]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
1767e931
PG
32#include <linux/moduleparam.h>
33#include <linux/export.h>
448353ca 34#include <linux/swap.h>
05da4558 35#include <linux/hugetlb.h>
2f333bcb 36#include <linux/compiler.h>
bc6678a3 37#include <linux/srcu.h>
5a0e3ad6 38#include <linux/slab.h>
bf998156 39#include <linux/uaccess.h>
114df303 40#include <linux/hash.h>
f160c7b7 41#include <linux/kern_levels.h>
6aa8b732 42
e495606d
AK
43#include <asm/page.h>
44#include <asm/cmpxchg.h>
4e542370 45#include <asm/io.h>
13673a90 46#include <asm/vmx.h>
3d0c27ad 47#include <asm/kvm_page_track.h>
6aa8b732 48
18552672
JR
49/*
50 * When setting this variable to true it enables Two-Dimensional-Paging
51 * where the hardware walks 2 page tables:
52 * 1. the guest-virtual to guest-physical
53 * 2. while doing 1. it walks guest-physical to host-physical
54 * If the hardware supports that we don't need to do shadow paging.
55 */
2f333bcb 56bool tdp_enabled = false;
18552672 57
8b1fe17c
XG
58enum {
59 AUDIT_PRE_PAGE_FAULT,
60 AUDIT_POST_PAGE_FAULT,
61 AUDIT_PRE_PTE_WRITE,
6903074c
XG
62 AUDIT_POST_PTE_WRITE,
63 AUDIT_PRE_SYNC,
64 AUDIT_POST_SYNC
8b1fe17c 65};
37a7d8b0 66
8b1fe17c 67#undef MMU_DEBUG
37a7d8b0
AK
68
69#ifdef MMU_DEBUG
fa4a2c08
PB
70static bool dbg = 0;
71module_param(dbg, bool, 0644);
37a7d8b0
AK
72
73#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
74#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 75#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 76#else
37a7d8b0
AK
77#define pgprintk(x...) do { } while (0)
78#define rmap_printk(x...) do { } while (0)
fa4a2c08 79#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 80#endif
6aa8b732 81
957ed9ef
XG
82#define PTE_PREFETCH_NUM 8
83
00763e41 84#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
85#define PT64_SECOND_AVAIL_BITS_SHIFT 52
86
6aa8b732
AK
87#define PT64_LEVEL_BITS 9
88
89#define PT64_LEVEL_SHIFT(level) \
d77c26fc 90 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 91
6aa8b732
AK
92#define PT64_INDEX(address, level)\
93 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
94
95
96#define PT32_LEVEL_BITS 10
97
98#define PT32_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 100
e04da980
JR
101#define PT32_LVL_OFFSET_MASK(level) \
102 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
103 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
104
105#define PT32_INDEX(address, level)\
106 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
107
108
27aba766 109#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
110#define PT64_DIR_BASE_ADDR_MASK \
111 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
112#define PT64_LVL_ADDR_MASK(level) \
113 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
114 * PT64_LEVEL_BITS))) - 1))
115#define PT64_LVL_OFFSET_MASK(level) \
116 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
117 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
118
119#define PT32_BASE_ADDR_MASK PAGE_MASK
120#define PT32_DIR_BASE_ADDR_MASK \
121 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
122#define PT32_LVL_ADDR_MASK(level) \
123 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT32_LEVEL_BITS))) - 1))
6aa8b732 125
53166229
GN
126#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
127 | shadow_x_mask | shadow_nx_mask)
6aa8b732 128
fe135d2c
AK
129#define ACC_EXEC_MASK 1
130#define ACC_WRITE_MASK PT_WRITABLE_MASK
131#define ACC_USER_MASK PT_USER_MASK
132#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
133
f160c7b7
JS
134/* The mask for the R/X bits in EPT PTEs */
135#define PT64_EPT_READABLE_MASK 0x1ull
136#define PT64_EPT_EXECUTABLE_MASK 0x4ull
137
90bb6fc5
AK
138#include <trace/events/kvm.h>
139
07420171
AK
140#define CREATE_TRACE_POINTS
141#include "mmutrace.h"
142
49fde340
XG
143#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
144#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 145
135f8c2b
AK
146#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
147
220f773a
TY
148/* make pte_list_desc fit well in cache line */
149#define PTE_LIST_EXT 3
150
53c07b18
XG
151struct pte_list_desc {
152 u64 *sptes[PTE_LIST_EXT];
153 struct pte_list_desc *more;
cd4a4e53
AK
154};
155
2d11123a
AK
156struct kvm_shadow_walk_iterator {
157 u64 addr;
158 hpa_t shadow_addr;
2d11123a 159 u64 *sptep;
dd3bfd59 160 int level;
2d11123a
AK
161 unsigned index;
162};
163
164#define for_each_shadow_entry(_vcpu, _addr, _walker) \
165 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
166 shadow_walk_okay(&(_walker)); \
167 shadow_walk_next(&(_walker)))
168
c2a2ac2b
XG
169#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)) && \
172 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
173 __shadow_walk_next(&(_walker), spte))
174
53c07b18 175static struct kmem_cache *pte_list_desc_cache;
d3d25b04 176static struct kmem_cache *mmu_page_header_cache;
45221ab6 177static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 178
7b52345e
SY
179static u64 __read_mostly shadow_nx_mask;
180static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
181static u64 __read_mostly shadow_user_mask;
182static u64 __read_mostly shadow_accessed_mask;
183static u64 __read_mostly shadow_dirty_mask;
ce88decf 184static u64 __read_mostly shadow_mmio_mask;
ffb128c8 185static u64 __read_mostly shadow_present_mask;
ce88decf 186
f160c7b7
JS
187/*
188 * The mask/value to distinguish a PTE that has been marked not-present for
189 * access tracking purposes.
190 * The mask would be either 0 if access tracking is disabled, or
191 * SPTE_SPECIAL_MASK|VMX_EPT_RWX_MASK if access tracking is enabled.
192 */
193static u64 __read_mostly shadow_acc_track_mask;
194static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
195
196/*
197 * The mask/shift to use for saving the original R/X bits when marking the PTE
198 * as not-present for access tracking purposes. We do not save the W bit as the
199 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
200 * restored only when a write is attempted to the page.
201 */
202static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
203 PT64_EPT_EXECUTABLE_MASK;
204static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
205
ce88decf 206static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 207static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
208
209void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
210{
312b616b 211 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
ce88decf
XG
212}
213EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
214
f160c7b7
JS
215static inline bool is_access_track_spte(u64 spte)
216{
217 /* Always false if shadow_acc_track_mask is zero. */
218 return (spte & shadow_acc_track_mask) == shadow_acc_track_value;
219}
220
f2fd125d 221/*
ee3d1570
DM
222 * the low bit of the generation number is always presumed to be zero.
223 * This disables mmio caching during memslot updates. The concept is
224 * similar to a seqcount but instead of retrying the access we just punt
225 * and ignore the cache.
226 *
227 * spte bits 3-11 are used as bits 1-9 of the generation number,
228 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 229 */
ee3d1570 230#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
231#define MMIO_SPTE_GEN_HIGH_SHIFT 52
232
ee3d1570
DM
233#define MMIO_GEN_SHIFT 20
234#define MMIO_GEN_LOW_SHIFT 10
235#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 236#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
237
238static u64 generation_mmio_spte_mask(unsigned int gen)
239{
240 u64 mask;
241
842bb26a 242 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
243
244 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
245 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
246 return mask;
247}
248
249static unsigned int get_mmio_spte_generation(u64 spte)
250{
251 unsigned int gen;
252
253 spte &= ~shadow_mmio_mask;
254
255 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
256 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
257 return gen;
258}
259
54bf36aa 260static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 261{
54bf36aa 262 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
263}
264
54bf36aa 265static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 266 unsigned access)
ce88decf 267{
54bf36aa 268 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 269 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 270
ce88decf 271 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 272 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 273
f8f55942 274 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 275 mmu_spte_set(sptep, mask);
ce88decf
XG
276}
277
278static bool is_mmio_spte(u64 spte)
279{
280 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
281}
282
283static gfn_t get_mmio_spte_gfn(u64 spte)
284{
842bb26a 285 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 286 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
287}
288
289static unsigned get_mmio_spte_access(u64 spte)
290{
842bb26a 291 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 292 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
293}
294
54bf36aa 295static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 296 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
297{
298 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 299 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
300 return true;
301 }
302
303 return false;
304}
c7addb90 305
54bf36aa 306static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 307{
089504c0
XG
308 unsigned int kvm_gen, spte_gen;
309
54bf36aa 310 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
311 spte_gen = get_mmio_spte_generation(spte);
312
313 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
314 return likely(kvm_gen == spte_gen);
f8f55942
XG
315}
316
7b52345e 317void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7
JS
318 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
319 u64 acc_track_mask)
7b52345e 320{
312b616b
JS
321 if (acc_track_mask != 0)
322 acc_track_mask |= SPTE_SPECIAL_MASK;
323
7b52345e
SY
324 shadow_user_mask = user_mask;
325 shadow_accessed_mask = accessed_mask;
326 shadow_dirty_mask = dirty_mask;
327 shadow_nx_mask = nx_mask;
328 shadow_x_mask = x_mask;
ffb128c8 329 shadow_present_mask = p_mask;
f160c7b7
JS
330 shadow_acc_track_mask = acc_track_mask;
331 WARN_ON(shadow_accessed_mask != 0 && shadow_acc_track_mask != 0);
7b52345e
SY
332}
333EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
334
f160c7b7
JS
335void kvm_mmu_clear_all_pte_masks(void)
336{
337 shadow_user_mask = 0;
338 shadow_accessed_mask = 0;
339 shadow_dirty_mask = 0;
340 shadow_nx_mask = 0;
341 shadow_x_mask = 0;
342 shadow_mmio_mask = 0;
343 shadow_present_mask = 0;
344 shadow_acc_track_mask = 0;
345}
346
6aa8b732
AK
347static int is_cpuid_PSE36(void)
348{
349 return 1;
350}
351
73b1087e
AK
352static int is_nx(struct kvm_vcpu *vcpu)
353{
f6801dff 354 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
355}
356
c7addb90
AK
357static int is_shadow_present_pte(u64 pte)
358{
f160c7b7 359 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
360}
361
05da4558
MT
362static int is_large_pte(u64 pte)
363{
364 return pte & PT_PAGE_SIZE_MASK;
365}
366
776e6633
MT
367static int is_last_spte(u64 pte, int level)
368{
369 if (level == PT_PAGE_TABLE_LEVEL)
370 return 1;
852e3c19 371 if (is_large_pte(pte))
776e6633
MT
372 return 1;
373 return 0;
374}
375
d3e328f2
JS
376static bool is_executable_pte(u64 spte)
377{
378 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
379}
380
ba049e93 381static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 382{
35149e21 383 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
384}
385
da928521
AK
386static gfn_t pse36_gfn_delta(u32 gpte)
387{
388 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
389
390 return (gpte & PT32_DIR_PSE36_MASK) << shift;
391}
392
603e0651 393#ifdef CONFIG_X86_64
d555c333 394static void __set_spte(u64 *sptep, u64 spte)
e663ee64 395{
b19ee2ff 396 WRITE_ONCE(*sptep, spte);
e663ee64
AK
397}
398
603e0651 399static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 400{
b19ee2ff 401 WRITE_ONCE(*sptep, spte);
603e0651
XG
402}
403
404static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
405{
406 return xchg(sptep, spte);
407}
c2a2ac2b
XG
408
409static u64 __get_spte_lockless(u64 *sptep)
410{
411 return ACCESS_ONCE(*sptep);
412}
a9221dd5 413#else
603e0651
XG
414union split_spte {
415 struct {
416 u32 spte_low;
417 u32 spte_high;
418 };
419 u64 spte;
420};
a9221dd5 421
c2a2ac2b
XG
422static void count_spte_clear(u64 *sptep, u64 spte)
423{
424 struct kvm_mmu_page *sp = page_header(__pa(sptep));
425
426 if (is_shadow_present_pte(spte))
427 return;
428
429 /* Ensure the spte is completely set before we increase the count */
430 smp_wmb();
431 sp->clear_spte_count++;
432}
433
603e0651
XG
434static void __set_spte(u64 *sptep, u64 spte)
435{
436 union split_spte *ssptep, sspte;
a9221dd5 437
603e0651
XG
438 ssptep = (union split_spte *)sptep;
439 sspte = (union split_spte)spte;
440
441 ssptep->spte_high = sspte.spte_high;
442
443 /*
444 * If we map the spte from nonpresent to present, We should store
445 * the high bits firstly, then set present bit, so cpu can not
446 * fetch this spte while we are setting the spte.
447 */
448 smp_wmb();
449
b19ee2ff 450 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
451}
452
603e0651
XG
453static void __update_clear_spte_fast(u64 *sptep, u64 spte)
454{
455 union split_spte *ssptep, sspte;
456
457 ssptep = (union split_spte *)sptep;
458 sspte = (union split_spte)spte;
459
b19ee2ff 460 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
461
462 /*
463 * If we map the spte from present to nonpresent, we should clear
464 * present bit firstly to avoid vcpu fetch the old high bits.
465 */
466 smp_wmb();
467
468 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 469 count_spte_clear(sptep, spte);
603e0651
XG
470}
471
472static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
473{
474 union split_spte *ssptep, sspte, orig;
475
476 ssptep = (union split_spte *)sptep;
477 sspte = (union split_spte)spte;
478
479 /* xchg acts as a barrier before the setting of the high bits */
480 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
481 orig.spte_high = ssptep->spte_high;
482 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 483 count_spte_clear(sptep, spte);
603e0651
XG
484
485 return orig.spte;
486}
c2a2ac2b
XG
487
488/*
489 * The idea using the light way get the spte on x86_32 guest is from
490 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
491 *
492 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
493 * coalesces them and we are running out of the MMU lock. Therefore
494 * we need to protect against in-progress updates of the spte.
495 *
496 * Reading the spte while an update is in progress may get the old value
497 * for the high part of the spte. The race is fine for a present->non-present
498 * change (because the high part of the spte is ignored for non-present spte),
499 * but for a present->present change we must reread the spte.
500 *
501 * All such changes are done in two steps (present->non-present and
502 * non-present->present), hence it is enough to count the number of
503 * present->non-present updates: if it changed while reading the spte,
504 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
505 */
506static u64 __get_spte_lockless(u64 *sptep)
507{
508 struct kvm_mmu_page *sp = page_header(__pa(sptep));
509 union split_spte spte, *orig = (union split_spte *)sptep;
510 int count;
511
512retry:
513 count = sp->clear_spte_count;
514 smp_rmb();
515
516 spte.spte_low = orig->spte_low;
517 smp_rmb();
518
519 spte.spte_high = orig->spte_high;
520 smp_rmb();
521
522 if (unlikely(spte.spte_low != orig->spte_low ||
523 count != sp->clear_spte_count))
524 goto retry;
525
526 return spte.spte;
527}
603e0651
XG
528#endif
529
ea4114bc 530static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 531{
feb3eb70
GN
532 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
533 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
534}
535
8672b721
XG
536static bool spte_has_volatile_bits(u64 spte)
537{
f160c7b7
JS
538 if (!is_shadow_present_pte(spte))
539 return false;
540
c7ba5b48 541 /*
6a6256f9 542 * Always atomically update spte if it can be updated
c7ba5b48
XG
543 * out of mmu-lock, it can ensure dirty bit is not lost,
544 * also, it can help us to get a stable is_writable_pte()
545 * to ensure tlb flush is not missed.
546 */
f160c7b7
JS
547 if (spte_can_locklessly_be_made_writable(spte) ||
548 is_access_track_spte(spte))
c7ba5b48
XG
549 return true;
550
f160c7b7
JS
551 if (shadow_accessed_mask) {
552 if ((spte & shadow_accessed_mask) == 0 ||
553 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
554 return true;
555 }
8672b721 556
f160c7b7 557 return false;
8672b721
XG
558}
559
83ef6c81 560static bool is_accessed_spte(u64 spte)
4132779b 561{
83ef6c81 562 return shadow_accessed_mask ? spte & shadow_accessed_mask
f160c7b7 563 : !is_access_track_spte(spte);
4132779b
XG
564}
565
83ef6c81 566static bool is_dirty_spte(u64 spte)
7e71a59b 567{
83ef6c81
JS
568 return shadow_dirty_mask ? spte & shadow_dirty_mask
569 : spte & PT_WRITABLE_MASK;
7e71a59b
KH
570}
571
1df9f2dc
XG
572/* Rules for using mmu_spte_set:
573 * Set the sptep from nonpresent to present.
574 * Note: the sptep being assigned *must* be either not present
575 * or in a state where the hardware will not attempt to update
576 * the spte.
577 */
578static void mmu_spte_set(u64 *sptep, u64 new_spte)
579{
580 WARN_ON(is_shadow_present_pte(*sptep));
581 __set_spte(sptep, new_spte);
582}
583
f39a058d
JS
584/*
585 * Update the SPTE (excluding the PFN), but do not track changes in its
586 * accessed/dirty status.
1df9f2dc 587 */
f39a058d 588static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 589{
c7ba5b48 590 u64 old_spte = *sptep;
4132779b 591
afd28fe1 592 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 593
6e7d0354
XG
594 if (!is_shadow_present_pte(old_spte)) {
595 mmu_spte_set(sptep, new_spte);
f39a058d 596 return old_spte;
6e7d0354 597 }
4132779b 598
c7ba5b48 599 if (!spte_has_volatile_bits(old_spte))
603e0651 600 __update_clear_spte_fast(sptep, new_spte);
4132779b 601 else
603e0651 602 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 603
83ef6c81
JS
604 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
605
f39a058d
JS
606 return old_spte;
607}
608
609/* Rules for using mmu_spte_update:
610 * Update the state bits, it means the mapped pfn is not changed.
611 *
612 * Whenever we overwrite a writable spte with a read-only one we
613 * should flush remote TLBs. Otherwise rmap_write_protect
614 * will find a read-only spte, even though the writable spte
615 * might be cached on a CPU's TLB, the return value indicates this
616 * case.
617 *
618 * Returns true if the TLB needs to be flushed
619 */
620static bool mmu_spte_update(u64 *sptep, u64 new_spte)
621{
622 bool flush = false;
623 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
624
625 if (!is_shadow_present_pte(old_spte))
626 return false;
627
c7ba5b48
XG
628 /*
629 * For the spte updated out of mmu-lock is safe, since
6a6256f9 630 * we always atomically update it, see the comments in
c7ba5b48
XG
631 * spte_has_volatile_bits().
632 */
ea4114bc 633 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 634 !is_writable_pte(new_spte))
83ef6c81 635 flush = true;
4132779b 636
7e71a59b 637 /*
83ef6c81 638 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
639 * to guarantee consistency between TLB and page tables.
640 */
7e71a59b 641
83ef6c81
JS
642 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
643 flush = true;
4132779b 644 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
645 }
646
647 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
648 flush = true;
4132779b 649 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 650 }
6e7d0354 651
83ef6c81 652 return flush;
b79b93f9
AK
653}
654
1df9f2dc
XG
655/*
656 * Rules for using mmu_spte_clear_track_bits:
657 * It sets the sptep from present to nonpresent, and track the
658 * state bits, it is used to clear the last level sptep.
83ef6c81 659 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
660 */
661static int mmu_spte_clear_track_bits(u64 *sptep)
662{
ba049e93 663 kvm_pfn_t pfn;
1df9f2dc
XG
664 u64 old_spte = *sptep;
665
666 if (!spte_has_volatile_bits(old_spte))
603e0651 667 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 668 else
603e0651 669 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 670
afd28fe1 671 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
672 return 0;
673
674 pfn = spte_to_pfn(old_spte);
86fde74c
XG
675
676 /*
677 * KVM does not hold the refcount of the page used by
678 * kvm mmu, before reclaiming the page, we should
679 * unmap it from mmu first.
680 */
bf4bea8e 681 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 682
83ef6c81 683 if (is_accessed_spte(old_spte))
1df9f2dc 684 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
685
686 if (is_dirty_spte(old_spte))
1df9f2dc 687 kvm_set_pfn_dirty(pfn);
83ef6c81 688
1df9f2dc
XG
689 return 1;
690}
691
692/*
693 * Rules for using mmu_spte_clear_no_track:
694 * Directly clear spte without caring the state bits of sptep,
695 * it is used to set the upper level spte.
696 */
697static void mmu_spte_clear_no_track(u64 *sptep)
698{
603e0651 699 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
700}
701
c2a2ac2b
XG
702static u64 mmu_spte_get_lockless(u64 *sptep)
703{
704 return __get_spte_lockless(sptep);
705}
706
f160c7b7
JS
707static u64 mark_spte_for_access_track(u64 spte)
708{
709 if (shadow_accessed_mask != 0)
710 return spte & ~shadow_accessed_mask;
711
712 if (shadow_acc_track_mask == 0 || is_access_track_spte(spte))
713 return spte;
714
715 /*
20d65236
JS
716 * Making an Access Tracking PTE will result in removal of write access
717 * from the PTE. So, verify that we will be able to restore the write
718 * access in the fast page fault path later on.
f160c7b7
JS
719 */
720 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
721 !spte_can_locklessly_be_made_writable(spte),
722 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
723
724 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
725 shadow_acc_track_saved_bits_shift),
726 "kvm: Access Tracking saved bit locations are not zero\n");
727
728 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
729 shadow_acc_track_saved_bits_shift;
730 spte &= ~shadow_acc_track_mask;
731 spte |= shadow_acc_track_value;
732
733 return spte;
734}
735
d3e328f2
JS
736/* Restore an acc-track PTE back to a regular PTE */
737static u64 restore_acc_track_spte(u64 spte)
738{
739 u64 new_spte = spte;
740 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
741 & shadow_acc_track_saved_bits_mask;
742
743 WARN_ON_ONCE(!is_access_track_spte(spte));
744
745 new_spte &= ~shadow_acc_track_mask;
746 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
747 shadow_acc_track_saved_bits_shift);
748 new_spte |= saved_bits;
749
750 return new_spte;
751}
752
f160c7b7
JS
753/* Returns the Accessed status of the PTE and resets it at the same time. */
754static bool mmu_spte_age(u64 *sptep)
755{
756 u64 spte = mmu_spte_get_lockless(sptep);
757
758 if (!is_accessed_spte(spte))
759 return false;
760
761 if (shadow_accessed_mask) {
762 clear_bit((ffs(shadow_accessed_mask) - 1),
763 (unsigned long *)sptep);
764 } else {
765 /*
766 * Capture the dirty status of the page, so that it doesn't get
767 * lost when the SPTE is marked for access tracking.
768 */
769 if (is_writable_pte(spte))
770 kvm_set_pfn_dirty(spte_to_pfn(spte));
771
772 spte = mark_spte_for_access_track(spte);
773 mmu_spte_update_no_track(sptep, spte);
774 }
775
776 return true;
777}
778
c2a2ac2b
XG
779static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
780{
c142786c
AK
781 /*
782 * Prevent page table teardown by making any free-er wait during
783 * kvm_flush_remote_tlbs() IPI to all active vcpus.
784 */
785 local_irq_disable();
36ca7e0a 786
c142786c
AK
787 /*
788 * Make sure a following spte read is not reordered ahead of the write
789 * to vcpu->mode.
790 */
36ca7e0a 791 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
792}
793
794static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
795{
c142786c
AK
796 /*
797 * Make sure the write to vcpu->mode is not reordered in front of
798 * reads to sptes. If it does, kvm_commit_zap_page() can see us
799 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
800 */
36ca7e0a 801 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 802 local_irq_enable();
c2a2ac2b
XG
803}
804
e2dec939 805static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 806 struct kmem_cache *base_cache, int min)
714b93da
AK
807{
808 void *obj;
809
810 if (cache->nobjs >= min)
e2dec939 811 return 0;
714b93da 812 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 813 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 814 if (!obj)
e2dec939 815 return -ENOMEM;
714b93da
AK
816 cache->objects[cache->nobjs++] = obj;
817 }
e2dec939 818 return 0;
714b93da
AK
819}
820
f759e2b4
XG
821static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
822{
823 return cache->nobjs;
824}
825
e8ad9a70
XG
826static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
827 struct kmem_cache *cache)
714b93da
AK
828{
829 while (mc->nobjs)
e8ad9a70 830 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
831}
832
c1158e63 833static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 834 int min)
c1158e63 835{
842f22ed 836 void *page;
c1158e63
AK
837
838 if (cache->nobjs >= min)
839 return 0;
840 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 841 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
842 if (!page)
843 return -ENOMEM;
842f22ed 844 cache->objects[cache->nobjs++] = page;
c1158e63
AK
845 }
846 return 0;
847}
848
849static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
850{
851 while (mc->nobjs)
c4d198d5 852 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
853}
854
2e3e5882 855static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 856{
e2dec939
AK
857 int r;
858
53c07b18 859 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 860 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
861 if (r)
862 goto out;
ad312c7c 863 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
864 if (r)
865 goto out;
ad312c7c 866 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 867 mmu_page_header_cache, 4);
e2dec939
AK
868out:
869 return r;
714b93da
AK
870}
871
872static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
873{
53c07b18
XG
874 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
875 pte_list_desc_cache);
ad312c7c 876 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
877 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
878 mmu_page_header_cache);
714b93da
AK
879}
880
80feb89a 881static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
882{
883 void *p;
884
885 BUG_ON(!mc->nobjs);
886 p = mc->objects[--mc->nobjs];
714b93da
AK
887 return p;
888}
889
53c07b18 890static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 891{
80feb89a 892 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
893}
894
53c07b18 895static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 896{
53c07b18 897 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
898}
899
2032a93d
LJ
900static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
901{
902 if (!sp->role.direct)
903 return sp->gfns[index];
904
905 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
906}
907
908static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
909{
910 if (sp->role.direct)
911 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
912 else
913 sp->gfns[index] = gfn;
914}
915
05da4558 916/*
d4dbf470
TY
917 * Return the pointer to the large page information for a given gfn,
918 * handling slots that are not large page aligned.
05da4558 919 */
d4dbf470
TY
920static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
921 struct kvm_memory_slot *slot,
922 int level)
05da4558
MT
923{
924 unsigned long idx;
925
fb03cb6f 926 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 927 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
928}
929
547ffaed
XG
930static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
931 gfn_t gfn, int count)
932{
933 struct kvm_lpage_info *linfo;
934 int i;
935
936 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
937 linfo = lpage_info_slot(gfn, slot, i);
938 linfo->disallow_lpage += count;
939 WARN_ON(linfo->disallow_lpage < 0);
940 }
941}
942
943void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
944{
945 update_gfn_disallow_lpage_count(slot, gfn, 1);
946}
947
948void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
949{
950 update_gfn_disallow_lpage_count(slot, gfn, -1);
951}
952
3ed1a478 953static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 954{
699023e2 955 struct kvm_memslots *slots;
d25797b2 956 struct kvm_memory_slot *slot;
3ed1a478 957 gfn_t gfn;
05da4558 958
56ca57f9 959 kvm->arch.indirect_shadow_pages++;
3ed1a478 960 gfn = sp->gfn;
699023e2
PB
961 slots = kvm_memslots_for_spte_role(kvm, sp->role);
962 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
963
964 /* the non-leaf shadow pages are keeping readonly. */
965 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
966 return kvm_slot_page_track_add_page(kvm, slot, gfn,
967 KVM_PAGE_TRACK_WRITE);
968
547ffaed 969 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
970}
971
3ed1a478 972static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 973{
699023e2 974 struct kvm_memslots *slots;
d25797b2 975 struct kvm_memory_slot *slot;
3ed1a478 976 gfn_t gfn;
05da4558 977
56ca57f9 978 kvm->arch.indirect_shadow_pages--;
3ed1a478 979 gfn = sp->gfn;
699023e2
PB
980 slots = kvm_memslots_for_spte_role(kvm, sp->role);
981 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
982 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
983 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
984 KVM_PAGE_TRACK_WRITE);
985
547ffaed 986 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
987}
988
92f94f1e
XG
989static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
990 struct kvm_memory_slot *slot)
05da4558 991{
d4dbf470 992 struct kvm_lpage_info *linfo;
05da4558
MT
993
994 if (slot) {
d4dbf470 995 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 996 return !!linfo->disallow_lpage;
05da4558
MT
997 }
998
92f94f1e 999 return true;
05da4558
MT
1000}
1001
92f94f1e
XG
1002static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1003 int level)
5225fdf8
TY
1004{
1005 struct kvm_memory_slot *slot;
1006
1007 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 1008 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
1009}
1010
d25797b2 1011static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 1012{
8f0b1ab6 1013 unsigned long page_size;
d25797b2 1014 int i, ret = 0;
05da4558 1015
8f0b1ab6 1016 page_size = kvm_host_page_size(kvm, gfn);
05da4558 1017
8a3d08f1 1018 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
1019 if (page_size >= KVM_HPAGE_SIZE(i))
1020 ret = i;
1021 else
1022 break;
1023 }
1024
4c2155ce 1025 return ret;
05da4558
MT
1026}
1027
d8aacf5d
TY
1028static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1029 bool no_dirty_log)
1030{
1031 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1032 return false;
1033 if (no_dirty_log && slot->dirty_bitmap)
1034 return false;
1035
1036 return true;
1037}
1038
5d163b1c
XG
1039static struct kvm_memory_slot *
1040gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1041 bool no_dirty_log)
05da4558
MT
1042{
1043 struct kvm_memory_slot *slot;
5d163b1c 1044
54bf36aa 1045 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 1046 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
1047 slot = NULL;
1048
1049 return slot;
1050}
1051
fd136902
TY
1052static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1053 bool *force_pt_level)
936a5fe6
AA
1054{
1055 int host_level, level, max_level;
d8aacf5d
TY
1056 struct kvm_memory_slot *slot;
1057
8c85ac1c
TY
1058 if (unlikely(*force_pt_level))
1059 return PT_PAGE_TABLE_LEVEL;
05da4558 1060
8c85ac1c
TY
1061 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1062 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
1063 if (unlikely(*force_pt_level))
1064 return PT_PAGE_TABLE_LEVEL;
1065
d25797b2
JR
1066 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1067
1068 if (host_level == PT_PAGE_TABLE_LEVEL)
1069 return host_level;
1070
55dd98c3 1071 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
1072
1073 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 1074 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 1075 break;
d25797b2
JR
1076
1077 return level - 1;
05da4558
MT
1078}
1079
290fc38d 1080/*
018aabb5 1081 * About rmap_head encoding:
cd4a4e53 1082 *
018aabb5
TY
1083 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1084 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1085 * pte_list_desc containing more mappings.
018aabb5
TY
1086 */
1087
1088/*
1089 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1090 */
53c07b18 1091static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1092 struct kvm_rmap_head *rmap_head)
cd4a4e53 1093{
53c07b18 1094 struct pte_list_desc *desc;
53a27b39 1095 int i, count = 0;
cd4a4e53 1096
018aabb5 1097 if (!rmap_head->val) {
53c07b18 1098 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1099 rmap_head->val = (unsigned long)spte;
1100 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1101 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1102 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1103 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1104 desc->sptes[1] = spte;
018aabb5 1105 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1106 ++count;
cd4a4e53 1107 } else {
53c07b18 1108 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1109 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1110 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1111 desc = desc->more;
53c07b18 1112 count += PTE_LIST_EXT;
53a27b39 1113 }
53c07b18
XG
1114 if (desc->sptes[PTE_LIST_EXT-1]) {
1115 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1116 desc = desc->more;
1117 }
d555c333 1118 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1119 ++count;
d555c333 1120 desc->sptes[i] = spte;
cd4a4e53 1121 }
53a27b39 1122 return count;
cd4a4e53
AK
1123}
1124
53c07b18 1125static void
018aabb5
TY
1126pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1127 struct pte_list_desc *desc, int i,
1128 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1129{
1130 int j;
1131
53c07b18 1132 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1133 ;
d555c333
AK
1134 desc->sptes[i] = desc->sptes[j];
1135 desc->sptes[j] = NULL;
cd4a4e53
AK
1136 if (j != 0)
1137 return;
1138 if (!prev_desc && !desc->more)
018aabb5 1139 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
1140 else
1141 if (prev_desc)
1142 prev_desc->more = desc->more;
1143 else
018aabb5 1144 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1145 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1146}
1147
018aabb5 1148static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1149{
53c07b18
XG
1150 struct pte_list_desc *desc;
1151 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1152 int i;
1153
018aabb5 1154 if (!rmap_head->val) {
53c07b18 1155 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 1156 BUG();
018aabb5 1157 } else if (!(rmap_head->val & 1)) {
53c07b18 1158 rmap_printk("pte_list_remove: %p 1->0\n", spte);
018aabb5 1159 if ((u64 *)rmap_head->val != spte) {
53c07b18 1160 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
1161 BUG();
1162 }
018aabb5 1163 rmap_head->val = 0;
cd4a4e53 1164 } else {
53c07b18 1165 rmap_printk("pte_list_remove: %p many->many\n", spte);
018aabb5 1166 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1167 prev_desc = NULL;
1168 while (desc) {
018aabb5 1169 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1170 if (desc->sptes[i] == spte) {
018aabb5
TY
1171 pte_list_desc_remove_entry(rmap_head,
1172 desc, i, prev_desc);
cd4a4e53
AK
1173 return;
1174 }
018aabb5 1175 }
cd4a4e53
AK
1176 prev_desc = desc;
1177 desc = desc->more;
1178 }
53c07b18 1179 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1180 BUG();
1181 }
1182}
1183
018aabb5
TY
1184static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1185 struct kvm_memory_slot *slot)
53c07b18 1186{
77d11309 1187 unsigned long idx;
53c07b18 1188
77d11309 1189 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1190 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1191}
1192
018aabb5
TY
1193static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1194 struct kvm_mmu_page *sp)
9b9b1492 1195{
699023e2 1196 struct kvm_memslots *slots;
9b9b1492
TY
1197 struct kvm_memory_slot *slot;
1198
699023e2
PB
1199 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1200 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1201 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1202}
1203
f759e2b4
XG
1204static bool rmap_can_add(struct kvm_vcpu *vcpu)
1205{
1206 struct kvm_mmu_memory_cache *cache;
1207
1208 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1209 return mmu_memory_cache_free_objects(cache);
1210}
1211
53c07b18
XG
1212static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1213{
1214 struct kvm_mmu_page *sp;
018aabb5 1215 struct kvm_rmap_head *rmap_head;
53c07b18 1216
53c07b18
XG
1217 sp = page_header(__pa(spte));
1218 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1219 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1220 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1221}
1222
53c07b18
XG
1223static void rmap_remove(struct kvm *kvm, u64 *spte)
1224{
1225 struct kvm_mmu_page *sp;
1226 gfn_t gfn;
018aabb5 1227 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1228
1229 sp = page_header(__pa(spte));
1230 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5
TY
1231 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1232 pte_list_remove(spte, rmap_head);
53c07b18
XG
1233}
1234
1e3f42f0
TY
1235/*
1236 * Used by the following functions to iterate through the sptes linked by a
1237 * rmap. All fields are private and not assumed to be used outside.
1238 */
1239struct rmap_iterator {
1240 /* private fields */
1241 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1242 int pos; /* index of the sptep */
1243};
1244
1245/*
1246 * Iteration must be started by this function. This should also be used after
1247 * removing/dropping sptes from the rmap link because in such cases the
1248 * information in the itererator may not be valid.
1249 *
1250 * Returns sptep if found, NULL otherwise.
1251 */
018aabb5
TY
1252static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1253 struct rmap_iterator *iter)
1e3f42f0 1254{
77fbbbd2
TY
1255 u64 *sptep;
1256
018aabb5 1257 if (!rmap_head->val)
1e3f42f0
TY
1258 return NULL;
1259
018aabb5 1260 if (!(rmap_head->val & 1)) {
1e3f42f0 1261 iter->desc = NULL;
77fbbbd2
TY
1262 sptep = (u64 *)rmap_head->val;
1263 goto out;
1e3f42f0
TY
1264 }
1265
018aabb5 1266 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1267 iter->pos = 0;
77fbbbd2
TY
1268 sptep = iter->desc->sptes[iter->pos];
1269out:
1270 BUG_ON(!is_shadow_present_pte(*sptep));
1271 return sptep;
1e3f42f0
TY
1272}
1273
1274/*
1275 * Must be used with a valid iterator: e.g. after rmap_get_first().
1276 *
1277 * Returns sptep if found, NULL otherwise.
1278 */
1279static u64 *rmap_get_next(struct rmap_iterator *iter)
1280{
77fbbbd2
TY
1281 u64 *sptep;
1282
1e3f42f0
TY
1283 if (iter->desc) {
1284 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1285 ++iter->pos;
1286 sptep = iter->desc->sptes[iter->pos];
1287 if (sptep)
77fbbbd2 1288 goto out;
1e3f42f0
TY
1289 }
1290
1291 iter->desc = iter->desc->more;
1292
1293 if (iter->desc) {
1294 iter->pos = 0;
1295 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1296 sptep = iter->desc->sptes[iter->pos];
1297 goto out;
1e3f42f0
TY
1298 }
1299 }
1300
1301 return NULL;
77fbbbd2
TY
1302out:
1303 BUG_ON(!is_shadow_present_pte(*sptep));
1304 return sptep;
1e3f42f0
TY
1305}
1306
018aabb5
TY
1307#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1308 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1309 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1310
c3707958 1311static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1312{
1df9f2dc 1313 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1314 rmap_remove(kvm, sptep);
be38d276
AK
1315}
1316
8e22f955
XG
1317
1318static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1319{
1320 if (is_large_pte(*sptep)) {
1321 WARN_ON(page_header(__pa(sptep))->role.level ==
1322 PT_PAGE_TABLE_LEVEL);
1323 drop_spte(kvm, sptep);
1324 --kvm->stat.lpages;
1325 return true;
1326 }
1327
1328 return false;
1329}
1330
1331static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1332{
1333 if (__drop_large_spte(vcpu->kvm, sptep))
1334 kvm_flush_remote_tlbs(vcpu->kvm);
1335}
1336
1337/*
49fde340 1338 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1339 * spte write-protection is caused by protecting shadow page table.
49fde340 1340 *
b4619660 1341 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1342 * protection:
1343 * - for dirty logging, the spte can be set to writable at anytime if
1344 * its dirty bitmap is properly set.
1345 * - for spte protection, the spte can be writable only after unsync-ing
1346 * shadow page.
8e22f955 1347 *
c126d94f 1348 * Return true if tlb need be flushed.
8e22f955 1349 */
c4f138b4 1350static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1351{
1352 u64 spte = *sptep;
1353
49fde340 1354 if (!is_writable_pte(spte) &&
ea4114bc 1355 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1356 return false;
1357
1358 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1359
49fde340
XG
1360 if (pt_protect)
1361 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1362 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1363
c126d94f 1364 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1365}
1366
018aabb5
TY
1367static bool __rmap_write_protect(struct kvm *kvm,
1368 struct kvm_rmap_head *rmap_head,
245c3912 1369 bool pt_protect)
98348e95 1370{
1e3f42f0
TY
1371 u64 *sptep;
1372 struct rmap_iterator iter;
d13bc5b5 1373 bool flush = false;
374cbac0 1374
018aabb5 1375 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1376 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1377
d13bc5b5 1378 return flush;
a0ed4607
TY
1379}
1380
c4f138b4 1381static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1382{
1383 u64 spte = *sptep;
1384
1385 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1386
1387 spte &= ~shadow_dirty_mask;
1388
1389 return mmu_spte_update(sptep, spte);
1390}
1391
018aabb5 1392static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1393{
1394 u64 *sptep;
1395 struct rmap_iterator iter;
1396 bool flush = false;
1397
018aabb5 1398 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1399 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1400
1401 return flush;
1402}
1403
c4f138b4 1404static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1405{
1406 u64 spte = *sptep;
1407
1408 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1409
1410 spte |= shadow_dirty_mask;
1411
1412 return mmu_spte_update(sptep, spte);
1413}
1414
018aabb5 1415static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1416{
1417 u64 *sptep;
1418 struct rmap_iterator iter;
1419 bool flush = false;
1420
018aabb5 1421 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1422 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1423
1424 return flush;
1425}
1426
5dc99b23 1427/**
3b0f1d01 1428 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1429 * @kvm: kvm instance
1430 * @slot: slot to protect
1431 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1432 * @mask: indicates which pages we should protect
1433 *
1434 * Used when we do not need to care about huge page mappings: e.g. during dirty
1435 * logging we do not have any such mappings.
1436 */
3b0f1d01 1437static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1438 struct kvm_memory_slot *slot,
1439 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1440{
018aabb5 1441 struct kvm_rmap_head *rmap_head;
a0ed4607 1442
5dc99b23 1443 while (mask) {
018aabb5
TY
1444 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1445 PT_PAGE_TABLE_LEVEL, slot);
1446 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1447
5dc99b23
TY
1448 /* clear the first set bit */
1449 mask &= mask - 1;
1450 }
374cbac0
AK
1451}
1452
f4b4b180
KH
1453/**
1454 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1455 * @kvm: kvm instance
1456 * @slot: slot to clear D-bit
1457 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1458 * @mask: indicates which pages we should clear D-bit
1459 *
1460 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1461 */
1462void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1463 struct kvm_memory_slot *slot,
1464 gfn_t gfn_offset, unsigned long mask)
1465{
018aabb5 1466 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1467
1468 while (mask) {
018aabb5
TY
1469 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1470 PT_PAGE_TABLE_LEVEL, slot);
1471 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1472
1473 /* clear the first set bit */
1474 mask &= mask - 1;
1475 }
1476}
1477EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1478
3b0f1d01
KH
1479/**
1480 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1481 * PT level pages.
1482 *
1483 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1484 * enable dirty logging for them.
1485 *
1486 * Used when we do not need to care about huge page mappings: e.g. during dirty
1487 * logging we do not have any such mappings.
1488 */
1489void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1490 struct kvm_memory_slot *slot,
1491 gfn_t gfn_offset, unsigned long mask)
1492{
88178fd4
KH
1493 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1494 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1495 mask);
1496 else
1497 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1498}
1499
aeecee2e
XG
1500bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1501 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1502{
018aabb5 1503 struct kvm_rmap_head *rmap_head;
5dc99b23 1504 int i;
2f84569f 1505 bool write_protected = false;
95d4c16c 1506
8a3d08f1 1507 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1508 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1509 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1510 }
1511
1512 return write_protected;
95d4c16c
TY
1513}
1514
aeecee2e
XG
1515static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1516{
1517 struct kvm_memory_slot *slot;
1518
1519 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1520 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1521}
1522
018aabb5 1523static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1524{
1e3f42f0
TY
1525 u64 *sptep;
1526 struct rmap_iterator iter;
6a49f85c 1527 bool flush = false;
e930bffe 1528
018aabb5 1529 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1530 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1531
1532 drop_spte(kvm, sptep);
6a49f85c 1533 flush = true;
e930bffe 1534 }
1e3f42f0 1535
6a49f85c
XG
1536 return flush;
1537}
1538
018aabb5 1539static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1540 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1541 unsigned long data)
1542{
018aabb5 1543 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1544}
1545
018aabb5 1546static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1547 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1548 unsigned long data)
3da0dd43 1549{
1e3f42f0
TY
1550 u64 *sptep;
1551 struct rmap_iterator iter;
3da0dd43 1552 int need_flush = 0;
1e3f42f0 1553 u64 new_spte;
3da0dd43 1554 pte_t *ptep = (pte_t *)data;
ba049e93 1555 kvm_pfn_t new_pfn;
3da0dd43
IE
1556
1557 WARN_ON(pte_huge(*ptep));
1558 new_pfn = pte_pfn(*ptep);
1e3f42f0 1559
0d536790 1560restart:
018aabb5 1561 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1562 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1563 sptep, *sptep, gfn, level);
1e3f42f0 1564
3da0dd43 1565 need_flush = 1;
1e3f42f0 1566
3da0dd43 1567 if (pte_write(*ptep)) {
1e3f42f0 1568 drop_spte(kvm, sptep);
0d536790 1569 goto restart;
3da0dd43 1570 } else {
1e3f42f0 1571 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1572 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1573
1574 new_spte &= ~PT_WRITABLE_MASK;
1575 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1576
1577 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1578
1579 mmu_spte_clear_track_bits(sptep);
1580 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1581 }
1582 }
1e3f42f0 1583
3da0dd43
IE
1584 if (need_flush)
1585 kvm_flush_remote_tlbs(kvm);
1586
1587 return 0;
1588}
1589
6ce1f4e2
XG
1590struct slot_rmap_walk_iterator {
1591 /* input fields. */
1592 struct kvm_memory_slot *slot;
1593 gfn_t start_gfn;
1594 gfn_t end_gfn;
1595 int start_level;
1596 int end_level;
1597
1598 /* output fields. */
1599 gfn_t gfn;
018aabb5 1600 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1601 int level;
1602
1603 /* private field. */
018aabb5 1604 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1605};
1606
1607static void
1608rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1609{
1610 iterator->level = level;
1611 iterator->gfn = iterator->start_gfn;
1612 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1613 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1614 iterator->slot);
1615}
1616
1617static void
1618slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1619 struct kvm_memory_slot *slot, int start_level,
1620 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1621{
1622 iterator->slot = slot;
1623 iterator->start_level = start_level;
1624 iterator->end_level = end_level;
1625 iterator->start_gfn = start_gfn;
1626 iterator->end_gfn = end_gfn;
1627
1628 rmap_walk_init_level(iterator, iterator->start_level);
1629}
1630
1631static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1632{
1633 return !!iterator->rmap;
1634}
1635
1636static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1637{
1638 if (++iterator->rmap <= iterator->end_rmap) {
1639 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1640 return;
1641 }
1642
1643 if (++iterator->level > iterator->end_level) {
1644 iterator->rmap = NULL;
1645 return;
1646 }
1647
1648 rmap_walk_init_level(iterator, iterator->level);
1649}
1650
1651#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1652 _start_gfn, _end_gfn, _iter_) \
1653 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1654 _end_level_, _start_gfn, _end_gfn); \
1655 slot_rmap_walk_okay(_iter_); \
1656 slot_rmap_walk_next(_iter_))
1657
84504ef3
TY
1658static int kvm_handle_hva_range(struct kvm *kvm,
1659 unsigned long start,
1660 unsigned long end,
1661 unsigned long data,
1662 int (*handler)(struct kvm *kvm,
018aabb5 1663 struct kvm_rmap_head *rmap_head,
048212d0 1664 struct kvm_memory_slot *slot,
8a9522d2
ALC
1665 gfn_t gfn,
1666 int level,
84504ef3 1667 unsigned long data))
e930bffe 1668{
bc6678a3 1669 struct kvm_memslots *slots;
be6ba0f0 1670 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1671 struct slot_rmap_walk_iterator iterator;
1672 int ret = 0;
9da0e4d5 1673 int i;
bc6678a3 1674
9da0e4d5
PB
1675 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1676 slots = __kvm_memslots(kvm, i);
1677 kvm_for_each_memslot(memslot, slots) {
1678 unsigned long hva_start, hva_end;
1679 gfn_t gfn_start, gfn_end;
e930bffe 1680
9da0e4d5
PB
1681 hva_start = max(start, memslot->userspace_addr);
1682 hva_end = min(end, memslot->userspace_addr +
1683 (memslot->npages << PAGE_SHIFT));
1684 if (hva_start >= hva_end)
1685 continue;
1686 /*
1687 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1688 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1689 */
1690 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1691 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1692
1693 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1694 PT_MAX_HUGEPAGE_LEVEL,
1695 gfn_start, gfn_end - 1,
1696 &iterator)
1697 ret |= handler(kvm, iterator.rmap, memslot,
1698 iterator.gfn, iterator.level, data);
1699 }
e930bffe
AA
1700 }
1701
f395302e 1702 return ret;
e930bffe
AA
1703}
1704
84504ef3
TY
1705static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1706 unsigned long data,
018aabb5
TY
1707 int (*handler)(struct kvm *kvm,
1708 struct kvm_rmap_head *rmap_head,
048212d0 1709 struct kvm_memory_slot *slot,
8a9522d2 1710 gfn_t gfn, int level,
84504ef3
TY
1711 unsigned long data))
1712{
1713 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1714}
1715
1716int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1717{
3da0dd43
IE
1718 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1719}
1720
b3ae2096
TY
1721int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1722{
1723 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1724}
1725
3da0dd43
IE
1726void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1727{
8a8365c5 1728 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1729}
1730
018aabb5 1731static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1732 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1733 unsigned long data)
e930bffe 1734{
1e3f42f0 1735 u64 *sptep;
79f702a6 1736 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1737 int young = 0;
1738
f160c7b7
JS
1739 for_each_rmap_spte(rmap_head, &iter, sptep)
1740 young |= mmu_spte_age(sptep);
0d536790 1741
8a9522d2 1742 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1743 return young;
1744}
1745
018aabb5 1746static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1747 struct kvm_memory_slot *slot, gfn_t gfn,
1748 int level, unsigned long data)
8ee53820 1749{
1e3f42f0
TY
1750 u64 *sptep;
1751 struct rmap_iterator iter;
8ee53820
AA
1752
1753 /*
f160c7b7
JS
1754 * If there's no access bit in the secondary pte set by the hardware and
1755 * fast access tracking is also not enabled, it's up to gup-fast/gup to
1756 * set the access bit in the primary pte or in the page structure.
8ee53820 1757 */
f160c7b7 1758 if (!shadow_accessed_mask && !shadow_acc_track_mask)
8ee53820
AA
1759 goto out;
1760
83ef6c81
JS
1761 for_each_rmap_spte(rmap_head, &iter, sptep)
1762 if (is_accessed_spte(*sptep))
1763 return 1;
8ee53820 1764out:
83ef6c81 1765 return 0;
8ee53820
AA
1766}
1767
53a27b39
MT
1768#define RMAP_RECYCLE_THRESHOLD 1000
1769
852e3c19 1770static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1771{
018aabb5 1772 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1773 struct kvm_mmu_page *sp;
1774
1775 sp = page_header(__pa(spte));
53a27b39 1776
018aabb5 1777 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1778
018aabb5 1779 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1780 kvm_flush_remote_tlbs(vcpu->kvm);
1781}
1782
57128468 1783int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1784{
57128468
ALC
1785 /*
1786 * In case of absence of EPT Access and Dirty Bits supports,
1787 * emulate the accessed bit for EPT, by checking if this page has
1788 * an EPT mapping, and clearing it if it does. On the next access,
1789 * a new EPT mapping will be established.
1790 * This has some overhead, but not as much as the cost of swapping
1791 * out actively used pages or breaking up actively used hugepages.
1792 */
f160c7b7 1793 if (!shadow_accessed_mask && !shadow_acc_track_mask)
57128468
ALC
1794 return kvm_handle_hva_range(kvm, start, end, 0,
1795 kvm_unmap_rmapp);
57128468
ALC
1796
1797 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1798}
1799
8ee53820
AA
1800int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1801{
1802 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1803}
1804
d6c69ee9 1805#ifdef MMU_DEBUG
47ad8e68 1806static int is_empty_shadow_page(u64 *spt)
6aa8b732 1807{
139bdb2d
AK
1808 u64 *pos;
1809 u64 *end;
1810
47ad8e68 1811 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1812 if (is_shadow_present_pte(*pos)) {
b8688d51 1813 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1814 pos, *pos);
6aa8b732 1815 return 0;
139bdb2d 1816 }
6aa8b732
AK
1817 return 1;
1818}
d6c69ee9 1819#endif
6aa8b732 1820
45221ab6
DH
1821/*
1822 * This value is the sum of all of the kvm instances's
1823 * kvm->arch.n_used_mmu_pages values. We need a global,
1824 * aggregate version in order to make the slab shrinker
1825 * faster
1826 */
1827static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1828{
1829 kvm->arch.n_used_mmu_pages += nr;
1830 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1831}
1832
834be0d8 1833static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1834{
fa4a2c08 1835 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1836 hlist_del(&sp->hash_link);
bd4c86ea
XG
1837 list_del(&sp->link);
1838 free_page((unsigned long)sp->spt);
834be0d8
GN
1839 if (!sp->role.direct)
1840 free_page((unsigned long)sp->gfns);
e8ad9a70 1841 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1842}
1843
cea0f0e7
AK
1844static unsigned kvm_page_table_hashfn(gfn_t gfn)
1845{
114df303 1846 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1847}
1848
714b93da 1849static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1850 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1851{
cea0f0e7
AK
1852 if (!parent_pte)
1853 return;
cea0f0e7 1854
67052b35 1855 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1856}
1857
4db35314 1858static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1859 u64 *parent_pte)
1860{
67052b35 1861 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1862}
1863
bcdd9a93
XG
1864static void drop_parent_pte(struct kvm_mmu_page *sp,
1865 u64 *parent_pte)
1866{
1867 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1868 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1869}
1870
47005792 1871static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1872{
67052b35 1873 struct kvm_mmu_page *sp;
7ddca7e4 1874
80feb89a
TY
1875 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1876 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1877 if (!direct)
80feb89a 1878 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1879 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1880
1881 /*
1882 * The active_mmu_pages list is the FIFO list, do not move the
1883 * page until it is zapped. kvm_zap_obsolete_pages depends on
1884 * this feature. See the comments in kvm_zap_obsolete_pages().
1885 */
67052b35 1886 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1887 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1888 return sp;
ad8cfbe3
MT
1889}
1890
67052b35 1891static void mark_unsync(u64 *spte);
1047df1f 1892static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1893{
74c4e63a
TY
1894 u64 *sptep;
1895 struct rmap_iterator iter;
1896
1897 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1898 mark_unsync(sptep);
1899 }
0074ff63
MT
1900}
1901
67052b35 1902static void mark_unsync(u64 *spte)
0074ff63 1903{
67052b35 1904 struct kvm_mmu_page *sp;
1047df1f 1905 unsigned int index;
0074ff63 1906
67052b35 1907 sp = page_header(__pa(spte));
1047df1f
XG
1908 index = spte - sp->spt;
1909 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1910 return;
1047df1f 1911 if (sp->unsync_children++)
0074ff63 1912 return;
1047df1f 1913 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1914}
1915
e8bc217a 1916static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1917 struct kvm_mmu_page *sp)
e8bc217a 1918{
1f50f1b3 1919 return 0;
e8bc217a
MT
1920}
1921
a7052897
MT
1922static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1923{
1924}
1925
0f53b5b1
XG
1926static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1927 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1928 const void *pte)
0f53b5b1
XG
1929{
1930 WARN_ON(1);
1931}
1932
60c8aec6
MT
1933#define KVM_PAGE_ARRAY_NR 16
1934
1935struct kvm_mmu_pages {
1936 struct mmu_page_and_offset {
1937 struct kvm_mmu_page *sp;
1938 unsigned int idx;
1939 } page[KVM_PAGE_ARRAY_NR];
1940 unsigned int nr;
1941};
1942
cded19f3
HE
1943static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1944 int idx)
4731d4c7 1945{
60c8aec6 1946 int i;
4731d4c7 1947
60c8aec6
MT
1948 if (sp->unsync)
1949 for (i=0; i < pvec->nr; i++)
1950 if (pvec->page[i].sp == sp)
1951 return 0;
1952
1953 pvec->page[pvec->nr].sp = sp;
1954 pvec->page[pvec->nr].idx = idx;
1955 pvec->nr++;
1956 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1957}
1958
fd951457
TY
1959static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1960{
1961 --sp->unsync_children;
1962 WARN_ON((int)sp->unsync_children < 0);
1963 __clear_bit(idx, sp->unsync_child_bitmap);
1964}
1965
60c8aec6
MT
1966static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1967 struct kvm_mmu_pages *pvec)
1968{
1969 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1970
37178b8b 1971 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1972 struct kvm_mmu_page *child;
4731d4c7
MT
1973 u64 ent = sp->spt[i];
1974
fd951457
TY
1975 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1976 clear_unsync_child_bit(sp, i);
1977 continue;
1978 }
7a8f1a74
XG
1979
1980 child = page_header(ent & PT64_BASE_ADDR_MASK);
1981
1982 if (child->unsync_children) {
1983 if (mmu_pages_add(pvec, child, i))
1984 return -ENOSPC;
1985
1986 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1987 if (!ret) {
1988 clear_unsync_child_bit(sp, i);
1989 continue;
1990 } else if (ret > 0) {
7a8f1a74 1991 nr_unsync_leaf += ret;
fd951457 1992 } else
7a8f1a74
XG
1993 return ret;
1994 } else if (child->unsync) {
1995 nr_unsync_leaf++;
1996 if (mmu_pages_add(pvec, child, i))
1997 return -ENOSPC;
1998 } else
fd951457 1999 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2000 }
2001
60c8aec6
MT
2002 return nr_unsync_leaf;
2003}
2004
e23d3fef
XG
2005#define INVALID_INDEX (-1)
2006
60c8aec6
MT
2007static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2008 struct kvm_mmu_pages *pvec)
2009{
0a47cd85 2010 pvec->nr = 0;
60c8aec6
MT
2011 if (!sp->unsync_children)
2012 return 0;
2013
e23d3fef 2014 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2015 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2016}
2017
4731d4c7
MT
2018static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2019{
2020 WARN_ON(!sp->unsync);
5e1b3ddb 2021 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2022 sp->unsync = 0;
2023 --kvm->stat.mmu_unsync;
2024}
2025
7775834a
XG
2026static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2027 struct list_head *invalid_list);
2028static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2029 struct list_head *invalid_list);
4731d4c7 2030
f34d251d
XG
2031/*
2032 * NOTE: we should pay more attention on the zapped-obsolete page
2033 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2034 * since it has been deleted from active_mmu_pages but still can be found
2035 * at hast list.
2036 *
f3414bc7 2037 * for_each_valid_sp() has skipped that kind of pages.
f34d251d 2038 */
f3414bc7 2039#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2040 hlist_for_each_entry(_sp, \
2041 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
f3414bc7
DM
2042 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2043 } else
1044b030
TY
2044
2045#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2046 for_each_valid_sp(_kvm, _sp, _gfn) \
2047 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2048
f918b443 2049/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2050static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2051 struct list_head *invalid_list)
4731d4c7 2052{
5b7e0102 2053 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 2054 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2055 return false;
4731d4c7
MT
2056 }
2057
1f50f1b3 2058 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
d98ba053 2059 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2060 return false;
4731d4c7
MT
2061 }
2062
1f50f1b3 2063 return true;
4731d4c7
MT
2064}
2065
35a70510
PB
2066static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2067 struct list_head *invalid_list,
2068 bool remote_flush, bool local_flush)
1d9dc7e0 2069{
35a70510
PB
2070 if (!list_empty(invalid_list)) {
2071 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2072 return;
2073 }
d98ba053 2074
35a70510
PB
2075 if (remote_flush)
2076 kvm_flush_remote_tlbs(vcpu->kvm);
2077 else if (local_flush)
2078 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2079}
2080
e37fa785
XG
2081#ifdef CONFIG_KVM_MMU_AUDIT
2082#include "mmu_audit.c"
2083#else
2084static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2085static void mmu_audit_disable(void) { }
2086#endif
2087
46971a2f
XG
2088static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2089{
2090 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2091}
2092
1f50f1b3 2093static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2094 struct list_head *invalid_list)
1d9dc7e0 2095{
9a43c5d9
PB
2096 kvm_unlink_unsync_page(vcpu->kvm, sp);
2097 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2098}
2099
9f1a122f 2100/* @gfn should be write-protected at the call site */
2a74003a
PB
2101static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2102 struct list_head *invalid_list)
9f1a122f 2103{
9f1a122f 2104 struct kvm_mmu_page *s;
2a74003a 2105 bool ret = false;
9f1a122f 2106
b67bfe0d 2107 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2108 if (!s->unsync)
9f1a122f
XG
2109 continue;
2110
2111 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2112 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2113 }
2114
2a74003a 2115 return ret;
9f1a122f
XG
2116}
2117
60c8aec6 2118struct mmu_page_path {
0a47cd85
PB
2119 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
2120 unsigned int idx[PT64_ROOT_LEVEL];
4731d4c7
MT
2121};
2122
60c8aec6 2123#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2124 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2125 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2126 i = mmu_pages_next(&pvec, &parents, i))
2127
cded19f3
HE
2128static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2129 struct mmu_page_path *parents,
2130 int i)
60c8aec6
MT
2131{
2132 int n;
2133
2134 for (n = i+1; n < pvec->nr; n++) {
2135 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2136 unsigned idx = pvec->page[n].idx;
2137 int level = sp->role.level;
60c8aec6 2138
0a47cd85
PB
2139 parents->idx[level-1] = idx;
2140 if (level == PT_PAGE_TABLE_LEVEL)
2141 break;
60c8aec6 2142
0a47cd85 2143 parents->parent[level-2] = sp;
60c8aec6
MT
2144 }
2145
2146 return n;
2147}
2148
0a47cd85
PB
2149static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2150 struct mmu_page_path *parents)
2151{
2152 struct kvm_mmu_page *sp;
2153 int level;
2154
2155 if (pvec->nr == 0)
2156 return 0;
2157
e23d3fef
XG
2158 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2159
0a47cd85
PB
2160 sp = pvec->page[0].sp;
2161 level = sp->role.level;
2162 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2163
2164 parents->parent[level-2] = sp;
2165
2166 /* Also set up a sentinel. Further entries in pvec are all
2167 * children of sp, so this element is never overwritten.
2168 */
2169 parents->parent[level-1] = NULL;
2170 return mmu_pages_next(pvec, parents, 0);
2171}
2172
cded19f3 2173static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2174{
60c8aec6
MT
2175 struct kvm_mmu_page *sp;
2176 unsigned int level = 0;
2177
2178 do {
2179 unsigned int idx = parents->idx[level];
60c8aec6
MT
2180 sp = parents->parent[level];
2181 if (!sp)
2182 return;
2183
e23d3fef 2184 WARN_ON(idx == INVALID_INDEX);
fd951457 2185 clear_unsync_child_bit(sp, idx);
60c8aec6 2186 level++;
0a47cd85 2187 } while (!sp->unsync_children);
60c8aec6 2188}
4731d4c7 2189
60c8aec6
MT
2190static void mmu_sync_children(struct kvm_vcpu *vcpu,
2191 struct kvm_mmu_page *parent)
2192{
2193 int i;
2194 struct kvm_mmu_page *sp;
2195 struct mmu_page_path parents;
2196 struct kvm_mmu_pages pages;
d98ba053 2197 LIST_HEAD(invalid_list);
50c9e6f3 2198 bool flush = false;
60c8aec6 2199
60c8aec6 2200 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2201 bool protected = false;
b1a36821
MT
2202
2203 for_each_sp(pages, sp, parents, i)
54bf36aa 2204 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2205
50c9e6f3 2206 if (protected) {
b1a36821 2207 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2208 flush = false;
2209 }
b1a36821 2210
60c8aec6 2211 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2212 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2213 mmu_pages_clear_parents(&parents);
2214 }
50c9e6f3
PB
2215 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2216 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2217 cond_resched_lock(&vcpu->kvm->mmu_lock);
2218 flush = false;
2219 }
60c8aec6 2220 }
50c9e6f3
PB
2221
2222 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2223}
2224
a30f47cb
XG
2225static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2226{
e5691a81 2227 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2228}
2229
2230static void clear_sp_write_flooding_count(u64 *spte)
2231{
2232 struct kvm_mmu_page *sp = page_header(__pa(spte));
2233
2234 __clear_sp_write_flooding_count(sp);
2235}
2236
cea0f0e7
AK
2237static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2238 gfn_t gfn,
2239 gva_t gaddr,
2240 unsigned level,
f6e2c02b 2241 int direct,
bb11c6c9 2242 unsigned access)
cea0f0e7
AK
2243{
2244 union kvm_mmu_page_role role;
cea0f0e7 2245 unsigned quadrant;
9f1a122f 2246 struct kvm_mmu_page *sp;
9f1a122f 2247 bool need_sync = false;
2a74003a 2248 bool flush = false;
f3414bc7 2249 int collisions = 0;
2a74003a 2250 LIST_HEAD(invalid_list);
cea0f0e7 2251
a770f6f2 2252 role = vcpu->arch.mmu.base_role;
cea0f0e7 2253 role.level = level;
f6e2c02b 2254 role.direct = direct;
84b0c8c6 2255 if (role.direct)
5b7e0102 2256 role.cr4_pae = 0;
41074d07 2257 role.access = access;
c5a78f2b
JR
2258 if (!vcpu->arch.mmu.direct_map
2259 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2260 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2261 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2262 role.quadrant = quadrant;
2263 }
f3414bc7
DM
2264 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2265 if (sp->gfn != gfn) {
2266 collisions++;
2267 continue;
2268 }
2269
7ae680eb
XG
2270 if (!need_sync && sp->unsync)
2271 need_sync = true;
4731d4c7 2272
7ae680eb
XG
2273 if (sp->role.word != role.word)
2274 continue;
4731d4c7 2275
2a74003a
PB
2276 if (sp->unsync) {
2277 /* The page is good, but __kvm_sync_page might still end
2278 * up zapping it. If so, break in order to rebuild it.
2279 */
2280 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2281 break;
2282
2283 WARN_ON(!list_empty(&invalid_list));
2284 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2285 }
e02aa901 2286
98bba238 2287 if (sp->unsync_children)
a8eeb04a 2288 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2289
a30f47cb 2290 __clear_sp_write_flooding_count(sp);
7ae680eb 2291 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2292 goto out;
7ae680eb 2293 }
47005792 2294
dfc5aa00 2295 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2296
2297 sp = kvm_mmu_alloc_page(vcpu, direct);
2298
4db35314
AK
2299 sp->gfn = gfn;
2300 sp->role = role;
7ae680eb
XG
2301 hlist_add_head(&sp->hash_link,
2302 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2303 if (!direct) {
56ca57f9
XG
2304 /*
2305 * we should do write protection before syncing pages
2306 * otherwise the content of the synced shadow page may
2307 * be inconsistent with guest page table.
2308 */
2309 account_shadowed(vcpu->kvm, sp);
2310 if (level == PT_PAGE_TABLE_LEVEL &&
2311 rmap_write_protect(vcpu, gfn))
b1a36821 2312 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f 2313
9f1a122f 2314 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2315 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2316 }
5304b8d3 2317 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2318 clear_page(sp->spt);
f691fe1d 2319 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2320
2321 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2322out:
2323 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2324 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2325 return sp;
cea0f0e7
AK
2326}
2327
2d11123a
AK
2328static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2329 struct kvm_vcpu *vcpu, u64 addr)
2330{
2331 iterator->addr = addr;
2332 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2333 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2334
2335 if (iterator->level == PT64_ROOT_LEVEL &&
2336 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2337 !vcpu->arch.mmu.direct_map)
2338 --iterator->level;
2339
2d11123a
AK
2340 if (iterator->level == PT32E_ROOT_LEVEL) {
2341 iterator->shadow_addr
2342 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2343 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2344 --iterator->level;
2345 if (!iterator->shadow_addr)
2346 iterator->level = 0;
2347 }
2348}
2349
2350static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2351{
2352 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2353 return false;
4d88954d 2354
2d11123a
AK
2355 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2356 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2357 return true;
2358}
2359
c2a2ac2b
XG
2360static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2361 u64 spte)
2d11123a 2362{
c2a2ac2b 2363 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2364 iterator->level = 0;
2365 return;
2366 }
2367
c2a2ac2b 2368 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2369 --iterator->level;
2370}
2371
c2a2ac2b
XG
2372static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2373{
2374 return __shadow_walk_next(iterator, *iterator->sptep);
2375}
2376
98bba238
TY
2377static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2378 struct kvm_mmu_page *sp)
32ef26a3
AK
2379{
2380 u64 spte;
2381
ffb128c8 2382 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2383
ffb128c8 2384 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
0e3d0648 2385 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
24db2734 2386
1df9f2dc 2387 mmu_spte_set(sptep, spte);
98bba238
TY
2388
2389 mmu_page_add_parent_pte(vcpu, sp, sptep);
2390
2391 if (sp->unsync_children || sp->unsync)
2392 mark_unsync(sptep);
32ef26a3
AK
2393}
2394
a357bd22
AK
2395static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2396 unsigned direct_access)
2397{
2398 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2399 struct kvm_mmu_page *child;
2400
2401 /*
2402 * For the direct sp, if the guest pte's dirty bit
2403 * changed form clean to dirty, it will corrupt the
2404 * sp's access: allow writable in the read-only sp,
2405 * so we should update the spte at this point to get
2406 * a new sp with the correct access.
2407 */
2408 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2409 if (child->role.access == direct_access)
2410 return;
2411
bcdd9a93 2412 drop_parent_pte(child, sptep);
a357bd22
AK
2413 kvm_flush_remote_tlbs(vcpu->kvm);
2414 }
2415}
2416
505aef8f 2417static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2418 u64 *spte)
2419{
2420 u64 pte;
2421 struct kvm_mmu_page *child;
2422
2423 pte = *spte;
2424 if (is_shadow_present_pte(pte)) {
505aef8f 2425 if (is_last_spte(pte, sp->role.level)) {
c3707958 2426 drop_spte(kvm, spte);
505aef8f
XG
2427 if (is_large_pte(pte))
2428 --kvm->stat.lpages;
2429 } else {
38e3b2b2 2430 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2431 drop_parent_pte(child, spte);
38e3b2b2 2432 }
505aef8f
XG
2433 return true;
2434 }
2435
2436 if (is_mmio_spte(pte))
ce88decf 2437 mmu_spte_clear_no_track(spte);
c3707958 2438
505aef8f 2439 return false;
38e3b2b2
XG
2440}
2441
90cb0529 2442static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2443 struct kvm_mmu_page *sp)
a436036b 2444{
697fe2e2 2445 unsigned i;
697fe2e2 2446
38e3b2b2
XG
2447 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2448 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2449}
2450
31aa2b44 2451static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2452{
1e3f42f0
TY
2453 u64 *sptep;
2454 struct rmap_iterator iter;
a436036b 2455
018aabb5 2456 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2457 drop_parent_pte(sp, sptep);
31aa2b44
AK
2458}
2459
60c8aec6 2460static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2461 struct kvm_mmu_page *parent,
2462 struct list_head *invalid_list)
4731d4c7 2463{
60c8aec6
MT
2464 int i, zapped = 0;
2465 struct mmu_page_path parents;
2466 struct kvm_mmu_pages pages;
4731d4c7 2467
60c8aec6 2468 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2469 return 0;
60c8aec6 2470
60c8aec6
MT
2471 while (mmu_unsync_walk(parent, &pages)) {
2472 struct kvm_mmu_page *sp;
2473
2474 for_each_sp(pages, sp, parents, i) {
7775834a 2475 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2476 mmu_pages_clear_parents(&parents);
77662e00 2477 zapped++;
60c8aec6 2478 }
60c8aec6
MT
2479 }
2480
2481 return zapped;
4731d4c7
MT
2482}
2483
7775834a
XG
2484static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2485 struct list_head *invalid_list)
31aa2b44 2486{
4731d4c7 2487 int ret;
f691fe1d 2488
7775834a 2489 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2490 ++kvm->stat.mmu_shadow_zapped;
7775834a 2491 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2492 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2493 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2494
f6e2c02b 2495 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2496 unaccount_shadowed(kvm, sp);
5304b8d3 2497
4731d4c7
MT
2498 if (sp->unsync)
2499 kvm_unlink_unsync_page(kvm, sp);
4db35314 2500 if (!sp->root_count) {
54a4f023
GJ
2501 /* Count self */
2502 ret++;
7775834a 2503 list_move(&sp->link, invalid_list);
aa6bd187 2504 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2505 } else {
5b5c6a5a 2506 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2507
2508 /*
2509 * The obsolete pages can not be used on any vcpus.
2510 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2511 */
2512 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2513 kvm_reload_remote_mmus(kvm);
2e53d63a 2514 }
7775834a
XG
2515
2516 sp->role.invalid = 1;
4731d4c7 2517 return ret;
a436036b
AK
2518}
2519
7775834a
XG
2520static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2521 struct list_head *invalid_list)
2522{
945315b9 2523 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2524
2525 if (list_empty(invalid_list))
2526 return;
2527
c142786c 2528 /*
9753f529
LT
2529 * We need to make sure everyone sees our modifications to
2530 * the page tables and see changes to vcpu->mode here. The barrier
2531 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2532 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2533 *
2534 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2535 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2536 */
2537 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2538
945315b9 2539 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2540 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2541 kvm_mmu_free_page(sp);
945315b9 2542 }
7775834a
XG
2543}
2544
5da59607
TY
2545static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2546 struct list_head *invalid_list)
2547{
2548 struct kvm_mmu_page *sp;
2549
2550 if (list_empty(&kvm->arch.active_mmu_pages))
2551 return false;
2552
d74c0e6b
GT
2553 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2554 struct kvm_mmu_page, link);
5da59607
TY
2555 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2556
2557 return true;
2558}
2559
82ce2c96
IE
2560/*
2561 * Changing the number of mmu pages allocated to the vm
49d5ca26 2562 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2563 */
49d5ca26 2564void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2565{
d98ba053 2566 LIST_HEAD(invalid_list);
82ce2c96 2567
b34cb590
TY
2568 spin_lock(&kvm->mmu_lock);
2569
49d5ca26 2570 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2571 /* Need to free some mmu pages to achieve the goal. */
2572 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2573 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2574 break;
82ce2c96 2575
aa6bd187 2576 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2577 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2578 }
82ce2c96 2579
49d5ca26 2580 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2581
2582 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2583}
2584
1cb3f3ae 2585int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2586{
4db35314 2587 struct kvm_mmu_page *sp;
d98ba053 2588 LIST_HEAD(invalid_list);
a436036b
AK
2589 int r;
2590
9ad17b10 2591 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2592 r = 0;
1cb3f3ae 2593 spin_lock(&kvm->mmu_lock);
b67bfe0d 2594 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2595 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2596 sp->role.word);
2597 r = 1;
f41d335a 2598 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2599 }
d98ba053 2600 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2601 spin_unlock(&kvm->mmu_lock);
2602
a436036b 2603 return r;
cea0f0e7 2604}
1cb3f3ae 2605EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2606
5c520e90 2607static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2608{
2609 trace_kvm_mmu_unsync_page(sp);
2610 ++vcpu->kvm->stat.mmu_unsync;
2611 sp->unsync = 1;
2612
2613 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2614}
2615
3d0c27ad
XG
2616static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2617 bool can_unsync)
4731d4c7 2618{
5c520e90 2619 struct kvm_mmu_page *sp;
4731d4c7 2620
3d0c27ad
XG
2621 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2622 return true;
9cf5cf5a 2623
5c520e90 2624 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2625 if (!can_unsync)
3d0c27ad 2626 return true;
36a2e677 2627
5c520e90
XG
2628 if (sp->unsync)
2629 continue;
9cf5cf5a 2630
5c520e90
XG
2631 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2632 kvm_unsync_page(vcpu, sp);
4731d4c7 2633 }
3d0c27ad
XG
2634
2635 return false;
4731d4c7
MT
2636}
2637
ba049e93 2638static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2639{
2640 if (pfn_valid(pfn))
2641 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2642
2643 return true;
2644}
2645
d555c333 2646static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2647 unsigned pte_access, int level,
ba049e93 2648 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2649 bool can_unsync, bool host_writable)
1c4f1fd6 2650{
ffb128c8 2651 u64 spte = 0;
1e73f9dd 2652 int ret = 0;
64d4d521 2653
54bf36aa 2654 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2655 return 0;
2656
d95c5568
BD
2657 /*
2658 * For the EPT case, shadow_present_mask is 0 if hardware
2659 * supports exec-only page table entries. In that case,
2660 * ACC_USER_MASK and shadow_user_mask are used to represent
2661 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2662 */
ffb128c8 2663 spte |= shadow_present_mask;
947da538 2664 if (!speculative)
3201b5d9 2665 spte |= shadow_accessed_mask;
640d9b0d 2666
7b52345e
SY
2667 if (pte_access & ACC_EXEC_MASK)
2668 spte |= shadow_x_mask;
2669 else
2670 spte |= shadow_nx_mask;
49fde340 2671
1c4f1fd6 2672 if (pte_access & ACC_USER_MASK)
7b52345e 2673 spte |= shadow_user_mask;
49fde340 2674
852e3c19 2675 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2676 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2677 if (tdp_enabled)
4b12f0de 2678 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2679 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2680
9bdbba13 2681 if (host_writable)
1403283a 2682 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2683 else
2684 pte_access &= ~ACC_WRITE_MASK;
1403283a 2685
35149e21 2686 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2687
c2288505 2688 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2689
c2193463 2690 /*
7751babd
XG
2691 * Other vcpu creates new sp in the window between
2692 * mapping_level() and acquiring mmu-lock. We can
2693 * allow guest to retry the access, the mapping can
2694 * be fixed if guest refault.
c2193463 2695 */
852e3c19 2696 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2697 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2698 goto done;
38187c83 2699
49fde340 2700 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2701
ecc5589f
MT
2702 /*
2703 * Optimization: for pte sync, if spte was writable the hash
2704 * lookup is unnecessary (and expensive). Write protection
2705 * is responsibility of mmu_get_page / kvm_sync_page.
2706 * Same reasoning can be applied to dirty page accounting.
2707 */
8dae4445 2708 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2709 goto set_pte;
2710
4731d4c7 2711 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2712 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2713 __func__, gfn);
1e73f9dd 2714 ret = 1;
1c4f1fd6 2715 pte_access &= ~ACC_WRITE_MASK;
49fde340 2716 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2717 }
2718 }
2719
9b51a630 2720 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2721 kvm_vcpu_mark_page_dirty(vcpu, gfn);
9b51a630
KH
2722 spte |= shadow_dirty_mask;
2723 }
1c4f1fd6 2724
f160c7b7
JS
2725 if (speculative)
2726 spte = mark_spte_for_access_track(spte);
2727
38187c83 2728set_pte:
6e7d0354 2729 if (mmu_spte_update(sptep, spte))
b330aa0c 2730 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2731done:
1e73f9dd
MT
2732 return ret;
2733}
2734
029499b4 2735static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
ba049e93 2736 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
029499b4 2737 bool speculative, bool host_writable)
1e73f9dd
MT
2738{
2739 int was_rmapped = 0;
53a27b39 2740 int rmap_count;
029499b4 2741 bool emulate = false;
1e73f9dd 2742
f7616203
XG
2743 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2744 *sptep, write_fault, gfn);
1e73f9dd 2745
afd28fe1 2746 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2747 /*
2748 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2749 * the parent of the now unreachable PTE.
2750 */
852e3c19
JR
2751 if (level > PT_PAGE_TABLE_LEVEL &&
2752 !is_large_pte(*sptep)) {
1e73f9dd 2753 struct kvm_mmu_page *child;
d555c333 2754 u64 pte = *sptep;
1e73f9dd
MT
2755
2756 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2757 drop_parent_pte(child, sptep);
3be2264b 2758 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2759 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2760 pgprintk("hfn old %llx new %llx\n",
d555c333 2761 spte_to_pfn(*sptep), pfn);
c3707958 2762 drop_spte(vcpu->kvm, sptep);
91546356 2763 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2764 } else
2765 was_rmapped = 1;
1e73f9dd 2766 }
852e3c19 2767
c2288505
XG
2768 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2769 true, host_writable)) {
1e73f9dd 2770 if (write_fault)
029499b4 2771 emulate = true;
77c3913b 2772 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2773 }
1e73f9dd 2774
029499b4
TY
2775 if (unlikely(is_mmio_spte(*sptep)))
2776 emulate = true;
ce88decf 2777
d555c333 2778 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2779 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2780 is_large_pte(*sptep)? "2MB" : "4kB",
f160c7b7 2781 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
a205bc19 2782 *sptep, sptep);
d555c333 2783 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2784 ++vcpu->kvm->stat.lpages;
2785
ffb61bb3 2786 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2787 if (!was_rmapped) {
2788 rmap_count = rmap_add(vcpu, sptep, gfn);
2789 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2790 rmap_recycle(vcpu, sptep, gfn);
2791 }
1c4f1fd6 2792 }
cb9aaa30 2793
f3ac1a4b 2794 kvm_release_pfn_clean(pfn);
029499b4
TY
2795
2796 return emulate;
1c4f1fd6
AK
2797}
2798
ba049e93 2799static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2800 bool no_dirty_log)
2801{
2802 struct kvm_memory_slot *slot;
957ed9ef 2803
5d163b1c 2804 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2805 if (!slot)
6c8ee57b 2806 return KVM_PFN_ERR_FAULT;
957ed9ef 2807
037d92dc 2808 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2809}
2810
2811static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2812 struct kvm_mmu_page *sp,
2813 u64 *start, u64 *end)
2814{
2815 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2816 struct kvm_memory_slot *slot;
957ed9ef
XG
2817 unsigned access = sp->role.access;
2818 int i, ret;
2819 gfn_t gfn;
2820
2821 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2822 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2823 if (!slot)
957ed9ef
XG
2824 return -1;
2825
d9ef13c2 2826 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2827 if (ret <= 0)
2828 return -1;
2829
2830 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
2831 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2832 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
2833
2834 return 0;
2835}
2836
2837static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2838 struct kvm_mmu_page *sp, u64 *sptep)
2839{
2840 u64 *spte, *start = NULL;
2841 int i;
2842
2843 WARN_ON(!sp->role.direct);
2844
2845 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2846 spte = sp->spt + i;
2847
2848 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2849 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2850 if (!start)
2851 continue;
2852 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2853 break;
2854 start = NULL;
2855 } else if (!start)
2856 start = spte;
2857 }
2858}
2859
2860static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2861{
2862 struct kvm_mmu_page *sp;
2863
2864 /*
2865 * Since it's no accessed bit on EPT, it's no way to
2866 * distinguish between actually accessed translations
2867 * and prefetched, so disable pte prefetch if EPT is
2868 * enabled.
2869 */
2870 if (!shadow_accessed_mask)
2871 return;
2872
2873 sp = page_header(__pa(sptep));
2874 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2875 return;
2876
2877 __direct_pte_prefetch(vcpu, sp, sptep);
2878}
2879
7ee0e5b2 2880static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 2881 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 2882{
9f652d21 2883 struct kvm_shadow_walk_iterator iterator;
140754bc 2884 struct kvm_mmu_page *sp;
b90a0e6c 2885 int emulate = 0;
140754bc 2886 gfn_t pseudo_gfn;
6aa8b732 2887
989c6b34
MT
2888 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2889 return 0;
2890
9f652d21 2891 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2892 if (iterator.level == level) {
029499b4
TY
2893 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2894 write, level, gfn, pfn, prefault,
2895 map_writable);
957ed9ef 2896 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2897 ++vcpu->stat.pf_fixed;
2898 break;
6aa8b732
AK
2899 }
2900
404381c5 2901 drop_large_spte(vcpu, iterator.sptep);
c3707958 2902 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2903 u64 base_addr = iterator.addr;
2904
2905 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2906 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 2907 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 2908 iterator.level - 1, 1, ACC_ALL);
140754bc 2909
98bba238 2910 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
2911 }
2912 }
b90a0e6c 2913 return emulate;
6aa8b732
AK
2914}
2915
77db5cbd 2916static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2917{
77db5cbd
HY
2918 siginfo_t info;
2919
2920 info.si_signo = SIGBUS;
2921 info.si_errno = 0;
2922 info.si_code = BUS_MCEERR_AR;
2923 info.si_addr = (void __user *)address;
2924 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2925
77db5cbd 2926 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2927}
2928
ba049e93 2929static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2930{
4d8b81ab
XG
2931 /*
2932 * Do not cache the mmio info caused by writing the readonly gfn
2933 * into the spte otherwise read access on readonly gfn also can
2934 * caused mmio page fault and treat it as mmio access.
2935 * Return 1 to tell kvm to emulate it.
2936 */
2937 if (pfn == KVM_PFN_ERR_RO_FAULT)
2938 return 1;
2939
e6c1502b 2940 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2941 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
bf998156 2942 return 0;
d7c55201 2943 }
edba23e5 2944
d7c55201 2945 return -EFAULT;
bf998156
HY
2946}
2947
936a5fe6 2948static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
2949 gfn_t *gfnp, kvm_pfn_t *pfnp,
2950 int *levelp)
936a5fe6 2951{
ba049e93 2952 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
2953 gfn_t gfn = *gfnp;
2954 int level = *levelp;
2955
2956 /*
2957 * Check if it's a transparent hugepage. If this would be an
2958 * hugetlbfs page, level wouldn't be set to
2959 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2960 * here.
2961 */
bf4bea8e 2962 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6 2963 level == PT_PAGE_TABLE_LEVEL &&
127393fb 2964 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 2965 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
2966 unsigned long mask;
2967 /*
2968 * mmu_notifier_retry was successful and we hold the
2969 * mmu_lock here, so the pmd can't become splitting
2970 * from under us, and in turn
2971 * __split_huge_page_refcount() can't run from under
2972 * us and we can safely transfer the refcount from
2973 * PG_tail to PG_head as we switch the pfn to tail to
2974 * head.
2975 */
2976 *levelp = level = PT_DIRECTORY_LEVEL;
2977 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2978 VM_BUG_ON((gfn & mask) != (pfn & mask));
2979 if (pfn & mask) {
2980 gfn &= ~mask;
2981 *gfnp = gfn;
2982 kvm_release_pfn_clean(pfn);
2983 pfn &= ~mask;
c3586667 2984 kvm_get_pfn(pfn);
936a5fe6
AA
2985 *pfnp = pfn;
2986 }
2987 }
2988}
2989
d7c55201 2990static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 2991 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 2992{
d7c55201 2993 /* The pfn is invalid, report the error! */
81c52c56 2994 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2995 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2996 return true;
d7c55201
XG
2997 }
2998
ce88decf 2999 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 3000 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 3001
798e88b3 3002 return false;
d7c55201
XG
3003}
3004
e5552fd2 3005static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3006{
1c118b82
XG
3007 /*
3008 * Do not fix the mmio spte with invalid generation number which
3009 * need to be updated by slow page fault path.
3010 */
3011 if (unlikely(error_code & PFERR_RSVD_MASK))
3012 return false;
3013
f160c7b7
JS
3014 /* See if the page fault is due to an NX violation */
3015 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3016 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3017 return false;
3018
c7ba5b48 3019 /*
f160c7b7
JS
3020 * #PF can be fast if:
3021 * 1. The shadow page table entry is not present, which could mean that
3022 * the fault is potentially caused by access tracking (if enabled).
3023 * 2. The shadow page table entry is present and the fault
3024 * is caused by write-protect, that means we just need change the W
3025 * bit of the spte which can be done out of mmu-lock.
3026 *
3027 * However, if access tracking is disabled we know that a non-present
3028 * page must be a genuine page fault where we have to create a new SPTE.
3029 * So, if access tracking is disabled, we return true only for write
3030 * accesses to a present page.
c7ba5b48 3031 */
c7ba5b48 3032
f160c7b7
JS
3033 return shadow_acc_track_mask != 0 ||
3034 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3035 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3036}
3037
97dceba2
JS
3038/*
3039 * Returns true if the SPTE was fixed successfully. Otherwise,
3040 * someone else modified the SPTE from its original value.
3041 */
c7ba5b48 3042static bool
92a476cb 3043fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3044 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3045{
c7ba5b48
XG
3046 gfn_t gfn;
3047
3048 WARN_ON(!sp->role.direct);
3049
9b51a630
KH
3050 /*
3051 * Theoretically we could also set dirty bit (and flush TLB) here in
3052 * order to eliminate unnecessary PML logging. See comments in
3053 * set_spte. But fast_page_fault is very unlikely to happen with PML
3054 * enabled, so we do not do this. This might result in the same GPA
3055 * to be logged in PML buffer again when the write really happens, and
3056 * eventually to be called by mark_page_dirty twice. But it's also no
3057 * harm. This also avoids the TLB flush needed after setting dirty bit
3058 * so non-PML cases won't be impacted.
3059 *
3060 * Compare with set_spte where instead shadow_dirty_mask is set.
3061 */
f160c7b7 3062 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3063 return false;
3064
d3e328f2 3065 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3066 /*
3067 * The gfn of direct spte is stable since it is
3068 * calculated by sp->gfn.
3069 */
3070 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3071 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3072 }
c7ba5b48
XG
3073
3074 return true;
3075}
3076
d3e328f2
JS
3077static bool is_access_allowed(u32 fault_err_code, u64 spte)
3078{
3079 if (fault_err_code & PFERR_FETCH_MASK)
3080 return is_executable_pte(spte);
3081
3082 if (fault_err_code & PFERR_WRITE_MASK)
3083 return is_writable_pte(spte);
3084
3085 /* Fault was on Read access */
3086 return spte & PT_PRESENT_MASK;
3087}
3088
c7ba5b48
XG
3089/*
3090 * Return value:
3091 * - true: let the vcpu to access on the same address again.
3092 * - false: let the real page fault path to fix it.
3093 */
3094static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3095 u32 error_code)
3096{
3097 struct kvm_shadow_walk_iterator iterator;
92a476cb 3098 struct kvm_mmu_page *sp;
97dceba2 3099 bool fault_handled = false;
c7ba5b48 3100 u64 spte = 0ull;
97dceba2 3101 uint retry_count = 0;
c7ba5b48 3102
37f6a4e2
MT
3103 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3104 return false;
3105
e5552fd2 3106 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3107 return false;
3108
3109 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3110
97dceba2 3111 do {
d3e328f2 3112 u64 new_spte;
c7ba5b48 3113
d162f30a
JS
3114 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3115 if (!is_shadow_present_pte(spte) ||
3116 iterator.level < level)
3117 break;
3118
97dceba2
JS
3119 sp = page_header(__pa(iterator.sptep));
3120 if (!is_last_spte(spte, sp->role.level))
3121 break;
c7ba5b48 3122
97dceba2 3123 /*
f160c7b7
JS
3124 * Check whether the memory access that caused the fault would
3125 * still cause it if it were to be performed right now. If not,
3126 * then this is a spurious fault caused by TLB lazily flushed,
3127 * or some other CPU has already fixed the PTE after the
3128 * current CPU took the fault.
97dceba2
JS
3129 *
3130 * Need not check the access of upper level table entries since
3131 * they are always ACC_ALL.
3132 */
d3e328f2
JS
3133 if (is_access_allowed(error_code, spte)) {
3134 fault_handled = true;
3135 break;
3136 }
f160c7b7 3137
d3e328f2
JS
3138 new_spte = spte;
3139
3140 if (is_access_track_spte(spte))
3141 new_spte = restore_acc_track_spte(new_spte);
3142
3143 /*
3144 * Currently, to simplify the code, write-protection can
3145 * be removed in the fast path only if the SPTE was
3146 * write-protected for dirty-logging or access tracking.
3147 */
3148 if ((error_code & PFERR_WRITE_MASK) &&
3149 spte_can_locklessly_be_made_writable(spte))
3150 {
3151 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3152
3153 /*
d3e328f2
JS
3154 * Do not fix write-permission on the large spte. Since
3155 * we only dirty the first page into the dirty-bitmap in
3156 * fast_pf_fix_direct_spte(), other pages are missed
3157 * if its slot has dirty logging enabled.
3158 *
3159 * Instead, we let the slow page fault path create a
3160 * normal spte to fix the access.
3161 *
3162 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3163 */
d3e328f2 3164 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3165 break;
97dceba2 3166 }
c7ba5b48 3167
f160c7b7 3168 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3169 if (new_spte == spte ||
3170 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3171 break;
3172
3173 /*
3174 * Currently, fast page fault only works for direct mapping
3175 * since the gfn is not stable for indirect shadow page. See
3176 * Documentation/virtual/kvm/locking.txt to get more detail.
3177 */
3178 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3179 iterator.sptep, spte,
d3e328f2 3180 new_spte);
97dceba2
JS
3181 if (fault_handled)
3182 break;
3183
3184 if (++retry_count > 4) {
3185 printk_once(KERN_WARNING
3186 "kvm: Fast #PF retrying more than 4 times.\n");
3187 break;
3188 }
3189
97dceba2 3190 } while (true);
c126d94f 3191
a72faf25 3192 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
97dceba2 3193 spte, fault_handled);
c7ba5b48
XG
3194 walk_shadow_page_lockless_end(vcpu);
3195
97dceba2 3196 return fault_handled;
c7ba5b48
XG
3197}
3198
78b2c54a 3199static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3200 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
450e0b41 3201static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3202
c7ba5b48
XG
3203static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3204 gfn_t gfn, bool prefault)
10589a46
MT
3205{
3206 int r;
852e3c19 3207 int level;
fd136902 3208 bool force_pt_level = false;
ba049e93 3209 kvm_pfn_t pfn;
e930bffe 3210 unsigned long mmu_seq;
c7ba5b48 3211 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3212
fd136902 3213 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3214 if (likely(!force_pt_level)) {
936a5fe6
AA
3215 /*
3216 * This path builds a PAE pagetable - so we can map
3217 * 2mb pages at maximum. Therefore check if the level
3218 * is larger than that.
3219 */
3220 if (level > PT_DIRECTORY_LEVEL)
3221 level = PT_DIRECTORY_LEVEL;
852e3c19 3222
936a5fe6 3223 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3224 }
05da4558 3225
c7ba5b48
XG
3226 if (fast_page_fault(vcpu, v, level, error_code))
3227 return 0;
3228
e930bffe 3229 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3230 smp_rmb();
060c2abe 3231
78b2c54a 3232 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3233 return 0;
aaee2c94 3234
d7c55201
XG
3235 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3236 return r;
d196e343 3237
aaee2c94 3238 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3239 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3240 goto out_unlock;
450e0b41 3241 make_mmu_pages_available(vcpu);
936a5fe6
AA
3242 if (likely(!force_pt_level))
3243 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3244 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3245 spin_unlock(&vcpu->kvm->mmu_lock);
3246
10589a46 3247 return r;
e930bffe
AA
3248
3249out_unlock:
3250 spin_unlock(&vcpu->kvm->mmu_lock);
3251 kvm_release_pfn_clean(pfn);
3252 return 0;
10589a46
MT
3253}
3254
3255
17ac10ad
AK
3256static void mmu_free_roots(struct kvm_vcpu *vcpu)
3257{
3258 int i;
4db35314 3259 struct kvm_mmu_page *sp;
d98ba053 3260 LIST_HEAD(invalid_list);
17ac10ad 3261
ad312c7c 3262 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3263 return;
35af577a 3264
81407ca5
JR
3265 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3266 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3267 vcpu->arch.mmu.direct_map)) {
ad312c7c 3268 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3269
35af577a 3270 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3271 sp = page_header(root);
3272 --sp->root_count;
d98ba053
XG
3273 if (!sp->root_count && sp->role.invalid) {
3274 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3275 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3276 }
aaee2c94 3277 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3278 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3279 return;
3280 }
35af577a
GN
3281
3282 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3283 for (i = 0; i < 4; ++i) {
ad312c7c 3284 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3285
417726a3 3286 if (root) {
417726a3 3287 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3288 sp = page_header(root);
3289 --sp->root_count;
2e53d63a 3290 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3291 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3292 &invalid_list);
417726a3 3293 }
ad312c7c 3294 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3295 }
d98ba053 3296 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3297 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3298 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3299}
3300
8986ecc0
MT
3301static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3302{
3303 int ret = 0;
3304
3305 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3306 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3307 ret = 1;
3308 }
3309
3310 return ret;
3311}
3312
651dd37a
JR
3313static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3314{
3315 struct kvm_mmu_page *sp;
7ebaf15e 3316 unsigned i;
651dd37a
JR
3317
3318 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3319 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3320 make_mmu_pages_available(vcpu);
bb11c6c9 3321 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3322 ++sp->root_count;
3323 spin_unlock(&vcpu->kvm->mmu_lock);
3324 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3325 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3326 for (i = 0; i < 4; ++i) {
3327 hpa_t root = vcpu->arch.mmu.pae_root[i];
3328
fa4a2c08 3329 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3330 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3331 make_mmu_pages_available(vcpu);
649497d1 3332 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3333 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3334 root = __pa(sp->spt);
3335 ++sp->root_count;
3336 spin_unlock(&vcpu->kvm->mmu_lock);
3337 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3338 }
6292757f 3339 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3340 } else
3341 BUG();
3342
3343 return 0;
3344}
3345
3346static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3347{
4db35314 3348 struct kvm_mmu_page *sp;
81407ca5
JR
3349 u64 pdptr, pm_mask;
3350 gfn_t root_gfn;
3351 int i;
3bb65a22 3352
5777ed34 3353 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3354
651dd37a
JR
3355 if (mmu_check_root(vcpu, root_gfn))
3356 return 1;
3357
3358 /*
3359 * Do we shadow a long mode page table? If so we need to
3360 * write-protect the guests page table root.
3361 */
3362 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3363 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3364
fa4a2c08 3365 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3366
8facbbff 3367 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3368 make_mmu_pages_available(vcpu);
651dd37a 3369 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
bb11c6c9 3370 0, ACC_ALL);
4db35314
AK
3371 root = __pa(sp->spt);
3372 ++sp->root_count;
8facbbff 3373 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3374 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3375 return 0;
17ac10ad 3376 }
f87f9288 3377
651dd37a
JR
3378 /*
3379 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3380 * or a PAE 3-level page table. In either case we need to be aware that
3381 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3382 */
81407ca5
JR
3383 pm_mask = PT_PRESENT_MASK;
3384 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3385 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3386
17ac10ad 3387 for (i = 0; i < 4; ++i) {
ad312c7c 3388 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3389
fa4a2c08 3390 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3391 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3392 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
812f30b2 3393 if (!(pdptr & PT_PRESENT_MASK)) {
ad312c7c 3394 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3395 continue;
3396 }
6de4f3ad 3397 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3398 if (mmu_check_root(vcpu, root_gfn))
3399 return 1;
5a7388c2 3400 }
8facbbff 3401 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3402 make_mmu_pages_available(vcpu);
bb11c6c9
TY
3403 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3404 0, ACC_ALL);
4db35314
AK
3405 root = __pa(sp->spt);
3406 ++sp->root_count;
8facbbff
AK
3407 spin_unlock(&vcpu->kvm->mmu_lock);
3408
81407ca5 3409 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3410 }
6292757f 3411 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3412
3413 /*
3414 * If we shadow a 32 bit page table with a long mode page
3415 * table we enter this path.
3416 */
3417 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3418 if (vcpu->arch.mmu.lm_root == NULL) {
3419 /*
3420 * The additional page necessary for this is only
3421 * allocated on demand.
3422 */
3423
3424 u64 *lm_root;
3425
3426 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3427 if (lm_root == NULL)
3428 return 1;
3429
3430 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3431
3432 vcpu->arch.mmu.lm_root = lm_root;
3433 }
3434
3435 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3436 }
3437
8986ecc0 3438 return 0;
17ac10ad
AK
3439}
3440
651dd37a
JR
3441static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3442{
3443 if (vcpu->arch.mmu.direct_map)
3444 return mmu_alloc_direct_roots(vcpu);
3445 else
3446 return mmu_alloc_shadow_roots(vcpu);
3447}
3448
0ba73cda
MT
3449static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3450{
3451 int i;
3452 struct kvm_mmu_page *sp;
3453
81407ca5
JR
3454 if (vcpu->arch.mmu.direct_map)
3455 return;
3456
0ba73cda
MT
3457 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3458 return;
6903074c 3459
56f17dd3 3460 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3461 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3462 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3463 hpa_t root = vcpu->arch.mmu.root_hpa;
3464 sp = page_header(root);
3465 mmu_sync_children(vcpu, sp);
0375f7fa 3466 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3467 return;
3468 }
3469 for (i = 0; i < 4; ++i) {
3470 hpa_t root = vcpu->arch.mmu.pae_root[i];
3471
8986ecc0 3472 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3473 root &= PT64_BASE_ADDR_MASK;
3474 sp = page_header(root);
3475 mmu_sync_children(vcpu, sp);
3476 }
3477 }
0375f7fa 3478 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3479}
3480
3481void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3482{
3483 spin_lock(&vcpu->kvm->mmu_lock);
3484 mmu_sync_roots(vcpu);
6cffe8ca 3485 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3486}
bfd0a56b 3487EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3488
1871c602 3489static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3490 u32 access, struct x86_exception *exception)
6aa8b732 3491{
ab9ae313
AK
3492 if (exception)
3493 exception->error_code = 0;
6aa8b732
AK
3494 return vaddr;
3495}
3496
6539e738 3497static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3498 u32 access,
3499 struct x86_exception *exception)
6539e738 3500{
ab9ae313
AK
3501 if (exception)
3502 exception->error_code = 0;
54987b7a 3503 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3504}
3505
d625b155
XG
3506static bool
3507__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3508{
3509 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3510
3511 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3512 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3513}
3514
3515static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3516{
3517 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3518}
3519
3520static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3521{
3522 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3523}
3524
ded58749 3525static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3526{
3527 if (direct)
3528 return vcpu_match_mmio_gpa(vcpu, addr);
3529
3530 return vcpu_match_mmio_gva(vcpu, addr);
3531}
3532
47ab8751
XG
3533/* return true if reserved bit is detected on spte. */
3534static bool
3535walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3536{
3537 struct kvm_shadow_walk_iterator iterator;
47ab8751
XG
3538 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3539 int root, leaf;
3540 bool reserved = false;
ce88decf 3541
37f6a4e2 3542 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3543 goto exit;
37f6a4e2 3544
ce88decf 3545 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3546
29ecd660
PB
3547 for (shadow_walk_init(&iterator, vcpu, addr),
3548 leaf = root = iterator.level;
47ab8751
XG
3549 shadow_walk_okay(&iterator);
3550 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3551 spte = mmu_spte_get_lockless(iterator.sptep);
3552
3553 sptes[leaf - 1] = spte;
29ecd660 3554 leaf--;
47ab8751 3555
ce88decf
XG
3556 if (!is_shadow_present_pte(spte))
3557 break;
47ab8751
XG
3558
3559 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
58c95070 3560 iterator.level);
47ab8751
XG
3561 }
3562
ce88decf
XG
3563 walk_shadow_page_lockless_end(vcpu);
3564
47ab8751
XG
3565 if (reserved) {
3566 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3567 __func__, addr);
29ecd660 3568 while (root > leaf) {
47ab8751
XG
3569 pr_err("------ spte 0x%llx level %d.\n",
3570 sptes[root - 1], root);
3571 root--;
3572 }
3573 }
3574exit:
3575 *sptep = spte;
3576 return reserved;
ce88decf
XG
3577}
3578
450869d6 3579int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3580{
3581 u64 spte;
47ab8751 3582 bool reserved;
ce88decf 3583
ded58749 3584 if (mmio_info_in_cache(vcpu, addr, direct))
b37fbea6 3585 return RET_MMIO_PF_EMULATE;
ce88decf 3586
47ab8751 3587 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3588 if (WARN_ON(reserved))
47ab8751 3589 return RET_MMIO_PF_BUG;
ce88decf
XG
3590
3591 if (is_mmio_spte(spte)) {
3592 gfn_t gfn = get_mmio_spte_gfn(spte);
3593 unsigned access = get_mmio_spte_access(spte);
3594
54bf36aa 3595 if (!check_mmio_spte(vcpu, spte))
f8f55942
XG
3596 return RET_MMIO_PF_INVALID;
3597
ce88decf
XG
3598 if (direct)
3599 addr = 0;
4f022648
XG
3600
3601 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3602 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3603 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3604 }
3605
ce88decf
XG
3606 /*
3607 * If the page table is zapped by other cpus, let CPU fault again on
3608 * the address.
3609 */
b37fbea6 3610 return RET_MMIO_PF_RETRY;
ce88decf 3611}
450869d6 3612EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
ce88decf 3613
3d0c27ad
XG
3614static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3615 u32 error_code, gfn_t gfn)
3616{
3617 if (unlikely(error_code & PFERR_RSVD_MASK))
3618 return false;
3619
3620 if (!(error_code & PFERR_PRESENT_MASK) ||
3621 !(error_code & PFERR_WRITE_MASK))
3622 return false;
3623
3624 /*
3625 * guest is writing the page which is write tracked which can
3626 * not be fixed by page fault handler.
3627 */
3628 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3629 return true;
3630
3631 return false;
3632}
3633
e5691a81
XG
3634static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3635{
3636 struct kvm_shadow_walk_iterator iterator;
3637 u64 spte;
3638
3639 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3640 return;
3641
3642 walk_shadow_page_lockless_begin(vcpu);
3643 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3644 clear_sp_write_flooding_count(iterator.sptep);
3645 if (!is_shadow_present_pte(spte))
3646 break;
3647 }
3648 walk_shadow_page_lockless_end(vcpu);
3649}
3650
6aa8b732 3651static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3652 u32 error_code, bool prefault)
6aa8b732 3653{
3d0c27ad 3654 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3655 int r;
6aa8b732 3656
b8688d51 3657 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3658
3d0c27ad
XG
3659 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3660 return 1;
ce88decf 3661
e2dec939
AK
3662 r = mmu_topup_memory_caches(vcpu);
3663 if (r)
3664 return r;
714b93da 3665
fa4a2c08 3666 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3667
6aa8b732 3668
e833240f 3669 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3670 error_code, gfn, prefault);
6aa8b732
AK
3671}
3672
7e1fbeac 3673static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3674{
3675 struct kvm_arch_async_pf arch;
fb67e14f 3676
7c90705b 3677 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3678 arch.gfn = gfn;
c4806acd 3679 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3680 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3681
54bf36aa 3682 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3683}
3684
3685static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3686{
35754c98 3687 if (unlikely(!lapic_in_kernel(vcpu) ||
af585b92
GN
3688 kvm_event_needs_reinjection(vcpu)))
3689 return false;
3690
3691 return kvm_x86_ops->interrupt_allowed(vcpu);
3692}
3693
78b2c54a 3694static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3695 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 3696{
3520469d 3697 struct kvm_memory_slot *slot;
af585b92
GN
3698 bool async;
3699
54bf36aa 3700 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3701 async = false;
3702 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3703 if (!async)
3704 return false; /* *pfn has correct page already */
3705
78b2c54a 3706 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3707 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3708 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3709 trace_kvm_async_pf_doublefault(gva, gfn);
3710 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3711 return true;
3712 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3713 return true;
3714 }
3715
3520469d 3716 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3717 return false;
3718}
3719
6a39bbc5
XG
3720static bool
3721check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3722{
3723 int page_num = KVM_PAGES_PER_HPAGE(level);
3724
3725 gfn &= ~(page_num - 1);
3726
3727 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3728}
3729
56028d08 3730static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3731 bool prefault)
fb72d167 3732{
ba049e93 3733 kvm_pfn_t pfn;
fb72d167 3734 int r;
852e3c19 3735 int level;
cd1872f0 3736 bool force_pt_level;
05da4558 3737 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3738 unsigned long mmu_seq;
612819c3
MT
3739 int write = error_code & PFERR_WRITE_MASK;
3740 bool map_writable;
fb72d167 3741
fa4a2c08 3742 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3743
3d0c27ad
XG
3744 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3745 return 1;
ce88decf 3746
fb72d167
JR
3747 r = mmu_topup_memory_caches(vcpu);
3748 if (r)
3749 return r;
3750
fd136902
TY
3751 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3752 PT_DIRECTORY_LEVEL);
3753 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3754 if (likely(!force_pt_level)) {
6a39bbc5
XG
3755 if (level > PT_DIRECTORY_LEVEL &&
3756 !check_hugepage_cache_consistency(vcpu, gfn, level))
3757 level = PT_DIRECTORY_LEVEL;
936a5fe6 3758 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3759 }
852e3c19 3760
c7ba5b48
XG
3761 if (fast_page_fault(vcpu, gpa, level, error_code))
3762 return 0;
3763
e930bffe 3764 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3765 smp_rmb();
af585b92 3766
78b2c54a 3767 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3768 return 0;
3769
d7c55201
XG
3770 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3771 return r;
3772
fb72d167 3773 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3774 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3775 goto out_unlock;
450e0b41 3776 make_mmu_pages_available(vcpu);
936a5fe6
AA
3777 if (likely(!force_pt_level))
3778 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3779 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 3780 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3781
3782 return r;
e930bffe
AA
3783
3784out_unlock:
3785 spin_unlock(&vcpu->kvm->mmu_lock);
3786 kvm_release_pfn_clean(pfn);
3787 return 0;
fb72d167
JR
3788}
3789
8a3c1a33
PB
3790static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3791 struct kvm_mmu *context)
6aa8b732 3792{
6aa8b732 3793 context->page_fault = nonpaging_page_fault;
6aa8b732 3794 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3795 context->sync_page = nonpaging_sync_page;
a7052897 3796 context->invlpg = nonpaging_invlpg;
0f53b5b1 3797 context->update_pte = nonpaging_update_pte;
cea0f0e7 3798 context->root_level = 0;
6aa8b732 3799 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3800 context->root_hpa = INVALID_PAGE;
c5a78f2b 3801 context->direct_map = true;
2d48a985 3802 context->nx = false;
6aa8b732
AK
3803}
3804
d8d173da 3805void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3806{
cea0f0e7 3807 mmu_free_roots(vcpu);
6aa8b732
AK
3808}
3809
5777ed34
JR
3810static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3811{
9f8fe504 3812 return kvm_read_cr3(vcpu);
5777ed34
JR
3813}
3814
6389ee94
AK
3815static void inject_page_fault(struct kvm_vcpu *vcpu,
3816 struct x86_exception *fault)
6aa8b732 3817{
6389ee94 3818 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3819}
3820
54bf36aa 3821static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3822 unsigned access, int *nr_present)
ce88decf
XG
3823{
3824 if (unlikely(is_mmio_spte(*sptep))) {
3825 if (gfn != get_mmio_spte_gfn(*sptep)) {
3826 mmu_spte_clear_no_track(sptep);
3827 return true;
3828 }
3829
3830 (*nr_present)++;
54bf36aa 3831 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3832 return true;
3833 }
3834
3835 return false;
3836}
3837
6bb69c9b
PB
3838static inline bool is_last_gpte(struct kvm_mmu *mmu,
3839 unsigned level, unsigned gpte)
6fd01b71 3840{
6bb69c9b
PB
3841 /*
3842 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3843 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3844 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3845 */
3846 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
6fd01b71 3847
6bb69c9b
PB
3848 /*
3849 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3850 * If it is clear, there are no large pages at this level, so clear
3851 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3852 */
3853 gpte &= level - mmu->last_nonleaf_level;
3854
3855 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
3856}
3857
37406aaa
NHE
3858#define PTTYPE_EPT 18 /* arbitrary */
3859#define PTTYPE PTTYPE_EPT
3860#include "paging_tmpl.h"
3861#undef PTTYPE
3862
6aa8b732
AK
3863#define PTTYPE 64
3864#include "paging_tmpl.h"
3865#undef PTTYPE
3866
3867#define PTTYPE 32
3868#include "paging_tmpl.h"
3869#undef PTTYPE
3870
6dc98b86
XG
3871static void
3872__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3873 struct rsvd_bits_validate *rsvd_check,
3874 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3875 bool pse, bool amd)
82725b20 3876{
82725b20 3877 u64 exb_bit_rsvd = 0;
5f7dde7b 3878 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3879 u64 nonleaf_bit8_rsvd = 0;
82725b20 3880
a0a64f50 3881 rsvd_check->bad_mt_xwr = 0;
25d92081 3882
6dc98b86 3883 if (!nx)
82725b20 3884 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3885 if (!gbpages)
5f7dde7b 3886 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3887
3888 /*
3889 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3890 * leaf entries) on AMD CPUs only.
3891 */
6fec2144 3892 if (amd)
a0c0feb5
PB
3893 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3894
6dc98b86 3895 switch (level) {
82725b20
DE
3896 case PT32_ROOT_LEVEL:
3897 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3898 rsvd_check->rsvd_bits_mask[0][1] = 0;
3899 rsvd_check->rsvd_bits_mask[0][0] = 0;
3900 rsvd_check->rsvd_bits_mask[1][0] =
3901 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 3902
6dc98b86 3903 if (!pse) {
a0a64f50 3904 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
3905 break;
3906 }
3907
82725b20
DE
3908 if (is_cpuid_PSE36())
3909 /* 36bits PSE 4MB page */
a0a64f50 3910 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
3911 else
3912 /* 32 bits PSE 4MB page */
a0a64f50 3913 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3914 break;
3915 case PT32E_ROOT_LEVEL:
a0a64f50 3916 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 3917 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3918 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 3919 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3920 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 3921 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 3922 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 3923 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
3924 rsvd_bits(maxphyaddr, 62) |
3925 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3926 rsvd_check->rsvd_bits_mask[1][0] =
3927 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3928 break;
3929 case PT64_ROOT_LEVEL:
a0a64f50
XG
3930 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3931 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 3932 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3933 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3934 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 3935 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3936 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3937 rsvd_bits(maxphyaddr, 51);
3938 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3939 rsvd_bits(maxphyaddr, 51);
3940 rsvd_check->rsvd_bits_mask[1][3] =
3941 rsvd_check->rsvd_bits_mask[0][3];
3942 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3943 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3944 rsvd_bits(13, 29);
a0a64f50 3945 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3946 rsvd_bits(maxphyaddr, 51) |
3947 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3948 rsvd_check->rsvd_bits_mask[1][0] =
3949 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3950 break;
3951 }
3952}
3953
6dc98b86
XG
3954static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3955 struct kvm_mmu *context)
3956{
3957 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3958 cpuid_maxphyaddr(vcpu), context->root_level,
3959 context->nx, guest_cpuid_has_gbpages(vcpu),
6fec2144 3960 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
3961}
3962
81b8eebb
XG
3963static void
3964__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3965 int maxphyaddr, bool execonly)
25d92081 3966{
951f9fd7 3967 u64 bad_mt_xwr;
25d92081 3968
a0a64f50 3969 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 3970 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 3971 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 3972 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3973 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 3974 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3975 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
3976
3977 /* large page */
a0a64f50
XG
3978 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3979 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 3980 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 3981 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 3982 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 3983 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 3984
951f9fd7
PB
3985 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3986 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3987 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3988 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3989 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3990 if (!execonly) {
3991 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3992 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 3993 }
951f9fd7 3994 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
3995}
3996
81b8eebb
XG
3997static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3998 struct kvm_mmu *context, bool execonly)
3999{
4000 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4001 cpuid_maxphyaddr(vcpu), execonly);
4002}
4003
c258b62b
XG
4004/*
4005 * the page table on host is the shadow page table for the page
4006 * table in guest or amd nested guest, its mmu features completely
4007 * follow the features in guest.
4008 */
4009void
4010reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4011{
5f0b8199
PB
4012 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4013
6fec2144
PB
4014 /*
4015 * Passing "true" to the last argument is okay; it adds a check
4016 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4017 */
c258b62b
XG
4018 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4019 boot_cpu_data.x86_phys_bits,
5f0b8199 4020 context->shadow_root_level, uses_nx,
6fec2144
PB
4021 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
4022 true);
c258b62b
XG
4023}
4024EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4025
6fec2144
PB
4026static inline bool boot_cpu_is_amd(void)
4027{
4028 WARN_ON_ONCE(!tdp_enabled);
4029 return shadow_x_mask == 0;
4030}
4031
c258b62b
XG
4032/*
4033 * the direct page table on host, use as much mmu features as
4034 * possible, however, kvm currently does not do execution-protection.
4035 */
4036static void
4037reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4038 struct kvm_mmu *context)
4039{
6fec2144 4040 if (boot_cpu_is_amd())
c258b62b
XG
4041 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4042 boot_cpu_data.x86_phys_bits,
4043 context->shadow_root_level, false,
b8291adc
BP
4044 boot_cpu_has(X86_FEATURE_GBPAGES),
4045 true, true);
c258b62b
XG
4046 else
4047 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4048 boot_cpu_data.x86_phys_bits,
4049 false);
4050
4051}
4052
4053/*
4054 * as the comments in reset_shadow_zero_bits_mask() except it
4055 * is the shadow page table for intel nested guest.
4056 */
4057static void
4058reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4059 struct kvm_mmu *context, bool execonly)
4060{
4061 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4062 boot_cpu_data.x86_phys_bits, execonly);
4063}
4064
edc90b7d
XG
4065static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4066 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
4067{
4068 unsigned bit, byte, pfec;
4069 u8 map;
66386ade 4070 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 4071
66386ade 4072 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 4073 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
4074 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4075 pfec = byte << 1;
4076 map = 0;
4077 wf = pfec & PFERR_WRITE_MASK;
4078 uf = pfec & PFERR_USER_MASK;
4079 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
4080 /*
4081 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
4082 * subject to SMAP restrictions, and cleared otherwise. The
4083 * bit is only meaningful if the SMAP bit is set in CR4.
4084 */
4085 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
4086 for (bit = 0; bit < 8; ++bit) {
4087 x = bit & ACC_EXEC_MASK;
4088 w = bit & ACC_WRITE_MASK;
4089 u = bit & ACC_USER_MASK;
4090
25d92081
YZ
4091 if (!ept) {
4092 /* Not really needed: !nx will cause pte.nx to fault */
4093 x |= !mmu->nx;
4094 /* Allow supervisor writes if !cr0.wp */
4095 w |= !is_write_protection(vcpu) && !uf;
4096 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 4097 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
4098
4099 /*
4100 * SMAP:kernel-mode data accesses from user-mode
4101 * mappings should fault. A fault is considered
4102 * as a SMAP violation if all of the following
4103 * conditions are ture:
4104 * - X86_CR4_SMAP is set in CR4
9332ef9d 4105 * - A user page is accessed
97ec8c06
FW
4106 * - Page fault in kernel mode
4107 * - if CPL = 3 or X86_EFLAGS_AC is clear
4108 *
4109 * Here, we cover the first three conditions.
4110 * The fourth is computed dynamically in
4111 * permission_fault() and is in smapf.
4112 *
4113 * Also, SMAP does not affect instruction
4114 * fetches, add the !ff check here to make it
4115 * clearer.
4116 */
4117 smap = cr4_smap && u && !uf && !ff;
d95c5568 4118 }
97d64b78 4119
97ec8c06
FW
4120 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
4121 (smapf && smap);
97d64b78
AK
4122 map |= fault << bit;
4123 }
4124 mmu->permissions[byte] = map;
4125 }
4126}
4127
2d344105
HH
4128/*
4129* PKU is an additional mechanism by which the paging controls access to
4130* user-mode addresses based on the value in the PKRU register. Protection
4131* key violations are reported through a bit in the page fault error code.
4132* Unlike other bits of the error code, the PK bit is not known at the
4133* call site of e.g. gva_to_gpa; it must be computed directly in
4134* permission_fault based on two bits of PKRU, on some machine state (CR4,
4135* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4136*
4137* In particular the following conditions come from the error code, the
4138* page tables and the machine state:
4139* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4140* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4141* - PK is always zero if U=0 in the page tables
4142* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4143*
4144* The PKRU bitmask caches the result of these four conditions. The error
4145* code (minus the P bit) and the page table's U bit form an index into the
4146* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4147* with the two bits of the PKRU register corresponding to the protection key.
4148* For the first three conditions above the bits will be 00, thus masking
4149* away both AD and WD. For all reads or if the last condition holds, WD
4150* only will be masked away.
4151*/
4152static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4153 bool ept)
4154{
4155 unsigned bit;
4156 bool wp;
4157
4158 if (ept) {
4159 mmu->pkru_mask = 0;
4160 return;
4161 }
4162
4163 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4164 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4165 mmu->pkru_mask = 0;
4166 return;
4167 }
4168
4169 wp = is_write_protection(vcpu);
4170
4171 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4172 unsigned pfec, pkey_bits;
4173 bool check_pkey, check_write, ff, uf, wf, pte_user;
4174
4175 pfec = bit << 1;
4176 ff = pfec & PFERR_FETCH_MASK;
4177 uf = pfec & PFERR_USER_MASK;
4178 wf = pfec & PFERR_WRITE_MASK;
4179
4180 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4181 pte_user = pfec & PFERR_RSVD_MASK;
4182
4183 /*
4184 * Only need to check the access which is not an
4185 * instruction fetch and is to a user page.
4186 */
4187 check_pkey = (!ff && pte_user);
4188 /*
4189 * write access is controlled by PKRU if it is a
4190 * user access or CR0.WP = 1.
4191 */
4192 check_write = check_pkey && wf && (uf || wp);
4193
4194 /* PKRU.AD stops both read and write access. */
4195 pkey_bits = !!check_pkey;
4196 /* PKRU.WD stops write access. */
4197 pkey_bits |= (!!check_write) << 1;
4198
4199 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4200 }
4201}
4202
6bb69c9b 4203static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4204{
6bb69c9b
PB
4205 unsigned root_level = mmu->root_level;
4206
4207 mmu->last_nonleaf_level = root_level;
4208 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4209 mmu->last_nonleaf_level++;
6fd01b71
AK
4210}
4211
8a3c1a33
PB
4212static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4213 struct kvm_mmu *context,
4214 int level)
6aa8b732 4215{
2d48a985 4216 context->nx = is_nx(vcpu);
4d6931c3 4217 context->root_level = level;
2d48a985 4218
4d6931c3 4219 reset_rsvds_bits_mask(vcpu, context);
25d92081 4220 update_permission_bitmask(vcpu, context, false);
2d344105 4221 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4222 update_last_nonleaf_level(vcpu, context);
6aa8b732 4223
fa4a2c08 4224 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4225 context->page_fault = paging64_page_fault;
6aa8b732 4226 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4227 context->sync_page = paging64_sync_page;
a7052897 4228 context->invlpg = paging64_invlpg;
0f53b5b1 4229 context->update_pte = paging64_update_pte;
17ac10ad 4230 context->shadow_root_level = level;
17c3ba9d 4231 context->root_hpa = INVALID_PAGE;
c5a78f2b 4232 context->direct_map = false;
6aa8b732
AK
4233}
4234
8a3c1a33
PB
4235static void paging64_init_context(struct kvm_vcpu *vcpu,
4236 struct kvm_mmu *context)
17ac10ad 4237{
8a3c1a33 4238 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
4239}
4240
8a3c1a33
PB
4241static void paging32_init_context(struct kvm_vcpu *vcpu,
4242 struct kvm_mmu *context)
6aa8b732 4243{
2d48a985 4244 context->nx = false;
4d6931c3 4245 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4246
4d6931c3 4247 reset_rsvds_bits_mask(vcpu, context);
25d92081 4248 update_permission_bitmask(vcpu, context, false);
2d344105 4249 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4250 update_last_nonleaf_level(vcpu, context);
6aa8b732 4251
6aa8b732 4252 context->page_fault = paging32_page_fault;
6aa8b732 4253 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4254 context->sync_page = paging32_sync_page;
a7052897 4255 context->invlpg = paging32_invlpg;
0f53b5b1 4256 context->update_pte = paging32_update_pte;
6aa8b732 4257 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 4258 context->root_hpa = INVALID_PAGE;
c5a78f2b 4259 context->direct_map = false;
6aa8b732
AK
4260}
4261
8a3c1a33
PB
4262static void paging32E_init_context(struct kvm_vcpu *vcpu,
4263 struct kvm_mmu *context)
6aa8b732 4264{
8a3c1a33 4265 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4266}
4267
8a3c1a33 4268static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4269{
ad896af0 4270 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 4271
c445f8ef 4272 context->base_role.word = 0;
699023e2 4273 context->base_role.smm = is_smm(vcpu);
fb72d167 4274 context->page_fault = tdp_page_fault;
e8bc217a 4275 context->sync_page = nonpaging_sync_page;
a7052897 4276 context->invlpg = nonpaging_invlpg;
0f53b5b1 4277 context->update_pte = nonpaging_update_pte;
67253af5 4278 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 4279 context->root_hpa = INVALID_PAGE;
c5a78f2b 4280 context->direct_map = true;
1c97f0a0 4281 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4282 context->get_cr3 = get_cr3;
e4e517b4 4283 context->get_pdptr = kvm_pdptr_read;
cb659db8 4284 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4285
4286 if (!is_paging(vcpu)) {
2d48a985 4287 context->nx = false;
fb72d167
JR
4288 context->gva_to_gpa = nonpaging_gva_to_gpa;
4289 context->root_level = 0;
4290 } else if (is_long_mode(vcpu)) {
2d48a985 4291 context->nx = is_nx(vcpu);
fb72d167 4292 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
4293 reset_rsvds_bits_mask(vcpu, context);
4294 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4295 } else if (is_pae(vcpu)) {
2d48a985 4296 context->nx = is_nx(vcpu);
fb72d167 4297 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4298 reset_rsvds_bits_mask(vcpu, context);
4299 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4300 } else {
2d48a985 4301 context->nx = false;
fb72d167 4302 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4303 reset_rsvds_bits_mask(vcpu, context);
4304 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4305 }
4306
25d92081 4307 update_permission_bitmask(vcpu, context, false);
2d344105 4308 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4309 update_last_nonleaf_level(vcpu, context);
c258b62b 4310 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4311}
4312
ad896af0 4313void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 4314{
411c588d 4315 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 4316 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
4317 struct kvm_mmu *context = &vcpu->arch.mmu;
4318
fa4a2c08 4319 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
4320
4321 if (!is_paging(vcpu))
8a3c1a33 4322 nonpaging_init_context(vcpu, context);
a9058ecd 4323 else if (is_long_mode(vcpu))
8a3c1a33 4324 paging64_init_context(vcpu, context);
6aa8b732 4325 else if (is_pae(vcpu))
8a3c1a33 4326 paging32E_init_context(vcpu, context);
6aa8b732 4327 else
8a3c1a33 4328 paging32_init_context(vcpu, context);
a770f6f2 4329
ad896af0
PB
4330 context->base_role.nxe = is_nx(vcpu);
4331 context->base_role.cr4_pae = !!is_pae(vcpu);
4332 context->base_role.cr0_wp = is_write_protection(vcpu);
4333 context->base_role.smep_andnot_wp
411c588d 4334 = smep && !is_write_protection(vcpu);
edc90b7d
XG
4335 context->base_role.smap_andnot_wp
4336 = smap && !is_write_protection(vcpu);
699023e2 4337 context->base_role.smm = is_smm(vcpu);
c258b62b 4338 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4339}
4340EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4341
ad896af0 4342void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 4343{
ad896af0
PB
4344 struct kvm_mmu *context = &vcpu->arch.mmu;
4345
fa4a2c08 4346 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
4347
4348 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4349
4350 context->nx = true;
155a97a3
NHE
4351 context->page_fault = ept_page_fault;
4352 context->gva_to_gpa = ept_gva_to_gpa;
4353 context->sync_page = ept_sync_page;
4354 context->invlpg = ept_invlpg;
4355 context->update_pte = ept_update_pte;
155a97a3
NHE
4356 context->root_level = context->shadow_root_level;
4357 context->root_hpa = INVALID_PAGE;
4358 context->direct_map = false;
4359
4360 update_permission_bitmask(vcpu, context, true);
2d344105 4361 update_pkru_bitmask(vcpu, context, true);
155a97a3 4362 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4363 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4364}
4365EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4366
8a3c1a33 4367static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4368{
ad896af0
PB
4369 struct kvm_mmu *context = &vcpu->arch.mmu;
4370
4371 kvm_init_shadow_mmu(vcpu);
4372 context->set_cr3 = kvm_x86_ops->set_cr3;
4373 context->get_cr3 = get_cr3;
4374 context->get_pdptr = kvm_pdptr_read;
4375 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4376}
4377
8a3c1a33 4378static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4379{
4380 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4381
4382 g_context->get_cr3 = get_cr3;
e4e517b4 4383 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4384 g_context->inject_page_fault = kvm_inject_page_fault;
4385
4386 /*
0af2593b
DM
4387 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4388 * L1's nested page tables (e.g. EPT12). The nested translation
4389 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4390 * L2's page tables as the first level of translation and L1's
4391 * nested page tables as the second level of translation. Basically
4392 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4393 */
4394 if (!is_paging(vcpu)) {
2d48a985 4395 g_context->nx = false;
02f59dc9
JR
4396 g_context->root_level = 0;
4397 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4398 } else if (is_long_mode(vcpu)) {
2d48a985 4399 g_context->nx = is_nx(vcpu);
02f59dc9 4400 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4401 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4402 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4403 } else if (is_pae(vcpu)) {
2d48a985 4404 g_context->nx = is_nx(vcpu);
02f59dc9 4405 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4406 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4407 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4408 } else {
2d48a985 4409 g_context->nx = false;
02f59dc9 4410 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4411 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4412 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4413 }
4414
25d92081 4415 update_permission_bitmask(vcpu, g_context, false);
2d344105 4416 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4417 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4418}
4419
8a3c1a33 4420static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4421{
02f59dc9 4422 if (mmu_is_nested(vcpu))
e0c6db3e 4423 init_kvm_nested_mmu(vcpu);
02f59dc9 4424 else if (tdp_enabled)
e0c6db3e 4425 init_kvm_tdp_mmu(vcpu);
fb72d167 4426 else
e0c6db3e 4427 init_kvm_softmmu(vcpu);
fb72d167
JR
4428}
4429
8a3c1a33 4430void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4431{
95f93af4 4432 kvm_mmu_unload(vcpu);
8a3c1a33 4433 init_kvm_mmu(vcpu);
17c3ba9d 4434}
8668a3c4 4435EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4436
4437int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4438{
714b93da
AK
4439 int r;
4440
e2dec939 4441 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4442 if (r)
4443 goto out;
8986ecc0 4444 r = mmu_alloc_roots(vcpu);
e2858b4a 4445 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4446 if (r)
4447 goto out;
3662cb1c 4448 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4449 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4450out:
4451 return r;
6aa8b732 4452}
17c3ba9d
AK
4453EXPORT_SYMBOL_GPL(kvm_mmu_load);
4454
4455void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4456{
4457 mmu_free_roots(vcpu);
95f93af4 4458 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4459}
4b16184c 4460EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4461
0028425f 4462static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4463 struct kvm_mmu_page *sp, u64 *spte,
4464 const void *new)
0028425f 4465{
30945387 4466 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4467 ++vcpu->kvm->stat.mmu_pde_zapped;
4468 return;
30945387 4469 }
0028425f 4470
4cee5764 4471 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4472 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4473}
4474
79539cec
AK
4475static bool need_remote_flush(u64 old, u64 new)
4476{
4477 if (!is_shadow_present_pte(old))
4478 return false;
4479 if (!is_shadow_present_pte(new))
4480 return true;
4481 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4482 return true;
53166229
GN
4483 old ^= shadow_nx_mask;
4484 new ^= shadow_nx_mask;
79539cec
AK
4485 return (old & ~new & PT64_PERM_MASK) != 0;
4486}
4487
889e5cbc
XG
4488static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4489 const u8 *new, int *bytes)
da4a00f0 4490{
889e5cbc
XG
4491 u64 gentry;
4492 int r;
72016f3a 4493
72016f3a
AK
4494 /*
4495 * Assume that the pte write on a page table of the same type
49b26e26
XG
4496 * as the current vcpu paging mode since we update the sptes only
4497 * when they have the same mode.
72016f3a 4498 */
889e5cbc 4499 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4500 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4501 *gpa &= ~(gpa_t)7;
4502 *bytes = 8;
54bf36aa 4503 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4504 if (r)
4505 gentry = 0;
08e850c6
AK
4506 new = (const u8 *)&gentry;
4507 }
4508
889e5cbc 4509 switch (*bytes) {
08e850c6
AK
4510 case 4:
4511 gentry = *(const u32 *)new;
4512 break;
4513 case 8:
4514 gentry = *(const u64 *)new;
4515 break;
4516 default:
4517 gentry = 0;
4518 break;
72016f3a
AK
4519 }
4520
889e5cbc
XG
4521 return gentry;
4522}
4523
4524/*
4525 * If we're seeing too many writes to a page, it may no longer be a page table,
4526 * or we may be forking, in which case it is better to unmap the page.
4527 */
a138fe75 4528static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4529{
a30f47cb
XG
4530 /*
4531 * Skip write-flooding detected for the sp whose level is 1, because
4532 * it can become unsync, then the guest page is not write-protected.
4533 */
f71fa31f 4534 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4535 return false;
3246af0e 4536
e5691a81
XG
4537 atomic_inc(&sp->write_flooding_count);
4538 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4539}
4540
4541/*
4542 * Misaligned accesses are too much trouble to fix up; also, they usually
4543 * indicate a page is not used as a page table.
4544 */
4545static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4546 int bytes)
4547{
4548 unsigned offset, pte_size, misaligned;
4549
4550 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4551 gpa, bytes, sp->role.word);
4552
4553 offset = offset_in_page(gpa);
4554 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4555
4556 /*
4557 * Sometimes, the OS only writes the last one bytes to update status
4558 * bits, for example, in linux, andb instruction is used in clear_bit().
4559 */
4560 if (!(offset & (pte_size - 1)) && bytes == 1)
4561 return false;
4562
889e5cbc
XG
4563 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4564 misaligned |= bytes < 4;
4565
4566 return misaligned;
4567}
4568
4569static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4570{
4571 unsigned page_offset, quadrant;
4572 u64 *spte;
4573 int level;
4574
4575 page_offset = offset_in_page(gpa);
4576 level = sp->role.level;
4577 *nspte = 1;
4578 if (!sp->role.cr4_pae) {
4579 page_offset <<= 1; /* 32->64 */
4580 /*
4581 * A 32-bit pde maps 4MB while the shadow pdes map
4582 * only 2MB. So we need to double the offset again
4583 * and zap two pdes instead of one.
4584 */
4585 if (level == PT32_ROOT_LEVEL) {
4586 page_offset &= ~7; /* kill rounding error */
4587 page_offset <<= 1;
4588 *nspte = 2;
4589 }
4590 quadrant = page_offset >> PAGE_SHIFT;
4591 page_offset &= ~PAGE_MASK;
4592 if (quadrant != sp->role.quadrant)
4593 return NULL;
4594 }
4595
4596 spte = &sp->spt[page_offset / sizeof(*spte)];
4597 return spte;
4598}
4599
13d268ca 4600static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
4601 const u8 *new, int bytes,
4602 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
4603{
4604 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4605 struct kvm_mmu_page *sp;
889e5cbc
XG
4606 LIST_HEAD(invalid_list);
4607 u64 entry, gentry, *spte;
4608 int npte;
b8c67b7a 4609 bool remote_flush, local_flush;
4141259b
AM
4610 union kvm_mmu_page_role mask = { };
4611
4612 mask.cr0_wp = 1;
4613 mask.cr4_pae = 1;
4614 mask.nxe = 1;
4615 mask.smep_andnot_wp = 1;
4616 mask.smap_andnot_wp = 1;
699023e2 4617 mask.smm = 1;
889e5cbc
XG
4618
4619 /*
4620 * If we don't have indirect shadow pages, it means no page is
4621 * write-protected, so we can exit simply.
4622 */
4623 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4624 return;
4625
b8c67b7a 4626 remote_flush = local_flush = false;
889e5cbc
XG
4627
4628 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4629
4630 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4631
4632 /*
4633 * No need to care whether allocation memory is successful
4634 * or not since pte prefetch is skiped if it does not have
4635 * enough objects in the cache.
4636 */
4637 mmu_topup_memory_caches(vcpu);
4638
4639 spin_lock(&vcpu->kvm->mmu_lock);
4640 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4641 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4642
b67bfe0d 4643 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4644 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4645 detect_write_flooding(sp)) {
b8c67b7a 4646 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4647 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4648 continue;
4649 }
889e5cbc
XG
4650
4651 spte = get_written_sptes(sp, gpa, &npte);
4652 if (!spte)
4653 continue;
4654
0671a8e7 4655 local_flush = true;
ac1b714e 4656 while (npte--) {
79539cec 4657 entry = *spte;
38e3b2b2 4658 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4659 if (gentry &&
4660 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4661 & mask.word) && rmap_can_add(vcpu))
7c562522 4662 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4663 if (need_remote_flush(entry, *spte))
0671a8e7 4664 remote_flush = true;
ac1b714e 4665 ++spte;
9b7a0325 4666 }
9b7a0325 4667 }
b8c67b7a 4668 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 4669 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4670 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4671}
4672
a436036b
AK
4673int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4674{
10589a46
MT
4675 gpa_t gpa;
4676 int r;
a436036b 4677
c5a78f2b 4678 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4679 return 0;
4680
1871c602 4681 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4682
10589a46 4683 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4684
10589a46 4685 return r;
a436036b 4686}
577bdc49 4687EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4688
81f4f76b 4689static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4690{
d98ba053 4691 LIST_HEAD(invalid_list);
103ad25a 4692
81f4f76b
TY
4693 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4694 return;
4695
5da59607
TY
4696 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4697 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4698 break;
ebeace86 4699
4cee5764 4700 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4701 }
aa6bd187 4702 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4703}
ebeace86 4704
14727754 4705int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
dc25e89e 4706 void *insn, int insn_len)
3067714c 4707{
1cb3f3ae 4708 int r, emulation_type = EMULTYPE_RETRY;
3067714c 4709 enum emulation_result er;
ded58749 4710 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
3067714c 4711
e9ee956e
TY
4712 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4713 r = handle_mmio_page_fault(vcpu, cr2, direct);
4714 if (r == RET_MMIO_PF_EMULATE) {
4715 emulation_type = 0;
4716 goto emulate;
4717 }
4718 if (r == RET_MMIO_PF_RETRY)
4719 return 1;
4720 if (r < 0)
4721 return r;
4722 }
3067714c 4723
14727754
TL
4724 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4725 false);
3067714c 4726 if (r < 0)
e9ee956e
TY
4727 return r;
4728 if (!r)
4729 return 1;
3067714c 4730
14727754
TL
4731 /*
4732 * Before emulating the instruction, check if the error code
4733 * was due to a RO violation while translating the guest page.
4734 * This can occur when using nested virtualization with nested
4735 * paging in both guests. If true, we simply unprotect the page
4736 * and resume the guest.
4737 *
4738 * Note: AMD only (since it supports the PFERR_GUEST_PAGE_MASK used
4739 * in PFERR_NEXT_GUEST_PAGE)
4740 */
4741 if (error_code == PFERR_NESTED_GUEST_PAGE) {
4742 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4743 return 1;
4744 }
4745
ded58749 4746 if (mmio_info_in_cache(vcpu, cr2, direct))
1cb3f3ae 4747 emulation_type = 0;
e9ee956e 4748emulate:
1cb3f3ae 4749 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4750
4751 switch (er) {
4752 case EMULATE_DONE:
4753 return 1;
ac0a48c3 4754 case EMULATE_USER_EXIT:
3067714c 4755 ++vcpu->stat.mmio_exits;
6d77dbfc 4756 /* fall through */
3067714c 4757 case EMULATE_FAIL:
3f5d18a9 4758 return 0;
3067714c
AK
4759 default:
4760 BUG();
4761 }
3067714c
AK
4762}
4763EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4764
a7052897
MT
4765void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4766{
a7052897 4767 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4768 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4769 ++vcpu->stat.invlpg;
4770}
4771EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4772
18552672
JR
4773void kvm_enable_tdp(void)
4774{
4775 tdp_enabled = true;
4776}
4777EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4778
5f4cb662
JR
4779void kvm_disable_tdp(void)
4780{
4781 tdp_enabled = false;
4782}
4783EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4784
6aa8b732
AK
4785static void free_mmu_pages(struct kvm_vcpu *vcpu)
4786{
ad312c7c 4787 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4788 if (vcpu->arch.mmu.lm_root != NULL)
4789 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4790}
4791
4792static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4793{
17ac10ad 4794 struct page *page;
6aa8b732
AK
4795 int i;
4796
17ac10ad
AK
4797 /*
4798 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4799 * Therefore we need to allocate shadow page tables in the first
4800 * 4GB of memory, which happens to fit the DMA32 zone.
4801 */
4802 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4803 if (!page)
d7fa6ab2
WY
4804 return -ENOMEM;
4805
ad312c7c 4806 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4807 for (i = 0; i < 4; ++i)
ad312c7c 4808 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4809
6aa8b732 4810 return 0;
6aa8b732
AK
4811}
4812
8018c27b 4813int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4814{
e459e322
XG
4815 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4816 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4817 vcpu->arch.mmu.translate_gpa = translate_gpa;
4818 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4819
8018c27b
IM
4820 return alloc_mmu_pages(vcpu);
4821}
6aa8b732 4822
8a3c1a33 4823void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4824{
fa4a2c08 4825 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4826
8a3c1a33 4827 init_kvm_mmu(vcpu);
6aa8b732
AK
4828}
4829
b5f5fdca 4830static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
4831 struct kvm_memory_slot *slot,
4832 struct kvm_page_track_notifier_node *node)
b5f5fdca
XC
4833{
4834 kvm_mmu_invalidate_zap_all_pages(kvm);
4835}
4836
13d268ca
XG
4837void kvm_mmu_init_vm(struct kvm *kvm)
4838{
4839 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4840
4841 node->track_write = kvm_mmu_pte_write;
b5f5fdca 4842 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca
XG
4843 kvm_page_track_register_notifier(kvm, node);
4844}
4845
4846void kvm_mmu_uninit_vm(struct kvm *kvm)
4847{
4848 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4849
4850 kvm_page_track_unregister_notifier(kvm, node);
4851}
4852
1bad2b2a 4853/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 4854typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
4855
4856/* The caller should hold mmu-lock before calling this function. */
4857static bool
4858slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4859 slot_level_handler fn, int start_level, int end_level,
4860 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4861{
4862 struct slot_rmap_walk_iterator iterator;
4863 bool flush = false;
4864
4865 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4866 end_gfn, &iterator) {
4867 if (iterator.rmap)
4868 flush |= fn(kvm, iterator.rmap);
4869
4870 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4871 if (flush && lock_flush_tlb) {
4872 kvm_flush_remote_tlbs(kvm);
4873 flush = false;
4874 }
4875 cond_resched_lock(&kvm->mmu_lock);
4876 }
4877 }
4878
4879 if (flush && lock_flush_tlb) {
4880 kvm_flush_remote_tlbs(kvm);
4881 flush = false;
4882 }
4883
4884 return flush;
4885}
4886
4887static bool
4888slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4889 slot_level_handler fn, int start_level, int end_level,
4890 bool lock_flush_tlb)
4891{
4892 return slot_handle_level_range(kvm, memslot, fn, start_level,
4893 end_level, memslot->base_gfn,
4894 memslot->base_gfn + memslot->npages - 1,
4895 lock_flush_tlb);
4896}
4897
4898static bool
4899slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4900 slot_level_handler fn, bool lock_flush_tlb)
4901{
4902 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4903 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4904}
4905
4906static bool
4907slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4908 slot_level_handler fn, bool lock_flush_tlb)
4909{
4910 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4911 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4912}
4913
4914static bool
4915slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4916 slot_level_handler fn, bool lock_flush_tlb)
4917{
4918 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4919 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4920}
4921
efdfe536
XG
4922void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4923{
4924 struct kvm_memslots *slots;
4925 struct kvm_memory_slot *memslot;
9da0e4d5 4926 int i;
efdfe536
XG
4927
4928 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
4929 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4930 slots = __kvm_memslots(kvm, i);
4931 kvm_for_each_memslot(memslot, slots) {
4932 gfn_t start, end;
4933
4934 start = max(gfn_start, memslot->base_gfn);
4935 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4936 if (start >= end)
4937 continue;
efdfe536 4938
9da0e4d5
PB
4939 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4940 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4941 start, end - 1, true);
4942 }
efdfe536
XG
4943 }
4944
4945 spin_unlock(&kvm->mmu_lock);
4946}
4947
018aabb5
TY
4948static bool slot_rmap_write_protect(struct kvm *kvm,
4949 struct kvm_rmap_head *rmap_head)
d77aa73c 4950{
018aabb5 4951 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
4952}
4953
1c91cad4
KH
4954void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4955 struct kvm_memory_slot *memslot)
6aa8b732 4956{
d77aa73c 4957 bool flush;
6aa8b732 4958
9d1beefb 4959 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4960 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4961 false);
9d1beefb 4962 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4963
4964 /*
4965 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4966 * which do tlb flush out of mmu-lock should be serialized by
4967 * kvm->slots_lock otherwise tlb flush would be missed.
4968 */
4969 lockdep_assert_held(&kvm->slots_lock);
4970
4971 /*
4972 * We can flush all the TLBs out of the mmu lock without TLB
4973 * corruption since we just change the spte from writable to
4974 * readonly so that we only need to care the case of changing
4975 * spte from present to present (changing the spte from present
4976 * to nonpresent will flush all the TLBs immediately), in other
4977 * words, the only case we care is mmu_spte_update() where we
4978 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4979 * instead of PT_WRITABLE_MASK, that means it does not depend
4980 * on PT_WRITABLE_MASK anymore.
4981 */
d91ffee9
KH
4982 if (flush)
4983 kvm_flush_remote_tlbs(kvm);
6aa8b732 4984}
37a7d8b0 4985
3ea3b7fa 4986static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 4987 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
4988{
4989 u64 *sptep;
4990 struct rmap_iterator iter;
4991 int need_tlb_flush = 0;
ba049e93 4992 kvm_pfn_t pfn;
3ea3b7fa
WL
4993 struct kvm_mmu_page *sp;
4994
0d536790 4995restart:
018aabb5 4996 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
4997 sp = page_header(__pa(sptep));
4998 pfn = spte_to_pfn(*sptep);
4999
5000 /*
decf6333
XG
5001 * We cannot do huge page mapping for indirect shadow pages,
5002 * which are found on the last rmap (level = 1) when not using
5003 * tdp; such shadow pages are synced with the page table in
5004 * the guest, and the guest page table is using 4K page size
5005 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
5006 */
5007 if (sp->role.direct &&
5008 !kvm_is_reserved_pfn(pfn) &&
127393fb 5009 PageTransCompoundMap(pfn_to_page(pfn))) {
3ea3b7fa 5010 drop_spte(kvm, sptep);
3ea3b7fa 5011 need_tlb_flush = 1;
0d536790
XG
5012 goto restart;
5013 }
3ea3b7fa
WL
5014 }
5015
5016 return need_tlb_flush;
5017}
5018
5019void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5020 const struct kvm_memory_slot *memslot)
3ea3b7fa 5021{
f36f3f28 5022 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5023 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5024 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5025 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5026 spin_unlock(&kvm->mmu_lock);
5027}
5028
f4b4b180
KH
5029void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5030 struct kvm_memory_slot *memslot)
5031{
d77aa73c 5032 bool flush;
f4b4b180
KH
5033
5034 spin_lock(&kvm->mmu_lock);
d77aa73c 5035 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5036 spin_unlock(&kvm->mmu_lock);
5037
5038 lockdep_assert_held(&kvm->slots_lock);
5039
5040 /*
5041 * It's also safe to flush TLBs out of mmu lock here as currently this
5042 * function is only used for dirty logging, in which case flushing TLB
5043 * out of mmu lock also guarantees no dirty pages will be lost in
5044 * dirty_bitmap.
5045 */
5046 if (flush)
5047 kvm_flush_remote_tlbs(kvm);
5048}
5049EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5050
5051void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5052 struct kvm_memory_slot *memslot)
5053{
d77aa73c 5054 bool flush;
f4b4b180
KH
5055
5056 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5057 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5058 false);
f4b4b180
KH
5059 spin_unlock(&kvm->mmu_lock);
5060
5061 /* see kvm_mmu_slot_remove_write_access */
5062 lockdep_assert_held(&kvm->slots_lock);
5063
5064 if (flush)
5065 kvm_flush_remote_tlbs(kvm);
5066}
5067EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5068
5069void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5070 struct kvm_memory_slot *memslot)
5071{
d77aa73c 5072 bool flush;
f4b4b180
KH
5073
5074 spin_lock(&kvm->mmu_lock);
d77aa73c 5075 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
5076 spin_unlock(&kvm->mmu_lock);
5077
5078 lockdep_assert_held(&kvm->slots_lock);
5079
5080 /* see kvm_mmu_slot_leaf_clear_dirty */
5081 if (flush)
5082 kvm_flush_remote_tlbs(kvm);
5083}
5084EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5085
e7d11c7a 5086#define BATCH_ZAP_PAGES 10
5304b8d3
XG
5087static void kvm_zap_obsolete_pages(struct kvm *kvm)
5088{
5089 struct kvm_mmu_page *sp, *node;
e7d11c7a 5090 int batch = 0;
5304b8d3
XG
5091
5092restart:
5093 list_for_each_entry_safe_reverse(sp, node,
5094 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
5095 int ret;
5096
5304b8d3
XG
5097 /*
5098 * No obsolete page exists before new created page since
5099 * active_mmu_pages is the FIFO list.
5100 */
5101 if (!is_obsolete_sp(kvm, sp))
5102 break;
5103
5104 /*
5304b8d3
XG
5105 * Since we are reversely walking the list and the invalid
5106 * list will be moved to the head, skip the invalid page
5107 * can help us to avoid the infinity list walking.
5108 */
5109 if (sp->role.invalid)
5110 continue;
5111
f34d251d
XG
5112 /*
5113 * Need not flush tlb since we only zap the sp with invalid
5114 * generation number.
5115 */
e7d11c7a 5116 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 5117 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 5118 batch = 0;
5304b8d3
XG
5119 goto restart;
5120 }
5121
365c8868
XG
5122 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5123 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
5124 batch += ret;
5125
5126 if (ret)
5304b8d3
XG
5127 goto restart;
5128 }
5129
f34d251d
XG
5130 /*
5131 * Should flush tlb before free page tables since lockless-walking
5132 * may use the pages.
5133 */
365c8868 5134 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
5135}
5136
5137/*
5138 * Fast invalidate all shadow pages and use lock-break technique
5139 * to zap obsolete pages.
5140 *
5141 * It's required when memslot is being deleted or VM is being
5142 * destroyed, in these cases, we should ensure that KVM MMU does
5143 * not use any resource of the being-deleted slot or all slots
5144 * after calling the function.
5145 */
5146void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5147{
5148 spin_lock(&kvm->mmu_lock);
35006126 5149 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
5150 kvm->arch.mmu_valid_gen++;
5151
f34d251d
XG
5152 /*
5153 * Notify all vcpus to reload its shadow page table
5154 * and flush TLB. Then all vcpus will switch to new
5155 * shadow page table with the new mmu_valid_gen.
5156 *
5157 * Note: we should do this under the protection of
5158 * mmu-lock, otherwise, vcpu would purge shadow page
5159 * but miss tlb flush.
5160 */
5161 kvm_reload_remote_mmus(kvm);
5162
5304b8d3
XG
5163 kvm_zap_obsolete_pages(kvm);
5164 spin_unlock(&kvm->mmu_lock);
5165}
5166
365c8868
XG
5167static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5168{
5169 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5170}
5171
54bf36aa 5172void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
5173{
5174 /*
5175 * The very rare case: if the generation-number is round,
5176 * zap all shadow pages.
f8f55942 5177 */
54bf36aa 5178 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
ae0f5499 5179 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 5180 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 5181 }
f8f55942
XG
5182}
5183
70534a73
DC
5184static unsigned long
5185mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5186{
5187 struct kvm *kvm;
1495f230 5188 int nr_to_scan = sc->nr_to_scan;
70534a73 5189 unsigned long freed = 0;
3ee16c81 5190
2f303b74 5191 spin_lock(&kvm_lock);
3ee16c81
IE
5192
5193 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5194 int idx;
d98ba053 5195 LIST_HEAD(invalid_list);
3ee16c81 5196
35f2d16b
TY
5197 /*
5198 * Never scan more than sc->nr_to_scan VM instances.
5199 * Will not hit this condition practically since we do not try
5200 * to shrink more than one VM and it is very unlikely to see
5201 * !n_used_mmu_pages so many times.
5202 */
5203 if (!nr_to_scan--)
5204 break;
19526396
GN
5205 /*
5206 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5207 * here. We may skip a VM instance errorneosly, but we do not
5208 * want to shrink a VM that only started to populate its MMU
5209 * anyway.
5210 */
365c8868
XG
5211 if (!kvm->arch.n_used_mmu_pages &&
5212 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5213 continue;
19526396 5214
f656ce01 5215 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5216 spin_lock(&kvm->mmu_lock);
3ee16c81 5217
365c8868
XG
5218 if (kvm_has_zapped_obsolete_pages(kvm)) {
5219 kvm_mmu_commit_zap_page(kvm,
5220 &kvm->arch.zapped_obsolete_pages);
5221 goto unlock;
5222 }
5223
70534a73
DC
5224 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5225 freed++;
d98ba053 5226 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 5227
365c8868 5228unlock:
3ee16c81 5229 spin_unlock(&kvm->mmu_lock);
f656ce01 5230 srcu_read_unlock(&kvm->srcu, idx);
19526396 5231
70534a73
DC
5232 /*
5233 * unfair on small ones
5234 * per-vm shrinkers cry out
5235 * sadness comes quickly
5236 */
19526396
GN
5237 list_move_tail(&kvm->vm_list, &vm_list);
5238 break;
3ee16c81 5239 }
3ee16c81 5240
2f303b74 5241 spin_unlock(&kvm_lock);
70534a73 5242 return freed;
70534a73
DC
5243}
5244
5245static unsigned long
5246mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5247{
45221ab6 5248 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5249}
5250
5251static struct shrinker mmu_shrinker = {
70534a73
DC
5252 .count_objects = mmu_shrink_count,
5253 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5254 .seeks = DEFAULT_SEEKS * 10,
5255};
5256
2ddfd20e 5257static void mmu_destroy_caches(void)
b5a33a75 5258{
53c07b18
XG
5259 if (pte_list_desc_cache)
5260 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
5261 if (mmu_page_header_cache)
5262 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5263}
5264
5265int kvm_mmu_module_init(void)
5266{
f160c7b7
JS
5267 kvm_mmu_clear_all_pte_masks();
5268
53c07b18
XG
5269 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5270 sizeof(struct pte_list_desc),
20c2df83 5271 0, 0, NULL);
53c07b18 5272 if (!pte_list_desc_cache)
b5a33a75
AK
5273 goto nomem;
5274
d3d25b04
AK
5275 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5276 sizeof(struct kvm_mmu_page),
20c2df83 5277 0, 0, NULL);
d3d25b04
AK
5278 if (!mmu_page_header_cache)
5279 goto nomem;
5280
908c7f19 5281 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
5282 goto nomem;
5283
3ee16c81
IE
5284 register_shrinker(&mmu_shrinker);
5285
b5a33a75
AK
5286 return 0;
5287
5288nomem:
3ee16c81 5289 mmu_destroy_caches();
b5a33a75
AK
5290 return -ENOMEM;
5291}
5292
3ad82a7e
ZX
5293/*
5294 * Caculate mmu pages needed for kvm.
5295 */
5296unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5297{
3ad82a7e
ZX
5298 unsigned int nr_mmu_pages;
5299 unsigned int nr_pages = 0;
bc6678a3 5300 struct kvm_memslots *slots;
be6ba0f0 5301 struct kvm_memory_slot *memslot;
9da0e4d5 5302 int i;
3ad82a7e 5303
9da0e4d5
PB
5304 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5305 slots = __kvm_memslots(kvm, i);
90d83dc3 5306
9da0e4d5
PB
5307 kvm_for_each_memslot(memslot, slots)
5308 nr_pages += memslot->npages;
5309 }
3ad82a7e
ZX
5310
5311 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5312 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 5313 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5314
5315 return nr_mmu_pages;
5316}
5317
c42fffe3
XG
5318void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5319{
95f93af4 5320 kvm_mmu_unload(vcpu);
c42fffe3
XG
5321 free_mmu_pages(vcpu);
5322 mmu_free_memory_caches(vcpu);
b034cf01
XG
5323}
5324
b034cf01
XG
5325void kvm_mmu_module_exit(void)
5326{
5327 mmu_destroy_caches();
5328 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5329 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5330 mmu_audit_disable();
5331}