]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: MMU: fast invalidate all mmio sptes
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
f2fd125d
XG
200/*
201 * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
202 * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
203 * number.
204 */
205#define MMIO_SPTE_GEN_LOW_SHIFT 3
206#define MMIO_SPTE_GEN_HIGH_SHIFT 52
207
f8f55942 208#define MMIO_GEN_SHIFT 19
f2fd125d
XG
209#define MMIO_GEN_LOW_SHIFT 9
210#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 1)
f8f55942
XG
211#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
212#define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
213
214static u64 generation_mmio_spte_mask(unsigned int gen)
215{
216 u64 mask;
217
218 WARN_ON(gen > MMIO_MAX_GEN);
219
220 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
221 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
222 return mask;
223}
224
225static unsigned int get_mmio_spte_generation(u64 spte)
226{
227 unsigned int gen;
228
229 spte &= ~shadow_mmio_mask;
230
231 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
232 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
233 return gen;
234}
235
f8f55942
XG
236static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
237{
238 return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
239}
240
f2fd125d
XG
241static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
242 unsigned access)
ce88decf 243{
95b0430d 244 struct kvm_mmu_page *sp = page_header(__pa(sptep));
f8f55942
XG
245 unsigned int gen = kvm_current_mmio_generation(kvm);
246 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 247
ce88decf 248 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 249 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
95b0430d 250 sp->mmio_cached = true;
f2fd125d 251
f8f55942 252 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 253 mmu_spte_set(sptep, mask);
ce88decf
XG
254}
255
256static bool is_mmio_spte(u64 spte)
257{
258 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
259}
260
261static gfn_t get_mmio_spte_gfn(u64 spte)
262{
f2fd125d
XG
263 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
264 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
265}
266
267static unsigned get_mmio_spte_access(u64 spte)
268{
f2fd125d
XG
269 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
270 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
271}
272
f2fd125d
XG
273static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
274 pfn_t pfn, unsigned access)
ce88decf
XG
275{
276 if (unlikely(is_noslot_pfn(pfn))) {
f2fd125d 277 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
278 return true;
279 }
280
281 return false;
282}
c7addb90 283
f8f55942
XG
284static bool check_mmio_spte(struct kvm *kvm, u64 spte)
285{
286 return likely(get_mmio_spte_generation(spte) ==
287 kvm_current_mmio_generation(kvm));
288}
289
82725b20
DE
290static inline u64 rsvd_bits(int s, int e)
291{
292 return ((1ULL << (e - s + 1)) - 1) << s;
293}
294
7b52345e 295void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 296 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
297{
298 shadow_user_mask = user_mask;
299 shadow_accessed_mask = accessed_mask;
300 shadow_dirty_mask = dirty_mask;
301 shadow_nx_mask = nx_mask;
302 shadow_x_mask = x_mask;
303}
304EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
305
6aa8b732
AK
306static int is_cpuid_PSE36(void)
307{
308 return 1;
309}
310
73b1087e
AK
311static int is_nx(struct kvm_vcpu *vcpu)
312{
f6801dff 313 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
314}
315
c7addb90
AK
316static int is_shadow_present_pte(u64 pte)
317{
ce88decf 318 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
319}
320
05da4558
MT
321static int is_large_pte(u64 pte)
322{
323 return pte & PT_PAGE_SIZE_MASK;
324}
325
43a3795a 326static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 327{
439e218a 328 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
329}
330
43a3795a 331static int is_rmap_spte(u64 pte)
cd4a4e53 332{
4b1a80fa 333 return is_shadow_present_pte(pte);
cd4a4e53
AK
334}
335
776e6633
MT
336static int is_last_spte(u64 pte, int level)
337{
338 if (level == PT_PAGE_TABLE_LEVEL)
339 return 1;
852e3c19 340 if (is_large_pte(pte))
776e6633
MT
341 return 1;
342 return 0;
343}
344
35149e21 345static pfn_t spte_to_pfn(u64 pte)
0b49ea86 346{
35149e21 347 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
348}
349
da928521
AK
350static gfn_t pse36_gfn_delta(u32 gpte)
351{
352 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
353
354 return (gpte & PT32_DIR_PSE36_MASK) << shift;
355}
356
603e0651 357#ifdef CONFIG_X86_64
d555c333 358static void __set_spte(u64 *sptep, u64 spte)
e663ee64 359{
603e0651 360 *sptep = spte;
e663ee64
AK
361}
362
603e0651 363static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 364{
603e0651
XG
365 *sptep = spte;
366}
367
368static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
369{
370 return xchg(sptep, spte);
371}
c2a2ac2b
XG
372
373static u64 __get_spte_lockless(u64 *sptep)
374{
375 return ACCESS_ONCE(*sptep);
376}
ce88decf
XG
377
378static bool __check_direct_spte_mmio_pf(u64 spte)
379{
380 /* It is valid if the spte is zapped. */
381 return spte == 0ull;
382}
a9221dd5 383#else
603e0651
XG
384union split_spte {
385 struct {
386 u32 spte_low;
387 u32 spte_high;
388 };
389 u64 spte;
390};
a9221dd5 391
c2a2ac2b
XG
392static void count_spte_clear(u64 *sptep, u64 spte)
393{
394 struct kvm_mmu_page *sp = page_header(__pa(sptep));
395
396 if (is_shadow_present_pte(spte))
397 return;
398
399 /* Ensure the spte is completely set before we increase the count */
400 smp_wmb();
401 sp->clear_spte_count++;
402}
403
603e0651
XG
404static void __set_spte(u64 *sptep, u64 spte)
405{
406 union split_spte *ssptep, sspte;
a9221dd5 407
603e0651
XG
408 ssptep = (union split_spte *)sptep;
409 sspte = (union split_spte)spte;
410
411 ssptep->spte_high = sspte.spte_high;
412
413 /*
414 * If we map the spte from nonpresent to present, We should store
415 * the high bits firstly, then set present bit, so cpu can not
416 * fetch this spte while we are setting the spte.
417 */
418 smp_wmb();
419
420 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
421}
422
603e0651
XG
423static void __update_clear_spte_fast(u64 *sptep, u64 spte)
424{
425 union split_spte *ssptep, sspte;
426
427 ssptep = (union split_spte *)sptep;
428 sspte = (union split_spte)spte;
429
430 ssptep->spte_low = sspte.spte_low;
431
432 /*
433 * If we map the spte from present to nonpresent, we should clear
434 * present bit firstly to avoid vcpu fetch the old high bits.
435 */
436 smp_wmb();
437
438 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 439 count_spte_clear(sptep, spte);
603e0651
XG
440}
441
442static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
443{
444 union split_spte *ssptep, sspte, orig;
445
446 ssptep = (union split_spte *)sptep;
447 sspte = (union split_spte)spte;
448
449 /* xchg acts as a barrier before the setting of the high bits */
450 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
451 orig.spte_high = ssptep->spte_high;
452 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 453 count_spte_clear(sptep, spte);
603e0651
XG
454
455 return orig.spte;
456}
c2a2ac2b
XG
457
458/*
459 * The idea using the light way get the spte on x86_32 guest is from
460 * gup_get_pte(arch/x86/mm/gup.c).
461 * The difference is we can not catch the spte tlb flush if we leave
462 * guest mode, so we emulate it by increase clear_spte_count when spte
463 * is cleared.
464 */
465static u64 __get_spte_lockless(u64 *sptep)
466{
467 struct kvm_mmu_page *sp = page_header(__pa(sptep));
468 union split_spte spte, *orig = (union split_spte *)sptep;
469 int count;
470
471retry:
472 count = sp->clear_spte_count;
473 smp_rmb();
474
475 spte.spte_low = orig->spte_low;
476 smp_rmb();
477
478 spte.spte_high = orig->spte_high;
479 smp_rmb();
480
481 if (unlikely(spte.spte_low != orig->spte_low ||
482 count != sp->clear_spte_count))
483 goto retry;
484
485 return spte.spte;
486}
ce88decf
XG
487
488static bool __check_direct_spte_mmio_pf(u64 spte)
489{
490 union split_spte sspte = (union split_spte)spte;
491 u32 high_mmio_mask = shadow_mmio_mask >> 32;
492
493 /* It is valid if the spte is zapped. */
494 if (spte == 0ull)
495 return true;
496
497 /* It is valid if the spte is being zapped. */
498 if (sspte.spte_low == 0ull &&
499 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
500 return true;
501
502 return false;
503}
603e0651
XG
504#endif
505
c7ba5b48
XG
506static bool spte_is_locklessly_modifiable(u64 spte)
507{
feb3eb70
GN
508 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
509 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
510}
511
8672b721
XG
512static bool spte_has_volatile_bits(u64 spte)
513{
c7ba5b48
XG
514 /*
515 * Always atomicly update spte if it can be updated
516 * out of mmu-lock, it can ensure dirty bit is not lost,
517 * also, it can help us to get a stable is_writable_pte()
518 * to ensure tlb flush is not missed.
519 */
520 if (spte_is_locklessly_modifiable(spte))
521 return true;
522
8672b721
XG
523 if (!shadow_accessed_mask)
524 return false;
525
526 if (!is_shadow_present_pte(spte))
527 return false;
528
4132779b
XG
529 if ((spte & shadow_accessed_mask) &&
530 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
531 return false;
532
533 return true;
534}
535
4132779b
XG
536static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
537{
538 return (old_spte & bit_mask) && !(new_spte & bit_mask);
539}
540
1df9f2dc
XG
541/* Rules for using mmu_spte_set:
542 * Set the sptep from nonpresent to present.
543 * Note: the sptep being assigned *must* be either not present
544 * or in a state where the hardware will not attempt to update
545 * the spte.
546 */
547static void mmu_spte_set(u64 *sptep, u64 new_spte)
548{
549 WARN_ON(is_shadow_present_pte(*sptep));
550 __set_spte(sptep, new_spte);
551}
552
553/* Rules for using mmu_spte_update:
554 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
555 *
556 * Whenever we overwrite a writable spte with a read-only one we
557 * should flush remote TLBs. Otherwise rmap_write_protect
558 * will find a read-only spte, even though the writable spte
559 * might be cached on a CPU's TLB, the return value indicates this
560 * case.
1df9f2dc 561 */
6e7d0354 562static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 563{
c7ba5b48 564 u64 old_spte = *sptep;
6e7d0354 565 bool ret = false;
4132779b
XG
566
567 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 568
6e7d0354
XG
569 if (!is_shadow_present_pte(old_spte)) {
570 mmu_spte_set(sptep, new_spte);
571 return ret;
572 }
4132779b 573
c7ba5b48 574 if (!spte_has_volatile_bits(old_spte))
603e0651 575 __update_clear_spte_fast(sptep, new_spte);
4132779b 576 else
603e0651 577 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 578
c7ba5b48
XG
579 /*
580 * For the spte updated out of mmu-lock is safe, since
581 * we always atomicly update it, see the comments in
582 * spte_has_volatile_bits().
583 */
6e7d0354
XG
584 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
585 ret = true;
586
4132779b 587 if (!shadow_accessed_mask)
6e7d0354 588 return ret;
4132779b
XG
589
590 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
591 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
592 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
593 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
594
595 return ret;
b79b93f9
AK
596}
597
1df9f2dc
XG
598/*
599 * Rules for using mmu_spte_clear_track_bits:
600 * It sets the sptep from present to nonpresent, and track the
601 * state bits, it is used to clear the last level sptep.
602 */
603static int mmu_spte_clear_track_bits(u64 *sptep)
604{
605 pfn_t pfn;
606 u64 old_spte = *sptep;
607
608 if (!spte_has_volatile_bits(old_spte))
603e0651 609 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 610 else
603e0651 611 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
612
613 if (!is_rmap_spte(old_spte))
614 return 0;
615
616 pfn = spte_to_pfn(old_spte);
86fde74c
XG
617
618 /*
619 * KVM does not hold the refcount of the page used by
620 * kvm mmu, before reclaiming the page, we should
621 * unmap it from mmu first.
622 */
623 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
624
1df9f2dc
XG
625 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
626 kvm_set_pfn_accessed(pfn);
627 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
628 kvm_set_pfn_dirty(pfn);
629 return 1;
630}
631
632/*
633 * Rules for using mmu_spte_clear_no_track:
634 * Directly clear spte without caring the state bits of sptep,
635 * it is used to set the upper level spte.
636 */
637static void mmu_spte_clear_no_track(u64 *sptep)
638{
603e0651 639 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
640}
641
c2a2ac2b
XG
642static u64 mmu_spte_get_lockless(u64 *sptep)
643{
644 return __get_spte_lockless(sptep);
645}
646
647static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
648{
c142786c
AK
649 /*
650 * Prevent page table teardown by making any free-er wait during
651 * kvm_flush_remote_tlbs() IPI to all active vcpus.
652 */
653 local_irq_disable();
654 vcpu->mode = READING_SHADOW_PAGE_TABLES;
655 /*
656 * Make sure a following spte read is not reordered ahead of the write
657 * to vcpu->mode.
658 */
659 smp_mb();
c2a2ac2b
XG
660}
661
662static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
663{
c142786c
AK
664 /*
665 * Make sure the write to vcpu->mode is not reordered in front of
666 * reads to sptes. If it does, kvm_commit_zap_page() can see us
667 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
668 */
669 smp_mb();
670 vcpu->mode = OUTSIDE_GUEST_MODE;
671 local_irq_enable();
c2a2ac2b
XG
672}
673
e2dec939 674static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 675 struct kmem_cache *base_cache, int min)
714b93da
AK
676{
677 void *obj;
678
679 if (cache->nobjs >= min)
e2dec939 680 return 0;
714b93da 681 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 682 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 683 if (!obj)
e2dec939 684 return -ENOMEM;
714b93da
AK
685 cache->objects[cache->nobjs++] = obj;
686 }
e2dec939 687 return 0;
714b93da
AK
688}
689
f759e2b4
XG
690static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
691{
692 return cache->nobjs;
693}
694
e8ad9a70
XG
695static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
696 struct kmem_cache *cache)
714b93da
AK
697{
698 while (mc->nobjs)
e8ad9a70 699 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
700}
701
c1158e63 702static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 703 int min)
c1158e63 704{
842f22ed 705 void *page;
c1158e63
AK
706
707 if (cache->nobjs >= min)
708 return 0;
709 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 710 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
711 if (!page)
712 return -ENOMEM;
842f22ed 713 cache->objects[cache->nobjs++] = page;
c1158e63
AK
714 }
715 return 0;
716}
717
718static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
719{
720 while (mc->nobjs)
c4d198d5 721 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
722}
723
2e3e5882 724static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 725{
e2dec939
AK
726 int r;
727
53c07b18 728 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 729 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
730 if (r)
731 goto out;
ad312c7c 732 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
733 if (r)
734 goto out;
ad312c7c 735 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 736 mmu_page_header_cache, 4);
e2dec939
AK
737out:
738 return r;
714b93da
AK
739}
740
741static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
742{
53c07b18
XG
743 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
744 pte_list_desc_cache);
ad312c7c 745 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
746 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
747 mmu_page_header_cache);
714b93da
AK
748}
749
80feb89a 750static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
751{
752 void *p;
753
754 BUG_ON(!mc->nobjs);
755 p = mc->objects[--mc->nobjs];
714b93da
AK
756 return p;
757}
758
53c07b18 759static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 760{
80feb89a 761 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
762}
763
53c07b18 764static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 765{
53c07b18 766 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
767}
768
2032a93d
LJ
769static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
770{
771 if (!sp->role.direct)
772 return sp->gfns[index];
773
774 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
775}
776
777static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
778{
779 if (sp->role.direct)
780 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
781 else
782 sp->gfns[index] = gfn;
783}
784
05da4558 785/*
d4dbf470
TY
786 * Return the pointer to the large page information for a given gfn,
787 * handling slots that are not large page aligned.
05da4558 788 */
d4dbf470
TY
789static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
790 struct kvm_memory_slot *slot,
791 int level)
05da4558
MT
792{
793 unsigned long idx;
794
fb03cb6f 795 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 796 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
797}
798
799static void account_shadowed(struct kvm *kvm, gfn_t gfn)
800{
d25797b2 801 struct kvm_memory_slot *slot;
d4dbf470 802 struct kvm_lpage_info *linfo;
d25797b2 803 int i;
05da4558 804
a1f4d395 805 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
806 for (i = PT_DIRECTORY_LEVEL;
807 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
808 linfo = lpage_info_slot(gfn, slot, i);
809 linfo->write_count += 1;
d25797b2 810 }
332b207d 811 kvm->arch.indirect_shadow_pages++;
05da4558
MT
812}
813
814static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
815{
d25797b2 816 struct kvm_memory_slot *slot;
d4dbf470 817 struct kvm_lpage_info *linfo;
d25797b2 818 int i;
05da4558 819
a1f4d395 820 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
821 for (i = PT_DIRECTORY_LEVEL;
822 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
823 linfo = lpage_info_slot(gfn, slot, i);
824 linfo->write_count -= 1;
825 WARN_ON(linfo->write_count < 0);
d25797b2 826 }
332b207d 827 kvm->arch.indirect_shadow_pages--;
05da4558
MT
828}
829
d25797b2
JR
830static int has_wrprotected_page(struct kvm *kvm,
831 gfn_t gfn,
832 int level)
05da4558 833{
2843099f 834 struct kvm_memory_slot *slot;
d4dbf470 835 struct kvm_lpage_info *linfo;
05da4558 836
a1f4d395 837 slot = gfn_to_memslot(kvm, gfn);
05da4558 838 if (slot) {
d4dbf470
TY
839 linfo = lpage_info_slot(gfn, slot, level);
840 return linfo->write_count;
05da4558
MT
841 }
842
843 return 1;
844}
845
d25797b2 846static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 847{
8f0b1ab6 848 unsigned long page_size;
d25797b2 849 int i, ret = 0;
05da4558 850
8f0b1ab6 851 page_size = kvm_host_page_size(kvm, gfn);
05da4558 852
d25797b2
JR
853 for (i = PT_PAGE_TABLE_LEVEL;
854 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
855 if (page_size >= KVM_HPAGE_SIZE(i))
856 ret = i;
857 else
858 break;
859 }
860
4c2155ce 861 return ret;
05da4558
MT
862}
863
5d163b1c
XG
864static struct kvm_memory_slot *
865gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
866 bool no_dirty_log)
05da4558
MT
867{
868 struct kvm_memory_slot *slot;
5d163b1c
XG
869
870 slot = gfn_to_memslot(vcpu->kvm, gfn);
871 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
872 (no_dirty_log && slot->dirty_bitmap))
873 slot = NULL;
874
875 return slot;
876}
877
878static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
879{
a0a8eaba 880 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
881}
882
883static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
884{
885 int host_level, level, max_level;
05da4558 886
d25797b2
JR
887 host_level = host_mapping_level(vcpu->kvm, large_gfn);
888
889 if (host_level == PT_PAGE_TABLE_LEVEL)
890 return host_level;
891
55dd98c3 892 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
893
894 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
895 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
896 break;
d25797b2
JR
897
898 return level - 1;
05da4558
MT
899}
900
290fc38d 901/*
53c07b18 902 * Pte mapping structures:
cd4a4e53 903 *
53c07b18 904 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 905 *
53c07b18
XG
906 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
907 * pte_list_desc containing more mappings.
53a27b39 908 *
53c07b18 909 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
910 * the spte was not added.
911 *
cd4a4e53 912 */
53c07b18
XG
913static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
914 unsigned long *pte_list)
cd4a4e53 915{
53c07b18 916 struct pte_list_desc *desc;
53a27b39 917 int i, count = 0;
cd4a4e53 918
53c07b18
XG
919 if (!*pte_list) {
920 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
921 *pte_list = (unsigned long)spte;
922 } else if (!(*pte_list & 1)) {
923 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
924 desc = mmu_alloc_pte_list_desc(vcpu);
925 desc->sptes[0] = (u64 *)*pte_list;
d555c333 926 desc->sptes[1] = spte;
53c07b18 927 *pte_list = (unsigned long)desc | 1;
cb16a7b3 928 ++count;
cd4a4e53 929 } else {
53c07b18
XG
930 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
931 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
932 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 933 desc = desc->more;
53c07b18 934 count += PTE_LIST_EXT;
53a27b39 935 }
53c07b18
XG
936 if (desc->sptes[PTE_LIST_EXT-1]) {
937 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
938 desc = desc->more;
939 }
d555c333 940 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 941 ++count;
d555c333 942 desc->sptes[i] = spte;
cd4a4e53 943 }
53a27b39 944 return count;
cd4a4e53
AK
945}
946
53c07b18
XG
947static void
948pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
949 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
950{
951 int j;
952
53c07b18 953 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 954 ;
d555c333
AK
955 desc->sptes[i] = desc->sptes[j];
956 desc->sptes[j] = NULL;
cd4a4e53
AK
957 if (j != 0)
958 return;
959 if (!prev_desc && !desc->more)
53c07b18 960 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
961 else
962 if (prev_desc)
963 prev_desc->more = desc->more;
964 else
53c07b18
XG
965 *pte_list = (unsigned long)desc->more | 1;
966 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
967}
968
53c07b18 969static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 970{
53c07b18
XG
971 struct pte_list_desc *desc;
972 struct pte_list_desc *prev_desc;
cd4a4e53
AK
973 int i;
974
53c07b18
XG
975 if (!*pte_list) {
976 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 977 BUG();
53c07b18
XG
978 } else if (!(*pte_list & 1)) {
979 rmap_printk("pte_list_remove: %p 1->0\n", spte);
980 if ((u64 *)*pte_list != spte) {
981 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
982 BUG();
983 }
53c07b18 984 *pte_list = 0;
cd4a4e53 985 } else {
53c07b18
XG
986 rmap_printk("pte_list_remove: %p many->many\n", spte);
987 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
988 prev_desc = NULL;
989 while (desc) {
53c07b18 990 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 991 if (desc->sptes[i] == spte) {
53c07b18 992 pte_list_desc_remove_entry(pte_list,
714b93da 993 desc, i,
cd4a4e53
AK
994 prev_desc);
995 return;
996 }
997 prev_desc = desc;
998 desc = desc->more;
999 }
53c07b18 1000 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1001 BUG();
1002 }
1003}
1004
67052b35
XG
1005typedef void (*pte_list_walk_fn) (u64 *spte);
1006static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1007{
1008 struct pte_list_desc *desc;
1009 int i;
1010
1011 if (!*pte_list)
1012 return;
1013
1014 if (!(*pte_list & 1))
1015 return fn((u64 *)*pte_list);
1016
1017 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1018 while (desc) {
1019 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1020 fn(desc->sptes[i]);
1021 desc = desc->more;
1022 }
1023}
1024
9373e2c0 1025static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 1026 struct kvm_memory_slot *slot)
53c07b18 1027{
77d11309 1028 unsigned long idx;
53c07b18 1029
77d11309 1030 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1031 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1032}
1033
9b9b1492
TY
1034/*
1035 * Take gfn and return the reverse mapping to it.
1036 */
1037static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1038{
1039 struct kvm_memory_slot *slot;
1040
1041 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 1042 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
1043}
1044
f759e2b4
XG
1045static bool rmap_can_add(struct kvm_vcpu *vcpu)
1046{
1047 struct kvm_mmu_memory_cache *cache;
1048
1049 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1050 return mmu_memory_cache_free_objects(cache);
1051}
1052
53c07b18
XG
1053static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1054{
1055 struct kvm_mmu_page *sp;
1056 unsigned long *rmapp;
1057
53c07b18
XG
1058 sp = page_header(__pa(spte));
1059 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1060 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1061 return pte_list_add(vcpu, spte, rmapp);
1062}
1063
53c07b18
XG
1064static void rmap_remove(struct kvm *kvm, u64 *spte)
1065{
1066 struct kvm_mmu_page *sp;
1067 gfn_t gfn;
1068 unsigned long *rmapp;
1069
1070 sp = page_header(__pa(spte));
1071 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1072 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1073 pte_list_remove(spte, rmapp);
1074}
1075
1e3f42f0
TY
1076/*
1077 * Used by the following functions to iterate through the sptes linked by a
1078 * rmap. All fields are private and not assumed to be used outside.
1079 */
1080struct rmap_iterator {
1081 /* private fields */
1082 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1083 int pos; /* index of the sptep */
1084};
1085
1086/*
1087 * Iteration must be started by this function. This should also be used after
1088 * removing/dropping sptes from the rmap link because in such cases the
1089 * information in the itererator may not be valid.
1090 *
1091 * Returns sptep if found, NULL otherwise.
1092 */
1093static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1094{
1095 if (!rmap)
1096 return NULL;
1097
1098 if (!(rmap & 1)) {
1099 iter->desc = NULL;
1100 return (u64 *)rmap;
1101 }
1102
1103 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1104 iter->pos = 0;
1105 return iter->desc->sptes[iter->pos];
1106}
1107
1108/*
1109 * Must be used with a valid iterator: e.g. after rmap_get_first().
1110 *
1111 * Returns sptep if found, NULL otherwise.
1112 */
1113static u64 *rmap_get_next(struct rmap_iterator *iter)
1114{
1115 if (iter->desc) {
1116 if (iter->pos < PTE_LIST_EXT - 1) {
1117 u64 *sptep;
1118
1119 ++iter->pos;
1120 sptep = iter->desc->sptes[iter->pos];
1121 if (sptep)
1122 return sptep;
1123 }
1124
1125 iter->desc = iter->desc->more;
1126
1127 if (iter->desc) {
1128 iter->pos = 0;
1129 /* desc->sptes[0] cannot be NULL */
1130 return iter->desc->sptes[iter->pos];
1131 }
1132 }
1133
1134 return NULL;
1135}
1136
c3707958 1137static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1138{
1df9f2dc 1139 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1140 rmap_remove(kvm, sptep);
be38d276
AK
1141}
1142
8e22f955
XG
1143
1144static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1145{
1146 if (is_large_pte(*sptep)) {
1147 WARN_ON(page_header(__pa(sptep))->role.level ==
1148 PT_PAGE_TABLE_LEVEL);
1149 drop_spte(kvm, sptep);
1150 --kvm->stat.lpages;
1151 return true;
1152 }
1153
1154 return false;
1155}
1156
1157static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1158{
1159 if (__drop_large_spte(vcpu->kvm, sptep))
1160 kvm_flush_remote_tlbs(vcpu->kvm);
1161}
1162
1163/*
49fde340 1164 * Write-protect on the specified @sptep, @pt_protect indicates whether
6b73a960
MT
1165 * spte writ-protection is caused by protecting shadow page table.
1166 * @flush indicates whether tlb need be flushed.
49fde340
XG
1167 *
1168 * Note: write protection is difference between drity logging and spte
1169 * protection:
1170 * - for dirty logging, the spte can be set to writable at anytime if
1171 * its dirty bitmap is properly set.
1172 * - for spte protection, the spte can be writable only after unsync-ing
1173 * shadow page.
8e22f955 1174 *
6b73a960 1175 * Return true if the spte is dropped.
8e22f955 1176 */
6b73a960
MT
1177static bool
1178spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
d13bc5b5
XG
1179{
1180 u64 spte = *sptep;
1181
49fde340
XG
1182 if (!is_writable_pte(spte) &&
1183 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1184 return false;
1185
1186 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1187
6b73a960
MT
1188 if (__drop_large_spte(kvm, sptep)) {
1189 *flush |= true;
1190 return true;
1191 }
1192
49fde340
XG
1193 if (pt_protect)
1194 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1195 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1196
6b73a960
MT
1197 *flush |= mmu_spte_update(sptep, spte);
1198 return false;
d13bc5b5
XG
1199}
1200
49fde340 1201static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1202 bool pt_protect)
98348e95 1203{
1e3f42f0
TY
1204 u64 *sptep;
1205 struct rmap_iterator iter;
d13bc5b5 1206 bool flush = false;
374cbac0 1207
1e3f42f0
TY
1208 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1209 BUG_ON(!(*sptep & PT_PRESENT_MASK));
6b73a960
MT
1210 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1211 sptep = rmap_get_first(*rmapp, &iter);
1212 continue;
1213 }
a0ed4607 1214
d13bc5b5 1215 sptep = rmap_get_next(&iter);
374cbac0 1216 }
855149aa 1217
d13bc5b5 1218 return flush;
a0ed4607
TY
1219}
1220
5dc99b23
TY
1221/**
1222 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1223 * @kvm: kvm instance
1224 * @slot: slot to protect
1225 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1226 * @mask: indicates which pages we should protect
1227 *
1228 * Used when we do not need to care about huge page mappings: e.g. during dirty
1229 * logging we do not have any such mappings.
1230 */
1231void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1232 struct kvm_memory_slot *slot,
1233 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1234{
1235 unsigned long *rmapp;
a0ed4607 1236
5dc99b23 1237 while (mask) {
65fbe37c
TY
1238 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1239 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1240 __rmap_write_protect(kvm, rmapp, false);
05da4558 1241
5dc99b23
TY
1242 /* clear the first set bit */
1243 mask &= mask - 1;
1244 }
374cbac0
AK
1245}
1246
2f84569f 1247static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1248{
1249 struct kvm_memory_slot *slot;
5dc99b23
TY
1250 unsigned long *rmapp;
1251 int i;
2f84569f 1252 bool write_protected = false;
95d4c16c
TY
1253
1254 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1255
1256 for (i = PT_PAGE_TABLE_LEVEL;
1257 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1258 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1259 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1260 }
1261
1262 return write_protected;
95d4c16c
TY
1263}
1264
8a8365c5 1265static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1266 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1267{
1e3f42f0
TY
1268 u64 *sptep;
1269 struct rmap_iterator iter;
e930bffe
AA
1270 int need_tlb_flush = 0;
1271
1e3f42f0
TY
1272 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1273 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1274 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1275
1276 drop_spte(kvm, sptep);
e930bffe
AA
1277 need_tlb_flush = 1;
1278 }
1e3f42f0 1279
e930bffe
AA
1280 return need_tlb_flush;
1281}
1282
8a8365c5 1283static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1284 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1285{
1e3f42f0
TY
1286 u64 *sptep;
1287 struct rmap_iterator iter;
3da0dd43 1288 int need_flush = 0;
1e3f42f0 1289 u64 new_spte;
3da0dd43
IE
1290 pte_t *ptep = (pte_t *)data;
1291 pfn_t new_pfn;
1292
1293 WARN_ON(pte_huge(*ptep));
1294 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1295
1296 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1297 BUG_ON(!is_shadow_present_pte(*sptep));
1298 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1299
3da0dd43 1300 need_flush = 1;
1e3f42f0 1301
3da0dd43 1302 if (pte_write(*ptep)) {
1e3f42f0
TY
1303 drop_spte(kvm, sptep);
1304 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1305 } else {
1e3f42f0 1306 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1307 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1308
1309 new_spte &= ~PT_WRITABLE_MASK;
1310 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1311 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1312
1313 mmu_spte_clear_track_bits(sptep);
1314 mmu_spte_set(sptep, new_spte);
1315 sptep = rmap_get_next(&iter);
3da0dd43
IE
1316 }
1317 }
1e3f42f0 1318
3da0dd43
IE
1319 if (need_flush)
1320 kvm_flush_remote_tlbs(kvm);
1321
1322 return 0;
1323}
1324
84504ef3
TY
1325static int kvm_handle_hva_range(struct kvm *kvm,
1326 unsigned long start,
1327 unsigned long end,
1328 unsigned long data,
1329 int (*handler)(struct kvm *kvm,
1330 unsigned long *rmapp,
048212d0 1331 struct kvm_memory_slot *slot,
84504ef3 1332 unsigned long data))
e930bffe 1333{
be6ba0f0 1334 int j;
f395302e 1335 int ret = 0;
bc6678a3 1336 struct kvm_memslots *slots;
be6ba0f0 1337 struct kvm_memory_slot *memslot;
bc6678a3 1338
90d83dc3 1339 slots = kvm_memslots(kvm);
e930bffe 1340
be6ba0f0 1341 kvm_for_each_memslot(memslot, slots) {
84504ef3 1342 unsigned long hva_start, hva_end;
bcd3ef58 1343 gfn_t gfn_start, gfn_end;
e930bffe 1344
84504ef3
TY
1345 hva_start = max(start, memslot->userspace_addr);
1346 hva_end = min(end, memslot->userspace_addr +
1347 (memslot->npages << PAGE_SHIFT));
1348 if (hva_start >= hva_end)
1349 continue;
1350 /*
1351 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1352 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1353 */
bcd3ef58 1354 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1355 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1356
bcd3ef58
TY
1357 for (j = PT_PAGE_TABLE_LEVEL;
1358 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1359 unsigned long idx, idx_end;
1360 unsigned long *rmapp;
d4dbf470 1361
bcd3ef58
TY
1362 /*
1363 * {idx(page_j) | page_j intersects with
1364 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1365 */
1366 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1367 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1368
bcd3ef58 1369 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1370
bcd3ef58
TY
1371 for (; idx <= idx_end; ++idx)
1372 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1373 }
1374 }
1375
f395302e 1376 return ret;
e930bffe
AA
1377}
1378
84504ef3
TY
1379static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1380 unsigned long data,
1381 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1382 struct kvm_memory_slot *slot,
84504ef3
TY
1383 unsigned long data))
1384{
1385 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1386}
1387
1388int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1389{
3da0dd43
IE
1390 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1391}
1392
b3ae2096
TY
1393int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1394{
1395 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1396}
1397
3da0dd43
IE
1398void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1399{
8a8365c5 1400 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1401}
1402
8a8365c5 1403static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1404 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1405{
1e3f42f0 1406 u64 *sptep;
79f702a6 1407 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1408 int young = 0;
1409
6316e1c8 1410 /*
3f6d8c8a
XH
1411 * In case of absence of EPT Access and Dirty Bits supports,
1412 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1413 * an EPT mapping, and clearing it if it does. On the next access,
1414 * a new EPT mapping will be established.
1415 * This has some overhead, but not as much as the cost of swapping
1416 * out actively used pages or breaking up actively used hugepages.
1417 */
f395302e
TY
1418 if (!shadow_accessed_mask) {
1419 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1420 goto out;
1421 }
534e38b4 1422
1e3f42f0
TY
1423 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1424 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1425 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1426
3f6d8c8a 1427 if (*sptep & shadow_accessed_mask) {
e930bffe 1428 young = 1;
3f6d8c8a
XH
1429 clear_bit((ffs(shadow_accessed_mask) - 1),
1430 (unsigned long *)sptep);
e930bffe 1431 }
e930bffe 1432 }
f395302e
TY
1433out:
1434 /* @data has hva passed to kvm_age_hva(). */
1435 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1436 return young;
1437}
1438
8ee53820 1439static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1440 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1441{
1e3f42f0
TY
1442 u64 *sptep;
1443 struct rmap_iterator iter;
8ee53820
AA
1444 int young = 0;
1445
1446 /*
1447 * If there's no access bit in the secondary pte set by the
1448 * hardware it's up to gup-fast/gup to set the access bit in
1449 * the primary pte or in the page structure.
1450 */
1451 if (!shadow_accessed_mask)
1452 goto out;
1453
1e3f42f0
TY
1454 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1455 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1456 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1457
3f6d8c8a 1458 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1459 young = 1;
1460 break;
1461 }
8ee53820
AA
1462 }
1463out:
1464 return young;
1465}
1466
53a27b39
MT
1467#define RMAP_RECYCLE_THRESHOLD 1000
1468
852e3c19 1469static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1470{
1471 unsigned long *rmapp;
852e3c19
JR
1472 struct kvm_mmu_page *sp;
1473
1474 sp = page_header(__pa(spte));
53a27b39 1475
852e3c19 1476 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1477
048212d0 1478 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1479 kvm_flush_remote_tlbs(vcpu->kvm);
1480}
1481
e930bffe
AA
1482int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1483{
f395302e 1484 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1485}
1486
8ee53820
AA
1487int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1488{
1489 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1490}
1491
d6c69ee9 1492#ifdef MMU_DEBUG
47ad8e68 1493static int is_empty_shadow_page(u64 *spt)
6aa8b732 1494{
139bdb2d
AK
1495 u64 *pos;
1496 u64 *end;
1497
47ad8e68 1498 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1499 if (is_shadow_present_pte(*pos)) {
b8688d51 1500 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1501 pos, *pos);
6aa8b732 1502 return 0;
139bdb2d 1503 }
6aa8b732
AK
1504 return 1;
1505}
d6c69ee9 1506#endif
6aa8b732 1507
45221ab6
DH
1508/*
1509 * This value is the sum of all of the kvm instances's
1510 * kvm->arch.n_used_mmu_pages values. We need a global,
1511 * aggregate version in order to make the slab shrinker
1512 * faster
1513 */
1514static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1515{
1516 kvm->arch.n_used_mmu_pages += nr;
1517 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1518}
1519
834be0d8 1520static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1521{
4db35314 1522 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1523 hlist_del(&sp->hash_link);
bd4c86ea
XG
1524 list_del(&sp->link);
1525 free_page((unsigned long)sp->spt);
834be0d8
GN
1526 if (!sp->role.direct)
1527 free_page((unsigned long)sp->gfns);
e8ad9a70 1528 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1529}
1530
cea0f0e7
AK
1531static unsigned kvm_page_table_hashfn(gfn_t gfn)
1532{
1ae0a13d 1533 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1534}
1535
714b93da 1536static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1537 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1538{
cea0f0e7
AK
1539 if (!parent_pte)
1540 return;
cea0f0e7 1541
67052b35 1542 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1543}
1544
4db35314 1545static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1546 u64 *parent_pte)
1547{
67052b35 1548 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1549}
1550
bcdd9a93
XG
1551static void drop_parent_pte(struct kvm_mmu_page *sp,
1552 u64 *parent_pte)
1553{
1554 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1555 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1556}
1557
67052b35
XG
1558static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1559 u64 *parent_pte, int direct)
ad8cfbe3 1560{
67052b35 1561 struct kvm_mmu_page *sp;
7ddca7e4 1562
80feb89a
TY
1563 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1564 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1565 if (!direct)
80feb89a 1566 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1567 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1568
1569 /*
1570 * The active_mmu_pages list is the FIFO list, do not move the
1571 * page until it is zapped. kvm_zap_obsolete_pages depends on
1572 * this feature. See the comments in kvm_zap_obsolete_pages().
1573 */
67052b35 1574 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1575 sp->parent_ptes = 0;
1576 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1577 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1578 return sp;
ad8cfbe3
MT
1579}
1580
67052b35 1581static void mark_unsync(u64 *spte);
1047df1f 1582static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1583{
67052b35 1584 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1585}
1586
67052b35 1587static void mark_unsync(u64 *spte)
0074ff63 1588{
67052b35 1589 struct kvm_mmu_page *sp;
1047df1f 1590 unsigned int index;
0074ff63 1591
67052b35 1592 sp = page_header(__pa(spte));
1047df1f
XG
1593 index = spte - sp->spt;
1594 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1595 return;
1047df1f 1596 if (sp->unsync_children++)
0074ff63 1597 return;
1047df1f 1598 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1599}
1600
e8bc217a 1601static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1602 struct kvm_mmu_page *sp)
e8bc217a
MT
1603{
1604 return 1;
1605}
1606
a7052897
MT
1607static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1608{
1609}
1610
0f53b5b1
XG
1611static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1612 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1613 const void *pte)
0f53b5b1
XG
1614{
1615 WARN_ON(1);
1616}
1617
60c8aec6
MT
1618#define KVM_PAGE_ARRAY_NR 16
1619
1620struct kvm_mmu_pages {
1621 struct mmu_page_and_offset {
1622 struct kvm_mmu_page *sp;
1623 unsigned int idx;
1624 } page[KVM_PAGE_ARRAY_NR];
1625 unsigned int nr;
1626};
1627
cded19f3
HE
1628static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1629 int idx)
4731d4c7 1630{
60c8aec6 1631 int i;
4731d4c7 1632
60c8aec6
MT
1633 if (sp->unsync)
1634 for (i=0; i < pvec->nr; i++)
1635 if (pvec->page[i].sp == sp)
1636 return 0;
1637
1638 pvec->page[pvec->nr].sp = sp;
1639 pvec->page[pvec->nr].idx = idx;
1640 pvec->nr++;
1641 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1642}
1643
1644static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1645 struct kvm_mmu_pages *pvec)
1646{
1647 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1648
37178b8b 1649 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1650 struct kvm_mmu_page *child;
4731d4c7
MT
1651 u64 ent = sp->spt[i];
1652
7a8f1a74
XG
1653 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1654 goto clear_child_bitmap;
1655
1656 child = page_header(ent & PT64_BASE_ADDR_MASK);
1657
1658 if (child->unsync_children) {
1659 if (mmu_pages_add(pvec, child, i))
1660 return -ENOSPC;
1661
1662 ret = __mmu_unsync_walk(child, pvec);
1663 if (!ret)
1664 goto clear_child_bitmap;
1665 else if (ret > 0)
1666 nr_unsync_leaf += ret;
1667 else
1668 return ret;
1669 } else if (child->unsync) {
1670 nr_unsync_leaf++;
1671 if (mmu_pages_add(pvec, child, i))
1672 return -ENOSPC;
1673 } else
1674 goto clear_child_bitmap;
1675
1676 continue;
1677
1678clear_child_bitmap:
1679 __clear_bit(i, sp->unsync_child_bitmap);
1680 sp->unsync_children--;
1681 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1682 }
1683
4731d4c7 1684
60c8aec6
MT
1685 return nr_unsync_leaf;
1686}
1687
1688static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1689 struct kvm_mmu_pages *pvec)
1690{
1691 if (!sp->unsync_children)
1692 return 0;
1693
1694 mmu_pages_add(pvec, sp, 0);
1695 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1696}
1697
4731d4c7
MT
1698static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1699{
1700 WARN_ON(!sp->unsync);
5e1b3ddb 1701 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1702 sp->unsync = 0;
1703 --kvm->stat.mmu_unsync;
1704}
1705
7775834a
XG
1706static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1707 struct list_head *invalid_list);
1708static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1709 struct list_head *invalid_list);
4731d4c7 1710
f34d251d
XG
1711/*
1712 * NOTE: we should pay more attention on the zapped-obsolete page
1713 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1714 * since it has been deleted from active_mmu_pages but still can be found
1715 * at hast list.
1716 *
1717 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1718 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1719 * all the obsolete pages.
1720 */
1044b030
TY
1721#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1722 hlist_for_each_entry(_sp, \
1723 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1724 if ((_sp)->gfn != (_gfn)) {} else
1725
1726#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1727 for_each_gfn_sp(_kvm, _sp, _gfn) \
1728 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1729
f918b443 1730/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1731static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1732 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1733{
5b7e0102 1734 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1735 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1736 return 1;
1737 }
1738
f918b443 1739 if (clear_unsync)
1d9dc7e0 1740 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1741
a4a8e6f7 1742 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1743 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1744 return 1;
1745 }
1746
1747 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1748 return 0;
1749}
1750
1d9dc7e0
XG
1751static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1752 struct kvm_mmu_page *sp)
1753{
d98ba053 1754 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1755 int ret;
1756
d98ba053 1757 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1758 if (ret)
d98ba053
XG
1759 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1760
1d9dc7e0
XG
1761 return ret;
1762}
1763
e37fa785
XG
1764#ifdef CONFIG_KVM_MMU_AUDIT
1765#include "mmu_audit.c"
1766#else
1767static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1768static void mmu_audit_disable(void) { }
1769#endif
1770
d98ba053
XG
1771static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1772 struct list_head *invalid_list)
1d9dc7e0 1773{
d98ba053 1774 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1775}
1776
9f1a122f
XG
1777/* @gfn should be write-protected at the call site */
1778static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1779{
9f1a122f 1780 struct kvm_mmu_page *s;
d98ba053 1781 LIST_HEAD(invalid_list);
9f1a122f
XG
1782 bool flush = false;
1783
b67bfe0d 1784 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1785 if (!s->unsync)
9f1a122f
XG
1786 continue;
1787
1788 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1789 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1790 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1791 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1792 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1793 continue;
1794 }
9f1a122f
XG
1795 flush = true;
1796 }
1797
d98ba053 1798 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1799 if (flush)
1800 kvm_mmu_flush_tlb(vcpu);
1801}
1802
60c8aec6
MT
1803struct mmu_page_path {
1804 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1805 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1806};
1807
60c8aec6
MT
1808#define for_each_sp(pvec, sp, parents, i) \
1809 for (i = mmu_pages_next(&pvec, &parents, -1), \
1810 sp = pvec.page[i].sp; \
1811 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1812 i = mmu_pages_next(&pvec, &parents, i))
1813
cded19f3
HE
1814static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1815 struct mmu_page_path *parents,
1816 int i)
60c8aec6
MT
1817{
1818 int n;
1819
1820 for (n = i+1; n < pvec->nr; n++) {
1821 struct kvm_mmu_page *sp = pvec->page[n].sp;
1822
1823 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1824 parents->idx[0] = pvec->page[n].idx;
1825 return n;
1826 }
1827
1828 parents->parent[sp->role.level-2] = sp;
1829 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1830 }
1831
1832 return n;
1833}
1834
cded19f3 1835static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1836{
60c8aec6
MT
1837 struct kvm_mmu_page *sp;
1838 unsigned int level = 0;
1839
1840 do {
1841 unsigned int idx = parents->idx[level];
4731d4c7 1842
60c8aec6
MT
1843 sp = parents->parent[level];
1844 if (!sp)
1845 return;
1846
1847 --sp->unsync_children;
1848 WARN_ON((int)sp->unsync_children < 0);
1849 __clear_bit(idx, sp->unsync_child_bitmap);
1850 level++;
1851 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1852}
1853
60c8aec6
MT
1854static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1855 struct mmu_page_path *parents,
1856 struct kvm_mmu_pages *pvec)
4731d4c7 1857{
60c8aec6
MT
1858 parents->parent[parent->role.level-1] = NULL;
1859 pvec->nr = 0;
1860}
4731d4c7 1861
60c8aec6
MT
1862static void mmu_sync_children(struct kvm_vcpu *vcpu,
1863 struct kvm_mmu_page *parent)
1864{
1865 int i;
1866 struct kvm_mmu_page *sp;
1867 struct mmu_page_path parents;
1868 struct kvm_mmu_pages pages;
d98ba053 1869 LIST_HEAD(invalid_list);
60c8aec6
MT
1870
1871 kvm_mmu_pages_init(parent, &parents, &pages);
1872 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1873 bool protected = false;
b1a36821
MT
1874
1875 for_each_sp(pages, sp, parents, i)
1876 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1877
1878 if (protected)
1879 kvm_flush_remote_tlbs(vcpu->kvm);
1880
60c8aec6 1881 for_each_sp(pages, sp, parents, i) {
d98ba053 1882 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1883 mmu_pages_clear_parents(&parents);
1884 }
d98ba053 1885 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1886 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1887 kvm_mmu_pages_init(parent, &parents, &pages);
1888 }
4731d4c7
MT
1889}
1890
c3707958
XG
1891static void init_shadow_page_table(struct kvm_mmu_page *sp)
1892{
1893 int i;
1894
1895 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1896 sp->spt[i] = 0ull;
1897}
1898
a30f47cb
XG
1899static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1900{
1901 sp->write_flooding_count = 0;
1902}
1903
1904static void clear_sp_write_flooding_count(u64 *spte)
1905{
1906 struct kvm_mmu_page *sp = page_header(__pa(spte));
1907
1908 __clear_sp_write_flooding_count(sp);
1909}
1910
5304b8d3
XG
1911static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1912{
1913 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1914}
1915
cea0f0e7
AK
1916static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1917 gfn_t gfn,
1918 gva_t gaddr,
1919 unsigned level,
f6e2c02b 1920 int direct,
41074d07 1921 unsigned access,
f7d9c7b7 1922 u64 *parent_pte)
cea0f0e7
AK
1923{
1924 union kvm_mmu_page_role role;
cea0f0e7 1925 unsigned quadrant;
9f1a122f 1926 struct kvm_mmu_page *sp;
9f1a122f 1927 bool need_sync = false;
cea0f0e7 1928
a770f6f2 1929 role = vcpu->arch.mmu.base_role;
cea0f0e7 1930 role.level = level;
f6e2c02b 1931 role.direct = direct;
84b0c8c6 1932 if (role.direct)
5b7e0102 1933 role.cr4_pae = 0;
41074d07 1934 role.access = access;
c5a78f2b
JR
1935 if (!vcpu->arch.mmu.direct_map
1936 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1937 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1938 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1939 role.quadrant = quadrant;
1940 }
b67bfe0d 1941 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
1942 if (is_obsolete_sp(vcpu->kvm, sp))
1943 continue;
1944
7ae680eb
XG
1945 if (!need_sync && sp->unsync)
1946 need_sync = true;
4731d4c7 1947
7ae680eb
XG
1948 if (sp->role.word != role.word)
1949 continue;
4731d4c7 1950
7ae680eb
XG
1951 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1952 break;
e02aa901 1953
7ae680eb
XG
1954 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1955 if (sp->unsync_children) {
a8eeb04a 1956 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1957 kvm_mmu_mark_parents_unsync(sp);
1958 } else if (sp->unsync)
1959 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1960
a30f47cb 1961 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1962 trace_kvm_mmu_get_page(sp, false);
1963 return sp;
1964 }
dfc5aa00 1965 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1966 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1967 if (!sp)
1968 return sp;
4db35314
AK
1969 sp->gfn = gfn;
1970 sp->role = role;
7ae680eb
XG
1971 hlist_add_head(&sp->hash_link,
1972 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1973 if (!direct) {
b1a36821
MT
1974 if (rmap_write_protect(vcpu->kvm, gfn))
1975 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1976 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1977 kvm_sync_pages(vcpu, gfn);
1978
4731d4c7
MT
1979 account_shadowed(vcpu->kvm, gfn);
1980 }
5304b8d3 1981 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
c3707958 1982 init_shadow_page_table(sp);
f691fe1d 1983 trace_kvm_mmu_get_page(sp, true);
4db35314 1984 return sp;
cea0f0e7
AK
1985}
1986
2d11123a
AK
1987static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1988 struct kvm_vcpu *vcpu, u64 addr)
1989{
1990 iterator->addr = addr;
1991 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1992 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1993
1994 if (iterator->level == PT64_ROOT_LEVEL &&
1995 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1996 !vcpu->arch.mmu.direct_map)
1997 --iterator->level;
1998
2d11123a
AK
1999 if (iterator->level == PT32E_ROOT_LEVEL) {
2000 iterator->shadow_addr
2001 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2002 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2003 --iterator->level;
2004 if (!iterator->shadow_addr)
2005 iterator->level = 0;
2006 }
2007}
2008
2009static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2010{
2011 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2012 return false;
4d88954d 2013
2d11123a
AK
2014 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2015 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2016 return true;
2017}
2018
c2a2ac2b
XG
2019static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2020 u64 spte)
2d11123a 2021{
c2a2ac2b 2022 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2023 iterator->level = 0;
2024 return;
2025 }
2026
c2a2ac2b 2027 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2028 --iterator->level;
2029}
2030
c2a2ac2b
XG
2031static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2032{
2033 return __shadow_walk_next(iterator, *iterator->sptep);
2034}
2035
32ef26a3
AK
2036static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
2037{
2038 u64 spte;
2039
24db2734
XG
2040 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2041 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2042
1df9f2dc 2043 mmu_spte_set(sptep, spte);
32ef26a3
AK
2044}
2045
a357bd22
AK
2046static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2047 unsigned direct_access)
2048{
2049 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2050 struct kvm_mmu_page *child;
2051
2052 /*
2053 * For the direct sp, if the guest pte's dirty bit
2054 * changed form clean to dirty, it will corrupt the
2055 * sp's access: allow writable in the read-only sp,
2056 * so we should update the spte at this point to get
2057 * a new sp with the correct access.
2058 */
2059 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2060 if (child->role.access == direct_access)
2061 return;
2062
bcdd9a93 2063 drop_parent_pte(child, sptep);
a357bd22
AK
2064 kvm_flush_remote_tlbs(vcpu->kvm);
2065 }
2066}
2067
505aef8f 2068static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2069 u64 *spte)
2070{
2071 u64 pte;
2072 struct kvm_mmu_page *child;
2073
2074 pte = *spte;
2075 if (is_shadow_present_pte(pte)) {
505aef8f 2076 if (is_last_spte(pte, sp->role.level)) {
c3707958 2077 drop_spte(kvm, spte);
505aef8f
XG
2078 if (is_large_pte(pte))
2079 --kvm->stat.lpages;
2080 } else {
38e3b2b2 2081 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2082 drop_parent_pte(child, spte);
38e3b2b2 2083 }
505aef8f
XG
2084 return true;
2085 }
2086
2087 if (is_mmio_spte(pte))
ce88decf 2088 mmu_spte_clear_no_track(spte);
c3707958 2089
505aef8f 2090 return false;
38e3b2b2
XG
2091}
2092
90cb0529 2093static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2094 struct kvm_mmu_page *sp)
a436036b 2095{
697fe2e2 2096 unsigned i;
697fe2e2 2097
38e3b2b2
XG
2098 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2099 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2100}
2101
4db35314 2102static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2103{
4db35314 2104 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2105}
2106
31aa2b44 2107static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2108{
1e3f42f0
TY
2109 u64 *sptep;
2110 struct rmap_iterator iter;
a436036b 2111
1e3f42f0
TY
2112 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2113 drop_parent_pte(sp, sptep);
31aa2b44
AK
2114}
2115
60c8aec6 2116static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2117 struct kvm_mmu_page *parent,
2118 struct list_head *invalid_list)
4731d4c7 2119{
60c8aec6
MT
2120 int i, zapped = 0;
2121 struct mmu_page_path parents;
2122 struct kvm_mmu_pages pages;
4731d4c7 2123
60c8aec6 2124 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2125 return 0;
60c8aec6
MT
2126
2127 kvm_mmu_pages_init(parent, &parents, &pages);
2128 while (mmu_unsync_walk(parent, &pages)) {
2129 struct kvm_mmu_page *sp;
2130
2131 for_each_sp(pages, sp, parents, i) {
7775834a 2132 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2133 mmu_pages_clear_parents(&parents);
77662e00 2134 zapped++;
60c8aec6 2135 }
60c8aec6
MT
2136 kvm_mmu_pages_init(parent, &parents, &pages);
2137 }
2138
2139 return zapped;
4731d4c7
MT
2140}
2141
7775834a
XG
2142static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2143 struct list_head *invalid_list)
31aa2b44 2144{
4731d4c7 2145 int ret;
f691fe1d 2146
7775834a 2147 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2148 ++kvm->stat.mmu_shadow_zapped;
7775834a 2149 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2150 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2151 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2152
f6e2c02b 2153 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2154 unaccount_shadowed(kvm, sp->gfn);
5304b8d3 2155
4731d4c7
MT
2156 if (sp->unsync)
2157 kvm_unlink_unsync_page(kvm, sp);
4db35314 2158 if (!sp->root_count) {
54a4f023
GJ
2159 /* Count self */
2160 ret++;
7775834a 2161 list_move(&sp->link, invalid_list);
aa6bd187 2162 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2163 } else {
5b5c6a5a 2164 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2165
2166 /*
2167 * The obsolete pages can not be used on any vcpus.
2168 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2169 */
2170 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2171 kvm_reload_remote_mmus(kvm);
2e53d63a 2172 }
7775834a
XG
2173
2174 sp->role.invalid = 1;
4731d4c7 2175 return ret;
a436036b
AK
2176}
2177
7775834a
XG
2178static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2179 struct list_head *invalid_list)
2180{
945315b9 2181 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2182
2183 if (list_empty(invalid_list))
2184 return;
2185
c142786c
AK
2186 /*
2187 * wmb: make sure everyone sees our modifications to the page tables
2188 * rmb: make sure we see changes to vcpu->mode
2189 */
2190 smp_mb();
4f022648 2191
c142786c
AK
2192 /*
2193 * Wait for all vcpus to exit guest mode and/or lockless shadow
2194 * page table walks.
2195 */
2196 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2197
945315b9 2198 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2199 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2200 kvm_mmu_free_page(sp);
945315b9 2201 }
7775834a
XG
2202}
2203
5da59607
TY
2204static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2205 struct list_head *invalid_list)
2206{
2207 struct kvm_mmu_page *sp;
2208
2209 if (list_empty(&kvm->arch.active_mmu_pages))
2210 return false;
2211
2212 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2213 struct kvm_mmu_page, link);
2214 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2215
2216 return true;
2217}
2218
82ce2c96
IE
2219/*
2220 * Changing the number of mmu pages allocated to the vm
49d5ca26 2221 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2222 */
49d5ca26 2223void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2224{
d98ba053 2225 LIST_HEAD(invalid_list);
82ce2c96 2226
b34cb590
TY
2227 spin_lock(&kvm->mmu_lock);
2228
49d5ca26 2229 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2230 /* Need to free some mmu pages to achieve the goal. */
2231 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2232 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2233 break;
82ce2c96 2234
aa6bd187 2235 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2236 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2237 }
82ce2c96 2238
49d5ca26 2239 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2240
2241 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2242}
2243
1cb3f3ae 2244int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2245{
4db35314 2246 struct kvm_mmu_page *sp;
d98ba053 2247 LIST_HEAD(invalid_list);
a436036b
AK
2248 int r;
2249
9ad17b10 2250 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2251 r = 0;
1cb3f3ae 2252 spin_lock(&kvm->mmu_lock);
b67bfe0d 2253 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2254 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2255 sp->role.word);
2256 r = 1;
f41d335a 2257 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2258 }
d98ba053 2259 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2260 spin_unlock(&kvm->mmu_lock);
2261
a436036b 2262 return r;
cea0f0e7 2263}
1cb3f3ae 2264EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2265
74be52e3
SY
2266/*
2267 * The function is based on mtrr_type_lookup() in
2268 * arch/x86/kernel/cpu/mtrr/generic.c
2269 */
2270static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2271 u64 start, u64 end)
2272{
2273 int i;
2274 u64 base, mask;
2275 u8 prev_match, curr_match;
2276 int num_var_ranges = KVM_NR_VAR_MTRR;
2277
2278 if (!mtrr_state->enabled)
2279 return 0xFF;
2280
2281 /* Make end inclusive end, instead of exclusive */
2282 end--;
2283
2284 /* Look in fixed ranges. Just return the type as per start */
2285 if (mtrr_state->have_fixed && (start < 0x100000)) {
2286 int idx;
2287
2288 if (start < 0x80000) {
2289 idx = 0;
2290 idx += (start >> 16);
2291 return mtrr_state->fixed_ranges[idx];
2292 } else if (start < 0xC0000) {
2293 idx = 1 * 8;
2294 idx += ((start - 0x80000) >> 14);
2295 return mtrr_state->fixed_ranges[idx];
2296 } else if (start < 0x1000000) {
2297 idx = 3 * 8;
2298 idx += ((start - 0xC0000) >> 12);
2299 return mtrr_state->fixed_ranges[idx];
2300 }
2301 }
2302
2303 /*
2304 * Look in variable ranges
2305 * Look of multiple ranges matching this address and pick type
2306 * as per MTRR precedence
2307 */
2308 if (!(mtrr_state->enabled & 2))
2309 return mtrr_state->def_type;
2310
2311 prev_match = 0xFF;
2312 for (i = 0; i < num_var_ranges; ++i) {
2313 unsigned short start_state, end_state;
2314
2315 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2316 continue;
2317
2318 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2319 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2320 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2321 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2322
2323 start_state = ((start & mask) == (base & mask));
2324 end_state = ((end & mask) == (base & mask));
2325 if (start_state != end_state)
2326 return 0xFE;
2327
2328 if ((start & mask) != (base & mask))
2329 continue;
2330
2331 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2332 if (prev_match == 0xFF) {
2333 prev_match = curr_match;
2334 continue;
2335 }
2336
2337 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2338 curr_match == MTRR_TYPE_UNCACHABLE)
2339 return MTRR_TYPE_UNCACHABLE;
2340
2341 if ((prev_match == MTRR_TYPE_WRBACK &&
2342 curr_match == MTRR_TYPE_WRTHROUGH) ||
2343 (prev_match == MTRR_TYPE_WRTHROUGH &&
2344 curr_match == MTRR_TYPE_WRBACK)) {
2345 prev_match = MTRR_TYPE_WRTHROUGH;
2346 curr_match = MTRR_TYPE_WRTHROUGH;
2347 }
2348
2349 if (prev_match != curr_match)
2350 return MTRR_TYPE_UNCACHABLE;
2351 }
2352
2353 if (prev_match != 0xFF)
2354 return prev_match;
2355
2356 return mtrr_state->def_type;
2357}
2358
4b12f0de 2359u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2360{
2361 u8 mtrr;
2362
2363 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2364 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2365 if (mtrr == 0xfe || mtrr == 0xff)
2366 mtrr = MTRR_TYPE_WRBACK;
2367 return mtrr;
2368}
4b12f0de 2369EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2370
9cf5cf5a
XG
2371static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2372{
2373 trace_kvm_mmu_unsync_page(sp);
2374 ++vcpu->kvm->stat.mmu_unsync;
2375 sp->unsync = 1;
2376
2377 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2378}
2379
2380static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2381{
4731d4c7 2382 struct kvm_mmu_page *s;
9cf5cf5a 2383
b67bfe0d 2384 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2385 if (s->unsync)
4731d4c7 2386 continue;
9cf5cf5a
XG
2387 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2388 __kvm_unsync_page(vcpu, s);
4731d4c7 2389 }
4731d4c7
MT
2390}
2391
2392static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2393 bool can_unsync)
2394{
9cf5cf5a 2395 struct kvm_mmu_page *s;
9cf5cf5a
XG
2396 bool need_unsync = false;
2397
b67bfe0d 2398 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2399 if (!can_unsync)
2400 return 1;
2401
9cf5cf5a 2402 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2403 return 1;
9cf5cf5a 2404
9bb4f6b1 2405 if (!s->unsync)
9cf5cf5a 2406 need_unsync = true;
4731d4c7 2407 }
9cf5cf5a
XG
2408 if (need_unsync)
2409 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2410 return 0;
2411}
2412
d555c333 2413static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2414 unsigned pte_access, int level,
c2d0ee46 2415 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2416 bool can_unsync, bool host_writable)
1c4f1fd6 2417{
6e7d0354 2418 u64 spte;
1e73f9dd 2419 int ret = 0;
64d4d521 2420
f2fd125d 2421 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
ce88decf
XG
2422 return 0;
2423
982c2565 2424 spte = PT_PRESENT_MASK;
947da538 2425 if (!speculative)
3201b5d9 2426 spte |= shadow_accessed_mask;
640d9b0d 2427
7b52345e
SY
2428 if (pte_access & ACC_EXEC_MASK)
2429 spte |= shadow_x_mask;
2430 else
2431 spte |= shadow_nx_mask;
49fde340 2432
1c4f1fd6 2433 if (pte_access & ACC_USER_MASK)
7b52345e 2434 spte |= shadow_user_mask;
49fde340 2435
852e3c19 2436 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2437 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2438 if (tdp_enabled)
4b12f0de
SY
2439 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2440 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2441
9bdbba13 2442 if (host_writable)
1403283a 2443 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2444 else
2445 pte_access &= ~ACC_WRITE_MASK;
1403283a 2446
35149e21 2447 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2448
c2288505 2449 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2450
c2193463 2451 /*
7751babd
XG
2452 * Other vcpu creates new sp in the window between
2453 * mapping_level() and acquiring mmu-lock. We can
2454 * allow guest to retry the access, the mapping can
2455 * be fixed if guest refault.
c2193463 2456 */
852e3c19 2457 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2458 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2459 goto done;
38187c83 2460
49fde340 2461 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2462
ecc5589f
MT
2463 /*
2464 * Optimization: for pte sync, if spte was writable the hash
2465 * lookup is unnecessary (and expensive). Write protection
2466 * is responsibility of mmu_get_page / kvm_sync_page.
2467 * Same reasoning can be applied to dirty page accounting.
2468 */
8dae4445 2469 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2470 goto set_pte;
2471
4731d4c7 2472 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2473 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2474 __func__, gfn);
1e73f9dd 2475 ret = 1;
1c4f1fd6 2476 pte_access &= ~ACC_WRITE_MASK;
49fde340 2477 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2478 }
2479 }
2480
1c4f1fd6
AK
2481 if (pte_access & ACC_WRITE_MASK)
2482 mark_page_dirty(vcpu->kvm, gfn);
2483
38187c83 2484set_pte:
6e7d0354 2485 if (mmu_spte_update(sptep, spte))
b330aa0c 2486 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2487done:
1e73f9dd
MT
2488 return ret;
2489}
2490
d555c333 2491static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2492 unsigned pte_access, int write_fault, int *emulate,
2493 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2494 bool host_writable)
1e73f9dd
MT
2495{
2496 int was_rmapped = 0;
53a27b39 2497 int rmap_count;
1e73f9dd 2498
f7616203
XG
2499 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2500 *sptep, write_fault, gfn);
1e73f9dd 2501
d555c333 2502 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2503 /*
2504 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2505 * the parent of the now unreachable PTE.
2506 */
852e3c19
JR
2507 if (level > PT_PAGE_TABLE_LEVEL &&
2508 !is_large_pte(*sptep)) {
1e73f9dd 2509 struct kvm_mmu_page *child;
d555c333 2510 u64 pte = *sptep;
1e73f9dd
MT
2511
2512 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2513 drop_parent_pte(child, sptep);
3be2264b 2514 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2515 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2516 pgprintk("hfn old %llx new %llx\n",
d555c333 2517 spte_to_pfn(*sptep), pfn);
c3707958 2518 drop_spte(vcpu->kvm, sptep);
91546356 2519 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2520 } else
2521 was_rmapped = 1;
1e73f9dd 2522 }
852e3c19 2523
c2288505
XG
2524 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2525 true, host_writable)) {
1e73f9dd 2526 if (write_fault)
b90a0e6c 2527 *emulate = 1;
5304efde 2528 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2529 }
1e73f9dd 2530
ce88decf
XG
2531 if (unlikely(is_mmio_spte(*sptep) && emulate))
2532 *emulate = 1;
2533
d555c333 2534 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2535 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2536 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2537 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2538 *sptep, sptep);
d555c333 2539 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2540 ++vcpu->kvm->stat.lpages;
2541
ffb61bb3 2542 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2543 if (!was_rmapped) {
2544 rmap_count = rmap_add(vcpu, sptep, gfn);
2545 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2546 rmap_recycle(vcpu, sptep, gfn);
2547 }
1c4f1fd6 2548 }
cb9aaa30 2549
f3ac1a4b 2550 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2551}
2552
6aa8b732
AK
2553static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2554{
e676505a 2555 mmu_free_roots(vcpu);
6aa8b732
AK
2556}
2557
a052b42b
XG
2558static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2559{
2560 int bit7;
2561
2562 bit7 = (gpte >> 7) & 1;
2563 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2564}
2565
957ed9ef
XG
2566static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2567 bool no_dirty_log)
2568{
2569 struct kvm_memory_slot *slot;
957ed9ef 2570
5d163b1c 2571 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2572 if (!slot)
6c8ee57b 2573 return KVM_PFN_ERR_FAULT;
957ed9ef 2574
037d92dc 2575 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2576}
2577
a052b42b
XG
2578static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2579 struct kvm_mmu_page *sp, u64 *spte,
2580 u64 gpte)
2581{
2582 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2583 goto no_present;
2584
2585 if (!is_present_gpte(gpte))
2586 goto no_present;
2587
2588 if (!(gpte & PT_ACCESSED_MASK))
2589 goto no_present;
2590
2591 return false;
2592
2593no_present:
2594 drop_spte(vcpu->kvm, spte);
2595 return true;
2596}
2597
957ed9ef
XG
2598static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2599 struct kvm_mmu_page *sp,
2600 u64 *start, u64 *end)
2601{
2602 struct page *pages[PTE_PREFETCH_NUM];
2603 unsigned access = sp->role.access;
2604 int i, ret;
2605 gfn_t gfn;
2606
2607 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2608 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2609 return -1;
2610
2611 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2612 if (ret <= 0)
2613 return -1;
2614
2615 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2616 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2617 sp->role.level, gfn, page_to_pfn(pages[i]),
2618 true, true);
957ed9ef
XG
2619
2620 return 0;
2621}
2622
2623static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2624 struct kvm_mmu_page *sp, u64 *sptep)
2625{
2626 u64 *spte, *start = NULL;
2627 int i;
2628
2629 WARN_ON(!sp->role.direct);
2630
2631 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2632 spte = sp->spt + i;
2633
2634 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2635 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2636 if (!start)
2637 continue;
2638 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2639 break;
2640 start = NULL;
2641 } else if (!start)
2642 start = spte;
2643 }
2644}
2645
2646static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2647{
2648 struct kvm_mmu_page *sp;
2649
2650 /*
2651 * Since it's no accessed bit on EPT, it's no way to
2652 * distinguish between actually accessed translations
2653 * and prefetched, so disable pte prefetch if EPT is
2654 * enabled.
2655 */
2656 if (!shadow_accessed_mask)
2657 return;
2658
2659 sp = page_header(__pa(sptep));
2660 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2661 return;
2662
2663 __direct_pte_prefetch(vcpu, sp, sptep);
2664}
2665
9f652d21 2666static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2667 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2668 bool prefault)
140754bc 2669{
9f652d21 2670 struct kvm_shadow_walk_iterator iterator;
140754bc 2671 struct kvm_mmu_page *sp;
b90a0e6c 2672 int emulate = 0;
140754bc 2673 gfn_t pseudo_gfn;
6aa8b732 2674
9f652d21 2675 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2676 if (iterator.level == level) {
f7616203 2677 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2678 write, &emulate, level, gfn, pfn,
2679 prefault, map_writable);
957ed9ef 2680 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2681 ++vcpu->stat.pf_fixed;
2682 break;
6aa8b732
AK
2683 }
2684
c3707958 2685 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2686 u64 base_addr = iterator.addr;
2687
2688 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2689 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2690 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2691 iterator.level - 1,
2692 1, ACC_ALL, iterator.sptep);
140754bc 2693
24db2734 2694 link_shadow_page(iterator.sptep, sp);
9f652d21
AK
2695 }
2696 }
b90a0e6c 2697 return emulate;
6aa8b732
AK
2698}
2699
77db5cbd 2700static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2701{
77db5cbd
HY
2702 siginfo_t info;
2703
2704 info.si_signo = SIGBUS;
2705 info.si_errno = 0;
2706 info.si_code = BUS_MCEERR_AR;
2707 info.si_addr = (void __user *)address;
2708 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2709
77db5cbd 2710 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2711}
2712
d7c55201 2713static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2714{
4d8b81ab
XG
2715 /*
2716 * Do not cache the mmio info caused by writing the readonly gfn
2717 * into the spte otherwise read access on readonly gfn also can
2718 * caused mmio page fault and treat it as mmio access.
2719 * Return 1 to tell kvm to emulate it.
2720 */
2721 if (pfn == KVM_PFN_ERR_RO_FAULT)
2722 return 1;
2723
e6c1502b 2724 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2725 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2726 return 0;
d7c55201 2727 }
edba23e5 2728
d7c55201 2729 return -EFAULT;
bf998156
HY
2730}
2731
936a5fe6
AA
2732static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2733 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2734{
2735 pfn_t pfn = *pfnp;
2736 gfn_t gfn = *gfnp;
2737 int level = *levelp;
2738
2739 /*
2740 * Check if it's a transparent hugepage. If this would be an
2741 * hugetlbfs page, level wouldn't be set to
2742 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2743 * here.
2744 */
81c52c56 2745 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
936a5fe6
AA
2746 level == PT_PAGE_TABLE_LEVEL &&
2747 PageTransCompound(pfn_to_page(pfn)) &&
2748 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2749 unsigned long mask;
2750 /*
2751 * mmu_notifier_retry was successful and we hold the
2752 * mmu_lock here, so the pmd can't become splitting
2753 * from under us, and in turn
2754 * __split_huge_page_refcount() can't run from under
2755 * us and we can safely transfer the refcount from
2756 * PG_tail to PG_head as we switch the pfn to tail to
2757 * head.
2758 */
2759 *levelp = level = PT_DIRECTORY_LEVEL;
2760 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2761 VM_BUG_ON((gfn & mask) != (pfn & mask));
2762 if (pfn & mask) {
2763 gfn &= ~mask;
2764 *gfnp = gfn;
2765 kvm_release_pfn_clean(pfn);
2766 pfn &= ~mask;
c3586667 2767 kvm_get_pfn(pfn);
936a5fe6
AA
2768 *pfnp = pfn;
2769 }
2770 }
2771}
2772
d7c55201
XG
2773static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2774 pfn_t pfn, unsigned access, int *ret_val)
2775{
2776 bool ret = true;
2777
2778 /* The pfn is invalid, report the error! */
81c52c56 2779 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2780 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2781 goto exit;
2782 }
2783
ce88decf 2784 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2785 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2786
2787 ret = false;
2788exit:
2789 return ret;
2790}
2791
c7ba5b48
XG
2792static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2793{
2794 /*
2795 * #PF can be fast only if the shadow page table is present and it
2796 * is caused by write-protect, that means we just need change the
2797 * W bit of the spte which can be done out of mmu-lock.
2798 */
2799 if (!(error_code & PFERR_PRESENT_MASK) ||
2800 !(error_code & PFERR_WRITE_MASK))
2801 return false;
2802
2803 return true;
2804}
2805
2806static bool
2807fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2808{
2809 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2810 gfn_t gfn;
2811
2812 WARN_ON(!sp->role.direct);
2813
2814 /*
2815 * The gfn of direct spte is stable since it is calculated
2816 * by sp->gfn.
2817 */
2818 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2819
2820 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2821 mark_page_dirty(vcpu->kvm, gfn);
2822
2823 return true;
2824}
2825
2826/*
2827 * Return value:
2828 * - true: let the vcpu to access on the same address again.
2829 * - false: let the real page fault path to fix it.
2830 */
2831static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2832 u32 error_code)
2833{
2834 struct kvm_shadow_walk_iterator iterator;
2835 bool ret = false;
2836 u64 spte = 0ull;
2837
2838 if (!page_fault_can_be_fast(vcpu, error_code))
2839 return false;
2840
2841 walk_shadow_page_lockless_begin(vcpu);
2842 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2843 if (!is_shadow_present_pte(spte) || iterator.level < level)
2844 break;
2845
2846 /*
2847 * If the mapping has been changed, let the vcpu fault on the
2848 * same address again.
2849 */
2850 if (!is_rmap_spte(spte)) {
2851 ret = true;
2852 goto exit;
2853 }
2854
2855 if (!is_last_spte(spte, level))
2856 goto exit;
2857
2858 /*
2859 * Check if it is a spurious fault caused by TLB lazily flushed.
2860 *
2861 * Need not check the access of upper level table entries since
2862 * they are always ACC_ALL.
2863 */
2864 if (is_writable_pte(spte)) {
2865 ret = true;
2866 goto exit;
2867 }
2868
2869 /*
2870 * Currently, to simplify the code, only the spte write-protected
2871 * by dirty-log can be fast fixed.
2872 */
2873 if (!spte_is_locklessly_modifiable(spte))
2874 goto exit;
2875
2876 /*
2877 * Currently, fast page fault only works for direct mapping since
2878 * the gfn is not stable for indirect shadow page.
2879 * See Documentation/virtual/kvm/locking.txt to get more detail.
2880 */
2881 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2882exit:
a72faf25
XG
2883 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2884 spte, ret);
c7ba5b48
XG
2885 walk_shadow_page_lockless_end(vcpu);
2886
2887 return ret;
2888}
2889
78b2c54a 2890static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 2891 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 2892static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2893
c7ba5b48
XG
2894static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2895 gfn_t gfn, bool prefault)
10589a46
MT
2896{
2897 int r;
852e3c19 2898 int level;
936a5fe6 2899 int force_pt_level;
35149e21 2900 pfn_t pfn;
e930bffe 2901 unsigned long mmu_seq;
c7ba5b48 2902 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2903
936a5fe6
AA
2904 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2905 if (likely(!force_pt_level)) {
2906 level = mapping_level(vcpu, gfn);
2907 /*
2908 * This path builds a PAE pagetable - so we can map
2909 * 2mb pages at maximum. Therefore check if the level
2910 * is larger than that.
2911 */
2912 if (level > PT_DIRECTORY_LEVEL)
2913 level = PT_DIRECTORY_LEVEL;
852e3c19 2914
936a5fe6
AA
2915 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2916 } else
2917 level = PT_PAGE_TABLE_LEVEL;
05da4558 2918
c7ba5b48
XG
2919 if (fast_page_fault(vcpu, v, level, error_code))
2920 return 0;
2921
e930bffe 2922 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2923 smp_rmb();
060c2abe 2924
78b2c54a 2925 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2926 return 0;
aaee2c94 2927
d7c55201
XG
2928 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2929 return r;
d196e343 2930
aaee2c94 2931 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2932 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2933 goto out_unlock;
450e0b41 2934 make_mmu_pages_available(vcpu);
936a5fe6
AA
2935 if (likely(!force_pt_level))
2936 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2937 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2938 prefault);
aaee2c94
MT
2939 spin_unlock(&vcpu->kvm->mmu_lock);
2940
aaee2c94 2941
10589a46 2942 return r;
e930bffe
AA
2943
2944out_unlock:
2945 spin_unlock(&vcpu->kvm->mmu_lock);
2946 kvm_release_pfn_clean(pfn);
2947 return 0;
10589a46
MT
2948}
2949
2950
17ac10ad
AK
2951static void mmu_free_roots(struct kvm_vcpu *vcpu)
2952{
2953 int i;
4db35314 2954 struct kvm_mmu_page *sp;
d98ba053 2955 LIST_HEAD(invalid_list);
17ac10ad 2956
ad312c7c 2957 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2958 return;
35af577a 2959
81407ca5
JR
2960 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2961 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2962 vcpu->arch.mmu.direct_map)) {
ad312c7c 2963 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2964
35af577a 2965 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
2966 sp = page_header(root);
2967 --sp->root_count;
d98ba053
XG
2968 if (!sp->root_count && sp->role.invalid) {
2969 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2970 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2971 }
aaee2c94 2972 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 2973 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2974 return;
2975 }
35af577a
GN
2976
2977 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 2978 for (i = 0; i < 4; ++i) {
ad312c7c 2979 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2980
417726a3 2981 if (root) {
417726a3 2982 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2983 sp = page_header(root);
2984 --sp->root_count;
2e53d63a 2985 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2986 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2987 &invalid_list);
417726a3 2988 }
ad312c7c 2989 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2990 }
d98ba053 2991 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2992 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2993 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2994}
2995
8986ecc0
MT
2996static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2997{
2998 int ret = 0;
2999
3000 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3001 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3002 ret = 1;
3003 }
3004
3005 return ret;
3006}
3007
651dd37a
JR
3008static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3009{
3010 struct kvm_mmu_page *sp;
7ebaf15e 3011 unsigned i;
651dd37a
JR
3012
3013 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3014 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3015 make_mmu_pages_available(vcpu);
651dd37a
JR
3016 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3017 1, ACC_ALL, NULL);
3018 ++sp->root_count;
3019 spin_unlock(&vcpu->kvm->mmu_lock);
3020 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3021 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3022 for (i = 0; i < 4; ++i) {
3023 hpa_t root = vcpu->arch.mmu.pae_root[i];
3024
3025 ASSERT(!VALID_PAGE(root));
3026 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3027 make_mmu_pages_available(vcpu);
649497d1
AK
3028 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3029 i << 30,
651dd37a
JR
3030 PT32_ROOT_LEVEL, 1, ACC_ALL,
3031 NULL);
3032 root = __pa(sp->spt);
3033 ++sp->root_count;
3034 spin_unlock(&vcpu->kvm->mmu_lock);
3035 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3036 }
6292757f 3037 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3038 } else
3039 BUG();
3040
3041 return 0;
3042}
3043
3044static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3045{
4db35314 3046 struct kvm_mmu_page *sp;
81407ca5
JR
3047 u64 pdptr, pm_mask;
3048 gfn_t root_gfn;
3049 int i;
3bb65a22 3050
5777ed34 3051 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3052
651dd37a
JR
3053 if (mmu_check_root(vcpu, root_gfn))
3054 return 1;
3055
3056 /*
3057 * Do we shadow a long mode page table? If so we need to
3058 * write-protect the guests page table root.
3059 */
3060 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3061 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
3062
3063 ASSERT(!VALID_PAGE(root));
651dd37a 3064
8facbbff 3065 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3066 make_mmu_pages_available(vcpu);
651dd37a
JR
3067 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3068 0, ACC_ALL, NULL);
4db35314
AK
3069 root = __pa(sp->spt);
3070 ++sp->root_count;
8facbbff 3071 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3072 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3073 return 0;
17ac10ad 3074 }
f87f9288 3075
651dd37a
JR
3076 /*
3077 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3078 * or a PAE 3-level page table. In either case we need to be aware that
3079 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3080 */
81407ca5
JR
3081 pm_mask = PT_PRESENT_MASK;
3082 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3083 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3084
17ac10ad 3085 for (i = 0; i < 4; ++i) {
ad312c7c 3086 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
3087
3088 ASSERT(!VALID_PAGE(root));
ad312c7c 3089 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3090 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3091 if (!is_present_gpte(pdptr)) {
ad312c7c 3092 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3093 continue;
3094 }
6de4f3ad 3095 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3096 if (mmu_check_root(vcpu, root_gfn))
3097 return 1;
5a7388c2 3098 }
8facbbff 3099 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3100 make_mmu_pages_available(vcpu);
4db35314 3101 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3102 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3103 ACC_ALL, NULL);
4db35314
AK
3104 root = __pa(sp->spt);
3105 ++sp->root_count;
8facbbff
AK
3106 spin_unlock(&vcpu->kvm->mmu_lock);
3107
81407ca5 3108 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3109 }
6292757f 3110 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3111
3112 /*
3113 * If we shadow a 32 bit page table with a long mode page
3114 * table we enter this path.
3115 */
3116 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3117 if (vcpu->arch.mmu.lm_root == NULL) {
3118 /*
3119 * The additional page necessary for this is only
3120 * allocated on demand.
3121 */
3122
3123 u64 *lm_root;
3124
3125 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3126 if (lm_root == NULL)
3127 return 1;
3128
3129 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3130
3131 vcpu->arch.mmu.lm_root = lm_root;
3132 }
3133
3134 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3135 }
3136
8986ecc0 3137 return 0;
17ac10ad
AK
3138}
3139
651dd37a
JR
3140static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3141{
3142 if (vcpu->arch.mmu.direct_map)
3143 return mmu_alloc_direct_roots(vcpu);
3144 else
3145 return mmu_alloc_shadow_roots(vcpu);
3146}
3147
0ba73cda
MT
3148static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3149{
3150 int i;
3151 struct kvm_mmu_page *sp;
3152
81407ca5
JR
3153 if (vcpu->arch.mmu.direct_map)
3154 return;
3155
0ba73cda
MT
3156 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3157 return;
6903074c 3158
bebb106a 3159 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3160 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3161 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3162 hpa_t root = vcpu->arch.mmu.root_hpa;
3163 sp = page_header(root);
3164 mmu_sync_children(vcpu, sp);
0375f7fa 3165 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3166 return;
3167 }
3168 for (i = 0; i < 4; ++i) {
3169 hpa_t root = vcpu->arch.mmu.pae_root[i];
3170
8986ecc0 3171 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3172 root &= PT64_BASE_ADDR_MASK;
3173 sp = page_header(root);
3174 mmu_sync_children(vcpu, sp);
3175 }
3176 }
0375f7fa 3177 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3178}
3179
3180void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3181{
3182 spin_lock(&vcpu->kvm->mmu_lock);
3183 mmu_sync_roots(vcpu);
6cffe8ca 3184 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3185}
3186
1871c602 3187static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3188 u32 access, struct x86_exception *exception)
6aa8b732 3189{
ab9ae313
AK
3190 if (exception)
3191 exception->error_code = 0;
6aa8b732
AK
3192 return vaddr;
3193}
3194
6539e738 3195static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3196 u32 access,
3197 struct x86_exception *exception)
6539e738 3198{
ab9ae313
AK
3199 if (exception)
3200 exception->error_code = 0;
6539e738
JR
3201 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3202}
3203
ce88decf
XG
3204static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3205{
3206 if (direct)
3207 return vcpu_match_mmio_gpa(vcpu, addr);
3208
3209 return vcpu_match_mmio_gva(vcpu, addr);
3210}
3211
3212
3213/*
3214 * On direct hosts, the last spte is only allows two states
3215 * for mmio page fault:
3216 * - It is the mmio spte
3217 * - It is zapped or it is being zapped.
3218 *
3219 * This function completely checks the spte when the last spte
3220 * is not the mmio spte.
3221 */
3222static bool check_direct_spte_mmio_pf(u64 spte)
3223{
3224 return __check_direct_spte_mmio_pf(spte);
3225}
3226
3227static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3228{
3229 struct kvm_shadow_walk_iterator iterator;
3230 u64 spte = 0ull;
3231
3232 walk_shadow_page_lockless_begin(vcpu);
3233 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3234 if (!is_shadow_present_pte(spte))
3235 break;
3236 walk_shadow_page_lockless_end(vcpu);
3237
3238 return spte;
3239}
3240
ce88decf
XG
3241int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3242{
3243 u64 spte;
3244
3245 if (quickly_check_mmio_pf(vcpu, addr, direct))
b37fbea6 3246 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3247
3248 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3249
3250 if (is_mmio_spte(spte)) {
3251 gfn_t gfn = get_mmio_spte_gfn(spte);
3252 unsigned access = get_mmio_spte_access(spte);
3253
f8f55942
XG
3254 if (!check_mmio_spte(vcpu->kvm, spte))
3255 return RET_MMIO_PF_INVALID;
3256
ce88decf
XG
3257 if (direct)
3258 addr = 0;
4f022648
XG
3259
3260 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3261 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3262 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3263 }
3264
3265 /*
3266 * It's ok if the gva is remapped by other cpus on shadow guest,
3267 * it's a BUG if the gfn is not a mmio page.
3268 */
3269 if (direct && !check_direct_spte_mmio_pf(spte))
b37fbea6 3270 return RET_MMIO_PF_BUG;
ce88decf
XG
3271
3272 /*
3273 * If the page table is zapped by other cpus, let CPU fault again on
3274 * the address.
3275 */
b37fbea6 3276 return RET_MMIO_PF_RETRY;
ce88decf
XG
3277}
3278EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3279
3280static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3281 u32 error_code, bool direct)
3282{
3283 int ret;
3284
3285 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
b37fbea6 3286 WARN_ON(ret == RET_MMIO_PF_BUG);
ce88decf
XG
3287 return ret;
3288}
3289
6aa8b732 3290static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3291 u32 error_code, bool prefault)
6aa8b732 3292{
e833240f 3293 gfn_t gfn;
e2dec939 3294 int r;
6aa8b732 3295
b8688d51 3296 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3297
f8f55942
XG
3298 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3299 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3300
3301 if (likely(r != RET_MMIO_PF_INVALID))
3302 return r;
3303 }
ce88decf 3304
e2dec939
AK
3305 r = mmu_topup_memory_caches(vcpu);
3306 if (r)
3307 return r;
714b93da 3308
6aa8b732 3309 ASSERT(vcpu);
ad312c7c 3310 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3311
e833240f 3312 gfn = gva >> PAGE_SHIFT;
6aa8b732 3313
e833240f 3314 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3315 error_code, gfn, prefault);
6aa8b732
AK
3316}
3317
7e1fbeac 3318static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3319{
3320 struct kvm_arch_async_pf arch;
fb67e14f 3321
7c90705b 3322 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3323 arch.gfn = gfn;
c4806acd 3324 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3325 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3326
3327 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3328}
3329
3330static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3331{
3332 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3333 kvm_event_needs_reinjection(vcpu)))
3334 return false;
3335
3336 return kvm_x86_ops->interrupt_allowed(vcpu);
3337}
3338
78b2c54a 3339static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3340 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3341{
3342 bool async;
3343
612819c3 3344 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3345
3346 if (!async)
3347 return false; /* *pfn has correct page already */
3348
78b2c54a 3349 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3350 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3351 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3352 trace_kvm_async_pf_doublefault(gva, gfn);
3353 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3354 return true;
3355 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3356 return true;
3357 }
3358
612819c3 3359 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3360
3361 return false;
3362}
3363
56028d08 3364static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3365 bool prefault)
fb72d167 3366{
35149e21 3367 pfn_t pfn;
fb72d167 3368 int r;
852e3c19 3369 int level;
936a5fe6 3370 int force_pt_level;
05da4558 3371 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3372 unsigned long mmu_seq;
612819c3
MT
3373 int write = error_code & PFERR_WRITE_MASK;
3374 bool map_writable;
fb72d167
JR
3375
3376 ASSERT(vcpu);
3377 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3378
f8f55942
XG
3379 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3380 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3381
3382 if (likely(r != RET_MMIO_PF_INVALID))
3383 return r;
3384 }
ce88decf 3385
fb72d167
JR
3386 r = mmu_topup_memory_caches(vcpu);
3387 if (r)
3388 return r;
3389
936a5fe6
AA
3390 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3391 if (likely(!force_pt_level)) {
3392 level = mapping_level(vcpu, gfn);
3393 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3394 } else
3395 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3396
c7ba5b48
XG
3397 if (fast_page_fault(vcpu, gpa, level, error_code))
3398 return 0;
3399
e930bffe 3400 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3401 smp_rmb();
af585b92 3402
78b2c54a 3403 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3404 return 0;
3405
d7c55201
XG
3406 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3407 return r;
3408
fb72d167 3409 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3410 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3411 goto out_unlock;
450e0b41 3412 make_mmu_pages_available(vcpu);
936a5fe6
AA
3413 if (likely(!force_pt_level))
3414 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3415 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3416 level, gfn, pfn, prefault);
fb72d167 3417 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3418
3419 return r;
e930bffe
AA
3420
3421out_unlock:
3422 spin_unlock(&vcpu->kvm->mmu_lock);
3423 kvm_release_pfn_clean(pfn);
3424 return 0;
fb72d167
JR
3425}
3426
6aa8b732
AK
3427static void nonpaging_free(struct kvm_vcpu *vcpu)
3428{
17ac10ad 3429 mmu_free_roots(vcpu);
6aa8b732
AK
3430}
3431
52fde8df
JR
3432static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3433 struct kvm_mmu *context)
6aa8b732 3434{
6aa8b732
AK
3435 context->new_cr3 = nonpaging_new_cr3;
3436 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3437 context->gva_to_gpa = nonpaging_gva_to_gpa;
3438 context->free = nonpaging_free;
e8bc217a 3439 context->sync_page = nonpaging_sync_page;
a7052897 3440 context->invlpg = nonpaging_invlpg;
0f53b5b1 3441 context->update_pte = nonpaging_update_pte;
cea0f0e7 3442 context->root_level = 0;
6aa8b732 3443 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3444 context->root_hpa = INVALID_PAGE;
c5a78f2b 3445 context->direct_map = true;
2d48a985 3446 context->nx = false;
6aa8b732
AK
3447 return 0;
3448}
3449
d835dfec 3450void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3451{
1165f5fe 3452 ++vcpu->stat.tlb_flush;
a8eeb04a 3453 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3454}
3455
3456static void paging_new_cr3(struct kvm_vcpu *vcpu)
3457{
9f8fe504 3458 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3459 mmu_free_roots(vcpu);
6aa8b732
AK
3460}
3461
5777ed34
JR
3462static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3463{
9f8fe504 3464 return kvm_read_cr3(vcpu);
5777ed34
JR
3465}
3466
6389ee94
AK
3467static void inject_page_fault(struct kvm_vcpu *vcpu,
3468 struct x86_exception *fault)
6aa8b732 3469{
6389ee94 3470 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3471}
3472
6aa8b732
AK
3473static void paging_free(struct kvm_vcpu *vcpu)
3474{
3475 nonpaging_free(vcpu);
3476}
3477
8ea667f2
AK
3478static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3479{
3480 unsigned mask;
3481
3482 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3483
3484 mask = (unsigned)~ACC_WRITE_MASK;
3485 /* Allow write access to dirty gptes */
3486 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3487 *access &= mask;
3488}
3489
f2fd125d
XG
3490static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3491 unsigned access, int *nr_present)
ce88decf
XG
3492{
3493 if (unlikely(is_mmio_spte(*sptep))) {
3494 if (gfn != get_mmio_spte_gfn(*sptep)) {
3495 mmu_spte_clear_no_track(sptep);
3496 return true;
3497 }
3498
3499 (*nr_present)++;
f2fd125d 3500 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
3501 return true;
3502 }
3503
3504 return false;
3505}
3506
3d34adec
AK
3507static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3508{
3509 unsigned access;
3510
3511 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3512 access &= ~(gpte >> PT64_NX_SHIFT);
3513
3514 return access;
3515}
3516
6fd01b71
AK
3517static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3518{
3519 unsigned index;
3520
3521 index = level - 1;
3522 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3523 return mmu->last_pte_bitmap & (1 << index);
3524}
3525
6aa8b732
AK
3526#define PTTYPE 64
3527#include "paging_tmpl.h"
3528#undef PTTYPE
3529
3530#define PTTYPE 32
3531#include "paging_tmpl.h"
3532#undef PTTYPE
3533
52fde8df 3534static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3535 struct kvm_mmu *context)
82725b20 3536{
82725b20
DE
3537 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3538 u64 exb_bit_rsvd = 0;
3539
2d48a985 3540 if (!context->nx)
82725b20 3541 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3542 switch (context->root_level) {
82725b20
DE
3543 case PT32_ROOT_LEVEL:
3544 /* no rsvd bits for 2 level 4K page table entries */
3545 context->rsvd_bits_mask[0][1] = 0;
3546 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3547 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3548
3549 if (!is_pse(vcpu)) {
3550 context->rsvd_bits_mask[1][1] = 0;
3551 break;
3552 }
3553
82725b20
DE
3554 if (is_cpuid_PSE36())
3555 /* 36bits PSE 4MB page */
3556 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3557 else
3558 /* 32 bits PSE 4MB page */
3559 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3560 break;
3561 case PT32E_ROOT_LEVEL:
20c466b5
DE
3562 context->rsvd_bits_mask[0][2] =
3563 rsvd_bits(maxphyaddr, 63) |
3564 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3565 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3566 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3567 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3568 rsvd_bits(maxphyaddr, 62); /* PTE */
3569 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3570 rsvd_bits(maxphyaddr, 62) |
3571 rsvd_bits(13, 20); /* large page */
f815bce8 3572 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3573 break;
3574 case PT64_ROOT_LEVEL:
3575 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3576 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3577 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3578 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3579 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3580 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3581 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3582 rsvd_bits(maxphyaddr, 51);
3583 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3584 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3585 rsvd_bits(maxphyaddr, 51) |
3586 rsvd_bits(13, 29);
82725b20 3587 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3588 rsvd_bits(maxphyaddr, 51) |
3589 rsvd_bits(13, 20); /* large page */
f815bce8 3590 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3591 break;
3592 }
3593}
3594
97d64b78
AK
3595static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3596{
3597 unsigned bit, byte, pfec;
3598 u8 map;
3599 bool fault, x, w, u, wf, uf, ff, smep;
3600
3601 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3602 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3603 pfec = byte << 1;
3604 map = 0;
3605 wf = pfec & PFERR_WRITE_MASK;
3606 uf = pfec & PFERR_USER_MASK;
3607 ff = pfec & PFERR_FETCH_MASK;
3608 for (bit = 0; bit < 8; ++bit) {
3609 x = bit & ACC_EXEC_MASK;
3610 w = bit & ACC_WRITE_MASK;
3611 u = bit & ACC_USER_MASK;
3612
3613 /* Not really needed: !nx will cause pte.nx to fault */
3614 x |= !mmu->nx;
3615 /* Allow supervisor writes if !cr0.wp */
3616 w |= !is_write_protection(vcpu) && !uf;
3617 /* Disallow supervisor fetches of user code if cr4.smep */
3618 x &= !(smep && u && !uf);
3619
3620 fault = (ff && !x) || (uf && !u) || (wf && !w);
3621 map |= fault << bit;
3622 }
3623 mmu->permissions[byte] = map;
3624 }
3625}
3626
6fd01b71
AK
3627static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3628{
3629 u8 map;
3630 unsigned level, root_level = mmu->root_level;
3631 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3632
3633 if (root_level == PT32E_ROOT_LEVEL)
3634 --root_level;
3635 /* PT_PAGE_TABLE_LEVEL always terminates */
3636 map = 1 | (1 << ps_set_index);
3637 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3638 if (level <= PT_PDPE_LEVEL
3639 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3640 map |= 1 << (ps_set_index | (level - 1));
3641 }
3642 mmu->last_pte_bitmap = map;
3643}
3644
52fde8df
JR
3645static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3646 struct kvm_mmu *context,
3647 int level)
6aa8b732 3648{
2d48a985 3649 context->nx = is_nx(vcpu);
4d6931c3 3650 context->root_level = level;
2d48a985 3651
4d6931c3 3652 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3653 update_permission_bitmask(vcpu, context);
6fd01b71 3654 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3655
3656 ASSERT(is_pae(vcpu));
3657 context->new_cr3 = paging_new_cr3;
3658 context->page_fault = paging64_page_fault;
6aa8b732 3659 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3660 context->sync_page = paging64_sync_page;
a7052897 3661 context->invlpg = paging64_invlpg;
0f53b5b1 3662 context->update_pte = paging64_update_pte;
6aa8b732 3663 context->free = paging_free;
17ac10ad 3664 context->shadow_root_level = level;
17c3ba9d 3665 context->root_hpa = INVALID_PAGE;
c5a78f2b 3666 context->direct_map = false;
6aa8b732
AK
3667 return 0;
3668}
3669
52fde8df
JR
3670static int paging64_init_context(struct kvm_vcpu *vcpu,
3671 struct kvm_mmu *context)
17ac10ad 3672{
52fde8df 3673 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3674}
3675
52fde8df
JR
3676static int paging32_init_context(struct kvm_vcpu *vcpu,
3677 struct kvm_mmu *context)
6aa8b732 3678{
2d48a985 3679 context->nx = false;
4d6931c3 3680 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3681
4d6931c3 3682 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3683 update_permission_bitmask(vcpu, context);
6fd01b71 3684 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3685
3686 context->new_cr3 = paging_new_cr3;
3687 context->page_fault = paging32_page_fault;
6aa8b732
AK
3688 context->gva_to_gpa = paging32_gva_to_gpa;
3689 context->free = paging_free;
e8bc217a 3690 context->sync_page = paging32_sync_page;
a7052897 3691 context->invlpg = paging32_invlpg;
0f53b5b1 3692 context->update_pte = paging32_update_pte;
6aa8b732 3693 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3694 context->root_hpa = INVALID_PAGE;
c5a78f2b 3695 context->direct_map = false;
6aa8b732
AK
3696 return 0;
3697}
3698
52fde8df
JR
3699static int paging32E_init_context(struct kvm_vcpu *vcpu,
3700 struct kvm_mmu *context)
6aa8b732 3701{
52fde8df 3702 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3703}
3704
fb72d167
JR
3705static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3706{
14dfe855 3707 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3708
c445f8ef 3709 context->base_role.word = 0;
fb72d167
JR
3710 context->new_cr3 = nonpaging_new_cr3;
3711 context->page_fault = tdp_page_fault;
3712 context->free = nonpaging_free;
e8bc217a 3713 context->sync_page = nonpaging_sync_page;
a7052897 3714 context->invlpg = nonpaging_invlpg;
0f53b5b1 3715 context->update_pte = nonpaging_update_pte;
67253af5 3716 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3717 context->root_hpa = INVALID_PAGE;
c5a78f2b 3718 context->direct_map = true;
1c97f0a0 3719 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3720 context->get_cr3 = get_cr3;
e4e517b4 3721 context->get_pdptr = kvm_pdptr_read;
cb659db8 3722 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3723
3724 if (!is_paging(vcpu)) {
2d48a985 3725 context->nx = false;
fb72d167
JR
3726 context->gva_to_gpa = nonpaging_gva_to_gpa;
3727 context->root_level = 0;
3728 } else if (is_long_mode(vcpu)) {
2d48a985 3729 context->nx = is_nx(vcpu);
fb72d167 3730 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3731 reset_rsvds_bits_mask(vcpu, context);
3732 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3733 } else if (is_pae(vcpu)) {
2d48a985 3734 context->nx = is_nx(vcpu);
fb72d167 3735 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3736 reset_rsvds_bits_mask(vcpu, context);
3737 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3738 } else {
2d48a985 3739 context->nx = false;
fb72d167 3740 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3741 reset_rsvds_bits_mask(vcpu, context);
3742 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3743 }
3744
97d64b78 3745 update_permission_bitmask(vcpu, context);
6fd01b71 3746 update_last_pte_bitmap(vcpu, context);
97d64b78 3747
fb72d167
JR
3748 return 0;
3749}
3750
52fde8df 3751int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3752{
a770f6f2 3753 int r;
411c588d 3754 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3755 ASSERT(vcpu);
ad312c7c 3756 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3757
3758 if (!is_paging(vcpu))
52fde8df 3759 r = nonpaging_init_context(vcpu, context);
a9058ecd 3760 else if (is_long_mode(vcpu))
52fde8df 3761 r = paging64_init_context(vcpu, context);
6aa8b732 3762 else if (is_pae(vcpu))
52fde8df 3763 r = paging32E_init_context(vcpu, context);
6aa8b732 3764 else
52fde8df 3765 r = paging32_init_context(vcpu, context);
a770f6f2 3766
2c9afa52 3767 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
5b7e0102 3768 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3769 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3770 vcpu->arch.mmu.base_role.smep_andnot_wp
3771 = smep && !is_write_protection(vcpu);
52fde8df
JR
3772
3773 return r;
3774}
3775EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3776
3777static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3778{
14dfe855 3779 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3780
14dfe855
JR
3781 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3782 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3783 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3784 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3785
3786 return r;
6aa8b732
AK
3787}
3788
02f59dc9
JR
3789static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3790{
3791 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3792
3793 g_context->get_cr3 = get_cr3;
e4e517b4 3794 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3795 g_context->inject_page_fault = kvm_inject_page_fault;
3796
3797 /*
3798 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3799 * translation of l2_gpa to l1_gpa addresses is done using the
3800 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3801 * functions between mmu and nested_mmu are swapped.
3802 */
3803 if (!is_paging(vcpu)) {
2d48a985 3804 g_context->nx = false;
02f59dc9
JR
3805 g_context->root_level = 0;
3806 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3807 } else if (is_long_mode(vcpu)) {
2d48a985 3808 g_context->nx = is_nx(vcpu);
02f59dc9 3809 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3810 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3811 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3812 } else if (is_pae(vcpu)) {
2d48a985 3813 g_context->nx = is_nx(vcpu);
02f59dc9 3814 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3815 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3816 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3817 } else {
2d48a985 3818 g_context->nx = false;
02f59dc9 3819 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3820 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3821 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3822 }
3823
97d64b78 3824 update_permission_bitmask(vcpu, g_context);
6fd01b71 3825 update_last_pte_bitmap(vcpu, g_context);
97d64b78 3826
02f59dc9
JR
3827 return 0;
3828}
3829
fb72d167
JR
3830static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3831{
02f59dc9
JR
3832 if (mmu_is_nested(vcpu))
3833 return init_kvm_nested_mmu(vcpu);
3834 else if (tdp_enabled)
fb72d167
JR
3835 return init_kvm_tdp_mmu(vcpu);
3836 else
3837 return init_kvm_softmmu(vcpu);
3838}
3839
6aa8b732
AK
3840static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3841{
3842 ASSERT(vcpu);
62ad0755
SY
3843 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3844 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3845 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3846}
3847
3848int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3849{
3850 destroy_kvm_mmu(vcpu);
f8f7e5ee 3851 return init_kvm_mmu(vcpu);
17c3ba9d 3852}
8668a3c4 3853EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3854
3855int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3856{
714b93da
AK
3857 int r;
3858
e2dec939 3859 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3860 if (r)
3861 goto out;
8986ecc0 3862 r = mmu_alloc_roots(vcpu);
e2858b4a 3863 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
3864 if (r)
3865 goto out;
3662cb1c 3866 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3867 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3868out:
3869 return r;
6aa8b732 3870}
17c3ba9d
AK
3871EXPORT_SYMBOL_GPL(kvm_mmu_load);
3872
3873void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3874{
3875 mmu_free_roots(vcpu);
3876}
4b16184c 3877EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3878
0028425f 3879static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3880 struct kvm_mmu_page *sp, u64 *spte,
3881 const void *new)
0028425f 3882{
30945387 3883 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3884 ++vcpu->kvm->stat.mmu_pde_zapped;
3885 return;
30945387 3886 }
0028425f 3887
4cee5764 3888 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3889 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3890}
3891
79539cec
AK
3892static bool need_remote_flush(u64 old, u64 new)
3893{
3894 if (!is_shadow_present_pte(old))
3895 return false;
3896 if (!is_shadow_present_pte(new))
3897 return true;
3898 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3899 return true;
3900 old ^= PT64_NX_MASK;
3901 new ^= PT64_NX_MASK;
3902 return (old & ~new & PT64_PERM_MASK) != 0;
3903}
3904
0671a8e7
XG
3905static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3906 bool remote_flush, bool local_flush)
79539cec 3907{
0671a8e7
XG
3908 if (zap_page)
3909 return;
3910
3911 if (remote_flush)
79539cec 3912 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3913 else if (local_flush)
79539cec
AK
3914 kvm_mmu_flush_tlb(vcpu);
3915}
3916
889e5cbc
XG
3917static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3918 const u8 *new, int *bytes)
da4a00f0 3919{
889e5cbc
XG
3920 u64 gentry;
3921 int r;
72016f3a 3922
72016f3a
AK
3923 /*
3924 * Assume that the pte write on a page table of the same type
49b26e26
XG
3925 * as the current vcpu paging mode since we update the sptes only
3926 * when they have the same mode.
72016f3a 3927 */
889e5cbc 3928 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3929 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3930 *gpa &= ~(gpa_t)7;
3931 *bytes = 8;
116eb3d3 3932 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
3933 if (r)
3934 gentry = 0;
08e850c6
AK
3935 new = (const u8 *)&gentry;
3936 }
3937
889e5cbc 3938 switch (*bytes) {
08e850c6
AK
3939 case 4:
3940 gentry = *(const u32 *)new;
3941 break;
3942 case 8:
3943 gentry = *(const u64 *)new;
3944 break;
3945 default:
3946 gentry = 0;
3947 break;
72016f3a
AK
3948 }
3949
889e5cbc
XG
3950 return gentry;
3951}
3952
3953/*
3954 * If we're seeing too many writes to a page, it may no longer be a page table,
3955 * or we may be forking, in which case it is better to unmap the page.
3956 */
a138fe75 3957static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3958{
a30f47cb
XG
3959 /*
3960 * Skip write-flooding detected for the sp whose level is 1, because
3961 * it can become unsync, then the guest page is not write-protected.
3962 */
f71fa31f 3963 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3964 return false;
3246af0e 3965
a30f47cb 3966 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3967}
3968
3969/*
3970 * Misaligned accesses are too much trouble to fix up; also, they usually
3971 * indicate a page is not used as a page table.
3972 */
3973static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3974 int bytes)
3975{
3976 unsigned offset, pte_size, misaligned;
3977
3978 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3979 gpa, bytes, sp->role.word);
3980
3981 offset = offset_in_page(gpa);
3982 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3983
3984 /*
3985 * Sometimes, the OS only writes the last one bytes to update status
3986 * bits, for example, in linux, andb instruction is used in clear_bit().
3987 */
3988 if (!(offset & (pte_size - 1)) && bytes == 1)
3989 return false;
3990
889e5cbc
XG
3991 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3992 misaligned |= bytes < 4;
3993
3994 return misaligned;
3995}
3996
3997static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3998{
3999 unsigned page_offset, quadrant;
4000 u64 *spte;
4001 int level;
4002
4003 page_offset = offset_in_page(gpa);
4004 level = sp->role.level;
4005 *nspte = 1;
4006 if (!sp->role.cr4_pae) {
4007 page_offset <<= 1; /* 32->64 */
4008 /*
4009 * A 32-bit pde maps 4MB while the shadow pdes map
4010 * only 2MB. So we need to double the offset again
4011 * and zap two pdes instead of one.
4012 */
4013 if (level == PT32_ROOT_LEVEL) {
4014 page_offset &= ~7; /* kill rounding error */
4015 page_offset <<= 1;
4016 *nspte = 2;
4017 }
4018 quadrant = page_offset >> PAGE_SHIFT;
4019 page_offset &= ~PAGE_MASK;
4020 if (quadrant != sp->role.quadrant)
4021 return NULL;
4022 }
4023
4024 spte = &sp->spt[page_offset / sizeof(*spte)];
4025 return spte;
4026}
4027
4028void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4029 const u8 *new, int bytes)
4030{
4031 gfn_t gfn = gpa >> PAGE_SHIFT;
4032 union kvm_mmu_page_role mask = { .word = 0 };
4033 struct kvm_mmu_page *sp;
889e5cbc
XG
4034 LIST_HEAD(invalid_list);
4035 u64 entry, gentry, *spte;
4036 int npte;
a30f47cb 4037 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
4038
4039 /*
4040 * If we don't have indirect shadow pages, it means no page is
4041 * write-protected, so we can exit simply.
4042 */
4043 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4044 return;
4045
4046 zap_page = remote_flush = local_flush = false;
4047
4048 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4049
4050 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4051
4052 /*
4053 * No need to care whether allocation memory is successful
4054 * or not since pte prefetch is skiped if it does not have
4055 * enough objects in the cache.
4056 */
4057 mmu_topup_memory_caches(vcpu);
4058
4059 spin_lock(&vcpu->kvm->mmu_lock);
4060 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4061 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4062
fa1de2bf 4063 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
b67bfe0d 4064 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4065 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4066 detect_write_flooding(sp)) {
0671a8e7 4067 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4068 &invalid_list);
4cee5764 4069 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4070 continue;
4071 }
889e5cbc
XG
4072
4073 spte = get_written_sptes(sp, gpa, &npte);
4074 if (!spte)
4075 continue;
4076
0671a8e7 4077 local_flush = true;
ac1b714e 4078 while (npte--) {
79539cec 4079 entry = *spte;
38e3b2b2 4080 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4081 if (gentry &&
4082 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4083 & mask.word) && rmap_can_add(vcpu))
7c562522 4084 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4085 if (need_remote_flush(entry, *spte))
0671a8e7 4086 remote_flush = true;
ac1b714e 4087 ++spte;
9b7a0325 4088 }
9b7a0325 4089 }
0671a8e7 4090 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4091 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4092 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4093 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4094}
4095
a436036b
AK
4096int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4097{
10589a46
MT
4098 gpa_t gpa;
4099 int r;
a436036b 4100
c5a78f2b 4101 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4102 return 0;
4103
1871c602 4104 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4105
10589a46 4106 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4107
10589a46 4108 return r;
a436036b 4109}
577bdc49 4110EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4111
81f4f76b 4112static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4113{
d98ba053 4114 LIST_HEAD(invalid_list);
103ad25a 4115
81f4f76b
TY
4116 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4117 return;
4118
5da59607
TY
4119 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4120 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4121 break;
ebeace86 4122
4cee5764 4123 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4124 }
aa6bd187 4125 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4126}
ebeace86 4127
1cb3f3ae
XG
4128static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4129{
4130 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4131 return vcpu_match_mmio_gpa(vcpu, addr);
4132
4133 return vcpu_match_mmio_gva(vcpu, addr);
4134}
4135
dc25e89e
AP
4136int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4137 void *insn, int insn_len)
3067714c 4138{
1cb3f3ae 4139 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4140 enum emulation_result er;
4141
56028d08 4142 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4143 if (r < 0)
4144 goto out;
4145
4146 if (!r) {
4147 r = 1;
4148 goto out;
4149 }
4150
1cb3f3ae
XG
4151 if (is_mmio_page_fault(vcpu, cr2))
4152 emulation_type = 0;
4153
4154 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4155
4156 switch (er) {
4157 case EMULATE_DONE:
4158 return 1;
4159 case EMULATE_DO_MMIO:
4160 ++vcpu->stat.mmio_exits;
6d77dbfc 4161 /* fall through */
3067714c 4162 case EMULATE_FAIL:
3f5d18a9 4163 return 0;
3067714c
AK
4164 default:
4165 BUG();
4166 }
4167out:
3067714c
AK
4168 return r;
4169}
4170EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4171
a7052897
MT
4172void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4173{
a7052897 4174 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4175 kvm_mmu_flush_tlb(vcpu);
4176 ++vcpu->stat.invlpg;
4177}
4178EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4179
18552672
JR
4180void kvm_enable_tdp(void)
4181{
4182 tdp_enabled = true;
4183}
4184EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4185
5f4cb662
JR
4186void kvm_disable_tdp(void)
4187{
4188 tdp_enabled = false;
4189}
4190EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4191
6aa8b732
AK
4192static void free_mmu_pages(struct kvm_vcpu *vcpu)
4193{
ad312c7c 4194 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4195 if (vcpu->arch.mmu.lm_root != NULL)
4196 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4197}
4198
4199static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4200{
17ac10ad 4201 struct page *page;
6aa8b732
AK
4202 int i;
4203
4204 ASSERT(vcpu);
4205
17ac10ad
AK
4206 /*
4207 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4208 * Therefore we need to allocate shadow page tables in the first
4209 * 4GB of memory, which happens to fit the DMA32 zone.
4210 */
4211 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4212 if (!page)
d7fa6ab2
WY
4213 return -ENOMEM;
4214
ad312c7c 4215 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4216 for (i = 0; i < 4; ++i)
ad312c7c 4217 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4218
6aa8b732 4219 return 0;
6aa8b732
AK
4220}
4221
8018c27b 4222int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4223{
6aa8b732 4224 ASSERT(vcpu);
e459e322
XG
4225
4226 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4227 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4228 vcpu->arch.mmu.translate_gpa = translate_gpa;
4229 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4230
8018c27b
IM
4231 return alloc_mmu_pages(vcpu);
4232}
6aa8b732 4233
8018c27b
IM
4234int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4235{
4236 ASSERT(vcpu);
ad312c7c 4237 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4238
8018c27b 4239 return init_kvm_mmu(vcpu);
6aa8b732
AK
4240}
4241
90cb0529 4242void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4243{
b99db1d3
TY
4244 struct kvm_memory_slot *memslot;
4245 gfn_t last_gfn;
4246 int i;
6aa8b732 4247
b99db1d3
TY
4248 memslot = id_to_memslot(kvm->memslots, slot);
4249 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4250
9d1beefb
TY
4251 spin_lock(&kvm->mmu_lock);
4252
b99db1d3
TY
4253 for (i = PT_PAGE_TABLE_LEVEL;
4254 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4255 unsigned long *rmapp;
4256 unsigned long last_index, index;
6aa8b732 4257
b99db1d3
TY
4258 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4259 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4260
b99db1d3
TY
4261 for (index = 0; index <= last_index; ++index, ++rmapp) {
4262 if (*rmapp)
4263 __rmap_write_protect(kvm, rmapp, false);
6b81b05e
TY
4264
4265 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4266 kvm_flush_remote_tlbs(kvm);
4267 cond_resched_lock(&kvm->mmu_lock);
4268 }
8234b22e 4269 }
6aa8b732 4270 }
b99db1d3 4271
171d595d 4272 kvm_flush_remote_tlbs(kvm);
9d1beefb 4273 spin_unlock(&kvm->mmu_lock);
6aa8b732 4274}
37a7d8b0 4275
e7d11c7a 4276#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4277static void kvm_zap_obsolete_pages(struct kvm *kvm)
4278{
4279 struct kvm_mmu_page *sp, *node;
e7d11c7a 4280 int batch = 0;
5304b8d3
XG
4281
4282restart:
4283 list_for_each_entry_safe_reverse(sp, node,
4284 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4285 int ret;
4286
5304b8d3
XG
4287 /*
4288 * No obsolete page exists before new created page since
4289 * active_mmu_pages is the FIFO list.
4290 */
4291 if (!is_obsolete_sp(kvm, sp))
4292 break;
4293
4294 /*
5304b8d3
XG
4295 * Since we are reversely walking the list and the invalid
4296 * list will be moved to the head, skip the invalid page
4297 * can help us to avoid the infinity list walking.
4298 */
4299 if (sp->role.invalid)
4300 continue;
4301
f34d251d
XG
4302 /*
4303 * Need not flush tlb since we only zap the sp with invalid
4304 * generation number.
4305 */
e7d11c7a 4306 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4307 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4308 batch = 0;
5304b8d3
XG
4309 goto restart;
4310 }
4311
365c8868
XG
4312 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4313 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4314 batch += ret;
4315
4316 if (ret)
5304b8d3
XG
4317 goto restart;
4318 }
4319
f34d251d
XG
4320 /*
4321 * Should flush tlb before free page tables since lockless-walking
4322 * may use the pages.
4323 */
365c8868 4324 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4325}
4326
4327/*
4328 * Fast invalidate all shadow pages and use lock-break technique
4329 * to zap obsolete pages.
4330 *
4331 * It's required when memslot is being deleted or VM is being
4332 * destroyed, in these cases, we should ensure that KVM MMU does
4333 * not use any resource of the being-deleted slot or all slots
4334 * after calling the function.
4335 */
4336void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4337{
4338 spin_lock(&kvm->mmu_lock);
35006126 4339 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4340 kvm->arch.mmu_valid_gen++;
4341
f34d251d
XG
4342 /*
4343 * Notify all vcpus to reload its shadow page table
4344 * and flush TLB. Then all vcpus will switch to new
4345 * shadow page table with the new mmu_valid_gen.
4346 *
4347 * Note: we should do this under the protection of
4348 * mmu-lock, otherwise, vcpu would purge shadow page
4349 * but miss tlb flush.
4350 */
4351 kvm_reload_remote_mmus(kvm);
4352
5304b8d3
XG
4353 kvm_zap_obsolete_pages(kvm);
4354 spin_unlock(&kvm->mmu_lock);
4355}
4356
f8f55942 4357static void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
982b3394
TY
4358{
4359 struct kvm_mmu_page *sp, *node;
4360 LIST_HEAD(invalid_list);
4361
4362 spin_lock(&kvm->mmu_lock);
4363restart:
4364 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
4365 if (!sp->mmio_cached)
4366 continue;
4367 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4368 goto restart;
4369 }
4370
4371 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4372 spin_unlock(&kvm->mmu_lock);
4373}
4374
365c8868
XG
4375static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4376{
4377 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4378}
4379
f8f55942
XG
4380void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4381{
4382 /*
4383 * The very rare case: if the generation-number is round,
4384 * zap all shadow pages.
4385 *
4386 * The max value is MMIO_MAX_GEN - 1 since it is not called
4387 * when mark memslot invalid.
4388 */
4389 if (unlikely(kvm_current_mmio_generation(kvm) >= (MMIO_MAX_GEN - 1)))
4390 kvm_mmu_zap_mmio_sptes(kvm);
4391}
4392
1495f230 4393static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4394{
4395 struct kvm *kvm;
1495f230 4396 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
4397
4398 if (nr_to_scan == 0)
4399 goto out;
3ee16c81 4400
e935b837 4401 raw_spin_lock(&kvm_lock);
3ee16c81
IE
4402
4403 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4404 int idx;
d98ba053 4405 LIST_HEAD(invalid_list);
3ee16c81 4406
35f2d16b
TY
4407 /*
4408 * Never scan more than sc->nr_to_scan VM instances.
4409 * Will not hit this condition practically since we do not try
4410 * to shrink more than one VM and it is very unlikely to see
4411 * !n_used_mmu_pages so many times.
4412 */
4413 if (!nr_to_scan--)
4414 break;
19526396
GN
4415 /*
4416 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4417 * here. We may skip a VM instance errorneosly, but we do not
4418 * want to shrink a VM that only started to populate its MMU
4419 * anyway.
4420 */
365c8868
XG
4421 if (!kvm->arch.n_used_mmu_pages &&
4422 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4423 continue;
19526396 4424
f656ce01 4425 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4426 spin_lock(&kvm->mmu_lock);
3ee16c81 4427
365c8868
XG
4428 if (kvm_has_zapped_obsolete_pages(kvm)) {
4429 kvm_mmu_commit_zap_page(kvm,
4430 &kvm->arch.zapped_obsolete_pages);
4431 goto unlock;
4432 }
4433
5da59607 4434 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
d98ba053 4435 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4436
365c8868 4437unlock:
3ee16c81 4438 spin_unlock(&kvm->mmu_lock);
f656ce01 4439 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
4440
4441 list_move_tail(&kvm->vm_list, &vm_list);
4442 break;
3ee16c81 4443 }
3ee16c81 4444
e935b837 4445 raw_spin_unlock(&kvm_lock);
3ee16c81 4446
45221ab6
DH
4447out:
4448 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4449}
4450
4451static struct shrinker mmu_shrinker = {
4452 .shrink = mmu_shrink,
4453 .seeks = DEFAULT_SEEKS * 10,
4454};
4455
2ddfd20e 4456static void mmu_destroy_caches(void)
b5a33a75 4457{
53c07b18
XG
4458 if (pte_list_desc_cache)
4459 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4460 if (mmu_page_header_cache)
4461 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4462}
4463
4464int kvm_mmu_module_init(void)
4465{
53c07b18
XG
4466 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4467 sizeof(struct pte_list_desc),
20c2df83 4468 0, 0, NULL);
53c07b18 4469 if (!pte_list_desc_cache)
b5a33a75
AK
4470 goto nomem;
4471
d3d25b04
AK
4472 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4473 sizeof(struct kvm_mmu_page),
20c2df83 4474 0, 0, NULL);
d3d25b04
AK
4475 if (!mmu_page_header_cache)
4476 goto nomem;
4477
45bf21a8
WY
4478 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4479 goto nomem;
4480
3ee16c81
IE
4481 register_shrinker(&mmu_shrinker);
4482
b5a33a75
AK
4483 return 0;
4484
4485nomem:
3ee16c81 4486 mmu_destroy_caches();
b5a33a75
AK
4487 return -ENOMEM;
4488}
4489
3ad82a7e
ZX
4490/*
4491 * Caculate mmu pages needed for kvm.
4492 */
4493unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4494{
3ad82a7e
ZX
4495 unsigned int nr_mmu_pages;
4496 unsigned int nr_pages = 0;
bc6678a3 4497 struct kvm_memslots *slots;
be6ba0f0 4498 struct kvm_memory_slot *memslot;
3ad82a7e 4499
90d83dc3
LJ
4500 slots = kvm_memslots(kvm);
4501
be6ba0f0
XG
4502 kvm_for_each_memslot(memslot, slots)
4503 nr_pages += memslot->npages;
3ad82a7e
ZX
4504
4505 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4506 nr_mmu_pages = max(nr_mmu_pages,
4507 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4508
4509 return nr_mmu_pages;
4510}
4511
94d8b056
MT
4512int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4513{
4514 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4515 u64 spte;
94d8b056
MT
4516 int nr_sptes = 0;
4517
c2a2ac2b
XG
4518 walk_shadow_page_lockless_begin(vcpu);
4519 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4520 sptes[iterator.level-1] = spte;
94d8b056 4521 nr_sptes++;
c2a2ac2b 4522 if (!is_shadow_present_pte(spte))
94d8b056
MT
4523 break;
4524 }
c2a2ac2b 4525 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4526
4527 return nr_sptes;
4528}
4529EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4530
c42fffe3
XG
4531void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4532{
4533 ASSERT(vcpu);
4534
4535 destroy_kvm_mmu(vcpu);
4536 free_mmu_pages(vcpu);
4537 mmu_free_memory_caches(vcpu);
b034cf01
XG
4538}
4539
b034cf01
XG
4540void kvm_mmu_module_exit(void)
4541{
4542 mmu_destroy_caches();
4543 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4544 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4545 mmu_audit_disable();
4546}