]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/paging_tmpl.h
kvm: x86: Do not release the page inside mmu_set_spte()
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / paging_tmpl.h
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21/*
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
24 */
25
26#if PTTYPE == 64
27 #define pt_element_t u64
28 #define guest_walker guest_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
e04da980
JR
31 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
6aa8b732 33 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
c7addb90 34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
d8089bac
GN
35 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
36 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
86407bcb 37 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
cea0f0e7
AK
38 #ifdef CONFIG_X86_64
39 #define PT_MAX_FULL_LEVELS 4
b3e4e63f 40 #define CMPXCHG cmpxchg
cea0f0e7 41 #else
b3e4e63f 42 #define CMPXCHG cmpxchg64
cea0f0e7
AK
43 #define PT_MAX_FULL_LEVELS 2
44 #endif
6aa8b732
AK
45#elif PTTYPE == 32
46 #define pt_element_t u32
47 #define guest_walker guest_walker32
48 #define FNAME(name) paging##32_##name
49 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
e04da980
JR
50 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
51 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
6aa8b732 52 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
c7addb90 53 #define PT_LEVEL_BITS PT32_LEVEL_BITS
cea0f0e7 54 #define PT_MAX_FULL_LEVELS 2
d8089bac
GN
55 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
56 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
86407bcb 57 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
b3e4e63f 58 #define CMPXCHG cmpxchg
37406aaa
NHE
59#elif PTTYPE == PTTYPE_EPT
60 #define pt_element_t u64
61 #define guest_walker guest_walkerEPT
62 #define FNAME(name) ept_##name
63 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
64 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
65 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
66 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
67 #define PT_LEVEL_BITS PT64_LEVEL_BITS
ae1e2d10
PB
68 #define PT_GUEST_DIRTY_SHIFT 9
69 #define PT_GUEST_ACCESSED_SHIFT 8
70 #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
37406aaa
NHE
71 #define CMPXCHG cmpxchg64
72 #define PT_MAX_FULL_LEVELS 4
6aa8b732
AK
73#else
74 #error Invalid PTTYPE value
75#endif
76
ae1e2d10
PB
77#define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT)
78#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
79
e04da980
JR
80#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
81#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
5fb07ddb 82
6aa8b732
AK
83/*
84 * The guest_walker structure emulates the behavior of the hardware page
85 * table walker.
86 */
87struct guest_walker {
88 int level;
8cbc7069 89 unsigned max_level;
cea0f0e7 90 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
7819026e 91 pt_element_t ptes[PT_MAX_FULL_LEVELS];
189be38d 92 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
7819026e 93 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
8cbc7069 94 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
ba6a3541 95 bool pte_writable[PT_MAX_FULL_LEVELS];
fe135d2c
AK
96 unsigned pt_access;
97 unsigned pte_access;
815af8d4 98 gfn_t gfn;
8c28d031 99 struct x86_exception fault;
6aa8b732
AK
100};
101
e04da980 102static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
5fb07ddb 103{
e04da980 104 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
5fb07ddb
AK
105}
106
86407bcb
PB
107static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
108 unsigned gpte)
0ad805a0
NHE
109{
110 unsigned mask;
111
61719a8f 112 /* dirty bit is not supported, so no need to track it */
86407bcb 113 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
61719a8f
GN
114 return;
115
0ad805a0
NHE
116 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
117
118 mask = (unsigned)~ACC_WRITE_MASK;
119 /* Allow write access to dirty gptes */
d8089bac
GN
120 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
121 PT_WRITABLE_MASK;
0ad805a0
NHE
122 *access &= mask;
123}
124
0ad805a0
NHE
125static inline int FNAME(is_present_gpte)(unsigned long pte)
126{
37406aaa 127#if PTTYPE != PTTYPE_EPT
812f30b2 128 return pte & PT_PRESENT_MASK;
37406aaa
NHE
129#else
130 return pte & 7;
131#endif
0ad805a0
NHE
132}
133
a78484c6 134static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
c8cfbb55
TY
135 pt_element_t __user *ptep_user, unsigned index,
136 pt_element_t orig_pte, pt_element_t new_pte)
b3e4e63f 137{
c8cfbb55 138 int npages;
b3e4e63f
MT
139 pt_element_t ret;
140 pt_element_t *table;
141 struct page *page;
142
73b0140b 143 npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page);
bd53cb35
FS
144 if (likely(npages == 1)) {
145 table = kmap_atomic(page);
146 ret = CMPXCHG(&table[index], orig_pte, new_pte);
147 kunmap_atomic(table);
148
149 kvm_release_page_dirty(page);
150 } else {
151 struct vm_area_struct *vma;
152 unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK;
153 unsigned long pfn;
154 unsigned long paddr;
155
156 down_read(&current->mm->mmap_sem);
157 vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE);
158 if (!vma || !(vma->vm_flags & VM_PFNMAP)) {
159 up_read(&current->mm->mmap_sem);
160 return -EFAULT;
161 }
162 pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
163 paddr = pfn << PAGE_SHIFT;
164 table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB);
165 if (!table) {
166 up_read(&current->mm->mmap_sem);
167 return -EFAULT;
168 }
169 ret = CMPXCHG(&table[index], orig_pte, new_pte);
170 memunmap(table);
171 up_read(&current->mm->mmap_sem);
172 }
b3e4e63f
MT
173
174 return (ret != orig_pte);
175}
176
0ad805a0
NHE
177static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
178 struct kvm_mmu_page *sp, u64 *spte,
179 u64 gpte)
180{
44dd3ffa 181 if (is_rsvd_bits_set(vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
0ad805a0
NHE
182 goto no_present;
183
184 if (!FNAME(is_present_gpte)(gpte))
185 goto no_present;
186
61719a8f 187 /* if accessed bit is not supported prefetch non accessed gpte */
44dd3ffa
VK
188 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
189 !(gpte & PT_GUEST_ACCESSED_MASK))
0ad805a0
NHE
190 goto no_present;
191
192 return false;
193
194no_present:
195 drop_spte(vcpu->kvm, spte);
196 return true;
197}
198
d95c5568
BD
199/*
200 * For PTTYPE_EPT, a page table can be executable but not readable
201 * on supported processors. Therefore, set_spte does not automatically
202 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
203 * to signify readability since it isn't used in the EPT case
204 */
42522d08 205static inline unsigned FNAME(gpte_access)(u64 gpte)
0ad805a0
NHE
206{
207 unsigned access;
37406aaa
NHE
208#if PTTYPE == PTTYPE_EPT
209 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
210 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
d95c5568 211 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
37406aaa 212#else
bb9eadf0
PB
213 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
214 BUILD_BUG_ON(ACC_EXEC_MASK != 1);
215 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
216 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */
217 access ^= (gpte >> PT64_NX_SHIFT);
37406aaa 218#endif
0ad805a0
NHE
219
220 return access;
221}
222
8cbc7069
AK
223static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
224 struct kvm_mmu *mmu,
225 struct guest_walker *walker,
226 int write_fault)
227{
228 unsigned level, index;
229 pt_element_t pte, orig_pte;
230 pt_element_t __user *ptep_user;
231 gfn_t table_gfn;
232 int ret;
233
61719a8f 234 /* dirty/accessed bits are not supported, so no need to update them */
86407bcb 235 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
61719a8f
GN
236 return 0;
237
8cbc7069
AK
238 for (level = walker->max_level; level >= walker->level; --level) {
239 pte = orig_pte = walker->ptes[level - 1];
240 table_gfn = walker->table_gfn[level - 1];
241 ptep_user = walker->ptep_user[level - 1];
242 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
d8089bac 243 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
8cbc7069 244 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
d8089bac 245 pte |= PT_GUEST_ACCESSED_MASK;
8cbc7069 246 }
0ad805a0 247 if (level == walker->level && write_fault &&
d8089bac 248 !(pte & PT_GUEST_DIRTY_MASK)) {
8cbc7069 249 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
bab4165e
BD
250#if PTTYPE == PTTYPE_EPT
251 if (kvm_arch_write_log_dirty(vcpu))
252 return -EINVAL;
253#endif
d8089bac 254 pte |= PT_GUEST_DIRTY_MASK;
8cbc7069
AK
255 }
256 if (pte == orig_pte)
257 continue;
258
ba6a3541
PB
259 /*
260 * If the slot is read-only, simply do not process the accessed
261 * and dirty bits. This is the correct thing to do if the slot
262 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
263 * are only supported if the accessed and dirty bits are already
264 * set in the ROM (so that MMIO writes are never needed).
265 *
266 * Note that NPT does not allow this at all and faults, since
267 * it always wants nested page table entries for the guest
268 * page tables to be writable. And EPT works but will simply
269 * overwrite the read-only memory to set the accessed and dirty
270 * bits.
271 */
272 if (unlikely(!walker->pte_writable[level - 1]))
273 continue;
274
8cbc7069
AK
275 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
276 if (ret)
277 return ret;
278
54bf36aa 279 kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
17e4bce0 280 walker->ptes[level - 1] = pte;
8cbc7069
AK
281 }
282 return 0;
283}
284
be94f6b7
HH
285static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
286{
287 unsigned pkeys = 0;
288#if PTTYPE == 64
289 pte_t pte = {.pte = gpte};
290
291 pkeys = pte_flags_pkey(pte_flags(pte));
292#endif
293 return pkeys;
294}
295
ac79c978
AK
296/*
297 * Fetch a guest pte for a guest virtual address
298 */
1e301feb
JR
299static int FNAME(walk_addr_generic)(struct guest_walker *walker,
300 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
33770780 301 gva_t addr, u32 access)
6aa8b732 302{
8cbc7069 303 int ret;
42bf3f0a 304 pt_element_t pte;
b7233635 305 pt_element_t __user *uninitialized_var(ptep_user);
cea0f0e7 306 gfn_t table_gfn;
0780516a
PB
307 u64 pt_access, pte_access;
308 unsigned index, accessed_dirty, pte_pkey;
ae1e2d10 309 unsigned nested_access;
42bf3f0a 310 gpa_t pte_gpa;
86407bcb 311 bool have_ad;
134291bf 312 int offset;
0780516a 313 u64 walk_nx_mask = 0;
134291bf
TY
314 const int write_fault = access & PFERR_WRITE_MASK;
315 const int user_fault = access & PFERR_USER_MASK;
316 const int fetch_fault = access & PFERR_FETCH_MASK;
317 u16 errcode = 0;
13d22b6a
AK
318 gpa_t real_gpa;
319 gfn_t gfn;
6aa8b732 320
6fbc2770 321 trace_kvm_mmu_pagetable_walk(addr, access);
92c1c1e8 322retry_walk:
1e301feb
JR
323 walker->level = mmu->root_level;
324 pte = mmu->get_cr3(vcpu);
86407bcb 325 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu);
1e301feb 326
1b0973bd 327#if PTTYPE == 64
0780516a 328 walk_nx_mask = 1ULL << PT64_NX_SHIFT;
1e301feb 329 if (walker->level == PT32E_ROOT_LEVEL) {
e4e517b4 330 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
07420171 331 trace_kvm_mmu_paging_element(pte, walker->level);
0ad805a0 332 if (!FNAME(is_present_gpte)(pte))
f59c1d2d 333 goto error;
1b0973bd
AK
334 --walker->level;
335 }
336#endif
8cbc7069 337 walker->max_level = walker->level;
1715d0dc 338 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
6aa8b732 339
ae1e2d10
PB
340 /*
341 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
342 * by the MOV to CR instruction are treated as reads and do not cause the
343 * processor to set the dirty flag in any EPT paging-structure entry.
344 */
345 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
346
0780516a 347 pte_access = ~0;
13d22b6a 348 ++walker->level;
ac79c978 349
13d22b6a 350 do {
6e2ca7d1
TY
351 gfn_t real_gfn;
352 unsigned long host_addr;
353
0780516a 354 pt_access = pte_access;
13d22b6a
AK
355 --walker->level;
356
42bf3f0a 357 index = PT_INDEX(addr, walker->level);
5fb07ddb 358 table_gfn = gpte_to_gfn(pte);
2329d46d
JR
359 offset = index * sizeof(pt_element_t);
360 pte_gpa = gfn_to_gpa(table_gfn) + offset;
829ee279
LP
361
362 BUG_ON(walker->level < 1);
42bf3f0a 363 walker->table_gfn[walker->level - 1] = table_gfn;
7819026e 364 walker->pte_gpa[walker->level - 1] = pte_gpa;
42bf3f0a 365
6e2ca7d1 366 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
ae1e2d10 367 nested_access,
54987b7a 368 &walker->fault);
5e352519
PB
369
370 /*
371 * FIXME: This can happen if emulation (for of an INS/OUTS
372 * instruction) triggers a nested page fault. The exit
373 * qualification / exit info field will incorrectly have
374 * "guest page access" as the nested page fault's cause,
375 * instead of "guest page structure access". To fix this,
376 * the x86_exception struct should be augmented with enough
377 * information to fix the exit_qualification or exit_info_1
378 * fields.
379 */
134291bf 380 if (unlikely(real_gfn == UNMAPPED_GVA))
54987b7a 381 return 0;
5e352519 382
6e2ca7d1
TY
383 real_gfn = gpa_to_gfn(real_gfn);
384
54bf36aa 385 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
ba6a3541 386 &walker->pte_writable[walker->level - 1]);
134291bf
TY
387 if (unlikely(kvm_is_error_hva(host_addr)))
388 goto error;
6e2ca7d1
TY
389
390 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
134291bf
TY
391 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
392 goto error;
8cbc7069 393 walker->ptep_user[walker->level - 1] = ptep_user;
a6085fba 394
07420171 395 trace_kvm_mmu_paging_element(pte, walker->level);
42bf3f0a 396
0780516a
PB
397 /*
398 * Inverting the NX it lets us AND it like other
399 * permission bits.
400 */
401 pte_access = pt_access & (pte ^ walk_nx_mask);
402
0ad805a0 403 if (unlikely(!FNAME(is_present_gpte)(pte)))
134291bf 404 goto error;
7993ba43 405
d2b0f981 406 if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
7a98205d 407 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
134291bf 408 goto error;
f59c1d2d 409 }
82725b20 410
7819026e 411 walker->ptes[walker->level - 1] = pte;
6fd01b71 412 } while (!is_last_gpte(mmu, walker->level, pte));
42bf3f0a 413
be94f6b7 414 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
0780516a
PB
415 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
416
417 /* Convert to ACC_*_MASK flags for struct guest_walker. */
42522d08
PX
418 walker->pt_access = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
419 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
0780516a 420 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
f13577e8 421 if (unlikely(errcode))
f59c1d2d
AK
422 goto error;
423
13d22b6a
AK
424 gfn = gpte_to_gfn_lvl(pte, walker->level);
425 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
426
427 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
428 gfn += pse36_gfn_delta(pte);
429
54987b7a 430 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
13d22b6a
AK
431 if (real_gpa == UNMAPPED_GVA)
432 return 0;
433
434 walker->gfn = real_gpa >> PAGE_SHIFT;
435
8ea667f2 436 if (!write_fault)
0780516a 437 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
908e7d79
GN
438 else
439 /*
61719a8f
GN
440 * On a write fault, fold the dirty bit into accessed_dirty.
441 * For modes without A/D bits support accessed_dirty will be
442 * always clear.
908e7d79 443 */
d8089bac
GN
444 accessed_dirty &= pte >>
445 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
b514c30f
AK
446
447 if (unlikely(!accessed_dirty)) {
448 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
449 if (unlikely(ret < 0))
450 goto error;
451 else if (ret)
452 goto retry_walk;
453 }
42bf3f0a 454
fe135d2c 455 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
0780516a 456 __func__, (u64)pte, walker->pte_access, walker->pt_access);
7993ba43
AK
457 return 1;
458
f59c1d2d 459error:
134291bf 460 errcode |= write_fault | user_fault;
e57d4a35
YW
461 if (fetch_fault && (mmu->nx ||
462 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
134291bf 463 errcode |= PFERR_FETCH_MASK;
8df25a32 464
134291bf
TY
465 walker->fault.vector = PF_VECTOR;
466 walker->fault.error_code_valid = true;
467 walker->fault.error_code = errcode;
25d92081
YZ
468
469#if PTTYPE == PTTYPE_EPT
470 /*
471 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
472 * misconfiguration requires to be injected. The detection is
473 * done by is_rsvd_bits_set() above.
474 *
475 * We set up the value of exit_qualification to inject:
ddd6f0e9
KA
476 * [2:0] - Derive from the access bits. The exit_qualification might be
477 * out of date if it is serving an EPT misconfiguration.
25d92081
YZ
478 * [5:3] - Calculated by the page walk of the guest EPT page tables
479 * [7:8] - Derived from [7:8] of real exit_qualification
480 *
481 * The other bits are set to 0.
482 */
483 if (!(errcode & PFERR_RSVD_MASK)) {
ddd6f0e9
KA
484 vcpu->arch.exit_qualification &= 0x180;
485 if (write_fault)
486 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
487 if (user_fault)
488 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
489 if (fetch_fault)
490 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
0780516a 491 vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
25d92081
YZ
492 }
493#endif
6389ee94
AK
494 walker->fault.address = addr;
495 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
8df25a32 496
8c28d031 497 trace_kvm_mmu_walker_error(walker->fault.error_code);
fe551881 498 return 0;
6aa8b732
AK
499}
500
1e301feb 501static int FNAME(walk_addr)(struct guest_walker *walker,
33770780 502 struct kvm_vcpu *vcpu, gva_t addr, u32 access)
1e301feb 503{
44dd3ffa 504 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
33770780 505 access);
1e301feb
JR
506}
507
37406aaa 508#if PTTYPE != PTTYPE_EPT
6539e738
JR
509static int FNAME(walk_addr_nested)(struct guest_walker *walker,
510 struct kvm_vcpu *vcpu, gva_t addr,
33770780 511 u32 access)
6539e738
JR
512{
513 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
33770780 514 addr, access);
6539e738 515}
37406aaa 516#endif
6539e738 517
bd6360cc
XG
518static bool
519FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
520 u64 *spte, pt_element_t gpte, bool no_dirty_log)
0028425f 521{
41074d07 522 unsigned pte_access;
bd6360cc 523 gfn_t gfn;
ba049e93 524 kvm_pfn_t pfn;
0028425f 525
0ad805a0 526 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
bd6360cc 527 return false;
407c61c6 528
b8688d51 529 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
bd6360cc
XG
530
531 gfn = gpte_to_gfn(gpte);
42522d08 532 pte_access = sp->role.access & FNAME(gpte_access)(gpte);
44dd3ffa 533 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
bd6360cc
XG
534 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
535 no_dirty_log && (pte_access & ACC_WRITE_MASK));
81c52c56 536 if (is_error_pfn(pfn))
bd6360cc 537 return false;
0f53b5b1 538
1403283a 539 /*
bd6360cc
XG
540 * we call mmu_set_spte() with host_writable = true because
541 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
1403283a 542 */
029499b4
TY
543 mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
544 true, true);
bd6360cc 545
43fdcda9 546 kvm_release_pfn_clean(pfn);
bd6360cc
XG
547 return true;
548}
549
550static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
551 u64 *spte, const void *pte)
552{
553 pt_element_t gpte = *(const pt_element_t *)pte;
554
555 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
0028425f
AK
556}
557
39c8c672
AK
558static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
559 struct guest_walker *gw, int level)
560{
39c8c672 561 pt_element_t curr_pte;
189be38d
XG
562 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
563 u64 mask;
564 int r, index;
565
566 if (level == PT_PAGE_TABLE_LEVEL) {
567 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
568 base_gpa = pte_gpa & ~mask;
569 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
570
54bf36aa 571 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
189be38d
XG
572 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
573 curr_pte = gw->prefetch_ptes[index];
574 } else
54bf36aa 575 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
39c8c672 576 &curr_pte, sizeof(curr_pte));
189be38d 577
39c8c672
AK
578 return r || curr_pte != gw->ptes[level - 1];
579}
580
189be38d
XG
581static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
582 u64 *sptep)
957ed9ef
XG
583{
584 struct kvm_mmu_page *sp;
189be38d 585 pt_element_t *gptep = gw->prefetch_ptes;
957ed9ef 586 u64 *spte;
189be38d 587 int i;
957ed9ef
XG
588
589 sp = page_header(__pa(sptep));
590
591 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
592 return;
593
594 if (sp->role.direct)
595 return __direct_pte_prefetch(vcpu, sp, sptep);
596
597 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
957ed9ef
XG
598 spte = sp->spt + i;
599
600 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
957ed9ef
XG
601 if (spte == sptep)
602 continue;
603
c3707958 604 if (is_shadow_present_pte(*spte))
957ed9ef
XG
605 continue;
606
bd6360cc 607 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
957ed9ef 608 break;
957ed9ef
XG
609 }
610}
611
6aa8b732
AK
612/*
613 * Fetch a shadow pte for a specific level in the paging hierarchy.
d4878f24
XG
614 * If the guest tries to write a write-protected page, we need to
615 * emulate this operation, return 1 to indicate this case.
6aa8b732 616 */
d4878f24 617static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
e7a04c99 618 struct guest_walker *gw,
c2288505 619 int write_fault, int hlevel,
ba049e93 620 kvm_pfn_t pfn, bool map_writable, bool prefault)
6aa8b732 621{
5991b332 622 struct kvm_mmu_page *sp = NULL;
24157aaf 623 struct kvm_shadow_walk_iterator it;
d4878f24 624 unsigned direct_access, access = gw->pt_access;
9b8ebbdb 625 int top_level, ret;
abb9e0b8 626
b36c7a7c 627 direct_access = gw->pte_access;
84754cd8 628
44dd3ffa 629 top_level = vcpu->arch.mmu->root_level;
5991b332
AK
630 if (top_level == PT32E_ROOT_LEVEL)
631 top_level = PT32_ROOT_LEVEL;
632 /*
633 * Verify that the top-level gpte is still there. Since the page
634 * is a root page, it is either write protected (and cannot be
635 * changed from now on) or it is invalid (in which case, we don't
636 * really care if it changes underneath us after this point).
637 */
638 if (FNAME(gpte_changed)(vcpu, gw, top_level))
639 goto out_gpte_changed;
640
44dd3ffa 641 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
37f6a4e2
MT
642 goto out_gpte_changed;
643
24157aaf
AK
644 for (shadow_walk_init(&it, vcpu, addr);
645 shadow_walk_okay(&it) && it.level > gw->level;
646 shadow_walk_next(&it)) {
0b3c9333
AK
647 gfn_t table_gfn;
648
a30f47cb 649 clear_sp_write_flooding_count(it.sptep);
24157aaf 650 drop_large_spte(vcpu, it.sptep);
ef0197e8 651
5991b332 652 sp = NULL;
24157aaf
AK
653 if (!is_shadow_present_pte(*it.sptep)) {
654 table_gfn = gw->table_gfn[it.level - 2];
655 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
bb11c6c9 656 false, access);
5991b332 657 }
0b3c9333
AK
658
659 /*
660 * Verify that the gpte in the page we've just write
661 * protected is still there.
662 */
24157aaf 663 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
0b3c9333 664 goto out_gpte_changed;
abb9e0b8 665
5991b332 666 if (sp)
98bba238 667 link_shadow_page(vcpu, it.sptep, sp);
e7a04c99 668 }
050e6499 669
0b3c9333 670 for (;
24157aaf
AK
671 shadow_walk_okay(&it) && it.level > hlevel;
672 shadow_walk_next(&it)) {
0b3c9333
AK
673 gfn_t direct_gfn;
674
a30f47cb 675 clear_sp_write_flooding_count(it.sptep);
24157aaf 676 validate_direct_spte(vcpu, it.sptep, direct_access);
0b3c9333 677
24157aaf 678 drop_large_spte(vcpu, it.sptep);
0b3c9333 679
24157aaf 680 if (is_shadow_present_pte(*it.sptep))
0b3c9333
AK
681 continue;
682
24157aaf 683 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
0b3c9333 684
24157aaf 685 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
bb11c6c9 686 true, direct_access);
98bba238 687 link_shadow_page(vcpu, it.sptep, sp);
0b3c9333
AK
688 }
689
a30f47cb 690 clear_sp_write_flooding_count(it.sptep);
9b8ebbdb
PB
691 ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
692 it.level, gw->gfn, pfn, prefault, map_writable);
189be38d 693 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
0b3c9333 694
9b8ebbdb 695 return ret;
0b3c9333
AK
696
697out_gpte_changed:
9b8ebbdb 698 return RET_PF_RETRY;
6aa8b732
AK
699}
700
7751babd
XG
701 /*
702 * To see whether the mapped gfn can write its page table in the current
703 * mapping.
704 *
705 * It is the helper function of FNAME(page_fault). When guest uses large page
706 * size to map the writable gfn which is used as current page table, we should
707 * force kvm to use small page size to map it because new shadow page will be
708 * created when kvm establishes shadow page table that stop kvm using large
709 * page size. Do it early can avoid unnecessary #PF and emulation.
710 *
93c05d3e
XG
711 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
712 * currently used as its page table.
713 *
7751babd
XG
714 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
715 * since the PDPT is always shadowed, that means, we can not use large page
716 * size to map the gfn which is used as PDPT.
717 */
718static bool
719FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
93c05d3e
XG
720 struct guest_walker *walker, int user_fault,
721 bool *write_fault_to_shadow_pgtable)
7751babd
XG
722{
723 int level;
724 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
93c05d3e 725 bool self_changed = false;
7751babd
XG
726
727 if (!(walker->pte_access & ACC_WRITE_MASK ||
728 (!is_write_protection(vcpu) && !user_fault)))
729 return false;
730
93c05d3e
XG
731 for (level = walker->level; level <= walker->max_level; level++) {
732 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
733
734 self_changed |= !(gfn & mask);
735 *write_fault_to_shadow_pgtable |= !gfn;
736 }
7751babd 737
93c05d3e 738 return self_changed;
7751babd
XG
739}
740
6aa8b732
AK
741/*
742 * Page fault handler. There are several causes for a page fault:
743 * - there is no shadow pte for the guest pte
744 * - write access through a shadow pte marked read only so that we can set
745 * the dirty bit
746 * - write access to a shadow pte marked read only so we can update the page
747 * dirty bitmap, when userspace requests it
748 * - mmio access; in this case we will never install a present shadow pte
749 * - normal guest page fault due to the guest pte marked not present, not
750 * writable, or not executable
751 *
e2dec939
AK
752 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
753 * a negative value on error.
6aa8b732 754 */
56028d08 755static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
78b2c54a 756 bool prefault)
6aa8b732
AK
757{
758 int write_fault = error_code & PFERR_WRITE_MASK;
6aa8b732
AK
759 int user_fault = error_code & PFERR_USER_MASK;
760 struct guest_walker walker;
e2dec939 761 int r;
ba049e93 762 kvm_pfn_t pfn;
7e4e4056 763 int level = PT_PAGE_TABLE_LEVEL;
8c85ac1c 764 bool force_pt_level = false;
e930bffe 765 unsigned long mmu_seq;
93c05d3e 766 bool map_writable, is_self_change_mapping;
6aa8b732 767
b8688d51 768 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
714b93da 769
e2dec939
AK
770 r = mmu_topup_memory_caches(vcpu);
771 if (r)
772 return r;
714b93da 773
e9ee956e
TY
774 /*
775 * If PFEC.RSVD is set, this is a shadow page fault.
776 * The bit needs to be cleared before walking guest page tables.
777 */
778 error_code &= ~PFERR_RSVD_MASK;
779
6aa8b732 780 /*
a8b876b1 781 * Look up the guest pte for the faulting address.
6aa8b732 782 */
33770780 783 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
6aa8b732
AK
784
785 /*
786 * The page is not mapped by the guest. Let the guest handle it.
787 */
7993ba43 788 if (!r) {
b8688d51 789 pgprintk("%s: guest page fault\n", __func__);
a30f47cb 790 if (!prefault)
fb67e14f 791 inject_page_fault(vcpu, &walker.fault);
a30f47cb 792
9b8ebbdb 793 return RET_PF_RETRY;
6aa8b732
AK
794 }
795
e5691a81
XG
796 if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
797 shadow_page_table_clear_flood(vcpu, addr);
9b8ebbdb 798 return RET_PF_EMULATE;
e5691a81 799 }
3d0c27ad 800
93c05d3e
XG
801 vcpu->arch.write_fault_to_shadow_pgtable = false;
802
803 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
804 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
805
5ed5c5c8 806 if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
fd136902
TY
807 level = mapping_level(vcpu, walker.gfn, &force_pt_level);
808 if (likely(!force_pt_level)) {
809 level = min(walker.level, level);
5ed5c5c8
TY
810 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
811 }
812 } else
cd1872f0 813 force_pt_level = true;
7e4e4056 814
e930bffe 815 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 816 smp_rmb();
af585b92 817
78b2c54a 818 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
612819c3 819 &map_writable))
9b8ebbdb 820 return RET_PF_RETRY;
d7824fff 821
9034e6e8 822 if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
d7c55201
XG
823 return r;
824
c2288505
XG
825 /*
826 * Do not change pte_access if the pfn is a mmio page, otherwise
827 * we will cache the incorrect access into mmio spte.
828 */
829 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
830 !is_write_protection(vcpu) && !user_fault &&
831 !is_noslot_pfn(pfn)) {
832 walker.pte_access |= ACC_WRITE_MASK;
833 walker.pte_access &= ~ACC_USER_MASK;
834
835 /*
836 * If we converted a user page to a kernel page,
837 * so that the kernel can write to it when cr0.wp=0,
838 * then we should prevent the kernel from executing it
839 * if SMEP is enabled.
840 */
841 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
842 walker.pte_access &= ~ACC_EXEC_MASK;
843 }
844
43fdcda9 845 r = RET_PF_RETRY;
aaee2c94 846 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 847 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 848 goto out_unlock;
bc32ce21 849
0375f7fa 850 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
26eeb53c
WL
851 if (make_mmu_pages_available(vcpu) < 0)
852 goto out_unlock;
936a5fe6
AA
853 if (!force_pt_level)
854 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
c2288505 855 r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
d4878f24 856 level, pfn, map_writable, prefault);
1165f5fe 857 ++vcpu->stat.pf_fixed;
0375f7fa 858 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
e930bffe
AA
859
860out_unlock:
861 spin_unlock(&vcpu->kvm->mmu_lock);
862 kvm_release_pfn_clean(pfn);
43fdcda9 863 return r;
6aa8b732
AK
864}
865
505aef8f
XG
866static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
867{
868 int offset = 0;
869
f71fa31f 870 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
505aef8f
XG
871
872 if (PTTYPE == 32)
873 offset = sp->role.quadrant << PT64_LEVEL_BITS;
874
875 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
876}
877
7eb77e9f 878static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
a7052897 879{
a461930b 880 struct kvm_shadow_walk_iterator iterator;
f78978aa 881 struct kvm_mmu_page *sp;
a461930b
AK
882 int level;
883 u64 *sptep;
884
bebb106a
XG
885 vcpu_clear_mmio_info(vcpu, gva);
886
f57f2ef5
XG
887 /*
888 * No need to check return value here, rmap_can_add() can
889 * help us to skip pte prefetch later.
890 */
891 mmu_topup_memory_caches(vcpu);
a7052897 892
7eb77e9f 893 if (!VALID_PAGE(root_hpa)) {
37f6a4e2
MT
894 WARN_ON(1);
895 return;
896 }
897
f57f2ef5 898 spin_lock(&vcpu->kvm->mmu_lock);
7eb77e9f 899 for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
a461930b
AK
900 level = iterator.level;
901 sptep = iterator.sptep;
ad218f85 902
f78978aa 903 sp = page_header(__pa(sptep));
884a0ff0 904 if (is_last_spte(*sptep, level)) {
f57f2ef5
XG
905 pt_element_t gpte;
906 gpa_t pte_gpa;
907
f78978aa
XG
908 if (!sp->unsync)
909 break;
910
505aef8f 911 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
08e850c6 912 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
a461930b 913
505aef8f 914 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
c3134ce2
LT
915 kvm_flush_remote_tlbs_with_address(vcpu->kvm,
916 sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
f57f2ef5
XG
917
918 if (!rmap_can_add(vcpu))
919 break;
920
54bf36aa
PB
921 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
922 sizeof(pt_element_t)))
f57f2ef5
XG
923 break;
924
925 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
87917239 926 }
a7052897 927
f78978aa 928 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
a461930b
AK
929 break;
930 }
ad218f85 931 spin_unlock(&vcpu->kvm->mmu_lock);
a7052897
MT
932}
933
1871c602 934static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
ab9ae313 935 struct x86_exception *exception)
6aa8b732
AK
936{
937 struct guest_walker walker;
e119d117
AK
938 gpa_t gpa = UNMAPPED_GVA;
939 int r;
6aa8b732 940
33770780 941 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
6aa8b732 942
e119d117 943 if (r) {
1755fbcc 944 gpa = gfn_to_gpa(walker.gfn);
e119d117 945 gpa |= vaddr & ~PAGE_MASK;
8c28d031
AK
946 } else if (exception)
947 *exception = walker.fault;
6aa8b732
AK
948
949 return gpa;
950}
951
37406aaa 952#if PTTYPE != PTTYPE_EPT
6539e738 953static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
954 u32 access,
955 struct x86_exception *exception)
6539e738
JR
956{
957 struct guest_walker walker;
958 gpa_t gpa = UNMAPPED_GVA;
959 int r;
960
33770780 961 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
6539e738
JR
962
963 if (r) {
964 gpa = gfn_to_gpa(walker.gfn);
965 gpa |= vaddr & ~PAGE_MASK;
8c28d031
AK
966 } else if (exception)
967 *exception = walker.fault;
6539e738
JR
968
969 return gpa;
970}
37406aaa 971#endif
6539e738 972
e8bc217a
MT
973/*
974 * Using the cached information from sp->gfns is safe because:
975 * - The spte has a reference to the struct page, so the pfn for a given gfn
976 * can't change unless all sptes pointing to it are nuked first.
a4ee1ca4
XG
977 *
978 * Note:
979 * We should flush all tlbs if spte is dropped even though guest is
980 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
981 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
982 * used by guest then tlbs are not flushed, so guest is allowed to access the
983 * freed pages.
a086f6a1 984 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
e8bc217a 985 */
a4a8e6f7 986static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
e8bc217a 987{
505aef8f 988 int i, nr_present = 0;
9bdbba13 989 bool host_writable;
51fb60d8 990 gpa_t first_pte_gpa;
5ce4786f 991 int set_spte_ret = 0;
e8bc217a 992
2032a93d
LJ
993 /* direct kvm_mmu_page can not be unsync. */
994 BUG_ON(sp->role.direct);
995
505aef8f 996 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
51fb60d8 997
e8bc217a
MT
998 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
999 unsigned pte_access;
1000 pt_element_t gpte;
1001 gpa_t pte_gpa;
f55c3f41 1002 gfn_t gfn;
e8bc217a 1003
ce88decf 1004 if (!sp->spt[i])
e8bc217a
MT
1005 continue;
1006
51fb60d8 1007 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
e8bc217a 1008
54bf36aa
PB
1009 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1010 sizeof(pt_element_t)))
1f50f1b3 1011 return 0;
e8bc217a 1012
0ad805a0 1013 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
7bfdf217
LT
1014 /*
1015 * Update spte before increasing tlbs_dirty to make
1016 * sure no tlb flush is lost after spte is zapped; see
1017 * the comments in kvm_flush_remote_tlbs().
1018 */
1019 smp_wmb();
a086f6a1 1020 vcpu->kvm->tlbs_dirty++;
407c61c6
XG
1021 continue;
1022 }
1023
ce88decf
XG
1024 gfn = gpte_to_gfn(gpte);
1025 pte_access = sp->role.access;
42522d08 1026 pte_access &= FNAME(gpte_access)(gpte);
44dd3ffa 1027 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
ce88decf 1028
54bf36aa 1029 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
f2fd125d 1030 &nr_present))
ce88decf
XG
1031 continue;
1032
407c61c6 1033 if (gfn != sp->gfns[i]) {
c3707958 1034 drop_spte(vcpu->kvm, &sp->spt[i]);
7bfdf217
LT
1035 /*
1036 * The same as above where we are doing
1037 * prefetch_invalid_gpte().
1038 */
1039 smp_wmb();
a086f6a1 1040 vcpu->kvm->tlbs_dirty++;
e8bc217a
MT
1041 continue;
1042 }
1043
1044 nr_present++;
ce88decf 1045
f8e453b0
XG
1046 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1047
5ce4786f
JS
1048 set_spte_ret |= set_spte(vcpu, &sp->spt[i],
1049 pte_access, PT_PAGE_TABLE_LEVEL,
1050 gfn, spte_to_pfn(sp->spt[i]),
1051 true, false, host_writable);
e8bc217a
MT
1052 }
1053
5ce4786f
JS
1054 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1055 kvm_flush_remote_tlbs(vcpu->kvm);
1056
1f50f1b3 1057 return nr_present;
e8bc217a
MT
1058}
1059
6aa8b732
AK
1060#undef pt_element_t
1061#undef guest_walker
1062#undef FNAME
1063#undef PT_BASE_ADDR_MASK
1064#undef PT_INDEX
e04da980
JR
1065#undef PT_LVL_ADDR_MASK
1066#undef PT_LVL_OFFSET_MASK
c7addb90 1067#undef PT_LEVEL_BITS
cea0f0e7 1068#undef PT_MAX_FULL_LEVELS
5fb07ddb 1069#undef gpte_to_gfn
e04da980 1070#undef gpte_to_gfn_lvl
b3e4e63f 1071#undef CMPXCHG
d8089bac
GN
1072#undef PT_GUEST_ACCESSED_MASK
1073#undef PT_GUEST_DIRTY_MASK
1074#undef PT_GUEST_DIRTY_SHIFT
1075#undef PT_GUEST_ACCESSED_SHIFT
86407bcb 1076#undef PT_HAVE_ACCESSED_DIRTY