]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/paging_tmpl.h
KVM: VMX: remove bogus check for invalid EPT violation
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / paging_tmpl.h
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21/*
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
24 */
25
37406aaa
NHE
26/*
27 * This is used to catch non optimized PT_GUEST_(DIRTY|ACCESS)_SHIFT macro
28 * uses for EPT without A/D paging type.
29 */
30extern u64 __pure __using_nonexistent_pte_bit(void)
31 __compiletime_error("wrong use of PT_GUEST_(DIRTY|ACCESS)_SHIFT");
32
6aa8b732
AK
33#if PTTYPE == 64
34 #define pt_element_t u64
35 #define guest_walker guest_walker64
36 #define FNAME(name) paging##64_##name
37 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
e04da980
JR
38 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
39 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
6aa8b732 40 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
c7addb90 41 #define PT_LEVEL_BITS PT64_LEVEL_BITS
d8089bac
GN
42 #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
43 #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
44 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
45 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
cea0f0e7
AK
46 #ifdef CONFIG_X86_64
47 #define PT_MAX_FULL_LEVELS 4
b3e4e63f 48 #define CMPXCHG cmpxchg
cea0f0e7 49 #else
b3e4e63f 50 #define CMPXCHG cmpxchg64
cea0f0e7
AK
51 #define PT_MAX_FULL_LEVELS 2
52 #endif
6aa8b732
AK
53#elif PTTYPE == 32
54 #define pt_element_t u32
55 #define guest_walker guest_walker32
56 #define FNAME(name) paging##32_##name
57 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
e04da980
JR
58 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
59 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
6aa8b732 60 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
c7addb90 61 #define PT_LEVEL_BITS PT32_LEVEL_BITS
cea0f0e7 62 #define PT_MAX_FULL_LEVELS 2
d8089bac
GN
63 #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
64 #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
65 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
66 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
b3e4e63f 67 #define CMPXCHG cmpxchg
37406aaa
NHE
68#elif PTTYPE == PTTYPE_EPT
69 #define pt_element_t u64
70 #define guest_walker guest_walkerEPT
71 #define FNAME(name) ept_##name
72 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
73 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
74 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
75 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
76 #define PT_LEVEL_BITS PT64_LEVEL_BITS
77 #define PT_GUEST_ACCESSED_MASK 0
78 #define PT_GUEST_DIRTY_MASK 0
79 #define PT_GUEST_DIRTY_SHIFT __using_nonexistent_pte_bit()
80 #define PT_GUEST_ACCESSED_SHIFT __using_nonexistent_pte_bit()
81 #define CMPXCHG cmpxchg64
82 #define PT_MAX_FULL_LEVELS 4
6aa8b732
AK
83#else
84 #error Invalid PTTYPE value
85#endif
86
e04da980
JR
87#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
88#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
5fb07ddb 89
6aa8b732
AK
90/*
91 * The guest_walker structure emulates the behavior of the hardware page
92 * table walker.
93 */
94struct guest_walker {
95 int level;
8cbc7069 96 unsigned max_level;
cea0f0e7 97 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
7819026e 98 pt_element_t ptes[PT_MAX_FULL_LEVELS];
189be38d 99 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
7819026e 100 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
8cbc7069 101 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
ba6a3541 102 bool pte_writable[PT_MAX_FULL_LEVELS];
fe135d2c
AK
103 unsigned pt_access;
104 unsigned pte_access;
815af8d4 105 gfn_t gfn;
8c28d031 106 struct x86_exception fault;
6aa8b732
AK
107};
108
e04da980 109static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
5fb07ddb 110{
e04da980 111 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
5fb07ddb
AK
112}
113
0ad805a0
NHE
114static inline void FNAME(protect_clean_gpte)(unsigned *access, unsigned gpte)
115{
116 unsigned mask;
117
61719a8f
GN
118 /* dirty bit is not supported, so no need to track it */
119 if (!PT_GUEST_DIRTY_MASK)
120 return;
121
0ad805a0
NHE
122 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
123
124 mask = (unsigned)~ACC_WRITE_MASK;
125 /* Allow write access to dirty gptes */
d8089bac
GN
126 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
127 PT_WRITABLE_MASK;
0ad805a0
NHE
128 *access &= mask;
129}
130
0ad805a0
NHE
131static inline int FNAME(is_present_gpte)(unsigned long pte)
132{
37406aaa 133#if PTTYPE != PTTYPE_EPT
812f30b2 134 return pte & PT_PRESENT_MASK;
37406aaa
NHE
135#else
136 return pte & 7;
137#endif
0ad805a0
NHE
138}
139
a78484c6 140static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
c8cfbb55
TY
141 pt_element_t __user *ptep_user, unsigned index,
142 pt_element_t orig_pte, pt_element_t new_pte)
b3e4e63f 143{
c8cfbb55 144 int npages;
b3e4e63f
MT
145 pt_element_t ret;
146 pt_element_t *table;
147 struct page *page;
148
c8cfbb55
TY
149 npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
150 /* Check if the user is doing something meaningless. */
151 if (unlikely(npages != 1))
a78484c6
RJ
152 return -EFAULT;
153
8fd75e12 154 table = kmap_atomic(page);
b3e4e63f 155 ret = CMPXCHG(&table[index], orig_pte, new_pte);
8fd75e12 156 kunmap_atomic(table);
b3e4e63f
MT
157
158 kvm_release_page_dirty(page);
159
160 return (ret != orig_pte);
161}
162
0ad805a0
NHE
163static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
164 struct kvm_mmu_page *sp, u64 *spte,
165 u64 gpte)
166{
d2b0f981 167 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
0ad805a0
NHE
168 goto no_present;
169
170 if (!FNAME(is_present_gpte)(gpte))
171 goto no_present;
172
61719a8f
GN
173 /* if accessed bit is not supported prefetch non accessed gpte */
174 if (PT_GUEST_ACCESSED_MASK && !(gpte & PT_GUEST_ACCESSED_MASK))
0ad805a0
NHE
175 goto no_present;
176
177 return false;
178
179no_present:
180 drop_spte(vcpu->kvm, spte);
181 return true;
182}
183
d95c5568
BD
184/*
185 * For PTTYPE_EPT, a page table can be executable but not readable
186 * on supported processors. Therefore, set_spte does not automatically
187 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
188 * to signify readability since it isn't used in the EPT case
189 */
0ad805a0
NHE
190static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte)
191{
192 unsigned access;
37406aaa
NHE
193#if PTTYPE == PTTYPE_EPT
194 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
195 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
d95c5568 196 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
37406aaa 197#else
bb9eadf0
PB
198 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
199 BUILD_BUG_ON(ACC_EXEC_MASK != 1);
200 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
201 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */
202 access ^= (gpte >> PT64_NX_SHIFT);
37406aaa 203#endif
0ad805a0
NHE
204
205 return access;
206}
207
8cbc7069
AK
208static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
209 struct kvm_mmu *mmu,
210 struct guest_walker *walker,
211 int write_fault)
212{
213 unsigned level, index;
214 pt_element_t pte, orig_pte;
215 pt_element_t __user *ptep_user;
216 gfn_t table_gfn;
217 int ret;
218
61719a8f
GN
219 /* dirty/accessed bits are not supported, so no need to update them */
220 if (!PT_GUEST_DIRTY_MASK)
221 return 0;
222
8cbc7069
AK
223 for (level = walker->max_level; level >= walker->level; --level) {
224 pte = orig_pte = walker->ptes[level - 1];
225 table_gfn = walker->table_gfn[level - 1];
226 ptep_user = walker->ptep_user[level - 1];
227 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
d8089bac 228 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
8cbc7069 229 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
d8089bac 230 pte |= PT_GUEST_ACCESSED_MASK;
8cbc7069 231 }
0ad805a0 232 if (level == walker->level && write_fault &&
d8089bac 233 !(pte & PT_GUEST_DIRTY_MASK)) {
8cbc7069 234 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
d8089bac 235 pte |= PT_GUEST_DIRTY_MASK;
8cbc7069
AK
236 }
237 if (pte == orig_pte)
238 continue;
239
ba6a3541
PB
240 /*
241 * If the slot is read-only, simply do not process the accessed
242 * and dirty bits. This is the correct thing to do if the slot
243 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
244 * are only supported if the accessed and dirty bits are already
245 * set in the ROM (so that MMIO writes are never needed).
246 *
247 * Note that NPT does not allow this at all and faults, since
248 * it always wants nested page table entries for the guest
249 * page tables to be writable. And EPT works but will simply
250 * overwrite the read-only memory to set the accessed and dirty
251 * bits.
252 */
253 if (unlikely(!walker->pte_writable[level - 1]))
254 continue;
255
8cbc7069
AK
256 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
257 if (ret)
258 return ret;
259
54bf36aa 260 kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
17e4bce0 261 walker->ptes[level - 1] = pte;
8cbc7069
AK
262 }
263 return 0;
264}
265
be94f6b7
HH
266static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
267{
268 unsigned pkeys = 0;
269#if PTTYPE == 64
270 pte_t pte = {.pte = gpte};
271
272 pkeys = pte_flags_pkey(pte_flags(pte));
273#endif
274 return pkeys;
275}
276
ac79c978
AK
277/*
278 * Fetch a guest pte for a guest virtual address
279 */
1e301feb
JR
280static int FNAME(walk_addr_generic)(struct guest_walker *walker,
281 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
33770780 282 gva_t addr, u32 access)
6aa8b732 283{
8cbc7069 284 int ret;
42bf3f0a 285 pt_element_t pte;
b7233635 286 pt_element_t __user *uninitialized_var(ptep_user);
cea0f0e7 287 gfn_t table_gfn;
be94f6b7 288 unsigned index, pt_access, pte_access, accessed_dirty, pte_pkey;
42bf3f0a 289 gpa_t pte_gpa;
134291bf
TY
290 int offset;
291 const int write_fault = access & PFERR_WRITE_MASK;
292 const int user_fault = access & PFERR_USER_MASK;
293 const int fetch_fault = access & PFERR_FETCH_MASK;
294 u16 errcode = 0;
13d22b6a
AK
295 gpa_t real_gpa;
296 gfn_t gfn;
6aa8b732 297
6fbc2770 298 trace_kvm_mmu_pagetable_walk(addr, access);
92c1c1e8 299retry_walk:
1e301feb
JR
300 walker->level = mmu->root_level;
301 pte = mmu->get_cr3(vcpu);
302
1b0973bd 303#if PTTYPE == 64
1e301feb 304 if (walker->level == PT32E_ROOT_LEVEL) {
e4e517b4 305 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
07420171 306 trace_kvm_mmu_paging_element(pte, walker->level);
0ad805a0 307 if (!FNAME(is_present_gpte)(pte))
f59c1d2d 308 goto error;
1b0973bd
AK
309 --walker->level;
310 }
311#endif
8cbc7069 312 walker->max_level = walker->level;
1715d0dc 313 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
6aa8b732 314
d8089bac 315 accessed_dirty = PT_GUEST_ACCESSED_MASK;
13d22b6a
AK
316 pt_access = pte_access = ACC_ALL;
317 ++walker->level;
ac79c978 318
13d22b6a 319 do {
6e2ca7d1
TY
320 gfn_t real_gfn;
321 unsigned long host_addr;
322
13d22b6a
AK
323 pt_access &= pte_access;
324 --walker->level;
325
42bf3f0a 326 index = PT_INDEX(addr, walker->level);
ac79c978 327
5fb07ddb 328 table_gfn = gpte_to_gfn(pte);
2329d46d
JR
329 offset = index * sizeof(pt_element_t);
330 pte_gpa = gfn_to_gpa(table_gfn) + offset;
42bf3f0a 331 walker->table_gfn[walker->level - 1] = table_gfn;
7819026e 332 walker->pte_gpa[walker->level - 1] = pte_gpa;
42bf3f0a 333
6e2ca7d1 334 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
54987b7a
PB
335 PFERR_USER_MASK|PFERR_WRITE_MASK,
336 &walker->fault);
5e352519
PB
337
338 /*
339 * FIXME: This can happen if emulation (for of an INS/OUTS
340 * instruction) triggers a nested page fault. The exit
341 * qualification / exit info field will incorrectly have
342 * "guest page access" as the nested page fault's cause,
343 * instead of "guest page structure access". To fix this,
344 * the x86_exception struct should be augmented with enough
345 * information to fix the exit_qualification or exit_info_1
346 * fields.
347 */
134291bf 348 if (unlikely(real_gfn == UNMAPPED_GVA))
54987b7a 349 return 0;
5e352519 350
6e2ca7d1
TY
351 real_gfn = gpa_to_gfn(real_gfn);
352
54bf36aa 353 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
ba6a3541 354 &walker->pte_writable[walker->level - 1]);
134291bf
TY
355 if (unlikely(kvm_is_error_hva(host_addr)))
356 goto error;
6e2ca7d1
TY
357
358 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
134291bf
TY
359 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
360 goto error;
8cbc7069 361 walker->ptep_user[walker->level - 1] = ptep_user;
a6085fba 362
07420171 363 trace_kvm_mmu_paging_element(pte, walker->level);
42bf3f0a 364
0ad805a0 365 if (unlikely(!FNAME(is_present_gpte)(pte)))
134291bf 366 goto error;
7993ba43 367
d2b0f981 368 if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
7a98205d 369 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
134291bf 370 goto error;
f59c1d2d 371 }
82725b20 372
b514c30f 373 accessed_dirty &= pte;
0ad805a0 374 pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
73b1087e 375
7819026e 376 walker->ptes[walker->level - 1] = pte;
6fd01b71 377 } while (!is_last_gpte(mmu, walker->level, pte));
42bf3f0a 378
be94f6b7
HH
379 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
380 errcode = permission_fault(vcpu, mmu, pte_access, pte_pkey, access);
f13577e8 381 if (unlikely(errcode))
f59c1d2d
AK
382 goto error;
383
13d22b6a
AK
384 gfn = gpte_to_gfn_lvl(pte, walker->level);
385 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
386
387 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
388 gfn += pse36_gfn_delta(pte);
389
54987b7a 390 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
13d22b6a
AK
391 if (real_gpa == UNMAPPED_GVA)
392 return 0;
393
394 walker->gfn = real_gpa >> PAGE_SHIFT;
395
8ea667f2 396 if (!write_fault)
0ad805a0 397 FNAME(protect_clean_gpte)(&pte_access, pte);
908e7d79
GN
398 else
399 /*
61719a8f
GN
400 * On a write fault, fold the dirty bit into accessed_dirty.
401 * For modes without A/D bits support accessed_dirty will be
402 * always clear.
908e7d79 403 */
d8089bac
GN
404 accessed_dirty &= pte >>
405 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
b514c30f
AK
406
407 if (unlikely(!accessed_dirty)) {
408 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
409 if (unlikely(ret < 0))
410 goto error;
411 else if (ret)
412 goto retry_walk;
413 }
42bf3f0a 414
fe135d2c
AK
415 walker->pt_access = pt_access;
416 walker->pte_access = pte_access;
417 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
518c5a05 418 __func__, (u64)pte, pte_access, pt_access);
7993ba43
AK
419 return 1;
420
f59c1d2d 421error:
134291bf 422 errcode |= write_fault | user_fault;
e57d4a35
YW
423 if (fetch_fault && (mmu->nx ||
424 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
134291bf 425 errcode |= PFERR_FETCH_MASK;
8df25a32 426
134291bf
TY
427 walker->fault.vector = PF_VECTOR;
428 walker->fault.error_code_valid = true;
429 walker->fault.error_code = errcode;
25d92081
YZ
430
431#if PTTYPE == PTTYPE_EPT
432 /*
433 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
434 * misconfiguration requires to be injected. The detection is
435 * done by is_rsvd_bits_set() above.
436 *
437 * We set up the value of exit_qualification to inject:
438 * [2:0] - Derive from [2:0] of real exit_qualification at EPT violation
439 * [5:3] - Calculated by the page walk of the guest EPT page tables
440 * [7:8] - Derived from [7:8] of real exit_qualification
441 *
442 * The other bits are set to 0.
443 */
444 if (!(errcode & PFERR_RSVD_MASK)) {
445 vcpu->arch.exit_qualification &= 0x187;
446 vcpu->arch.exit_qualification |= ((pt_access & pte) & 0x7) << 3;
447 }
448#endif
6389ee94
AK
449 walker->fault.address = addr;
450 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
8df25a32 451
8c28d031 452 trace_kvm_mmu_walker_error(walker->fault.error_code);
fe551881 453 return 0;
6aa8b732
AK
454}
455
1e301feb 456static int FNAME(walk_addr)(struct guest_walker *walker,
33770780 457 struct kvm_vcpu *vcpu, gva_t addr, u32 access)
1e301feb
JR
458{
459 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
33770780 460 access);
1e301feb
JR
461}
462
37406aaa 463#if PTTYPE != PTTYPE_EPT
6539e738
JR
464static int FNAME(walk_addr_nested)(struct guest_walker *walker,
465 struct kvm_vcpu *vcpu, gva_t addr,
33770780 466 u32 access)
6539e738
JR
467{
468 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
33770780 469 addr, access);
6539e738 470}
37406aaa 471#endif
6539e738 472
bd6360cc
XG
473static bool
474FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
475 u64 *spte, pt_element_t gpte, bool no_dirty_log)
0028425f 476{
41074d07 477 unsigned pte_access;
bd6360cc 478 gfn_t gfn;
ba049e93 479 kvm_pfn_t pfn;
0028425f 480
0ad805a0 481 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
bd6360cc 482 return false;
407c61c6 483
b8688d51 484 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
bd6360cc
XG
485
486 gfn = gpte_to_gfn(gpte);
0ad805a0
NHE
487 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
488 FNAME(protect_clean_gpte)(&pte_access, gpte);
bd6360cc
XG
489 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
490 no_dirty_log && (pte_access & ACC_WRITE_MASK));
81c52c56 491 if (is_error_pfn(pfn))
bd6360cc 492 return false;
0f53b5b1 493
1403283a 494 /*
bd6360cc
XG
495 * we call mmu_set_spte() with host_writable = true because
496 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
1403283a 497 */
029499b4
TY
498 mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
499 true, true);
bd6360cc
XG
500
501 return true;
502}
503
504static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
505 u64 *spte, const void *pte)
506{
507 pt_element_t gpte = *(const pt_element_t *)pte;
508
509 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
0028425f
AK
510}
511
39c8c672
AK
512static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
513 struct guest_walker *gw, int level)
514{
39c8c672 515 pt_element_t curr_pte;
189be38d
XG
516 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
517 u64 mask;
518 int r, index;
519
520 if (level == PT_PAGE_TABLE_LEVEL) {
521 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
522 base_gpa = pte_gpa & ~mask;
523 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
524
54bf36aa 525 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
189be38d
XG
526 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
527 curr_pte = gw->prefetch_ptes[index];
528 } else
54bf36aa 529 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
39c8c672 530 &curr_pte, sizeof(curr_pte));
189be38d 531
39c8c672
AK
532 return r || curr_pte != gw->ptes[level - 1];
533}
534
189be38d
XG
535static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
536 u64 *sptep)
957ed9ef
XG
537{
538 struct kvm_mmu_page *sp;
189be38d 539 pt_element_t *gptep = gw->prefetch_ptes;
957ed9ef 540 u64 *spte;
189be38d 541 int i;
957ed9ef
XG
542
543 sp = page_header(__pa(sptep));
544
545 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
546 return;
547
548 if (sp->role.direct)
549 return __direct_pte_prefetch(vcpu, sp, sptep);
550
551 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
957ed9ef
XG
552 spte = sp->spt + i;
553
554 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
957ed9ef
XG
555 if (spte == sptep)
556 continue;
557
c3707958 558 if (is_shadow_present_pte(*spte))
957ed9ef
XG
559 continue;
560
bd6360cc 561 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
957ed9ef 562 break;
957ed9ef
XG
563 }
564}
565
6aa8b732
AK
566/*
567 * Fetch a shadow pte for a specific level in the paging hierarchy.
d4878f24
XG
568 * If the guest tries to write a write-protected page, we need to
569 * emulate this operation, return 1 to indicate this case.
6aa8b732 570 */
d4878f24 571static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
e7a04c99 572 struct guest_walker *gw,
c2288505 573 int write_fault, int hlevel,
ba049e93 574 kvm_pfn_t pfn, bool map_writable, bool prefault)
6aa8b732 575{
5991b332 576 struct kvm_mmu_page *sp = NULL;
24157aaf 577 struct kvm_shadow_walk_iterator it;
d4878f24 578 unsigned direct_access, access = gw->pt_access;
029499b4 579 int top_level, emulate;
abb9e0b8 580
b36c7a7c 581 direct_access = gw->pte_access;
84754cd8 582
5991b332
AK
583 top_level = vcpu->arch.mmu.root_level;
584 if (top_level == PT32E_ROOT_LEVEL)
585 top_level = PT32_ROOT_LEVEL;
586 /*
587 * Verify that the top-level gpte is still there. Since the page
588 * is a root page, it is either write protected (and cannot be
589 * changed from now on) or it is invalid (in which case, we don't
590 * really care if it changes underneath us after this point).
591 */
592 if (FNAME(gpte_changed)(vcpu, gw, top_level))
593 goto out_gpte_changed;
594
37f6a4e2
MT
595 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
596 goto out_gpte_changed;
597
24157aaf
AK
598 for (shadow_walk_init(&it, vcpu, addr);
599 shadow_walk_okay(&it) && it.level > gw->level;
600 shadow_walk_next(&it)) {
0b3c9333
AK
601 gfn_t table_gfn;
602
a30f47cb 603 clear_sp_write_flooding_count(it.sptep);
24157aaf 604 drop_large_spte(vcpu, it.sptep);
ef0197e8 605
5991b332 606 sp = NULL;
24157aaf
AK
607 if (!is_shadow_present_pte(*it.sptep)) {
608 table_gfn = gw->table_gfn[it.level - 2];
609 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
bb11c6c9 610 false, access);
5991b332 611 }
0b3c9333
AK
612
613 /*
614 * Verify that the gpte in the page we've just write
615 * protected is still there.
616 */
24157aaf 617 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
0b3c9333 618 goto out_gpte_changed;
abb9e0b8 619
5991b332 620 if (sp)
98bba238 621 link_shadow_page(vcpu, it.sptep, sp);
e7a04c99 622 }
050e6499 623
0b3c9333 624 for (;
24157aaf
AK
625 shadow_walk_okay(&it) && it.level > hlevel;
626 shadow_walk_next(&it)) {
0b3c9333
AK
627 gfn_t direct_gfn;
628
a30f47cb 629 clear_sp_write_flooding_count(it.sptep);
24157aaf 630 validate_direct_spte(vcpu, it.sptep, direct_access);
0b3c9333 631
24157aaf 632 drop_large_spte(vcpu, it.sptep);
0b3c9333 633
24157aaf 634 if (is_shadow_present_pte(*it.sptep))
0b3c9333
AK
635 continue;
636
24157aaf 637 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
0b3c9333 638
24157aaf 639 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
bb11c6c9 640 true, direct_access);
98bba238 641 link_shadow_page(vcpu, it.sptep, sp);
0b3c9333
AK
642 }
643
a30f47cb 644 clear_sp_write_flooding_count(it.sptep);
029499b4
TY
645 emulate = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
646 it.level, gw->gfn, pfn, prefault, map_writable);
189be38d 647 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
0b3c9333 648
d4878f24 649 return emulate;
0b3c9333
AK
650
651out_gpte_changed:
0b3c9333 652 kvm_release_pfn_clean(pfn);
d4878f24 653 return 0;
6aa8b732
AK
654}
655
7751babd
XG
656 /*
657 * To see whether the mapped gfn can write its page table in the current
658 * mapping.
659 *
660 * It is the helper function of FNAME(page_fault). When guest uses large page
661 * size to map the writable gfn which is used as current page table, we should
662 * force kvm to use small page size to map it because new shadow page will be
663 * created when kvm establishes shadow page table that stop kvm using large
664 * page size. Do it early can avoid unnecessary #PF and emulation.
665 *
93c05d3e
XG
666 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
667 * currently used as its page table.
668 *
7751babd
XG
669 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
670 * since the PDPT is always shadowed, that means, we can not use large page
671 * size to map the gfn which is used as PDPT.
672 */
673static bool
674FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
93c05d3e
XG
675 struct guest_walker *walker, int user_fault,
676 bool *write_fault_to_shadow_pgtable)
7751babd
XG
677{
678 int level;
679 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
93c05d3e 680 bool self_changed = false;
7751babd
XG
681
682 if (!(walker->pte_access & ACC_WRITE_MASK ||
683 (!is_write_protection(vcpu) && !user_fault)))
684 return false;
685
93c05d3e
XG
686 for (level = walker->level; level <= walker->max_level; level++) {
687 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
688
689 self_changed |= !(gfn & mask);
690 *write_fault_to_shadow_pgtable |= !gfn;
691 }
7751babd 692
93c05d3e 693 return self_changed;
7751babd
XG
694}
695
6aa8b732
AK
696/*
697 * Page fault handler. There are several causes for a page fault:
698 * - there is no shadow pte for the guest pte
699 * - write access through a shadow pte marked read only so that we can set
700 * the dirty bit
701 * - write access to a shadow pte marked read only so we can update the page
702 * dirty bitmap, when userspace requests it
703 * - mmio access; in this case we will never install a present shadow pte
704 * - normal guest page fault due to the guest pte marked not present, not
705 * writable, or not executable
706 *
e2dec939
AK
707 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
708 * a negative value on error.
6aa8b732 709 */
56028d08 710static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
78b2c54a 711 bool prefault)
6aa8b732
AK
712{
713 int write_fault = error_code & PFERR_WRITE_MASK;
6aa8b732
AK
714 int user_fault = error_code & PFERR_USER_MASK;
715 struct guest_walker walker;
e2dec939 716 int r;
ba049e93 717 kvm_pfn_t pfn;
7e4e4056 718 int level = PT_PAGE_TABLE_LEVEL;
8c85ac1c 719 bool force_pt_level = false;
e930bffe 720 unsigned long mmu_seq;
93c05d3e 721 bool map_writable, is_self_change_mapping;
6aa8b732 722
b8688d51 723 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
714b93da 724
e2dec939
AK
725 r = mmu_topup_memory_caches(vcpu);
726 if (r)
727 return r;
714b93da 728
e9ee956e
TY
729 /*
730 * If PFEC.RSVD is set, this is a shadow page fault.
731 * The bit needs to be cleared before walking guest page tables.
732 */
733 error_code &= ~PFERR_RSVD_MASK;
734
6aa8b732 735 /*
a8b876b1 736 * Look up the guest pte for the faulting address.
6aa8b732 737 */
33770780 738 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
6aa8b732
AK
739
740 /*
741 * The page is not mapped by the guest. Let the guest handle it.
742 */
7993ba43 743 if (!r) {
b8688d51 744 pgprintk("%s: guest page fault\n", __func__);
a30f47cb 745 if (!prefault)
fb67e14f 746 inject_page_fault(vcpu, &walker.fault);
a30f47cb 747
6aa8b732
AK
748 return 0;
749 }
750
e5691a81
XG
751 if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
752 shadow_page_table_clear_flood(vcpu, addr);
3d0c27ad 753 return 1;
e5691a81 754 }
3d0c27ad 755
93c05d3e
XG
756 vcpu->arch.write_fault_to_shadow_pgtable = false;
757
758 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
759 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
760
5ed5c5c8 761 if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
fd136902
TY
762 level = mapping_level(vcpu, walker.gfn, &force_pt_level);
763 if (likely(!force_pt_level)) {
764 level = min(walker.level, level);
5ed5c5c8
TY
765 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
766 }
767 } else
cd1872f0 768 force_pt_level = true;
7e4e4056 769
e930bffe 770 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 771 smp_rmb();
af585b92 772
78b2c54a 773 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
612819c3 774 &map_writable))
af585b92 775 return 0;
d7824fff 776
d7c55201
XG
777 if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
778 walker.gfn, pfn, walker.pte_access, &r))
779 return r;
780
c2288505
XG
781 /*
782 * Do not change pte_access if the pfn is a mmio page, otherwise
783 * we will cache the incorrect access into mmio spte.
784 */
785 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
786 !is_write_protection(vcpu) && !user_fault &&
787 !is_noslot_pfn(pfn)) {
788 walker.pte_access |= ACC_WRITE_MASK;
789 walker.pte_access &= ~ACC_USER_MASK;
790
791 /*
792 * If we converted a user page to a kernel page,
793 * so that the kernel can write to it when cr0.wp=0,
794 * then we should prevent the kernel from executing it
795 * if SMEP is enabled.
796 */
797 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
798 walker.pte_access &= ~ACC_EXEC_MASK;
799 }
800
aaee2c94 801 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 802 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 803 goto out_unlock;
bc32ce21 804
0375f7fa 805 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
450e0b41 806 make_mmu_pages_available(vcpu);
936a5fe6
AA
807 if (!force_pt_level)
808 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
c2288505 809 r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
d4878f24 810 level, pfn, map_writable, prefault);
1165f5fe 811 ++vcpu->stat.pf_fixed;
0375f7fa 812 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
aaee2c94 813 spin_unlock(&vcpu->kvm->mmu_lock);
6aa8b732 814
d4878f24 815 return r;
e930bffe
AA
816
817out_unlock:
818 spin_unlock(&vcpu->kvm->mmu_lock);
819 kvm_release_pfn_clean(pfn);
820 return 0;
6aa8b732
AK
821}
822
505aef8f
XG
823static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
824{
825 int offset = 0;
826
f71fa31f 827 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
505aef8f
XG
828
829 if (PTTYPE == 32)
830 offset = sp->role.quadrant << PT64_LEVEL_BITS;
831
832 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
833}
834
a461930b 835static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
a7052897 836{
a461930b 837 struct kvm_shadow_walk_iterator iterator;
f78978aa 838 struct kvm_mmu_page *sp;
a461930b
AK
839 int level;
840 u64 *sptep;
841
bebb106a
XG
842 vcpu_clear_mmio_info(vcpu, gva);
843
f57f2ef5
XG
844 /*
845 * No need to check return value here, rmap_can_add() can
846 * help us to skip pte prefetch later.
847 */
848 mmu_topup_memory_caches(vcpu);
a7052897 849
37f6a4e2
MT
850 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
851 WARN_ON(1);
852 return;
853 }
854
f57f2ef5 855 spin_lock(&vcpu->kvm->mmu_lock);
a461930b
AK
856 for_each_shadow_entry(vcpu, gva, iterator) {
857 level = iterator.level;
858 sptep = iterator.sptep;
ad218f85 859
f78978aa 860 sp = page_header(__pa(sptep));
884a0ff0 861 if (is_last_spte(*sptep, level)) {
f57f2ef5
XG
862 pt_element_t gpte;
863 gpa_t pte_gpa;
864
f78978aa
XG
865 if (!sp->unsync)
866 break;
867
505aef8f 868 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
08e850c6 869 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
a461930b 870
505aef8f
XG
871 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
872 kvm_flush_remote_tlbs(vcpu->kvm);
f57f2ef5
XG
873
874 if (!rmap_can_add(vcpu))
875 break;
876
54bf36aa
PB
877 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
878 sizeof(pt_element_t)))
f57f2ef5
XG
879 break;
880
881 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
87917239 882 }
a7052897 883
f78978aa 884 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
a461930b
AK
885 break;
886 }
ad218f85 887 spin_unlock(&vcpu->kvm->mmu_lock);
a7052897
MT
888}
889
1871c602 890static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
ab9ae313 891 struct x86_exception *exception)
6aa8b732
AK
892{
893 struct guest_walker walker;
e119d117
AK
894 gpa_t gpa = UNMAPPED_GVA;
895 int r;
6aa8b732 896
33770780 897 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
6aa8b732 898
e119d117 899 if (r) {
1755fbcc 900 gpa = gfn_to_gpa(walker.gfn);
e119d117 901 gpa |= vaddr & ~PAGE_MASK;
8c28d031
AK
902 } else if (exception)
903 *exception = walker.fault;
6aa8b732
AK
904
905 return gpa;
906}
907
37406aaa 908#if PTTYPE != PTTYPE_EPT
6539e738 909static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
910 u32 access,
911 struct x86_exception *exception)
6539e738
JR
912{
913 struct guest_walker walker;
914 gpa_t gpa = UNMAPPED_GVA;
915 int r;
916
33770780 917 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
6539e738
JR
918
919 if (r) {
920 gpa = gfn_to_gpa(walker.gfn);
921 gpa |= vaddr & ~PAGE_MASK;
8c28d031
AK
922 } else if (exception)
923 *exception = walker.fault;
6539e738
JR
924
925 return gpa;
926}
37406aaa 927#endif
6539e738 928
e8bc217a
MT
929/*
930 * Using the cached information from sp->gfns is safe because:
931 * - The spte has a reference to the struct page, so the pfn for a given gfn
932 * can't change unless all sptes pointing to it are nuked first.
a4ee1ca4
XG
933 *
934 * Note:
935 * We should flush all tlbs if spte is dropped even though guest is
936 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
937 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
938 * used by guest then tlbs are not flushed, so guest is allowed to access the
939 * freed pages.
a086f6a1 940 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
e8bc217a 941 */
a4a8e6f7 942static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
e8bc217a 943{
505aef8f 944 int i, nr_present = 0;
9bdbba13 945 bool host_writable;
51fb60d8 946 gpa_t first_pte_gpa;
e8bc217a 947
2032a93d
LJ
948 /* direct kvm_mmu_page can not be unsync. */
949 BUG_ON(sp->role.direct);
950
505aef8f 951 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
51fb60d8 952
e8bc217a
MT
953 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
954 unsigned pte_access;
955 pt_element_t gpte;
956 gpa_t pte_gpa;
f55c3f41 957 gfn_t gfn;
e8bc217a 958
ce88decf 959 if (!sp->spt[i])
e8bc217a
MT
960 continue;
961
51fb60d8 962 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
e8bc217a 963
54bf36aa
PB
964 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
965 sizeof(pt_element_t)))
1f50f1b3 966 return 0;
e8bc217a 967
0ad805a0 968 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
7bfdf217
LT
969 /*
970 * Update spte before increasing tlbs_dirty to make
971 * sure no tlb flush is lost after spte is zapped; see
972 * the comments in kvm_flush_remote_tlbs().
973 */
974 smp_wmb();
a086f6a1 975 vcpu->kvm->tlbs_dirty++;
407c61c6
XG
976 continue;
977 }
978
ce88decf
XG
979 gfn = gpte_to_gfn(gpte);
980 pte_access = sp->role.access;
0ad805a0
NHE
981 pte_access &= FNAME(gpte_access)(vcpu, gpte);
982 FNAME(protect_clean_gpte)(&pte_access, gpte);
ce88decf 983
54bf36aa 984 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
f2fd125d 985 &nr_present))
ce88decf
XG
986 continue;
987
407c61c6 988 if (gfn != sp->gfns[i]) {
c3707958 989 drop_spte(vcpu->kvm, &sp->spt[i]);
7bfdf217
LT
990 /*
991 * The same as above where we are doing
992 * prefetch_invalid_gpte().
993 */
994 smp_wmb();
a086f6a1 995 vcpu->kvm->tlbs_dirty++;
e8bc217a
MT
996 continue;
997 }
998
999 nr_present++;
ce88decf 1000
f8e453b0
XG
1001 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1002
c2288505 1003 set_spte(vcpu, &sp->spt[i], pte_access,
640d9b0d 1004 PT_PAGE_TABLE_LEVEL, gfn,
1403283a 1005 spte_to_pfn(sp->spt[i]), true, false,
9bdbba13 1006 host_writable);
e8bc217a
MT
1007 }
1008
1f50f1b3 1009 return nr_present;
e8bc217a
MT
1010}
1011
6aa8b732
AK
1012#undef pt_element_t
1013#undef guest_walker
1014#undef FNAME
1015#undef PT_BASE_ADDR_MASK
1016#undef PT_INDEX
e04da980
JR
1017#undef PT_LVL_ADDR_MASK
1018#undef PT_LVL_OFFSET_MASK
c7addb90 1019#undef PT_LEVEL_BITS
cea0f0e7 1020#undef PT_MAX_FULL_LEVELS
5fb07ddb 1021#undef gpte_to_gfn
e04da980 1022#undef gpte_to_gfn_lvl
b3e4e63f 1023#undef CMPXCHG
d8089bac
GN
1024#undef PT_GUEST_ACCESSED_MASK
1025#undef PT_GUEST_DIRTY_MASK
1026#undef PT_GUEST_DIRTY_SHIFT
1027#undef PT_GUEST_ACCESSED_SHIFT