]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: implement multiple address spaces
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
6aa8b732 44
18552672
JR
45/*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
2f333bcb 52bool tdp_enabled = false;
18552672 53
8b1fe17c
XG
54enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
6903074c
XG
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
8b1fe17c 61};
37a7d8b0 62
8b1fe17c 63#undef MMU_DEBUG
37a7d8b0
AK
64
65#ifdef MMU_DEBUG
fa4a2c08
PB
66static bool dbg = 0;
67module_param(dbg, bool, 0644);
37a7d8b0
AK
68
69#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 71#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 72#else
37a7d8b0
AK
73#define pgprintk(x...) do { } while (0)
74#define rmap_printk(x...) do { } while (0)
fa4a2c08 75#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 76#endif
6aa8b732 77
957ed9ef
XG
78#define PTE_PREFETCH_NUM 8
79
00763e41 80#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
81#define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
6aa8b732
AK
83#define PT64_LEVEL_BITS 9
84
85#define PT64_LEVEL_SHIFT(level) \
d77c26fc 86 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 87
6aa8b732
AK
88#define PT64_INDEX(address, level)\
89 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92#define PT32_LEVEL_BITS 10
93
94#define PT32_LEVEL_SHIFT(level) \
d77c26fc 95 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 96
e04da980
JR
97#define PT32_LVL_OFFSET_MASK(level) \
98 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
100
101#define PT32_INDEX(address, level)\
102 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
27aba766 105#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
106#define PT64_DIR_BASE_ADDR_MASK \
107 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
108#define PT64_LVL_ADDR_MASK(level) \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 * PT64_LEVEL_BITS))) - 1))
111#define PT64_LVL_OFFSET_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
114
115#define PT32_BASE_ADDR_MASK PAGE_MASK
116#define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
118#define PT32_LVL_ADDR_MASK(level) \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT32_LEVEL_BITS))) - 1))
6aa8b732 121
53166229
GN
122#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 | shadow_x_mask | shadow_nx_mask)
6aa8b732 124
fe135d2c
AK
125#define ACC_EXEC_MASK 1
126#define ACC_WRITE_MASK PT_WRITABLE_MASK
127#define ACC_USER_MASK PT_USER_MASK
128#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
90bb6fc5
AK
130#include <trace/events/kvm.h>
131
07420171
AK
132#define CREATE_TRACE_POINTS
133#include "mmutrace.h"
134
49fde340
XG
135#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 137
135f8c2b
AK
138#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
220f773a
TY
140/* make pte_list_desc fit well in cache line */
141#define PTE_LIST_EXT 3
142
53c07b18
XG
143struct pte_list_desc {
144 u64 *sptes[PTE_LIST_EXT];
145 struct pte_list_desc *more;
cd4a4e53
AK
146};
147
2d11123a
AK
148struct kvm_shadow_walk_iterator {
149 u64 addr;
150 hpa_t shadow_addr;
2d11123a 151 u64 *sptep;
dd3bfd59 152 int level;
2d11123a
AK
153 unsigned index;
154};
155
156#define for_each_shadow_entry(_vcpu, _addr, _walker) \
157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
160
c2a2ac2b
XG
161#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)) && \
164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
165 __shadow_walk_next(&(_walker), spte))
166
53c07b18 167static struct kmem_cache *pte_list_desc_cache;
d3d25b04 168static struct kmem_cache *mmu_page_header_cache;
45221ab6 169static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 170
7b52345e
SY
171static u64 __read_mostly shadow_nx_mask;
172static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173static u64 __read_mostly shadow_user_mask;
174static u64 __read_mostly shadow_accessed_mask;
175static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
176static u64 __read_mostly shadow_mmio_mask;
177
178static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 179static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
180
181void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182{
183 shadow_mmio_mask = mmio_mask;
184}
185EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
f2fd125d 187/*
ee3d1570
DM
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates. The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
192 *
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 195 */
ee3d1570 196#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
197#define MMIO_SPTE_GEN_HIGH_SHIFT 52
198
ee3d1570
DM
199#define MMIO_GEN_SHIFT 20
200#define MMIO_GEN_LOW_SHIFT 10
201#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 202#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
203
204static u64 generation_mmio_spte_mask(unsigned int gen)
205{
206 u64 mask;
207
842bb26a 208 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
209
210 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212 return mask;
213}
214
215static unsigned int get_mmio_spte_generation(u64 spte)
216{
217 unsigned int gen;
218
219 spte &= ~shadow_mmio_mask;
220
221 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223 return gen;
224}
225
f8f55942
XG
226static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
227{
00f034a1 228 return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
f8f55942
XG
229}
230
f2fd125d
XG
231static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
232 unsigned access)
ce88decf 233{
f8f55942
XG
234 unsigned int gen = kvm_current_mmio_generation(kvm);
235 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 236
ce88decf 237 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 238 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 239
f8f55942 240 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 241 mmu_spte_set(sptep, mask);
ce88decf
XG
242}
243
244static bool is_mmio_spte(u64 spte)
245{
246 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247}
248
249static gfn_t get_mmio_spte_gfn(u64 spte)
250{
842bb26a 251 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 252 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
253}
254
255static unsigned get_mmio_spte_access(u64 spte)
256{
842bb26a 257 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 258 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
259}
260
f2fd125d
XG
261static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
262 pfn_t pfn, unsigned access)
ce88decf
XG
263{
264 if (unlikely(is_noslot_pfn(pfn))) {
f2fd125d 265 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
266 return true;
267 }
268
269 return false;
270}
c7addb90 271
f8f55942
XG
272static bool check_mmio_spte(struct kvm *kvm, u64 spte)
273{
089504c0
XG
274 unsigned int kvm_gen, spte_gen;
275
276 kvm_gen = kvm_current_mmio_generation(kvm);
277 spte_gen = get_mmio_spte_generation(spte);
278
279 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280 return likely(kvm_gen == spte_gen);
f8f55942
XG
281}
282
7b52345e 283void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 284 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
285{
286 shadow_user_mask = user_mask;
287 shadow_accessed_mask = accessed_mask;
288 shadow_dirty_mask = dirty_mask;
289 shadow_nx_mask = nx_mask;
290 shadow_x_mask = x_mask;
291}
292EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
6aa8b732
AK
294static int is_cpuid_PSE36(void)
295{
296 return 1;
297}
298
73b1087e
AK
299static int is_nx(struct kvm_vcpu *vcpu)
300{
f6801dff 301 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
302}
303
c7addb90
AK
304static int is_shadow_present_pte(u64 pte)
305{
ce88decf 306 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
307}
308
05da4558
MT
309static int is_large_pte(u64 pte)
310{
311 return pte & PT_PAGE_SIZE_MASK;
312}
313
43a3795a 314static int is_rmap_spte(u64 pte)
cd4a4e53 315{
4b1a80fa 316 return is_shadow_present_pte(pte);
cd4a4e53
AK
317}
318
776e6633
MT
319static int is_last_spte(u64 pte, int level)
320{
321 if (level == PT_PAGE_TABLE_LEVEL)
322 return 1;
852e3c19 323 if (is_large_pte(pte))
776e6633
MT
324 return 1;
325 return 0;
326}
327
35149e21 328static pfn_t spte_to_pfn(u64 pte)
0b49ea86 329{
35149e21 330 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
331}
332
da928521
AK
333static gfn_t pse36_gfn_delta(u32 gpte)
334{
335 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337 return (gpte & PT32_DIR_PSE36_MASK) << shift;
338}
339
603e0651 340#ifdef CONFIG_X86_64
d555c333 341static void __set_spte(u64 *sptep, u64 spte)
e663ee64 342{
603e0651 343 *sptep = spte;
e663ee64
AK
344}
345
603e0651 346static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 347{
603e0651
XG
348 *sptep = spte;
349}
350
351static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352{
353 return xchg(sptep, spte);
354}
c2a2ac2b
XG
355
356static u64 __get_spte_lockless(u64 *sptep)
357{
358 return ACCESS_ONCE(*sptep);
359}
ce88decf
XG
360
361static bool __check_direct_spte_mmio_pf(u64 spte)
362{
363 /* It is valid if the spte is zapped. */
364 return spte == 0ull;
365}
a9221dd5 366#else
603e0651
XG
367union split_spte {
368 struct {
369 u32 spte_low;
370 u32 spte_high;
371 };
372 u64 spte;
373};
a9221dd5 374
c2a2ac2b
XG
375static void count_spte_clear(u64 *sptep, u64 spte)
376{
377 struct kvm_mmu_page *sp = page_header(__pa(sptep));
378
379 if (is_shadow_present_pte(spte))
380 return;
381
382 /* Ensure the spte is completely set before we increase the count */
383 smp_wmb();
384 sp->clear_spte_count++;
385}
386
603e0651
XG
387static void __set_spte(u64 *sptep, u64 spte)
388{
389 union split_spte *ssptep, sspte;
a9221dd5 390
603e0651
XG
391 ssptep = (union split_spte *)sptep;
392 sspte = (union split_spte)spte;
393
394 ssptep->spte_high = sspte.spte_high;
395
396 /*
397 * If we map the spte from nonpresent to present, We should store
398 * the high bits firstly, then set present bit, so cpu can not
399 * fetch this spte while we are setting the spte.
400 */
401 smp_wmb();
402
403 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
404}
405
603e0651
XG
406static void __update_clear_spte_fast(u64 *sptep, u64 spte)
407{
408 union split_spte *ssptep, sspte;
409
410 ssptep = (union split_spte *)sptep;
411 sspte = (union split_spte)spte;
412
413 ssptep->spte_low = sspte.spte_low;
414
415 /*
416 * If we map the spte from present to nonpresent, we should clear
417 * present bit firstly to avoid vcpu fetch the old high bits.
418 */
419 smp_wmb();
420
421 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 422 count_spte_clear(sptep, spte);
603e0651
XG
423}
424
425static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
426{
427 union split_spte *ssptep, sspte, orig;
428
429 ssptep = (union split_spte *)sptep;
430 sspte = (union split_spte)spte;
431
432 /* xchg acts as a barrier before the setting of the high bits */
433 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
434 orig.spte_high = ssptep->spte_high;
435 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 436 count_spte_clear(sptep, spte);
603e0651
XG
437
438 return orig.spte;
439}
c2a2ac2b
XG
440
441/*
442 * The idea using the light way get the spte on x86_32 guest is from
443 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
444 *
445 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
446 * coalesces them and we are running out of the MMU lock. Therefore
447 * we need to protect against in-progress updates of the spte.
448 *
449 * Reading the spte while an update is in progress may get the old value
450 * for the high part of the spte. The race is fine for a present->non-present
451 * change (because the high part of the spte is ignored for non-present spte),
452 * but for a present->present change we must reread the spte.
453 *
454 * All such changes are done in two steps (present->non-present and
455 * non-present->present), hence it is enough to count the number of
456 * present->non-present updates: if it changed while reading the spte,
457 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
458 */
459static u64 __get_spte_lockless(u64 *sptep)
460{
461 struct kvm_mmu_page *sp = page_header(__pa(sptep));
462 union split_spte spte, *orig = (union split_spte *)sptep;
463 int count;
464
465retry:
466 count = sp->clear_spte_count;
467 smp_rmb();
468
469 spte.spte_low = orig->spte_low;
470 smp_rmb();
471
472 spte.spte_high = orig->spte_high;
473 smp_rmb();
474
475 if (unlikely(spte.spte_low != orig->spte_low ||
476 count != sp->clear_spte_count))
477 goto retry;
478
479 return spte.spte;
480}
ce88decf
XG
481
482static bool __check_direct_spte_mmio_pf(u64 spte)
483{
484 union split_spte sspte = (union split_spte)spte;
485 u32 high_mmio_mask = shadow_mmio_mask >> 32;
486
487 /* It is valid if the spte is zapped. */
488 if (spte == 0ull)
489 return true;
490
491 /* It is valid if the spte is being zapped. */
492 if (sspte.spte_low == 0ull &&
493 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
494 return true;
495
496 return false;
497}
603e0651
XG
498#endif
499
c7ba5b48
XG
500static bool spte_is_locklessly_modifiable(u64 spte)
501{
feb3eb70
GN
502 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
503 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
504}
505
8672b721
XG
506static bool spte_has_volatile_bits(u64 spte)
507{
c7ba5b48
XG
508 /*
509 * Always atomicly update spte if it can be updated
510 * out of mmu-lock, it can ensure dirty bit is not lost,
511 * also, it can help us to get a stable is_writable_pte()
512 * to ensure tlb flush is not missed.
513 */
514 if (spte_is_locklessly_modifiable(spte))
515 return true;
516
8672b721
XG
517 if (!shadow_accessed_mask)
518 return false;
519
520 if (!is_shadow_present_pte(spte))
521 return false;
522
4132779b
XG
523 if ((spte & shadow_accessed_mask) &&
524 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
525 return false;
526
527 return true;
528}
529
4132779b
XG
530static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
531{
532 return (old_spte & bit_mask) && !(new_spte & bit_mask);
533}
534
7e71a59b
KH
535static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
536{
537 return (old_spte & bit_mask) != (new_spte & bit_mask);
538}
539
1df9f2dc
XG
540/* Rules for using mmu_spte_set:
541 * Set the sptep from nonpresent to present.
542 * Note: the sptep being assigned *must* be either not present
543 * or in a state where the hardware will not attempt to update
544 * the spte.
545 */
546static void mmu_spte_set(u64 *sptep, u64 new_spte)
547{
548 WARN_ON(is_shadow_present_pte(*sptep));
549 __set_spte(sptep, new_spte);
550}
551
552/* Rules for using mmu_spte_update:
553 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
554 *
555 * Whenever we overwrite a writable spte with a read-only one we
556 * should flush remote TLBs. Otherwise rmap_write_protect
557 * will find a read-only spte, even though the writable spte
558 * might be cached on a CPU's TLB, the return value indicates this
559 * case.
1df9f2dc 560 */
6e7d0354 561static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 562{
c7ba5b48 563 u64 old_spte = *sptep;
6e7d0354 564 bool ret = false;
4132779b
XG
565
566 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 567
6e7d0354
XG
568 if (!is_shadow_present_pte(old_spte)) {
569 mmu_spte_set(sptep, new_spte);
570 return ret;
571 }
4132779b 572
c7ba5b48 573 if (!spte_has_volatile_bits(old_spte))
603e0651 574 __update_clear_spte_fast(sptep, new_spte);
4132779b 575 else
603e0651 576 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 577
c7ba5b48
XG
578 /*
579 * For the spte updated out of mmu-lock is safe, since
580 * we always atomicly update it, see the comments in
581 * spte_has_volatile_bits().
582 */
7f31c959
XG
583 if (spte_is_locklessly_modifiable(old_spte) &&
584 !is_writable_pte(new_spte))
6e7d0354
XG
585 ret = true;
586
4132779b 587 if (!shadow_accessed_mask)
6e7d0354 588 return ret;
4132779b 589
7e71a59b
KH
590 /*
591 * Flush TLB when accessed/dirty bits are changed in the page tables,
592 * to guarantee consistency between TLB and page tables.
593 */
594 if (spte_is_bit_changed(old_spte, new_spte,
595 shadow_accessed_mask | shadow_dirty_mask))
596 ret = true;
597
4132779b
XG
598 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
599 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
600 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
601 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
602
603 return ret;
b79b93f9
AK
604}
605
1df9f2dc
XG
606/*
607 * Rules for using mmu_spte_clear_track_bits:
608 * It sets the sptep from present to nonpresent, and track the
609 * state bits, it is used to clear the last level sptep.
610 */
611static int mmu_spte_clear_track_bits(u64 *sptep)
612{
613 pfn_t pfn;
614 u64 old_spte = *sptep;
615
616 if (!spte_has_volatile_bits(old_spte))
603e0651 617 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 618 else
603e0651 619 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
620
621 if (!is_rmap_spte(old_spte))
622 return 0;
623
624 pfn = spte_to_pfn(old_spte);
86fde74c
XG
625
626 /*
627 * KVM does not hold the refcount of the page used by
628 * kvm mmu, before reclaiming the page, we should
629 * unmap it from mmu first.
630 */
bf4bea8e 631 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 632
1df9f2dc
XG
633 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
634 kvm_set_pfn_accessed(pfn);
635 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
636 kvm_set_pfn_dirty(pfn);
637 return 1;
638}
639
640/*
641 * Rules for using mmu_spte_clear_no_track:
642 * Directly clear spte without caring the state bits of sptep,
643 * it is used to set the upper level spte.
644 */
645static void mmu_spte_clear_no_track(u64 *sptep)
646{
603e0651 647 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
648}
649
c2a2ac2b
XG
650static u64 mmu_spte_get_lockless(u64 *sptep)
651{
652 return __get_spte_lockless(sptep);
653}
654
655static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
656{
c142786c
AK
657 /*
658 * Prevent page table teardown by making any free-er wait during
659 * kvm_flush_remote_tlbs() IPI to all active vcpus.
660 */
661 local_irq_disable();
662 vcpu->mode = READING_SHADOW_PAGE_TABLES;
663 /*
664 * Make sure a following spte read is not reordered ahead of the write
665 * to vcpu->mode.
666 */
667 smp_mb();
c2a2ac2b
XG
668}
669
670static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
671{
c142786c
AK
672 /*
673 * Make sure the write to vcpu->mode is not reordered in front of
674 * reads to sptes. If it does, kvm_commit_zap_page() can see us
675 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
676 */
677 smp_mb();
678 vcpu->mode = OUTSIDE_GUEST_MODE;
679 local_irq_enable();
c2a2ac2b
XG
680}
681
e2dec939 682static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 683 struct kmem_cache *base_cache, int min)
714b93da
AK
684{
685 void *obj;
686
687 if (cache->nobjs >= min)
e2dec939 688 return 0;
714b93da 689 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 690 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 691 if (!obj)
e2dec939 692 return -ENOMEM;
714b93da
AK
693 cache->objects[cache->nobjs++] = obj;
694 }
e2dec939 695 return 0;
714b93da
AK
696}
697
f759e2b4
XG
698static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
699{
700 return cache->nobjs;
701}
702
e8ad9a70
XG
703static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
704 struct kmem_cache *cache)
714b93da
AK
705{
706 while (mc->nobjs)
e8ad9a70 707 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
708}
709
c1158e63 710static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 711 int min)
c1158e63 712{
842f22ed 713 void *page;
c1158e63
AK
714
715 if (cache->nobjs >= min)
716 return 0;
717 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 718 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
719 if (!page)
720 return -ENOMEM;
842f22ed 721 cache->objects[cache->nobjs++] = page;
c1158e63
AK
722 }
723 return 0;
724}
725
726static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
727{
728 while (mc->nobjs)
c4d198d5 729 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
730}
731
2e3e5882 732static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 733{
e2dec939
AK
734 int r;
735
53c07b18 736 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 737 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
738 if (r)
739 goto out;
ad312c7c 740 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
741 if (r)
742 goto out;
ad312c7c 743 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 744 mmu_page_header_cache, 4);
e2dec939
AK
745out:
746 return r;
714b93da
AK
747}
748
749static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
750{
53c07b18
XG
751 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
752 pte_list_desc_cache);
ad312c7c 753 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
754 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
755 mmu_page_header_cache);
714b93da
AK
756}
757
80feb89a 758static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
759{
760 void *p;
761
762 BUG_ON(!mc->nobjs);
763 p = mc->objects[--mc->nobjs];
714b93da
AK
764 return p;
765}
766
53c07b18 767static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 768{
80feb89a 769 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
770}
771
53c07b18 772static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 773{
53c07b18 774 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
775}
776
2032a93d
LJ
777static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
778{
779 if (!sp->role.direct)
780 return sp->gfns[index];
781
782 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
783}
784
785static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
786{
787 if (sp->role.direct)
788 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
789 else
790 sp->gfns[index] = gfn;
791}
792
05da4558 793/*
d4dbf470
TY
794 * Return the pointer to the large page information for a given gfn,
795 * handling slots that are not large page aligned.
05da4558 796 */
d4dbf470
TY
797static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
798 struct kvm_memory_slot *slot,
799 int level)
05da4558
MT
800{
801 unsigned long idx;
802
fb03cb6f 803 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 804 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
805}
806
3ed1a478 807static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 808{
d25797b2 809 struct kvm_memory_slot *slot;
d4dbf470 810 struct kvm_lpage_info *linfo;
3ed1a478 811 gfn_t gfn;
d25797b2 812 int i;
05da4558 813
3ed1a478 814 gfn = sp->gfn;
a1f4d395 815 slot = gfn_to_memslot(kvm, gfn);
8a3d08f1 816 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d4dbf470
TY
817 linfo = lpage_info_slot(gfn, slot, i);
818 linfo->write_count += 1;
d25797b2 819 }
332b207d 820 kvm->arch.indirect_shadow_pages++;
05da4558
MT
821}
822
3ed1a478 823static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 824{
d25797b2 825 struct kvm_memory_slot *slot;
d4dbf470 826 struct kvm_lpage_info *linfo;
3ed1a478 827 gfn_t gfn;
d25797b2 828 int i;
05da4558 829
3ed1a478 830 gfn = sp->gfn;
a1f4d395 831 slot = gfn_to_memslot(kvm, gfn);
8a3d08f1 832 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d4dbf470
TY
833 linfo = lpage_info_slot(gfn, slot, i);
834 linfo->write_count -= 1;
835 WARN_ON(linfo->write_count < 0);
d25797b2 836 }
332b207d 837 kvm->arch.indirect_shadow_pages--;
05da4558
MT
838}
839
d25797b2
JR
840static int has_wrprotected_page(struct kvm *kvm,
841 gfn_t gfn,
842 int level)
05da4558 843{
2843099f 844 struct kvm_memory_slot *slot;
d4dbf470 845 struct kvm_lpage_info *linfo;
05da4558 846
a1f4d395 847 slot = gfn_to_memslot(kvm, gfn);
05da4558 848 if (slot) {
d4dbf470
TY
849 linfo = lpage_info_slot(gfn, slot, level);
850 return linfo->write_count;
05da4558
MT
851 }
852
853 return 1;
854}
855
d25797b2 856static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 857{
8f0b1ab6 858 unsigned long page_size;
d25797b2 859 int i, ret = 0;
05da4558 860
8f0b1ab6 861 page_size = kvm_host_page_size(kvm, gfn);
05da4558 862
8a3d08f1 863 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
864 if (page_size >= KVM_HPAGE_SIZE(i))
865 ret = i;
866 else
867 break;
868 }
869
4c2155ce 870 return ret;
05da4558
MT
871}
872
5d163b1c
XG
873static struct kvm_memory_slot *
874gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
875 bool no_dirty_log)
05da4558
MT
876{
877 struct kvm_memory_slot *slot;
5d163b1c
XG
878
879 slot = gfn_to_memslot(vcpu->kvm, gfn);
880 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
881 (no_dirty_log && slot->dirty_bitmap))
882 slot = NULL;
883
884 return slot;
885}
886
887static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
888{
a0a8eaba 889 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
890}
891
892static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
893{
894 int host_level, level, max_level;
05da4558 895
d25797b2
JR
896 host_level = host_mapping_level(vcpu->kvm, large_gfn);
897
898 if (host_level == PT_PAGE_TABLE_LEVEL)
899 return host_level;
900
55dd98c3 901 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
902
903 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
904 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
905 break;
d25797b2
JR
906
907 return level - 1;
05da4558
MT
908}
909
290fc38d 910/*
53c07b18 911 * Pte mapping structures:
cd4a4e53 912 *
53c07b18 913 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 914 *
53c07b18
XG
915 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
916 * pte_list_desc containing more mappings.
53a27b39 917 *
53c07b18 918 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
919 * the spte was not added.
920 *
cd4a4e53 921 */
53c07b18
XG
922static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
923 unsigned long *pte_list)
cd4a4e53 924{
53c07b18 925 struct pte_list_desc *desc;
53a27b39 926 int i, count = 0;
cd4a4e53 927
53c07b18
XG
928 if (!*pte_list) {
929 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
930 *pte_list = (unsigned long)spte;
931 } else if (!(*pte_list & 1)) {
932 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
933 desc = mmu_alloc_pte_list_desc(vcpu);
934 desc->sptes[0] = (u64 *)*pte_list;
d555c333 935 desc->sptes[1] = spte;
53c07b18 936 *pte_list = (unsigned long)desc | 1;
cb16a7b3 937 ++count;
cd4a4e53 938 } else {
53c07b18
XG
939 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
940 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
941 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 942 desc = desc->more;
53c07b18 943 count += PTE_LIST_EXT;
53a27b39 944 }
53c07b18
XG
945 if (desc->sptes[PTE_LIST_EXT-1]) {
946 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
947 desc = desc->more;
948 }
d555c333 949 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 950 ++count;
d555c333 951 desc->sptes[i] = spte;
cd4a4e53 952 }
53a27b39 953 return count;
cd4a4e53
AK
954}
955
53c07b18
XG
956static void
957pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
958 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
959{
960 int j;
961
53c07b18 962 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 963 ;
d555c333
AK
964 desc->sptes[i] = desc->sptes[j];
965 desc->sptes[j] = NULL;
cd4a4e53
AK
966 if (j != 0)
967 return;
968 if (!prev_desc && !desc->more)
53c07b18 969 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
970 else
971 if (prev_desc)
972 prev_desc->more = desc->more;
973 else
53c07b18
XG
974 *pte_list = (unsigned long)desc->more | 1;
975 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
976}
977
53c07b18 978static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 979{
53c07b18
XG
980 struct pte_list_desc *desc;
981 struct pte_list_desc *prev_desc;
cd4a4e53
AK
982 int i;
983
53c07b18
XG
984 if (!*pte_list) {
985 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 986 BUG();
53c07b18
XG
987 } else if (!(*pte_list & 1)) {
988 rmap_printk("pte_list_remove: %p 1->0\n", spte);
989 if ((u64 *)*pte_list != spte) {
990 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
991 BUG();
992 }
53c07b18 993 *pte_list = 0;
cd4a4e53 994 } else {
53c07b18
XG
995 rmap_printk("pte_list_remove: %p many->many\n", spte);
996 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
997 prev_desc = NULL;
998 while (desc) {
53c07b18 999 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 1000 if (desc->sptes[i] == spte) {
53c07b18 1001 pte_list_desc_remove_entry(pte_list,
714b93da 1002 desc, i,
cd4a4e53
AK
1003 prev_desc);
1004 return;
1005 }
1006 prev_desc = desc;
1007 desc = desc->more;
1008 }
53c07b18 1009 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1010 BUG();
1011 }
1012}
1013
67052b35
XG
1014typedef void (*pte_list_walk_fn) (u64 *spte);
1015static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1016{
1017 struct pte_list_desc *desc;
1018 int i;
1019
1020 if (!*pte_list)
1021 return;
1022
1023 if (!(*pte_list & 1))
1024 return fn((u64 *)*pte_list);
1025
1026 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1027 while (desc) {
1028 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1029 fn(desc->sptes[i]);
1030 desc = desc->more;
1031 }
1032}
1033
9373e2c0 1034static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 1035 struct kvm_memory_slot *slot)
53c07b18 1036{
77d11309 1037 unsigned long idx;
53c07b18 1038
77d11309 1039 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1040 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1041}
1042
9b9b1492
TY
1043/*
1044 * Take gfn and return the reverse mapping to it.
1045 */
1046static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1047{
1048 struct kvm_memory_slot *slot;
1049
1050 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 1051 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
1052}
1053
f759e2b4
XG
1054static bool rmap_can_add(struct kvm_vcpu *vcpu)
1055{
1056 struct kvm_mmu_memory_cache *cache;
1057
1058 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1059 return mmu_memory_cache_free_objects(cache);
1060}
1061
53c07b18
XG
1062static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1063{
1064 struct kvm_mmu_page *sp;
1065 unsigned long *rmapp;
1066
53c07b18
XG
1067 sp = page_header(__pa(spte));
1068 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1069 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1070 return pte_list_add(vcpu, spte, rmapp);
1071}
1072
53c07b18
XG
1073static void rmap_remove(struct kvm *kvm, u64 *spte)
1074{
1075 struct kvm_mmu_page *sp;
1076 gfn_t gfn;
1077 unsigned long *rmapp;
1078
1079 sp = page_header(__pa(spte));
1080 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1081 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1082 pte_list_remove(spte, rmapp);
1083}
1084
1e3f42f0
TY
1085/*
1086 * Used by the following functions to iterate through the sptes linked by a
1087 * rmap. All fields are private and not assumed to be used outside.
1088 */
1089struct rmap_iterator {
1090 /* private fields */
1091 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1092 int pos; /* index of the sptep */
1093};
1094
1095/*
1096 * Iteration must be started by this function. This should also be used after
1097 * removing/dropping sptes from the rmap link because in such cases the
1098 * information in the itererator may not be valid.
1099 *
1100 * Returns sptep if found, NULL otherwise.
1101 */
1102static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1103{
1104 if (!rmap)
1105 return NULL;
1106
1107 if (!(rmap & 1)) {
1108 iter->desc = NULL;
1109 return (u64 *)rmap;
1110 }
1111
1112 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1113 iter->pos = 0;
1114 return iter->desc->sptes[iter->pos];
1115}
1116
1117/*
1118 * Must be used with a valid iterator: e.g. after rmap_get_first().
1119 *
1120 * Returns sptep if found, NULL otherwise.
1121 */
1122static u64 *rmap_get_next(struct rmap_iterator *iter)
1123{
1124 if (iter->desc) {
1125 if (iter->pos < PTE_LIST_EXT - 1) {
1126 u64 *sptep;
1127
1128 ++iter->pos;
1129 sptep = iter->desc->sptes[iter->pos];
1130 if (sptep)
1131 return sptep;
1132 }
1133
1134 iter->desc = iter->desc->more;
1135
1136 if (iter->desc) {
1137 iter->pos = 0;
1138 /* desc->sptes[0] cannot be NULL */
1139 return iter->desc->sptes[iter->pos];
1140 }
1141 }
1142
1143 return NULL;
1144}
1145
0d536790
XG
1146#define for_each_rmap_spte(_rmap_, _iter_, _spte_) \
1147 for (_spte_ = rmap_get_first(*_rmap_, _iter_); \
1148 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;}); \
1149 _spte_ = rmap_get_next(_iter_))
1150
c3707958 1151static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1152{
1df9f2dc 1153 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1154 rmap_remove(kvm, sptep);
be38d276
AK
1155}
1156
8e22f955
XG
1157
1158static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1159{
1160 if (is_large_pte(*sptep)) {
1161 WARN_ON(page_header(__pa(sptep))->role.level ==
1162 PT_PAGE_TABLE_LEVEL);
1163 drop_spte(kvm, sptep);
1164 --kvm->stat.lpages;
1165 return true;
1166 }
1167
1168 return false;
1169}
1170
1171static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1172{
1173 if (__drop_large_spte(vcpu->kvm, sptep))
1174 kvm_flush_remote_tlbs(vcpu->kvm);
1175}
1176
1177/*
49fde340 1178 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1179 * spte write-protection is caused by protecting shadow page table.
49fde340 1180 *
b4619660 1181 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1182 * protection:
1183 * - for dirty logging, the spte can be set to writable at anytime if
1184 * its dirty bitmap is properly set.
1185 * - for spte protection, the spte can be writable only after unsync-ing
1186 * shadow page.
8e22f955 1187 *
c126d94f 1188 * Return true if tlb need be flushed.
8e22f955 1189 */
c126d94f 1190static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1191{
1192 u64 spte = *sptep;
1193
49fde340
XG
1194 if (!is_writable_pte(spte) &&
1195 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1196 return false;
1197
1198 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1199
49fde340
XG
1200 if (pt_protect)
1201 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1202 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1203
c126d94f 1204 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1205}
1206
49fde340 1207static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1208 bool pt_protect)
98348e95 1209{
1e3f42f0
TY
1210 u64 *sptep;
1211 struct rmap_iterator iter;
d13bc5b5 1212 bool flush = false;
374cbac0 1213
0d536790 1214 for_each_rmap_spte(rmapp, &iter, sptep)
c126d94f 1215 flush |= spte_write_protect(kvm, sptep, pt_protect);
855149aa 1216
d13bc5b5 1217 return flush;
a0ed4607
TY
1218}
1219
f4b4b180
KH
1220static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1221{
1222 u64 spte = *sptep;
1223
1224 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1225
1226 spte &= ~shadow_dirty_mask;
1227
1228 return mmu_spte_update(sptep, spte);
1229}
1230
1231static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1232{
1233 u64 *sptep;
1234 struct rmap_iterator iter;
1235 bool flush = false;
1236
0d536790 1237 for_each_rmap_spte(rmapp, &iter, sptep)
f4b4b180 1238 flush |= spte_clear_dirty(kvm, sptep);
f4b4b180
KH
1239
1240 return flush;
1241}
1242
1243static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1244{
1245 u64 spte = *sptep;
1246
1247 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1248
1249 spte |= shadow_dirty_mask;
1250
1251 return mmu_spte_update(sptep, spte);
1252}
1253
1254static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1255{
1256 u64 *sptep;
1257 struct rmap_iterator iter;
1258 bool flush = false;
1259
0d536790 1260 for_each_rmap_spte(rmapp, &iter, sptep)
f4b4b180 1261 flush |= spte_set_dirty(kvm, sptep);
f4b4b180
KH
1262
1263 return flush;
1264}
1265
5dc99b23 1266/**
3b0f1d01 1267 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1268 * @kvm: kvm instance
1269 * @slot: slot to protect
1270 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1271 * @mask: indicates which pages we should protect
1272 *
1273 * Used when we do not need to care about huge page mappings: e.g. during dirty
1274 * logging we do not have any such mappings.
1275 */
3b0f1d01 1276static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1277 struct kvm_memory_slot *slot,
1278 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1279{
1280 unsigned long *rmapp;
a0ed4607 1281
5dc99b23 1282 while (mask) {
65fbe37c
TY
1283 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1284 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1285 __rmap_write_protect(kvm, rmapp, false);
05da4558 1286
5dc99b23
TY
1287 /* clear the first set bit */
1288 mask &= mask - 1;
1289 }
374cbac0
AK
1290}
1291
f4b4b180
KH
1292/**
1293 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1294 * @kvm: kvm instance
1295 * @slot: slot to clear D-bit
1296 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1297 * @mask: indicates which pages we should clear D-bit
1298 *
1299 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1300 */
1301void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1302 struct kvm_memory_slot *slot,
1303 gfn_t gfn_offset, unsigned long mask)
1304{
1305 unsigned long *rmapp;
1306
1307 while (mask) {
1308 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1309 PT_PAGE_TABLE_LEVEL, slot);
1310 __rmap_clear_dirty(kvm, rmapp);
1311
1312 /* clear the first set bit */
1313 mask &= mask - 1;
1314 }
1315}
1316EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1317
3b0f1d01
KH
1318/**
1319 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1320 * PT level pages.
1321 *
1322 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1323 * enable dirty logging for them.
1324 *
1325 * Used when we do not need to care about huge page mappings: e.g. during dirty
1326 * logging we do not have any such mappings.
1327 */
1328void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1329 struct kvm_memory_slot *slot,
1330 gfn_t gfn_offset, unsigned long mask)
1331{
88178fd4
KH
1332 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1333 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1334 mask);
1335 else
1336 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1337}
1338
2f84569f 1339static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1340{
1341 struct kvm_memory_slot *slot;
5dc99b23
TY
1342 unsigned long *rmapp;
1343 int i;
2f84569f 1344 bool write_protected = false;
95d4c16c
TY
1345
1346 slot = gfn_to_memslot(kvm, gfn);
5dc99b23 1347
8a3d08f1 1348 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
5dc99b23 1349 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1350 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1351 }
1352
1353 return write_protected;
95d4c16c
TY
1354}
1355
6a49f85c 1356static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
e930bffe 1357{
1e3f42f0
TY
1358 u64 *sptep;
1359 struct rmap_iterator iter;
6a49f85c 1360 bool flush = false;
e930bffe 1361
1e3f42f0
TY
1362 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1363 BUG_ON(!(*sptep & PT_PRESENT_MASK));
6a49f85c 1364 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1365
1366 drop_spte(kvm, sptep);
6a49f85c 1367 flush = true;
e930bffe 1368 }
1e3f42f0 1369
6a49f85c
XG
1370 return flush;
1371}
1372
1373static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1374 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1375 unsigned long data)
1376{
1377 return kvm_zap_rmapp(kvm, rmapp);
e930bffe
AA
1378}
1379
8a8365c5 1380static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1381 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1382 unsigned long data)
3da0dd43 1383{
1e3f42f0
TY
1384 u64 *sptep;
1385 struct rmap_iterator iter;
3da0dd43 1386 int need_flush = 0;
1e3f42f0 1387 u64 new_spte;
3da0dd43
IE
1388 pte_t *ptep = (pte_t *)data;
1389 pfn_t new_pfn;
1390
1391 WARN_ON(pte_huge(*ptep));
1392 new_pfn = pte_pfn(*ptep);
1e3f42f0 1393
0d536790
XG
1394restart:
1395 for_each_rmap_spte(rmapp, &iter, sptep) {
8a9522d2
ALC
1396 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1397 sptep, *sptep, gfn, level);
1e3f42f0 1398
3da0dd43 1399 need_flush = 1;
1e3f42f0 1400
3da0dd43 1401 if (pte_write(*ptep)) {
1e3f42f0 1402 drop_spte(kvm, sptep);
0d536790 1403 goto restart;
3da0dd43 1404 } else {
1e3f42f0 1405 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1406 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1407
1408 new_spte &= ~PT_WRITABLE_MASK;
1409 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1410 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1411
1412 mmu_spte_clear_track_bits(sptep);
1413 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1414 }
1415 }
1e3f42f0 1416
3da0dd43
IE
1417 if (need_flush)
1418 kvm_flush_remote_tlbs(kvm);
1419
1420 return 0;
1421}
1422
6ce1f4e2
XG
1423struct slot_rmap_walk_iterator {
1424 /* input fields. */
1425 struct kvm_memory_slot *slot;
1426 gfn_t start_gfn;
1427 gfn_t end_gfn;
1428 int start_level;
1429 int end_level;
1430
1431 /* output fields. */
1432 gfn_t gfn;
1433 unsigned long *rmap;
1434 int level;
1435
1436 /* private field. */
1437 unsigned long *end_rmap;
1438};
1439
1440static void
1441rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1442{
1443 iterator->level = level;
1444 iterator->gfn = iterator->start_gfn;
1445 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1446 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1447 iterator->slot);
1448}
1449
1450static void
1451slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1452 struct kvm_memory_slot *slot, int start_level,
1453 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1454{
1455 iterator->slot = slot;
1456 iterator->start_level = start_level;
1457 iterator->end_level = end_level;
1458 iterator->start_gfn = start_gfn;
1459 iterator->end_gfn = end_gfn;
1460
1461 rmap_walk_init_level(iterator, iterator->start_level);
1462}
1463
1464static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1465{
1466 return !!iterator->rmap;
1467}
1468
1469static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1470{
1471 if (++iterator->rmap <= iterator->end_rmap) {
1472 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1473 return;
1474 }
1475
1476 if (++iterator->level > iterator->end_level) {
1477 iterator->rmap = NULL;
1478 return;
1479 }
1480
1481 rmap_walk_init_level(iterator, iterator->level);
1482}
1483
1484#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1485 _start_gfn, _end_gfn, _iter_) \
1486 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1487 _end_level_, _start_gfn, _end_gfn); \
1488 slot_rmap_walk_okay(_iter_); \
1489 slot_rmap_walk_next(_iter_))
1490
84504ef3
TY
1491static int kvm_handle_hva_range(struct kvm *kvm,
1492 unsigned long start,
1493 unsigned long end,
1494 unsigned long data,
1495 int (*handler)(struct kvm *kvm,
1496 unsigned long *rmapp,
048212d0 1497 struct kvm_memory_slot *slot,
8a9522d2
ALC
1498 gfn_t gfn,
1499 int level,
84504ef3 1500 unsigned long data))
e930bffe 1501{
bc6678a3 1502 struct kvm_memslots *slots;
be6ba0f0 1503 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1504 struct slot_rmap_walk_iterator iterator;
1505 int ret = 0;
bc6678a3 1506
90d83dc3 1507 slots = kvm_memslots(kvm);
e930bffe 1508
be6ba0f0 1509 kvm_for_each_memslot(memslot, slots) {
84504ef3 1510 unsigned long hva_start, hva_end;
bcd3ef58 1511 gfn_t gfn_start, gfn_end;
e930bffe 1512
84504ef3
TY
1513 hva_start = max(start, memslot->userspace_addr);
1514 hva_end = min(end, memslot->userspace_addr +
1515 (memslot->npages << PAGE_SHIFT));
1516 if (hva_start >= hva_end)
1517 continue;
1518 /*
1519 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1520 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1521 */
bcd3ef58 1522 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1523 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1524
6ce1f4e2
XG
1525 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1526 PT_MAX_HUGEPAGE_LEVEL, gfn_start, gfn_end - 1,
1527 &iterator)
1528 ret |= handler(kvm, iterator.rmap, memslot,
1529 iterator.gfn, iterator.level, data);
e930bffe
AA
1530 }
1531
f395302e 1532 return ret;
e930bffe
AA
1533}
1534
84504ef3
TY
1535static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1536 unsigned long data,
1537 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1538 struct kvm_memory_slot *slot,
8a9522d2 1539 gfn_t gfn, int level,
84504ef3
TY
1540 unsigned long data))
1541{
1542 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1543}
1544
1545int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1546{
3da0dd43
IE
1547 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1548}
1549
b3ae2096
TY
1550int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1551{
1552 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1553}
1554
3da0dd43
IE
1555void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1556{
8a8365c5 1557 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1558}
1559
8a8365c5 1560static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1561 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1562 unsigned long data)
e930bffe 1563{
1e3f42f0 1564 u64 *sptep;
79f702a6 1565 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1566 int young = 0;
1567
57128468 1568 BUG_ON(!shadow_accessed_mask);
534e38b4 1569
0d536790 1570 for_each_rmap_spte(rmapp, &iter, sptep)
3f6d8c8a 1571 if (*sptep & shadow_accessed_mask) {
e930bffe 1572 young = 1;
3f6d8c8a
XH
1573 clear_bit((ffs(shadow_accessed_mask) - 1),
1574 (unsigned long *)sptep);
e930bffe 1575 }
0d536790 1576
8a9522d2 1577 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1578 return young;
1579}
1580
8ee53820 1581static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1582 struct kvm_memory_slot *slot, gfn_t gfn,
1583 int level, unsigned long data)
8ee53820 1584{
1e3f42f0
TY
1585 u64 *sptep;
1586 struct rmap_iterator iter;
8ee53820
AA
1587 int young = 0;
1588
1589 /*
1590 * If there's no access bit in the secondary pte set by the
1591 * hardware it's up to gup-fast/gup to set the access bit in
1592 * the primary pte or in the page structure.
1593 */
1594 if (!shadow_accessed_mask)
1595 goto out;
1596
0d536790 1597 for_each_rmap_spte(rmapp, &iter, sptep)
3f6d8c8a 1598 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1599 young = 1;
1600 break;
1601 }
8ee53820
AA
1602out:
1603 return young;
1604}
1605
53a27b39
MT
1606#define RMAP_RECYCLE_THRESHOLD 1000
1607
852e3c19 1608static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1609{
1610 unsigned long *rmapp;
852e3c19
JR
1611 struct kvm_mmu_page *sp;
1612
1613 sp = page_header(__pa(spte));
53a27b39 1614
852e3c19 1615 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1616
8a9522d2 1617 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1618 kvm_flush_remote_tlbs(vcpu->kvm);
1619}
1620
57128468 1621int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1622{
57128468
ALC
1623 /*
1624 * In case of absence of EPT Access and Dirty Bits supports,
1625 * emulate the accessed bit for EPT, by checking if this page has
1626 * an EPT mapping, and clearing it if it does. On the next access,
1627 * a new EPT mapping will be established.
1628 * This has some overhead, but not as much as the cost of swapping
1629 * out actively used pages or breaking up actively used hugepages.
1630 */
1631 if (!shadow_accessed_mask) {
1632 /*
1633 * We are holding the kvm->mmu_lock, and we are blowing up
1634 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1635 * This is correct as long as we don't decouple the mmu_lock
1636 * protected regions (like invalidate_range_start|end does).
1637 */
1638 kvm->mmu_notifier_seq++;
1639 return kvm_handle_hva_range(kvm, start, end, 0,
1640 kvm_unmap_rmapp);
1641 }
1642
1643 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1644}
1645
8ee53820
AA
1646int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1647{
1648 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1649}
1650
d6c69ee9 1651#ifdef MMU_DEBUG
47ad8e68 1652static int is_empty_shadow_page(u64 *spt)
6aa8b732 1653{
139bdb2d
AK
1654 u64 *pos;
1655 u64 *end;
1656
47ad8e68 1657 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1658 if (is_shadow_present_pte(*pos)) {
b8688d51 1659 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1660 pos, *pos);
6aa8b732 1661 return 0;
139bdb2d 1662 }
6aa8b732
AK
1663 return 1;
1664}
d6c69ee9 1665#endif
6aa8b732 1666
45221ab6
DH
1667/*
1668 * This value is the sum of all of the kvm instances's
1669 * kvm->arch.n_used_mmu_pages values. We need a global,
1670 * aggregate version in order to make the slab shrinker
1671 * faster
1672 */
1673static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1674{
1675 kvm->arch.n_used_mmu_pages += nr;
1676 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1677}
1678
834be0d8 1679static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1680{
fa4a2c08 1681 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1682 hlist_del(&sp->hash_link);
bd4c86ea
XG
1683 list_del(&sp->link);
1684 free_page((unsigned long)sp->spt);
834be0d8
GN
1685 if (!sp->role.direct)
1686 free_page((unsigned long)sp->gfns);
e8ad9a70 1687 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1688}
1689
cea0f0e7
AK
1690static unsigned kvm_page_table_hashfn(gfn_t gfn)
1691{
1ae0a13d 1692 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1693}
1694
714b93da 1695static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1696 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1697{
cea0f0e7
AK
1698 if (!parent_pte)
1699 return;
cea0f0e7 1700
67052b35 1701 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1702}
1703
4db35314 1704static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1705 u64 *parent_pte)
1706{
67052b35 1707 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1708}
1709
bcdd9a93
XG
1710static void drop_parent_pte(struct kvm_mmu_page *sp,
1711 u64 *parent_pte)
1712{
1713 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1714 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1715}
1716
67052b35
XG
1717static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1718 u64 *parent_pte, int direct)
ad8cfbe3 1719{
67052b35 1720 struct kvm_mmu_page *sp;
7ddca7e4 1721
80feb89a
TY
1722 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1723 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1724 if (!direct)
80feb89a 1725 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1726 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1727
1728 /*
1729 * The active_mmu_pages list is the FIFO list, do not move the
1730 * page until it is zapped. kvm_zap_obsolete_pages depends on
1731 * this feature. See the comments in kvm_zap_obsolete_pages().
1732 */
67052b35 1733 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1734 sp->parent_ptes = 0;
1735 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1736 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1737 return sp;
ad8cfbe3
MT
1738}
1739
67052b35 1740static void mark_unsync(u64 *spte);
1047df1f 1741static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1742{
67052b35 1743 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1744}
1745
67052b35 1746static void mark_unsync(u64 *spte)
0074ff63 1747{
67052b35 1748 struct kvm_mmu_page *sp;
1047df1f 1749 unsigned int index;
0074ff63 1750
67052b35 1751 sp = page_header(__pa(spte));
1047df1f
XG
1752 index = spte - sp->spt;
1753 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1754 return;
1047df1f 1755 if (sp->unsync_children++)
0074ff63 1756 return;
1047df1f 1757 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1758}
1759
e8bc217a 1760static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1761 struct kvm_mmu_page *sp)
e8bc217a
MT
1762{
1763 return 1;
1764}
1765
a7052897
MT
1766static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1767{
1768}
1769
0f53b5b1
XG
1770static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1771 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1772 const void *pte)
0f53b5b1
XG
1773{
1774 WARN_ON(1);
1775}
1776
60c8aec6
MT
1777#define KVM_PAGE_ARRAY_NR 16
1778
1779struct kvm_mmu_pages {
1780 struct mmu_page_and_offset {
1781 struct kvm_mmu_page *sp;
1782 unsigned int idx;
1783 } page[KVM_PAGE_ARRAY_NR];
1784 unsigned int nr;
1785};
1786
cded19f3
HE
1787static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1788 int idx)
4731d4c7 1789{
60c8aec6 1790 int i;
4731d4c7 1791
60c8aec6
MT
1792 if (sp->unsync)
1793 for (i=0; i < pvec->nr; i++)
1794 if (pvec->page[i].sp == sp)
1795 return 0;
1796
1797 pvec->page[pvec->nr].sp = sp;
1798 pvec->page[pvec->nr].idx = idx;
1799 pvec->nr++;
1800 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1801}
1802
1803static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1804 struct kvm_mmu_pages *pvec)
1805{
1806 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1807
37178b8b 1808 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1809 struct kvm_mmu_page *child;
4731d4c7
MT
1810 u64 ent = sp->spt[i];
1811
7a8f1a74
XG
1812 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1813 goto clear_child_bitmap;
1814
1815 child = page_header(ent & PT64_BASE_ADDR_MASK);
1816
1817 if (child->unsync_children) {
1818 if (mmu_pages_add(pvec, child, i))
1819 return -ENOSPC;
1820
1821 ret = __mmu_unsync_walk(child, pvec);
1822 if (!ret)
1823 goto clear_child_bitmap;
1824 else if (ret > 0)
1825 nr_unsync_leaf += ret;
1826 else
1827 return ret;
1828 } else if (child->unsync) {
1829 nr_unsync_leaf++;
1830 if (mmu_pages_add(pvec, child, i))
1831 return -ENOSPC;
1832 } else
1833 goto clear_child_bitmap;
1834
1835 continue;
1836
1837clear_child_bitmap:
1838 __clear_bit(i, sp->unsync_child_bitmap);
1839 sp->unsync_children--;
1840 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1841 }
1842
4731d4c7 1843
60c8aec6
MT
1844 return nr_unsync_leaf;
1845}
1846
1847static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1848 struct kvm_mmu_pages *pvec)
1849{
1850 if (!sp->unsync_children)
1851 return 0;
1852
1853 mmu_pages_add(pvec, sp, 0);
1854 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1855}
1856
4731d4c7
MT
1857static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1858{
1859 WARN_ON(!sp->unsync);
5e1b3ddb 1860 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1861 sp->unsync = 0;
1862 --kvm->stat.mmu_unsync;
1863}
1864
7775834a
XG
1865static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1866 struct list_head *invalid_list);
1867static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1868 struct list_head *invalid_list);
4731d4c7 1869
f34d251d
XG
1870/*
1871 * NOTE: we should pay more attention on the zapped-obsolete page
1872 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1873 * since it has been deleted from active_mmu_pages but still can be found
1874 * at hast list.
1875 *
1876 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1877 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1878 * all the obsolete pages.
1879 */
1044b030
TY
1880#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1881 hlist_for_each_entry(_sp, \
1882 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1883 if ((_sp)->gfn != (_gfn)) {} else
1884
1885#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1886 for_each_gfn_sp(_kvm, _sp, _gfn) \
1887 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1888
f918b443 1889/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1890static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1891 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1892{
5b7e0102 1893 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1894 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1895 return 1;
1896 }
1897
f918b443 1898 if (clear_unsync)
1d9dc7e0 1899 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1900
a4a8e6f7 1901 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1902 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1903 return 1;
1904 }
1905
77c3913b 1906 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4731d4c7
MT
1907 return 0;
1908}
1909
1d9dc7e0
XG
1910static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1911 struct kvm_mmu_page *sp)
1912{
d98ba053 1913 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1914 int ret;
1915
d98ba053 1916 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1917 if (ret)
d98ba053
XG
1918 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1919
1d9dc7e0
XG
1920 return ret;
1921}
1922
e37fa785
XG
1923#ifdef CONFIG_KVM_MMU_AUDIT
1924#include "mmu_audit.c"
1925#else
1926static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1927static void mmu_audit_disable(void) { }
1928#endif
1929
d98ba053
XG
1930static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1931 struct list_head *invalid_list)
1d9dc7e0 1932{
d98ba053 1933 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1934}
1935
9f1a122f
XG
1936/* @gfn should be write-protected at the call site */
1937static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1938{
9f1a122f 1939 struct kvm_mmu_page *s;
d98ba053 1940 LIST_HEAD(invalid_list);
9f1a122f
XG
1941 bool flush = false;
1942
b67bfe0d 1943 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1944 if (!s->unsync)
9f1a122f
XG
1945 continue;
1946
1947 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1948 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1949 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1950 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1951 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1952 continue;
1953 }
9f1a122f
XG
1954 flush = true;
1955 }
1956
d98ba053 1957 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f 1958 if (flush)
77c3913b 1959 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
9f1a122f
XG
1960}
1961
60c8aec6
MT
1962struct mmu_page_path {
1963 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1964 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1965};
1966
60c8aec6
MT
1967#define for_each_sp(pvec, sp, parents, i) \
1968 for (i = mmu_pages_next(&pvec, &parents, -1), \
1969 sp = pvec.page[i].sp; \
1970 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1971 i = mmu_pages_next(&pvec, &parents, i))
1972
cded19f3
HE
1973static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1974 struct mmu_page_path *parents,
1975 int i)
60c8aec6
MT
1976{
1977 int n;
1978
1979 for (n = i+1; n < pvec->nr; n++) {
1980 struct kvm_mmu_page *sp = pvec->page[n].sp;
1981
1982 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1983 parents->idx[0] = pvec->page[n].idx;
1984 return n;
1985 }
1986
1987 parents->parent[sp->role.level-2] = sp;
1988 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1989 }
1990
1991 return n;
1992}
1993
cded19f3 1994static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1995{
60c8aec6
MT
1996 struct kvm_mmu_page *sp;
1997 unsigned int level = 0;
1998
1999 do {
2000 unsigned int idx = parents->idx[level];
4731d4c7 2001
60c8aec6
MT
2002 sp = parents->parent[level];
2003 if (!sp)
2004 return;
2005
2006 --sp->unsync_children;
2007 WARN_ON((int)sp->unsync_children < 0);
2008 __clear_bit(idx, sp->unsync_child_bitmap);
2009 level++;
2010 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
2011}
2012
60c8aec6
MT
2013static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2014 struct mmu_page_path *parents,
2015 struct kvm_mmu_pages *pvec)
4731d4c7 2016{
60c8aec6
MT
2017 parents->parent[parent->role.level-1] = NULL;
2018 pvec->nr = 0;
2019}
4731d4c7 2020
60c8aec6
MT
2021static void mmu_sync_children(struct kvm_vcpu *vcpu,
2022 struct kvm_mmu_page *parent)
2023{
2024 int i;
2025 struct kvm_mmu_page *sp;
2026 struct mmu_page_path parents;
2027 struct kvm_mmu_pages pages;
d98ba053 2028 LIST_HEAD(invalid_list);
60c8aec6
MT
2029
2030 kvm_mmu_pages_init(parent, &parents, &pages);
2031 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2032 bool protected = false;
b1a36821
MT
2033
2034 for_each_sp(pages, sp, parents, i)
2035 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
2036
2037 if (protected)
2038 kvm_flush_remote_tlbs(vcpu->kvm);
2039
60c8aec6 2040 for_each_sp(pages, sp, parents, i) {
d98ba053 2041 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2042 mmu_pages_clear_parents(&parents);
2043 }
d98ba053 2044 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 2045 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
2046 kvm_mmu_pages_init(parent, &parents, &pages);
2047 }
4731d4c7
MT
2048}
2049
c3707958
XG
2050static void init_shadow_page_table(struct kvm_mmu_page *sp)
2051{
2052 int i;
2053
2054 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2055 sp->spt[i] = 0ull;
2056}
2057
a30f47cb
XG
2058static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2059{
2060 sp->write_flooding_count = 0;
2061}
2062
2063static void clear_sp_write_flooding_count(u64 *spte)
2064{
2065 struct kvm_mmu_page *sp = page_header(__pa(spte));
2066
2067 __clear_sp_write_flooding_count(sp);
2068}
2069
5304b8d3
XG
2070static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2071{
2072 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2073}
2074
cea0f0e7
AK
2075static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2076 gfn_t gfn,
2077 gva_t gaddr,
2078 unsigned level,
f6e2c02b 2079 int direct,
41074d07 2080 unsigned access,
f7d9c7b7 2081 u64 *parent_pte)
cea0f0e7
AK
2082{
2083 union kvm_mmu_page_role role;
cea0f0e7 2084 unsigned quadrant;
9f1a122f 2085 struct kvm_mmu_page *sp;
9f1a122f 2086 bool need_sync = false;
cea0f0e7 2087
a770f6f2 2088 role = vcpu->arch.mmu.base_role;
cea0f0e7 2089 role.level = level;
f6e2c02b 2090 role.direct = direct;
84b0c8c6 2091 if (role.direct)
5b7e0102 2092 role.cr4_pae = 0;
41074d07 2093 role.access = access;
c5a78f2b
JR
2094 if (!vcpu->arch.mmu.direct_map
2095 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2096 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2097 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2098 role.quadrant = quadrant;
2099 }
b67bfe0d 2100 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
2101 if (is_obsolete_sp(vcpu->kvm, sp))
2102 continue;
2103
7ae680eb
XG
2104 if (!need_sync && sp->unsync)
2105 need_sync = true;
4731d4c7 2106
7ae680eb
XG
2107 if (sp->role.word != role.word)
2108 continue;
4731d4c7 2109
7ae680eb
XG
2110 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2111 break;
e02aa901 2112
7ae680eb
XG
2113 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2114 if (sp->unsync_children) {
a8eeb04a 2115 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
2116 kvm_mmu_mark_parents_unsync(sp);
2117 } else if (sp->unsync)
2118 kvm_mmu_mark_parents_unsync(sp);
e02aa901 2119
a30f47cb 2120 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
2121 trace_kvm_mmu_get_page(sp, false);
2122 return sp;
2123 }
dfc5aa00 2124 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 2125 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
2126 if (!sp)
2127 return sp;
4db35314
AK
2128 sp->gfn = gfn;
2129 sp->role = role;
7ae680eb
XG
2130 hlist_add_head(&sp->hash_link,
2131 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2132 if (!direct) {
b1a36821
MT
2133 if (rmap_write_protect(vcpu->kvm, gfn))
2134 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
2135 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2136 kvm_sync_pages(vcpu, gfn);
2137
3ed1a478 2138 account_shadowed(vcpu->kvm, sp);
4731d4c7 2139 }
5304b8d3 2140 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
c3707958 2141 init_shadow_page_table(sp);
f691fe1d 2142 trace_kvm_mmu_get_page(sp, true);
4db35314 2143 return sp;
cea0f0e7
AK
2144}
2145
2d11123a
AK
2146static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2147 struct kvm_vcpu *vcpu, u64 addr)
2148{
2149 iterator->addr = addr;
2150 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2151 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2152
2153 if (iterator->level == PT64_ROOT_LEVEL &&
2154 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2155 !vcpu->arch.mmu.direct_map)
2156 --iterator->level;
2157
2d11123a
AK
2158 if (iterator->level == PT32E_ROOT_LEVEL) {
2159 iterator->shadow_addr
2160 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2161 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2162 --iterator->level;
2163 if (!iterator->shadow_addr)
2164 iterator->level = 0;
2165 }
2166}
2167
2168static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2169{
2170 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2171 return false;
4d88954d 2172
2d11123a
AK
2173 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2174 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2175 return true;
2176}
2177
c2a2ac2b
XG
2178static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2179 u64 spte)
2d11123a 2180{
c2a2ac2b 2181 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2182 iterator->level = 0;
2183 return;
2184 }
2185
c2a2ac2b 2186 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2187 --iterator->level;
2188}
2189
c2a2ac2b
XG
2190static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2191{
2192 return __shadow_walk_next(iterator, *iterator->sptep);
2193}
2194
7a1638ce 2195static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
32ef26a3
AK
2196{
2197 u64 spte;
2198
7a1638ce
YZ
2199 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2200 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2201
24db2734 2202 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
7a1638ce
YZ
2203 shadow_user_mask | shadow_x_mask;
2204
2205 if (accessed)
2206 spte |= shadow_accessed_mask;
24db2734 2207
1df9f2dc 2208 mmu_spte_set(sptep, spte);
32ef26a3
AK
2209}
2210
a357bd22
AK
2211static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2212 unsigned direct_access)
2213{
2214 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2215 struct kvm_mmu_page *child;
2216
2217 /*
2218 * For the direct sp, if the guest pte's dirty bit
2219 * changed form clean to dirty, it will corrupt the
2220 * sp's access: allow writable in the read-only sp,
2221 * so we should update the spte at this point to get
2222 * a new sp with the correct access.
2223 */
2224 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2225 if (child->role.access == direct_access)
2226 return;
2227
bcdd9a93 2228 drop_parent_pte(child, sptep);
a357bd22
AK
2229 kvm_flush_remote_tlbs(vcpu->kvm);
2230 }
2231}
2232
505aef8f 2233static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2234 u64 *spte)
2235{
2236 u64 pte;
2237 struct kvm_mmu_page *child;
2238
2239 pte = *spte;
2240 if (is_shadow_present_pte(pte)) {
505aef8f 2241 if (is_last_spte(pte, sp->role.level)) {
c3707958 2242 drop_spte(kvm, spte);
505aef8f
XG
2243 if (is_large_pte(pte))
2244 --kvm->stat.lpages;
2245 } else {
38e3b2b2 2246 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2247 drop_parent_pte(child, spte);
38e3b2b2 2248 }
505aef8f
XG
2249 return true;
2250 }
2251
2252 if (is_mmio_spte(pte))
ce88decf 2253 mmu_spte_clear_no_track(spte);
c3707958 2254
505aef8f 2255 return false;
38e3b2b2
XG
2256}
2257
90cb0529 2258static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2259 struct kvm_mmu_page *sp)
a436036b 2260{
697fe2e2 2261 unsigned i;
697fe2e2 2262
38e3b2b2
XG
2263 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2264 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2265}
2266
4db35314 2267static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2268{
4db35314 2269 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2270}
2271
31aa2b44 2272static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2273{
1e3f42f0
TY
2274 u64 *sptep;
2275 struct rmap_iterator iter;
a436036b 2276
1e3f42f0
TY
2277 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2278 drop_parent_pte(sp, sptep);
31aa2b44
AK
2279}
2280
60c8aec6 2281static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2282 struct kvm_mmu_page *parent,
2283 struct list_head *invalid_list)
4731d4c7 2284{
60c8aec6
MT
2285 int i, zapped = 0;
2286 struct mmu_page_path parents;
2287 struct kvm_mmu_pages pages;
4731d4c7 2288
60c8aec6 2289 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2290 return 0;
60c8aec6
MT
2291
2292 kvm_mmu_pages_init(parent, &parents, &pages);
2293 while (mmu_unsync_walk(parent, &pages)) {
2294 struct kvm_mmu_page *sp;
2295
2296 for_each_sp(pages, sp, parents, i) {
7775834a 2297 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2298 mmu_pages_clear_parents(&parents);
77662e00 2299 zapped++;
60c8aec6 2300 }
60c8aec6
MT
2301 kvm_mmu_pages_init(parent, &parents, &pages);
2302 }
2303
2304 return zapped;
4731d4c7
MT
2305}
2306
7775834a
XG
2307static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2308 struct list_head *invalid_list)
31aa2b44 2309{
4731d4c7 2310 int ret;
f691fe1d 2311
7775834a 2312 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2313 ++kvm->stat.mmu_shadow_zapped;
7775834a 2314 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2315 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2316 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2317
f6e2c02b 2318 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2319 unaccount_shadowed(kvm, sp);
5304b8d3 2320
4731d4c7
MT
2321 if (sp->unsync)
2322 kvm_unlink_unsync_page(kvm, sp);
4db35314 2323 if (!sp->root_count) {
54a4f023
GJ
2324 /* Count self */
2325 ret++;
7775834a 2326 list_move(&sp->link, invalid_list);
aa6bd187 2327 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2328 } else {
5b5c6a5a 2329 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2330
2331 /*
2332 * The obsolete pages can not be used on any vcpus.
2333 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2334 */
2335 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2336 kvm_reload_remote_mmus(kvm);
2e53d63a 2337 }
7775834a
XG
2338
2339 sp->role.invalid = 1;
4731d4c7 2340 return ret;
a436036b
AK
2341}
2342
7775834a
XG
2343static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2344 struct list_head *invalid_list)
2345{
945315b9 2346 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2347
2348 if (list_empty(invalid_list))
2349 return;
2350
c142786c
AK
2351 /*
2352 * wmb: make sure everyone sees our modifications to the page tables
2353 * rmb: make sure we see changes to vcpu->mode
2354 */
2355 smp_mb();
4f022648 2356
c142786c
AK
2357 /*
2358 * Wait for all vcpus to exit guest mode and/or lockless shadow
2359 * page table walks.
2360 */
2361 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2362
945315b9 2363 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2364 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2365 kvm_mmu_free_page(sp);
945315b9 2366 }
7775834a
XG
2367}
2368
5da59607
TY
2369static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2370 struct list_head *invalid_list)
2371{
2372 struct kvm_mmu_page *sp;
2373
2374 if (list_empty(&kvm->arch.active_mmu_pages))
2375 return false;
2376
2377 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2378 struct kvm_mmu_page, link);
2379 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2380
2381 return true;
2382}
2383
82ce2c96
IE
2384/*
2385 * Changing the number of mmu pages allocated to the vm
49d5ca26 2386 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2387 */
49d5ca26 2388void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2389{
d98ba053 2390 LIST_HEAD(invalid_list);
82ce2c96 2391
b34cb590
TY
2392 spin_lock(&kvm->mmu_lock);
2393
49d5ca26 2394 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2395 /* Need to free some mmu pages to achieve the goal. */
2396 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2397 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2398 break;
82ce2c96 2399
aa6bd187 2400 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2401 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2402 }
82ce2c96 2403
49d5ca26 2404 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2405
2406 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2407}
2408
1cb3f3ae 2409int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2410{
4db35314 2411 struct kvm_mmu_page *sp;
d98ba053 2412 LIST_HEAD(invalid_list);
a436036b
AK
2413 int r;
2414
9ad17b10 2415 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2416 r = 0;
1cb3f3ae 2417 spin_lock(&kvm->mmu_lock);
b67bfe0d 2418 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2419 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2420 sp->role.word);
2421 r = 1;
f41d335a 2422 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2423 }
d98ba053 2424 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2425 spin_unlock(&kvm->mmu_lock);
2426
a436036b 2427 return r;
cea0f0e7 2428}
1cb3f3ae 2429EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2430
74be52e3
SY
2431/*
2432 * The function is based on mtrr_type_lookup() in
2433 * arch/x86/kernel/cpu/mtrr/generic.c
2434 */
2435static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2436 u64 start, u64 end)
2437{
74be52e3
SY
2438 u64 base, mask;
2439 u8 prev_match, curr_match;
d69afbc6 2440 int i, num_var_ranges = KVM_NR_VAR_MTRR;
74be52e3 2441
d69afbc6
XG
2442 /* MTRR is completely disabled, use UC for all of physical memory. */
2443 if (!(mtrr_state->enabled & 0x2))
2444 return MTRR_TYPE_UNCACHABLE;
74be52e3
SY
2445
2446 /* Make end inclusive end, instead of exclusive */
2447 end--;
2448
2449 /* Look in fixed ranges. Just return the type as per start */
d69afbc6
XG
2450 if (mtrr_state->have_fixed && (mtrr_state->enabled & 0x1) &&
2451 (start < 0x100000)) {
74be52e3
SY
2452 int idx;
2453
2454 if (start < 0x80000) {
2455 idx = 0;
2456 idx += (start >> 16);
2457 return mtrr_state->fixed_ranges[idx];
2458 } else if (start < 0xC0000) {
2459 idx = 1 * 8;
2460 idx += ((start - 0x80000) >> 14);
2461 return mtrr_state->fixed_ranges[idx];
2462 } else if (start < 0x1000000) {
2463 idx = 3 * 8;
2464 idx += ((start - 0xC0000) >> 12);
2465 return mtrr_state->fixed_ranges[idx];
2466 }
2467 }
2468
2469 /*
2470 * Look in variable ranges
2471 * Look of multiple ranges matching this address and pick type
2472 * as per MTRR precedence
2473 */
74be52e3
SY
2474 prev_match = 0xFF;
2475 for (i = 0; i < num_var_ranges; ++i) {
2476 unsigned short start_state, end_state;
2477
2478 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2479 continue;
2480
2481 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2482 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2483 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2484 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2485
2486 start_state = ((start & mask) == (base & mask));
2487 end_state = ((end & mask) == (base & mask));
2488 if (start_state != end_state)
2489 return 0xFE;
2490
2491 if ((start & mask) != (base & mask))
2492 continue;
2493
2494 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2495 if (prev_match == 0xFF) {
2496 prev_match = curr_match;
2497 continue;
2498 }
2499
2500 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2501 curr_match == MTRR_TYPE_UNCACHABLE)
2502 return MTRR_TYPE_UNCACHABLE;
2503
2504 if ((prev_match == MTRR_TYPE_WRBACK &&
2505 curr_match == MTRR_TYPE_WRTHROUGH) ||
2506 (prev_match == MTRR_TYPE_WRTHROUGH &&
2507 curr_match == MTRR_TYPE_WRBACK)) {
2508 prev_match = MTRR_TYPE_WRTHROUGH;
2509 curr_match = MTRR_TYPE_WRTHROUGH;
2510 }
2511
2512 if (prev_match != curr_match)
2513 return MTRR_TYPE_UNCACHABLE;
2514 }
2515
2516 if (prev_match != 0xFF)
2517 return prev_match;
2518
2519 return mtrr_state->def_type;
2520}
2521
4b12f0de 2522u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2523{
2524 u8 mtrr;
2525
2526 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2527 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2528 if (mtrr == 0xfe || mtrr == 0xff)
2529 mtrr = MTRR_TYPE_WRBACK;
2530 return mtrr;
2531}
4b12f0de 2532EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2533
9cf5cf5a
XG
2534static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2535{
2536 trace_kvm_mmu_unsync_page(sp);
2537 ++vcpu->kvm->stat.mmu_unsync;
2538 sp->unsync = 1;
2539
2540 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2541}
2542
2543static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2544{
4731d4c7 2545 struct kvm_mmu_page *s;
9cf5cf5a 2546
b67bfe0d 2547 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2548 if (s->unsync)
4731d4c7 2549 continue;
9cf5cf5a
XG
2550 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2551 __kvm_unsync_page(vcpu, s);
4731d4c7 2552 }
4731d4c7
MT
2553}
2554
2555static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2556 bool can_unsync)
2557{
9cf5cf5a 2558 struct kvm_mmu_page *s;
9cf5cf5a
XG
2559 bool need_unsync = false;
2560
b67bfe0d 2561 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2562 if (!can_unsync)
2563 return 1;
2564
9cf5cf5a 2565 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2566 return 1;
9cf5cf5a 2567
9bb4f6b1 2568 if (!s->unsync)
9cf5cf5a 2569 need_unsync = true;
4731d4c7 2570 }
9cf5cf5a
XG
2571 if (need_unsync)
2572 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2573 return 0;
2574}
2575
d555c333 2576static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2577 unsigned pte_access, int level,
c2d0ee46 2578 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2579 bool can_unsync, bool host_writable)
1c4f1fd6 2580{
6e7d0354 2581 u64 spte;
1e73f9dd 2582 int ret = 0;
64d4d521 2583
f2fd125d 2584 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
ce88decf
XG
2585 return 0;
2586
982c2565 2587 spte = PT_PRESENT_MASK;
947da538 2588 if (!speculative)
3201b5d9 2589 spte |= shadow_accessed_mask;
640d9b0d 2590
7b52345e
SY
2591 if (pte_access & ACC_EXEC_MASK)
2592 spte |= shadow_x_mask;
2593 else
2594 spte |= shadow_nx_mask;
49fde340 2595
1c4f1fd6 2596 if (pte_access & ACC_USER_MASK)
7b52345e 2597 spte |= shadow_user_mask;
49fde340 2598
852e3c19 2599 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2600 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2601 if (tdp_enabled)
4b12f0de 2602 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
bf4bea8e 2603 kvm_is_reserved_pfn(pfn));
1c4f1fd6 2604
9bdbba13 2605 if (host_writable)
1403283a 2606 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2607 else
2608 pte_access &= ~ACC_WRITE_MASK;
1403283a 2609
35149e21 2610 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2611
c2288505 2612 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2613
c2193463 2614 /*
7751babd
XG
2615 * Other vcpu creates new sp in the window between
2616 * mapping_level() and acquiring mmu-lock. We can
2617 * allow guest to retry the access, the mapping can
2618 * be fixed if guest refault.
c2193463 2619 */
852e3c19 2620 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2621 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2622 goto done;
38187c83 2623
49fde340 2624 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2625
ecc5589f
MT
2626 /*
2627 * Optimization: for pte sync, if spte was writable the hash
2628 * lookup is unnecessary (and expensive). Write protection
2629 * is responsibility of mmu_get_page / kvm_sync_page.
2630 * Same reasoning can be applied to dirty page accounting.
2631 */
8dae4445 2632 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2633 goto set_pte;
2634
4731d4c7 2635 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2636 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2637 __func__, gfn);
1e73f9dd 2638 ret = 1;
1c4f1fd6 2639 pte_access &= ~ACC_WRITE_MASK;
49fde340 2640 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2641 }
2642 }
2643
9b51a630 2644 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2645 mark_page_dirty(vcpu->kvm, gfn);
9b51a630
KH
2646 spte |= shadow_dirty_mask;
2647 }
1c4f1fd6 2648
38187c83 2649set_pte:
6e7d0354 2650 if (mmu_spte_update(sptep, spte))
b330aa0c 2651 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2652done:
1e73f9dd
MT
2653 return ret;
2654}
2655
d555c333 2656static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2657 unsigned pte_access, int write_fault, int *emulate,
2658 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2659 bool host_writable)
1e73f9dd
MT
2660{
2661 int was_rmapped = 0;
53a27b39 2662 int rmap_count;
1e73f9dd 2663
f7616203
XG
2664 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2665 *sptep, write_fault, gfn);
1e73f9dd 2666
d555c333 2667 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2668 /*
2669 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2670 * the parent of the now unreachable PTE.
2671 */
852e3c19
JR
2672 if (level > PT_PAGE_TABLE_LEVEL &&
2673 !is_large_pte(*sptep)) {
1e73f9dd 2674 struct kvm_mmu_page *child;
d555c333 2675 u64 pte = *sptep;
1e73f9dd
MT
2676
2677 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2678 drop_parent_pte(child, sptep);
3be2264b 2679 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2680 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2681 pgprintk("hfn old %llx new %llx\n",
d555c333 2682 spte_to_pfn(*sptep), pfn);
c3707958 2683 drop_spte(vcpu->kvm, sptep);
91546356 2684 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2685 } else
2686 was_rmapped = 1;
1e73f9dd 2687 }
852e3c19 2688
c2288505
XG
2689 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2690 true, host_writable)) {
1e73f9dd 2691 if (write_fault)
b90a0e6c 2692 *emulate = 1;
77c3913b 2693 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2694 }
1e73f9dd 2695
ce88decf
XG
2696 if (unlikely(is_mmio_spte(*sptep) && emulate))
2697 *emulate = 1;
2698
d555c333 2699 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2700 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2701 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2702 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2703 *sptep, sptep);
d555c333 2704 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2705 ++vcpu->kvm->stat.lpages;
2706
ffb61bb3 2707 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2708 if (!was_rmapped) {
2709 rmap_count = rmap_add(vcpu, sptep, gfn);
2710 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2711 rmap_recycle(vcpu, sptep, gfn);
2712 }
1c4f1fd6 2713 }
cb9aaa30 2714
f3ac1a4b 2715 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2716}
2717
957ed9ef
XG
2718static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2719 bool no_dirty_log)
2720{
2721 struct kvm_memory_slot *slot;
957ed9ef 2722
5d163b1c 2723 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2724 if (!slot)
6c8ee57b 2725 return KVM_PFN_ERR_FAULT;
957ed9ef 2726
037d92dc 2727 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2728}
2729
2730static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2731 struct kvm_mmu_page *sp,
2732 u64 *start, u64 *end)
2733{
2734 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2735 struct kvm_memory_slot *slot;
957ed9ef
XG
2736 unsigned access = sp->role.access;
2737 int i, ret;
2738 gfn_t gfn;
2739
2740 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2741 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2742 if (!slot)
957ed9ef
XG
2743 return -1;
2744
d9ef13c2 2745 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2746 if (ret <= 0)
2747 return -1;
2748
2749 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2750 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2751 sp->role.level, gfn, page_to_pfn(pages[i]),
2752 true, true);
957ed9ef
XG
2753
2754 return 0;
2755}
2756
2757static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2758 struct kvm_mmu_page *sp, u64 *sptep)
2759{
2760 u64 *spte, *start = NULL;
2761 int i;
2762
2763 WARN_ON(!sp->role.direct);
2764
2765 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2766 spte = sp->spt + i;
2767
2768 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2769 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2770 if (!start)
2771 continue;
2772 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2773 break;
2774 start = NULL;
2775 } else if (!start)
2776 start = spte;
2777 }
2778}
2779
2780static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2781{
2782 struct kvm_mmu_page *sp;
2783
2784 /*
2785 * Since it's no accessed bit on EPT, it's no way to
2786 * distinguish between actually accessed translations
2787 * and prefetched, so disable pte prefetch if EPT is
2788 * enabled.
2789 */
2790 if (!shadow_accessed_mask)
2791 return;
2792
2793 sp = page_header(__pa(sptep));
2794 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2795 return;
2796
2797 __direct_pte_prefetch(vcpu, sp, sptep);
2798}
2799
9f652d21 2800static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2801 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2802 bool prefault)
140754bc 2803{
9f652d21 2804 struct kvm_shadow_walk_iterator iterator;
140754bc 2805 struct kvm_mmu_page *sp;
b90a0e6c 2806 int emulate = 0;
140754bc 2807 gfn_t pseudo_gfn;
6aa8b732 2808
989c6b34
MT
2809 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2810 return 0;
2811
9f652d21 2812 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2813 if (iterator.level == level) {
f7616203 2814 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2815 write, &emulate, level, gfn, pfn,
2816 prefault, map_writable);
957ed9ef 2817 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2818 ++vcpu->stat.pf_fixed;
2819 break;
6aa8b732
AK
2820 }
2821
404381c5 2822 drop_large_spte(vcpu, iterator.sptep);
c3707958 2823 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2824 u64 base_addr = iterator.addr;
2825
2826 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2827 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2828 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2829 iterator.level - 1,
2830 1, ACC_ALL, iterator.sptep);
140754bc 2831
7a1638ce 2832 link_shadow_page(iterator.sptep, sp, true);
9f652d21
AK
2833 }
2834 }
b90a0e6c 2835 return emulate;
6aa8b732
AK
2836}
2837
77db5cbd 2838static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2839{
77db5cbd
HY
2840 siginfo_t info;
2841
2842 info.si_signo = SIGBUS;
2843 info.si_errno = 0;
2844 info.si_code = BUS_MCEERR_AR;
2845 info.si_addr = (void __user *)address;
2846 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2847
77db5cbd 2848 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2849}
2850
d7c55201 2851static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2852{
4d8b81ab
XG
2853 /*
2854 * Do not cache the mmio info caused by writing the readonly gfn
2855 * into the spte otherwise read access on readonly gfn also can
2856 * caused mmio page fault and treat it as mmio access.
2857 * Return 1 to tell kvm to emulate it.
2858 */
2859 if (pfn == KVM_PFN_ERR_RO_FAULT)
2860 return 1;
2861
e6c1502b 2862 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2863 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2864 return 0;
d7c55201 2865 }
edba23e5 2866
d7c55201 2867 return -EFAULT;
bf998156
HY
2868}
2869
936a5fe6
AA
2870static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2871 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2872{
2873 pfn_t pfn = *pfnp;
2874 gfn_t gfn = *gfnp;
2875 int level = *levelp;
2876
2877 /*
2878 * Check if it's a transparent hugepage. If this would be an
2879 * hugetlbfs page, level wouldn't be set to
2880 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2881 * here.
2882 */
bf4bea8e 2883 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6
AA
2884 level == PT_PAGE_TABLE_LEVEL &&
2885 PageTransCompound(pfn_to_page(pfn)) &&
2886 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2887 unsigned long mask;
2888 /*
2889 * mmu_notifier_retry was successful and we hold the
2890 * mmu_lock here, so the pmd can't become splitting
2891 * from under us, and in turn
2892 * __split_huge_page_refcount() can't run from under
2893 * us and we can safely transfer the refcount from
2894 * PG_tail to PG_head as we switch the pfn to tail to
2895 * head.
2896 */
2897 *levelp = level = PT_DIRECTORY_LEVEL;
2898 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2899 VM_BUG_ON((gfn & mask) != (pfn & mask));
2900 if (pfn & mask) {
2901 gfn &= ~mask;
2902 *gfnp = gfn;
2903 kvm_release_pfn_clean(pfn);
2904 pfn &= ~mask;
c3586667 2905 kvm_get_pfn(pfn);
936a5fe6
AA
2906 *pfnp = pfn;
2907 }
2908 }
2909}
2910
d7c55201
XG
2911static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2912 pfn_t pfn, unsigned access, int *ret_val)
2913{
2914 bool ret = true;
2915
2916 /* The pfn is invalid, report the error! */
81c52c56 2917 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2918 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2919 goto exit;
2920 }
2921
ce88decf 2922 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2923 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2924
2925 ret = false;
2926exit:
2927 return ret;
2928}
2929
e5552fd2 2930static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2931{
1c118b82
XG
2932 /*
2933 * Do not fix the mmio spte with invalid generation number which
2934 * need to be updated by slow page fault path.
2935 */
2936 if (unlikely(error_code & PFERR_RSVD_MASK))
2937 return false;
2938
c7ba5b48
XG
2939 /*
2940 * #PF can be fast only if the shadow page table is present and it
2941 * is caused by write-protect, that means we just need change the
2942 * W bit of the spte which can be done out of mmu-lock.
2943 */
2944 if (!(error_code & PFERR_PRESENT_MASK) ||
2945 !(error_code & PFERR_WRITE_MASK))
2946 return false;
2947
2948 return true;
2949}
2950
2951static bool
92a476cb
XG
2952fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2953 u64 *sptep, u64 spte)
c7ba5b48 2954{
c7ba5b48
XG
2955 gfn_t gfn;
2956
2957 WARN_ON(!sp->role.direct);
2958
2959 /*
2960 * The gfn of direct spte is stable since it is calculated
2961 * by sp->gfn.
2962 */
2963 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2964
9b51a630
KH
2965 /*
2966 * Theoretically we could also set dirty bit (and flush TLB) here in
2967 * order to eliminate unnecessary PML logging. See comments in
2968 * set_spte. But fast_page_fault is very unlikely to happen with PML
2969 * enabled, so we do not do this. This might result in the same GPA
2970 * to be logged in PML buffer again when the write really happens, and
2971 * eventually to be called by mark_page_dirty twice. But it's also no
2972 * harm. This also avoids the TLB flush needed after setting dirty bit
2973 * so non-PML cases won't be impacted.
2974 *
2975 * Compare with set_spte where instead shadow_dirty_mask is set.
2976 */
c7ba5b48
XG
2977 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2978 mark_page_dirty(vcpu->kvm, gfn);
2979
2980 return true;
2981}
2982
2983/*
2984 * Return value:
2985 * - true: let the vcpu to access on the same address again.
2986 * - false: let the real page fault path to fix it.
2987 */
2988static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2989 u32 error_code)
2990{
2991 struct kvm_shadow_walk_iterator iterator;
92a476cb 2992 struct kvm_mmu_page *sp;
c7ba5b48
XG
2993 bool ret = false;
2994 u64 spte = 0ull;
2995
37f6a4e2
MT
2996 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2997 return false;
2998
e5552fd2 2999 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3000 return false;
3001
3002 walk_shadow_page_lockless_begin(vcpu);
3003 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3004 if (!is_shadow_present_pte(spte) || iterator.level < level)
3005 break;
3006
3007 /*
3008 * If the mapping has been changed, let the vcpu fault on the
3009 * same address again.
3010 */
3011 if (!is_rmap_spte(spte)) {
3012 ret = true;
3013 goto exit;
3014 }
3015
92a476cb
XG
3016 sp = page_header(__pa(iterator.sptep));
3017 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
3018 goto exit;
3019
3020 /*
3021 * Check if it is a spurious fault caused by TLB lazily flushed.
3022 *
3023 * Need not check the access of upper level table entries since
3024 * they are always ACC_ALL.
3025 */
3026 if (is_writable_pte(spte)) {
3027 ret = true;
3028 goto exit;
3029 }
3030
3031 /*
3032 * Currently, to simplify the code, only the spte write-protected
3033 * by dirty-log can be fast fixed.
3034 */
3035 if (!spte_is_locklessly_modifiable(spte))
3036 goto exit;
3037
c126d94f
XG
3038 /*
3039 * Do not fix write-permission on the large spte since we only dirty
3040 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
3041 * that means other pages are missed if its slot is dirty-logged.
3042 *
3043 * Instead, we let the slow page fault path create a normal spte to
3044 * fix the access.
3045 *
3046 * See the comments in kvm_arch_commit_memory_region().
3047 */
3048 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3049 goto exit;
3050
c7ba5b48
XG
3051 /*
3052 * Currently, fast page fault only works for direct mapping since
3053 * the gfn is not stable for indirect shadow page.
3054 * See Documentation/virtual/kvm/locking.txt to get more detail.
3055 */
92a476cb 3056 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 3057exit:
a72faf25
XG
3058 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3059 spte, ret);
c7ba5b48
XG
3060 walk_shadow_page_lockless_end(vcpu);
3061
3062 return ret;
3063}
3064
78b2c54a 3065static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 3066 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 3067static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3068
c7ba5b48
XG
3069static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3070 gfn_t gfn, bool prefault)
10589a46
MT
3071{
3072 int r;
852e3c19 3073 int level;
936a5fe6 3074 int force_pt_level;
35149e21 3075 pfn_t pfn;
e930bffe 3076 unsigned long mmu_seq;
c7ba5b48 3077 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3078
936a5fe6
AA
3079 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3080 if (likely(!force_pt_level)) {
3081 level = mapping_level(vcpu, gfn);
3082 /*
3083 * This path builds a PAE pagetable - so we can map
3084 * 2mb pages at maximum. Therefore check if the level
3085 * is larger than that.
3086 */
3087 if (level > PT_DIRECTORY_LEVEL)
3088 level = PT_DIRECTORY_LEVEL;
852e3c19 3089
936a5fe6
AA
3090 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3091 } else
3092 level = PT_PAGE_TABLE_LEVEL;
05da4558 3093
c7ba5b48
XG
3094 if (fast_page_fault(vcpu, v, level, error_code))
3095 return 0;
3096
e930bffe 3097 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3098 smp_rmb();
060c2abe 3099
78b2c54a 3100 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3101 return 0;
aaee2c94 3102
d7c55201
XG
3103 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3104 return r;
d196e343 3105
aaee2c94 3106 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3107 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3108 goto out_unlock;
450e0b41 3109 make_mmu_pages_available(vcpu);
936a5fe6
AA
3110 if (likely(!force_pt_level))
3111 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
3112 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3113 prefault);
aaee2c94
MT
3114 spin_unlock(&vcpu->kvm->mmu_lock);
3115
aaee2c94 3116
10589a46 3117 return r;
e930bffe
AA
3118
3119out_unlock:
3120 spin_unlock(&vcpu->kvm->mmu_lock);
3121 kvm_release_pfn_clean(pfn);
3122 return 0;
10589a46
MT
3123}
3124
3125
17ac10ad
AK
3126static void mmu_free_roots(struct kvm_vcpu *vcpu)
3127{
3128 int i;
4db35314 3129 struct kvm_mmu_page *sp;
d98ba053 3130 LIST_HEAD(invalid_list);
17ac10ad 3131
ad312c7c 3132 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3133 return;
35af577a 3134
81407ca5
JR
3135 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3136 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3137 vcpu->arch.mmu.direct_map)) {
ad312c7c 3138 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3139
35af577a 3140 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3141 sp = page_header(root);
3142 --sp->root_count;
d98ba053
XG
3143 if (!sp->root_count && sp->role.invalid) {
3144 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3145 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3146 }
aaee2c94 3147 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3148 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3149 return;
3150 }
35af577a
GN
3151
3152 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3153 for (i = 0; i < 4; ++i) {
ad312c7c 3154 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3155
417726a3 3156 if (root) {
417726a3 3157 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3158 sp = page_header(root);
3159 --sp->root_count;
2e53d63a 3160 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3161 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3162 &invalid_list);
417726a3 3163 }
ad312c7c 3164 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3165 }
d98ba053 3166 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3167 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3168 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3169}
3170
8986ecc0
MT
3171static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3172{
3173 int ret = 0;
3174
3175 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3176 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3177 ret = 1;
3178 }
3179
3180 return ret;
3181}
3182
651dd37a
JR
3183static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3184{
3185 struct kvm_mmu_page *sp;
7ebaf15e 3186 unsigned i;
651dd37a
JR
3187
3188 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3189 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3190 make_mmu_pages_available(vcpu);
651dd37a
JR
3191 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3192 1, ACC_ALL, NULL);
3193 ++sp->root_count;
3194 spin_unlock(&vcpu->kvm->mmu_lock);
3195 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3196 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3197 for (i = 0; i < 4; ++i) {
3198 hpa_t root = vcpu->arch.mmu.pae_root[i];
3199
fa4a2c08 3200 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3201 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3202 make_mmu_pages_available(vcpu);
649497d1
AK
3203 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3204 i << 30,
651dd37a
JR
3205 PT32_ROOT_LEVEL, 1, ACC_ALL,
3206 NULL);
3207 root = __pa(sp->spt);
3208 ++sp->root_count;
3209 spin_unlock(&vcpu->kvm->mmu_lock);
3210 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3211 }
6292757f 3212 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3213 } else
3214 BUG();
3215
3216 return 0;
3217}
3218
3219static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3220{
4db35314 3221 struct kvm_mmu_page *sp;
81407ca5
JR
3222 u64 pdptr, pm_mask;
3223 gfn_t root_gfn;
3224 int i;
3bb65a22 3225
5777ed34 3226 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3227
651dd37a
JR
3228 if (mmu_check_root(vcpu, root_gfn))
3229 return 1;
3230
3231 /*
3232 * Do we shadow a long mode page table? If so we need to
3233 * write-protect the guests page table root.
3234 */
3235 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3236 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3237
fa4a2c08 3238 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3239
8facbbff 3240 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3241 make_mmu_pages_available(vcpu);
651dd37a
JR
3242 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3243 0, ACC_ALL, NULL);
4db35314
AK
3244 root = __pa(sp->spt);
3245 ++sp->root_count;
8facbbff 3246 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3247 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3248 return 0;
17ac10ad 3249 }
f87f9288 3250
651dd37a
JR
3251 /*
3252 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3253 * or a PAE 3-level page table. In either case we need to be aware that
3254 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3255 */
81407ca5
JR
3256 pm_mask = PT_PRESENT_MASK;
3257 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3258 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3259
17ac10ad 3260 for (i = 0; i < 4; ++i) {
ad312c7c 3261 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3262
fa4a2c08 3263 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3264 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3265 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3266 if (!is_present_gpte(pdptr)) {
ad312c7c 3267 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3268 continue;
3269 }
6de4f3ad 3270 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3271 if (mmu_check_root(vcpu, root_gfn))
3272 return 1;
5a7388c2 3273 }
8facbbff 3274 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3275 make_mmu_pages_available(vcpu);
4db35314 3276 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3277 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3278 ACC_ALL, NULL);
4db35314
AK
3279 root = __pa(sp->spt);
3280 ++sp->root_count;
8facbbff
AK
3281 spin_unlock(&vcpu->kvm->mmu_lock);
3282
81407ca5 3283 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3284 }
6292757f 3285 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3286
3287 /*
3288 * If we shadow a 32 bit page table with a long mode page
3289 * table we enter this path.
3290 */
3291 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3292 if (vcpu->arch.mmu.lm_root == NULL) {
3293 /*
3294 * The additional page necessary for this is only
3295 * allocated on demand.
3296 */
3297
3298 u64 *lm_root;
3299
3300 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3301 if (lm_root == NULL)
3302 return 1;
3303
3304 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3305
3306 vcpu->arch.mmu.lm_root = lm_root;
3307 }
3308
3309 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3310 }
3311
8986ecc0 3312 return 0;
17ac10ad
AK
3313}
3314
651dd37a
JR
3315static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3316{
3317 if (vcpu->arch.mmu.direct_map)
3318 return mmu_alloc_direct_roots(vcpu);
3319 else
3320 return mmu_alloc_shadow_roots(vcpu);
3321}
3322
0ba73cda
MT
3323static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3324{
3325 int i;
3326 struct kvm_mmu_page *sp;
3327
81407ca5
JR
3328 if (vcpu->arch.mmu.direct_map)
3329 return;
3330
0ba73cda
MT
3331 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3332 return;
6903074c 3333
56f17dd3 3334 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3335 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3336 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3337 hpa_t root = vcpu->arch.mmu.root_hpa;
3338 sp = page_header(root);
3339 mmu_sync_children(vcpu, sp);
0375f7fa 3340 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3341 return;
3342 }
3343 for (i = 0; i < 4; ++i) {
3344 hpa_t root = vcpu->arch.mmu.pae_root[i];
3345
8986ecc0 3346 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3347 root &= PT64_BASE_ADDR_MASK;
3348 sp = page_header(root);
3349 mmu_sync_children(vcpu, sp);
3350 }
3351 }
0375f7fa 3352 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3353}
3354
3355void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3356{
3357 spin_lock(&vcpu->kvm->mmu_lock);
3358 mmu_sync_roots(vcpu);
6cffe8ca 3359 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3360}
bfd0a56b 3361EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3362
1871c602 3363static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3364 u32 access, struct x86_exception *exception)
6aa8b732 3365{
ab9ae313
AK
3366 if (exception)
3367 exception->error_code = 0;
6aa8b732
AK
3368 return vaddr;
3369}
3370
6539e738 3371static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3372 u32 access,
3373 struct x86_exception *exception)
6539e738 3374{
ab9ae313
AK
3375 if (exception)
3376 exception->error_code = 0;
54987b7a 3377 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3378}
3379
ce88decf
XG
3380static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3381{
3382 if (direct)
3383 return vcpu_match_mmio_gpa(vcpu, addr);
3384
3385 return vcpu_match_mmio_gva(vcpu, addr);
3386}
3387
3388
3389/*
3390 * On direct hosts, the last spte is only allows two states
3391 * for mmio page fault:
3392 * - It is the mmio spte
3393 * - It is zapped or it is being zapped.
3394 *
3395 * This function completely checks the spte when the last spte
3396 * is not the mmio spte.
3397 */
3398static bool check_direct_spte_mmio_pf(u64 spte)
3399{
3400 return __check_direct_spte_mmio_pf(spte);
3401}
3402
3403static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3404{
3405 struct kvm_shadow_walk_iterator iterator;
3406 u64 spte = 0ull;
3407
37f6a4e2
MT
3408 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3409 return spte;
3410
ce88decf
XG
3411 walk_shadow_page_lockless_begin(vcpu);
3412 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3413 if (!is_shadow_present_pte(spte))
3414 break;
3415 walk_shadow_page_lockless_end(vcpu);
3416
3417 return spte;
3418}
3419
ce88decf
XG
3420int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3421{
3422 u64 spte;
3423
3424 if (quickly_check_mmio_pf(vcpu, addr, direct))
b37fbea6 3425 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3426
3427 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3428
3429 if (is_mmio_spte(spte)) {
3430 gfn_t gfn = get_mmio_spte_gfn(spte);
3431 unsigned access = get_mmio_spte_access(spte);
3432
f8f55942
XG
3433 if (!check_mmio_spte(vcpu->kvm, spte))
3434 return RET_MMIO_PF_INVALID;
3435
ce88decf
XG
3436 if (direct)
3437 addr = 0;
4f022648
XG
3438
3439 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3440 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3441 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3442 }
3443
3444 /*
3445 * It's ok if the gva is remapped by other cpus on shadow guest,
3446 * it's a BUG if the gfn is not a mmio page.
3447 */
3448 if (direct && !check_direct_spte_mmio_pf(spte))
b37fbea6 3449 return RET_MMIO_PF_BUG;
ce88decf
XG
3450
3451 /*
3452 * If the page table is zapped by other cpus, let CPU fault again on
3453 * the address.
3454 */
b37fbea6 3455 return RET_MMIO_PF_RETRY;
ce88decf
XG
3456}
3457EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3458
3459static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3460 u32 error_code, bool direct)
3461{
3462 int ret;
3463
3464 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
b37fbea6 3465 WARN_ON(ret == RET_MMIO_PF_BUG);
ce88decf
XG
3466 return ret;
3467}
3468
6aa8b732 3469static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3470 u32 error_code, bool prefault)
6aa8b732 3471{
e833240f 3472 gfn_t gfn;
e2dec939 3473 int r;
6aa8b732 3474
b8688d51 3475 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3476
f8f55942
XG
3477 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3478 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3479
3480 if (likely(r != RET_MMIO_PF_INVALID))
3481 return r;
3482 }
ce88decf 3483
e2dec939
AK
3484 r = mmu_topup_memory_caches(vcpu);
3485 if (r)
3486 return r;
714b93da 3487
fa4a2c08 3488 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3489
e833240f 3490 gfn = gva >> PAGE_SHIFT;
6aa8b732 3491
e833240f 3492 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3493 error_code, gfn, prefault);
6aa8b732
AK
3494}
3495
7e1fbeac 3496static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3497{
3498 struct kvm_arch_async_pf arch;
fb67e14f 3499
7c90705b 3500 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3501 arch.gfn = gfn;
c4806acd 3502 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3503 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3504
e0ead41a 3505 return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
af585b92
GN
3506}
3507
3508static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3509{
3510 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3511 kvm_event_needs_reinjection(vcpu)))
3512 return false;
3513
3514 return kvm_x86_ops->interrupt_allowed(vcpu);
3515}
3516
78b2c54a 3517static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3518 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92 3519{
3520469d 3520 struct kvm_memory_slot *slot;
af585b92
GN
3521 bool async;
3522
3520469d
PB
3523 slot = gfn_to_memslot(vcpu->kvm, gfn);
3524 async = false;
3525 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3526 if (!async)
3527 return false; /* *pfn has correct page already */
3528
78b2c54a 3529 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3530 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3531 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3532 trace_kvm_async_pf_doublefault(gva, gfn);
3533 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3534 return true;
3535 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3536 return true;
3537 }
3538
3520469d 3539 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3540 return false;
3541}
3542
56028d08 3543static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3544 bool prefault)
fb72d167 3545{
35149e21 3546 pfn_t pfn;
fb72d167 3547 int r;
852e3c19 3548 int level;
936a5fe6 3549 int force_pt_level;
05da4558 3550 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3551 unsigned long mmu_seq;
612819c3
MT
3552 int write = error_code & PFERR_WRITE_MASK;
3553 bool map_writable;
fb72d167 3554
fa4a2c08 3555 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3556
f8f55942
XG
3557 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3558 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3559
3560 if (likely(r != RET_MMIO_PF_INVALID))
3561 return r;
3562 }
ce88decf 3563
fb72d167
JR
3564 r = mmu_topup_memory_caches(vcpu);
3565 if (r)
3566 return r;
3567
936a5fe6
AA
3568 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3569 if (likely(!force_pt_level)) {
3570 level = mapping_level(vcpu, gfn);
3571 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3572 } else
3573 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3574
c7ba5b48
XG
3575 if (fast_page_fault(vcpu, gpa, level, error_code))
3576 return 0;
3577
e930bffe 3578 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3579 smp_rmb();
af585b92 3580
78b2c54a 3581 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3582 return 0;
3583
d7c55201
XG
3584 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3585 return r;
3586
fb72d167 3587 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3588 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3589 goto out_unlock;
450e0b41 3590 make_mmu_pages_available(vcpu);
936a5fe6
AA
3591 if (likely(!force_pt_level))
3592 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3593 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3594 level, gfn, pfn, prefault);
fb72d167 3595 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3596
3597 return r;
e930bffe
AA
3598
3599out_unlock:
3600 spin_unlock(&vcpu->kvm->mmu_lock);
3601 kvm_release_pfn_clean(pfn);
3602 return 0;
fb72d167
JR
3603}
3604
8a3c1a33
PB
3605static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3606 struct kvm_mmu *context)
6aa8b732 3607{
6aa8b732 3608 context->page_fault = nonpaging_page_fault;
6aa8b732 3609 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3610 context->sync_page = nonpaging_sync_page;
a7052897 3611 context->invlpg = nonpaging_invlpg;
0f53b5b1 3612 context->update_pte = nonpaging_update_pte;
cea0f0e7 3613 context->root_level = 0;
6aa8b732 3614 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3615 context->root_hpa = INVALID_PAGE;
c5a78f2b 3616 context->direct_map = true;
2d48a985 3617 context->nx = false;
6aa8b732
AK
3618}
3619
d8d173da 3620void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3621{
cea0f0e7 3622 mmu_free_roots(vcpu);
6aa8b732
AK
3623}
3624
5777ed34
JR
3625static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3626{
9f8fe504 3627 return kvm_read_cr3(vcpu);
5777ed34
JR
3628}
3629
6389ee94
AK
3630static void inject_page_fault(struct kvm_vcpu *vcpu,
3631 struct x86_exception *fault)
6aa8b732 3632{
6389ee94 3633 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3634}
3635
f2fd125d
XG
3636static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3637 unsigned access, int *nr_present)
ce88decf
XG
3638{
3639 if (unlikely(is_mmio_spte(*sptep))) {
3640 if (gfn != get_mmio_spte_gfn(*sptep)) {
3641 mmu_spte_clear_no_track(sptep);
3642 return true;
3643 }
3644
3645 (*nr_present)++;
f2fd125d 3646 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
3647 return true;
3648 }
3649
3650 return false;
3651}
3652
6fd01b71
AK
3653static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3654{
3655 unsigned index;
3656
3657 index = level - 1;
3658 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3659 return mmu->last_pte_bitmap & (1 << index);
3660}
3661
37406aaa
NHE
3662#define PTTYPE_EPT 18 /* arbitrary */
3663#define PTTYPE PTTYPE_EPT
3664#include "paging_tmpl.h"
3665#undef PTTYPE
3666
6aa8b732
AK
3667#define PTTYPE 64
3668#include "paging_tmpl.h"
3669#undef PTTYPE
3670
3671#define PTTYPE 32
3672#include "paging_tmpl.h"
3673#undef PTTYPE
3674
52fde8df 3675static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3676 struct kvm_mmu *context)
82725b20 3677{
82725b20
DE
3678 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3679 u64 exb_bit_rsvd = 0;
5f7dde7b 3680 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3681 u64 nonleaf_bit8_rsvd = 0;
82725b20 3682
25d92081
YZ
3683 context->bad_mt_xwr = 0;
3684
2d48a985 3685 if (!context->nx)
82725b20 3686 exb_bit_rsvd = rsvd_bits(63, 63);
5f7dde7b
NA
3687 if (!guest_cpuid_has_gbpages(vcpu))
3688 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3689
3690 /*
3691 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3692 * leaf entries) on AMD CPUs only.
3693 */
3694 if (guest_cpuid_is_amd(vcpu))
3695 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3696
4d6931c3 3697 switch (context->root_level) {
82725b20
DE
3698 case PT32_ROOT_LEVEL:
3699 /* no rsvd bits for 2 level 4K page table entries */
3700 context->rsvd_bits_mask[0][1] = 0;
3701 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3702 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3703
3704 if (!is_pse(vcpu)) {
3705 context->rsvd_bits_mask[1][1] = 0;
3706 break;
3707 }
3708
82725b20
DE
3709 if (is_cpuid_PSE36())
3710 /* 36bits PSE 4MB page */
3711 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3712 else
3713 /* 32 bits PSE 4MB page */
3714 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3715 break;
3716 case PT32E_ROOT_LEVEL:
20c466b5
DE
3717 context->rsvd_bits_mask[0][2] =
3718 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3719 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3720 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3721 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3722 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3723 rsvd_bits(maxphyaddr, 62); /* PTE */
3724 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3725 rsvd_bits(maxphyaddr, 62) |
3726 rsvd_bits(13, 20); /* large page */
f815bce8 3727 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3728 break;
3729 case PT64_ROOT_LEVEL:
3730 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
a0c0feb5 3731 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
82725b20 3732 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
a0c0feb5 3733 nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
82725b20 3734 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3735 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3736 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3737 rsvd_bits(maxphyaddr, 51);
3738 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980 3739 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3740 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3741 rsvd_bits(13, 29);
82725b20 3742 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3743 rsvd_bits(maxphyaddr, 51) |
3744 rsvd_bits(13, 20); /* large page */
f815bce8 3745 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3746 break;
3747 }
3748}
3749
25d92081
YZ
3750static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3751 struct kvm_mmu *context, bool execonly)
3752{
3753 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3754 int pte;
3755
3756 context->rsvd_bits_mask[0][3] =
3757 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3758 context->rsvd_bits_mask[0][2] =
3759 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3760 context->rsvd_bits_mask[0][1] =
3761 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3762 context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3763
3764 /* large page */
3765 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3766 context->rsvd_bits_mask[1][2] =
3767 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3768 context->rsvd_bits_mask[1][1] =
3769 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3770 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3771
3772 for (pte = 0; pte < 64; pte++) {
3773 int rwx_bits = pte & 7;
3774 int mt = pte >> 3;
3775 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3776 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3777 (rwx_bits == 0x4 && !execonly))
3778 context->bad_mt_xwr |= (1ull << pte);
3779 }
3780}
3781
edc90b7d
XG
3782static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3783 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3784{
3785 unsigned bit, byte, pfec;
3786 u8 map;
66386ade 3787 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3788
66386ade 3789 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3790 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3791 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3792 pfec = byte << 1;
3793 map = 0;
3794 wf = pfec & PFERR_WRITE_MASK;
3795 uf = pfec & PFERR_USER_MASK;
3796 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3797 /*
3798 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3799 * subject to SMAP restrictions, and cleared otherwise. The
3800 * bit is only meaningful if the SMAP bit is set in CR4.
3801 */
3802 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3803 for (bit = 0; bit < 8; ++bit) {
3804 x = bit & ACC_EXEC_MASK;
3805 w = bit & ACC_WRITE_MASK;
3806 u = bit & ACC_USER_MASK;
3807
25d92081
YZ
3808 if (!ept) {
3809 /* Not really needed: !nx will cause pte.nx to fault */
3810 x |= !mmu->nx;
3811 /* Allow supervisor writes if !cr0.wp */
3812 w |= !is_write_protection(vcpu) && !uf;
3813 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3814 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3815
3816 /*
3817 * SMAP:kernel-mode data accesses from user-mode
3818 * mappings should fault. A fault is considered
3819 * as a SMAP violation if all of the following
3820 * conditions are ture:
3821 * - X86_CR4_SMAP is set in CR4
3822 * - An user page is accessed
3823 * - Page fault in kernel mode
3824 * - if CPL = 3 or X86_EFLAGS_AC is clear
3825 *
3826 * Here, we cover the first three conditions.
3827 * The fourth is computed dynamically in
3828 * permission_fault() and is in smapf.
3829 *
3830 * Also, SMAP does not affect instruction
3831 * fetches, add the !ff check here to make it
3832 * clearer.
3833 */
3834 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3835 } else
3836 /* Not really needed: no U/S accesses on ept */
3837 u = 1;
97d64b78 3838
97ec8c06
FW
3839 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3840 (smapf && smap);
97d64b78
AK
3841 map |= fault << bit;
3842 }
3843 mmu->permissions[byte] = map;
3844 }
3845}
3846
6fd01b71
AK
3847static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3848{
3849 u8 map;
3850 unsigned level, root_level = mmu->root_level;
3851 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3852
3853 if (root_level == PT32E_ROOT_LEVEL)
3854 --root_level;
3855 /* PT_PAGE_TABLE_LEVEL always terminates */
3856 map = 1 | (1 << ps_set_index);
3857 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3858 if (level <= PT_PDPE_LEVEL
3859 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3860 map |= 1 << (ps_set_index | (level - 1));
3861 }
3862 mmu->last_pte_bitmap = map;
3863}
3864
8a3c1a33
PB
3865static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3866 struct kvm_mmu *context,
3867 int level)
6aa8b732 3868{
2d48a985 3869 context->nx = is_nx(vcpu);
4d6931c3 3870 context->root_level = level;
2d48a985 3871
4d6931c3 3872 reset_rsvds_bits_mask(vcpu, context);
25d92081 3873 update_permission_bitmask(vcpu, context, false);
6fd01b71 3874 update_last_pte_bitmap(vcpu, context);
6aa8b732 3875
fa4a2c08 3876 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 3877 context->page_fault = paging64_page_fault;
6aa8b732 3878 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3879 context->sync_page = paging64_sync_page;
a7052897 3880 context->invlpg = paging64_invlpg;
0f53b5b1 3881 context->update_pte = paging64_update_pte;
17ac10ad 3882 context->shadow_root_level = level;
17c3ba9d 3883 context->root_hpa = INVALID_PAGE;
c5a78f2b 3884 context->direct_map = false;
6aa8b732
AK
3885}
3886
8a3c1a33
PB
3887static void paging64_init_context(struct kvm_vcpu *vcpu,
3888 struct kvm_mmu *context)
17ac10ad 3889{
8a3c1a33 3890 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3891}
3892
8a3c1a33
PB
3893static void paging32_init_context(struct kvm_vcpu *vcpu,
3894 struct kvm_mmu *context)
6aa8b732 3895{
2d48a985 3896 context->nx = false;
4d6931c3 3897 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3898
4d6931c3 3899 reset_rsvds_bits_mask(vcpu, context);
25d92081 3900 update_permission_bitmask(vcpu, context, false);
6fd01b71 3901 update_last_pte_bitmap(vcpu, context);
6aa8b732 3902
6aa8b732 3903 context->page_fault = paging32_page_fault;
6aa8b732 3904 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3905 context->sync_page = paging32_sync_page;
a7052897 3906 context->invlpg = paging32_invlpg;
0f53b5b1 3907 context->update_pte = paging32_update_pte;
6aa8b732 3908 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3909 context->root_hpa = INVALID_PAGE;
c5a78f2b 3910 context->direct_map = false;
6aa8b732
AK
3911}
3912
8a3c1a33
PB
3913static void paging32E_init_context(struct kvm_vcpu *vcpu,
3914 struct kvm_mmu *context)
6aa8b732 3915{
8a3c1a33 3916 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3917}
3918
8a3c1a33 3919static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3920{
ad896af0 3921 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 3922
c445f8ef 3923 context->base_role.word = 0;
fb72d167 3924 context->page_fault = tdp_page_fault;
e8bc217a 3925 context->sync_page = nonpaging_sync_page;
a7052897 3926 context->invlpg = nonpaging_invlpg;
0f53b5b1 3927 context->update_pte = nonpaging_update_pte;
67253af5 3928 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3929 context->root_hpa = INVALID_PAGE;
c5a78f2b 3930 context->direct_map = true;
1c97f0a0 3931 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3932 context->get_cr3 = get_cr3;
e4e517b4 3933 context->get_pdptr = kvm_pdptr_read;
cb659db8 3934 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3935
3936 if (!is_paging(vcpu)) {
2d48a985 3937 context->nx = false;
fb72d167
JR
3938 context->gva_to_gpa = nonpaging_gva_to_gpa;
3939 context->root_level = 0;
3940 } else if (is_long_mode(vcpu)) {
2d48a985 3941 context->nx = is_nx(vcpu);
fb72d167 3942 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3943 reset_rsvds_bits_mask(vcpu, context);
3944 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3945 } else if (is_pae(vcpu)) {
2d48a985 3946 context->nx = is_nx(vcpu);
fb72d167 3947 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3948 reset_rsvds_bits_mask(vcpu, context);
3949 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3950 } else {
2d48a985 3951 context->nx = false;
fb72d167 3952 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3953 reset_rsvds_bits_mask(vcpu, context);
3954 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3955 }
3956
25d92081 3957 update_permission_bitmask(vcpu, context, false);
6fd01b71 3958 update_last_pte_bitmap(vcpu, context);
fb72d167
JR
3959}
3960
ad896af0 3961void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 3962{
411c588d 3963 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 3964 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
3965 struct kvm_mmu *context = &vcpu->arch.mmu;
3966
fa4a2c08 3967 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
3968
3969 if (!is_paging(vcpu))
8a3c1a33 3970 nonpaging_init_context(vcpu, context);
a9058ecd 3971 else if (is_long_mode(vcpu))
8a3c1a33 3972 paging64_init_context(vcpu, context);
6aa8b732 3973 else if (is_pae(vcpu))
8a3c1a33 3974 paging32E_init_context(vcpu, context);
6aa8b732 3975 else
8a3c1a33 3976 paging32_init_context(vcpu, context);
a770f6f2 3977
ad896af0
PB
3978 context->base_role.nxe = is_nx(vcpu);
3979 context->base_role.cr4_pae = !!is_pae(vcpu);
3980 context->base_role.cr0_wp = is_write_protection(vcpu);
3981 context->base_role.smep_andnot_wp
411c588d 3982 = smep && !is_write_protection(vcpu);
edc90b7d
XG
3983 context->base_role.smap_andnot_wp
3984 = smap && !is_write_protection(vcpu);
52fde8df
JR
3985}
3986EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3987
ad896af0 3988void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 3989{
ad896af0
PB
3990 struct kvm_mmu *context = &vcpu->arch.mmu;
3991
fa4a2c08 3992 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
3993
3994 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3995
3996 context->nx = true;
155a97a3
NHE
3997 context->page_fault = ept_page_fault;
3998 context->gva_to_gpa = ept_gva_to_gpa;
3999 context->sync_page = ept_sync_page;
4000 context->invlpg = ept_invlpg;
4001 context->update_pte = ept_update_pte;
155a97a3
NHE
4002 context->root_level = context->shadow_root_level;
4003 context->root_hpa = INVALID_PAGE;
4004 context->direct_map = false;
4005
4006 update_permission_bitmask(vcpu, context, true);
4007 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
155a97a3
NHE
4008}
4009EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4010
8a3c1a33 4011static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4012{
ad896af0
PB
4013 struct kvm_mmu *context = &vcpu->arch.mmu;
4014
4015 kvm_init_shadow_mmu(vcpu);
4016 context->set_cr3 = kvm_x86_ops->set_cr3;
4017 context->get_cr3 = get_cr3;
4018 context->get_pdptr = kvm_pdptr_read;
4019 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4020}
4021
8a3c1a33 4022static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4023{
4024 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4025
4026 g_context->get_cr3 = get_cr3;
e4e517b4 4027 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4028 g_context->inject_page_fault = kvm_inject_page_fault;
4029
4030 /*
4031 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
4032 * translation of l2_gpa to l1_gpa addresses is done using the
4033 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
4034 * functions between mmu and nested_mmu are swapped.
4035 */
4036 if (!is_paging(vcpu)) {
2d48a985 4037 g_context->nx = false;
02f59dc9
JR
4038 g_context->root_level = 0;
4039 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4040 } else if (is_long_mode(vcpu)) {
2d48a985 4041 g_context->nx = is_nx(vcpu);
02f59dc9 4042 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4043 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4044 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4045 } else if (is_pae(vcpu)) {
2d48a985 4046 g_context->nx = is_nx(vcpu);
02f59dc9 4047 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4048 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4049 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4050 } else {
2d48a985 4051 g_context->nx = false;
02f59dc9 4052 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4053 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4054 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4055 }
4056
25d92081 4057 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 4058 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
4059}
4060
8a3c1a33 4061static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4062{
02f59dc9 4063 if (mmu_is_nested(vcpu))
e0c6db3e 4064 init_kvm_nested_mmu(vcpu);
02f59dc9 4065 else if (tdp_enabled)
e0c6db3e 4066 init_kvm_tdp_mmu(vcpu);
fb72d167 4067 else
e0c6db3e 4068 init_kvm_softmmu(vcpu);
fb72d167
JR
4069}
4070
8a3c1a33 4071void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4072{
95f93af4 4073 kvm_mmu_unload(vcpu);
8a3c1a33 4074 init_kvm_mmu(vcpu);
17c3ba9d 4075}
8668a3c4 4076EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4077
4078int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4079{
714b93da
AK
4080 int r;
4081
e2dec939 4082 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4083 if (r)
4084 goto out;
8986ecc0 4085 r = mmu_alloc_roots(vcpu);
e2858b4a 4086 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4087 if (r)
4088 goto out;
3662cb1c 4089 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4090 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4091out:
4092 return r;
6aa8b732 4093}
17c3ba9d
AK
4094EXPORT_SYMBOL_GPL(kvm_mmu_load);
4095
4096void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4097{
4098 mmu_free_roots(vcpu);
95f93af4 4099 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4100}
4b16184c 4101EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4102
0028425f 4103static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4104 struct kvm_mmu_page *sp, u64 *spte,
4105 const void *new)
0028425f 4106{
30945387 4107 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4108 ++vcpu->kvm->stat.mmu_pde_zapped;
4109 return;
30945387 4110 }
0028425f 4111
4cee5764 4112 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4113 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4114}
4115
79539cec
AK
4116static bool need_remote_flush(u64 old, u64 new)
4117{
4118 if (!is_shadow_present_pte(old))
4119 return false;
4120 if (!is_shadow_present_pte(new))
4121 return true;
4122 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4123 return true;
53166229
GN
4124 old ^= shadow_nx_mask;
4125 new ^= shadow_nx_mask;
79539cec
AK
4126 return (old & ~new & PT64_PERM_MASK) != 0;
4127}
4128
0671a8e7
XG
4129static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4130 bool remote_flush, bool local_flush)
79539cec 4131{
0671a8e7
XG
4132 if (zap_page)
4133 return;
4134
4135 if (remote_flush)
79539cec 4136 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 4137 else if (local_flush)
77c3913b 4138 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
79539cec
AK
4139}
4140
889e5cbc
XG
4141static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4142 const u8 *new, int *bytes)
da4a00f0 4143{
889e5cbc
XG
4144 u64 gentry;
4145 int r;
72016f3a 4146
72016f3a
AK
4147 /*
4148 * Assume that the pte write on a page table of the same type
49b26e26
XG
4149 * as the current vcpu paging mode since we update the sptes only
4150 * when they have the same mode.
72016f3a 4151 */
889e5cbc 4152 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4153 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4154 *gpa &= ~(gpa_t)7;
4155 *bytes = 8;
116eb3d3 4156 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
4157 if (r)
4158 gentry = 0;
08e850c6
AK
4159 new = (const u8 *)&gentry;
4160 }
4161
889e5cbc 4162 switch (*bytes) {
08e850c6
AK
4163 case 4:
4164 gentry = *(const u32 *)new;
4165 break;
4166 case 8:
4167 gentry = *(const u64 *)new;
4168 break;
4169 default:
4170 gentry = 0;
4171 break;
72016f3a
AK
4172 }
4173
889e5cbc
XG
4174 return gentry;
4175}
4176
4177/*
4178 * If we're seeing too many writes to a page, it may no longer be a page table,
4179 * or we may be forking, in which case it is better to unmap the page.
4180 */
a138fe75 4181static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4182{
a30f47cb
XG
4183 /*
4184 * Skip write-flooding detected for the sp whose level is 1, because
4185 * it can become unsync, then the guest page is not write-protected.
4186 */
f71fa31f 4187 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4188 return false;
3246af0e 4189
a30f47cb 4190 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
4191}
4192
4193/*
4194 * Misaligned accesses are too much trouble to fix up; also, they usually
4195 * indicate a page is not used as a page table.
4196 */
4197static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4198 int bytes)
4199{
4200 unsigned offset, pte_size, misaligned;
4201
4202 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4203 gpa, bytes, sp->role.word);
4204
4205 offset = offset_in_page(gpa);
4206 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4207
4208 /*
4209 * Sometimes, the OS only writes the last one bytes to update status
4210 * bits, for example, in linux, andb instruction is used in clear_bit().
4211 */
4212 if (!(offset & (pte_size - 1)) && bytes == 1)
4213 return false;
4214
889e5cbc
XG
4215 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4216 misaligned |= bytes < 4;
4217
4218 return misaligned;
4219}
4220
4221static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4222{
4223 unsigned page_offset, quadrant;
4224 u64 *spte;
4225 int level;
4226
4227 page_offset = offset_in_page(gpa);
4228 level = sp->role.level;
4229 *nspte = 1;
4230 if (!sp->role.cr4_pae) {
4231 page_offset <<= 1; /* 32->64 */
4232 /*
4233 * A 32-bit pde maps 4MB while the shadow pdes map
4234 * only 2MB. So we need to double the offset again
4235 * and zap two pdes instead of one.
4236 */
4237 if (level == PT32_ROOT_LEVEL) {
4238 page_offset &= ~7; /* kill rounding error */
4239 page_offset <<= 1;
4240 *nspte = 2;
4241 }
4242 quadrant = page_offset >> PAGE_SHIFT;
4243 page_offset &= ~PAGE_MASK;
4244 if (quadrant != sp->role.quadrant)
4245 return NULL;
4246 }
4247
4248 spte = &sp->spt[page_offset / sizeof(*spte)];
4249 return spte;
4250}
4251
4252void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4253 const u8 *new, int bytes)
4254{
4255 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4256 struct kvm_mmu_page *sp;
889e5cbc
XG
4257 LIST_HEAD(invalid_list);
4258 u64 entry, gentry, *spte;
4259 int npte;
a30f47cb 4260 bool remote_flush, local_flush, zap_page;
4141259b
AM
4261 union kvm_mmu_page_role mask = { };
4262
4263 mask.cr0_wp = 1;
4264 mask.cr4_pae = 1;
4265 mask.nxe = 1;
4266 mask.smep_andnot_wp = 1;
4267 mask.smap_andnot_wp = 1;
889e5cbc
XG
4268
4269 /*
4270 * If we don't have indirect shadow pages, it means no page is
4271 * write-protected, so we can exit simply.
4272 */
4273 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4274 return;
4275
4276 zap_page = remote_flush = local_flush = false;
4277
4278 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4279
4280 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4281
4282 /*
4283 * No need to care whether allocation memory is successful
4284 * or not since pte prefetch is skiped if it does not have
4285 * enough objects in the cache.
4286 */
4287 mmu_topup_memory_caches(vcpu);
4288
4289 spin_lock(&vcpu->kvm->mmu_lock);
4290 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4291 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4292
b67bfe0d 4293 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4294 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4295 detect_write_flooding(sp)) {
0671a8e7 4296 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4297 &invalid_list);
4cee5764 4298 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4299 continue;
4300 }
889e5cbc
XG
4301
4302 spte = get_written_sptes(sp, gpa, &npte);
4303 if (!spte)
4304 continue;
4305
0671a8e7 4306 local_flush = true;
ac1b714e 4307 while (npte--) {
79539cec 4308 entry = *spte;
38e3b2b2 4309 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4310 if (gentry &&
4311 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4312 & mask.word) && rmap_can_add(vcpu))
7c562522 4313 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4314 if (need_remote_flush(entry, *spte))
0671a8e7 4315 remote_flush = true;
ac1b714e 4316 ++spte;
9b7a0325 4317 }
9b7a0325 4318 }
0671a8e7 4319 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4320 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4321 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4322 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4323}
4324
a436036b
AK
4325int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4326{
10589a46
MT
4327 gpa_t gpa;
4328 int r;
a436036b 4329
c5a78f2b 4330 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4331 return 0;
4332
1871c602 4333 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4334
10589a46 4335 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4336
10589a46 4337 return r;
a436036b 4338}
577bdc49 4339EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4340
81f4f76b 4341static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4342{
d98ba053 4343 LIST_HEAD(invalid_list);
103ad25a 4344
81f4f76b
TY
4345 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4346 return;
4347
5da59607
TY
4348 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4349 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4350 break;
ebeace86 4351
4cee5764 4352 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4353 }
aa6bd187 4354 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4355}
ebeace86 4356
1cb3f3ae
XG
4357static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4358{
4359 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4360 return vcpu_match_mmio_gpa(vcpu, addr);
4361
4362 return vcpu_match_mmio_gva(vcpu, addr);
4363}
4364
dc25e89e
AP
4365int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4366 void *insn, int insn_len)
3067714c 4367{
1cb3f3ae 4368 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4369 enum emulation_result er;
4370
56028d08 4371 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4372 if (r < 0)
4373 goto out;
4374
4375 if (!r) {
4376 r = 1;
4377 goto out;
4378 }
4379
1cb3f3ae
XG
4380 if (is_mmio_page_fault(vcpu, cr2))
4381 emulation_type = 0;
4382
4383 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4384
4385 switch (er) {
4386 case EMULATE_DONE:
4387 return 1;
ac0a48c3 4388 case EMULATE_USER_EXIT:
3067714c 4389 ++vcpu->stat.mmio_exits;
6d77dbfc 4390 /* fall through */
3067714c 4391 case EMULATE_FAIL:
3f5d18a9 4392 return 0;
3067714c
AK
4393 default:
4394 BUG();
4395 }
4396out:
3067714c
AK
4397 return r;
4398}
4399EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4400
a7052897
MT
4401void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4402{
a7052897 4403 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4404 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4405 ++vcpu->stat.invlpg;
4406}
4407EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4408
18552672
JR
4409void kvm_enable_tdp(void)
4410{
4411 tdp_enabled = true;
4412}
4413EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4414
5f4cb662
JR
4415void kvm_disable_tdp(void)
4416{
4417 tdp_enabled = false;
4418}
4419EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4420
6aa8b732
AK
4421static void free_mmu_pages(struct kvm_vcpu *vcpu)
4422{
ad312c7c 4423 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4424 if (vcpu->arch.mmu.lm_root != NULL)
4425 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4426}
4427
4428static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4429{
17ac10ad 4430 struct page *page;
6aa8b732
AK
4431 int i;
4432
17ac10ad
AK
4433 /*
4434 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4435 * Therefore we need to allocate shadow page tables in the first
4436 * 4GB of memory, which happens to fit the DMA32 zone.
4437 */
4438 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4439 if (!page)
d7fa6ab2
WY
4440 return -ENOMEM;
4441
ad312c7c 4442 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4443 for (i = 0; i < 4; ++i)
ad312c7c 4444 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4445
6aa8b732 4446 return 0;
6aa8b732
AK
4447}
4448
8018c27b 4449int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4450{
e459e322
XG
4451 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4452 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4453 vcpu->arch.mmu.translate_gpa = translate_gpa;
4454 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4455
8018c27b
IM
4456 return alloc_mmu_pages(vcpu);
4457}
6aa8b732 4458
8a3c1a33 4459void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4460{
fa4a2c08 4461 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4462
8a3c1a33 4463 init_kvm_mmu(vcpu);
6aa8b732
AK
4464}
4465
1bad2b2a
XG
4466/* The return value indicates if tlb flush on all vcpus is needed. */
4467typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
4468
4469/* The caller should hold mmu-lock before calling this function. */
4470static bool
4471slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4472 slot_level_handler fn, int start_level, int end_level,
4473 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4474{
4475 struct slot_rmap_walk_iterator iterator;
4476 bool flush = false;
4477
4478 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4479 end_gfn, &iterator) {
4480 if (iterator.rmap)
4481 flush |= fn(kvm, iterator.rmap);
4482
4483 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4484 if (flush && lock_flush_tlb) {
4485 kvm_flush_remote_tlbs(kvm);
4486 flush = false;
4487 }
4488 cond_resched_lock(&kvm->mmu_lock);
4489 }
4490 }
4491
4492 if (flush && lock_flush_tlb) {
4493 kvm_flush_remote_tlbs(kvm);
4494 flush = false;
4495 }
4496
4497 return flush;
4498}
4499
4500static bool
4501slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4502 slot_level_handler fn, int start_level, int end_level,
4503 bool lock_flush_tlb)
4504{
4505 return slot_handle_level_range(kvm, memslot, fn, start_level,
4506 end_level, memslot->base_gfn,
4507 memslot->base_gfn + memslot->npages - 1,
4508 lock_flush_tlb);
4509}
4510
4511static bool
4512slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4513 slot_level_handler fn, bool lock_flush_tlb)
4514{
4515 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4516 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4517}
4518
4519static bool
4520slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4521 slot_level_handler fn, bool lock_flush_tlb)
4522{
4523 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4524 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4525}
4526
4527static bool
4528slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4529 slot_level_handler fn, bool lock_flush_tlb)
4530{
4531 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4532 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4533}
4534
efdfe536
XG
4535void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4536{
4537 struct kvm_memslots *slots;
4538 struct kvm_memory_slot *memslot;
4539
4540 slots = kvm_memslots(kvm);
4541
4542 spin_lock(&kvm->mmu_lock);
4543 kvm_for_each_memslot(memslot, slots) {
4544 gfn_t start, end;
4545
4546 start = max(gfn_start, memslot->base_gfn);
4547 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4548 if (start >= end)
4549 continue;
4550
4551 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4552 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4553 start, end - 1, true);
4554 }
4555
4556 spin_unlock(&kvm->mmu_lock);
4557}
4558
d77aa73c
XG
4559static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
4560{
4561 return __rmap_write_protect(kvm, rmapp, false);
4562}
4563
1c91cad4
KH
4564void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4565 struct kvm_memory_slot *memslot)
6aa8b732 4566{
d77aa73c 4567 bool flush;
6aa8b732 4568
9d1beefb 4569 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4570 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4571 false);
9d1beefb 4572 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4573
4574 /*
4575 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4576 * which do tlb flush out of mmu-lock should be serialized by
4577 * kvm->slots_lock otherwise tlb flush would be missed.
4578 */
4579 lockdep_assert_held(&kvm->slots_lock);
4580
4581 /*
4582 * We can flush all the TLBs out of the mmu lock without TLB
4583 * corruption since we just change the spte from writable to
4584 * readonly so that we only need to care the case of changing
4585 * spte from present to present (changing the spte from present
4586 * to nonpresent will flush all the TLBs immediately), in other
4587 * words, the only case we care is mmu_spte_update() where we
4588 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4589 * instead of PT_WRITABLE_MASK, that means it does not depend
4590 * on PT_WRITABLE_MASK anymore.
4591 */
d91ffee9
KH
4592 if (flush)
4593 kvm_flush_remote_tlbs(kvm);
6aa8b732 4594}
37a7d8b0 4595
3ea3b7fa
WL
4596static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4597 unsigned long *rmapp)
4598{
4599 u64 *sptep;
4600 struct rmap_iterator iter;
4601 int need_tlb_flush = 0;
4602 pfn_t pfn;
4603 struct kvm_mmu_page *sp;
4604
0d536790
XG
4605restart:
4606 for_each_rmap_spte(rmapp, &iter, sptep) {
3ea3b7fa
WL
4607 sp = page_header(__pa(sptep));
4608 pfn = spte_to_pfn(*sptep);
4609
4610 /*
decf6333
XG
4611 * We cannot do huge page mapping for indirect shadow pages,
4612 * which are found on the last rmap (level = 1) when not using
4613 * tdp; such shadow pages are synced with the page table in
4614 * the guest, and the guest page table is using 4K page size
4615 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
4616 */
4617 if (sp->role.direct &&
4618 !kvm_is_reserved_pfn(pfn) &&
4619 PageTransCompound(pfn_to_page(pfn))) {
4620 drop_spte(kvm, sptep);
3ea3b7fa 4621 need_tlb_flush = 1;
0d536790
XG
4622 goto restart;
4623 }
3ea3b7fa
WL
4624 }
4625
4626 return need_tlb_flush;
4627}
4628
4629void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 4630 const struct kvm_memory_slot *memslot)
3ea3b7fa 4631{
f36f3f28 4632 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 4633 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
4634 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4635 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
4636 spin_unlock(&kvm->mmu_lock);
4637}
4638
f4b4b180
KH
4639void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4640 struct kvm_memory_slot *memslot)
4641{
d77aa73c 4642 bool flush;
f4b4b180
KH
4643
4644 spin_lock(&kvm->mmu_lock);
d77aa73c 4645 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
4646 spin_unlock(&kvm->mmu_lock);
4647
4648 lockdep_assert_held(&kvm->slots_lock);
4649
4650 /*
4651 * It's also safe to flush TLBs out of mmu lock here as currently this
4652 * function is only used for dirty logging, in which case flushing TLB
4653 * out of mmu lock also guarantees no dirty pages will be lost in
4654 * dirty_bitmap.
4655 */
4656 if (flush)
4657 kvm_flush_remote_tlbs(kvm);
4658}
4659EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4660
4661void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4662 struct kvm_memory_slot *memslot)
4663{
d77aa73c 4664 bool flush;
f4b4b180
KH
4665
4666 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4667 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4668 false);
f4b4b180
KH
4669 spin_unlock(&kvm->mmu_lock);
4670
4671 /* see kvm_mmu_slot_remove_write_access */
4672 lockdep_assert_held(&kvm->slots_lock);
4673
4674 if (flush)
4675 kvm_flush_remote_tlbs(kvm);
4676}
4677EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4678
4679void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4680 struct kvm_memory_slot *memslot)
4681{
d77aa73c 4682 bool flush;
f4b4b180
KH
4683
4684 spin_lock(&kvm->mmu_lock);
d77aa73c 4685 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
4686 spin_unlock(&kvm->mmu_lock);
4687
4688 lockdep_assert_held(&kvm->slots_lock);
4689
4690 /* see kvm_mmu_slot_leaf_clear_dirty */
4691 if (flush)
4692 kvm_flush_remote_tlbs(kvm);
4693}
4694EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4695
e7d11c7a 4696#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4697static void kvm_zap_obsolete_pages(struct kvm *kvm)
4698{
4699 struct kvm_mmu_page *sp, *node;
e7d11c7a 4700 int batch = 0;
5304b8d3
XG
4701
4702restart:
4703 list_for_each_entry_safe_reverse(sp, node,
4704 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4705 int ret;
4706
5304b8d3
XG
4707 /*
4708 * No obsolete page exists before new created page since
4709 * active_mmu_pages is the FIFO list.
4710 */
4711 if (!is_obsolete_sp(kvm, sp))
4712 break;
4713
4714 /*
5304b8d3
XG
4715 * Since we are reversely walking the list and the invalid
4716 * list will be moved to the head, skip the invalid page
4717 * can help us to avoid the infinity list walking.
4718 */
4719 if (sp->role.invalid)
4720 continue;
4721
f34d251d
XG
4722 /*
4723 * Need not flush tlb since we only zap the sp with invalid
4724 * generation number.
4725 */
e7d11c7a 4726 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4727 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4728 batch = 0;
5304b8d3
XG
4729 goto restart;
4730 }
4731
365c8868
XG
4732 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4733 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4734 batch += ret;
4735
4736 if (ret)
5304b8d3
XG
4737 goto restart;
4738 }
4739
f34d251d
XG
4740 /*
4741 * Should flush tlb before free page tables since lockless-walking
4742 * may use the pages.
4743 */
365c8868 4744 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4745}
4746
4747/*
4748 * Fast invalidate all shadow pages and use lock-break technique
4749 * to zap obsolete pages.
4750 *
4751 * It's required when memslot is being deleted or VM is being
4752 * destroyed, in these cases, we should ensure that KVM MMU does
4753 * not use any resource of the being-deleted slot or all slots
4754 * after calling the function.
4755 */
4756void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4757{
4758 spin_lock(&kvm->mmu_lock);
35006126 4759 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4760 kvm->arch.mmu_valid_gen++;
4761
f34d251d
XG
4762 /*
4763 * Notify all vcpus to reload its shadow page table
4764 * and flush TLB. Then all vcpus will switch to new
4765 * shadow page table with the new mmu_valid_gen.
4766 *
4767 * Note: we should do this under the protection of
4768 * mmu-lock, otherwise, vcpu would purge shadow page
4769 * but miss tlb flush.
4770 */
4771 kvm_reload_remote_mmus(kvm);
4772
5304b8d3
XG
4773 kvm_zap_obsolete_pages(kvm);
4774 spin_unlock(&kvm->mmu_lock);
4775}
4776
365c8868
XG
4777static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4778{
4779 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4780}
4781
f8f55942
XG
4782void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4783{
4784 /*
4785 * The very rare case: if the generation-number is round,
4786 * zap all shadow pages.
f8f55942 4787 */
ee3d1570 4788 if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
a629df7e 4789 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4790 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4791 }
f8f55942
XG
4792}
4793
70534a73
DC
4794static unsigned long
4795mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4796{
4797 struct kvm *kvm;
1495f230 4798 int nr_to_scan = sc->nr_to_scan;
70534a73 4799 unsigned long freed = 0;
3ee16c81 4800
2f303b74 4801 spin_lock(&kvm_lock);
3ee16c81
IE
4802
4803 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4804 int idx;
d98ba053 4805 LIST_HEAD(invalid_list);
3ee16c81 4806
35f2d16b
TY
4807 /*
4808 * Never scan more than sc->nr_to_scan VM instances.
4809 * Will not hit this condition practically since we do not try
4810 * to shrink more than one VM and it is very unlikely to see
4811 * !n_used_mmu_pages so many times.
4812 */
4813 if (!nr_to_scan--)
4814 break;
19526396
GN
4815 /*
4816 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4817 * here. We may skip a VM instance errorneosly, but we do not
4818 * want to shrink a VM that only started to populate its MMU
4819 * anyway.
4820 */
365c8868
XG
4821 if (!kvm->arch.n_used_mmu_pages &&
4822 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4823 continue;
19526396 4824
f656ce01 4825 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4826 spin_lock(&kvm->mmu_lock);
3ee16c81 4827
365c8868
XG
4828 if (kvm_has_zapped_obsolete_pages(kvm)) {
4829 kvm_mmu_commit_zap_page(kvm,
4830 &kvm->arch.zapped_obsolete_pages);
4831 goto unlock;
4832 }
4833
70534a73
DC
4834 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4835 freed++;
d98ba053 4836 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4837
365c8868 4838unlock:
3ee16c81 4839 spin_unlock(&kvm->mmu_lock);
f656ce01 4840 srcu_read_unlock(&kvm->srcu, idx);
19526396 4841
70534a73
DC
4842 /*
4843 * unfair on small ones
4844 * per-vm shrinkers cry out
4845 * sadness comes quickly
4846 */
19526396
GN
4847 list_move_tail(&kvm->vm_list, &vm_list);
4848 break;
3ee16c81 4849 }
3ee16c81 4850
2f303b74 4851 spin_unlock(&kvm_lock);
70534a73 4852 return freed;
70534a73
DC
4853}
4854
4855static unsigned long
4856mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4857{
45221ab6 4858 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4859}
4860
4861static struct shrinker mmu_shrinker = {
70534a73
DC
4862 .count_objects = mmu_shrink_count,
4863 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4864 .seeks = DEFAULT_SEEKS * 10,
4865};
4866
2ddfd20e 4867static void mmu_destroy_caches(void)
b5a33a75 4868{
53c07b18
XG
4869 if (pte_list_desc_cache)
4870 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4871 if (mmu_page_header_cache)
4872 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4873}
4874
4875int kvm_mmu_module_init(void)
4876{
53c07b18
XG
4877 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4878 sizeof(struct pte_list_desc),
20c2df83 4879 0, 0, NULL);
53c07b18 4880 if (!pte_list_desc_cache)
b5a33a75
AK
4881 goto nomem;
4882
d3d25b04
AK
4883 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4884 sizeof(struct kvm_mmu_page),
20c2df83 4885 0, 0, NULL);
d3d25b04
AK
4886 if (!mmu_page_header_cache)
4887 goto nomem;
4888
908c7f19 4889 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
4890 goto nomem;
4891
3ee16c81
IE
4892 register_shrinker(&mmu_shrinker);
4893
b5a33a75
AK
4894 return 0;
4895
4896nomem:
3ee16c81 4897 mmu_destroy_caches();
b5a33a75
AK
4898 return -ENOMEM;
4899}
4900
3ad82a7e
ZX
4901/*
4902 * Caculate mmu pages needed for kvm.
4903 */
4904unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4905{
3ad82a7e
ZX
4906 unsigned int nr_mmu_pages;
4907 unsigned int nr_pages = 0;
bc6678a3 4908 struct kvm_memslots *slots;
be6ba0f0 4909 struct kvm_memory_slot *memslot;
3ad82a7e 4910
90d83dc3
LJ
4911 slots = kvm_memslots(kvm);
4912
be6ba0f0
XG
4913 kvm_for_each_memslot(memslot, slots)
4914 nr_pages += memslot->npages;
3ad82a7e
ZX
4915
4916 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4917 nr_mmu_pages = max(nr_mmu_pages,
4918 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4919
4920 return nr_mmu_pages;
4921}
4922
94d8b056
MT
4923int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4924{
4925 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4926 u64 spte;
94d8b056
MT
4927 int nr_sptes = 0;
4928
37f6a4e2
MT
4929 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4930 return nr_sptes;
4931
c2a2ac2b
XG
4932 walk_shadow_page_lockless_begin(vcpu);
4933 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4934 sptes[iterator.level-1] = spte;
94d8b056 4935 nr_sptes++;
c2a2ac2b 4936 if (!is_shadow_present_pte(spte))
94d8b056
MT
4937 break;
4938 }
c2a2ac2b 4939 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4940
4941 return nr_sptes;
4942}
4943EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4944
c42fffe3
XG
4945void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4946{
95f93af4 4947 kvm_mmu_unload(vcpu);
c42fffe3
XG
4948 free_mmu_pages(vcpu);
4949 mmu_free_memory_caches(vcpu);
b034cf01
XG
4950}
4951
b034cf01
XG
4952void kvm_mmu_module_exit(void)
4953{
4954 mmu_destroy_caches();
4955 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4956 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4957 mmu_audit_disable();
4958}