]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/paging_tmpl.h
KVM: VMX: Don't enable EPT A/D feature if EPT feature is disabled
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / paging_tmpl.h
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21/*
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
24 */
25
26#if PTTYPE == 64
27 #define pt_element_t u64
28 #define guest_walker guest_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
e04da980
JR
31 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
6aa8b732 33 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
c7addb90 34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
d8089bac
GN
35 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
36 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
86407bcb 37 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
cea0f0e7
AK
38 #ifdef CONFIG_X86_64
39 #define PT_MAX_FULL_LEVELS 4
b3e4e63f 40 #define CMPXCHG cmpxchg
cea0f0e7 41 #else
b3e4e63f 42 #define CMPXCHG cmpxchg64
cea0f0e7
AK
43 #define PT_MAX_FULL_LEVELS 2
44 #endif
6aa8b732
AK
45#elif PTTYPE == 32
46 #define pt_element_t u32
47 #define guest_walker guest_walker32
48 #define FNAME(name) paging##32_##name
49 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
e04da980
JR
50 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
51 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
6aa8b732 52 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
c7addb90 53 #define PT_LEVEL_BITS PT32_LEVEL_BITS
cea0f0e7 54 #define PT_MAX_FULL_LEVELS 2
d8089bac
GN
55 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
56 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
86407bcb 57 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
b3e4e63f 58 #define CMPXCHG cmpxchg
37406aaa
NHE
59#elif PTTYPE == PTTYPE_EPT
60 #define pt_element_t u64
61 #define guest_walker guest_walkerEPT
62 #define FNAME(name) ept_##name
63 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
64 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
65 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
66 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
67 #define PT_LEVEL_BITS PT64_LEVEL_BITS
ae1e2d10
PB
68 #define PT_GUEST_DIRTY_SHIFT 9
69 #define PT_GUEST_ACCESSED_SHIFT 8
70 #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
37406aaa
NHE
71 #define CMPXCHG cmpxchg64
72 #define PT_MAX_FULL_LEVELS 4
6aa8b732
AK
73#else
74 #error Invalid PTTYPE value
75#endif
76
ae1e2d10
PB
77#define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT)
78#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
79
e04da980
JR
80#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
81#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
5fb07ddb 82
6aa8b732
AK
83/*
84 * The guest_walker structure emulates the behavior of the hardware page
85 * table walker.
86 */
87struct guest_walker {
88 int level;
8cbc7069 89 unsigned max_level;
cea0f0e7 90 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
7819026e 91 pt_element_t ptes[PT_MAX_FULL_LEVELS];
189be38d 92 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
7819026e 93 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
8cbc7069 94 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
ba6a3541 95 bool pte_writable[PT_MAX_FULL_LEVELS];
fe135d2c
AK
96 unsigned pt_access;
97 unsigned pte_access;
815af8d4 98 gfn_t gfn;
8c28d031 99 struct x86_exception fault;
6aa8b732
AK
100};
101
e04da980 102static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
5fb07ddb 103{
e04da980 104 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
5fb07ddb
AK
105}
106
86407bcb
PB
107static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
108 unsigned gpte)
0ad805a0
NHE
109{
110 unsigned mask;
111
61719a8f 112 /* dirty bit is not supported, so no need to track it */
86407bcb 113 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
61719a8f
GN
114 return;
115
0ad805a0
NHE
116 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
117
118 mask = (unsigned)~ACC_WRITE_MASK;
119 /* Allow write access to dirty gptes */
d8089bac
GN
120 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
121 PT_WRITABLE_MASK;
0ad805a0
NHE
122 *access &= mask;
123}
124
0ad805a0
NHE
125static inline int FNAME(is_present_gpte)(unsigned long pte)
126{
37406aaa 127#if PTTYPE != PTTYPE_EPT
812f30b2 128 return pte & PT_PRESENT_MASK;
37406aaa
NHE
129#else
130 return pte & 7;
131#endif
0ad805a0
NHE
132}
133
a78484c6 134static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
c8cfbb55
TY
135 pt_element_t __user *ptep_user, unsigned index,
136 pt_element_t orig_pte, pt_element_t new_pte)
b3e4e63f 137{
c8cfbb55 138 int npages;
b3e4e63f
MT
139 pt_element_t ret;
140 pt_element_t *table;
141 struct page *page;
142
c8cfbb55
TY
143 npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
144 /* Check if the user is doing something meaningless. */
145 if (unlikely(npages != 1))
a78484c6
RJ
146 return -EFAULT;
147
8fd75e12 148 table = kmap_atomic(page);
b3e4e63f 149 ret = CMPXCHG(&table[index], orig_pte, new_pte);
8fd75e12 150 kunmap_atomic(table);
b3e4e63f
MT
151
152 kvm_release_page_dirty(page);
153
154 return (ret != orig_pte);
155}
156
0ad805a0
NHE
157static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
158 struct kvm_mmu_page *sp, u64 *spte,
159 u64 gpte)
160{
d2b0f981 161 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
0ad805a0
NHE
162 goto no_present;
163
164 if (!FNAME(is_present_gpte)(gpte))
165 goto no_present;
166
61719a8f 167 /* if accessed bit is not supported prefetch non accessed gpte */
86407bcb 168 if (PT_HAVE_ACCESSED_DIRTY(&vcpu->arch.mmu) && !(gpte & PT_GUEST_ACCESSED_MASK))
0ad805a0
NHE
169 goto no_present;
170
171 return false;
172
173no_present:
174 drop_spte(vcpu->kvm, spte);
175 return true;
176}
177
d95c5568
BD
178/*
179 * For PTTYPE_EPT, a page table can be executable but not readable
180 * on supported processors. Therefore, set_spte does not automatically
181 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
182 * to signify readability since it isn't used in the EPT case
183 */
0ad805a0
NHE
184static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte)
185{
186 unsigned access;
37406aaa
NHE
187#if PTTYPE == PTTYPE_EPT
188 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
189 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
d95c5568 190 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
37406aaa 191#else
bb9eadf0
PB
192 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
193 BUILD_BUG_ON(ACC_EXEC_MASK != 1);
194 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
195 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */
196 access ^= (gpte >> PT64_NX_SHIFT);
37406aaa 197#endif
0ad805a0
NHE
198
199 return access;
200}
201
8cbc7069
AK
202static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
203 struct kvm_mmu *mmu,
204 struct guest_walker *walker,
205 int write_fault)
206{
207 unsigned level, index;
208 pt_element_t pte, orig_pte;
209 pt_element_t __user *ptep_user;
210 gfn_t table_gfn;
211 int ret;
212
61719a8f 213 /* dirty/accessed bits are not supported, so no need to update them */
86407bcb 214 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
61719a8f
GN
215 return 0;
216
8cbc7069
AK
217 for (level = walker->max_level; level >= walker->level; --level) {
218 pte = orig_pte = walker->ptes[level - 1];
219 table_gfn = walker->table_gfn[level - 1];
220 ptep_user = walker->ptep_user[level - 1];
221 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
d8089bac 222 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
8cbc7069 223 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
d8089bac 224 pte |= PT_GUEST_ACCESSED_MASK;
8cbc7069 225 }
0ad805a0 226 if (level == walker->level && write_fault &&
d8089bac 227 !(pte & PT_GUEST_DIRTY_MASK)) {
8cbc7069 228 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
bab4165e
BD
229#if PTTYPE == PTTYPE_EPT
230 if (kvm_arch_write_log_dirty(vcpu))
231 return -EINVAL;
232#endif
d8089bac 233 pte |= PT_GUEST_DIRTY_MASK;
8cbc7069
AK
234 }
235 if (pte == orig_pte)
236 continue;
237
ba6a3541
PB
238 /*
239 * If the slot is read-only, simply do not process the accessed
240 * and dirty bits. This is the correct thing to do if the slot
241 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
242 * are only supported if the accessed and dirty bits are already
243 * set in the ROM (so that MMIO writes are never needed).
244 *
245 * Note that NPT does not allow this at all and faults, since
246 * it always wants nested page table entries for the guest
247 * page tables to be writable. And EPT works but will simply
248 * overwrite the read-only memory to set the accessed and dirty
249 * bits.
250 */
251 if (unlikely(!walker->pte_writable[level - 1]))
252 continue;
253
8cbc7069
AK
254 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
255 if (ret)
256 return ret;
257
54bf36aa 258 kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
17e4bce0 259 walker->ptes[level - 1] = pte;
8cbc7069
AK
260 }
261 return 0;
262}
263
be94f6b7
HH
264static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
265{
266 unsigned pkeys = 0;
267#if PTTYPE == 64
268 pte_t pte = {.pte = gpte};
269
270 pkeys = pte_flags_pkey(pte_flags(pte));
271#endif
272 return pkeys;
273}
274
ac79c978
AK
275/*
276 * Fetch a guest pte for a guest virtual address
277 */
1e301feb
JR
278static int FNAME(walk_addr_generic)(struct guest_walker *walker,
279 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
33770780 280 gva_t addr, u32 access)
6aa8b732 281{
8cbc7069 282 int ret;
42bf3f0a 283 pt_element_t pte;
b7233635 284 pt_element_t __user *uninitialized_var(ptep_user);
cea0f0e7 285 gfn_t table_gfn;
be94f6b7 286 unsigned index, pt_access, pte_access, accessed_dirty, pte_pkey;
ae1e2d10 287 unsigned nested_access;
42bf3f0a 288 gpa_t pte_gpa;
86407bcb 289 bool have_ad;
134291bf
TY
290 int offset;
291 const int write_fault = access & PFERR_WRITE_MASK;
292 const int user_fault = access & PFERR_USER_MASK;
293 const int fetch_fault = access & PFERR_FETCH_MASK;
294 u16 errcode = 0;
13d22b6a
AK
295 gpa_t real_gpa;
296 gfn_t gfn;
6aa8b732 297
6fbc2770 298 trace_kvm_mmu_pagetable_walk(addr, access);
92c1c1e8 299retry_walk:
1e301feb
JR
300 walker->level = mmu->root_level;
301 pte = mmu->get_cr3(vcpu);
86407bcb 302 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu);
1e301feb 303
1b0973bd 304#if PTTYPE == 64
1e301feb 305 if (walker->level == PT32E_ROOT_LEVEL) {
e4e517b4 306 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
07420171 307 trace_kvm_mmu_paging_element(pte, walker->level);
0ad805a0 308 if (!FNAME(is_present_gpte)(pte))
f59c1d2d 309 goto error;
1b0973bd
AK
310 --walker->level;
311 }
312#endif
8cbc7069 313 walker->max_level = walker->level;
1715d0dc 314 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
6aa8b732 315
86407bcb 316 accessed_dirty = have_ad ? PT_GUEST_ACCESSED_MASK : 0;
ae1e2d10
PB
317
318 /*
319 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
320 * by the MOV to CR instruction are treated as reads and do not cause the
321 * processor to set the dirty flag in any EPT paging-structure entry.
322 */
323 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
324
13d22b6a
AK
325 pt_access = pte_access = ACC_ALL;
326 ++walker->level;
ac79c978 327
13d22b6a 328 do {
6e2ca7d1
TY
329 gfn_t real_gfn;
330 unsigned long host_addr;
331
13d22b6a
AK
332 pt_access &= pte_access;
333 --walker->level;
334
42bf3f0a 335 index = PT_INDEX(addr, walker->level);
ac79c978 336
5fb07ddb 337 table_gfn = gpte_to_gfn(pte);
2329d46d
JR
338 offset = index * sizeof(pt_element_t);
339 pte_gpa = gfn_to_gpa(table_gfn) + offset;
42bf3f0a 340 walker->table_gfn[walker->level - 1] = table_gfn;
7819026e 341 walker->pte_gpa[walker->level - 1] = pte_gpa;
42bf3f0a 342
6e2ca7d1 343 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
ae1e2d10 344 nested_access,
54987b7a 345 &walker->fault);
5e352519
PB
346
347 /*
348 * FIXME: This can happen if emulation (for of an INS/OUTS
349 * instruction) triggers a nested page fault. The exit
350 * qualification / exit info field will incorrectly have
351 * "guest page access" as the nested page fault's cause,
352 * instead of "guest page structure access". To fix this,
353 * the x86_exception struct should be augmented with enough
354 * information to fix the exit_qualification or exit_info_1
355 * fields.
356 */
134291bf 357 if (unlikely(real_gfn == UNMAPPED_GVA))
54987b7a 358 return 0;
5e352519 359
6e2ca7d1
TY
360 real_gfn = gpa_to_gfn(real_gfn);
361
54bf36aa 362 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
ba6a3541 363 &walker->pte_writable[walker->level - 1]);
134291bf
TY
364 if (unlikely(kvm_is_error_hva(host_addr)))
365 goto error;
6e2ca7d1
TY
366
367 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
134291bf
TY
368 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
369 goto error;
8cbc7069 370 walker->ptep_user[walker->level - 1] = ptep_user;
a6085fba 371
07420171 372 trace_kvm_mmu_paging_element(pte, walker->level);
42bf3f0a 373
0ad805a0 374 if (unlikely(!FNAME(is_present_gpte)(pte)))
134291bf 375 goto error;
7993ba43 376
d2b0f981 377 if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
7a98205d 378 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
134291bf 379 goto error;
f59c1d2d 380 }
82725b20 381
b514c30f 382 accessed_dirty &= pte;
0ad805a0 383 pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
73b1087e 384
7819026e 385 walker->ptes[walker->level - 1] = pte;
6fd01b71 386 } while (!is_last_gpte(mmu, walker->level, pte));
42bf3f0a 387
be94f6b7
HH
388 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
389 errcode = permission_fault(vcpu, mmu, pte_access, pte_pkey, access);
f13577e8 390 if (unlikely(errcode))
f59c1d2d
AK
391 goto error;
392
13d22b6a
AK
393 gfn = gpte_to_gfn_lvl(pte, walker->level);
394 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
395
396 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
397 gfn += pse36_gfn_delta(pte);
398
54987b7a 399 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
13d22b6a
AK
400 if (real_gpa == UNMAPPED_GVA)
401 return 0;
402
403 walker->gfn = real_gpa >> PAGE_SHIFT;
404
8ea667f2 405 if (!write_fault)
86407bcb 406 FNAME(protect_clean_gpte)(mmu, &pte_access, pte);
908e7d79
GN
407 else
408 /*
61719a8f
GN
409 * On a write fault, fold the dirty bit into accessed_dirty.
410 * For modes without A/D bits support accessed_dirty will be
411 * always clear.
908e7d79 412 */
d8089bac
GN
413 accessed_dirty &= pte >>
414 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
b514c30f
AK
415
416 if (unlikely(!accessed_dirty)) {
417 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
418 if (unlikely(ret < 0))
419 goto error;
420 else if (ret)
421 goto retry_walk;
422 }
42bf3f0a 423
fe135d2c
AK
424 walker->pt_access = pt_access;
425 walker->pte_access = pte_access;
426 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
518c5a05 427 __func__, (u64)pte, pte_access, pt_access);
7993ba43
AK
428 return 1;
429
f59c1d2d 430error:
134291bf 431 errcode |= write_fault | user_fault;
e57d4a35
YW
432 if (fetch_fault && (mmu->nx ||
433 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
134291bf 434 errcode |= PFERR_FETCH_MASK;
8df25a32 435
134291bf
TY
436 walker->fault.vector = PF_VECTOR;
437 walker->fault.error_code_valid = true;
438 walker->fault.error_code = errcode;
25d92081
YZ
439
440#if PTTYPE == PTTYPE_EPT
441 /*
442 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
443 * misconfiguration requires to be injected. The detection is
444 * done by is_rsvd_bits_set() above.
445 *
446 * We set up the value of exit_qualification to inject:
447 * [2:0] - Derive from [2:0] of real exit_qualification at EPT violation
448 * [5:3] - Calculated by the page walk of the guest EPT page tables
449 * [7:8] - Derived from [7:8] of real exit_qualification
450 *
451 * The other bits are set to 0.
452 */
453 if (!(errcode & PFERR_RSVD_MASK)) {
454 vcpu->arch.exit_qualification &= 0x187;
455 vcpu->arch.exit_qualification |= ((pt_access & pte) & 0x7) << 3;
456 }
457#endif
6389ee94
AK
458 walker->fault.address = addr;
459 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
8df25a32 460
8c28d031 461 trace_kvm_mmu_walker_error(walker->fault.error_code);
fe551881 462 return 0;
6aa8b732
AK
463}
464
1e301feb 465static int FNAME(walk_addr)(struct guest_walker *walker,
33770780 466 struct kvm_vcpu *vcpu, gva_t addr, u32 access)
1e301feb
JR
467{
468 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
33770780 469 access);
1e301feb
JR
470}
471
37406aaa 472#if PTTYPE != PTTYPE_EPT
6539e738
JR
473static int FNAME(walk_addr_nested)(struct guest_walker *walker,
474 struct kvm_vcpu *vcpu, gva_t addr,
33770780 475 u32 access)
6539e738
JR
476{
477 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
33770780 478 addr, access);
6539e738 479}
37406aaa 480#endif
6539e738 481
bd6360cc
XG
482static bool
483FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
484 u64 *spte, pt_element_t gpte, bool no_dirty_log)
0028425f 485{
41074d07 486 unsigned pte_access;
bd6360cc 487 gfn_t gfn;
ba049e93 488 kvm_pfn_t pfn;
0028425f 489
0ad805a0 490 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
bd6360cc 491 return false;
407c61c6 492
b8688d51 493 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
bd6360cc
XG
494
495 gfn = gpte_to_gfn(gpte);
0ad805a0 496 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
86407bcb 497 FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte);
bd6360cc
XG
498 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
499 no_dirty_log && (pte_access & ACC_WRITE_MASK));
81c52c56 500 if (is_error_pfn(pfn))
bd6360cc 501 return false;
0f53b5b1 502
1403283a 503 /*
bd6360cc
XG
504 * we call mmu_set_spte() with host_writable = true because
505 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
1403283a 506 */
029499b4
TY
507 mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
508 true, true);
bd6360cc
XG
509
510 return true;
511}
512
513static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
514 u64 *spte, const void *pte)
515{
516 pt_element_t gpte = *(const pt_element_t *)pte;
517
518 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
0028425f
AK
519}
520
39c8c672
AK
521static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
522 struct guest_walker *gw, int level)
523{
39c8c672 524 pt_element_t curr_pte;
189be38d
XG
525 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
526 u64 mask;
527 int r, index;
528
529 if (level == PT_PAGE_TABLE_LEVEL) {
530 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
531 base_gpa = pte_gpa & ~mask;
532 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
533
54bf36aa 534 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
189be38d
XG
535 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
536 curr_pte = gw->prefetch_ptes[index];
537 } else
54bf36aa 538 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
39c8c672 539 &curr_pte, sizeof(curr_pte));
189be38d 540
39c8c672
AK
541 return r || curr_pte != gw->ptes[level - 1];
542}
543
189be38d
XG
544static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
545 u64 *sptep)
957ed9ef
XG
546{
547 struct kvm_mmu_page *sp;
189be38d 548 pt_element_t *gptep = gw->prefetch_ptes;
957ed9ef 549 u64 *spte;
189be38d 550 int i;
957ed9ef
XG
551
552 sp = page_header(__pa(sptep));
553
554 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
555 return;
556
557 if (sp->role.direct)
558 return __direct_pte_prefetch(vcpu, sp, sptep);
559
560 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
957ed9ef
XG
561 spte = sp->spt + i;
562
563 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
957ed9ef
XG
564 if (spte == sptep)
565 continue;
566
c3707958 567 if (is_shadow_present_pte(*spte))
957ed9ef
XG
568 continue;
569
bd6360cc 570 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
957ed9ef 571 break;
957ed9ef
XG
572 }
573}
574
6aa8b732
AK
575/*
576 * Fetch a shadow pte for a specific level in the paging hierarchy.
d4878f24
XG
577 * If the guest tries to write a write-protected page, we need to
578 * emulate this operation, return 1 to indicate this case.
6aa8b732 579 */
d4878f24 580static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
e7a04c99 581 struct guest_walker *gw,
c2288505 582 int write_fault, int hlevel,
ba049e93 583 kvm_pfn_t pfn, bool map_writable, bool prefault)
6aa8b732 584{
5991b332 585 struct kvm_mmu_page *sp = NULL;
24157aaf 586 struct kvm_shadow_walk_iterator it;
d4878f24 587 unsigned direct_access, access = gw->pt_access;
029499b4 588 int top_level, emulate;
abb9e0b8 589
b36c7a7c 590 direct_access = gw->pte_access;
84754cd8 591
5991b332
AK
592 top_level = vcpu->arch.mmu.root_level;
593 if (top_level == PT32E_ROOT_LEVEL)
594 top_level = PT32_ROOT_LEVEL;
595 /*
596 * Verify that the top-level gpte is still there. Since the page
597 * is a root page, it is either write protected (and cannot be
598 * changed from now on) or it is invalid (in which case, we don't
599 * really care if it changes underneath us after this point).
600 */
601 if (FNAME(gpte_changed)(vcpu, gw, top_level))
602 goto out_gpte_changed;
603
37f6a4e2
MT
604 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
605 goto out_gpte_changed;
606
24157aaf
AK
607 for (shadow_walk_init(&it, vcpu, addr);
608 shadow_walk_okay(&it) && it.level > gw->level;
609 shadow_walk_next(&it)) {
0b3c9333
AK
610 gfn_t table_gfn;
611
a30f47cb 612 clear_sp_write_flooding_count(it.sptep);
24157aaf 613 drop_large_spte(vcpu, it.sptep);
ef0197e8 614
5991b332 615 sp = NULL;
24157aaf
AK
616 if (!is_shadow_present_pte(*it.sptep)) {
617 table_gfn = gw->table_gfn[it.level - 2];
618 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
bb11c6c9 619 false, access);
5991b332 620 }
0b3c9333
AK
621
622 /*
623 * Verify that the gpte in the page we've just write
624 * protected is still there.
625 */
24157aaf 626 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
0b3c9333 627 goto out_gpte_changed;
abb9e0b8 628
5991b332 629 if (sp)
98bba238 630 link_shadow_page(vcpu, it.sptep, sp);
e7a04c99 631 }
050e6499 632
0b3c9333 633 for (;
24157aaf
AK
634 shadow_walk_okay(&it) && it.level > hlevel;
635 shadow_walk_next(&it)) {
0b3c9333
AK
636 gfn_t direct_gfn;
637
a30f47cb 638 clear_sp_write_flooding_count(it.sptep);
24157aaf 639 validate_direct_spte(vcpu, it.sptep, direct_access);
0b3c9333 640
24157aaf 641 drop_large_spte(vcpu, it.sptep);
0b3c9333 642
24157aaf 643 if (is_shadow_present_pte(*it.sptep))
0b3c9333
AK
644 continue;
645
24157aaf 646 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
0b3c9333 647
24157aaf 648 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
bb11c6c9 649 true, direct_access);
98bba238 650 link_shadow_page(vcpu, it.sptep, sp);
0b3c9333
AK
651 }
652
a30f47cb 653 clear_sp_write_flooding_count(it.sptep);
029499b4
TY
654 emulate = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
655 it.level, gw->gfn, pfn, prefault, map_writable);
189be38d 656 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
0b3c9333 657
d4878f24 658 return emulate;
0b3c9333
AK
659
660out_gpte_changed:
0b3c9333 661 kvm_release_pfn_clean(pfn);
d4878f24 662 return 0;
6aa8b732
AK
663}
664
7751babd
XG
665 /*
666 * To see whether the mapped gfn can write its page table in the current
667 * mapping.
668 *
669 * It is the helper function of FNAME(page_fault). When guest uses large page
670 * size to map the writable gfn which is used as current page table, we should
671 * force kvm to use small page size to map it because new shadow page will be
672 * created when kvm establishes shadow page table that stop kvm using large
673 * page size. Do it early can avoid unnecessary #PF and emulation.
674 *
93c05d3e
XG
675 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
676 * currently used as its page table.
677 *
7751babd
XG
678 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
679 * since the PDPT is always shadowed, that means, we can not use large page
680 * size to map the gfn which is used as PDPT.
681 */
682static bool
683FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
93c05d3e
XG
684 struct guest_walker *walker, int user_fault,
685 bool *write_fault_to_shadow_pgtable)
7751babd
XG
686{
687 int level;
688 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
93c05d3e 689 bool self_changed = false;
7751babd
XG
690
691 if (!(walker->pte_access & ACC_WRITE_MASK ||
692 (!is_write_protection(vcpu) && !user_fault)))
693 return false;
694
93c05d3e
XG
695 for (level = walker->level; level <= walker->max_level; level++) {
696 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
697
698 self_changed |= !(gfn & mask);
699 *write_fault_to_shadow_pgtable |= !gfn;
700 }
7751babd 701
93c05d3e 702 return self_changed;
7751babd
XG
703}
704
6aa8b732
AK
705/*
706 * Page fault handler. There are several causes for a page fault:
707 * - there is no shadow pte for the guest pte
708 * - write access through a shadow pte marked read only so that we can set
709 * the dirty bit
710 * - write access to a shadow pte marked read only so we can update the page
711 * dirty bitmap, when userspace requests it
712 * - mmio access; in this case we will never install a present shadow pte
713 * - normal guest page fault due to the guest pte marked not present, not
714 * writable, or not executable
715 *
e2dec939
AK
716 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
717 * a negative value on error.
6aa8b732 718 */
56028d08 719static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
78b2c54a 720 bool prefault)
6aa8b732
AK
721{
722 int write_fault = error_code & PFERR_WRITE_MASK;
6aa8b732
AK
723 int user_fault = error_code & PFERR_USER_MASK;
724 struct guest_walker walker;
e2dec939 725 int r;
ba049e93 726 kvm_pfn_t pfn;
7e4e4056 727 int level = PT_PAGE_TABLE_LEVEL;
8c85ac1c 728 bool force_pt_level = false;
e930bffe 729 unsigned long mmu_seq;
93c05d3e 730 bool map_writable, is_self_change_mapping;
6aa8b732 731
b8688d51 732 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
714b93da 733
e2dec939
AK
734 r = mmu_topup_memory_caches(vcpu);
735 if (r)
736 return r;
714b93da 737
e9ee956e
TY
738 /*
739 * If PFEC.RSVD is set, this is a shadow page fault.
740 * The bit needs to be cleared before walking guest page tables.
741 */
742 error_code &= ~PFERR_RSVD_MASK;
743
6aa8b732 744 /*
a8b876b1 745 * Look up the guest pte for the faulting address.
6aa8b732 746 */
33770780 747 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
6aa8b732
AK
748
749 /*
750 * The page is not mapped by the guest. Let the guest handle it.
751 */
7993ba43 752 if (!r) {
b8688d51 753 pgprintk("%s: guest page fault\n", __func__);
a30f47cb 754 if (!prefault)
fb67e14f 755 inject_page_fault(vcpu, &walker.fault);
a30f47cb 756
6aa8b732
AK
757 return 0;
758 }
759
e5691a81
XG
760 if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
761 shadow_page_table_clear_flood(vcpu, addr);
3d0c27ad 762 return 1;
e5691a81 763 }
3d0c27ad 764
93c05d3e
XG
765 vcpu->arch.write_fault_to_shadow_pgtable = false;
766
767 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
768 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
769
5ed5c5c8 770 if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
fd136902
TY
771 level = mapping_level(vcpu, walker.gfn, &force_pt_level);
772 if (likely(!force_pt_level)) {
773 level = min(walker.level, level);
5ed5c5c8
TY
774 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
775 }
776 } else
cd1872f0 777 force_pt_level = true;
7e4e4056 778
e930bffe 779 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 780 smp_rmb();
af585b92 781
78b2c54a 782 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
612819c3 783 &map_writable))
af585b92 784 return 0;
d7824fff 785
d7c55201
XG
786 if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
787 walker.gfn, pfn, walker.pte_access, &r))
788 return r;
789
c2288505
XG
790 /*
791 * Do not change pte_access if the pfn is a mmio page, otherwise
792 * we will cache the incorrect access into mmio spte.
793 */
794 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
795 !is_write_protection(vcpu) && !user_fault &&
796 !is_noslot_pfn(pfn)) {
797 walker.pte_access |= ACC_WRITE_MASK;
798 walker.pte_access &= ~ACC_USER_MASK;
799
800 /*
801 * If we converted a user page to a kernel page,
802 * so that the kernel can write to it when cr0.wp=0,
803 * then we should prevent the kernel from executing it
804 * if SMEP is enabled.
805 */
806 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
807 walker.pte_access &= ~ACC_EXEC_MASK;
808 }
809
aaee2c94 810 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 811 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 812 goto out_unlock;
bc32ce21 813
0375f7fa 814 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
450e0b41 815 make_mmu_pages_available(vcpu);
936a5fe6
AA
816 if (!force_pt_level)
817 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
c2288505 818 r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
d4878f24 819 level, pfn, map_writable, prefault);
1165f5fe 820 ++vcpu->stat.pf_fixed;
0375f7fa 821 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
aaee2c94 822 spin_unlock(&vcpu->kvm->mmu_lock);
6aa8b732 823
d4878f24 824 return r;
e930bffe
AA
825
826out_unlock:
827 spin_unlock(&vcpu->kvm->mmu_lock);
828 kvm_release_pfn_clean(pfn);
829 return 0;
6aa8b732
AK
830}
831
505aef8f
XG
832static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
833{
834 int offset = 0;
835
f71fa31f 836 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
505aef8f
XG
837
838 if (PTTYPE == 32)
839 offset = sp->role.quadrant << PT64_LEVEL_BITS;
840
841 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
842}
843
a461930b 844static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
a7052897 845{
a461930b 846 struct kvm_shadow_walk_iterator iterator;
f78978aa 847 struct kvm_mmu_page *sp;
a461930b
AK
848 int level;
849 u64 *sptep;
850
bebb106a
XG
851 vcpu_clear_mmio_info(vcpu, gva);
852
f57f2ef5
XG
853 /*
854 * No need to check return value here, rmap_can_add() can
855 * help us to skip pte prefetch later.
856 */
857 mmu_topup_memory_caches(vcpu);
a7052897 858
37f6a4e2
MT
859 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
860 WARN_ON(1);
861 return;
862 }
863
f57f2ef5 864 spin_lock(&vcpu->kvm->mmu_lock);
a461930b
AK
865 for_each_shadow_entry(vcpu, gva, iterator) {
866 level = iterator.level;
867 sptep = iterator.sptep;
ad218f85 868
f78978aa 869 sp = page_header(__pa(sptep));
884a0ff0 870 if (is_last_spte(*sptep, level)) {
f57f2ef5
XG
871 pt_element_t gpte;
872 gpa_t pte_gpa;
873
f78978aa
XG
874 if (!sp->unsync)
875 break;
876
505aef8f 877 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
08e850c6 878 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
a461930b 879
505aef8f
XG
880 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
881 kvm_flush_remote_tlbs(vcpu->kvm);
f57f2ef5
XG
882
883 if (!rmap_can_add(vcpu))
884 break;
885
54bf36aa
PB
886 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
887 sizeof(pt_element_t)))
f57f2ef5
XG
888 break;
889
890 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
87917239 891 }
a7052897 892
f78978aa 893 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
a461930b
AK
894 break;
895 }
ad218f85 896 spin_unlock(&vcpu->kvm->mmu_lock);
a7052897
MT
897}
898
1871c602 899static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
ab9ae313 900 struct x86_exception *exception)
6aa8b732
AK
901{
902 struct guest_walker walker;
e119d117
AK
903 gpa_t gpa = UNMAPPED_GVA;
904 int r;
6aa8b732 905
33770780 906 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
6aa8b732 907
e119d117 908 if (r) {
1755fbcc 909 gpa = gfn_to_gpa(walker.gfn);
e119d117 910 gpa |= vaddr & ~PAGE_MASK;
8c28d031
AK
911 } else if (exception)
912 *exception = walker.fault;
6aa8b732
AK
913
914 return gpa;
915}
916
37406aaa 917#if PTTYPE != PTTYPE_EPT
6539e738 918static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
919 u32 access,
920 struct x86_exception *exception)
6539e738
JR
921{
922 struct guest_walker walker;
923 gpa_t gpa = UNMAPPED_GVA;
924 int r;
925
33770780 926 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
6539e738
JR
927
928 if (r) {
929 gpa = gfn_to_gpa(walker.gfn);
930 gpa |= vaddr & ~PAGE_MASK;
8c28d031
AK
931 } else if (exception)
932 *exception = walker.fault;
6539e738
JR
933
934 return gpa;
935}
37406aaa 936#endif
6539e738 937
e8bc217a
MT
938/*
939 * Using the cached information from sp->gfns is safe because:
940 * - The spte has a reference to the struct page, so the pfn for a given gfn
941 * can't change unless all sptes pointing to it are nuked first.
a4ee1ca4
XG
942 *
943 * Note:
944 * We should flush all tlbs if spte is dropped even though guest is
945 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
946 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
947 * used by guest then tlbs are not flushed, so guest is allowed to access the
948 * freed pages.
a086f6a1 949 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
e8bc217a 950 */
a4a8e6f7 951static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
e8bc217a 952{
505aef8f 953 int i, nr_present = 0;
9bdbba13 954 bool host_writable;
51fb60d8 955 gpa_t first_pte_gpa;
e8bc217a 956
2032a93d
LJ
957 /* direct kvm_mmu_page can not be unsync. */
958 BUG_ON(sp->role.direct);
959
505aef8f 960 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
51fb60d8 961
e8bc217a
MT
962 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
963 unsigned pte_access;
964 pt_element_t gpte;
965 gpa_t pte_gpa;
f55c3f41 966 gfn_t gfn;
e8bc217a 967
ce88decf 968 if (!sp->spt[i])
e8bc217a
MT
969 continue;
970
51fb60d8 971 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
e8bc217a 972
54bf36aa
PB
973 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
974 sizeof(pt_element_t)))
1f50f1b3 975 return 0;
e8bc217a 976
0ad805a0 977 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
7bfdf217
LT
978 /*
979 * Update spte before increasing tlbs_dirty to make
980 * sure no tlb flush is lost after spte is zapped; see
981 * the comments in kvm_flush_remote_tlbs().
982 */
983 smp_wmb();
a086f6a1 984 vcpu->kvm->tlbs_dirty++;
407c61c6
XG
985 continue;
986 }
987
ce88decf
XG
988 gfn = gpte_to_gfn(gpte);
989 pte_access = sp->role.access;
0ad805a0 990 pte_access &= FNAME(gpte_access)(vcpu, gpte);
86407bcb 991 FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte);
ce88decf 992
54bf36aa 993 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
f2fd125d 994 &nr_present))
ce88decf
XG
995 continue;
996
407c61c6 997 if (gfn != sp->gfns[i]) {
c3707958 998 drop_spte(vcpu->kvm, &sp->spt[i]);
7bfdf217
LT
999 /*
1000 * The same as above where we are doing
1001 * prefetch_invalid_gpte().
1002 */
1003 smp_wmb();
a086f6a1 1004 vcpu->kvm->tlbs_dirty++;
e8bc217a
MT
1005 continue;
1006 }
1007
1008 nr_present++;
ce88decf 1009
f8e453b0
XG
1010 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1011
c2288505 1012 set_spte(vcpu, &sp->spt[i], pte_access,
640d9b0d 1013 PT_PAGE_TABLE_LEVEL, gfn,
1403283a 1014 spte_to_pfn(sp->spt[i]), true, false,
9bdbba13 1015 host_writable);
e8bc217a
MT
1016 }
1017
1f50f1b3 1018 return nr_present;
e8bc217a
MT
1019}
1020
6aa8b732
AK
1021#undef pt_element_t
1022#undef guest_walker
1023#undef FNAME
1024#undef PT_BASE_ADDR_MASK
1025#undef PT_INDEX
e04da980
JR
1026#undef PT_LVL_ADDR_MASK
1027#undef PT_LVL_OFFSET_MASK
c7addb90 1028#undef PT_LEVEL_BITS
cea0f0e7 1029#undef PT_MAX_FULL_LEVELS
5fb07ddb 1030#undef gpte_to_gfn
e04da980 1031#undef gpte_to_gfn_lvl
b3e4e63f 1032#undef CMPXCHG
d8089bac
GN
1033#undef PT_GUEST_ACCESSED_MASK
1034#undef PT_GUEST_DIRTY_MASK
1035#undef PT_GUEST_DIRTY_SHIFT
1036#undef PT_GUEST_ACCESSED_SHIFT
86407bcb 1037#undef PT_HAVE_ACCESSED_DIRTY