinkers cry out
4492 * sadness comes quickly
4493 */
19526396
GN
4494 list_move_tail(&kvm->vm_list, &vm_list);
4495 break;
3ee16c81 4496 }
3ee16c81 4497
2f303b74 4498 spin_unlock(&kvm_lock);
70534a73 4499 return freed;
70534a73
DC
4500}
4501
4502static unsigned long
4503mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4504{
45221ab6 4505 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4506}
4507
4508static struct shrinker mmu_shrinker = {
70534a73
DC
4509 .count_objects = mmu_shrink_count,
4510 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4511 .seeks = DEFAULT_SEEKS * 10,
4512};
4513
2ddfd20e 4514static void mmu_destroy_caches(void)
b5a33a75 4515{
53c07b18
XG
4516 if (pte_list_desc_cache)
4517 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4518 if (mmu_page_header_cache)
4519 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4520}
4521
4522int kvm_mmu_module_init(void)
4523{
53c07b18
XG
4524 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4525 sizeof(struct pte_list_desc),
20c2df83 4526 0, 0, NULL);
53c07b18 4527 if (!pte_list_desc_cache)
b5a33a75
AK
4528 goto nomem;
4529
d3d25b04
AK
4530 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4531 sizeof(struct kvm_mmu_page),
20c2df83 4532 0, 0, NULL);
d3d25b04
AK
4533 if (!mmu_page_header_cache)
4534 goto nomem;
4535
45bf21a8
WY
4536 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4537 goto nomem;
4538
3ee16c81
IE
4539 register_shrinker(&mmu_shrinker);
4540
b5a33a75
AK
4541 return 0;
4542
4543nomem:
3ee16c81 4544 mmu_destroy_caches();
b5a33a75
AK
4545 return -ENOMEM;
4546}
4547
3ad82a7e
ZX
4548/*
4549 * Caculate mmu pages needed for kvm.
4550 */
4551unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4552{
3ad82a7e
ZX
4553 unsigned int nr_mmu_pages;
4554 unsigned int nr_pages = 0;
bc6678a3 4555 struct kvm_memslots *slots;
be6ba0f0 4556 struct kvm_memory_slot *memslot;
3ad82a7e 4557
90d83dc3
LJ
4558 slots = kvm_memslots(kvm);
4559
be6ba0f0
XG
4560 kvm_for_each_memslot(memslot, slots)
4561 nr_pages += memslot->npages;
3ad82a7e
ZX
4562
4563 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4564 nr_mmu_pages = max(nr_mmu_pages,
4565 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4566
4567 return nr_mmu_pages;
4568}
4569
94d8b056
MT
4570int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4571{
4572 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4573 u64 spte;
94d8b056
MT
4574 int nr_sptes = 0;
4575
37f6a4e2
MT
4576 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4577 return nr_sptes;
4578
c2a2ac2b
XG
4579 walk_shadow_page_lockless_begin(vcpu);
4580 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4581 sptes[iterator.level-1] = spte;
94d8b056 4582 nr_sptes++;
c2a2ac2b 4583 if (!is_shadow_present_pte(spte))
94d8b056
MT
4584 break;
4585 }
c2a2ac2b 4586 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4587
4588 return nr_sptes;
4589}
4590EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4591
c42fffe3
XG
4592void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4593{
4594 ASSERT(vcpu);
4595
95f93af4 4596 kvm_mmu_unload(vcpu);
c42fffe3
XG
4597 free_mmu_pages(vcpu);
4598 mmu_free_memory_caches(vcpu);
b034cf01
XG
4599}
4600
b034cf01
XG
4601void kvm_mmu_module_exit(void)
4602{
4603 mmu_destroy_caches();
4604 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4605 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4606 mmu_audit_disable();
4607}