]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/svm/sev.c
KVM: SEV: Return appropriate error codes if SEV-ES scratch setup fails
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / svm / sev.c
CommitLineData
eaf78265
JR
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM-SEV support
6 *
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 */
9
10#include <linux/kvm_types.h>
11#include <linux/kvm_host.h>
12#include <linux/kernel.h>
13#include <linux/highmem.h>
14#include <linux/psp-sev.h>
b2bce0a5 15#include <linux/pagemap.h>
eaf78265 16#include <linux/swap.h>
7aef27f0 17#include <linux/misc_cgroup.h>
add5e2f0 18#include <linux/processor.h>
d523ab6b 19#include <linux/trace_events.h>
86137773 20#include <asm/fpu/internal.h>
eaf78265 21
784a4661 22#include <asm/pkru.h>
8640ca58
TL
23#include <asm/trapnr.h>
24
eaf78265
JR
25#include "x86.h"
26#include "svm.h"
35a78319 27#include "svm_ops.h"
291bd20d 28#include "cpuid.h"
d523ab6b 29#include "trace.h"
eaf78265 30
7aef27f0
VS
31#ifndef CONFIG_KVM_AMD_SEV
32/*
33 * When this config is not defined, SEV feature is not supported and APIs in
34 * this file are not used but this file still gets compiled into the KVM AMD
35 * module.
36 *
37 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
38 * misc_res_type {} defined in linux/misc_cgroup.h.
39 *
40 * Below macros allow compilation to succeed.
41 */
42#define MISC_CG_RES_SEV MISC_CG_RES_TYPES
43#define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
44#endif
45
a479c334 46#ifdef CONFIG_KVM_AMD_SEV
e8126bda 47/* enable/disable SEV support */
6c2c7bf5 48static bool sev_enabled = true;
8d364a07 49module_param_named(sev, sev_enabled, bool, 0444);
e8126bda
SC
50
51/* enable/disable SEV-ES support */
6c2c7bf5 52static bool sev_es_enabled = true;
8d364a07 53module_param_named(sev_es, sev_es_enabled, bool, 0444);
a479c334
SC
54#else
55#define sev_enabled false
56#define sev_es_enabled false
57#endif /* CONFIG_KVM_AMD_SEV */
e8126bda 58
1edc1459 59static u8 sev_enc_bit;
eaf78265
JR
60static DECLARE_RWSEM(sev_deactivate_lock);
61static DEFINE_MUTEX(sev_bitmap_lock);
62unsigned int max_sev_asid;
63static unsigned int min_sev_asid;
d3d1af85 64static unsigned long sev_me_mask;
bb2baeb2 65static unsigned int nr_asids;
eaf78265
JR
66static unsigned long *sev_asid_bitmap;
67static unsigned long *sev_reclaim_asid_bitmap;
eaf78265
JR
68
69struct enc_region {
70 struct list_head list;
71 unsigned long npages;
72 struct page **pages;
73 unsigned long uaddr;
74 unsigned long size;
75};
76
469bb32b
SC
77/* Called with the sev_bitmap_lock held, or on shutdown */
78static int sev_flush_asids(int min_asid, int max_asid)
eaf78265 79{
bb2baeb2 80 int ret, asid, error = 0;
469bb32b
SC
81
82 /* Check if there are any ASIDs to reclaim before performing a flush */
bb2baeb2
MZ
83 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
84 if (asid > max_asid)
469bb32b 85 return -EBUSY;
eaf78265
JR
86
87 /*
88 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
89 * so it must be guarded.
90 */
91 down_write(&sev_deactivate_lock);
92
93 wbinvd_on_all_cpus();
94 ret = sev_guest_df_flush(&error);
95
96 up_write(&sev_deactivate_lock);
97
98 if (ret)
99 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
100
101 return ret;
102}
103
54526d1f
NT
104static inline bool is_mirroring_enc_context(struct kvm *kvm)
105{
106 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
107}
108
eaf78265 109/* Must be called with the sev_bitmap_lock held */
80675b3a 110static bool __sev_recycle_asids(int min_asid, int max_asid)
eaf78265 111{
469bb32b 112 if (sev_flush_asids(min_asid, max_asid))
eaf78265
JR
113 return false;
114
80675b3a 115 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
eaf78265 116 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
bb2baeb2
MZ
117 nr_asids);
118 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
eaf78265
JR
119
120 return true;
121}
122
80675b3a 123static int sev_asid_new(struct kvm_sev_info *sev)
eaf78265 124{
bb2baeb2 125 int asid, min_asid, max_asid, ret;
eaf78265 126 bool retry = true;
7aef27f0
VS
127 enum misc_res_type type;
128
129 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
130 WARN_ON(sev->misc_cg);
131 sev->misc_cg = get_current_misc_cg();
132 ret = misc_cg_try_charge(type, sev->misc_cg, 1);
133 if (ret) {
134 put_misc_cg(sev->misc_cg);
135 sev->misc_cg = NULL;
136 return ret;
137 }
eaf78265
JR
138
139 mutex_lock(&sev_bitmap_lock);
140
141 /*
80675b3a
TL
142 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
143 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
eaf78265 144 */
bb2baeb2 145 min_asid = sev->es_active ? 1 : min_sev_asid;
80675b3a 146 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
eaf78265 147again:
bb2baeb2
MZ
148 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
149 if (asid > max_asid) {
80675b3a 150 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
eaf78265
JR
151 retry = false;
152 goto again;
153 }
154 mutex_unlock(&sev_bitmap_lock);
7aef27f0
VS
155 ret = -EBUSY;
156 goto e_uncharge;
eaf78265
JR
157 }
158
bb2baeb2 159 __set_bit(asid, sev_asid_bitmap);
eaf78265
JR
160
161 mutex_unlock(&sev_bitmap_lock);
162
bb2baeb2 163 return asid;
7aef27f0
VS
164e_uncharge:
165 misc_cg_uncharge(type, sev->misc_cg, 1);
166 put_misc_cg(sev->misc_cg);
167 sev->misc_cg = NULL;
168 return ret;
eaf78265
JR
169}
170
171static int sev_get_asid(struct kvm *kvm)
172{
173 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
174
175 return sev->asid;
176}
177
7aef27f0 178static void sev_asid_free(struct kvm_sev_info *sev)
eaf78265
JR
179{
180 struct svm_cpu_data *sd;
bb2baeb2 181 int cpu;
7aef27f0 182 enum misc_res_type type;
eaf78265
JR
183
184 mutex_lock(&sev_bitmap_lock);
185
bb2baeb2 186 __set_bit(sev->asid, sev_reclaim_asid_bitmap);
eaf78265
JR
187
188 for_each_possible_cpu(cpu) {
189 sd = per_cpu(svm_data, cpu);
179c6c27 190 sd->sev_vmcbs[sev->asid] = NULL;
eaf78265
JR
191 }
192
193 mutex_unlock(&sev_bitmap_lock);
7aef27f0
VS
194
195 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
196 misc_cg_uncharge(type, sev->misc_cg, 1);
197 put_misc_cg(sev->misc_cg);
198 sev->misc_cg = NULL;
eaf78265
JR
199}
200
934002cd 201static void sev_decommission(unsigned int handle)
eaf78265 202{
238eca82 203 struct sev_data_decommission decommission;
934002cd
AG
204
205 if (!handle)
206 return;
207
208 decommission.handle = handle;
209 sev_guest_decommission(&decommission, NULL);
210}
211
212static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
213{
238eca82 214 struct sev_data_deactivate deactivate;
eaf78265
JR
215
216 if (!handle)
217 return;
218
238eca82 219 deactivate.handle = handle;
eaf78265
JR
220
221 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
222 down_read(&sev_deactivate_lock);
238eca82 223 sev_guest_deactivate(&deactivate, NULL);
eaf78265
JR
224 up_read(&sev_deactivate_lock);
225
934002cd 226 sev_decommission(handle);
eaf78265
JR
227}
228
229static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
230{
231 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
9fa1521d 232 bool es_active = argp->id == KVM_SEV_ES_INIT;
eaf78265
JR
233 int asid, ret;
234
8727906f
SC
235 if (kvm->created_vcpus)
236 return -EINVAL;
237
eaf78265
JR
238 ret = -EBUSY;
239 if (unlikely(sev->active))
240 return ret;
241
fd49e8ee 242 sev->es_active = es_active;
80675b3a 243 asid = sev_asid_new(sev);
eaf78265 244 if (asid < 0)
fd49e8ee 245 goto e_no_asid;
7aef27f0 246 sev->asid = asid;
eaf78265
JR
247
248 ret = sev_platform_init(&argp->error);
249 if (ret)
250 goto e_free;
251
252 sev->active = true;
253 sev->asid = asid;
254 INIT_LIST_HEAD(&sev->regions_list);
255
256 return 0;
257
258e_free:
7aef27f0
VS
259 sev_asid_free(sev);
260 sev->asid = 0;
fd49e8ee
PB
261e_no_asid:
262 sev->es_active = false;
eaf78265
JR
263 return ret;
264}
265
266static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
267{
238eca82 268 struct sev_data_activate activate;
eaf78265
JR
269 int asid = sev_get_asid(kvm);
270 int ret;
271
eaf78265 272 /* activate ASID on the given handle */
238eca82
SC
273 activate.handle = handle;
274 activate.asid = asid;
275 ret = sev_guest_activate(&activate, error);
eaf78265
JR
276
277 return ret;
278}
279
280static int __sev_issue_cmd(int fd, int id, void *data, int *error)
281{
282 struct fd f;
283 int ret;
284
285 f = fdget(fd);
286 if (!f.file)
287 return -EBADF;
288
289 ret = sev_issue_cmd_external_user(f.file, id, data, error);
290
291 fdput(f);
292 return ret;
293}
294
295static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
296{
297 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
298
299 return __sev_issue_cmd(sev->fd, id, data, error);
300}
301
302static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
303{
304 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 305 struct sev_data_launch_start start;
eaf78265
JR
306 struct kvm_sev_launch_start params;
307 void *dh_blob, *session_blob;
308 int *error = &argp->error;
309 int ret;
310
311 if (!sev_guest(kvm))
312 return -ENOTTY;
313
314 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
315 return -EFAULT;
316
238eca82 317 memset(&start, 0, sizeof(start));
eaf78265
JR
318
319 dh_blob = NULL;
320 if (params.dh_uaddr) {
321 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
238eca82
SC
322 if (IS_ERR(dh_blob))
323 return PTR_ERR(dh_blob);
eaf78265 324
238eca82
SC
325 start.dh_cert_address = __sme_set(__pa(dh_blob));
326 start.dh_cert_len = params.dh_len;
eaf78265
JR
327 }
328
329 session_blob = NULL;
330 if (params.session_uaddr) {
331 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
332 if (IS_ERR(session_blob)) {
333 ret = PTR_ERR(session_blob);
334 goto e_free_dh;
335 }
336
238eca82
SC
337 start.session_address = __sme_set(__pa(session_blob));
338 start.session_len = params.session_len;
eaf78265
JR
339 }
340
238eca82
SC
341 start.handle = params.handle;
342 start.policy = params.policy;
eaf78265
JR
343
344 /* create memory encryption context */
238eca82 345 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
eaf78265
JR
346 if (ret)
347 goto e_free_session;
348
349 /* Bind ASID to this guest */
238eca82 350 ret = sev_bind_asid(kvm, start.handle, error);
934002cd
AG
351 if (ret) {
352 sev_decommission(start.handle);
eaf78265 353 goto e_free_session;
934002cd 354 }
eaf78265
JR
355
356 /* return handle to userspace */
238eca82 357 params.handle = start.handle;
eaf78265 358 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
238eca82 359 sev_unbind_asid(kvm, start.handle);
eaf78265
JR
360 ret = -EFAULT;
361 goto e_free_session;
362 }
363
238eca82 364 sev->handle = start.handle;
eaf78265
JR
365 sev->fd = argp->sev_fd;
366
367e_free_session:
368 kfree(session_blob);
369e_free_dh:
370 kfree(dh_blob);
eaf78265
JR
371 return ret;
372}
373
374static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
375 unsigned long ulen, unsigned long *n,
376 int write)
377{
378 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
78824fab
JH
379 unsigned long npages, size;
380 int npinned;
eaf78265
JR
381 unsigned long locked, lock_limit;
382 struct page **pages;
383 unsigned long first, last;
ff2bd9ff 384 int ret;
eaf78265 385
19a23da5
PG
386 lockdep_assert_held(&kvm->lock);
387
eaf78265 388 if (ulen == 0 || uaddr + ulen < uaddr)
a8d908b5 389 return ERR_PTR(-EINVAL);
eaf78265
JR
390
391 /* Calculate number of pages. */
392 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
393 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
394 npages = (last - first + 1);
395
396 locked = sev->pages_locked + npages;
397 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
398 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
399 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
a8d908b5 400 return ERR_PTR(-ENOMEM);
eaf78265
JR
401 }
402
78824fab 403 if (WARN_ON_ONCE(npages > INT_MAX))
a8d908b5 404 return ERR_PTR(-EINVAL);
78824fab 405
eaf78265
JR
406 /* Avoid using vmalloc for smaller buffers. */
407 size = npages * sizeof(struct page *);
408 if (size > PAGE_SIZE)
88dca4ca 409 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
eaf78265
JR
410 else
411 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
412
413 if (!pages)
a8d908b5 414 return ERR_PTR(-ENOMEM);
eaf78265
JR
415
416 /* Pin the user virtual address. */
dc42c8ae 417 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
eaf78265
JR
418 if (npinned != npages) {
419 pr_err("SEV: Failure locking %lu pages.\n", npages);
ff2bd9ff 420 ret = -ENOMEM;
eaf78265
JR
421 goto err;
422 }
423
424 *n = npages;
425 sev->pages_locked = locked;
426
427 return pages;
428
429err:
ff2bd9ff 430 if (npinned > 0)
dc42c8ae 431 unpin_user_pages(pages, npinned);
eaf78265
JR
432
433 kvfree(pages);
ff2bd9ff 434 return ERR_PTR(ret);
eaf78265
JR
435}
436
437static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
438 unsigned long npages)
439{
440 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
441
dc42c8ae 442 unpin_user_pages(pages, npages);
eaf78265
JR
443 kvfree(pages);
444 sev->pages_locked -= npages;
445}
446
447static void sev_clflush_pages(struct page *pages[], unsigned long npages)
448{
449 uint8_t *page_virtual;
450 unsigned long i;
451
e1ebb2b4
KS
452 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
453 pages == NULL)
eaf78265
JR
454 return;
455
456 for (i = 0; i < npages; i++) {
457 page_virtual = kmap_atomic(pages[i]);
458 clflush_cache_range(page_virtual, PAGE_SIZE);
459 kunmap_atomic(page_virtual);
460 }
461}
462
463static unsigned long get_num_contig_pages(unsigned long idx,
464 struct page **inpages, unsigned long npages)
465{
466 unsigned long paddr, next_paddr;
467 unsigned long i = idx + 1, pages = 1;
468
469 /* find the number of contiguous pages starting from idx */
470 paddr = __sme_page_pa(inpages[idx]);
471 while (i < npages) {
472 next_paddr = __sme_page_pa(inpages[i++]);
473 if ((paddr + PAGE_SIZE) == next_paddr) {
474 pages++;
475 paddr = next_paddr;
476 continue;
477 }
478 break;
479 }
480
481 return pages;
482}
483
484static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
485{
486 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
487 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
488 struct kvm_sev_launch_update_data params;
238eca82 489 struct sev_data_launch_update_data data;
eaf78265
JR
490 struct page **inpages;
491 int ret;
492
493 if (!sev_guest(kvm))
494 return -ENOTTY;
495
496 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
497 return -EFAULT;
498
eaf78265
JR
499 vaddr = params.uaddr;
500 size = params.len;
501 vaddr_end = vaddr + size;
502
503 /* Lock the user memory. */
504 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
238eca82
SC
505 if (IS_ERR(inpages))
506 return PTR_ERR(inpages);
eaf78265
JR
507
508 /*
14e3dd8d
PB
509 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
510 * place; the cache may contain the data that was written unencrypted.
eaf78265
JR
511 */
512 sev_clflush_pages(inpages, npages);
513
238eca82
SC
514 data.reserved = 0;
515 data.handle = sev->handle;
516
eaf78265
JR
517 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
518 int offset, len;
519
520 /*
521 * If the user buffer is not page-aligned, calculate the offset
522 * within the page.
523 */
524 offset = vaddr & (PAGE_SIZE - 1);
525
526 /* Calculate the number of pages that can be encrypted in one go. */
527 pages = get_num_contig_pages(i, inpages, npages);
528
529 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
530
238eca82
SC
531 data.len = len;
532 data.address = __sme_page_pa(inpages[i]) + offset;
533 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
eaf78265
JR
534 if (ret)
535 goto e_unpin;
536
537 size -= len;
538 next_vaddr = vaddr + len;
539 }
540
541e_unpin:
542 /* content of memory is updated, mark pages dirty */
543 for (i = 0; i < npages; i++) {
544 set_page_dirty_lock(inpages[i]);
545 mark_page_accessed(inpages[i]);
546 }
547 /* unlock the user pages */
548 sev_unpin_memory(kvm, inpages, npages);
eaf78265
JR
549 return ret;
550}
551
ad73109a
TL
552static int sev_es_sync_vmsa(struct vcpu_svm *svm)
553{
554 struct vmcb_save_area *save = &svm->vmcb->save;
555
556 /* Check some debug related fields before encrypting the VMSA */
557 if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1))
558 return -EINVAL;
559
560 /* Sync registgers */
561 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
562 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
563 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
564 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
565 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
566 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
567 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
568 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
d45f89f7 569#ifdef CONFIG_X86_64
ad73109a
TL
570 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8];
571 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9];
572 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
573 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
574 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
575 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
576 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
577 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
d45f89f7 578#endif
ad73109a
TL
579 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
580
581 /* Sync some non-GPR registers before encrypting */
582 save->xcr0 = svm->vcpu.arch.xcr0;
583 save->pkru = svm->vcpu.arch.pkru;
584 save->xss = svm->vcpu.arch.ia32_xss;
d0f9f826 585 save->dr6 = svm->vcpu.arch.dr6;
ad73109a
TL
586
587 /*
588 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
589 * the traditional VMSA that is part of the VMCB. Copy the
590 * traditional VMSA as it has been built so far (in prep
591 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
592 */
593 memcpy(svm->vmsa, save, sizeof(*save));
594
595 return 0;
596}
597
bb18a677
PG
598static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
599 int *error)
ad73109a 600{
238eca82 601 struct sev_data_launch_update_vmsa vmsa;
bb18a677
PG
602 struct vcpu_svm *svm = to_svm(vcpu);
603 int ret;
604
605 /* Perform some pre-encryption checks against the VMSA */
606 ret = sev_es_sync_vmsa(svm);
607 if (ret)
608 return ret;
609
610 /*
611 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
612 * the VMSA memory content (i.e it will write the same memory region
613 * with the guest's key), so invalidate it first.
614 */
615 clflush_cache_range(svm->vmsa, PAGE_SIZE);
616
617 vmsa.reserved = 0;
618 vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
619 vmsa.address = __sme_pa(svm->vmsa);
620 vmsa.len = PAGE_SIZE;
baa1e5ca
PG
621 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
622 if (ret)
623 return ret;
624
625 vcpu->arch.guest_state_protected = true;
626 return 0;
bb18a677
PG
627}
628
629static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
630{
c36b16d2 631 struct kvm_vcpu *vcpu;
ad73109a
TL
632 int i, ret;
633
634 if (!sev_es_guest(kvm))
635 return -ENOTTY;
636
c36b16d2 637 kvm_for_each_vcpu(i, vcpu, kvm) {
bb18a677 638 ret = mutex_lock_killable(&vcpu->mutex);
ad73109a 639 if (ret)
238eca82 640 return ret;
ad73109a 641
bb18a677 642 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
ad73109a 643
bb18a677 644 mutex_unlock(&vcpu->mutex);
ad73109a 645 if (ret)
238eca82 646 return ret;
ad73109a
TL
647 }
648
238eca82 649 return 0;
ad73109a
TL
650}
651
eaf78265
JR
652static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
653{
654 void __user *measure = (void __user *)(uintptr_t)argp->data;
655 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 656 struct sev_data_launch_measure data;
eaf78265
JR
657 struct kvm_sev_launch_measure params;
658 void __user *p = NULL;
659 void *blob = NULL;
660 int ret;
661
662 if (!sev_guest(kvm))
663 return -ENOTTY;
664
665 if (copy_from_user(&params, measure, sizeof(params)))
666 return -EFAULT;
667
238eca82 668 memset(&data, 0, sizeof(data));
eaf78265
JR
669
670 /* User wants to query the blob length */
671 if (!params.len)
672 goto cmd;
673
674 p = (void __user *)(uintptr_t)params.uaddr;
675 if (p) {
238eca82
SC
676 if (params.len > SEV_FW_BLOB_MAX_SIZE)
677 return -EINVAL;
eaf78265 678
eba04b20 679 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
eaf78265 680 if (!blob)
238eca82 681 return -ENOMEM;
eaf78265 682
238eca82
SC
683 data.address = __psp_pa(blob);
684 data.len = params.len;
eaf78265
JR
685 }
686
687cmd:
238eca82
SC
688 data.handle = sev->handle;
689 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
eaf78265
JR
690
691 /*
692 * If we query the session length, FW responded with expected data.
693 */
694 if (!params.len)
695 goto done;
696
697 if (ret)
698 goto e_free_blob;
699
700 if (blob) {
701 if (copy_to_user(p, blob, params.len))
702 ret = -EFAULT;
703 }
704
705done:
238eca82 706 params.len = data.len;
eaf78265
JR
707 if (copy_to_user(measure, &params, sizeof(params)))
708 ret = -EFAULT;
709e_free_blob:
710 kfree(blob);
eaf78265
JR
711 return ret;
712}
713
714static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
715{
716 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 717 struct sev_data_launch_finish data;
eaf78265
JR
718
719 if (!sev_guest(kvm))
720 return -ENOTTY;
721
238eca82
SC
722 data.handle = sev->handle;
723 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
eaf78265
JR
724}
725
726static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
727{
728 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
729 struct kvm_sev_guest_status params;
238eca82 730 struct sev_data_guest_status data;
eaf78265
JR
731 int ret;
732
733 if (!sev_guest(kvm))
734 return -ENOTTY;
735
238eca82 736 memset(&data, 0, sizeof(data));
eaf78265 737
238eca82
SC
738 data.handle = sev->handle;
739 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
eaf78265 740 if (ret)
238eca82 741 return ret;
eaf78265 742
238eca82
SC
743 params.policy = data.policy;
744 params.state = data.state;
745 params.handle = data.handle;
eaf78265
JR
746
747 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
748 ret = -EFAULT;
238eca82 749
eaf78265
JR
750 return ret;
751}
752
753static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
754 unsigned long dst, int size,
755 int *error, bool enc)
756{
757 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 758 struct sev_data_dbg data;
eaf78265 759
238eca82
SC
760 data.reserved = 0;
761 data.handle = sev->handle;
762 data.dst_addr = dst;
763 data.src_addr = src;
764 data.len = size;
eaf78265 765
238eca82
SC
766 return sev_issue_cmd(kvm,
767 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
768 &data, error);
eaf78265
JR
769}
770
771static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
772 unsigned long dst_paddr, int sz, int *err)
773{
774 int offset;
775
776 /*
777 * Its safe to read more than we are asked, caller should ensure that
778 * destination has enough space.
779 */
eaf78265 780 offset = src_paddr & 15;
854c57f0 781 src_paddr = round_down(src_paddr, 16);
eaf78265
JR
782 sz = round_up(sz + offset, 16);
783
784 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
785}
786
787static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
368340a3 788 void __user *dst_uaddr,
eaf78265
JR
789 unsigned long dst_paddr,
790 int size, int *err)
791{
792 struct page *tpage = NULL;
793 int ret, offset;
794
795 /* if inputs are not 16-byte then use intermediate buffer */
796 if (!IS_ALIGNED(dst_paddr, 16) ||
797 !IS_ALIGNED(paddr, 16) ||
798 !IS_ALIGNED(size, 16)) {
799 tpage = (void *)alloc_page(GFP_KERNEL);
800 if (!tpage)
801 return -ENOMEM;
802
803 dst_paddr = __sme_page_pa(tpage);
804 }
805
806 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
807 if (ret)
808 goto e_free;
809
810 if (tpage) {
811 offset = paddr & 15;
368340a3 812 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
eaf78265
JR
813 ret = -EFAULT;
814 }
815
816e_free:
817 if (tpage)
818 __free_page(tpage);
819
820 return ret;
821}
822
823static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
368340a3 824 void __user *vaddr,
eaf78265 825 unsigned long dst_paddr,
368340a3 826 void __user *dst_vaddr,
eaf78265
JR
827 int size, int *error)
828{
829 struct page *src_tpage = NULL;
830 struct page *dst_tpage = NULL;
831 int ret, len = size;
832
833 /* If source buffer is not aligned then use an intermediate buffer */
368340a3 834 if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
eaf78265
JR
835 src_tpage = alloc_page(GFP_KERNEL);
836 if (!src_tpage)
837 return -ENOMEM;
838
368340a3 839 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
eaf78265
JR
840 __free_page(src_tpage);
841 return -EFAULT;
842 }
843
844 paddr = __sme_page_pa(src_tpage);
845 }
846
847 /*
848 * If destination buffer or length is not aligned then do read-modify-write:
849 * - decrypt destination in an intermediate buffer
850 * - copy the source buffer in an intermediate buffer
851 * - use the intermediate buffer as source buffer
852 */
368340a3 853 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
eaf78265
JR
854 int dst_offset;
855
856 dst_tpage = alloc_page(GFP_KERNEL);
857 if (!dst_tpage) {
858 ret = -ENOMEM;
859 goto e_free;
860 }
861
862 ret = __sev_dbg_decrypt(kvm, dst_paddr,
863 __sme_page_pa(dst_tpage), size, error);
864 if (ret)
865 goto e_free;
866
867 /*
868 * If source is kernel buffer then use memcpy() otherwise
869 * copy_from_user().
870 */
871 dst_offset = dst_paddr & 15;
872
873 if (src_tpage)
874 memcpy(page_address(dst_tpage) + dst_offset,
875 page_address(src_tpage), size);
876 else {
877 if (copy_from_user(page_address(dst_tpage) + dst_offset,
368340a3 878 vaddr, size)) {
eaf78265
JR
879 ret = -EFAULT;
880 goto e_free;
881 }
882 }
883
884 paddr = __sme_page_pa(dst_tpage);
885 dst_paddr = round_down(dst_paddr, 16);
886 len = round_up(size, 16);
887 }
888
889 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
890
891e_free:
892 if (src_tpage)
893 __free_page(src_tpage);
894 if (dst_tpage)
895 __free_page(dst_tpage);
896 return ret;
897}
898
899static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
900{
901 unsigned long vaddr, vaddr_end, next_vaddr;
902 unsigned long dst_vaddr;
903 struct page **src_p, **dst_p;
904 struct kvm_sev_dbg debug;
905 unsigned long n;
906 unsigned int size;
907 int ret;
908
909 if (!sev_guest(kvm))
910 return -ENOTTY;
911
912 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
913 return -EFAULT;
914
915 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
916 return -EINVAL;
917 if (!debug.dst_uaddr)
918 return -EINVAL;
919
920 vaddr = debug.src_uaddr;
921 size = debug.len;
922 vaddr_end = vaddr + size;
923 dst_vaddr = debug.dst_uaddr;
924
925 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
926 int len, s_off, d_off;
927
928 /* lock userspace source and destination page */
929 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
ff2bd9ff
DC
930 if (IS_ERR(src_p))
931 return PTR_ERR(src_p);
eaf78265
JR
932
933 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
ff2bd9ff 934 if (IS_ERR(dst_p)) {
eaf78265 935 sev_unpin_memory(kvm, src_p, n);
ff2bd9ff 936 return PTR_ERR(dst_p);
eaf78265
JR
937 }
938
939 /*
14e3dd8d
PB
940 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
941 * the pages; flush the destination too so that future accesses do not
942 * see stale data.
eaf78265
JR
943 */
944 sev_clflush_pages(src_p, 1);
945 sev_clflush_pages(dst_p, 1);
946
947 /*
948 * Since user buffer may not be page aligned, calculate the
949 * offset within the page.
950 */
951 s_off = vaddr & ~PAGE_MASK;
952 d_off = dst_vaddr & ~PAGE_MASK;
953 len = min_t(size_t, (PAGE_SIZE - s_off), size);
954
955 if (dec)
956 ret = __sev_dbg_decrypt_user(kvm,
957 __sme_page_pa(src_p[0]) + s_off,
368340a3 958 (void __user *)dst_vaddr,
eaf78265
JR
959 __sme_page_pa(dst_p[0]) + d_off,
960 len, &argp->error);
961 else
962 ret = __sev_dbg_encrypt_user(kvm,
963 __sme_page_pa(src_p[0]) + s_off,
368340a3 964 (void __user *)vaddr,
eaf78265 965 __sme_page_pa(dst_p[0]) + d_off,
368340a3 966 (void __user *)dst_vaddr,
eaf78265
JR
967 len, &argp->error);
968
969 sev_unpin_memory(kvm, src_p, n);
970 sev_unpin_memory(kvm, dst_p, n);
971
972 if (ret)
973 goto err;
974
975 next_vaddr = vaddr + len;
976 dst_vaddr = dst_vaddr + len;
977 size -= len;
978 }
979err:
980 return ret;
981}
982
983static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
984{
985 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 986 struct sev_data_launch_secret data;
eaf78265
JR
987 struct kvm_sev_launch_secret params;
988 struct page **pages;
989 void *blob, *hdr;
50085bee 990 unsigned long n, i;
eaf78265
JR
991 int ret, offset;
992
993 if (!sev_guest(kvm))
994 return -ENOTTY;
995
996 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
997 return -EFAULT;
998
999 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
a8d908b5
PB
1000 if (IS_ERR(pages))
1001 return PTR_ERR(pages);
eaf78265 1002
50085bee 1003 /*
14e3dd8d
PB
1004 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1005 * place; the cache may contain the data that was written unencrypted.
50085bee
CC
1006 */
1007 sev_clflush_pages(pages, n);
1008
eaf78265
JR
1009 /*
1010 * The secret must be copied into contiguous memory region, lets verify
1011 * that userspace memory pages are contiguous before we issue command.
1012 */
1013 if (get_num_contig_pages(0, pages, n) != n) {
1014 ret = -EINVAL;
1015 goto e_unpin_memory;
1016 }
1017
238eca82 1018 memset(&data, 0, sizeof(data));
eaf78265
JR
1019
1020 offset = params.guest_uaddr & (PAGE_SIZE - 1);
238eca82
SC
1021 data.guest_address = __sme_page_pa(pages[0]) + offset;
1022 data.guest_len = params.guest_len;
eaf78265
JR
1023
1024 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1025 if (IS_ERR(blob)) {
1026 ret = PTR_ERR(blob);
238eca82 1027 goto e_unpin_memory;
eaf78265
JR
1028 }
1029
238eca82
SC
1030 data.trans_address = __psp_pa(blob);
1031 data.trans_len = params.trans_len;
eaf78265
JR
1032
1033 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1034 if (IS_ERR(hdr)) {
1035 ret = PTR_ERR(hdr);
1036 goto e_free_blob;
1037 }
238eca82
SC
1038 data.hdr_address = __psp_pa(hdr);
1039 data.hdr_len = params.hdr_len;
eaf78265 1040
238eca82
SC
1041 data.handle = sev->handle;
1042 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
eaf78265
JR
1043
1044 kfree(hdr);
1045
1046e_free_blob:
1047 kfree(blob);
eaf78265 1048e_unpin_memory:
50085bee
CC
1049 /* content of memory is updated, mark pages dirty */
1050 for (i = 0; i < n; i++) {
1051 set_page_dirty_lock(pages[i]);
1052 mark_page_accessed(pages[i]);
1053 }
eaf78265
JR
1054 sev_unpin_memory(kvm, pages, n);
1055 return ret;
1056}
1057
2c07ded0
BS
1058static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1059{
1060 void __user *report = (void __user *)(uintptr_t)argp->data;
1061 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 1062 struct sev_data_attestation_report data;
2c07ded0
BS
1063 struct kvm_sev_attestation_report params;
1064 void __user *p;
1065 void *blob = NULL;
1066 int ret;
1067
1068 if (!sev_guest(kvm))
1069 return -ENOTTY;
1070
1071 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1072 return -EFAULT;
1073
238eca82 1074 memset(&data, 0, sizeof(data));
2c07ded0
BS
1075
1076 /* User wants to query the blob length */
1077 if (!params.len)
1078 goto cmd;
1079
1080 p = (void __user *)(uintptr_t)params.uaddr;
1081 if (p) {
238eca82
SC
1082 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1083 return -EINVAL;
2c07ded0 1084
eba04b20 1085 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
2c07ded0 1086 if (!blob)
238eca82 1087 return -ENOMEM;
2c07ded0 1088
238eca82
SC
1089 data.address = __psp_pa(blob);
1090 data.len = params.len;
1091 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
2c07ded0
BS
1092 }
1093cmd:
238eca82
SC
1094 data.handle = sev->handle;
1095 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
2c07ded0
BS
1096 /*
1097 * If we query the session length, FW responded with expected data.
1098 */
1099 if (!params.len)
1100 goto done;
1101
1102 if (ret)
1103 goto e_free_blob;
1104
1105 if (blob) {
1106 if (copy_to_user(p, blob, params.len))
1107 ret = -EFAULT;
1108 }
1109
1110done:
238eca82 1111 params.len = data.len;
2c07ded0
BS
1112 if (copy_to_user(report, &params, sizeof(params)))
1113 ret = -EFAULT;
1114e_free_blob:
1115 kfree(blob);
2c07ded0
BS
1116 return ret;
1117}
1118
4cfdd47d
BS
1119/* Userspace wants to query session length. */
1120static int
1121__sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1122 struct kvm_sev_send_start *params)
1123{
1124 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 1125 struct sev_data_send_start data;
4cfdd47d
BS
1126 int ret;
1127
4f13d471 1128 memset(&data, 0, sizeof(data));
238eca82
SC
1129 data.handle = sev->handle;
1130 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
4cfdd47d 1131
238eca82 1132 params->session_len = data.session_len;
4cfdd47d
BS
1133 if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1134 sizeof(struct kvm_sev_send_start)))
1135 ret = -EFAULT;
1136
4cfdd47d
BS
1137 return ret;
1138}
1139
1140static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1141{
1142 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 1143 struct sev_data_send_start data;
4cfdd47d
BS
1144 struct kvm_sev_send_start params;
1145 void *amd_certs, *session_data;
1146 void *pdh_cert, *plat_certs;
1147 int ret;
1148
1149 if (!sev_guest(kvm))
1150 return -ENOTTY;
1151
1152 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1153 sizeof(struct kvm_sev_send_start)))
1154 return -EFAULT;
1155
1156 /* if session_len is zero, userspace wants to query the session length */
1157 if (!params.session_len)
1158 return __sev_send_start_query_session_length(kvm, argp,
1159 &params);
1160
1161 /* some sanity checks */
1162 if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1163 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1164 return -EINVAL;
1165
1166 /* allocate the memory to hold the session data blob */
1167 session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1168 if (!session_data)
1169 return -ENOMEM;
1170
1171 /* copy the certificate blobs from userspace */
1172 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1173 params.pdh_cert_len);
1174 if (IS_ERR(pdh_cert)) {
1175 ret = PTR_ERR(pdh_cert);
1176 goto e_free_session;
1177 }
1178
1179 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1180 params.plat_certs_len);
1181 if (IS_ERR(plat_certs)) {
1182 ret = PTR_ERR(plat_certs);
1183 goto e_free_pdh;
1184 }
1185
1186 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1187 params.amd_certs_len);
1188 if (IS_ERR(amd_certs)) {
1189 ret = PTR_ERR(amd_certs);
1190 goto e_free_plat_cert;
1191 }
1192
4cfdd47d 1193 /* populate the FW SEND_START field with system physical address */
238eca82
SC
1194 memset(&data, 0, sizeof(data));
1195 data.pdh_cert_address = __psp_pa(pdh_cert);
1196 data.pdh_cert_len = params.pdh_cert_len;
1197 data.plat_certs_address = __psp_pa(plat_certs);
1198 data.plat_certs_len = params.plat_certs_len;
1199 data.amd_certs_address = __psp_pa(amd_certs);
1200 data.amd_certs_len = params.amd_certs_len;
1201 data.session_address = __psp_pa(session_data);
1202 data.session_len = params.session_len;
1203 data.handle = sev->handle;
1204
1205 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
4cfdd47d
BS
1206
1207 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1208 session_data, params.session_len)) {
1209 ret = -EFAULT;
238eca82 1210 goto e_free_amd_cert;
4cfdd47d
BS
1211 }
1212
238eca82
SC
1213 params.policy = data.policy;
1214 params.session_len = data.session_len;
4cfdd47d
BS
1215 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1216 sizeof(struct kvm_sev_send_start)))
1217 ret = -EFAULT;
1218
4cfdd47d
BS
1219e_free_amd_cert:
1220 kfree(amd_certs);
1221e_free_plat_cert:
1222 kfree(plat_certs);
1223e_free_pdh:
1224 kfree(pdh_cert);
1225e_free_session:
1226 kfree(session_data);
1227 return ret;
1228}
1229
d3d1af85
BS
1230/* Userspace wants to query either header or trans length. */
1231static int
1232__sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1233 struct kvm_sev_send_update_data *params)
1234{
1235 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 1236 struct sev_data_send_update_data data;
d3d1af85
BS
1237 int ret;
1238
4f13d471 1239 memset(&data, 0, sizeof(data));
238eca82
SC
1240 data.handle = sev->handle;
1241 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
d3d1af85 1242
238eca82
SC
1243 params->hdr_len = data.hdr_len;
1244 params->trans_len = data.trans_len;
d3d1af85
BS
1245
1246 if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1247 sizeof(struct kvm_sev_send_update_data)))
1248 ret = -EFAULT;
1249
d3d1af85
BS
1250 return ret;
1251}
1252
1253static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1254{
1255 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 1256 struct sev_data_send_update_data data;
d3d1af85
BS
1257 struct kvm_sev_send_update_data params;
1258 void *hdr, *trans_data;
1259 struct page **guest_page;
1260 unsigned long n;
1261 int ret, offset;
1262
1263 if (!sev_guest(kvm))
1264 return -ENOTTY;
1265
1266 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1267 sizeof(struct kvm_sev_send_update_data)))
1268 return -EFAULT;
1269
1270 /* userspace wants to query either header or trans length */
1271 if (!params.trans_len || !params.hdr_len)
1272 return __sev_send_update_data_query_lengths(kvm, argp, &params);
1273
1274 if (!params.trans_uaddr || !params.guest_uaddr ||
1275 !params.guest_len || !params.hdr_uaddr)
1276 return -EINVAL;
1277
1278 /* Check if we are crossing the page boundary */
1279 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1280 if ((params.guest_len + offset > PAGE_SIZE))
1281 return -EINVAL;
1282
1283 /* Pin guest memory */
1284 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1285 PAGE_SIZE, &n, 0);
c7a1b2b6
SC
1286 if (IS_ERR(guest_page))
1287 return PTR_ERR(guest_page);
d3d1af85
BS
1288
1289 /* allocate memory for header and transport buffer */
1290 ret = -ENOMEM;
1291 hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1292 if (!hdr)
1293 goto e_unpin;
1294
1295 trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1296 if (!trans_data)
1297 goto e_free_hdr;
1298
238eca82
SC
1299 memset(&data, 0, sizeof(data));
1300 data.hdr_address = __psp_pa(hdr);
1301 data.hdr_len = params.hdr_len;
1302 data.trans_address = __psp_pa(trans_data);
1303 data.trans_len = params.trans_len;
d3d1af85
BS
1304
1305 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
238eca82
SC
1306 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1307 data.guest_address |= sev_me_mask;
1308 data.guest_len = params.guest_len;
1309 data.handle = sev->handle;
d3d1af85 1310
238eca82 1311 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
d3d1af85
BS
1312
1313 if (ret)
238eca82 1314 goto e_free_trans_data;
d3d1af85
BS
1315
1316 /* copy transport buffer to user space */
1317 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1318 trans_data, params.trans_len)) {
1319 ret = -EFAULT;
238eca82 1320 goto e_free_trans_data;
d3d1af85
BS
1321 }
1322
1323 /* Copy packet header to userspace. */
b4a69392
SC
1324 if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1325 params.hdr_len))
1326 ret = -EFAULT;
d3d1af85 1327
d3d1af85
BS
1328e_free_trans_data:
1329 kfree(trans_data);
1330e_free_hdr:
1331 kfree(hdr);
1332e_unpin:
1333 sev_unpin_memory(kvm, guest_page, n);
1334
1335 return ret;
1336}
1337
fddecf6a
BS
1338static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1339{
1340 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 1341 struct sev_data_send_finish data;
fddecf6a
BS
1342
1343 if (!sev_guest(kvm))
1344 return -ENOTTY;
1345
238eca82
SC
1346 data.handle = sev->handle;
1347 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
fddecf6a
BS
1348}
1349
5569e2e7
SR
1350static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1351{
1352 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 1353 struct sev_data_send_cancel data;
5569e2e7
SR
1354
1355 if (!sev_guest(kvm))
1356 return -ENOTTY;
1357
238eca82
SC
1358 data.handle = sev->handle;
1359 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
5569e2e7
SR
1360}
1361
af43cbbf
BS
1362static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1363{
1364 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 1365 struct sev_data_receive_start start;
af43cbbf
BS
1366 struct kvm_sev_receive_start params;
1367 int *error = &argp->error;
1368 void *session_data;
1369 void *pdh_data;
1370 int ret;
1371
1372 if (!sev_guest(kvm))
1373 return -ENOTTY;
1374
1375 /* Get parameter from the userspace */
1376 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1377 sizeof(struct kvm_sev_receive_start)))
1378 return -EFAULT;
1379
1380 /* some sanity checks */
1381 if (!params.pdh_uaddr || !params.pdh_len ||
1382 !params.session_uaddr || !params.session_len)
1383 return -EINVAL;
1384
1385 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1386 if (IS_ERR(pdh_data))
1387 return PTR_ERR(pdh_data);
1388
1389 session_data = psp_copy_user_blob(params.session_uaddr,
1390 params.session_len);
1391 if (IS_ERR(session_data)) {
1392 ret = PTR_ERR(session_data);
1393 goto e_free_pdh;
1394 }
1395
238eca82
SC
1396 memset(&start, 0, sizeof(start));
1397 start.handle = params.handle;
1398 start.policy = params.policy;
1399 start.pdh_cert_address = __psp_pa(pdh_data);
1400 start.pdh_cert_len = params.pdh_len;
1401 start.session_address = __psp_pa(session_data);
1402 start.session_len = params.session_len;
af43cbbf
BS
1403
1404 /* create memory encryption context */
238eca82 1405 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
af43cbbf
BS
1406 error);
1407 if (ret)
238eca82 1408 goto e_free_session;
af43cbbf
BS
1409
1410 /* Bind ASID to this guest */
238eca82 1411 ret = sev_bind_asid(kvm, start.handle, error);
f1815e0a
MZ
1412 if (ret) {
1413 sev_decommission(start.handle);
238eca82 1414 goto e_free_session;
f1815e0a 1415 }
af43cbbf 1416
238eca82 1417 params.handle = start.handle;
af43cbbf
BS
1418 if (copy_to_user((void __user *)(uintptr_t)argp->data,
1419 &params, sizeof(struct kvm_sev_receive_start))) {
1420 ret = -EFAULT;
238eca82
SC
1421 sev_unbind_asid(kvm, start.handle);
1422 goto e_free_session;
af43cbbf
BS
1423 }
1424
238eca82 1425 sev->handle = start.handle;
af43cbbf
BS
1426 sev->fd = argp->sev_fd;
1427
af43cbbf
BS
1428e_free_session:
1429 kfree(session_data);
1430e_free_pdh:
1431 kfree(pdh_data);
1432
1433 return ret;
1434}
1435
15fb7de1
BS
1436static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1437{
1438 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1439 struct kvm_sev_receive_update_data params;
238eca82 1440 struct sev_data_receive_update_data data;
15fb7de1
BS
1441 void *hdr = NULL, *trans = NULL;
1442 struct page **guest_page;
1443 unsigned long n;
1444 int ret, offset;
1445
1446 if (!sev_guest(kvm))
1447 return -EINVAL;
1448
1449 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1450 sizeof(struct kvm_sev_receive_update_data)))
1451 return -EFAULT;
1452
1453 if (!params.hdr_uaddr || !params.hdr_len ||
1454 !params.guest_uaddr || !params.guest_len ||
1455 !params.trans_uaddr || !params.trans_len)
1456 return -EINVAL;
1457
1458 /* Check if we are crossing the page boundary */
1459 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1460 if ((params.guest_len + offset > PAGE_SIZE))
1461 return -EINVAL;
1462
1463 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1464 if (IS_ERR(hdr))
1465 return PTR_ERR(hdr);
1466
1467 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1468 if (IS_ERR(trans)) {
1469 ret = PTR_ERR(trans);
1470 goto e_free_hdr;
1471 }
1472
238eca82
SC
1473 memset(&data, 0, sizeof(data));
1474 data.hdr_address = __psp_pa(hdr);
1475 data.hdr_len = params.hdr_len;
1476 data.trans_address = __psp_pa(trans);
1477 data.trans_len = params.trans_len;
15fb7de1
BS
1478
1479 /* Pin guest memory */
15fb7de1 1480 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
50c03801 1481 PAGE_SIZE, &n, 1);
c7a1b2b6
SC
1482 if (IS_ERR(guest_page)) {
1483 ret = PTR_ERR(guest_page);
238eca82 1484 goto e_free_trans;
c7a1b2b6 1485 }
15fb7de1 1486
c8c340a9
MK
1487 /*
1488 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1489 * encrypts the written data with the guest's key, and the cache may
1490 * contain dirty, unencrypted data.
1491 */
1492 sev_clflush_pages(guest_page, n);
1493
15fb7de1 1494 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
238eca82
SC
1495 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1496 data.guest_address |= sev_me_mask;
1497 data.guest_len = params.guest_len;
1498 data.handle = sev->handle;
15fb7de1 1499
238eca82 1500 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
15fb7de1
BS
1501 &argp->error);
1502
1503 sev_unpin_memory(kvm, guest_page, n);
1504
15fb7de1
BS
1505e_free_trans:
1506 kfree(trans);
1507e_free_hdr:
1508 kfree(hdr);
1509
1510 return ret;
1511}
1512
6a443def
BS
1513static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1514{
1515 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 1516 struct sev_data_receive_finish data;
6a443def
BS
1517
1518 if (!sev_guest(kvm))
1519 return -ENOTTY;
1520
238eca82
SC
1521 data.handle = sev->handle;
1522 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
6a443def
BS
1523}
1524
5b92b6ca
PG
1525static bool cmd_allowed_from_miror(u32 cmd_id)
1526{
1527 /*
1528 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1529 * active mirror VMs. Also allow the debugging and status commands.
1530 */
1531 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1532 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1533 cmd_id == KVM_SEV_DBG_ENCRYPT)
1534 return true;
1535
1536 return false;
1537}
1538
eaf78265
JR
1539int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
1540{
1541 struct kvm_sev_cmd sev_cmd;
1542 int r;
1543
a5c1c5aa 1544 if (!sev_enabled)
eaf78265
JR
1545 return -ENOTTY;
1546
1547 if (!argp)
1548 return 0;
1549
1550 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1551 return -EFAULT;
1552
1553 mutex_lock(&kvm->lock);
1554
5b92b6ca
PG
1555 /* Only the enc_context_owner handles some memory enc operations. */
1556 if (is_mirroring_enc_context(kvm) &&
1557 !cmd_allowed_from_miror(sev_cmd.id)) {
54526d1f
NT
1558 r = -EINVAL;
1559 goto out;
1560 }
1561
eaf78265 1562 switch (sev_cmd.id) {
9fa1521d 1563 case KVM_SEV_ES_INIT:
8d364a07 1564 if (!sev_es_enabled) {
9fa1521d
SC
1565 r = -ENOTTY;
1566 goto out;
1567 }
1568 fallthrough;
eaf78265
JR
1569 case KVM_SEV_INIT:
1570 r = sev_guest_init(kvm, &sev_cmd);
1571 break;
1572 case KVM_SEV_LAUNCH_START:
1573 r = sev_launch_start(kvm, &sev_cmd);
1574 break;
1575 case KVM_SEV_LAUNCH_UPDATE_DATA:
1576 r = sev_launch_update_data(kvm, &sev_cmd);
1577 break;
ad73109a
TL
1578 case KVM_SEV_LAUNCH_UPDATE_VMSA:
1579 r = sev_launch_update_vmsa(kvm, &sev_cmd);
1580 break;
eaf78265
JR
1581 case KVM_SEV_LAUNCH_MEASURE:
1582 r = sev_launch_measure(kvm, &sev_cmd);
1583 break;
1584 case KVM_SEV_LAUNCH_FINISH:
1585 r = sev_launch_finish(kvm, &sev_cmd);
1586 break;
1587 case KVM_SEV_GUEST_STATUS:
1588 r = sev_guest_status(kvm, &sev_cmd);
1589 break;
1590 case KVM_SEV_DBG_DECRYPT:
1591 r = sev_dbg_crypt(kvm, &sev_cmd, true);
1592 break;
1593 case KVM_SEV_DBG_ENCRYPT:
1594 r = sev_dbg_crypt(kvm, &sev_cmd, false);
1595 break;
1596 case KVM_SEV_LAUNCH_SECRET:
1597 r = sev_launch_secret(kvm, &sev_cmd);
1598 break;
2c07ded0
BS
1599 case KVM_SEV_GET_ATTESTATION_REPORT:
1600 r = sev_get_attestation_report(kvm, &sev_cmd);
1601 break;
4cfdd47d
BS
1602 case KVM_SEV_SEND_START:
1603 r = sev_send_start(kvm, &sev_cmd);
1604 break;
d3d1af85
BS
1605 case KVM_SEV_SEND_UPDATE_DATA:
1606 r = sev_send_update_data(kvm, &sev_cmd);
1607 break;
fddecf6a
BS
1608 case KVM_SEV_SEND_FINISH:
1609 r = sev_send_finish(kvm, &sev_cmd);
1610 break;
5569e2e7
SR
1611 case KVM_SEV_SEND_CANCEL:
1612 r = sev_send_cancel(kvm, &sev_cmd);
1613 break;
af43cbbf
BS
1614 case KVM_SEV_RECEIVE_START:
1615 r = sev_receive_start(kvm, &sev_cmd);
1616 break;
15fb7de1
BS
1617 case KVM_SEV_RECEIVE_UPDATE_DATA:
1618 r = sev_receive_update_data(kvm, &sev_cmd);
1619 break;
6a443def
BS
1620 case KVM_SEV_RECEIVE_FINISH:
1621 r = sev_receive_finish(kvm, &sev_cmd);
1622 break;
eaf78265
JR
1623 default:
1624 r = -EINVAL;
1625 goto out;
1626 }
1627
1628 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1629 r = -EFAULT;
1630
1631out:
1632 mutex_unlock(&kvm->lock);
1633 return r;
1634}
1635
1636int svm_register_enc_region(struct kvm *kvm,
1637 struct kvm_enc_region *range)
1638{
1639 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1640 struct enc_region *region;
1641 int ret = 0;
1642
1643 if (!sev_guest(kvm))
1644 return -ENOTTY;
1645
54526d1f
NT
1646 /* If kvm is mirroring encryption context it isn't responsible for it */
1647 if (is_mirroring_enc_context(kvm))
1648 return -EINVAL;
1649
eaf78265
JR
1650 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1651 return -EINVAL;
1652
1653 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1654 if (!region)
1655 return -ENOMEM;
1656
19a23da5 1657 mutex_lock(&kvm->lock);
eaf78265 1658 region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
a8d908b5
PB
1659 if (IS_ERR(region->pages)) {
1660 ret = PTR_ERR(region->pages);
19a23da5 1661 mutex_unlock(&kvm->lock);
eaf78265
JR
1662 goto e_free;
1663 }
1664
19a23da5
PG
1665 region->uaddr = range->addr;
1666 region->size = range->size;
1667
1668 list_add_tail(&region->list, &sev->regions_list);
1669 mutex_unlock(&kvm->lock);
1670
eaf78265
JR
1671 /*
1672 * The guest may change the memory encryption attribute from C=0 -> C=1
1673 * or vice versa for this memory range. Lets make sure caches are
1674 * flushed to ensure that guest data gets written into memory with
1675 * correct C-bit.
1676 */
1677 sev_clflush_pages(region->pages, region->npages);
1678
eaf78265
JR
1679 return ret;
1680
1681e_free:
1682 kfree(region);
1683 return ret;
1684}
1685
1686static struct enc_region *
1687find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1688{
1689 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1690 struct list_head *head = &sev->regions_list;
1691 struct enc_region *i;
1692
1693 list_for_each_entry(i, head, list) {
1694 if (i->uaddr == range->addr &&
1695 i->size == range->size)
1696 return i;
1697 }
1698
1699 return NULL;
1700}
1701
1702static void __unregister_enc_region_locked(struct kvm *kvm,
1703 struct enc_region *region)
1704{
1705 sev_unpin_memory(kvm, region->pages, region->npages);
1706 list_del(&region->list);
1707 kfree(region);
1708}
1709
1710int svm_unregister_enc_region(struct kvm *kvm,
1711 struct kvm_enc_region *range)
1712{
1713 struct enc_region *region;
1714 int ret;
1715
54526d1f
NT
1716 /* If kvm is mirroring encryption context it isn't responsible for it */
1717 if (is_mirroring_enc_context(kvm))
1718 return -EINVAL;
1719
eaf78265
JR
1720 mutex_lock(&kvm->lock);
1721
1722 if (!sev_guest(kvm)) {
1723 ret = -ENOTTY;
1724 goto failed;
1725 }
1726
1727 region = find_enc_region(kvm, range);
1728 if (!region) {
1729 ret = -EINVAL;
1730 goto failed;
1731 }
1732
1733 /*
1734 * Ensure that all guest tagged cache entries are flushed before
1735 * releasing the pages back to the system for use. CLFLUSH will
1736 * not do this, so issue a WBINVD.
1737 */
1738 wbinvd_on_all_cpus();
1739
1740 __unregister_enc_region_locked(kvm, region);
1741
1742 mutex_unlock(&kvm->lock);
1743 return 0;
1744
1745failed:
1746 mutex_unlock(&kvm->lock);
1747 return ret;
1748}
1749
54526d1f
NT
1750int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd)
1751{
1752 struct file *source_kvm_file;
1753 struct kvm *source_kvm;
f43c887c 1754 struct kvm_sev_info source_sev, *mirror_sev;
54526d1f
NT
1755 int ret;
1756
1757 source_kvm_file = fget(source_fd);
1758 if (!file_is_kvm(source_kvm_file)) {
1759 ret = -EBADF;
1760 goto e_source_put;
1761 }
1762
1763 source_kvm = source_kvm_file->private_data;
1764 mutex_lock(&source_kvm->lock);
1765
1766 if (!sev_guest(source_kvm)) {
1767 ret = -EINVAL;
1768 goto e_source_unlock;
1769 }
1770
1771 /* Mirrors of mirrors should work, but let's not get silly */
1772 if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) {
1773 ret = -EINVAL;
1774 goto e_source_unlock;
1775 }
1776
f43c887c
PG
1777 memcpy(&source_sev, &to_kvm_svm(source_kvm)->sev_info,
1778 sizeof(source_sev));
54526d1f
NT
1779
1780 /*
1781 * The mirror kvm holds an enc_context_owner ref so its asid can't
1782 * disappear until we're done with it
1783 */
1784 kvm_get_kvm(source_kvm);
1785
1786 fput(source_kvm_file);
1787 mutex_unlock(&source_kvm->lock);
1788 mutex_lock(&kvm->lock);
1789
e02e5d0e
SC
1790 /*
1791 * Disallow out-of-band SEV/SEV-ES init if the target is already an
1792 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being
1793 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
1794 */
1795 if (sev_guest(kvm) || kvm->created_vcpus) {
54526d1f
NT
1796 ret = -EINVAL;
1797 goto e_mirror_unlock;
1798 }
1799
1800 /* Set enc_context_owner and copy its encryption context over */
1801 mirror_sev = &to_kvm_svm(kvm)->sev_info;
1802 mirror_sev->enc_context_owner = source_kvm;
54526d1f 1803 mirror_sev->active = true;
f43c887c
PG
1804 mirror_sev->asid = source_sev.asid;
1805 mirror_sev->fd = source_sev.fd;
1806 mirror_sev->es_active = source_sev.es_active;
1807 mirror_sev->handle = source_sev.handle;
0af65292 1808 INIT_LIST_HEAD(&mirror_sev->regions_list);
f43c887c
PG
1809 /*
1810 * Do not copy ap_jump_table. Since the mirror does not share the same
1811 * KVM contexts as the original, and they may have different
1812 * memory-views.
1813 */
54526d1f
NT
1814
1815 mutex_unlock(&kvm->lock);
1816 return 0;
1817
1818e_mirror_unlock:
1819 mutex_unlock(&kvm->lock);
1820 kvm_put_kvm(source_kvm);
1821 return ret;
1822e_source_unlock:
1823 mutex_unlock(&source_kvm->lock);
1824e_source_put:
8899a5fc
CIK
1825 if (source_kvm_file)
1826 fput(source_kvm_file);
54526d1f
NT
1827 return ret;
1828}
1829
eaf78265
JR
1830void sev_vm_destroy(struct kvm *kvm)
1831{
1832 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1833 struct list_head *head = &sev->regions_list;
1834 struct list_head *pos, *q;
1835
1836 if (!sev_guest(kvm))
1837 return;
1838
54526d1f
NT
1839 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
1840 if (is_mirroring_enc_context(kvm)) {
1841 kvm_put_kvm(sev->enc_context_owner);
1842 return;
1843 }
1844
eaf78265
JR
1845 mutex_lock(&kvm->lock);
1846
1847 /*
1848 * Ensure that all guest tagged cache entries are flushed before
1849 * releasing the pages back to the system for use. CLFLUSH will
1850 * not do this, so issue a WBINVD.
1851 */
1852 wbinvd_on_all_cpus();
1853
1854 /*
1855 * if userspace was terminated before unregistering the memory regions
1856 * then lets unpin all the registered memory.
1857 */
1858 if (!list_empty(head)) {
1859 list_for_each_safe(pos, q, head) {
1860 __unregister_enc_region_locked(kvm,
1861 list_entry(pos, struct enc_region, list));
7be74942 1862 cond_resched();
eaf78265
JR
1863 }
1864 }
1865
1866 mutex_unlock(&kvm->lock);
1867
1868 sev_unbind_asid(kvm, sev->handle);
7aef27f0 1869 sev_asid_free(sev);
eaf78265
JR
1870}
1871
d9db0fd6
PB
1872void __init sev_set_cpu_caps(void)
1873{
8d364a07 1874 if (!sev_enabled)
d9db0fd6 1875 kvm_cpu_cap_clear(X86_FEATURE_SEV);
8d364a07 1876 if (!sev_es_enabled)
d9db0fd6
PB
1877 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
1878}
1879
916391a2 1880void __init sev_hardware_setup(void)
eaf78265 1881{
a479c334 1882#ifdef CONFIG_KVM_AMD_SEV
7aef27f0 1883 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
916391a2
TL
1884 bool sev_es_supported = false;
1885 bool sev_supported = false;
1886
a479c334 1887 if (!sev_enabled || !npt_enabled)
e8126bda
SC
1888 goto out;
1889
916391a2
TL
1890 /* Does the CPU support SEV? */
1891 if (!boot_cpu_has(X86_FEATURE_SEV))
1892 goto out;
1893
1894 /* Retrieve SEV CPUID information */
1895 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
1896
1edc1459
TL
1897 /* Set encryption bit location for SEV-ES guests */
1898 sev_enc_bit = ebx & 0x3f;
1899
eaf78265 1900 /* Maximum number of encrypted guests supported simultaneously */
916391a2 1901 max_sev_asid = ecx;
8cb756b7 1902 if (!max_sev_asid)
916391a2 1903 goto out;
eaf78265
JR
1904
1905 /* Minimum ASID value that should be used for SEV guest */
916391a2 1906 min_sev_asid = edx;
d3d1af85 1907 sev_me_mask = 1UL << (ebx & 0x3f);
eaf78265 1908
bb2baeb2
MZ
1909 /*
1910 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
1911 * even though it's never used, so that the bitmap is indexed by the
1912 * actual ASID.
1913 */
1914 nr_asids = max_sev_asid + 1;
1915 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
eaf78265 1916 if (!sev_asid_bitmap)
916391a2 1917 goto out;
eaf78265 1918
bb2baeb2 1919 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
f31b88b3
SC
1920 if (!sev_reclaim_asid_bitmap) {
1921 bitmap_free(sev_asid_bitmap);
1922 sev_asid_bitmap = NULL;
916391a2 1923 goto out;
f31b88b3 1924 }
eaf78265 1925
7aef27f0
VS
1926 sev_asid_count = max_sev_asid - min_sev_asid + 1;
1927 if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
1928 goto out;
1929
1930 pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
916391a2 1931 sev_supported = true;
eaf78265 1932
916391a2 1933 /* SEV-ES support requested? */
8d364a07 1934 if (!sev_es_enabled)
916391a2
TL
1935 goto out;
1936
1937 /* Does the CPU support SEV-ES? */
1938 if (!boot_cpu_has(X86_FEATURE_SEV_ES))
1939 goto out;
1940
1941 /* Has the system been allocated ASIDs for SEV-ES? */
1942 if (min_sev_asid == 1)
1943 goto out;
1944
7aef27f0
VS
1945 sev_es_asid_count = min_sev_asid - 1;
1946 if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
1947 goto out;
1948
1949 pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
916391a2
TL
1950 sev_es_supported = true;
1951
1952out:
8d364a07
SC
1953 sev_enabled = sev_supported;
1954 sev_es_enabled = sev_es_supported;
a479c334 1955#endif
eaf78265
JR
1956}
1957
1958void sev_hardware_teardown(void)
1959{
a5c1c5aa 1960 if (!sev_enabled)
9ef1530c
PB
1961 return;
1962
469bb32b 1963 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
bb2baeb2 1964 sev_flush_asids(1, max_sev_asid);
469bb32b 1965
eaf78265
JR
1966 bitmap_free(sev_asid_bitmap);
1967 bitmap_free(sev_reclaim_asid_bitmap);
469bb32b 1968
7aef27f0
VS
1969 misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
1970 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
eaf78265 1971}
eaf78265 1972
b95c221c
SC
1973int sev_cpu_init(struct svm_cpu_data *sd)
1974{
a5c1c5aa 1975 if (!sev_enabled)
b95c221c
SC
1976 return 0;
1977
bb2baeb2 1978 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
b95c221c
SC
1979 if (!sd->sev_vmcbs)
1980 return -ENOMEM;
1981
1982 return 0;
eaf78265
JR
1983}
1984
add5e2f0
TL
1985/*
1986 * Pages used by hardware to hold guest encrypted state must be flushed before
1987 * returning them to the system.
1988 */
1989static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va,
1990 unsigned long len)
1991{
1992 /*
1993 * If hardware enforced cache coherency for encrypted mappings of the
1994 * same physical page is supported, nothing to do.
1995 */
1996 if (boot_cpu_has(X86_FEATURE_SME_COHERENT))
1997 return;
1998
1999 /*
2000 * If the VM Page Flush MSR is supported, use it to flush the page
2001 * (using the page virtual address and the guest ASID).
2002 */
2003 if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) {
2004 struct kvm_sev_info *sev;
2005 unsigned long va_start;
2006 u64 start, stop;
2007
2008 /* Align start and stop to page boundaries. */
2009 va_start = (unsigned long)va;
2010 start = (u64)va_start & PAGE_MASK;
2011 stop = PAGE_ALIGN((u64)va_start + len);
2012
2013 if (start < stop) {
2014 sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
2015
2016 while (start < stop) {
2017 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH,
2018 start | sev->asid);
2019
2020 start += PAGE_SIZE;
2021 }
2022
2023 return;
2024 }
2025
2026 WARN(1, "Address overflow, using WBINVD\n");
2027 }
2028
2029 /*
2030 * Hardware should always have one of the above features,
2031 * but if not, use WBINVD and issue a warning.
2032 */
2033 WARN_ONCE(1, "Using WBINVD to flush guest memory\n");
2034 wbinvd_on_all_cpus();
2035}
2036
2037void sev_free_vcpu(struct kvm_vcpu *vcpu)
2038{
2039 struct vcpu_svm *svm;
2040
2041 if (!sev_es_guest(vcpu->kvm))
2042 return;
2043
2044 svm = to_svm(vcpu);
2045
2046 if (vcpu->arch.guest_state_protected)
2047 sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE);
2048 __free_page(virt_to_page(svm->vmsa));
8f423a80
TL
2049
2050 if (svm->ghcb_sa_free)
2051 kfree(svm->ghcb_sa);
add5e2f0
TL
2052}
2053
291bd20d
TL
2054static void dump_ghcb(struct vcpu_svm *svm)
2055{
2056 struct ghcb *ghcb = svm->ghcb;
2057 unsigned int nbits;
2058
2059 /* Re-use the dump_invalid_vmcb module parameter */
2060 if (!dump_invalid_vmcb) {
2061 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2062 return;
2063 }
2064
2065 nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2066
2067 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2068 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2069 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2070 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2071 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2072 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2073 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2074 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2075 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2076 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2077}
2078
2079static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2080{
2081 struct kvm_vcpu *vcpu = &svm->vcpu;
2082 struct ghcb *ghcb = svm->ghcb;
2083
2084 /*
2085 * The GHCB protocol so far allows for the following data
2086 * to be returned:
2087 * GPRs RAX, RBX, RCX, RDX
2088 *
25009140
SC
2089 * Copy their values, even if they may not have been written during the
2090 * VM-Exit. It's the guest's responsibility to not consume random data.
291bd20d 2091 */
25009140
SC
2092 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2093 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2094 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2095 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
291bd20d
TL
2096}
2097
2098static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2099{
2100 struct vmcb_control_area *control = &svm->vmcb->control;
2101 struct kvm_vcpu *vcpu = &svm->vcpu;
2102 struct ghcb *ghcb = svm->ghcb;
2103 u64 exit_code;
2104
2105 /*
2106 * The GHCB protocol so far allows for the following data
2107 * to be supplied:
2108 * GPRs RAX, RBX, RCX, RDX
2109 * XCR0
2110 * CPL
2111 *
2112 * VMMCALL allows the guest to provide extra registers. KVM also
2113 * expects RSI for hypercalls, so include that, too.
2114 *
2115 * Copy their values to the appropriate location if supplied.
2116 */
2117 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2118
2119 vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
2120 vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
2121 vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
2122 vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
2123 vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
2124
2125 svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
2126
2127 if (ghcb_xcr0_is_valid(ghcb)) {
2128 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2129 kvm_update_cpuid_runtime(vcpu);
2130 }
2131
2132 /* Copy the GHCB exit information into the VMCB fields */
2133 exit_code = ghcb_get_sw_exit_code(ghcb);
2134 control->exit_code = lower_32_bits(exit_code);
2135 control->exit_code_hi = upper_32_bits(exit_code);
2136 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2137 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2138
2139 /* Clear the valid entries fields */
2140 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2141}
2142
2143static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2144{
2145 struct kvm_vcpu *vcpu;
2146 struct ghcb *ghcb;
2147 u64 exit_code = 0;
2148
2149 ghcb = svm->ghcb;
2150
2151 /* Only GHCB Usage code 0 is supported */
2152 if (ghcb->ghcb_usage)
2153 goto vmgexit_err;
2154
2155 /*
2156 * Retrieve the exit code now even though is may not be marked valid
2157 * as it could help with debugging.
2158 */
2159 exit_code = ghcb_get_sw_exit_code(ghcb);
2160
2161 if (!ghcb_sw_exit_code_is_valid(ghcb) ||
2162 !ghcb_sw_exit_info_1_is_valid(ghcb) ||
2163 !ghcb_sw_exit_info_2_is_valid(ghcb))
2164 goto vmgexit_err;
2165
2166 switch (ghcb_get_sw_exit_code(ghcb)) {
2167 case SVM_EXIT_READ_DR7:
2168 break;
2169 case SVM_EXIT_WRITE_DR7:
2170 if (!ghcb_rax_is_valid(ghcb))
2171 goto vmgexit_err;
2172 break;
2173 case SVM_EXIT_RDTSC:
2174 break;
2175 case SVM_EXIT_RDPMC:
2176 if (!ghcb_rcx_is_valid(ghcb))
2177 goto vmgexit_err;
2178 break;
2179 case SVM_EXIT_CPUID:
2180 if (!ghcb_rax_is_valid(ghcb) ||
2181 !ghcb_rcx_is_valid(ghcb))
2182 goto vmgexit_err;
2183 if (ghcb_get_rax(ghcb) == 0xd)
2184 if (!ghcb_xcr0_is_valid(ghcb))
2185 goto vmgexit_err;
2186 break;
2187 case SVM_EXIT_INVD:
2188 break;
2189 case SVM_EXIT_IOIO:
7ed9abfe
TL
2190 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
2191 if (!ghcb_sw_scratch_is_valid(ghcb))
291bd20d 2192 goto vmgexit_err;
7ed9abfe
TL
2193 } else {
2194 if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
2195 if (!ghcb_rax_is_valid(ghcb))
2196 goto vmgexit_err;
2197 }
291bd20d
TL
2198 break;
2199 case SVM_EXIT_MSR:
2200 if (!ghcb_rcx_is_valid(ghcb))
2201 goto vmgexit_err;
2202 if (ghcb_get_sw_exit_info_1(ghcb)) {
2203 if (!ghcb_rax_is_valid(ghcb) ||
2204 !ghcb_rdx_is_valid(ghcb))
2205 goto vmgexit_err;
2206 }
2207 break;
2208 case SVM_EXIT_VMMCALL:
2209 if (!ghcb_rax_is_valid(ghcb) ||
2210 !ghcb_cpl_is_valid(ghcb))
2211 goto vmgexit_err;
2212 break;
2213 case SVM_EXIT_RDTSCP:
2214 break;
2215 case SVM_EXIT_WBINVD:
2216 break;
2217 case SVM_EXIT_MONITOR:
2218 if (!ghcb_rax_is_valid(ghcb) ||
2219 !ghcb_rcx_is_valid(ghcb) ||
2220 !ghcb_rdx_is_valid(ghcb))
2221 goto vmgexit_err;
2222 break;
2223 case SVM_EXIT_MWAIT:
2224 if (!ghcb_rax_is_valid(ghcb) ||
2225 !ghcb_rcx_is_valid(ghcb))
2226 goto vmgexit_err;
2227 break;
8f423a80
TL
2228 case SVM_VMGEXIT_MMIO_READ:
2229 case SVM_VMGEXIT_MMIO_WRITE:
2230 if (!ghcb_sw_scratch_is_valid(ghcb))
2231 goto vmgexit_err;
2232 break;
4444dfe4 2233 case SVM_VMGEXIT_NMI_COMPLETE:
647daca2 2234 case SVM_VMGEXIT_AP_HLT_LOOP:
8640ca58 2235 case SVM_VMGEXIT_AP_JUMP_TABLE:
291bd20d
TL
2236 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2237 break;
2238 default:
2239 goto vmgexit_err;
2240 }
2241
2242 return 0;
2243
2244vmgexit_err:
2245 vcpu = &svm->vcpu;
2246
2247 if (ghcb->ghcb_usage) {
2248 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2249 ghcb->ghcb_usage);
2250 } else {
2251 vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n",
2252 exit_code);
2253 dump_ghcb(svm);
2254 }
2255
2256 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2257 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2258 vcpu->run->internal.ndata = 2;
2259 vcpu->run->internal.data[0] = exit_code;
2260 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
2261
2262 return -EINVAL;
2263}
2264
ce7ea0cf 2265void sev_es_unmap_ghcb(struct vcpu_svm *svm)
291bd20d
TL
2266{
2267 if (!svm->ghcb)
2268 return;
2269
8f423a80
TL
2270 if (svm->ghcb_sa_free) {
2271 /*
2272 * The scratch area lives outside the GHCB, so there is a
2273 * buffer that, depending on the operation performed, may
2274 * need to be synced, then freed.
2275 */
2276 if (svm->ghcb_sa_sync) {
2277 kvm_write_guest(svm->vcpu.kvm,
2278 ghcb_get_sw_scratch(svm->ghcb),
2279 svm->ghcb_sa, svm->ghcb_sa_len);
2280 svm->ghcb_sa_sync = false;
2281 }
2282
2283 kfree(svm->ghcb_sa);
2284 svm->ghcb_sa = NULL;
2285 svm->ghcb_sa_free = false;
2286 }
2287
d523ab6b
TL
2288 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb);
2289
291bd20d
TL
2290 sev_es_sync_to_ghcb(svm);
2291
2292 kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true);
2293 svm->ghcb = NULL;
2294}
2295
eaf78265
JR
2296void pre_sev_run(struct vcpu_svm *svm, int cpu)
2297{
2298 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2299 int asid = sev_get_asid(svm->vcpu.kvm);
2300
2301 /* Assign the asid allocated with this SEV guest */
dee734a7 2302 svm->asid = asid;
eaf78265
JR
2303
2304 /*
2305 * Flush guest TLB:
2306 *
2307 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2308 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2309 */
2310 if (sd->sev_vmcbs[asid] == svm->vmcb &&
8a14fe4f 2311 svm->vcpu.arch.last_vmentry_cpu == cpu)
eaf78265
JR
2312 return;
2313
eaf78265
JR
2314 sd->sev_vmcbs[asid] = svm->vmcb;
2315 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
06e7852c 2316 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
eaf78265 2317}
291bd20d 2318
8f423a80 2319#define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE)
2963281b 2320static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
8f423a80
TL
2321{
2322 struct vmcb_control_area *control = &svm->vmcb->control;
2323 struct ghcb *ghcb = svm->ghcb;
2324 u64 ghcb_scratch_beg, ghcb_scratch_end;
2325 u64 scratch_gpa_beg, scratch_gpa_end;
2326 void *scratch_va;
2327
2328 scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
2329 if (!scratch_gpa_beg) {
2330 pr_err("vmgexit: scratch gpa not provided\n");
2963281b 2331 return -EINVAL;
8f423a80
TL
2332 }
2333
2334 scratch_gpa_end = scratch_gpa_beg + len;
2335 if (scratch_gpa_end < scratch_gpa_beg) {
2336 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2337 len, scratch_gpa_beg);
2963281b 2338 return -EINVAL;
8f423a80
TL
2339 }
2340
2341 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2342 /* Scratch area begins within GHCB */
2343 ghcb_scratch_beg = control->ghcb_gpa +
2344 offsetof(struct ghcb, shared_buffer);
2345 ghcb_scratch_end = control->ghcb_gpa +
2346 offsetof(struct ghcb, reserved_1);
2347
2348 /*
2349 * If the scratch area begins within the GHCB, it must be
2350 * completely contained in the GHCB shared buffer area.
2351 */
2352 if (scratch_gpa_beg < ghcb_scratch_beg ||
2353 scratch_gpa_end > ghcb_scratch_end) {
2354 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2355 scratch_gpa_beg, scratch_gpa_end);
2963281b 2356 return -EINVAL;
8f423a80
TL
2357 }
2358
2359 scratch_va = (void *)svm->ghcb;
2360 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2361 } else {
2362 /*
2363 * The guest memory must be read into a kernel buffer, so
2364 * limit the size
2365 */
2366 if (len > GHCB_SCRATCH_AREA_LIMIT) {
2367 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2368 len, GHCB_SCRATCH_AREA_LIMIT);
2963281b 2369 return -EINVAL;
8f423a80 2370 }
eba04b20 2371 scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT);
8f423a80 2372 if (!scratch_va)
2963281b 2373 return -ENOMEM;
8f423a80
TL
2374
2375 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2376 /* Unable to copy scratch area from guest */
2377 pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2378
2379 kfree(scratch_va);
2963281b 2380 return -EFAULT;
8f423a80
TL
2381 }
2382
2383 /*
2384 * The scratch area is outside the GHCB. The operation will
2385 * dictate whether the buffer needs to be synced before running
2386 * the vCPU next time (i.e. a read was requested so the data
2387 * must be written back to the guest memory).
2388 */
2389 svm->ghcb_sa_sync = sync;
2390 svm->ghcb_sa_free = true;
2391 }
2392
2393 svm->ghcb_sa = scratch_va;
2394 svm->ghcb_sa_len = len;
2395
2963281b 2396 return 0;
8f423a80
TL
2397}
2398
d3694667
TL
2399static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2400 unsigned int pos)
2401{
2402 svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2403 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2404}
2405
2406static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2407{
2408 return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2409}
2410
1edc1459
TL
2411static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2412{
2413 svm->vmcb->control.ghcb_gpa = value;
2414}
2415
291bd20d
TL
2416static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2417{
1edc1459 2418 struct vmcb_control_area *control = &svm->vmcb->control;
d3694667 2419 struct kvm_vcpu *vcpu = &svm->vcpu;
1edc1459 2420 u64 ghcb_info;
d3694667 2421 int ret = 1;
1edc1459
TL
2422
2423 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2424
59e38b58
TL
2425 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2426 control->ghcb_gpa);
2427
1edc1459
TL
2428 switch (ghcb_info) {
2429 case GHCB_MSR_SEV_INFO_REQ:
2430 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2431 GHCB_VERSION_MIN,
2432 sev_enc_bit));
2433 break;
d3694667
TL
2434 case GHCB_MSR_CPUID_REQ: {
2435 u64 cpuid_fn, cpuid_reg, cpuid_value;
2436
2437 cpuid_fn = get_ghcb_msr_bits(svm,
2438 GHCB_MSR_CPUID_FUNC_MASK,
2439 GHCB_MSR_CPUID_FUNC_POS);
2440
2441 /* Initialize the registers needed by the CPUID intercept */
2442 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2443 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2444
63129754 2445 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
d3694667
TL
2446 if (!ret) {
2447 ret = -EINVAL;
2448 break;
2449 }
2450
2451 cpuid_reg = get_ghcb_msr_bits(svm,
2452 GHCB_MSR_CPUID_REG_MASK,
2453 GHCB_MSR_CPUID_REG_POS);
2454 if (cpuid_reg == 0)
2455 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2456 else if (cpuid_reg == 1)
2457 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2458 else if (cpuid_reg == 2)
2459 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2460 else
2461 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2462
2463 set_ghcb_msr_bits(svm, cpuid_value,
2464 GHCB_MSR_CPUID_VALUE_MASK,
2465 GHCB_MSR_CPUID_VALUE_POS);
2466
2467 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2468 GHCB_MSR_INFO_MASK,
2469 GHCB_MSR_INFO_POS);
2470 break;
2471 }
e1d71116
TL
2472 case GHCB_MSR_TERM_REQ: {
2473 u64 reason_set, reason_code;
2474
2475 reason_set = get_ghcb_msr_bits(svm,
2476 GHCB_MSR_TERM_REASON_SET_MASK,
2477 GHCB_MSR_TERM_REASON_SET_POS);
2478 reason_code = get_ghcb_msr_bits(svm,
2479 GHCB_MSR_TERM_REASON_MASK,
2480 GHCB_MSR_TERM_REASON_POS);
2481 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2482 reason_set, reason_code);
2483 fallthrough;
2484 }
1edc1459 2485 default:
d3694667 2486 ret = -EINVAL;
1edc1459
TL
2487 }
2488
59e38b58
TL
2489 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2490 control->ghcb_gpa, ret);
2491
d3694667 2492 return ret;
291bd20d
TL
2493}
2494
63129754 2495int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
291bd20d 2496{
63129754 2497 struct vcpu_svm *svm = to_svm(vcpu);
291bd20d
TL
2498 struct vmcb_control_area *control = &svm->vmcb->control;
2499 u64 ghcb_gpa, exit_code;
2500 struct ghcb *ghcb;
2501 int ret;
2502
2503 /* Validate the GHCB */
2504 ghcb_gpa = control->ghcb_gpa;
2505 if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2506 return sev_handle_vmgexit_msr_protocol(svm);
2507
2508 if (!ghcb_gpa) {
63129754 2509 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
291bd20d
TL
2510 return -EINVAL;
2511 }
2512
63129754 2513 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) {
291bd20d 2514 /* Unable to map GHCB from guest */
63129754 2515 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
291bd20d
TL
2516 ghcb_gpa);
2517 return -EINVAL;
2518 }
2519
2520 svm->ghcb = svm->ghcb_map.hva;
2521 ghcb = svm->ghcb_map.hva;
2522
63129754 2523 trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
d523ab6b 2524
291bd20d
TL
2525 exit_code = ghcb_get_sw_exit_code(ghcb);
2526
2527 ret = sev_es_validate_vmgexit(svm);
2528 if (ret)
2529 return ret;
2530
2531 sev_es_sync_from_ghcb(svm);
2532 ghcb_set_sw_exit_info_1(ghcb, 0);
2533 ghcb_set_sw_exit_info_2(ghcb, 0);
2534
291bd20d 2535 switch (exit_code) {
8f423a80 2536 case SVM_VMGEXIT_MMIO_READ:
2963281b
SC
2537 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
2538 if (ret)
8f423a80
TL
2539 break;
2540
63129754 2541 ret = kvm_sev_es_mmio_read(vcpu,
8f423a80
TL
2542 control->exit_info_1,
2543 control->exit_info_2,
2544 svm->ghcb_sa);
2545 break;
2546 case SVM_VMGEXIT_MMIO_WRITE:
2963281b
SC
2547 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
2548 if (ret)
8f423a80
TL
2549 break;
2550
63129754 2551 ret = kvm_sev_es_mmio_write(vcpu,
8f423a80
TL
2552 control->exit_info_1,
2553 control->exit_info_2,
2554 svm->ghcb_sa);
2555 break;
4444dfe4 2556 case SVM_VMGEXIT_NMI_COMPLETE:
63129754 2557 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
4444dfe4 2558 break;
647daca2 2559 case SVM_VMGEXIT_AP_HLT_LOOP:
63129754 2560 ret = kvm_emulate_ap_reset_hold(vcpu);
647daca2 2561 break;
8640ca58 2562 case SVM_VMGEXIT_AP_JUMP_TABLE: {
63129754 2563 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
8640ca58
TL
2564
2565 switch (control->exit_info_1) {
2566 case 0:
2567 /* Set AP jump table address */
2568 sev->ap_jump_table = control->exit_info_2;
2569 break;
2570 case 1:
2571 /* Get AP jump table address */
2572 ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2573 break;
2574 default:
2575 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2576 control->exit_info_1);
2577 ghcb_set_sw_exit_info_1(ghcb, 1);
2578 ghcb_set_sw_exit_info_2(ghcb,
2579 X86_TRAP_UD |
2580 SVM_EVTINJ_TYPE_EXEPT |
2581 SVM_EVTINJ_VALID);
2582 }
2583
2584 ret = 1;
2585 break;
2586 }
291bd20d 2587 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
63129754 2588 vcpu_unimpl(vcpu,
291bd20d
TL
2589 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2590 control->exit_info_1, control->exit_info_2);
2963281b 2591 ret = -EINVAL;
291bd20d
TL
2592 break;
2593 default:
63129754 2594 ret = svm_invoke_exit_handler(vcpu, exit_code);
291bd20d
TL
2595 }
2596
2597 return ret;
2598}
7ed9abfe
TL
2599
2600int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2601{
9b0971ca
PB
2602 int count;
2603 int bytes;
2963281b 2604 int r;
9b0971ca
PB
2605
2606 if (svm->vmcb->control.exit_info_2 > INT_MAX)
2607 return -EINVAL;
2608
2609 count = svm->vmcb->control.exit_info_2;
2610 if (unlikely(check_mul_overflow(count, size, &bytes)))
2611 return -EINVAL;
2612
2963281b
SC
2613 r = setup_vmgexit_scratch(svm, in, bytes);
2614 if (r)
2615 return r;
7ed9abfe 2616
9b0971ca 2617 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->ghcb_sa, count, in);
7ed9abfe 2618}
376c6d28
TL
2619
2620void sev_es_init_vmcb(struct vcpu_svm *svm)
2621{
2622 struct kvm_vcpu *vcpu = &svm->vcpu;
2623
2624 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2625 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2626
2627 /*
2628 * An SEV-ES guest requires a VMSA area that is a separate from the
2629 * VMCB page. Do not include the encryption mask on the VMSA physical
2630 * address since hardware will access it using the guest key.
2631 */
2632 svm->vmcb->control.vmsa_pa = __pa(svm->vmsa);
2633
2634 /* Can't intercept CR register access, HV can't modify CR registers */
2635 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2636 svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2637 svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2638 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2639 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2640 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2641
2642 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2643
2644 /* Track EFER/CR register changes */
2645 svm_set_intercept(svm, TRAP_EFER_WRITE);
2646 svm_set_intercept(svm, TRAP_CR0_WRITE);
2647 svm_set_intercept(svm, TRAP_CR4_WRITE);
2648 svm_set_intercept(svm, TRAP_CR8_WRITE);
2649
2650 /* No support for enable_vmware_backdoor */
2651 clr_exception_intercept(svm, GP_VECTOR);
2652
2653 /* Can't intercept XSETBV, HV can't modify XCR0 directly */
2654 svm_clr_intercept(svm, INTERCEPT_XSETBV);
2655
2656 /* Clear intercepts on selected MSRs */
2657 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2658 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2659 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2660 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2661 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2662 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2663}
2664
2665void sev_es_create_vcpu(struct vcpu_svm *svm)
2666{
2667 /*
2668 * Set the GHCB MSR value as per the GHCB specification when creating
2669 * a vCPU for an SEV-ES guest.
2670 */
2671 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2672 GHCB_VERSION_MIN,
2673 sev_enc_bit));
2674}
86137773 2675
a7fc06dd 2676void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu)
86137773
TL
2677{
2678 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2679 struct vmcb_save_area *hostsa;
86137773
TL
2680
2681 /*
2682 * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
2683 * of which one step is to perform a VMLOAD. Since hardware does not
2684 * perform a VMSAVE on VMRUN, the host savearea must be updated.
2685 */
35a78319 2686 vmsave(__sme_page_pa(sd->save_area));
86137773 2687
86137773
TL
2688 /* XCR0 is restored on VMEXIT, save the current host value */
2689 hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
2690 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
2691
d9f6e12f 2692 /* PKRU is restored on VMEXIT, save the current host value */
86137773
TL
2693 hostsa->pkru = read_pkru();
2694
2695 /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
2696 hostsa->xss = host_xss;
2697}
2698
647daca2
TL
2699void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
2700{
2701 struct vcpu_svm *svm = to_svm(vcpu);
2702
2703 /* First SIPI: Use the values as initially set by the VMM */
2704 if (!svm->received_first_sipi) {
2705 svm->received_first_sipi = true;
2706 return;
2707 }
2708
2709 /*
2710 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
2711 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
2712 * non-zero value.
2713 */
a3ba26ec
TL
2714 if (!svm->ghcb)
2715 return;
2716
647daca2
TL
2717 ghcb_set_sw_exit_info_2(svm->ghcb, 1);
2718}