]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mtrr.c
KVM: x86: Use gpa_t for cr2/gpa to fix TDP support on 32-bit KVM
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mtrr.c
CommitLineData
ff53604b
XG
1/*
2 * vMTRR implementation
3 *
4 * Copyright (C) 2006 Qumranet, Inc.
5 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6 * Copyright(C) 2015 Intel Corporation.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 * Marcelo Tosatti <mtosatti@redhat.com>
12 * Paolo Bonzini <pbonzini@redhat.com>
13 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 */
18
19#include <linux/kvm_host.h>
20#include <asm/mtrr.h>
21
22#include "cpuid.h"
23#include "mmu.h"
24
10fac2dc
XG
25#define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
26#define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
27#define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
28
ff53604b
XG
29static bool msr_mtrr_valid(unsigned msr)
30{
31 switch (msr) {
32 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
33 case MSR_MTRRfix64K_00000:
34 case MSR_MTRRfix16K_80000:
35 case MSR_MTRRfix16K_A0000:
36 case MSR_MTRRfix4K_C0000:
37 case MSR_MTRRfix4K_C8000:
38 case MSR_MTRRfix4K_D0000:
39 case MSR_MTRRfix4K_D8000:
40 case MSR_MTRRfix4K_E0000:
41 case MSR_MTRRfix4K_E8000:
42 case MSR_MTRRfix4K_F0000:
43 case MSR_MTRRfix4K_F8000:
44 case MSR_MTRRdefType:
45 case MSR_IA32_CR_PAT:
46 return true;
ff53604b
XG
47 }
48 return false;
49}
50
ff53604b
XG
51static bool valid_mtrr_type(unsigned t)
52{
53 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
54}
55
56bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
57{
58 int i;
59 u64 mask;
60
61 if (!msr_mtrr_valid(msr))
62 return false;
63
64 if (msr == MSR_IA32_CR_PAT) {
30460222 65 return kvm_pat_valid(data);
ff53604b
XG
66 } else if (msr == MSR_MTRRdefType) {
67 if (data & ~0xcff)
68 return false;
69 return valid_mtrr_type(data & 0xff);
70 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
71 for (i = 0; i < 8 ; i++)
72 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
73 return false;
74 return true;
75 }
76
77 /* variable MTRRs */
78 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
79
80 mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
81 if ((msr & 1) == 0) {
82 /* MTRR base */
83 if (!valid_mtrr_type(data & 0xff))
84 return false;
85 mask |= 0xf00;
86 } else
87 /* MTRR mask */
88 mask |= 0x7ff;
89 if (data & mask) {
90 kvm_inject_gp(vcpu, 0);
91 return false;
92 }
93
94 return true;
95}
96EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
97
10fac2dc
XG
98static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
99{
100 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
101}
102
103static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
104{
105 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
106}
107
108static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
109{
110 return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
111}
112
e24dea2a 113static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
10dc331f
XG
114{
115 /*
116 * Intel SDM 11.11.2.2: all MTRRs are disabled when
117 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
118 * memory type is applied to all of physical memory.
e24dea2a
PB
119 *
120 * However, virtual machines can be run with CPUID such that
121 * there are no MTRRs. In that case, the firmware will never
122 * enable MTRRs and it is obviously undesirable to run the
123 * guest entirely with UC memory and we use WB.
10dc331f 124 */
d6321d49 125 if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
e24dea2a
PB
126 return MTRR_TYPE_UNCACHABLE;
127 else
128 return MTRR_TYPE_WRBACK;
10dc331f
XG
129}
130
de9aef5e
XG
131/*
132* Three terms are used in the following code:
133* - segment, it indicates the address segments covered by fixed MTRRs.
134* - unit, it corresponds to the MSR entry in the segment.
135* - range, a range is covered in one memory cache type.
136*/
137struct fixed_mtrr_segment {
138 u64 start;
139 u64 end;
140
141 int range_shift;
142
143 /* the start position in kvm_mtrr.fixed_ranges[]. */
144 int range_start;
145};
146
147static struct fixed_mtrr_segment fixed_seg_table[] = {
148 /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
149 {
150 .start = 0x0,
151 .end = 0x80000,
152 .range_shift = 16, /* 64K */
153 .range_start = 0,
154 },
155
156 /*
157 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
158 * 16K fixed mtrr.
159 */
160 {
161 .start = 0x80000,
162 .end = 0xc0000,
163 .range_shift = 14, /* 16K */
164 .range_start = 8,
165 },
166
167 /*
168 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
169 * 4K fixed mtrr.
170 */
171 {
172 .start = 0xc0000,
173 .end = 0x100000,
174 .range_shift = 12, /* 12K */
175 .range_start = 24,
176 }
177};
178
179/*
180 * The size of unit is covered in one MSR, one MSR entry contains
181 * 8 ranges so that unit size is always 8 * 2^range_shift.
182 */
183static u64 fixed_mtrr_seg_unit_size(int seg)
184{
185 return 8 << fixed_seg_table[seg].range_shift;
186}
187
188static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
189{
190 switch (msr) {
191 case MSR_MTRRfix64K_00000:
192 *seg = 0;
193 *unit = 0;
194 break;
195 case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
196 *seg = 1;
16718c86
MP
197 *unit = array_index_nospec(
198 msr - MSR_MTRRfix16K_80000,
199 MSR_MTRRfix16K_A0000 - MSR_MTRRfix16K_80000 + 1);
de9aef5e
XG
200 break;
201 case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
202 *seg = 2;
16718c86
MP
203 *unit = array_index_nospec(
204 msr - MSR_MTRRfix4K_C0000,
205 MSR_MTRRfix4K_F8000 - MSR_MTRRfix4K_C0000 + 1);
de9aef5e
XG
206 break;
207 default:
208 return false;
209 }
210
211 return true;
212}
213
214static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
215{
216 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
217 u64 unit_size = fixed_mtrr_seg_unit_size(seg);
218
219 *start = mtrr_seg->start + unit * unit_size;
220 *end = *start + unit_size;
221 WARN_ON(*end > mtrr_seg->end);
222}
223
224static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
225{
226 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
227
228 WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
229 > mtrr_seg->end);
230
231 /* each unit has 8 ranges. */
232 return mtrr_seg->range_start + 8 * unit;
233}
234
f571c097
XG
235static int fixed_mtrr_seg_end_range_index(int seg)
236{
237 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
238 int n;
239
240 n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
241 return mtrr_seg->range_start + n - 1;
242}
243
de9aef5e
XG
244static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
245{
246 int seg, unit;
247
248 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
249 return false;
250
251 fixed_mtrr_seg_unit_range(seg, unit, start, end);
252 return true;
253}
254
255static int fixed_msr_to_range_index(u32 msr)
256{
257 int seg, unit;
258
259 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
260 return -1;
261
262 return fixed_mtrr_seg_unit_range_index(seg, unit);
263}
264
f7bfb57b
XG
265static int fixed_mtrr_addr_to_seg(u64 addr)
266{
267 struct fixed_mtrr_segment *mtrr_seg;
268 int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
269
270 for (seg = 0; seg < seg_num; seg++) {
271 mtrr_seg = &fixed_seg_table[seg];
a7f2d786 272 if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
f7bfb57b
XG
273 return seg;
274 }
275
276 return -1;
277}
278
279static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
280{
281 struct fixed_mtrr_segment *mtrr_seg;
282 int index;
283
284 mtrr_seg = &fixed_seg_table[seg];
285 index = mtrr_seg->range_start;
286 index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
287 return index;
288}
289
f571c097
XG
290static u64 fixed_mtrr_range_end_addr(int seg, int index)
291{
292 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
293 int pos = index - mtrr_seg->range_start;
294
295 return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
296}
297
a13842dc
XG
298static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
299{
300 u64 mask;
301
302 *start = range->base & PAGE_MASK;
303
304 mask = range->mask & PAGE_MASK;
a13842dc
XG
305
306 /* This cannot overflow because writing to the reserved bits of
307 * variable MTRRs causes a #GP.
308 */
309 *end = (*start | ~mask) + 1;
310}
311
ff53604b
XG
312static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
313{
70109e7d 314 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
a13842dc 315 gfn_t start, end;
ff53604b 316 int index;
ff53604b
XG
317
318 if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
319 !kvm_arch_has_noncoherent_dma(vcpu->kvm))
320 return;
321
10fac2dc 322 if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
ff53604b
XG
323 return;
324
de9aef5e
XG
325 /* fixed MTRRs. */
326 if (fixed_msr_to_range(msr, &start, &end)) {
327 if (!fixed_mtrr_is_enabled(mtrr_state))
328 return;
329 } else if (msr == MSR_MTRRdefType) {
ff53604b
XG
330 start = 0x0;
331 end = ~0ULL;
de9aef5e 332 } else {
ff53604b 333 /* variable range MTRRs. */
ff53604b 334 index = (msr - 0x200) / 2;
a13842dc 335 var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
ff53604b
XG
336 }
337
ff53604b
XG
338 kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
339}
340
19efffa2
XG
341static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
342{
343 return (range->mask & (1 << 11)) != 0;
344}
345
346static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
347{
348 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
349 struct kvm_mtrr_range *tmp, *cur;
350 int index, is_mtrr_mask;
351
352 index = (msr - 0x200) / 2;
353 is_mtrr_mask = msr - 0x200 - 2 * index;
354 cur = &mtrr_state->var_ranges[index];
355
356 /* remove the entry if it's in the list. */
357 if (var_mtrr_range_is_valid(cur))
358 list_del(&mtrr_state->var_ranges[index].node);
359
fa7c4ebd
PB
360 /* Extend the mask with all 1 bits to the left, since those
361 * bits must implicitly be 0. The bits are then cleared
362 * when reading them.
363 */
19efffa2
XG
364 if (!is_mtrr_mask)
365 cur->base = data;
366 else
fa7c4ebd 367 cur->mask = data | (-1LL << cpuid_maxphyaddr(vcpu));
19efffa2
XG
368
369 /* add it to the list if it's enabled. */
370 if (var_mtrr_range_is_valid(cur)) {
371 list_for_each_entry(tmp, &mtrr_state->head, node)
372 if (cur->base >= tmp->base)
373 break;
374 list_add_tail(&cur->node, &tmp->node);
375 }
376}
377
ff53604b
XG
378int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
379{
de9aef5e 380 int index;
ff53604b
XG
381
382 if (!kvm_mtrr_valid(vcpu, msr, data))
383 return 1;
384
de9aef5e
XG
385 index = fixed_msr_to_range_index(msr);
386 if (index >= 0)
387 *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
388 else if (msr == MSR_MTRRdefType)
10fac2dc 389 vcpu->arch.mtrr_state.deftype = data;
ff53604b
XG
390 else if (msr == MSR_IA32_CR_PAT)
391 vcpu->arch.pat = data;
19efffa2
XG
392 else
393 set_var_mtrr_msr(vcpu, msr, data);
ff53604b
XG
394
395 update_mtrr(vcpu, msr);
396 return 0;
397}
398
399int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
400{
de9aef5e 401 int index;
ff53604b 402
eb839917
XG
403 /* MSR_MTRRcap is a readonly MSR. */
404 if (msr == MSR_MTRRcap) {
405 /*
406 * SMRR = 0
407 * WC = 1
408 * FIX = 1
409 * VCNT = KVM_NR_VAR_MTRR
410 */
411 *pdata = 0x500 | KVM_NR_VAR_MTRR;
412 return 0;
413 }
414
ff53604b
XG
415 if (!msr_mtrr_valid(msr))
416 return 1;
417
de9aef5e
XG
418 index = fixed_msr_to_range_index(msr);
419 if (index >= 0)
420 *pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
421 else if (msr == MSR_MTRRdefType)
10fac2dc 422 *pdata = vcpu->arch.mtrr_state.deftype;
ff53604b
XG
423 else if (msr == MSR_IA32_CR_PAT)
424 *pdata = vcpu->arch.pat;
425 else { /* Variable MTRRs */
de9aef5e 426 int is_mtrr_mask;
ff53604b 427
de9aef5e
XG
428 index = (msr - 0x200) / 2;
429 is_mtrr_mask = msr - 0x200 - 2 * index;
ff53604b 430 if (!is_mtrr_mask)
de9aef5e 431 *pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
ff53604b 432 else
de9aef5e 433 *pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
fa7c4ebd
PB
434
435 *pdata &= (1ULL << cpuid_maxphyaddr(vcpu)) - 1;
ff53604b
XG
436 }
437
438 return 0;
439}
440
19efffa2
XG
441void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
442{
443 INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
444}
445
f571c097
XG
446struct mtrr_iter {
447 /* input fields. */
448 struct kvm_mtrr *mtrr_state;
449 u64 start;
450 u64 end;
451
452 /* output fields. */
453 int mem_type;
10dc331f
XG
454 /* mtrr is completely disabled? */
455 bool mtrr_disabled;
f571c097
XG
456 /* [start, end) is not fully covered in MTRRs? */
457 bool partial_map;
458
459 /* private fields. */
460 union {
461 /* used for fixed MTRRs. */
462 struct {
463 int index;
464 int seg;
465 };
466
467 /* used for var MTRRs. */
468 struct {
469 struct kvm_mtrr_range *range;
470 /* max address has been covered in var MTRRs. */
471 u64 start_max;
472 };
473 };
474
475 bool fixed;
476};
477
478static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
479{
480 int seg, index;
481
482 if (!fixed_mtrr_is_enabled(iter->mtrr_state))
483 return false;
484
485 seg = fixed_mtrr_addr_to_seg(iter->start);
486 if (seg < 0)
487 return false;
488
489 iter->fixed = true;
490 index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
491 iter->index = index;
492 iter->seg = seg;
493 return true;
494}
495
496static bool match_var_range(struct mtrr_iter *iter,
497 struct kvm_mtrr_range *range)
498{
499 u64 start, end;
500
501 var_mtrr_range(range, &start, &end);
502 if (!(start >= iter->end || end <= iter->start)) {
503 iter->range = range;
504
505 /*
506 * the function is called when we do kvm_mtrr.head walking.
507 * Range has the minimum base address which interleaves
508 * [looker->start_max, looker->end).
509 */
510 iter->partial_map |= iter->start_max < start;
511
512 /* update the max address has been covered. */
513 iter->start_max = max(iter->start_max, end);
514 return true;
515 }
516
517 return false;
518}
519
520static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
521{
522 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
523
524 list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
525 if (match_var_range(iter, iter->range))
526 return;
527
528 iter->range = NULL;
529 iter->partial_map |= iter->start_max < iter->end;
530}
531
532static void mtrr_lookup_var_start(struct mtrr_iter *iter)
533{
534 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
535
536 iter->fixed = false;
537 iter->start_max = iter->start;
30b072ce 538 iter->range = NULL;
f571c097
XG
539 iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
540
541 __mtrr_lookup_var_next(iter);
542}
543
544static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
545{
546 /* terminate the lookup. */
547 if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
548 iter->fixed = false;
549 iter->range = NULL;
550 return;
551 }
552
553 iter->index++;
554
555 /* have looked up for all fixed MTRRs. */
556 if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
557 return mtrr_lookup_var_start(iter);
558
559 /* switch to next segment. */
560 if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
561 iter->seg++;
562}
563
564static void mtrr_lookup_var_next(struct mtrr_iter *iter)
565{
566 __mtrr_lookup_var_next(iter);
567}
568
569static void mtrr_lookup_start(struct mtrr_iter *iter)
570{
571 if (!mtrr_is_enabled(iter->mtrr_state)) {
10dc331f 572 iter->mtrr_disabled = true;
f571c097
XG
573 return;
574 }
575
576 if (!mtrr_lookup_fixed_start(iter))
577 mtrr_lookup_var_start(iter);
578}
579
580static void mtrr_lookup_init(struct mtrr_iter *iter,
581 struct kvm_mtrr *mtrr_state, u64 start, u64 end)
582{
583 iter->mtrr_state = mtrr_state;
584 iter->start = start;
585 iter->end = end;
10dc331f 586 iter->mtrr_disabled = false;
f571c097
XG
587 iter->partial_map = false;
588 iter->fixed = false;
589 iter->range = NULL;
590
591 mtrr_lookup_start(iter);
592}
593
594static bool mtrr_lookup_okay(struct mtrr_iter *iter)
595{
596 if (iter->fixed) {
597 iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
598 return true;
599 }
600
601 if (iter->range) {
602 iter->mem_type = iter->range->base & 0xff;
603 return true;
604 }
605
606 return false;
607}
608
609static void mtrr_lookup_next(struct mtrr_iter *iter)
610{
611 if (iter->fixed)
612 mtrr_lookup_fixed_next(iter);
613 else
614 mtrr_lookup_var_next(iter);
615}
616
617#define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
618 for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
619 mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
620
3f3f78b6 621u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
ff53604b 622{
3f3f78b6 623 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
fa612137
XG
624 struct mtrr_iter iter;
625 u64 start, end;
626 int type = -1;
3f3f78b6
XG
627 const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
628 | (1 << MTRR_TYPE_WRTHROUGH);
629
630 start = gfn_to_gpa(gfn);
fa612137 631 end = start + PAGE_SIZE;
ff53604b 632
fa612137
XG
633 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
634 int curr_type = iter.mem_type;
ff53604b 635
3f3f78b6
XG
636 /*
637 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
638 * Precedences.
639 */
640
3f3f78b6
XG
641 if (type == -1) {
642 type = curr_type;
ff53604b
XG
643 continue;
644 }
645
3f3f78b6
XG
646 /*
647 * If two or more variable memory ranges match and the
648 * memory types are identical, then that memory type is
649 * used.
650 */
651 if (type == curr_type)
652 continue;
653
654 /*
655 * If two or more variable memory ranges match and one of
656 * the memory types is UC, the UC memory type used.
657 */
658 if (curr_type == MTRR_TYPE_UNCACHABLE)
ff53604b
XG
659 return MTRR_TYPE_UNCACHABLE;
660
3f3f78b6
XG
661 /*
662 * If two or more variable memory ranges match and the
663 * memory types are WT and WB, the WT memory type is used.
664 */
665 if (((1 << type) & wt_wb_mask) &&
666 ((1 << curr_type) & wt_wb_mask)) {
667 type = MTRR_TYPE_WRTHROUGH;
668 continue;
ff53604b
XG
669 }
670
3f3f78b6
XG
671 /*
672 * For overlaps not defined by the above rules, processor
673 * behavior is undefined.
674 */
675
676 /* We use WB for this undefined behavior. :( */
677 return MTRR_TYPE_WRBACK;
ff53604b
XG
678 }
679
10dc331f 680 if (iter.mtrr_disabled)
e24dea2a 681 return mtrr_disabled_type(vcpu);
10dc331f 682
fc1a8126
AW
683 /* not contained in any MTRRs. */
684 if (type == -1)
685 return mtrr_default_type(mtrr_state);
686
3e5d2fdc
XG
687 /*
688 * We just check one page, partially covered by MTRRs is
689 * impossible.
690 */
691 WARN_ON(iter.partial_map);
692
fa612137 693 return type;
ff53604b 694}
ff53604b 695EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
6a39bbc5
XG
696
697bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
698 int page_num)
699{
700 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
701 struct mtrr_iter iter;
702 u64 start, end;
703 int type = -1;
704
705 start = gfn_to_gpa(gfn);
706 end = gfn_to_gpa(gfn + page_num);
707 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
708 if (type == -1) {
709 type = iter.mem_type;
710 continue;
711 }
712
713 if (type != iter.mem_type)
714 return false;
715 }
716
10dc331f
XG
717 if (iter.mtrr_disabled)
718 return true;
719
6a39bbc5
XG
720 if (!iter.partial_map)
721 return true;
722
723 if (type == -1)
724 return true;
725
726 return type == mtrr_default_type(mtrr_state);
727}