]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kvm/mmu.h
KVM: x86: mmu: do not use return to tail-call functions that return void
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / mmu.h
CommitLineData
1d737c8a
ZX
1#ifndef __KVM_X86_MMU_H
2#define __KVM_X86_MMU_H
3
edf88417 4#include <linux/kvm_host.h>
fc78f519 5#include "kvm_cache_regs.h"
1d737c8a 6
8c6d6adc
SY
7#define PT64_PT_BITS 9
8#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
9#define PT32_PT_BITS 10
10#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
11
12#define PT_WRITABLE_SHIFT 1
13
14#define PT_PRESENT_MASK (1ULL << 0)
15#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
16#define PT_USER_MASK (1ULL << 2)
17#define PT_PWT_MASK (1ULL << 3)
18#define PT_PCD_MASK (1ULL << 4)
1b7fcd32
AK
19#define PT_ACCESSED_SHIFT 5
20#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
8ea667f2
AK
21#define PT_DIRTY_SHIFT 6
22#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
6fd01b71
AK
23#define PT_PAGE_SIZE_SHIFT 7
24#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
8c6d6adc
SY
25#define PT_PAT_MASK (1ULL << 7)
26#define PT_GLOBAL_MASK (1ULL << 8)
27#define PT64_NX_SHIFT 63
28#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
29
30#define PT_PAT_SHIFT 7
31#define PT_DIR_PAT_SHIFT 12
32#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
33
34#define PT32_DIR_PSE36_SIZE 4
35#define PT32_DIR_PSE36_SHIFT 13
36#define PT32_DIR_PSE36_MASK \
37 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
38
39#define PT64_ROOT_LEVEL 4
40#define PT32_ROOT_LEVEL 2
41#define PT32E_ROOT_LEVEL 3
42
c9c54174
SY
43#define PT_PDPE_LEVEL 3
44#define PT_DIRECTORY_LEVEL 2
45#define PT_PAGE_TABLE_LEVEL 1
46
97ec8c06
FW
47#define PFERR_PRESENT_BIT 0
48#define PFERR_WRITE_BIT 1
49#define PFERR_USER_BIT 2
50#define PFERR_RSVD_BIT 3
51#define PFERR_FETCH_BIT 4
52
53#define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
54#define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
55#define PFERR_USER_MASK (1U << PFERR_USER_BIT)
56#define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
57#define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
1871c602 58
d1431483
TC
59static inline u64 rsvd_bits(int s, int e)
60{
61 return ((1ULL << (e - s + 1)) - 1) << s;
62}
63
94d8b056 64int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]);
ce88decf 65void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask);
b37fbea6
XG
66
67/*
68 * Return values of handle_mmio_page_fault_common:
69 * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
f8f55942
XG
70 * directly.
71 * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
72 * fault path update the mmio spte.
b37fbea6
XG
73 * RET_MMIO_PF_RETRY: let CPU fault again on the address.
74 * RET_MMIO_PF_BUG: bug is detected.
75 */
76enum {
77 RET_MMIO_PF_EMULATE = 1,
f8f55942 78 RET_MMIO_PF_INVALID = 2,
b37fbea6
XG
79 RET_MMIO_PF_RETRY = 0,
80 RET_MMIO_PF_BUG = -1
81};
82
ce88decf 83int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct);
8a3c1a33
PB
84void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
85void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
155a97a3 86 bool execonly);
97ec8c06
FW
87void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
88 bool ept);
94d8b056 89
e0df7b9f
DH
90static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
91{
5d218814
MT
92 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
93 return kvm->arch.n_max_mmu_pages -
94 kvm->arch.n_used_mmu_pages;
95
96 return 0;
e0df7b9f
DH
97}
98
1d737c8a
ZX
99static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
100{
101 if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
102 return 0;
103
104 return kvm_mmu_load(vcpu);
105}
106
43a3795a 107static inline int is_present_gpte(unsigned long pte)
20c466b5
DE
108{
109 return pte & PT_PRESENT_MASK;
110}
111
198c74f4
XG
112/*
113 * Currently, we have two sorts of write-protection, a) the first one
114 * write-protects guest page to sync the guest modification, b) another one is
115 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
116 * between these two sorts are:
117 * 1) the first case clears SPTE_MMU_WRITEABLE bit.
118 * 2) the first case requires flushing tlb immediately avoiding corrupting
119 * shadow page table between all vcpus so it should be in the protection of
120 * mmu-lock. And the another case does not need to flush tlb until returning
121 * the dirty bitmap to userspace since it only write-protects the page
122 * logged in the bitmap, that means the page in the dirty bitmap is not
123 * missed, so it can flush tlb out of mmu-lock.
124 *
125 * So, there is the problem: the first case can meet the corrupted tlb caused
126 * by another case which write-protects pages but without flush tlb
127 * immediately. In order to making the first case be aware this problem we let
128 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
129 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
130 *
131 * Anyway, whenever a spte is updated (only permission and status bits are
132 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
133 * readonly, if that happens, we need to flush tlb. Fortunately,
134 * mmu_spte_update() has already handled it perfectly.
135 *
136 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
137 * - if we want to see if it has writable tlb entry or if the spte can be
138 * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
139 * case, otherwise
140 * - if we fix page fault on the spte or do write-protection by dirty logging,
141 * check PT_WRITABLE_MASK.
142 *
143 * TODO: introduce APIs to split these two cases.
144 */
bebb106a
XG
145static inline int is_writable_pte(unsigned long pte)
146{
147 return pte & PT_WRITABLE_MASK;
148}
149
150static inline bool is_write_protection(struct kvm_vcpu *vcpu)
151{
152 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
153}
154
97d64b78
AK
155/*
156 * Will a fault with a given page-fault error code (pfec) cause a permission
157 * fault with the given access (in ACC_* format)?
158 */
97ec8c06
FW
159static inline bool permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
160 unsigned pte_access, unsigned pfec)
bebb106a 161{
97ec8c06
FW
162 int cpl = kvm_x86_ops->get_cpl(vcpu);
163 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
164
165 /*
166 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
167 *
168 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
169 * (these are implicit supervisor accesses) regardless of the value
170 * of EFLAGS.AC.
171 *
172 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
173 * the result in X86_EFLAGS_AC. We then insert it in place of
174 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
175 * but it will be one in index if SMAP checks are being overridden.
176 * It is important to keep this branchless.
177 */
178 unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
179 int index = (pfec >> 1) +
180 (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
181
182 return (mmu->permissions[index] >> pte_access) & 1;
bebb106a 183}
97d64b78 184
5304b8d3 185void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
1d737c8a 186#endif