]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: VMX: drop enable_ept check from ept_sync_context()
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
c207aee4 36#include <linux/frame.h>
5fdbf976 37#include "kvm_cache_regs.h"
35920a35 38#include "x86.h"
e495606d 39
28b835d6 40#include <asm/cpu.h>
6aa8b732 41#include <asm/io.h>
3b3be0d1 42#include <asm/desc.h>
13673a90 43#include <asm/vmx.h>
6210e37b 44#include <asm/virtext.h>
a0861c02 45#include <asm/mce.h>
952f07ec 46#include <asm/fpu/internal.h>
d7cd9796 47#include <asm/perf_event.h>
81908bf4 48#include <asm/debugreg.h>
8f536b76 49#include <asm/kexec.h>
dab2087d 50#include <asm/apic.h>
efc64404 51#include <asm/irq_remapping.h>
d6e41f11 52#include <asm/mmu_context.h>
6aa8b732 53
229456fc 54#include "trace.h"
25462f7f 55#include "pmu.h"
229456fc 56
4ecac3fd 57#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
58#define __ex_clear(x, reg) \
59 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 60
6aa8b732
AK
61MODULE_AUTHOR("Qumranet");
62MODULE_LICENSE("GPL");
63
e9bda3b3
JT
64static const struct x86_cpu_id vmx_cpu_id[] = {
65 X86_FEATURE_MATCH(X86_FEATURE_VMX),
66 {}
67};
68MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
476bc001 70static bool __read_mostly enable_vpid = 1;
736caefe 71module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 72
476bc001 73static bool __read_mostly flexpriority_enabled = 1;
736caefe 74module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 75
476bc001 76static bool __read_mostly enable_ept = 1;
736caefe 77module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 78
476bc001 79static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
80module_param_named(unrestricted_guest,
81 enable_unrestricted_guest, bool, S_IRUGO);
82
83c3a331
XH
83static bool __read_mostly enable_ept_ad_bits = 1;
84module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
85
a27685c3 86static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 87module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 88
476bc001 89static bool __read_mostly fasteoi = 1;
58fbbf26
KT
90module_param(fasteoi, bool, S_IRUGO);
91
5a71785d 92static bool __read_mostly enable_apicv = 1;
01e439be 93module_param(enable_apicv, bool, S_IRUGO);
83d4c286 94
abc4fc58
AG
95static bool __read_mostly enable_shadow_vmcs = 1;
96module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
97/*
98 * If nested=1, nested virtualization is supported, i.e., guests may use
99 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100 * use VMX instructions.
101 */
476bc001 102static bool __read_mostly nested = 0;
801d3424
NHE
103module_param(nested, bool, S_IRUGO);
104
20300099
WL
105static u64 __read_mostly host_xss;
106
843e4330
KH
107static bool __read_mostly enable_pml = 1;
108module_param_named(pml, enable_pml, bool, S_IRUGO);
109
64903d61
HZ
110#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
111
64672c95
YJ
112/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
113static int __read_mostly cpu_preemption_timer_multi;
114static bool __read_mostly enable_preemption_timer = 1;
115#ifdef CONFIG_X86_64
116module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
117#endif
118
5037878e
GN
119#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
120#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
121#define KVM_VM_CR0_ALWAYS_ON \
122 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
123#define KVM_CR4_GUEST_OWNED_BITS \
124 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
fd8cb433 125 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
4c38609a 126
cdc0e244
AK
127#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
128#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
129
78ac8b47
AK
130#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
131
f4124500
JK
132#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
133
16c2aec6
JD
134/*
135 * Hyper-V requires all of these, so mark them as supported even though
136 * they are just treated the same as all-context.
137 */
138#define VMX_VPID_EXTENT_SUPPORTED_MASK \
139 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
140 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
141 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
142 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
143
4b8d54f9
ZE
144/*
145 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146 * ple_gap: upper bound on the amount of time between two successive
147 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 148 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
149 * ple_window: upper bound on the amount of time a guest is allowed to execute
150 * in a PAUSE loop. Tests indicate that most spinlocks are held for
151 * less than 2^12 cycles
152 * Time is measured based on a counter that runs at the same rate as the TSC,
153 * refer SDM volume 3b section 21.6.13 & 22.1.3.
154 */
b4a2d31d
RK
155#define KVM_VMX_DEFAULT_PLE_GAP 128
156#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
157#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
158#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
160 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
161
4b8d54f9
ZE
162static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
163module_param(ple_gap, int, S_IRUGO);
164
165static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166module_param(ple_window, int, S_IRUGO);
167
b4a2d31d
RK
168/* Default doubles per-vcpu window every exit. */
169static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
170module_param(ple_window_grow, int, S_IRUGO);
171
172/* Default resets per-vcpu window every exit to ple_window. */
173static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
174module_param(ple_window_shrink, int, S_IRUGO);
175
176/* Default is to compute the maximum so we can never overflow. */
177static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179module_param(ple_window_max, int, S_IRUGO);
180
83287ea4
AK
181extern const ulong vmx_return;
182
8bf00a52 183#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 184#define VMCS02_POOL_SIZE 1
61d2ef2c 185
a2fa3e9f
GH
186struct vmcs {
187 u32 revision_id;
188 u32 abort;
189 char data[0];
190};
191
d462b819
NHE
192/*
193 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
194 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
195 * loaded on this CPU (so we can clear them if the CPU goes down).
196 */
197struct loaded_vmcs {
198 struct vmcs *vmcs;
355f4fb1 199 struct vmcs *shadow_vmcs;
d462b819 200 int cpu;
4c4a6f79
PB
201 bool launched;
202 bool nmi_known_unmasked;
44889942
LP
203 unsigned long vmcs_host_cr3; /* May not match real cr3 */
204 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d462b819
NHE
205 struct list_head loaded_vmcss_on_cpu_link;
206};
207
26bb0981
AK
208struct shared_msr_entry {
209 unsigned index;
210 u64 data;
d5696725 211 u64 mask;
26bb0981
AK
212};
213
a9d30f33
NHE
214/*
215 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
216 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
217 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
218 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
219 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
220 * More than one of these structures may exist, if L1 runs multiple L2 guests.
221 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
222 * underlying hardware which will be used to run L2.
223 * This structure is packed to ensure that its layout is identical across
224 * machines (necessary for live migration).
225 * If there are changes in this struct, VMCS12_REVISION must be changed.
226 */
22bd0358 227typedef u64 natural_width;
a9d30f33
NHE
228struct __packed vmcs12 {
229 /* According to the Intel spec, a VMCS region must start with the
230 * following two fields. Then follow implementation-specific data.
231 */
232 u32 revision_id;
233 u32 abort;
22bd0358 234
27d6c865
NHE
235 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
236 u32 padding[7]; /* room for future expansion */
237
22bd0358
NHE
238 u64 io_bitmap_a;
239 u64 io_bitmap_b;
240 u64 msr_bitmap;
241 u64 vm_exit_msr_store_addr;
242 u64 vm_exit_msr_load_addr;
243 u64 vm_entry_msr_load_addr;
244 u64 tsc_offset;
245 u64 virtual_apic_page_addr;
246 u64 apic_access_addr;
705699a1 247 u64 posted_intr_desc_addr;
27c42a1b 248 u64 vm_function_control;
22bd0358 249 u64 ept_pointer;
608406e2
WV
250 u64 eoi_exit_bitmap0;
251 u64 eoi_exit_bitmap1;
252 u64 eoi_exit_bitmap2;
253 u64 eoi_exit_bitmap3;
41ab9372 254 u64 eptp_list_address;
81dc01f7 255 u64 xss_exit_bitmap;
22bd0358
NHE
256 u64 guest_physical_address;
257 u64 vmcs_link_pointer;
c5f983f6 258 u64 pml_address;
22bd0358
NHE
259 u64 guest_ia32_debugctl;
260 u64 guest_ia32_pat;
261 u64 guest_ia32_efer;
262 u64 guest_ia32_perf_global_ctrl;
263 u64 guest_pdptr0;
264 u64 guest_pdptr1;
265 u64 guest_pdptr2;
266 u64 guest_pdptr3;
36be0b9d 267 u64 guest_bndcfgs;
22bd0358
NHE
268 u64 host_ia32_pat;
269 u64 host_ia32_efer;
270 u64 host_ia32_perf_global_ctrl;
271 u64 padding64[8]; /* room for future expansion */
272 /*
273 * To allow migration of L1 (complete with its L2 guests) between
274 * machines of different natural widths (32 or 64 bit), we cannot have
275 * unsigned long fields with no explict size. We use u64 (aliased
276 * natural_width) instead. Luckily, x86 is little-endian.
277 */
278 natural_width cr0_guest_host_mask;
279 natural_width cr4_guest_host_mask;
280 natural_width cr0_read_shadow;
281 natural_width cr4_read_shadow;
282 natural_width cr3_target_value0;
283 natural_width cr3_target_value1;
284 natural_width cr3_target_value2;
285 natural_width cr3_target_value3;
286 natural_width exit_qualification;
287 natural_width guest_linear_address;
288 natural_width guest_cr0;
289 natural_width guest_cr3;
290 natural_width guest_cr4;
291 natural_width guest_es_base;
292 natural_width guest_cs_base;
293 natural_width guest_ss_base;
294 natural_width guest_ds_base;
295 natural_width guest_fs_base;
296 natural_width guest_gs_base;
297 natural_width guest_ldtr_base;
298 natural_width guest_tr_base;
299 natural_width guest_gdtr_base;
300 natural_width guest_idtr_base;
301 natural_width guest_dr7;
302 natural_width guest_rsp;
303 natural_width guest_rip;
304 natural_width guest_rflags;
305 natural_width guest_pending_dbg_exceptions;
306 natural_width guest_sysenter_esp;
307 natural_width guest_sysenter_eip;
308 natural_width host_cr0;
309 natural_width host_cr3;
310 natural_width host_cr4;
311 natural_width host_fs_base;
312 natural_width host_gs_base;
313 natural_width host_tr_base;
314 natural_width host_gdtr_base;
315 natural_width host_idtr_base;
316 natural_width host_ia32_sysenter_esp;
317 natural_width host_ia32_sysenter_eip;
318 natural_width host_rsp;
319 natural_width host_rip;
320 natural_width paddingl[8]; /* room for future expansion */
321 u32 pin_based_vm_exec_control;
322 u32 cpu_based_vm_exec_control;
323 u32 exception_bitmap;
324 u32 page_fault_error_code_mask;
325 u32 page_fault_error_code_match;
326 u32 cr3_target_count;
327 u32 vm_exit_controls;
328 u32 vm_exit_msr_store_count;
329 u32 vm_exit_msr_load_count;
330 u32 vm_entry_controls;
331 u32 vm_entry_msr_load_count;
332 u32 vm_entry_intr_info_field;
333 u32 vm_entry_exception_error_code;
334 u32 vm_entry_instruction_len;
335 u32 tpr_threshold;
336 u32 secondary_vm_exec_control;
337 u32 vm_instruction_error;
338 u32 vm_exit_reason;
339 u32 vm_exit_intr_info;
340 u32 vm_exit_intr_error_code;
341 u32 idt_vectoring_info_field;
342 u32 idt_vectoring_error_code;
343 u32 vm_exit_instruction_len;
344 u32 vmx_instruction_info;
345 u32 guest_es_limit;
346 u32 guest_cs_limit;
347 u32 guest_ss_limit;
348 u32 guest_ds_limit;
349 u32 guest_fs_limit;
350 u32 guest_gs_limit;
351 u32 guest_ldtr_limit;
352 u32 guest_tr_limit;
353 u32 guest_gdtr_limit;
354 u32 guest_idtr_limit;
355 u32 guest_es_ar_bytes;
356 u32 guest_cs_ar_bytes;
357 u32 guest_ss_ar_bytes;
358 u32 guest_ds_ar_bytes;
359 u32 guest_fs_ar_bytes;
360 u32 guest_gs_ar_bytes;
361 u32 guest_ldtr_ar_bytes;
362 u32 guest_tr_ar_bytes;
363 u32 guest_interruptibility_info;
364 u32 guest_activity_state;
365 u32 guest_sysenter_cs;
366 u32 host_ia32_sysenter_cs;
0238ea91
JK
367 u32 vmx_preemption_timer_value;
368 u32 padding32[7]; /* room for future expansion */
22bd0358 369 u16 virtual_processor_id;
705699a1 370 u16 posted_intr_nv;
22bd0358
NHE
371 u16 guest_es_selector;
372 u16 guest_cs_selector;
373 u16 guest_ss_selector;
374 u16 guest_ds_selector;
375 u16 guest_fs_selector;
376 u16 guest_gs_selector;
377 u16 guest_ldtr_selector;
378 u16 guest_tr_selector;
608406e2 379 u16 guest_intr_status;
c5f983f6 380 u16 guest_pml_index;
22bd0358
NHE
381 u16 host_es_selector;
382 u16 host_cs_selector;
383 u16 host_ss_selector;
384 u16 host_ds_selector;
385 u16 host_fs_selector;
386 u16 host_gs_selector;
387 u16 host_tr_selector;
a9d30f33
NHE
388};
389
390/*
391 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
392 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
393 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
394 */
395#define VMCS12_REVISION 0x11e57ed0
396
397/*
398 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
399 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
400 * current implementation, 4K are reserved to avoid future complications.
401 */
402#define VMCS12_SIZE 0x1000
403
ff2f6fe9
NHE
404/* Used to remember the last vmcs02 used for some recently used vmcs12s */
405struct vmcs02_list {
406 struct list_head list;
407 gpa_t vmptr;
408 struct loaded_vmcs vmcs02;
409};
410
ec378aee
NHE
411/*
412 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
413 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
414 */
415struct nested_vmx {
416 /* Has the level1 guest done vmxon? */
417 bool vmxon;
3573e22c 418 gpa_t vmxon_ptr;
c5f983f6 419 bool pml_full;
a9d30f33
NHE
420
421 /* The guest-physical address of the current VMCS L1 keeps for L2 */
422 gpa_t current_vmptr;
4f2777bc
DM
423 /*
424 * Cache of the guest's VMCS, existing outside of guest memory.
425 * Loaded from guest memory during VMPTRLD. Flushed to guest
8ca44e88 426 * memory during VMCLEAR and VMPTRLD.
4f2777bc
DM
427 */
428 struct vmcs12 *cached_vmcs12;
012f83cb
AG
429 /*
430 * Indicates if the shadow vmcs must be updated with the
431 * data hold by vmcs12
432 */
433 bool sync_shadow_vmcs;
ff2f6fe9
NHE
434
435 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
436 struct list_head vmcs02_pool;
437 int vmcs02_num;
dccbfcf5 438 bool change_vmcs01_virtual_x2apic_mode;
644d711a
NHE
439 /* L2 must run next, and mustn't decide to exit to L1. */
440 bool nested_run_pending;
fe3ef05c
NHE
441 /*
442 * Guest pages referred to in vmcs02 with host-physical pointers, so
443 * we must keep them pinned while L2 runs.
444 */
445 struct page *apic_access_page;
a7c0b07d 446 struct page *virtual_apic_page;
705699a1
WV
447 struct page *pi_desc_page;
448 struct pi_desc *pi_desc;
449 bool pi_pending;
450 u16 posted_intr_nv;
f4124500 451
d048c098
RK
452 unsigned long *msr_bitmap;
453
f4124500
JK
454 struct hrtimer preemption_timer;
455 bool preemption_timer_expired;
2996fca0
JK
456
457 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
458 u64 vmcs01_debugctl;
b9c237bb 459
5c614b35
WL
460 u16 vpid02;
461 u16 last_vpid;
462
0115f9cb
DM
463 /*
464 * We only store the "true" versions of the VMX capability MSRs. We
465 * generate the "non-true" versions by setting the must-be-1 bits
466 * according to the SDM.
467 */
b9c237bb
WV
468 u32 nested_vmx_procbased_ctls_low;
469 u32 nested_vmx_procbased_ctls_high;
b9c237bb
WV
470 u32 nested_vmx_secondary_ctls_low;
471 u32 nested_vmx_secondary_ctls_high;
472 u32 nested_vmx_pinbased_ctls_low;
473 u32 nested_vmx_pinbased_ctls_high;
474 u32 nested_vmx_exit_ctls_low;
475 u32 nested_vmx_exit_ctls_high;
b9c237bb
WV
476 u32 nested_vmx_entry_ctls_low;
477 u32 nested_vmx_entry_ctls_high;
b9c237bb
WV
478 u32 nested_vmx_misc_low;
479 u32 nested_vmx_misc_high;
480 u32 nested_vmx_ept_caps;
99b83ac8 481 u32 nested_vmx_vpid_caps;
62cc6b9d
DM
482 u64 nested_vmx_basic;
483 u64 nested_vmx_cr0_fixed0;
484 u64 nested_vmx_cr0_fixed1;
485 u64 nested_vmx_cr4_fixed0;
486 u64 nested_vmx_cr4_fixed1;
487 u64 nested_vmx_vmcs_enum;
27c42a1b 488 u64 nested_vmx_vmfunc_controls;
ec378aee
NHE
489};
490
01e439be 491#define POSTED_INTR_ON 0
ebbfc765
FW
492#define POSTED_INTR_SN 1
493
01e439be
YZ
494/* Posted-Interrupt Descriptor */
495struct pi_desc {
496 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
497 union {
498 struct {
499 /* bit 256 - Outstanding Notification */
500 u16 on : 1,
501 /* bit 257 - Suppress Notification */
502 sn : 1,
503 /* bit 271:258 - Reserved */
504 rsvd_1 : 14;
505 /* bit 279:272 - Notification Vector */
506 u8 nv;
507 /* bit 287:280 - Reserved */
508 u8 rsvd_2;
509 /* bit 319:288 - Notification Destination */
510 u32 ndst;
511 };
512 u64 control;
513 };
514 u32 rsvd[6];
01e439be
YZ
515} __aligned(64);
516
a20ed54d
YZ
517static bool pi_test_and_set_on(struct pi_desc *pi_desc)
518{
519 return test_and_set_bit(POSTED_INTR_ON,
520 (unsigned long *)&pi_desc->control);
521}
522
523static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
524{
525 return test_and_clear_bit(POSTED_INTR_ON,
526 (unsigned long *)&pi_desc->control);
527}
528
529static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
530{
531 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
532}
533
ebbfc765
FW
534static inline void pi_clear_sn(struct pi_desc *pi_desc)
535{
536 return clear_bit(POSTED_INTR_SN,
537 (unsigned long *)&pi_desc->control);
538}
539
540static inline void pi_set_sn(struct pi_desc *pi_desc)
541{
542 return set_bit(POSTED_INTR_SN,
543 (unsigned long *)&pi_desc->control);
544}
545
ad361091
PB
546static inline void pi_clear_on(struct pi_desc *pi_desc)
547{
548 clear_bit(POSTED_INTR_ON,
549 (unsigned long *)&pi_desc->control);
550}
551
ebbfc765
FW
552static inline int pi_test_on(struct pi_desc *pi_desc)
553{
554 return test_bit(POSTED_INTR_ON,
555 (unsigned long *)&pi_desc->control);
556}
557
558static inline int pi_test_sn(struct pi_desc *pi_desc)
559{
560 return test_bit(POSTED_INTR_SN,
561 (unsigned long *)&pi_desc->control);
562}
563
a2fa3e9f 564struct vcpu_vmx {
fb3f0f51 565 struct kvm_vcpu vcpu;
313dbd49 566 unsigned long host_rsp;
29bd8a78 567 u8 fail;
51aa01d1 568 u32 exit_intr_info;
1155f76a 569 u32 idt_vectoring_info;
6de12732 570 ulong rflags;
26bb0981 571 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
572 int nmsrs;
573 int save_nmsrs;
a547c6db 574 unsigned long host_idt_base;
a2fa3e9f 575#ifdef CONFIG_X86_64
44ea2b17
AK
576 u64 msr_host_kernel_gs_base;
577 u64 msr_guest_kernel_gs_base;
a2fa3e9f 578#endif
2961e876
GN
579 u32 vm_entry_controls_shadow;
580 u32 vm_exit_controls_shadow;
80154d77
PB
581 u32 secondary_exec_control;
582
d462b819
NHE
583 /*
584 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
585 * non-nested (L1) guest, it always points to vmcs01. For a nested
586 * guest (L2), it points to a different VMCS.
587 */
588 struct loaded_vmcs vmcs01;
589 struct loaded_vmcs *loaded_vmcs;
590 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
591 struct msr_autoload {
592 unsigned nr;
593 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
594 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
595 } msr_autoload;
a2fa3e9f
GH
596 struct {
597 int loaded;
598 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
599#ifdef CONFIG_X86_64
600 u16 ds_sel, es_sel;
601#endif
152d3f2f
LV
602 int gs_ldt_reload_needed;
603 int fs_reload_needed;
da8999d3 604 u64 msr_host_bndcfgs;
d77c26fc 605 } host_state;
9c8cba37 606 struct {
7ffd92c5 607 int vm86_active;
78ac8b47 608 ulong save_rflags;
f5f7b2fe
AK
609 struct kvm_segment segs[8];
610 } rmode;
611 struct {
612 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
613 struct kvm_save_segment {
614 u16 selector;
615 unsigned long base;
616 u32 limit;
617 u32 ar;
f5f7b2fe 618 } seg[8];
2fb92db1 619 } segment_cache;
2384d2b3 620 int vpid;
04fa4d32 621 bool emulation_required;
3b86cd99 622
a0861c02 623 u32 exit_reason;
4e47c7a6 624
01e439be
YZ
625 /* Posted interrupt descriptor */
626 struct pi_desc pi_desc;
627
ec378aee
NHE
628 /* Support for a guest hypervisor (nested VMX) */
629 struct nested_vmx nested;
a7653ecd
RK
630
631 /* Dynamic PLE window. */
632 int ple_window;
633 bool ple_window_dirty;
843e4330
KH
634
635 /* Support for PML */
636#define PML_ENTITY_NUM 512
637 struct page *pml_pg;
2680d6da 638
64672c95
YJ
639 /* apic deadline value in host tsc */
640 u64 hv_deadline_tsc;
641
2680d6da 642 u64 current_tsc_ratio;
1be0e61c 643
1be0e61c 644 u32 host_pkru;
3b84080b 645
37e4c997
HZ
646 /*
647 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
648 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
649 * in msr_ia32_feature_control_valid_bits.
650 */
3b84080b 651 u64 msr_ia32_feature_control;
37e4c997 652 u64 msr_ia32_feature_control_valid_bits;
a2fa3e9f
GH
653};
654
2fb92db1
AK
655enum segment_cache_field {
656 SEG_FIELD_SEL = 0,
657 SEG_FIELD_BASE = 1,
658 SEG_FIELD_LIMIT = 2,
659 SEG_FIELD_AR = 3,
660
661 SEG_FIELD_NR = 4
662};
663
a2fa3e9f
GH
664static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
665{
fb3f0f51 666 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
667}
668
efc64404
FW
669static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
670{
671 return &(to_vmx(vcpu)->pi_desc);
672}
673
22bd0358
NHE
674#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
675#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
676#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
677 [number##_HIGH] = VMCS12_OFFSET(name)+4
678
4607c2d7 679
fe2b201b 680static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
681 /*
682 * We do NOT shadow fields that are modified when L0
683 * traps and emulates any vmx instruction (e.g. VMPTRLD,
684 * VMXON...) executed by L1.
685 * For example, VM_INSTRUCTION_ERROR is read
686 * by L1 if a vmx instruction fails (part of the error path).
687 * Note the code assumes this logic. If for some reason
688 * we start shadowing these fields then we need to
689 * force a shadow sync when L0 emulates vmx instructions
690 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
691 * by nested_vmx_failValid)
692 */
693 VM_EXIT_REASON,
694 VM_EXIT_INTR_INFO,
695 VM_EXIT_INSTRUCTION_LEN,
696 IDT_VECTORING_INFO_FIELD,
697 IDT_VECTORING_ERROR_CODE,
698 VM_EXIT_INTR_ERROR_CODE,
699 EXIT_QUALIFICATION,
700 GUEST_LINEAR_ADDRESS,
701 GUEST_PHYSICAL_ADDRESS
702};
fe2b201b 703static int max_shadow_read_only_fields =
4607c2d7
AG
704 ARRAY_SIZE(shadow_read_only_fields);
705
fe2b201b 706static unsigned long shadow_read_write_fields[] = {
a7c0b07d 707 TPR_THRESHOLD,
4607c2d7
AG
708 GUEST_RIP,
709 GUEST_RSP,
710 GUEST_CR0,
711 GUEST_CR3,
712 GUEST_CR4,
713 GUEST_INTERRUPTIBILITY_INFO,
714 GUEST_RFLAGS,
715 GUEST_CS_SELECTOR,
716 GUEST_CS_AR_BYTES,
717 GUEST_CS_LIMIT,
718 GUEST_CS_BASE,
719 GUEST_ES_BASE,
36be0b9d 720 GUEST_BNDCFGS,
4607c2d7
AG
721 CR0_GUEST_HOST_MASK,
722 CR0_READ_SHADOW,
723 CR4_READ_SHADOW,
724 TSC_OFFSET,
725 EXCEPTION_BITMAP,
726 CPU_BASED_VM_EXEC_CONTROL,
727 VM_ENTRY_EXCEPTION_ERROR_CODE,
728 VM_ENTRY_INTR_INFO_FIELD,
729 VM_ENTRY_INSTRUCTION_LEN,
730 VM_ENTRY_EXCEPTION_ERROR_CODE,
731 HOST_FS_BASE,
732 HOST_GS_BASE,
733 HOST_FS_SELECTOR,
734 HOST_GS_SELECTOR
735};
fe2b201b 736static int max_shadow_read_write_fields =
4607c2d7
AG
737 ARRAY_SIZE(shadow_read_write_fields);
738
772e0318 739static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 740 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 741 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
742 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
743 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
744 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
745 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
746 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
747 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
748 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
749 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 750 FIELD(GUEST_INTR_STATUS, guest_intr_status),
c5f983f6 751 FIELD(GUEST_PML_INDEX, guest_pml_index),
22bd0358
NHE
752 FIELD(HOST_ES_SELECTOR, host_es_selector),
753 FIELD(HOST_CS_SELECTOR, host_cs_selector),
754 FIELD(HOST_SS_SELECTOR, host_ss_selector),
755 FIELD(HOST_DS_SELECTOR, host_ds_selector),
756 FIELD(HOST_FS_SELECTOR, host_fs_selector),
757 FIELD(HOST_GS_SELECTOR, host_gs_selector),
758 FIELD(HOST_TR_SELECTOR, host_tr_selector),
759 FIELD64(IO_BITMAP_A, io_bitmap_a),
760 FIELD64(IO_BITMAP_B, io_bitmap_b),
761 FIELD64(MSR_BITMAP, msr_bitmap),
762 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
763 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
764 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
765 FIELD64(TSC_OFFSET, tsc_offset),
766 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
767 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 768 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
27c42a1b 769 FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
22bd0358 770 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
771 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
772 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
773 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
774 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
41ab9372 775 FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
81dc01f7 776 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
777 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
778 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
c5f983f6 779 FIELD64(PML_ADDRESS, pml_address),
22bd0358
NHE
780 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
781 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
782 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
783 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
784 FIELD64(GUEST_PDPTR0, guest_pdptr0),
785 FIELD64(GUEST_PDPTR1, guest_pdptr1),
786 FIELD64(GUEST_PDPTR2, guest_pdptr2),
787 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 788 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
789 FIELD64(HOST_IA32_PAT, host_ia32_pat),
790 FIELD64(HOST_IA32_EFER, host_ia32_efer),
791 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
792 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
793 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
794 FIELD(EXCEPTION_BITMAP, exception_bitmap),
795 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
796 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
797 FIELD(CR3_TARGET_COUNT, cr3_target_count),
798 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
799 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
800 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
801 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
802 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
803 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
804 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
805 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
806 FIELD(TPR_THRESHOLD, tpr_threshold),
807 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
808 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
809 FIELD(VM_EXIT_REASON, vm_exit_reason),
810 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
811 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
812 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
813 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
814 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
815 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
816 FIELD(GUEST_ES_LIMIT, guest_es_limit),
817 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
818 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
819 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
820 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
821 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
822 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
823 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
824 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
825 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
826 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
827 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
828 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
829 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
830 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
831 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
832 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
833 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
834 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
835 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
836 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
837 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 838 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
839 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
840 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
841 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
842 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
843 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
844 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
845 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
846 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
847 FIELD(EXIT_QUALIFICATION, exit_qualification),
848 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
849 FIELD(GUEST_CR0, guest_cr0),
850 FIELD(GUEST_CR3, guest_cr3),
851 FIELD(GUEST_CR4, guest_cr4),
852 FIELD(GUEST_ES_BASE, guest_es_base),
853 FIELD(GUEST_CS_BASE, guest_cs_base),
854 FIELD(GUEST_SS_BASE, guest_ss_base),
855 FIELD(GUEST_DS_BASE, guest_ds_base),
856 FIELD(GUEST_FS_BASE, guest_fs_base),
857 FIELD(GUEST_GS_BASE, guest_gs_base),
858 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
859 FIELD(GUEST_TR_BASE, guest_tr_base),
860 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
861 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
862 FIELD(GUEST_DR7, guest_dr7),
863 FIELD(GUEST_RSP, guest_rsp),
864 FIELD(GUEST_RIP, guest_rip),
865 FIELD(GUEST_RFLAGS, guest_rflags),
866 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
867 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
868 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
869 FIELD(HOST_CR0, host_cr0),
870 FIELD(HOST_CR3, host_cr3),
871 FIELD(HOST_CR4, host_cr4),
872 FIELD(HOST_FS_BASE, host_fs_base),
873 FIELD(HOST_GS_BASE, host_gs_base),
874 FIELD(HOST_TR_BASE, host_tr_base),
875 FIELD(HOST_GDTR_BASE, host_gdtr_base),
876 FIELD(HOST_IDTR_BASE, host_idtr_base),
877 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
878 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
879 FIELD(HOST_RSP, host_rsp),
880 FIELD(HOST_RIP, host_rip),
881};
22bd0358
NHE
882
883static inline short vmcs_field_to_offset(unsigned long field)
884{
a2ae9df7
PB
885 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
886
887 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
888 vmcs_field_to_offset_table[field] == 0)
889 return -ENOENT;
890
22bd0358
NHE
891 return vmcs_field_to_offset_table[field];
892}
893
a9d30f33
NHE
894static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
895{
4f2777bc 896 return to_vmx(vcpu)->nested.cached_vmcs12;
a9d30f33
NHE
897}
898
995f00a6 899static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
bfd0a56b 900static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
995f00a6 901static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
f53cd63c 902static bool vmx_xsaves_supported(void);
776e58ea 903static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
904static void vmx_set_segment(struct kvm_vcpu *vcpu,
905 struct kvm_segment *var, int seg);
906static void vmx_get_segment(struct kvm_vcpu *vcpu,
907 struct kvm_segment *var, int seg);
d99e4152
GN
908static bool guest_state_valid(struct kvm_vcpu *vcpu);
909static u32 vmx_segment_access_rights(struct kvm_segment *var);
c3114420 910static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 911static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
a255d479 912static int alloc_identity_pagetable(struct kvm *kvm);
b96fb439
PB
913static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
914static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
915static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
916 u16 error_code);
75880a01 917
6aa8b732
AK
918static DEFINE_PER_CPU(struct vmcs *, vmxarea);
919static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
920/*
921 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
922 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
923 */
924static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
6aa8b732 925
bf9f6ac8
FW
926/*
927 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
928 * can find which vCPU should be waken up.
929 */
930static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
931static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
932
23611332
RK
933enum {
934 VMX_IO_BITMAP_A,
935 VMX_IO_BITMAP_B,
936 VMX_MSR_BITMAP_LEGACY,
937 VMX_MSR_BITMAP_LONGMODE,
938 VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
939 VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
940 VMX_MSR_BITMAP_LEGACY_X2APIC,
941 VMX_MSR_BITMAP_LONGMODE_X2APIC,
942 VMX_VMREAD_BITMAP,
943 VMX_VMWRITE_BITMAP,
944 VMX_BITMAP_NR
945};
946
947static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
948
949#define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
950#define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
951#define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
952#define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
953#define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
954#define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
955#define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
956#define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
957#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
958#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
fdef3ad1 959
110312c8 960static bool cpu_has_load_ia32_efer;
8bf00a52 961static bool cpu_has_load_perf_global_ctrl;
110312c8 962
2384d2b3
SY
963static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
964static DEFINE_SPINLOCK(vmx_vpid_lock);
965
1c3d14fe 966static struct vmcs_config {
6aa8b732
AK
967 int size;
968 int order;
9ac7e3e8 969 u32 basic_cap;
6aa8b732 970 u32 revision_id;
1c3d14fe
YS
971 u32 pin_based_exec_ctrl;
972 u32 cpu_based_exec_ctrl;
f78e0e2e 973 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
974 u32 vmexit_ctrl;
975 u32 vmentry_ctrl;
976} vmcs_config;
6aa8b732 977
efff9e53 978static struct vmx_capability {
d56f546d
SY
979 u32 ept;
980 u32 vpid;
981} vmx_capability;
982
6aa8b732
AK
983#define VMX_SEGMENT_FIELD(seg) \
984 [VCPU_SREG_##seg] = { \
985 .selector = GUEST_##seg##_SELECTOR, \
986 .base = GUEST_##seg##_BASE, \
987 .limit = GUEST_##seg##_LIMIT, \
988 .ar_bytes = GUEST_##seg##_AR_BYTES, \
989 }
990
772e0318 991static const struct kvm_vmx_segment_field {
6aa8b732
AK
992 unsigned selector;
993 unsigned base;
994 unsigned limit;
995 unsigned ar_bytes;
996} kvm_vmx_segment_fields[] = {
997 VMX_SEGMENT_FIELD(CS),
998 VMX_SEGMENT_FIELD(DS),
999 VMX_SEGMENT_FIELD(ES),
1000 VMX_SEGMENT_FIELD(FS),
1001 VMX_SEGMENT_FIELD(GS),
1002 VMX_SEGMENT_FIELD(SS),
1003 VMX_SEGMENT_FIELD(TR),
1004 VMX_SEGMENT_FIELD(LDTR),
1005};
1006
26bb0981
AK
1007static u64 host_efer;
1008
6de4f3ad
AK
1009static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1010
4d56c8a7 1011/*
8c06585d 1012 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
1013 * away by decrementing the array size.
1014 */
6aa8b732 1015static const u32 vmx_msr_index[] = {
05b3e0c2 1016#ifdef CONFIG_X86_64
44ea2b17 1017 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 1018#endif
8c06585d 1019 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 1020};
6aa8b732 1021
5bb16016 1022static inline bool is_exception_n(u32 intr_info, u8 vector)
6aa8b732
AK
1023{
1024 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1025 INTR_INFO_VALID_MASK)) ==
5bb16016
JK
1026 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1027}
1028
6f05485d
JK
1029static inline bool is_debug(u32 intr_info)
1030{
1031 return is_exception_n(intr_info, DB_VECTOR);
1032}
1033
1034static inline bool is_breakpoint(u32 intr_info)
1035{
1036 return is_exception_n(intr_info, BP_VECTOR);
1037}
1038
5bb16016
JK
1039static inline bool is_page_fault(u32 intr_info)
1040{
1041 return is_exception_n(intr_info, PF_VECTOR);
6aa8b732
AK
1042}
1043
31299944 1044static inline bool is_no_device(u32 intr_info)
2ab455cc 1045{
5bb16016 1046 return is_exception_n(intr_info, NM_VECTOR);
2ab455cc
AL
1047}
1048
31299944 1049static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0 1050{
5bb16016 1051 return is_exception_n(intr_info, UD_VECTOR);
7aa81cc0
AL
1052}
1053
31299944 1054static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
1055{
1056 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1057 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1058}
1059
31299944 1060static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
1061{
1062 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1063 INTR_INFO_VALID_MASK)) ==
1064 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1065}
1066
31299944 1067static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1068{
04547156 1069 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1070}
1071
31299944 1072static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1073{
04547156 1074 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1075}
1076
35754c98 1077static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1078{
35754c98 1079 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1080}
1081
31299944 1082static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1083{
04547156
SY
1084 return vmcs_config.cpu_based_exec_ctrl &
1085 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1086}
1087
774ead3a 1088static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1089{
04547156
SY
1090 return vmcs_config.cpu_based_2nd_exec_ctrl &
1091 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1092}
1093
8d14695f
YZ
1094static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1095{
1096 return vmcs_config.cpu_based_2nd_exec_ctrl &
1097 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1098}
1099
83d4c286
YZ
1100static inline bool cpu_has_vmx_apic_register_virt(void)
1101{
1102 return vmcs_config.cpu_based_2nd_exec_ctrl &
1103 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1104}
1105
c7c9c56c
YZ
1106static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1107{
1108 return vmcs_config.cpu_based_2nd_exec_ctrl &
1109 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1110}
1111
64672c95
YJ
1112/*
1113 * Comment's format: document - errata name - stepping - processor name.
1114 * Refer from
1115 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1116 */
1117static u32 vmx_preemption_cpu_tfms[] = {
1118/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
11190x000206E6,
1120/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1121/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1122/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
11230x00020652,
1124/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
11250x00020655,
1126/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1127/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1128/*
1129 * 320767.pdf - AAP86 - B1 -
1130 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1131 */
11320x000106E5,
1133/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
11340x000106A0,
1135/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
11360x000106A1,
1137/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
11380x000106A4,
1139 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1140 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1141 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
11420x000106A5,
1143};
1144
1145static inline bool cpu_has_broken_vmx_preemption_timer(void)
1146{
1147 u32 eax = cpuid_eax(0x00000001), i;
1148
1149 /* Clear the reserved bits */
1150 eax &= ~(0x3U << 14 | 0xfU << 28);
03f6a22a 1151 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
64672c95
YJ
1152 if (eax == vmx_preemption_cpu_tfms[i])
1153 return true;
1154
1155 return false;
1156}
1157
1158static inline bool cpu_has_vmx_preemption_timer(void)
1159{
64672c95
YJ
1160 return vmcs_config.pin_based_exec_ctrl &
1161 PIN_BASED_VMX_PREEMPTION_TIMER;
1162}
1163
01e439be
YZ
1164static inline bool cpu_has_vmx_posted_intr(void)
1165{
d6a858d1
PB
1166 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1167 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1168}
1169
1170static inline bool cpu_has_vmx_apicv(void)
1171{
1172 return cpu_has_vmx_apic_register_virt() &&
1173 cpu_has_vmx_virtual_intr_delivery() &&
1174 cpu_has_vmx_posted_intr();
1175}
1176
04547156
SY
1177static inline bool cpu_has_vmx_flexpriority(void)
1178{
1179 return cpu_has_vmx_tpr_shadow() &&
1180 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1181}
1182
e799794e
MT
1183static inline bool cpu_has_vmx_ept_execute_only(void)
1184{
31299944 1185 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1186}
1187
e799794e
MT
1188static inline bool cpu_has_vmx_ept_2m_page(void)
1189{
31299944 1190 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1191}
1192
878403b7
SY
1193static inline bool cpu_has_vmx_ept_1g_page(void)
1194{
31299944 1195 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1196}
1197
4bc9b982
SY
1198static inline bool cpu_has_vmx_ept_4levels(void)
1199{
1200 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1201}
1202
42aa53b4
DH
1203static inline bool cpu_has_vmx_ept_mt_wb(void)
1204{
1205 return vmx_capability.ept & VMX_EPTP_WB_BIT;
1206}
1207
855feb67
YZ
1208static inline bool cpu_has_vmx_ept_5levels(void)
1209{
1210 return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1211}
1212
83c3a331
XH
1213static inline bool cpu_has_vmx_ept_ad_bits(void)
1214{
1215 return vmx_capability.ept & VMX_EPT_AD_BIT;
1216}
1217
31299944 1218static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1219{
31299944 1220 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1221}
1222
31299944 1223static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1224{
31299944 1225 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1226}
1227
518c8aee
GJ
1228static inline bool cpu_has_vmx_invvpid_single(void)
1229{
1230 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1231}
1232
b9d762fa
GJ
1233static inline bool cpu_has_vmx_invvpid_global(void)
1234{
1235 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1236}
1237
08d839c4
WL
1238static inline bool cpu_has_vmx_invvpid(void)
1239{
1240 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1241}
1242
31299944 1243static inline bool cpu_has_vmx_ept(void)
d56f546d 1244{
04547156
SY
1245 return vmcs_config.cpu_based_2nd_exec_ctrl &
1246 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1247}
1248
31299944 1249static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1250{
1251 return vmcs_config.cpu_based_2nd_exec_ctrl &
1252 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1253}
1254
31299944 1255static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1256{
1257 return vmcs_config.cpu_based_2nd_exec_ctrl &
1258 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1259}
1260
9ac7e3e8
JD
1261static inline bool cpu_has_vmx_basic_inout(void)
1262{
1263 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1264}
1265
35754c98 1266static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1267{
35754c98 1268 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1269}
1270
31299944 1271static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1272{
04547156
SY
1273 return vmcs_config.cpu_based_2nd_exec_ctrl &
1274 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1275}
1276
31299944 1277static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1278{
1279 return vmcs_config.cpu_based_2nd_exec_ctrl &
1280 SECONDARY_EXEC_RDTSCP;
1281}
1282
ad756a16
MJ
1283static inline bool cpu_has_vmx_invpcid(void)
1284{
1285 return vmcs_config.cpu_based_2nd_exec_ctrl &
1286 SECONDARY_EXEC_ENABLE_INVPCID;
1287}
1288
f5f48ee1
SY
1289static inline bool cpu_has_vmx_wbinvd_exit(void)
1290{
1291 return vmcs_config.cpu_based_2nd_exec_ctrl &
1292 SECONDARY_EXEC_WBINVD_EXITING;
1293}
1294
abc4fc58
AG
1295static inline bool cpu_has_vmx_shadow_vmcs(void)
1296{
1297 u64 vmx_msr;
1298 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1299 /* check if the cpu supports writing r/o exit information fields */
1300 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1301 return false;
1302
1303 return vmcs_config.cpu_based_2nd_exec_ctrl &
1304 SECONDARY_EXEC_SHADOW_VMCS;
1305}
1306
843e4330
KH
1307static inline bool cpu_has_vmx_pml(void)
1308{
1309 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1310}
1311
64903d61
HZ
1312static inline bool cpu_has_vmx_tsc_scaling(void)
1313{
1314 return vmcs_config.cpu_based_2nd_exec_ctrl &
1315 SECONDARY_EXEC_TSC_SCALING;
1316}
1317
2a499e49
BD
1318static inline bool cpu_has_vmx_vmfunc(void)
1319{
1320 return vmcs_config.cpu_based_2nd_exec_ctrl &
1321 SECONDARY_EXEC_ENABLE_VMFUNC;
1322}
1323
04547156
SY
1324static inline bool report_flexpriority(void)
1325{
1326 return flexpriority_enabled;
1327}
1328
c7c2c709
JM
1329static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1330{
1331 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1332}
1333
fe3ef05c
NHE
1334static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1335{
1336 return vmcs12->cpu_based_vm_exec_control & bit;
1337}
1338
1339static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1340{
1341 return (vmcs12->cpu_based_vm_exec_control &
1342 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1343 (vmcs12->secondary_vm_exec_control & bit);
1344}
1345
f5c4368f 1346static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1347{
1348 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1349}
1350
f4124500
JK
1351static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1352{
1353 return vmcs12->pin_based_vm_exec_control &
1354 PIN_BASED_VMX_PREEMPTION_TIMER;
1355}
1356
155a97a3
NHE
1357static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1358{
1359 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1360}
1361
81dc01f7
WL
1362static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1363{
3db13480 1364 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
81dc01f7
WL
1365}
1366
c5f983f6
BD
1367static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1368{
1369 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1370}
1371
f2b93280
WV
1372static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1373{
1374 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1375}
1376
5c614b35
WL
1377static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1378{
1379 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1380}
1381
82f0dd4b
WV
1382static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1383{
1384 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1385}
1386
608406e2
WV
1387static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1388{
1389 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1390}
1391
705699a1
WV
1392static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1393{
1394 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1395}
1396
27c42a1b
BD
1397static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1398{
1399 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1400}
1401
41ab9372
BD
1402static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1403{
1404 return nested_cpu_has_vmfunc(vmcs12) &&
1405 (vmcs12->vm_function_control &
1406 VMX_VMFUNC_EPTP_SWITCHING);
1407}
1408
ef85b673 1409static inline bool is_nmi(u32 intr_info)
644d711a
NHE
1410{
1411 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
ef85b673 1412 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
644d711a
NHE
1413}
1414
533558bc
JK
1415static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1416 u32 exit_intr_info,
1417 unsigned long exit_qualification);
7c177938
NHE
1418static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1419 struct vmcs12 *vmcs12,
1420 u32 reason, unsigned long qualification);
1421
8b9cf98c 1422static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1423{
1424 int i;
1425
a2fa3e9f 1426 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1427 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1428 return i;
1429 return -1;
1430}
1431
2384d2b3
SY
1432static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1433{
1434 struct {
1435 u64 vpid : 16;
1436 u64 rsvd : 48;
1437 u64 gva;
1438 } operand = { vpid, 0, gva };
1439
4ecac3fd 1440 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1441 /* CF==1 or ZF==1 --> rc = -1 */
1442 "; ja 1f ; ud2 ; 1:"
1443 : : "a"(&operand), "c"(ext) : "cc", "memory");
1444}
1445
1439442c
SY
1446static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1447{
1448 struct {
1449 u64 eptp, gpa;
1450 } operand = {eptp, gpa};
1451
4ecac3fd 1452 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1453 /* CF==1 or ZF==1 --> rc = -1 */
1454 "; ja 1f ; ud2 ; 1:\n"
1455 : : "a" (&operand), "c" (ext) : "cc", "memory");
1456}
1457
26bb0981 1458static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1459{
1460 int i;
1461
8b9cf98c 1462 i = __find_msr_index(vmx, msr);
a75beee6 1463 if (i >= 0)
a2fa3e9f 1464 return &vmx->guest_msrs[i];
8b6d44c7 1465 return NULL;
7725f0ba
AK
1466}
1467
6aa8b732
AK
1468static void vmcs_clear(struct vmcs *vmcs)
1469{
1470 u64 phys_addr = __pa(vmcs);
1471 u8 error;
1472
4ecac3fd 1473 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1474 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1475 : "cc", "memory");
1476 if (error)
1477 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1478 vmcs, phys_addr);
1479}
1480
d462b819
NHE
1481static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1482{
1483 vmcs_clear(loaded_vmcs->vmcs);
355f4fb1
JM
1484 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1485 vmcs_clear(loaded_vmcs->shadow_vmcs);
d462b819
NHE
1486 loaded_vmcs->cpu = -1;
1487 loaded_vmcs->launched = 0;
1488}
1489
7725b894
DX
1490static void vmcs_load(struct vmcs *vmcs)
1491{
1492 u64 phys_addr = __pa(vmcs);
1493 u8 error;
1494
1495 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1496 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1497 : "cc", "memory");
1498 if (error)
2844d849 1499 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1500 vmcs, phys_addr);
1501}
1502
2965faa5 1503#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1504/*
1505 * This bitmap is used to indicate whether the vmclear
1506 * operation is enabled on all cpus. All disabled by
1507 * default.
1508 */
1509static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1510
1511static inline void crash_enable_local_vmclear(int cpu)
1512{
1513 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1514}
1515
1516static inline void crash_disable_local_vmclear(int cpu)
1517{
1518 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1519}
1520
1521static inline int crash_local_vmclear_enabled(int cpu)
1522{
1523 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1524}
1525
1526static void crash_vmclear_local_loaded_vmcss(void)
1527{
1528 int cpu = raw_smp_processor_id();
1529 struct loaded_vmcs *v;
1530
1531 if (!crash_local_vmclear_enabled(cpu))
1532 return;
1533
1534 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1535 loaded_vmcss_on_cpu_link)
1536 vmcs_clear(v->vmcs);
1537}
1538#else
1539static inline void crash_enable_local_vmclear(int cpu) { }
1540static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1541#endif /* CONFIG_KEXEC_CORE */
8f536b76 1542
d462b819 1543static void __loaded_vmcs_clear(void *arg)
6aa8b732 1544{
d462b819 1545 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1546 int cpu = raw_smp_processor_id();
6aa8b732 1547
d462b819
NHE
1548 if (loaded_vmcs->cpu != cpu)
1549 return; /* vcpu migration can race with cpu offline */
1550 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1551 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1552 crash_disable_local_vmclear(cpu);
d462b819 1553 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1554
1555 /*
1556 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1557 * is before setting loaded_vmcs->vcpu to -1 which is done in
1558 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1559 * then adds the vmcs into percpu list before it is deleted.
1560 */
1561 smp_wmb();
1562
d462b819 1563 loaded_vmcs_init(loaded_vmcs);
8f536b76 1564 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1565}
1566
d462b819 1567static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1568{
e6c7d321
XG
1569 int cpu = loaded_vmcs->cpu;
1570
1571 if (cpu != -1)
1572 smp_call_function_single(cpu,
1573 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1574}
1575
dd5f5341 1576static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1577{
dd5f5341 1578 if (vpid == 0)
2384d2b3
SY
1579 return;
1580
518c8aee 1581 if (cpu_has_vmx_invvpid_single())
dd5f5341 1582 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1583}
1584
b9d762fa
GJ
1585static inline void vpid_sync_vcpu_global(void)
1586{
1587 if (cpu_has_vmx_invvpid_global())
1588 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1589}
1590
dd5f5341 1591static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1592{
1593 if (cpu_has_vmx_invvpid_single())
dd5f5341 1594 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1595 else
1596 vpid_sync_vcpu_global();
1597}
1598
1439442c
SY
1599static inline void ept_sync_global(void)
1600{
1601 if (cpu_has_vmx_invept_global())
1602 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1603}
1604
1605static inline void ept_sync_context(u64 eptp)
1606{
0e1252dc
DH
1607 if (cpu_has_vmx_invept_context())
1608 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1609 else
1610 ept_sync_global();
1439442c
SY
1611}
1612
8a86aea9
PB
1613static __always_inline void vmcs_check16(unsigned long field)
1614{
1615 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1616 "16-bit accessor invalid for 64-bit field");
1617 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1618 "16-bit accessor invalid for 64-bit high field");
1619 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1620 "16-bit accessor invalid for 32-bit high field");
1621 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1622 "16-bit accessor invalid for natural width field");
1623}
1624
1625static __always_inline void vmcs_check32(unsigned long field)
1626{
1627 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1628 "32-bit accessor invalid for 16-bit field");
1629 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1630 "32-bit accessor invalid for natural width field");
1631}
1632
1633static __always_inline void vmcs_check64(unsigned long field)
1634{
1635 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1636 "64-bit accessor invalid for 16-bit field");
1637 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1638 "64-bit accessor invalid for 64-bit high field");
1639 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1640 "64-bit accessor invalid for 32-bit field");
1641 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1642 "64-bit accessor invalid for natural width field");
1643}
1644
1645static __always_inline void vmcs_checkl(unsigned long field)
1646{
1647 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1648 "Natural width accessor invalid for 16-bit field");
1649 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1650 "Natural width accessor invalid for 64-bit field");
1651 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1652 "Natural width accessor invalid for 64-bit high field");
1653 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1654 "Natural width accessor invalid for 32-bit field");
1655}
1656
1657static __always_inline unsigned long __vmcs_readl(unsigned long field)
6aa8b732 1658{
5e520e62 1659 unsigned long value;
6aa8b732 1660
5e520e62
AK
1661 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1662 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1663 return value;
1664}
1665
96304217 1666static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732 1667{
8a86aea9
PB
1668 vmcs_check16(field);
1669 return __vmcs_readl(field);
6aa8b732
AK
1670}
1671
96304217 1672static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732 1673{
8a86aea9
PB
1674 vmcs_check32(field);
1675 return __vmcs_readl(field);
6aa8b732
AK
1676}
1677
96304217 1678static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1679{
8a86aea9 1680 vmcs_check64(field);
05b3e0c2 1681#ifdef CONFIG_X86_64
8a86aea9 1682 return __vmcs_readl(field);
6aa8b732 1683#else
8a86aea9 1684 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
6aa8b732
AK
1685#endif
1686}
1687
8a86aea9
PB
1688static __always_inline unsigned long vmcs_readl(unsigned long field)
1689{
1690 vmcs_checkl(field);
1691 return __vmcs_readl(field);
1692}
1693
e52de1b8
AK
1694static noinline void vmwrite_error(unsigned long field, unsigned long value)
1695{
1696 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1697 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1698 dump_stack();
1699}
1700
8a86aea9 1701static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
6aa8b732
AK
1702{
1703 u8 error;
1704
4ecac3fd 1705 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1706 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1707 if (unlikely(error))
1708 vmwrite_error(field, value);
6aa8b732
AK
1709}
1710
8a86aea9 1711static __always_inline void vmcs_write16(unsigned long field, u16 value)
6aa8b732 1712{
8a86aea9
PB
1713 vmcs_check16(field);
1714 __vmcs_writel(field, value);
6aa8b732
AK
1715}
1716
8a86aea9 1717static __always_inline void vmcs_write32(unsigned long field, u32 value)
6aa8b732 1718{
8a86aea9
PB
1719 vmcs_check32(field);
1720 __vmcs_writel(field, value);
6aa8b732
AK
1721}
1722
8a86aea9 1723static __always_inline void vmcs_write64(unsigned long field, u64 value)
6aa8b732 1724{
8a86aea9
PB
1725 vmcs_check64(field);
1726 __vmcs_writel(field, value);
7682f2d0 1727#ifndef CONFIG_X86_64
6aa8b732 1728 asm volatile ("");
8a86aea9 1729 __vmcs_writel(field+1, value >> 32);
6aa8b732
AK
1730#endif
1731}
1732
8a86aea9 1733static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2ab455cc 1734{
8a86aea9
PB
1735 vmcs_checkl(field);
1736 __vmcs_writel(field, value);
2ab455cc
AL
1737}
1738
8a86aea9 1739static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2ab455cc 1740{
8a86aea9
PB
1741 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1742 "vmcs_clear_bits does not support 64-bit fields");
1743 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2ab455cc
AL
1744}
1745
8a86aea9 1746static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2ab455cc 1747{
8a86aea9
PB
1748 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1749 "vmcs_set_bits does not support 64-bit fields");
1750 __vmcs_writel(field, __vmcs_readl(field) | mask);
2ab455cc
AL
1751}
1752
8391ce44
PB
1753static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1754{
1755 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1756}
1757
2961e876
GN
1758static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1759{
1760 vmcs_write32(VM_ENTRY_CONTROLS, val);
1761 vmx->vm_entry_controls_shadow = val;
1762}
1763
1764static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1765{
1766 if (vmx->vm_entry_controls_shadow != val)
1767 vm_entry_controls_init(vmx, val);
1768}
1769
1770static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1771{
1772 return vmx->vm_entry_controls_shadow;
1773}
1774
1775
1776static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1777{
1778 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1779}
1780
1781static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1782{
1783 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1784}
1785
8391ce44
PB
1786static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1787{
1788 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1789}
1790
2961e876
GN
1791static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1792{
1793 vmcs_write32(VM_EXIT_CONTROLS, val);
1794 vmx->vm_exit_controls_shadow = val;
1795}
1796
1797static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1798{
1799 if (vmx->vm_exit_controls_shadow != val)
1800 vm_exit_controls_init(vmx, val);
1801}
1802
1803static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1804{
1805 return vmx->vm_exit_controls_shadow;
1806}
1807
1808
1809static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1810{
1811 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1812}
1813
1814static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1815{
1816 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1817}
1818
2fb92db1
AK
1819static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1820{
1821 vmx->segment_cache.bitmask = 0;
1822}
1823
1824static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1825 unsigned field)
1826{
1827 bool ret;
1828 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1829
1830 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1831 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1832 vmx->segment_cache.bitmask = 0;
1833 }
1834 ret = vmx->segment_cache.bitmask & mask;
1835 vmx->segment_cache.bitmask |= mask;
1836 return ret;
1837}
1838
1839static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1840{
1841 u16 *p = &vmx->segment_cache.seg[seg].selector;
1842
1843 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1844 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1845 return *p;
1846}
1847
1848static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1849{
1850 ulong *p = &vmx->segment_cache.seg[seg].base;
1851
1852 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1853 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1854 return *p;
1855}
1856
1857static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1858{
1859 u32 *p = &vmx->segment_cache.seg[seg].limit;
1860
1861 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1862 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1863 return *p;
1864}
1865
1866static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1867{
1868 u32 *p = &vmx->segment_cache.seg[seg].ar;
1869
1870 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1871 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1872 return *p;
1873}
1874
abd3f2d6
AK
1875static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1876{
1877 u32 eb;
1878
fd7373cc 1879 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
bd7e5b08 1880 (1u << DB_VECTOR) | (1u << AC_VECTOR);
fd7373cc
JK
1881 if ((vcpu->guest_debug &
1882 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1883 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1884 eb |= 1u << BP_VECTOR;
7ffd92c5 1885 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1886 eb = ~0;
089d034e 1887 if (enable_ept)
1439442c 1888 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
36cf24e0
NHE
1889
1890 /* When we are running a nested L2 guest and L1 specified for it a
1891 * certain exception bitmap, we must trap the same exceptions and pass
1892 * them to L1. When running L2, we will only handle the exceptions
1893 * specified above if L1 did not want them.
1894 */
1895 if (is_guest_mode(vcpu))
1896 eb |= get_vmcs12(vcpu)->exception_bitmap;
1897
abd3f2d6
AK
1898 vmcs_write32(EXCEPTION_BITMAP, eb);
1899}
1900
2961e876
GN
1901static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1902 unsigned long entry, unsigned long exit)
8bf00a52 1903{
2961e876
GN
1904 vm_entry_controls_clearbit(vmx, entry);
1905 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1906}
1907
61d2ef2c
AK
1908static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1909{
1910 unsigned i;
1911 struct msr_autoload *m = &vmx->msr_autoload;
1912
8bf00a52
GN
1913 switch (msr) {
1914 case MSR_EFER:
1915 if (cpu_has_load_ia32_efer) {
2961e876
GN
1916 clear_atomic_switch_msr_special(vmx,
1917 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1918 VM_EXIT_LOAD_IA32_EFER);
1919 return;
1920 }
1921 break;
1922 case MSR_CORE_PERF_GLOBAL_CTRL:
1923 if (cpu_has_load_perf_global_ctrl) {
2961e876 1924 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1925 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1926 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1927 return;
1928 }
1929 break;
110312c8
AK
1930 }
1931
61d2ef2c
AK
1932 for (i = 0; i < m->nr; ++i)
1933 if (m->guest[i].index == msr)
1934 break;
1935
1936 if (i == m->nr)
1937 return;
1938 --m->nr;
1939 m->guest[i] = m->guest[m->nr];
1940 m->host[i] = m->host[m->nr];
1941 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1942 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1943}
1944
2961e876
GN
1945static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1946 unsigned long entry, unsigned long exit,
1947 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1948 u64 guest_val, u64 host_val)
8bf00a52
GN
1949{
1950 vmcs_write64(guest_val_vmcs, guest_val);
1951 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1952 vm_entry_controls_setbit(vmx, entry);
1953 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1954}
1955
61d2ef2c
AK
1956static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1957 u64 guest_val, u64 host_val)
1958{
1959 unsigned i;
1960 struct msr_autoload *m = &vmx->msr_autoload;
1961
8bf00a52
GN
1962 switch (msr) {
1963 case MSR_EFER:
1964 if (cpu_has_load_ia32_efer) {
2961e876
GN
1965 add_atomic_switch_msr_special(vmx,
1966 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1967 VM_EXIT_LOAD_IA32_EFER,
1968 GUEST_IA32_EFER,
1969 HOST_IA32_EFER,
1970 guest_val, host_val);
1971 return;
1972 }
1973 break;
1974 case MSR_CORE_PERF_GLOBAL_CTRL:
1975 if (cpu_has_load_perf_global_ctrl) {
2961e876 1976 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1977 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1978 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1979 GUEST_IA32_PERF_GLOBAL_CTRL,
1980 HOST_IA32_PERF_GLOBAL_CTRL,
1981 guest_val, host_val);
1982 return;
1983 }
1984 break;
7099e2e1
RK
1985 case MSR_IA32_PEBS_ENABLE:
1986 /* PEBS needs a quiescent period after being disabled (to write
1987 * a record). Disabling PEBS through VMX MSR swapping doesn't
1988 * provide that period, so a CPU could write host's record into
1989 * guest's memory.
1990 */
1991 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
110312c8
AK
1992 }
1993
61d2ef2c
AK
1994 for (i = 0; i < m->nr; ++i)
1995 if (m->guest[i].index == msr)
1996 break;
1997
e7fc6f93 1998 if (i == NR_AUTOLOAD_MSRS) {
60266204 1999 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
2000 "Can't add msr %x\n", msr);
2001 return;
2002 } else if (i == m->nr) {
61d2ef2c
AK
2003 ++m->nr;
2004 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2005 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2006 }
2007
2008 m->guest[i].index = msr;
2009 m->guest[i].value = guest_val;
2010 m->host[i].index = msr;
2011 m->host[i].value = host_val;
2012}
2013
92c0d900 2014static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 2015{
844a5fe2
PB
2016 u64 guest_efer = vmx->vcpu.arch.efer;
2017 u64 ignore_bits = 0;
2018
2019 if (!enable_ept) {
2020 /*
2021 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2022 * host CPUID is more efficient than testing guest CPUID
2023 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2024 */
2025 if (boot_cpu_has(X86_FEATURE_SMEP))
2026 guest_efer |= EFER_NX;
2027 else if (!(guest_efer & EFER_NX))
2028 ignore_bits |= EFER_NX;
2029 }
3a34a881 2030
51c6cf66 2031 /*
844a5fe2 2032 * LMA and LME handled by hardware; SCE meaningless outside long mode.
51c6cf66 2033 */
844a5fe2 2034 ignore_bits |= EFER_SCE;
51c6cf66
AK
2035#ifdef CONFIG_X86_64
2036 ignore_bits |= EFER_LMA | EFER_LME;
2037 /* SCE is meaningful only in long mode on Intel */
2038 if (guest_efer & EFER_LMA)
2039 ignore_bits &= ~(u64)EFER_SCE;
2040#endif
84ad33ef
AK
2041
2042 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
2043
2044 /*
2045 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2046 * On CPUs that support "load IA32_EFER", always switch EFER
2047 * atomically, since it's faster than switching it manually.
2048 */
2049 if (cpu_has_load_ia32_efer ||
2050 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
2051 if (!(guest_efer & EFER_LMA))
2052 guest_efer &= ~EFER_LME;
54b98bff
AL
2053 if (guest_efer != host_efer)
2054 add_atomic_switch_msr(vmx, MSR_EFER,
2055 guest_efer, host_efer);
84ad33ef 2056 return false;
844a5fe2
PB
2057 } else {
2058 guest_efer &= ~ignore_bits;
2059 guest_efer |= host_efer & ignore_bits;
2060
2061 vmx->guest_msrs[efer_offset].data = guest_efer;
2062 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef 2063
844a5fe2
PB
2064 return true;
2065 }
51c6cf66
AK
2066}
2067
e28baead
AL
2068#ifdef CONFIG_X86_32
2069/*
2070 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2071 * VMCS rather than the segment table. KVM uses this helper to figure
2072 * out the current bases to poke them into the VMCS before entry.
2073 */
2d49ec72
GN
2074static unsigned long segment_base(u16 selector)
2075{
8c2e41f7 2076 struct desc_struct *table;
2d49ec72
GN
2077 unsigned long v;
2078
8c2e41f7 2079 if (!(selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2080 return 0;
2081
45fc8757 2082 table = get_current_gdt_ro();
2d49ec72 2083
8c2e41f7 2084 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2d49ec72
GN
2085 u16 ldt_selector = kvm_read_ldt();
2086
8c2e41f7 2087 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2088 return 0;
2089
8c2e41f7 2090 table = (struct desc_struct *)segment_base(ldt_selector);
2d49ec72 2091 }
8c2e41f7 2092 v = get_desc_base(&table[selector >> 3]);
2d49ec72
GN
2093 return v;
2094}
e28baead 2095#endif
2d49ec72 2096
04d2cc77 2097static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 2098{
04d2cc77 2099 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2100 int i;
04d2cc77 2101
a2fa3e9f 2102 if (vmx->host_state.loaded)
33ed6329
AK
2103 return;
2104
a2fa3e9f 2105 vmx->host_state.loaded = 1;
33ed6329
AK
2106 /*
2107 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2108 * allow segment selectors with cpl > 0 or ti == 1.
2109 */
d6e88aec 2110 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 2111 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 2112 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 2113 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 2114 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
2115 vmx->host_state.fs_reload_needed = 0;
2116 } else {
33ed6329 2117 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 2118 vmx->host_state.fs_reload_needed = 1;
33ed6329 2119 }
9581d442 2120 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
2121 if (!(vmx->host_state.gs_sel & 7))
2122 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
2123 else {
2124 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 2125 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
2126 }
2127
b2da15ac
AK
2128#ifdef CONFIG_X86_64
2129 savesegment(ds, vmx->host_state.ds_sel);
2130 savesegment(es, vmx->host_state.es_sel);
2131#endif
2132
33ed6329
AK
2133#ifdef CONFIG_X86_64
2134 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2135 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2136#else
a2fa3e9f
GH
2137 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2138 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 2139#endif
707c0874
AK
2140
2141#ifdef CONFIG_X86_64
c8770e7b
AK
2142 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2143 if (is_long_mode(&vmx->vcpu))
44ea2b17 2144 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 2145#endif
da8999d3
LJ
2146 if (boot_cpu_has(X86_FEATURE_MPX))
2147 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
2148 for (i = 0; i < vmx->save_nmsrs; ++i)
2149 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
2150 vmx->guest_msrs[i].data,
2151 vmx->guest_msrs[i].mask);
33ed6329
AK
2152}
2153
a9b21b62 2154static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 2155{
a2fa3e9f 2156 if (!vmx->host_state.loaded)
33ed6329
AK
2157 return;
2158
e1beb1d3 2159 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 2160 vmx->host_state.loaded = 0;
c8770e7b
AK
2161#ifdef CONFIG_X86_64
2162 if (is_long_mode(&vmx->vcpu))
2163 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2164#endif
152d3f2f 2165 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 2166 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 2167#ifdef CONFIG_X86_64
9581d442 2168 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
2169#else
2170 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 2171#endif
33ed6329 2172 }
0a77fe4c
AK
2173 if (vmx->host_state.fs_reload_needed)
2174 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
2175#ifdef CONFIG_X86_64
2176 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2177 loadsegment(ds, vmx->host_state.ds_sel);
2178 loadsegment(es, vmx->host_state.es_sel);
2179 }
b2da15ac 2180#endif
b7ffc44d 2181 invalidate_tss_limit();
44ea2b17 2182#ifdef CONFIG_X86_64
c8770e7b 2183 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 2184#endif
da8999d3
LJ
2185 if (vmx->host_state.msr_host_bndcfgs)
2186 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
45fc8757 2187 load_fixmap_gdt(raw_smp_processor_id());
33ed6329
AK
2188}
2189
a9b21b62
AK
2190static void vmx_load_host_state(struct vcpu_vmx *vmx)
2191{
2192 preempt_disable();
2193 __vmx_load_host_state(vmx);
2194 preempt_enable();
2195}
2196
28b835d6
FW
2197static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2198{
2199 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2200 struct pi_desc old, new;
2201 unsigned int dest;
2202
31afb2ea
PB
2203 /*
2204 * In case of hot-plug or hot-unplug, we may have to undo
2205 * vmx_vcpu_pi_put even if there is no assigned device. And we
2206 * always keep PI.NDST up to date for simplicity: it makes the
2207 * code easier, and CPU migration is not a fast path.
2208 */
2209 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
28b835d6
FW
2210 return;
2211
31afb2ea
PB
2212 /*
2213 * First handle the simple case where no cmpxchg is necessary; just
2214 * allow posting non-urgent interrupts.
2215 *
2216 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
2217 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
2218 * expects the VCPU to be on the blocked_vcpu_list that matches
2219 * PI.NDST.
2220 */
2221 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
2222 vcpu->cpu == cpu) {
2223 pi_clear_sn(pi_desc);
28b835d6 2224 return;
31afb2ea 2225 }
28b835d6 2226
31afb2ea 2227 /* The full case. */
28b835d6
FW
2228 do {
2229 old.control = new.control = pi_desc->control;
2230
31afb2ea 2231 dest = cpu_physical_id(cpu);
28b835d6 2232
31afb2ea
PB
2233 if (x2apic_enabled())
2234 new.ndst = dest;
2235 else
2236 new.ndst = (dest << 8) & 0xFF00;
28b835d6 2237
28b835d6 2238 new.sn = 0;
c0a1666b
PB
2239 } while (cmpxchg64(&pi_desc->control, old.control,
2240 new.control) != old.control);
28b835d6 2241}
1be0e61c 2242
c95ba92a
PF
2243static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2244{
2245 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2246 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2247}
2248
6aa8b732
AK
2249/*
2250 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2251 * vcpu mutex is already taken.
2252 */
15ad7146 2253static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2254{
a2fa3e9f 2255 struct vcpu_vmx *vmx = to_vmx(vcpu);
b80c76ec 2256 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
6aa8b732 2257
b80c76ec 2258 if (!already_loaded) {
fe0e80be 2259 loaded_vmcs_clear(vmx->loaded_vmcs);
92fe13be 2260 local_irq_disable();
8f536b76 2261 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2262
2263 /*
2264 * Read loaded_vmcs->cpu should be before fetching
2265 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2266 * See the comments in __loaded_vmcs_clear().
2267 */
2268 smp_rmb();
2269
d462b819
NHE
2270 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2271 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2272 crash_enable_local_vmclear(cpu);
92fe13be 2273 local_irq_enable();
b80c76ec
JM
2274 }
2275
2276 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2277 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2278 vmcs_load(vmx->loaded_vmcs->vmcs);
2279 }
2280
2281 if (!already_loaded) {
59c58ceb 2282 void *gdt = get_current_gdt_ro();
b80c76ec
JM
2283 unsigned long sysenter_esp;
2284
2285 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2286
6aa8b732
AK
2287 /*
2288 * Linux uses per-cpu TSS and GDT, so set these when switching
e0c23063 2289 * processors. See 22.2.4.
6aa8b732 2290 */
e0c23063
AL
2291 vmcs_writel(HOST_TR_BASE,
2292 (unsigned long)this_cpu_ptr(&cpu_tss));
59c58ceb 2293 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
6aa8b732 2294
b7ffc44d
AL
2295 /*
2296 * VM exits change the host TR limit to 0x67 after a VM
2297 * exit. This is okay, since 0x67 covers everything except
2298 * the IO bitmap and have have code to handle the IO bitmap
2299 * being lost after a VM exit.
2300 */
2301 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2302
6aa8b732
AK
2303 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2304 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18 2305
d462b819 2306 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2307 }
28b835d6 2308
2680d6da
OH
2309 /* Setup TSC multiplier */
2310 if (kvm_has_tsc_control &&
c95ba92a
PF
2311 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2312 decache_tsc_multiplier(vmx);
2680d6da 2313
28b835d6 2314 vmx_vcpu_pi_load(vcpu, cpu);
1be0e61c 2315 vmx->host_pkru = read_pkru();
28b835d6
FW
2316}
2317
2318static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2319{
2320 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2321
2322 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2323 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2324 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2325 return;
2326
2327 /* Set SN when the vCPU is preempted */
2328 if (vcpu->preempted)
2329 pi_set_sn(pi_desc);
6aa8b732
AK
2330}
2331
2332static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2333{
28b835d6
FW
2334 vmx_vcpu_pi_put(vcpu);
2335
a9b21b62 2336 __vmx_load_host_state(to_vmx(vcpu));
6aa8b732
AK
2337}
2338
f244deed
WL
2339static bool emulation_required(struct kvm_vcpu *vcpu)
2340{
2341 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2342}
2343
edcafe3c
AK
2344static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2345
fe3ef05c
NHE
2346/*
2347 * Return the cr0 value that a nested guest would read. This is a combination
2348 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2349 * its hypervisor (cr0_read_shadow).
2350 */
2351static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2352{
2353 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2354 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2355}
2356static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2357{
2358 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2359 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2360}
2361
6aa8b732
AK
2362static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2363{
78ac8b47 2364 unsigned long rflags, save_rflags;
345dcaa8 2365
6de12732
AK
2366 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2367 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2368 rflags = vmcs_readl(GUEST_RFLAGS);
2369 if (to_vmx(vcpu)->rmode.vm86_active) {
2370 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2371 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2372 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2373 }
2374 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2375 }
6de12732 2376 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2377}
2378
2379static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2380{
f244deed
WL
2381 unsigned long old_rflags = vmx_get_rflags(vcpu);
2382
6de12732
AK
2383 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2384 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2385 if (to_vmx(vcpu)->rmode.vm86_active) {
2386 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2387 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2388 }
6aa8b732 2389 vmcs_writel(GUEST_RFLAGS, rflags);
f244deed
WL
2390
2391 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2392 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
6aa8b732
AK
2393}
2394
37ccdcbe 2395static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2396{
2397 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2398 int ret = 0;
2399
2400 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2401 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2402 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2403 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2404
37ccdcbe 2405 return ret;
2809f5d2
GC
2406}
2407
2408static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2409{
2410 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2411 u32 interruptibility = interruptibility_old;
2412
2413 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2414
48005f64 2415 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2416 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2417 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2418 interruptibility |= GUEST_INTR_STATE_STI;
2419
2420 if ((interruptibility != interruptibility_old))
2421 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2422}
2423
6aa8b732
AK
2424static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2425{
2426 unsigned long rip;
6aa8b732 2427
5fdbf976 2428 rip = kvm_rip_read(vcpu);
6aa8b732 2429 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2430 kvm_rip_write(vcpu, rip);
6aa8b732 2431
2809f5d2
GC
2432 /* skipping an emulated instruction also counts */
2433 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2434}
2435
b96fb439
PB
2436static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2437 unsigned long exit_qual)
2438{
2439 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2440 unsigned int nr = vcpu->arch.exception.nr;
2441 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2442
2443 if (vcpu->arch.exception.has_error_code) {
2444 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2445 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2446 }
2447
2448 if (kvm_exception_is_soft(nr))
2449 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2450 else
2451 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2452
2453 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2454 vmx_get_nmi_mask(vcpu))
2455 intr_info |= INTR_INFO_UNBLOCK_NMI;
2456
2457 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2458}
2459
0b6ac343
NHE
2460/*
2461 * KVM wants to inject page-faults which it got to the guest. This function
2462 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2463 */
bfcf83b1 2464static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
0b6ac343
NHE
2465{
2466 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
adfe20fb 2467 unsigned int nr = vcpu->arch.exception.nr;
0b6ac343 2468
b96fb439
PB
2469 if (nr == PF_VECTOR) {
2470 if (vcpu->arch.exception.nested_apf) {
bfcf83b1 2471 *exit_qual = vcpu->arch.apf.nested_apf_token;
b96fb439
PB
2472 return 1;
2473 }
2474 /*
2475 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2476 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2477 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2478 * can be written only when inject_pending_event runs. This should be
2479 * conditional on a new capability---if the capability is disabled,
2480 * kvm_multiple_exception would write the ancillary information to
2481 * CR2 or DR6, for backwards ABI-compatibility.
2482 */
2483 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2484 vcpu->arch.exception.error_code)) {
bfcf83b1 2485 *exit_qual = vcpu->arch.cr2;
b96fb439
PB
2486 return 1;
2487 }
2488 } else {
b96fb439 2489 if (vmcs12->exception_bitmap & (1u << nr)) {
bfcf83b1
WL
2490 if (nr == DB_VECTOR)
2491 *exit_qual = vcpu->arch.dr6;
2492 else
2493 *exit_qual = 0;
b96fb439
PB
2494 return 1;
2495 }
adfe20fb
WL
2496 }
2497
b96fb439 2498 return 0;
0b6ac343
NHE
2499}
2500
cfcd20e5 2501static void vmx_queue_exception(struct kvm_vcpu *vcpu)
298101da 2502{
77ab6db0 2503 struct vcpu_vmx *vmx = to_vmx(vcpu);
cfcd20e5
WL
2504 unsigned nr = vcpu->arch.exception.nr;
2505 bool has_error_code = vcpu->arch.exception.has_error_code;
cfcd20e5 2506 u32 error_code = vcpu->arch.exception.error_code;
8ab2d2e2 2507 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2508
8ab2d2e2 2509 if (has_error_code) {
77ab6db0 2510 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2511 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2512 }
77ab6db0 2513
7ffd92c5 2514 if (vmx->rmode.vm86_active) {
71f9833b
SH
2515 int inc_eip = 0;
2516 if (kvm_exception_is_soft(nr))
2517 inc_eip = vcpu->arch.event_exit_inst_len;
2518 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2519 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2520 return;
2521 }
2522
66fd3f7f
GN
2523 if (kvm_exception_is_soft(nr)) {
2524 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2525 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2526 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2527 } else
2528 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2529
2530 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2531}
2532
4e47c7a6
SY
2533static bool vmx_rdtscp_supported(void)
2534{
2535 return cpu_has_vmx_rdtscp();
2536}
2537
ad756a16
MJ
2538static bool vmx_invpcid_supported(void)
2539{
2540 return cpu_has_vmx_invpcid() && enable_ept;
2541}
2542
a75beee6
ED
2543/*
2544 * Swap MSR entry in host/guest MSR entry array.
2545 */
8b9cf98c 2546static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2547{
26bb0981 2548 struct shared_msr_entry tmp;
a2fa3e9f
GH
2549
2550 tmp = vmx->guest_msrs[to];
2551 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2552 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2553}
2554
8d14695f
YZ
2555static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2556{
2557 unsigned long *msr_bitmap;
2558
670125bd 2559 if (is_guest_mode(vcpu))
d048c098 2560 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
3ce424e4
RK
2561 else if (cpu_has_secondary_exec_ctrls() &&
2562 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2563 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
f6e90f9e
WL
2564 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2565 if (is_long_mode(vcpu))
c63e4563 2566 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
f6e90f9e 2567 else
c63e4563 2568 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
f6e90f9e
WL
2569 } else {
2570 if (is_long_mode(vcpu))
c63e4563 2571 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
f6e90f9e 2572 else
c63e4563 2573 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
f6e90f9e 2574 }
8d14695f
YZ
2575 } else {
2576 if (is_long_mode(vcpu))
2577 msr_bitmap = vmx_msr_bitmap_longmode;
2578 else
2579 msr_bitmap = vmx_msr_bitmap_legacy;
2580 }
2581
2582 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2583}
2584
e38aea3e
AK
2585/*
2586 * Set up the vmcs to automatically save and restore system
2587 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2588 * mode, as fiddling with msrs is very expensive.
2589 */
8b9cf98c 2590static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2591{
26bb0981 2592 int save_nmsrs, index;
e38aea3e 2593
a75beee6
ED
2594 save_nmsrs = 0;
2595#ifdef CONFIG_X86_64
8b9cf98c 2596 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2597 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2598 if (index >= 0)
8b9cf98c
RR
2599 move_msr_up(vmx, index, save_nmsrs++);
2600 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2601 if (index >= 0)
8b9cf98c
RR
2602 move_msr_up(vmx, index, save_nmsrs++);
2603 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2604 if (index >= 0)
8b9cf98c 2605 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2606 index = __find_msr_index(vmx, MSR_TSC_AUX);
d6321d49 2607 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
4e47c7a6 2608 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2609 /*
8c06585d 2610 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2611 * if efer.sce is enabled.
2612 */
8c06585d 2613 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2614 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2615 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2616 }
2617#endif
92c0d900
AK
2618 index = __find_msr_index(vmx, MSR_EFER);
2619 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2620 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2621
26bb0981 2622 vmx->save_nmsrs = save_nmsrs;
5897297b 2623
8d14695f
YZ
2624 if (cpu_has_vmx_msr_bitmap())
2625 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2626}
2627
6aa8b732
AK
2628/*
2629 * reads and returns guest's timestamp counter "register"
be7b263e
HZ
2630 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2631 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
6aa8b732 2632 */
be7b263e 2633static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
6aa8b732
AK
2634{
2635 u64 host_tsc, tsc_offset;
2636
4ea1636b 2637 host_tsc = rdtsc();
6aa8b732 2638 tsc_offset = vmcs_read64(TSC_OFFSET);
be7b263e 2639 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
6aa8b732
AK
2640}
2641
2642/*
99e3e30a 2643 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2644 */
99e3e30a 2645static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2646{
27fc51b2 2647 if (is_guest_mode(vcpu)) {
7991825b 2648 /*
27fc51b2
NHE
2649 * We're here if L1 chose not to trap WRMSR to TSC. According
2650 * to the spec, this should set L1's TSC; The offset that L1
2651 * set for L2 remains unchanged, and still needs to be added
2652 * to the newly set TSC to get L2's TSC.
7991825b 2653 */
27fc51b2 2654 struct vmcs12 *vmcs12;
27fc51b2
NHE
2655 /* recalculate vmcs02.TSC_OFFSET: */
2656 vmcs12 = get_vmcs12(vcpu);
2657 vmcs_write64(TSC_OFFSET, offset +
2658 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2659 vmcs12->tsc_offset : 0));
2660 } else {
489223ed
YY
2661 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2662 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2663 vmcs_write64(TSC_OFFSET, offset);
2664 }
6aa8b732
AK
2665}
2666
801d3424
NHE
2667/*
2668 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2669 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2670 * all guests if the "nested" module option is off, and can also be disabled
2671 * for a single guest by disabling its VMX cpuid bit.
2672 */
2673static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2674{
d6321d49 2675 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
801d3424
NHE
2676}
2677
b87a51ae
NHE
2678/*
2679 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2680 * returned for the various VMX controls MSRs when nested VMX is enabled.
2681 * The same values should also be used to verify that vmcs12 control fields are
2682 * valid during nested entry from L1 to L2.
2683 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2684 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2685 * bit in the high half is on if the corresponding bit in the control field
2686 * may be on. See also vmx_control_verify().
b87a51ae 2687 */
b9c237bb 2688static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2689{
2690 /*
2691 * Note that as a general rule, the high half of the MSRs (bits in
2692 * the control fields which may be 1) should be initialized by the
2693 * intersection of the underlying hardware's MSR (i.e., features which
2694 * can be supported) and the list of features we want to expose -
2695 * because they are known to be properly supported in our code.
2696 * Also, usually, the low half of the MSRs (bits which must be 1) can
2697 * be set to 0, meaning that L1 may turn off any of these bits. The
2698 * reason is that if one of these bits is necessary, it will appear
2699 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2700 * fields of vmcs01 and vmcs02, will turn these bits off - and
7313c698 2701 * nested_vmx_exit_reflected() will not pass related exits to L1.
b87a51ae
NHE
2702 * These rules have exceptions below.
2703 */
2704
2705 /* pin-based controls */
eabeaacc 2706 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2707 vmx->nested.nested_vmx_pinbased_ctls_low,
2708 vmx->nested.nested_vmx_pinbased_ctls_high);
2709 vmx->nested.nested_vmx_pinbased_ctls_low |=
2710 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2711 vmx->nested.nested_vmx_pinbased_ctls_high &=
2712 PIN_BASED_EXT_INTR_MASK |
2713 PIN_BASED_NMI_EXITING |
2714 PIN_BASED_VIRTUAL_NMIS;
2715 vmx->nested.nested_vmx_pinbased_ctls_high |=
2716 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2717 PIN_BASED_VMX_PREEMPTION_TIMER;
d62caabb 2718 if (kvm_vcpu_apicv_active(&vmx->vcpu))
705699a1
WV
2719 vmx->nested.nested_vmx_pinbased_ctls_high |=
2720 PIN_BASED_POSTED_INTR;
b87a51ae 2721
3dbcd8da 2722 /* exit controls */
c0dfee58 2723 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2724 vmx->nested.nested_vmx_exit_ctls_low,
2725 vmx->nested.nested_vmx_exit_ctls_high);
2726 vmx->nested.nested_vmx_exit_ctls_low =
2727 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2728
b9c237bb 2729 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2730#ifdef CONFIG_X86_64
c0dfee58 2731 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2732#endif
f4124500 2733 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2734 vmx->nested.nested_vmx_exit_ctls_high |=
2735 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2736 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2737 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2738
a87036ad 2739 if (kvm_mpx_supported())
b9c237bb 2740 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2741
2996fca0 2742 /* We support free control of debug control saving. */
0115f9cb 2743 vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2996fca0 2744
b87a51ae
NHE
2745 /* entry controls */
2746 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2747 vmx->nested.nested_vmx_entry_ctls_low,
2748 vmx->nested.nested_vmx_entry_ctls_high);
2749 vmx->nested.nested_vmx_entry_ctls_low =
2750 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2751 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2752#ifdef CONFIG_X86_64
2753 VM_ENTRY_IA32E_MODE |
2754#endif
2755 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2756 vmx->nested.nested_vmx_entry_ctls_high |=
2757 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
a87036ad 2758 if (kvm_mpx_supported())
b9c237bb 2759 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2760
2996fca0 2761 /* We support free control of debug control loading. */
0115f9cb 2762 vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2996fca0 2763
b87a51ae
NHE
2764 /* cpu-based controls */
2765 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2766 vmx->nested.nested_vmx_procbased_ctls_low,
2767 vmx->nested.nested_vmx_procbased_ctls_high);
2768 vmx->nested.nested_vmx_procbased_ctls_low =
2769 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2770 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2771 CPU_BASED_VIRTUAL_INTR_PENDING |
2772 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2773 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2774 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2775 CPU_BASED_CR3_STORE_EXITING |
2776#ifdef CONFIG_X86_64
2777 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2778#endif
2779 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2780 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2781 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2782 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2783 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2784 /*
2785 * We can allow some features even when not supported by the
2786 * hardware. For example, L1 can specify an MSR bitmap - and we
2787 * can use it to avoid exits to L1 - even when L0 runs L2
2788 * without MSR bitmaps.
2789 */
b9c237bb
WV
2790 vmx->nested.nested_vmx_procbased_ctls_high |=
2791 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2792 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2793
3dcdf3ec 2794 /* We support free control of CR3 access interception. */
0115f9cb 2795 vmx->nested.nested_vmx_procbased_ctls_low &=
3dcdf3ec
JK
2796 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2797
80154d77
PB
2798 /*
2799 * secondary cpu-based controls. Do not include those that
2800 * depend on CPUID bits, they are added later by vmx_cpuid_update.
2801 */
b87a51ae 2802 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2803 vmx->nested.nested_vmx_secondary_ctls_low,
2804 vmx->nested.nested_vmx_secondary_ctls_high);
2805 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2806 vmx->nested.nested_vmx_secondary_ctls_high &=
d6851fbe 2807 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1b07304c 2808 SECONDARY_EXEC_DESC |
f2b93280 2809 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
82f0dd4b 2810 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2811 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3db13480 2812 SECONDARY_EXEC_WBINVD_EXITING;
c18911a2 2813
afa61f75
NHE
2814 if (enable_ept) {
2815 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2816 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2817 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2818 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
7db74265 2819 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
02120c45
BD
2820 if (cpu_has_vmx_ept_execute_only())
2821 vmx->nested.nested_vmx_ept_caps |=
2822 VMX_EPT_EXECUTE_ONLY_BIT;
b9c237bb 2823 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
45e11817 2824 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7db74265
PB
2825 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2826 VMX_EPT_1GB_PAGE_BIT;
03efce6f
BD
2827 if (enable_ept_ad_bits) {
2828 vmx->nested.nested_vmx_secondary_ctls_high |=
2829 SECONDARY_EXEC_ENABLE_PML;
7461fbc4 2830 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
03efce6f 2831 }
afa61f75 2832 } else
b9c237bb 2833 vmx->nested.nested_vmx_ept_caps = 0;
afa61f75 2834
27c42a1b
BD
2835 if (cpu_has_vmx_vmfunc()) {
2836 vmx->nested.nested_vmx_secondary_ctls_high |=
2837 SECONDARY_EXEC_ENABLE_VMFUNC;
41ab9372
BD
2838 /*
2839 * Advertise EPTP switching unconditionally
2840 * since we emulate it
2841 */
2842 vmx->nested.nested_vmx_vmfunc_controls =
2843 VMX_VMFUNC_EPTP_SWITCHING;
27c42a1b
BD
2844 }
2845
ef697a71
PB
2846 /*
2847 * Old versions of KVM use the single-context version without
2848 * checking for support, so declare that it is supported even
2849 * though it is treated as global context. The alternative is
2850 * not failing the single-context invvpid, and it is worse.
2851 */
63cb6d5f
WL
2852 if (enable_vpid) {
2853 vmx->nested.nested_vmx_secondary_ctls_high |=
2854 SECONDARY_EXEC_ENABLE_VPID;
089d7b6e 2855 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
bcdde302 2856 VMX_VPID_EXTENT_SUPPORTED_MASK;
63cb6d5f 2857 } else
089d7b6e 2858 vmx->nested.nested_vmx_vpid_caps = 0;
99b83ac8 2859
0790ec17
RK
2860 if (enable_unrestricted_guest)
2861 vmx->nested.nested_vmx_secondary_ctls_high |=
2862 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2863
c18911a2 2864 /* miscellaneous data */
b9c237bb
WV
2865 rdmsr(MSR_IA32_VMX_MISC,
2866 vmx->nested.nested_vmx_misc_low,
2867 vmx->nested.nested_vmx_misc_high);
2868 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2869 vmx->nested.nested_vmx_misc_low |=
2870 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2871 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2872 vmx->nested.nested_vmx_misc_high = 0;
62cc6b9d
DM
2873
2874 /*
2875 * This MSR reports some information about VMX support. We
2876 * should return information about the VMX we emulate for the
2877 * guest, and the VMCS structure we give it - not about the
2878 * VMX support of the underlying hardware.
2879 */
2880 vmx->nested.nested_vmx_basic =
2881 VMCS12_REVISION |
2882 VMX_BASIC_TRUE_CTLS |
2883 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2884 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2885
2886 if (cpu_has_vmx_basic_inout())
2887 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2888
2889 /*
8322ebbb 2890 * These MSRs specify bits which the guest must keep fixed on
62cc6b9d
DM
2891 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2892 * We picked the standard core2 setting.
2893 */
2894#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2895#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2896 vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
62cc6b9d 2897 vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
8322ebbb
DM
2898
2899 /* These MSRs specify bits which the guest must keep fixed off. */
2900 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2901 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
62cc6b9d
DM
2902
2903 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2904 vmx->nested.nested_vmx_vmcs_enum = 0x2e;
b87a51ae
NHE
2905}
2906
3899152c
DM
2907/*
2908 * if fixed0[i] == 1: val[i] must be 1
2909 * if fixed1[i] == 0: val[i] must be 0
2910 */
2911static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2912{
2913 return ((val & fixed1) | fixed0) == val;
b87a51ae
NHE
2914}
2915
2916static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2917{
3899152c 2918 return fixed_bits_valid(control, low, high);
b87a51ae
NHE
2919}
2920
2921static inline u64 vmx_control_msr(u32 low, u32 high)
2922{
2923 return low | ((u64)high << 32);
2924}
2925
62cc6b9d
DM
2926static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2927{
2928 superset &= mask;
2929 subset &= mask;
2930
2931 return (superset | subset) == superset;
2932}
2933
2934static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2935{
2936 const u64 feature_and_reserved =
2937 /* feature (except bit 48; see below) */
2938 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2939 /* reserved */
2940 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2941 u64 vmx_basic = vmx->nested.nested_vmx_basic;
2942
2943 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2944 return -EINVAL;
2945
2946 /*
2947 * KVM does not emulate a version of VMX that constrains physical
2948 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2949 */
2950 if (data & BIT_ULL(48))
2951 return -EINVAL;
2952
2953 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2954 vmx_basic_vmcs_revision_id(data))
2955 return -EINVAL;
2956
2957 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2958 return -EINVAL;
2959
2960 vmx->nested.nested_vmx_basic = data;
2961 return 0;
2962}
2963
2964static int
2965vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2966{
2967 u64 supported;
2968 u32 *lowp, *highp;
2969
2970 switch (msr_index) {
2971 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2972 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2973 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2974 break;
2975 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2976 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2977 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2978 break;
2979 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2980 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2981 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2982 break;
2983 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2984 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2985 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2986 break;
2987 case MSR_IA32_VMX_PROCBASED_CTLS2:
2988 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2989 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2990 break;
2991 default:
2992 BUG();
2993 }
2994
2995 supported = vmx_control_msr(*lowp, *highp);
2996
2997 /* Check must-be-1 bits are still 1. */
2998 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
2999 return -EINVAL;
3000
3001 /* Check must-be-0 bits are still 0. */
3002 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3003 return -EINVAL;
3004
3005 *lowp = data;
3006 *highp = data >> 32;
3007 return 0;
3008}
3009
3010static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3011{
3012 const u64 feature_and_reserved_bits =
3013 /* feature */
3014 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3015 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3016 /* reserved */
3017 GENMASK_ULL(13, 9) | BIT_ULL(31);
3018 u64 vmx_misc;
3019
3020 vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
3021 vmx->nested.nested_vmx_misc_high);
3022
3023 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3024 return -EINVAL;
3025
3026 if ((vmx->nested.nested_vmx_pinbased_ctls_high &
3027 PIN_BASED_VMX_PREEMPTION_TIMER) &&
3028 vmx_misc_preemption_timer_rate(data) !=
3029 vmx_misc_preemption_timer_rate(vmx_misc))
3030 return -EINVAL;
3031
3032 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3033 return -EINVAL;
3034
3035 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3036 return -EINVAL;
3037
3038 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3039 return -EINVAL;
3040
3041 vmx->nested.nested_vmx_misc_low = data;
3042 vmx->nested.nested_vmx_misc_high = data >> 32;
3043 return 0;
3044}
3045
3046static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3047{
3048 u64 vmx_ept_vpid_cap;
3049
3050 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3051 vmx->nested.nested_vmx_vpid_caps);
3052
3053 /* Every bit is either reserved or a feature bit. */
3054 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3055 return -EINVAL;
3056
3057 vmx->nested.nested_vmx_ept_caps = data;
3058 vmx->nested.nested_vmx_vpid_caps = data >> 32;
3059 return 0;
3060}
3061
3062static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3063{
3064 u64 *msr;
3065
3066 switch (msr_index) {
3067 case MSR_IA32_VMX_CR0_FIXED0:
3068 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3069 break;
3070 case MSR_IA32_VMX_CR4_FIXED0:
3071 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3072 break;
3073 default:
3074 BUG();
3075 }
3076
3077 /*
3078 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3079 * must be 1 in the restored value.
3080 */
3081 if (!is_bitwise_subset(data, *msr, -1ULL))
3082 return -EINVAL;
3083
3084 *msr = data;
3085 return 0;
3086}
3087
3088/*
3089 * Called when userspace is restoring VMX MSRs.
3090 *
3091 * Returns 0 on success, non-0 otherwise.
3092 */
3093static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
b87a51ae 3094{
b9c237bb
WV
3095 struct vcpu_vmx *vmx = to_vmx(vcpu);
3096
b87a51ae 3097 switch (msr_index) {
b87a51ae 3098 case MSR_IA32_VMX_BASIC:
62cc6b9d
DM
3099 return vmx_restore_vmx_basic(vmx, data);
3100 case MSR_IA32_VMX_PINBASED_CTLS:
3101 case MSR_IA32_VMX_PROCBASED_CTLS:
3102 case MSR_IA32_VMX_EXIT_CTLS:
3103 case MSR_IA32_VMX_ENTRY_CTLS:
b87a51ae 3104 /*
62cc6b9d
DM
3105 * The "non-true" VMX capability MSRs are generated from the
3106 * "true" MSRs, so we do not support restoring them directly.
3107 *
3108 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3109 * should restore the "true" MSRs with the must-be-1 bits
3110 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3111 * DEFAULT SETTINGS".
b87a51ae 3112 */
62cc6b9d
DM
3113 return -EINVAL;
3114 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3115 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3116 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3117 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3118 case MSR_IA32_VMX_PROCBASED_CTLS2:
3119 return vmx_restore_control_msr(vmx, msr_index, data);
3120 case MSR_IA32_VMX_MISC:
3121 return vmx_restore_vmx_misc(vmx, data);
3122 case MSR_IA32_VMX_CR0_FIXED0:
3123 case MSR_IA32_VMX_CR4_FIXED0:
3124 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3125 case MSR_IA32_VMX_CR0_FIXED1:
3126 case MSR_IA32_VMX_CR4_FIXED1:
3127 /*
3128 * These MSRs are generated based on the vCPU's CPUID, so we
3129 * do not support restoring them directly.
3130 */
3131 return -EINVAL;
3132 case MSR_IA32_VMX_EPT_VPID_CAP:
3133 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3134 case MSR_IA32_VMX_VMCS_ENUM:
3135 vmx->nested.nested_vmx_vmcs_enum = data;
3136 return 0;
3137 default:
b87a51ae 3138 /*
62cc6b9d 3139 * The rest of the VMX capability MSRs do not support restore.
b87a51ae 3140 */
62cc6b9d
DM
3141 return -EINVAL;
3142 }
3143}
3144
3145/* Returns 0 on success, non-0 otherwise. */
3146static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3147{
3148 struct vcpu_vmx *vmx = to_vmx(vcpu);
3149
3150 switch (msr_index) {
3151 case MSR_IA32_VMX_BASIC:
3152 *pdata = vmx->nested.nested_vmx_basic;
b87a51ae
NHE
3153 break;
3154 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3155 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
3156 *pdata = vmx_control_msr(
3157 vmx->nested.nested_vmx_pinbased_ctls_low,
3158 vmx->nested.nested_vmx_pinbased_ctls_high);
0115f9cb
DM
3159 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3160 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3161 break;
3162 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3163 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
3164 *pdata = vmx_control_msr(
3165 vmx->nested.nested_vmx_procbased_ctls_low,
3166 vmx->nested.nested_vmx_procbased_ctls_high);
0115f9cb
DM
3167 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3168 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3169 break;
3170 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3171 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
3172 *pdata = vmx_control_msr(
3173 vmx->nested.nested_vmx_exit_ctls_low,
3174 vmx->nested.nested_vmx_exit_ctls_high);
0115f9cb
DM
3175 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3176 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3177 break;
3178 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3179 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
3180 *pdata = vmx_control_msr(
3181 vmx->nested.nested_vmx_entry_ctls_low,
3182 vmx->nested.nested_vmx_entry_ctls_high);
0115f9cb
DM
3183 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3184 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3185 break;
3186 case MSR_IA32_VMX_MISC:
b9c237bb
WV
3187 *pdata = vmx_control_msr(
3188 vmx->nested.nested_vmx_misc_low,
3189 vmx->nested.nested_vmx_misc_high);
b87a51ae 3190 break;
b87a51ae 3191 case MSR_IA32_VMX_CR0_FIXED0:
62cc6b9d 3192 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
b87a51ae
NHE
3193 break;
3194 case MSR_IA32_VMX_CR0_FIXED1:
62cc6b9d 3195 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
b87a51ae
NHE
3196 break;
3197 case MSR_IA32_VMX_CR4_FIXED0:
62cc6b9d 3198 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
b87a51ae
NHE
3199 break;
3200 case MSR_IA32_VMX_CR4_FIXED1:
62cc6b9d 3201 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
b87a51ae
NHE
3202 break;
3203 case MSR_IA32_VMX_VMCS_ENUM:
62cc6b9d 3204 *pdata = vmx->nested.nested_vmx_vmcs_enum;
b87a51ae
NHE
3205 break;
3206 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
3207 *pdata = vmx_control_msr(
3208 vmx->nested.nested_vmx_secondary_ctls_low,
3209 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
3210 break;
3211 case MSR_IA32_VMX_EPT_VPID_CAP:
089d7b6e
WL
3212 *pdata = vmx->nested.nested_vmx_ept_caps |
3213 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
b87a51ae 3214 break;
27c42a1b
BD
3215 case MSR_IA32_VMX_VMFUNC:
3216 *pdata = vmx->nested.nested_vmx_vmfunc_controls;
3217 break;
b87a51ae 3218 default:
b87a51ae 3219 return 1;
b3897a49
NHE
3220 }
3221
b87a51ae
NHE
3222 return 0;
3223}
3224
37e4c997
HZ
3225static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3226 uint64_t val)
3227{
3228 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3229
3230 return !(val & ~valid_bits);
3231}
3232
6aa8b732
AK
3233/*
3234 * Reads an msr value (of 'msr_index') into 'pdata'.
3235 * Returns 0 on success, non-0 otherwise.
3236 * Assumes vcpu_load() was already called.
3237 */
609e36d3 3238static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3239{
26bb0981 3240 struct shared_msr_entry *msr;
6aa8b732 3241
609e36d3 3242 switch (msr_info->index) {
05b3e0c2 3243#ifdef CONFIG_X86_64
6aa8b732 3244 case MSR_FS_BASE:
609e36d3 3245 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
3246 break;
3247 case MSR_GS_BASE:
609e36d3 3248 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 3249 break;
44ea2b17
AK
3250 case MSR_KERNEL_GS_BASE:
3251 vmx_load_host_state(to_vmx(vcpu));
609e36d3 3252 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 3253 break;
26bb0981 3254#endif
6aa8b732 3255 case MSR_EFER:
609e36d3 3256 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 3257 case MSR_IA32_TSC:
be7b263e 3258 msr_info->data = guest_read_tsc(vcpu);
6aa8b732
AK
3259 break;
3260 case MSR_IA32_SYSENTER_CS:
609e36d3 3261 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
3262 break;
3263 case MSR_IA32_SYSENTER_EIP:
609e36d3 3264 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
3265 break;
3266 case MSR_IA32_SYSENTER_ESP:
609e36d3 3267 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 3268 break;
0dd376e7 3269 case MSR_IA32_BNDCFGS:
691bd434 3270 if (!kvm_mpx_supported() ||
d6321d49
RK
3271 (!msr_info->host_initiated &&
3272 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3273 return 1;
609e36d3 3274 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 3275 break;
c45dcc71
AR
3276 case MSR_IA32_MCG_EXT_CTL:
3277 if (!msr_info->host_initiated &&
3278 !(to_vmx(vcpu)->msr_ia32_feature_control &
3279 FEATURE_CONTROL_LMCE))
cae50139 3280 return 1;
c45dcc71
AR
3281 msr_info->data = vcpu->arch.mcg_ext_ctl;
3282 break;
cae50139 3283 case MSR_IA32_FEATURE_CONTROL:
3b84080b 3284 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
cae50139
JK
3285 break;
3286 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3287 if (!nested_vmx_allowed(vcpu))
3288 return 1;
609e36d3 3289 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
3290 case MSR_IA32_XSS:
3291 if (!vmx_xsaves_supported())
3292 return 1;
609e36d3 3293 msr_info->data = vcpu->arch.ia32_xss;
20300099 3294 break;
4e47c7a6 3295 case MSR_TSC_AUX:
d6321d49
RK
3296 if (!msr_info->host_initiated &&
3297 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3298 return 1;
3299 /* Otherwise falls through */
6aa8b732 3300 default:
609e36d3 3301 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 3302 if (msr) {
609e36d3 3303 msr_info->data = msr->data;
3bab1f5d 3304 break;
6aa8b732 3305 }
609e36d3 3306 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
3307 }
3308
6aa8b732
AK
3309 return 0;
3310}
3311
cae50139
JK
3312static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3313
6aa8b732
AK
3314/*
3315 * Writes msr value into into the appropriate "register".
3316 * Returns 0 on success, non-0 otherwise.
3317 * Assumes vcpu_load() was already called.
3318 */
8fe8ab46 3319static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3320{
a2fa3e9f 3321 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 3322 struct shared_msr_entry *msr;
2cc51560 3323 int ret = 0;
8fe8ab46
WA
3324 u32 msr_index = msr_info->index;
3325 u64 data = msr_info->data;
2cc51560 3326
6aa8b732 3327 switch (msr_index) {
3bab1f5d 3328 case MSR_EFER:
8fe8ab46 3329 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 3330 break;
16175a79 3331#ifdef CONFIG_X86_64
6aa8b732 3332 case MSR_FS_BASE:
2fb92db1 3333 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3334 vmcs_writel(GUEST_FS_BASE, data);
3335 break;
3336 case MSR_GS_BASE:
2fb92db1 3337 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3338 vmcs_writel(GUEST_GS_BASE, data);
3339 break;
44ea2b17
AK
3340 case MSR_KERNEL_GS_BASE:
3341 vmx_load_host_state(vmx);
3342 vmx->msr_guest_kernel_gs_base = data;
3343 break;
6aa8b732
AK
3344#endif
3345 case MSR_IA32_SYSENTER_CS:
3346 vmcs_write32(GUEST_SYSENTER_CS, data);
3347 break;
3348 case MSR_IA32_SYSENTER_EIP:
f5b42c33 3349 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
3350 break;
3351 case MSR_IA32_SYSENTER_ESP:
f5b42c33 3352 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 3353 break;
0dd376e7 3354 case MSR_IA32_BNDCFGS:
691bd434 3355 if (!kvm_mpx_supported() ||
d6321d49
RK
3356 (!msr_info->host_initiated &&
3357 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3358 return 1;
fd8cb433 3359 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
4531662d 3360 (data & MSR_IA32_BNDCFGS_RSVD))
93c4adc7 3361 return 1;
0dd376e7
LJ
3362 vmcs_write64(GUEST_BNDCFGS, data);
3363 break;
af24a4e4 3364 case MSR_IA32_TSC:
8fe8ab46 3365 kvm_write_tsc(vcpu, msr_info);
6aa8b732 3366 break;
468d472f
SY
3367 case MSR_IA32_CR_PAT:
3368 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
3369 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3370 return 1;
468d472f
SY
3371 vmcs_write64(GUEST_IA32_PAT, data);
3372 vcpu->arch.pat = data;
3373 break;
3374 }
8fe8ab46 3375 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3376 break;
ba904635
WA
3377 case MSR_IA32_TSC_ADJUST:
3378 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3379 break;
c45dcc71
AR
3380 case MSR_IA32_MCG_EXT_CTL:
3381 if ((!msr_info->host_initiated &&
3382 !(to_vmx(vcpu)->msr_ia32_feature_control &
3383 FEATURE_CONTROL_LMCE)) ||
3384 (data & ~MCG_EXT_CTL_LMCE_EN))
3385 return 1;
3386 vcpu->arch.mcg_ext_ctl = data;
3387 break;
cae50139 3388 case MSR_IA32_FEATURE_CONTROL:
37e4c997 3389 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3b84080b 3390 (to_vmx(vcpu)->msr_ia32_feature_control &
cae50139
JK
3391 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3392 return 1;
3b84080b 3393 vmx->msr_ia32_feature_control = data;
cae50139
JK
3394 if (msr_info->host_initiated && data == 0)
3395 vmx_leave_nested(vcpu);
3396 break;
3397 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
62cc6b9d
DM
3398 if (!msr_info->host_initiated)
3399 return 1; /* they are read-only */
3400 if (!nested_vmx_allowed(vcpu))
3401 return 1;
3402 return vmx_set_vmx_msr(vcpu, msr_index, data);
20300099
WL
3403 case MSR_IA32_XSS:
3404 if (!vmx_xsaves_supported())
3405 return 1;
3406 /*
3407 * The only supported bit as of Skylake is bit 8, but
3408 * it is not supported on KVM.
3409 */
3410 if (data != 0)
3411 return 1;
3412 vcpu->arch.ia32_xss = data;
3413 if (vcpu->arch.ia32_xss != host_xss)
3414 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3415 vcpu->arch.ia32_xss, host_xss);
3416 else
3417 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3418 break;
4e47c7a6 3419 case MSR_TSC_AUX:
d6321d49
RK
3420 if (!msr_info->host_initiated &&
3421 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3422 return 1;
3423 /* Check reserved bit, higher 32 bits should be zero */
3424 if ((data >> 32) != 0)
3425 return 1;
3426 /* Otherwise falls through */
6aa8b732 3427 default:
8b9cf98c 3428 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 3429 if (msr) {
8b3c3104 3430 u64 old_msr_data = msr->data;
3bab1f5d 3431 msr->data = data;
2225fd56
AK
3432 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3433 preempt_disable();
8b3c3104
AH
3434 ret = kvm_set_shared_msr(msr->index, msr->data,
3435 msr->mask);
2225fd56 3436 preempt_enable();
8b3c3104
AH
3437 if (ret)
3438 msr->data = old_msr_data;
2225fd56 3439 }
3bab1f5d 3440 break;
6aa8b732 3441 }
8fe8ab46 3442 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
3443 }
3444
2cc51560 3445 return ret;
6aa8b732
AK
3446}
3447
5fdbf976 3448static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 3449{
5fdbf976
MT
3450 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3451 switch (reg) {
3452 case VCPU_REGS_RSP:
3453 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3454 break;
3455 case VCPU_REGS_RIP:
3456 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3457 break;
6de4f3ad
AK
3458 case VCPU_EXREG_PDPTR:
3459 if (enable_ept)
3460 ept_save_pdptrs(vcpu);
3461 break;
5fdbf976
MT
3462 default:
3463 break;
3464 }
6aa8b732
AK
3465}
3466
6aa8b732
AK
3467static __init int cpu_has_kvm_support(void)
3468{
6210e37b 3469 return cpu_has_vmx();
6aa8b732
AK
3470}
3471
3472static __init int vmx_disabled_by_bios(void)
3473{
3474 u64 msr;
3475
3476 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 3477 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 3478 /* launched w/ TXT and VMX disabled */
cafd6659
SW
3479 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3480 && tboot_enabled())
3481 return 1;
23f3e991 3482 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 3483 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 3484 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
3485 && !tboot_enabled()) {
3486 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 3487 "activate TXT before enabling KVM\n");
cafd6659 3488 return 1;
f9335afe 3489 }
23f3e991
JC
3490 /* launched w/o TXT and VMX disabled */
3491 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3492 && !tboot_enabled())
3493 return 1;
cafd6659
SW
3494 }
3495
3496 return 0;
6aa8b732
AK
3497}
3498
7725b894
DX
3499static void kvm_cpu_vmxon(u64 addr)
3500{
fe0e80be 3501 cr4_set_bits(X86_CR4_VMXE);
1c5ac21a
AS
3502 intel_pt_handle_vmx(1);
3503
7725b894
DX
3504 asm volatile (ASM_VMX_VMXON_RAX
3505 : : "a"(&addr), "m"(addr)
3506 : "memory", "cc");
3507}
3508
13a34e06 3509static int hardware_enable(void)
6aa8b732
AK
3510{
3511 int cpu = raw_smp_processor_id();
3512 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3513 u64 old, test_bits;
6aa8b732 3514
1e02ce4c 3515 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3516 return -EBUSY;
3517
d462b819 3518 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3519 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3520 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3521
3522 /*
3523 * Now we can enable the vmclear operation in kdump
3524 * since the loaded_vmcss_on_cpu list on this cpu
3525 * has been initialized.
3526 *
3527 * Though the cpu is not in VMX operation now, there
3528 * is no problem to enable the vmclear operation
3529 * for the loaded_vmcss_on_cpu list is empty!
3530 */
3531 crash_enable_local_vmclear(cpu);
3532
6aa8b732 3533 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3534
3535 test_bits = FEATURE_CONTROL_LOCKED;
3536 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3537 if (tboot_enabled())
3538 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3539
3540 if ((old & test_bits) != test_bits) {
6aa8b732 3541 /* enable and lock */
cafd6659
SW
3542 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3543 }
fe0e80be
DH
3544 kvm_cpu_vmxon(phys_addr);
3545 ept_sync_global();
10474ae8
AG
3546
3547 return 0;
6aa8b732
AK
3548}
3549
d462b819 3550static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3551{
3552 int cpu = raw_smp_processor_id();
d462b819 3553 struct loaded_vmcs *v, *n;
543e4243 3554
d462b819
NHE
3555 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3556 loaded_vmcss_on_cpu_link)
3557 __loaded_vmcs_clear(v);
543e4243
AK
3558}
3559
710ff4a8
EH
3560
3561/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3562 * tricks.
3563 */
3564static void kvm_cpu_vmxoff(void)
6aa8b732 3565{
4ecac3fd 3566 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1c5ac21a
AS
3567
3568 intel_pt_handle_vmx(0);
fe0e80be 3569 cr4_clear_bits(X86_CR4_VMXE);
6aa8b732
AK
3570}
3571
13a34e06 3572static void hardware_disable(void)
710ff4a8 3573{
fe0e80be
DH
3574 vmclear_local_loaded_vmcss();
3575 kvm_cpu_vmxoff();
710ff4a8
EH
3576}
3577
1c3d14fe 3578static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3579 u32 msr, u32 *result)
1c3d14fe
YS
3580{
3581 u32 vmx_msr_low, vmx_msr_high;
3582 u32 ctl = ctl_min | ctl_opt;
3583
3584 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3585
3586 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3587 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3588
3589 /* Ensure minimum (required) set of control bits are supported. */
3590 if (ctl_min & ~ctl)
002c7f7c 3591 return -EIO;
1c3d14fe
YS
3592
3593 *result = ctl;
3594 return 0;
3595}
3596
110312c8
AK
3597static __init bool allow_1_setting(u32 msr, u32 ctl)
3598{
3599 u32 vmx_msr_low, vmx_msr_high;
3600
3601 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3602 return vmx_msr_high & ctl;
3603}
3604
002c7f7c 3605static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3606{
3607 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3608 u32 min, opt, min2, opt2;
1c3d14fe
YS
3609 u32 _pin_based_exec_control = 0;
3610 u32 _cpu_based_exec_control = 0;
f78e0e2e 3611 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3612 u32 _vmexit_control = 0;
3613 u32 _vmentry_control = 0;
3614
10166744 3615 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3616#ifdef CONFIG_X86_64
3617 CPU_BASED_CR8_LOAD_EXITING |
3618 CPU_BASED_CR8_STORE_EXITING |
3619#endif
d56f546d
SY
3620 CPU_BASED_CR3_LOAD_EXITING |
3621 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
3622 CPU_BASED_USE_IO_BITMAPS |
3623 CPU_BASED_MOV_DR_EXITING |
a7052897 3624 CPU_BASED_USE_TSC_OFFSETING |
fee84b07
AK
3625 CPU_BASED_INVLPG_EXITING |
3626 CPU_BASED_RDPMC_EXITING;
443381a8 3627
668fffa3
MT
3628 if (!kvm_mwait_in_guest())
3629 min |= CPU_BASED_MWAIT_EXITING |
3630 CPU_BASED_MONITOR_EXITING;
3631
f78e0e2e 3632 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3633 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3634 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3635 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3636 &_cpu_based_exec_control) < 0)
002c7f7c 3637 return -EIO;
6e5d865c
YS
3638#ifdef CONFIG_X86_64
3639 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3640 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3641 ~CPU_BASED_CR8_STORE_EXITING;
3642#endif
f78e0e2e 3643 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3644 min2 = 0;
3645 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3646 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3647 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3648 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3649 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3650 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3651 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3652 SECONDARY_EXEC_RDTSCP |
83d4c286 3653 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3654 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3655 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3656 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 3657 SECONDARY_EXEC_XSAVES |
75f4fc8d 3658 SECONDARY_EXEC_RDSEED |
45ec368c 3659 SECONDARY_EXEC_RDRAND |
8b3e34e4 3660 SECONDARY_EXEC_ENABLE_PML |
2a499e49
BD
3661 SECONDARY_EXEC_TSC_SCALING |
3662 SECONDARY_EXEC_ENABLE_VMFUNC;
d56f546d
SY
3663 if (adjust_vmx_controls(min2, opt2,
3664 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3665 &_cpu_based_2nd_exec_control) < 0)
3666 return -EIO;
3667 }
3668#ifndef CONFIG_X86_64
3669 if (!(_cpu_based_2nd_exec_control &
3670 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3671 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3672#endif
83d4c286
YZ
3673
3674 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3675 _cpu_based_2nd_exec_control &= ~(
8d14695f 3676 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3677 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3678 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3679
d56f546d 3680 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3681 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3682 enabled */
5fff7d27
GN
3683 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3684 CPU_BASED_CR3_STORE_EXITING |
3685 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
3686 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3687 vmx_capability.ept, vmx_capability.vpid);
3688 }
1c3d14fe 3689
91fa0f8e 3690 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
1c3d14fe
YS
3691#ifdef CONFIG_X86_64
3692 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3693#endif
a547c6db 3694 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
91fa0f8e 3695 VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3696 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3697 &_vmexit_control) < 0)
002c7f7c 3698 return -EIO;
1c3d14fe 3699
2c82878b
PB
3700 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3701 PIN_BASED_VIRTUAL_NMIS;
3702 opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
3703 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3704 &_pin_based_exec_control) < 0)
3705 return -EIO;
3706
1c17c3e6
PB
3707 if (cpu_has_broken_vmx_preemption_timer())
3708 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be 3709 if (!(_cpu_based_2nd_exec_control &
91fa0f8e 3710 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
01e439be
YZ
3711 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3712
c845f9c6 3713 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3714 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3715 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3716 &_vmentry_control) < 0)
002c7f7c 3717 return -EIO;
6aa8b732 3718
c68876fd 3719 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3720
3721 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3722 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3723 return -EIO;
1c3d14fe
YS
3724
3725#ifdef CONFIG_X86_64
3726 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3727 if (vmx_msr_high & (1u<<16))
002c7f7c 3728 return -EIO;
1c3d14fe
YS
3729#endif
3730
3731 /* Require Write-Back (WB) memory type for VMCS accesses. */
3732 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3733 return -EIO;
1c3d14fe 3734
002c7f7c 3735 vmcs_conf->size = vmx_msr_high & 0x1fff;
16cb0255 3736 vmcs_conf->order = get_order(vmcs_conf->size);
9ac7e3e8 3737 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
002c7f7c 3738 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3739
002c7f7c
YS
3740 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3741 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3742 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3743 vmcs_conf->vmexit_ctrl = _vmexit_control;
3744 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3745
110312c8
AK
3746 cpu_has_load_ia32_efer =
3747 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3748 VM_ENTRY_LOAD_IA32_EFER)
3749 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3750 VM_EXIT_LOAD_IA32_EFER);
3751
8bf00a52
GN
3752 cpu_has_load_perf_global_ctrl =
3753 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3754 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3755 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3756 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3757
3758 /*
3759 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
bb3541f1 3760 * but due to errata below it can't be used. Workaround is to use
8bf00a52
GN
3761 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3762 *
3763 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3764 *
3765 * AAK155 (model 26)
3766 * AAP115 (model 30)
3767 * AAT100 (model 37)
3768 * BC86,AAY89,BD102 (model 44)
3769 * BA97 (model 46)
3770 *
3771 */
3772 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3773 switch (boot_cpu_data.x86_model) {
3774 case 26:
3775 case 30:
3776 case 37:
3777 case 44:
3778 case 46:
3779 cpu_has_load_perf_global_ctrl = false;
3780 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3781 "does not work properly. Using workaround\n");
3782 break;
3783 default:
3784 break;
3785 }
3786 }
3787
782511b0 3788 if (boot_cpu_has(X86_FEATURE_XSAVES))
20300099
WL
3789 rdmsrl(MSR_IA32_XSS, host_xss);
3790
1c3d14fe 3791 return 0;
c68876fd 3792}
6aa8b732
AK
3793
3794static struct vmcs *alloc_vmcs_cpu(int cpu)
3795{
3796 int node = cpu_to_node(cpu);
3797 struct page *pages;
3798 struct vmcs *vmcs;
3799
96db800f 3800 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3801 if (!pages)
3802 return NULL;
3803 vmcs = page_address(pages);
1c3d14fe
YS
3804 memset(vmcs, 0, vmcs_config.size);
3805 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3806 return vmcs;
3807}
3808
3809static struct vmcs *alloc_vmcs(void)
3810{
d3b2c338 3811 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3812}
3813
3814static void free_vmcs(struct vmcs *vmcs)
3815{
1c3d14fe 3816 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3817}
3818
d462b819
NHE
3819/*
3820 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3821 */
3822static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3823{
3824 if (!loaded_vmcs->vmcs)
3825 return;
3826 loaded_vmcs_clear(loaded_vmcs);
3827 free_vmcs(loaded_vmcs->vmcs);
3828 loaded_vmcs->vmcs = NULL;
355f4fb1 3829 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
d462b819
NHE
3830}
3831
39959588 3832static void free_kvm_area(void)
6aa8b732
AK
3833{
3834 int cpu;
3835
3230bb47 3836 for_each_possible_cpu(cpu) {
6aa8b732 3837 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3838 per_cpu(vmxarea, cpu) = NULL;
3839 }
6aa8b732
AK
3840}
3841
85fd514e
JM
3842enum vmcs_field_type {
3843 VMCS_FIELD_TYPE_U16 = 0,
3844 VMCS_FIELD_TYPE_U64 = 1,
3845 VMCS_FIELD_TYPE_U32 = 2,
3846 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3847};
3848
3849static inline int vmcs_field_type(unsigned long field)
3850{
3851 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
3852 return VMCS_FIELD_TYPE_U32;
3853 return (field >> 13) & 0x3 ;
3854}
3855
3856static inline int vmcs_field_readonly(unsigned long field)
3857{
3858 return (((field >> 10) & 0x3) == 1);
3859}
3860
fe2b201b
BD
3861static void init_vmcs_shadow_fields(void)
3862{
3863 int i, j;
3864
3865 /* No checks for read only fields yet */
3866
3867 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3868 switch (shadow_read_write_fields[i]) {
3869 case GUEST_BNDCFGS:
a87036ad 3870 if (!kvm_mpx_supported())
fe2b201b
BD
3871 continue;
3872 break;
3873 default:
3874 break;
3875 }
3876
3877 if (j < i)
3878 shadow_read_write_fields[j] =
3879 shadow_read_write_fields[i];
3880 j++;
3881 }
3882 max_shadow_read_write_fields = j;
3883
3884 /* shadowed fields guest access without vmexit */
3885 for (i = 0; i < max_shadow_read_write_fields; i++) {
85fd514e
JM
3886 unsigned long field = shadow_read_write_fields[i];
3887
3888 clear_bit(field, vmx_vmwrite_bitmap);
3889 clear_bit(field, vmx_vmread_bitmap);
3890 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3891 clear_bit(field + 1, vmx_vmwrite_bitmap);
3892 clear_bit(field + 1, vmx_vmread_bitmap);
3893 }
3894 }
3895 for (i = 0; i < max_shadow_read_only_fields; i++) {
3896 unsigned long field = shadow_read_only_fields[i];
3897
3898 clear_bit(field, vmx_vmread_bitmap);
3899 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3900 clear_bit(field + 1, vmx_vmread_bitmap);
fe2b201b 3901 }
fe2b201b
BD
3902}
3903
6aa8b732
AK
3904static __init int alloc_kvm_area(void)
3905{
3906 int cpu;
3907
3230bb47 3908 for_each_possible_cpu(cpu) {
6aa8b732
AK
3909 struct vmcs *vmcs;
3910
3911 vmcs = alloc_vmcs_cpu(cpu);
3912 if (!vmcs) {
3913 free_kvm_area();
3914 return -ENOMEM;
3915 }
3916
3917 per_cpu(vmxarea, cpu) = vmcs;
3918 }
3919 return 0;
3920}
3921
91b0aa2c 3922static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3923 struct kvm_segment *save)
6aa8b732 3924{
d99e4152
GN
3925 if (!emulate_invalid_guest_state) {
3926 /*
3927 * CS and SS RPL should be equal during guest entry according
3928 * to VMX spec, but in reality it is not always so. Since vcpu
3929 * is in the middle of the transition from real mode to
3930 * protected mode it is safe to assume that RPL 0 is a good
3931 * default value.
3932 */
3933 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3934 save->selector &= ~SEGMENT_RPL_MASK;
3935 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3936 save->s = 1;
6aa8b732 3937 }
d99e4152 3938 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3939}
3940
3941static void enter_pmode(struct kvm_vcpu *vcpu)
3942{
3943 unsigned long flags;
a89a8fb9 3944 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3945
d99e4152
GN
3946 /*
3947 * Update real mode segment cache. It may be not up-to-date if sement
3948 * register was written while vcpu was in a guest mode.
3949 */
3950 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3951 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3952 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3953 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3954 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3955 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3956
7ffd92c5 3957 vmx->rmode.vm86_active = 0;
6aa8b732 3958
2fb92db1
AK
3959 vmx_segment_cache_clear(vmx);
3960
f5f7b2fe 3961 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3962
3963 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3964 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3965 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3966 vmcs_writel(GUEST_RFLAGS, flags);
3967
66aee91a
RR
3968 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3969 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3970
3971 update_exception_bitmap(vcpu);
3972
91b0aa2c
GN
3973 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3974 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3975 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3976 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3977 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3978 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3979}
3980
f5f7b2fe 3981static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3982{
772e0318 3983 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3984 struct kvm_segment var = *save;
3985
3986 var.dpl = 0x3;
3987 if (seg == VCPU_SREG_CS)
3988 var.type = 0x3;
3989
3990 if (!emulate_invalid_guest_state) {
3991 var.selector = var.base >> 4;
3992 var.base = var.base & 0xffff0;
3993 var.limit = 0xffff;
3994 var.g = 0;
3995 var.db = 0;
3996 var.present = 1;
3997 var.s = 1;
3998 var.l = 0;
3999 var.unusable = 0;
4000 var.type = 0x3;
4001 var.avl = 0;
4002 if (save->base & 0xf)
4003 printk_once(KERN_WARNING "kvm: segment base is not "
4004 "paragraph aligned when entering "
4005 "protected mode (seg=%d)", seg);
4006 }
6aa8b732 4007
d99e4152 4008 vmcs_write16(sf->selector, var.selector);
96794e4e 4009 vmcs_writel(sf->base, var.base);
d99e4152
GN
4010 vmcs_write32(sf->limit, var.limit);
4011 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
4012}
4013
4014static void enter_rmode(struct kvm_vcpu *vcpu)
4015{
4016 unsigned long flags;
a89a8fb9 4017 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 4018
f5f7b2fe
AK
4019 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4020 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4021 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4022 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4023 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
4024 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4025 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 4026
7ffd92c5 4027 vmx->rmode.vm86_active = 1;
6aa8b732 4028
776e58ea
GN
4029 /*
4030 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 4031 * vcpu. Warn the user that an update is overdue.
776e58ea 4032 */
4918c6ca 4033 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
4034 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4035 "called before entering vcpu\n");
776e58ea 4036
2fb92db1
AK
4037 vmx_segment_cache_clear(vmx);
4038
4918c6ca 4039 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 4040 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
4041 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4042
4043 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 4044 vmx->rmode.save_rflags = flags;
6aa8b732 4045
053de044 4046 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
4047
4048 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 4049 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
4050 update_exception_bitmap(vcpu);
4051
d99e4152
GN
4052 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4053 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4054 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4055 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4056 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4057 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 4058
8668a3c4 4059 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
4060}
4061
401d10de
AS
4062static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4063{
4064 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
4065 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4066
4067 if (!msr)
4068 return;
401d10de 4069
44ea2b17
AK
4070 /*
4071 * Force kernel_gs_base reloading before EFER changes, as control
4072 * of this msr depends on is_long_mode().
4073 */
4074 vmx_load_host_state(to_vmx(vcpu));
f6801dff 4075 vcpu->arch.efer = efer;
401d10de 4076 if (efer & EFER_LMA) {
2961e876 4077 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4078 msr->data = efer;
4079 } else {
2961e876 4080 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4081
4082 msr->data = efer & ~EFER_LME;
4083 }
4084 setup_msrs(vmx);
4085}
4086
05b3e0c2 4087#ifdef CONFIG_X86_64
6aa8b732
AK
4088
4089static void enter_lmode(struct kvm_vcpu *vcpu)
4090{
4091 u32 guest_tr_ar;
4092
2fb92db1
AK
4093 vmx_segment_cache_clear(to_vmx(vcpu));
4094
6aa8b732 4095 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 4096 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
4097 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4098 __func__);
6aa8b732 4099 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
4100 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4101 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 4102 }
da38f438 4103 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
4104}
4105
4106static void exit_lmode(struct kvm_vcpu *vcpu)
4107{
2961e876 4108 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 4109 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
4110}
4111
4112#endif
4113
dd5f5341 4114static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
2384d2b3 4115{
dd180b3e
XG
4116 if (enable_ept) {
4117 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4118 return;
995f00a6 4119 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
f0b98c02
JM
4120 } else {
4121 vpid_sync_context(vpid);
dd180b3e 4122 }
2384d2b3
SY
4123}
4124
dd5f5341
WL
4125static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4126{
4127 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4128}
4129
fb6c8198
JM
4130static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4131{
4132 if (enable_ept)
4133 vmx_flush_tlb(vcpu);
4134}
4135
e8467fda
AK
4136static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4137{
4138 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4139
4140 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4141 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4142}
4143
aff48baa
AK
4144static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4145{
4146 if (enable_ept && is_paging(vcpu))
4147 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4148 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4149}
4150
25c4c276 4151static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 4152{
fc78f519
AK
4153 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4154
4155 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4156 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
4157}
4158
1439442c
SY
4159static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4160{
d0d538b9
GN
4161 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4162
6de4f3ad
AK
4163 if (!test_bit(VCPU_EXREG_PDPTR,
4164 (unsigned long *)&vcpu->arch.regs_dirty))
4165 return;
4166
1439442c 4167 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4168 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4169 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4170 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4171 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
4172 }
4173}
4174
8f5d549f
AK
4175static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4176{
d0d538b9
GN
4177 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4178
8f5d549f 4179 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4180 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4181 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4182 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4183 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 4184 }
6de4f3ad
AK
4185
4186 __set_bit(VCPU_EXREG_PDPTR,
4187 (unsigned long *)&vcpu->arch.regs_avail);
4188 __set_bit(VCPU_EXREG_PDPTR,
4189 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
4190}
4191
3899152c
DM
4192static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4193{
4194 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4195 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4196 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4197
4198 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4199 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4200 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4201 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4202
4203 return fixed_bits_valid(val, fixed0, fixed1);
4204}
4205
4206static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4207{
4208 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4209 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4210
4211 return fixed_bits_valid(val, fixed0, fixed1);
4212}
4213
4214static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4215{
4216 u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4217 u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4218
4219 return fixed_bits_valid(val, fixed0, fixed1);
4220}
4221
4222/* No difference in the restrictions on guest and host CR4 in VMX operation. */
4223#define nested_guest_cr4_valid nested_cr4_valid
4224#define nested_host_cr4_valid nested_cr4_valid
4225
5e1746d6 4226static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
4227
4228static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4229 unsigned long cr0,
4230 struct kvm_vcpu *vcpu)
4231{
5233dd51
MT
4232 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4233 vmx_decache_cr3(vcpu);
1439442c
SY
4234 if (!(cr0 & X86_CR0_PG)) {
4235 /* From paging/starting to nonpaging */
4236 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4237 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
4238 (CPU_BASED_CR3_LOAD_EXITING |
4239 CPU_BASED_CR3_STORE_EXITING));
4240 vcpu->arch.cr0 = cr0;
fc78f519 4241 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
4242 } else if (!is_paging(vcpu)) {
4243 /* From nonpaging to paging */
4244 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4245 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
4246 ~(CPU_BASED_CR3_LOAD_EXITING |
4247 CPU_BASED_CR3_STORE_EXITING));
4248 vcpu->arch.cr0 = cr0;
fc78f519 4249 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 4250 }
95eb84a7
SY
4251
4252 if (!(cr0 & X86_CR0_WP))
4253 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
4254}
4255
6aa8b732
AK
4256static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4257{
7ffd92c5 4258 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
4259 unsigned long hw_cr0;
4260
5037878e 4261 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 4262 if (enable_unrestricted_guest)
5037878e 4263 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 4264 else {
5037878e 4265 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 4266
218e763f
GN
4267 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4268 enter_pmode(vcpu);
6aa8b732 4269
218e763f
GN
4270 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4271 enter_rmode(vcpu);
4272 }
6aa8b732 4273
05b3e0c2 4274#ifdef CONFIG_X86_64
f6801dff 4275 if (vcpu->arch.efer & EFER_LME) {
707d92fa 4276 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 4277 enter_lmode(vcpu);
707d92fa 4278 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
4279 exit_lmode(vcpu);
4280 }
4281#endif
4282
089d034e 4283 if (enable_ept)
1439442c
SY
4284 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4285
6aa8b732 4286 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 4287 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 4288 vcpu->arch.cr0 = cr0;
14168786
GN
4289
4290 /* depends on vcpu->arch.cr0 to be set to a new value */
4291 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4292}
4293
855feb67
YZ
4294static int get_ept_level(struct kvm_vcpu *vcpu)
4295{
4296 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
4297 return 5;
4298 return 4;
4299}
4300
995f00a6 4301static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
1439442c 4302{
855feb67
YZ
4303 u64 eptp = VMX_EPTP_MT_WB;
4304
4305 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
1439442c 4306
995f00a6
PF
4307 if (enable_ept_ad_bits &&
4308 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
bb97a016 4309 eptp |= VMX_EPTP_AD_ENABLE_BIT;
1439442c
SY
4310 eptp |= (root_hpa & PAGE_MASK);
4311
4312 return eptp;
4313}
4314
6aa8b732
AK
4315static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4316{
1439442c
SY
4317 unsigned long guest_cr3;
4318 u64 eptp;
4319
4320 guest_cr3 = cr3;
089d034e 4321 if (enable_ept) {
995f00a6 4322 eptp = construct_eptp(vcpu, cr3);
1439442c 4323 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
4324 if (is_paging(vcpu) || is_guest_mode(vcpu))
4325 guest_cr3 = kvm_read_cr3(vcpu);
4326 else
4327 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 4328 ept_load_pdptrs(vcpu);
1439442c
SY
4329 }
4330
2384d2b3 4331 vmx_flush_tlb(vcpu);
1439442c 4332 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
4333}
4334
5e1746d6 4335static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 4336{
085e68ee
BS
4337 /*
4338 * Pass through host's Machine Check Enable value to hw_cr4, which
4339 * is in force while we are in guest mode. Do not let guests control
4340 * this bit, even if host CR4.MCE == 0.
4341 */
4342 unsigned long hw_cr4 =
4343 (cr4_read_shadow() & X86_CR4_MCE) |
4344 (cr4 & ~X86_CR4_MCE) |
4345 (to_vmx(vcpu)->rmode.vm86_active ?
4346 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 4347
5e1746d6
NHE
4348 if (cr4 & X86_CR4_VMXE) {
4349 /*
4350 * To use VMXON (and later other VMX instructions), a guest
4351 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4352 * So basically the check on whether to allow nested VMX
4353 * is here.
4354 */
4355 if (!nested_vmx_allowed(vcpu))
4356 return 1;
1a0d74e6 4357 }
3899152c
DM
4358
4359 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
5e1746d6
NHE
4360 return 1;
4361
ad312c7c 4362 vcpu->arch.cr4 = cr4;
bc23008b
AK
4363 if (enable_ept) {
4364 if (!is_paging(vcpu)) {
4365 hw_cr4 &= ~X86_CR4_PAE;
4366 hw_cr4 |= X86_CR4_PSE;
4367 } else if (!(cr4 & X86_CR4_PAE)) {
4368 hw_cr4 &= ~X86_CR4_PAE;
4369 }
4370 }
1439442c 4371
656ec4a4
RK
4372 if (!enable_unrestricted_guest && !is_paging(vcpu))
4373 /*
ddba2628
HH
4374 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4375 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4376 * to be manually disabled when guest switches to non-paging
4377 * mode.
4378 *
4379 * If !enable_unrestricted_guest, the CPU is always running
4380 * with CR0.PG=1 and CR4 needs to be modified.
4381 * If enable_unrestricted_guest, the CPU automatically
4382 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
656ec4a4 4383 */
ddba2628 4384 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
656ec4a4 4385
1439442c
SY
4386 vmcs_writel(CR4_READ_SHADOW, cr4);
4387 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 4388 return 0;
6aa8b732
AK
4389}
4390
6aa8b732
AK
4391static void vmx_get_segment(struct kvm_vcpu *vcpu,
4392 struct kvm_segment *var, int seg)
4393{
a9179499 4394 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
4395 u32 ar;
4396
c6ad1153 4397 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 4398 *var = vmx->rmode.segs[seg];
a9179499 4399 if (seg == VCPU_SREG_TR
2fb92db1 4400 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 4401 return;
1390a28b
AK
4402 var->base = vmx_read_guest_seg_base(vmx, seg);
4403 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4404 return;
a9179499 4405 }
2fb92db1
AK
4406 var->base = vmx_read_guest_seg_base(vmx, seg);
4407 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4408 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4409 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 4410 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
4411 var->type = ar & 15;
4412 var->s = (ar >> 4) & 1;
4413 var->dpl = (ar >> 5) & 3;
03617c18
GN
4414 /*
4415 * Some userspaces do not preserve unusable property. Since usable
4416 * segment has to be present according to VMX spec we can use present
4417 * property to amend userspace bug by making unusable segment always
4418 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4419 * segment as unusable.
4420 */
4421 var->present = !var->unusable;
6aa8b732
AK
4422 var->avl = (ar >> 12) & 1;
4423 var->l = (ar >> 13) & 1;
4424 var->db = (ar >> 14) & 1;
4425 var->g = (ar >> 15) & 1;
6aa8b732
AK
4426}
4427
a9179499
AK
4428static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4429{
a9179499
AK
4430 struct kvm_segment s;
4431
4432 if (to_vmx(vcpu)->rmode.vm86_active) {
4433 vmx_get_segment(vcpu, &s, seg);
4434 return s.base;
4435 }
2fb92db1 4436 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
4437}
4438
b09408d0 4439static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 4440{
b09408d0
MT
4441 struct vcpu_vmx *vmx = to_vmx(vcpu);
4442
ae9fedc7 4443 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 4444 return 0;
ae9fedc7
PB
4445 else {
4446 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 4447 return VMX_AR_DPL(ar);
69c73028 4448 }
69c73028
AK
4449}
4450
653e3108 4451static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 4452{
6aa8b732
AK
4453 u32 ar;
4454
f0495f9b 4455 if (var->unusable || !var->present)
6aa8b732
AK
4456 ar = 1 << 16;
4457 else {
4458 ar = var->type & 15;
4459 ar |= (var->s & 1) << 4;
4460 ar |= (var->dpl & 3) << 5;
4461 ar |= (var->present & 1) << 7;
4462 ar |= (var->avl & 1) << 12;
4463 ar |= (var->l & 1) << 13;
4464 ar |= (var->db & 1) << 14;
4465 ar |= (var->g & 1) << 15;
4466 }
653e3108
AK
4467
4468 return ar;
4469}
4470
4471static void vmx_set_segment(struct kvm_vcpu *vcpu,
4472 struct kvm_segment *var, int seg)
4473{
7ffd92c5 4474 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 4475 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 4476
2fb92db1
AK
4477 vmx_segment_cache_clear(vmx);
4478
1ecd50a9
GN
4479 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4480 vmx->rmode.segs[seg] = *var;
4481 if (seg == VCPU_SREG_TR)
4482 vmcs_write16(sf->selector, var->selector);
4483 else if (var->s)
4484 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 4485 goto out;
653e3108 4486 }
1ecd50a9 4487
653e3108
AK
4488 vmcs_writel(sf->base, var->base);
4489 vmcs_write32(sf->limit, var->limit);
4490 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
4491
4492 /*
4493 * Fix the "Accessed" bit in AR field of segment registers for older
4494 * qemu binaries.
4495 * IA32 arch specifies that at the time of processor reset the
4496 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 4497 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
4498 * state vmexit when "unrestricted guest" mode is turned on.
4499 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4500 * tree. Newer qemu binaries with that qemu fix would not need this
4501 * kvm hack.
4502 */
4503 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 4504 var->type |= 0x1; /* Accessed */
3a624e29 4505
f924d66d 4506 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
4507
4508out:
98eb2f8b 4509 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4510}
4511
6aa8b732
AK
4512static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4513{
2fb92db1 4514 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
4515
4516 *db = (ar >> 14) & 1;
4517 *l = (ar >> 13) & 1;
4518}
4519
89a27f4d 4520static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4521{
89a27f4d
GN
4522 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4523 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
4524}
4525
89a27f4d 4526static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4527{
89a27f4d
GN
4528 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4529 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
4530}
4531
89a27f4d 4532static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4533{
89a27f4d
GN
4534 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4535 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
4536}
4537
89a27f4d 4538static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4539{
89a27f4d
GN
4540 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4541 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
4542}
4543
648dfaa7
MG
4544static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4545{
4546 struct kvm_segment var;
4547 u32 ar;
4548
4549 vmx_get_segment(vcpu, &var, seg);
07f42f5f 4550 var.dpl = 0x3;
0647f4aa
GN
4551 if (seg == VCPU_SREG_CS)
4552 var.type = 0x3;
648dfaa7
MG
4553 ar = vmx_segment_access_rights(&var);
4554
4555 if (var.base != (var.selector << 4))
4556 return false;
89efbed0 4557 if (var.limit != 0xffff)
648dfaa7 4558 return false;
07f42f5f 4559 if (ar != 0xf3)
648dfaa7
MG
4560 return false;
4561
4562 return true;
4563}
4564
4565static bool code_segment_valid(struct kvm_vcpu *vcpu)
4566{
4567 struct kvm_segment cs;
4568 unsigned int cs_rpl;
4569
4570 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 4571 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 4572
1872a3f4
AK
4573 if (cs.unusable)
4574 return false;
4d283ec9 4575 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
4576 return false;
4577 if (!cs.s)
4578 return false;
4d283ec9 4579 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
4580 if (cs.dpl > cs_rpl)
4581 return false;
1872a3f4 4582 } else {
648dfaa7
MG
4583 if (cs.dpl != cs_rpl)
4584 return false;
4585 }
4586 if (!cs.present)
4587 return false;
4588
4589 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4590 return true;
4591}
4592
4593static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4594{
4595 struct kvm_segment ss;
4596 unsigned int ss_rpl;
4597
4598 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 4599 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 4600
1872a3f4
AK
4601 if (ss.unusable)
4602 return true;
4603 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
4604 return false;
4605 if (!ss.s)
4606 return false;
4607 if (ss.dpl != ss_rpl) /* DPL != RPL */
4608 return false;
4609 if (!ss.present)
4610 return false;
4611
4612 return true;
4613}
4614
4615static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4616{
4617 struct kvm_segment var;
4618 unsigned int rpl;
4619
4620 vmx_get_segment(vcpu, &var, seg);
b32a9918 4621 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 4622
1872a3f4
AK
4623 if (var.unusable)
4624 return true;
648dfaa7
MG
4625 if (!var.s)
4626 return false;
4627 if (!var.present)
4628 return false;
4d283ec9 4629 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
4630 if (var.dpl < rpl) /* DPL < RPL */
4631 return false;
4632 }
4633
4634 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4635 * rights flags
4636 */
4637 return true;
4638}
4639
4640static bool tr_valid(struct kvm_vcpu *vcpu)
4641{
4642 struct kvm_segment tr;
4643
4644 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4645
1872a3f4
AK
4646 if (tr.unusable)
4647 return false;
b32a9918 4648 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 4649 return false;
1872a3f4 4650 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
4651 return false;
4652 if (!tr.present)
4653 return false;
4654
4655 return true;
4656}
4657
4658static bool ldtr_valid(struct kvm_vcpu *vcpu)
4659{
4660 struct kvm_segment ldtr;
4661
4662 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4663
1872a3f4
AK
4664 if (ldtr.unusable)
4665 return true;
b32a9918 4666 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
4667 return false;
4668 if (ldtr.type != 2)
4669 return false;
4670 if (!ldtr.present)
4671 return false;
4672
4673 return true;
4674}
4675
4676static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4677{
4678 struct kvm_segment cs, ss;
4679
4680 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4681 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4682
b32a9918
NA
4683 return ((cs.selector & SEGMENT_RPL_MASK) ==
4684 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
4685}
4686
4687/*
4688 * Check if guest state is valid. Returns true if valid, false if
4689 * not.
4690 * We assume that registers are always usable
4691 */
4692static bool guest_state_valid(struct kvm_vcpu *vcpu)
4693{
c5e97c80
GN
4694 if (enable_unrestricted_guest)
4695 return true;
4696
648dfaa7 4697 /* real mode guest state checks */
f13882d8 4698 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
4699 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4700 return false;
4701 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4702 return false;
4703 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4704 return false;
4705 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4706 return false;
4707 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4708 return false;
4709 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4710 return false;
4711 } else {
4712 /* protected mode guest state checks */
4713 if (!cs_ss_rpl_check(vcpu))
4714 return false;
4715 if (!code_segment_valid(vcpu))
4716 return false;
4717 if (!stack_segment_valid(vcpu))
4718 return false;
4719 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4720 return false;
4721 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4722 return false;
4723 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4724 return false;
4725 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4726 return false;
4727 if (!tr_valid(vcpu))
4728 return false;
4729 if (!ldtr_valid(vcpu))
4730 return false;
4731 }
4732 /* TODO:
4733 * - Add checks on RIP
4734 * - Add checks on RFLAGS
4735 */
4736
4737 return true;
4738}
4739
5fa99cbe
JM
4740static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4741{
4742 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4743}
4744
d77c26fc 4745static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4746{
40dcaa9f 4747 gfn_t fn;
195aefde 4748 u16 data = 0;
1f755a82 4749 int idx, r;
6aa8b732 4750
40dcaa9f 4751 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4752 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4753 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4754 if (r < 0)
10589a46 4755 goto out;
195aefde 4756 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4757 r = kvm_write_guest_page(kvm, fn++, &data,
4758 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4759 if (r < 0)
10589a46 4760 goto out;
195aefde
IE
4761 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4762 if (r < 0)
10589a46 4763 goto out;
195aefde
IE
4764 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4765 if (r < 0)
10589a46 4766 goto out;
195aefde 4767 data = ~0;
10589a46
MT
4768 r = kvm_write_guest_page(kvm, fn, &data,
4769 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4770 sizeof(u8));
10589a46 4771out:
40dcaa9f 4772 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4773 return r;
6aa8b732
AK
4774}
4775
b7ebfb05
SY
4776static int init_rmode_identity_map(struct kvm *kvm)
4777{
f51770ed 4778 int i, idx, r = 0;
ba049e93 4779 kvm_pfn_t identity_map_pfn;
b7ebfb05
SY
4780 u32 tmp;
4781
089d034e 4782 if (!enable_ept)
f51770ed 4783 return 0;
a255d479
TC
4784
4785 /* Protect kvm->arch.ept_identity_pagetable_done. */
4786 mutex_lock(&kvm->slots_lock);
4787
f51770ed 4788 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4789 goto out2;
a255d479 4790
b927a3ce 4791 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479
TC
4792
4793 r = alloc_identity_pagetable(kvm);
f51770ed 4794 if (r < 0)
a255d479
TC
4795 goto out2;
4796
40dcaa9f 4797 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4798 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4799 if (r < 0)
4800 goto out;
4801 /* Set up identity-mapping pagetable for EPT in real mode */
4802 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4803 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4804 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4805 r = kvm_write_guest_page(kvm, identity_map_pfn,
4806 &tmp, i * sizeof(tmp), sizeof(tmp));
4807 if (r < 0)
4808 goto out;
4809 }
4810 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4811
b7ebfb05 4812out:
40dcaa9f 4813 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4814
4815out2:
4816 mutex_unlock(&kvm->slots_lock);
f51770ed 4817 return r;
b7ebfb05
SY
4818}
4819
6aa8b732
AK
4820static void seg_setup(int seg)
4821{
772e0318 4822 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4823 unsigned int ar;
6aa8b732
AK
4824
4825 vmcs_write16(sf->selector, 0);
4826 vmcs_writel(sf->base, 0);
4827 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4828 ar = 0x93;
4829 if (seg == VCPU_SREG_CS)
4830 ar |= 0x08; /* code segment */
3a624e29
NK
4831
4832 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4833}
4834
f78e0e2e
SY
4835static int alloc_apic_access_page(struct kvm *kvm)
4836{
4484141a 4837 struct page *page;
f78e0e2e
SY
4838 int r = 0;
4839
79fac95e 4840 mutex_lock(&kvm->slots_lock);
c24ae0dc 4841 if (kvm->arch.apic_access_page_done)
f78e0e2e 4842 goto out;
1d8007bd
PB
4843 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4844 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
4845 if (r)
4846 goto out;
72dc67a6 4847
73a6d941 4848 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4849 if (is_error_page(page)) {
4850 r = -EFAULT;
4851 goto out;
4852 }
4853
c24ae0dc
TC
4854 /*
4855 * Do not pin the page in memory, so that memory hot-unplug
4856 * is able to migrate it.
4857 */
4858 put_page(page);
4859 kvm->arch.apic_access_page_done = true;
f78e0e2e 4860out:
79fac95e 4861 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4862 return r;
4863}
4864
b7ebfb05
SY
4865static int alloc_identity_pagetable(struct kvm *kvm)
4866{
a255d479
TC
4867 /* Called with kvm->slots_lock held. */
4868
b7ebfb05
SY
4869 int r = 0;
4870
a255d479
TC
4871 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4872
1d8007bd
PB
4873 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4874 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
b7ebfb05 4875
b7ebfb05
SY
4876 return r;
4877}
4878
991e7a0e 4879static int allocate_vpid(void)
2384d2b3
SY
4880{
4881 int vpid;
4882
919818ab 4883 if (!enable_vpid)
991e7a0e 4884 return 0;
2384d2b3
SY
4885 spin_lock(&vmx_vpid_lock);
4886 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 4887 if (vpid < VMX_NR_VPIDS)
2384d2b3 4888 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
4889 else
4890 vpid = 0;
2384d2b3 4891 spin_unlock(&vmx_vpid_lock);
991e7a0e 4892 return vpid;
2384d2b3
SY
4893}
4894
991e7a0e 4895static void free_vpid(int vpid)
cdbecfc3 4896{
991e7a0e 4897 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
4898 return;
4899 spin_lock(&vmx_vpid_lock);
991e7a0e 4900 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
4901 spin_unlock(&vmx_vpid_lock);
4902}
4903
8d14695f
YZ
4904#define MSR_TYPE_R 1
4905#define MSR_TYPE_W 2
4906static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4907 u32 msr, int type)
25c5f225 4908{
3e7c73e9 4909 int f = sizeof(unsigned long);
25c5f225
SY
4910
4911 if (!cpu_has_vmx_msr_bitmap())
4912 return;
4913
4914 /*
4915 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4916 * have the write-low and read-high bitmap offsets the wrong way round.
4917 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4918 */
25c5f225 4919 if (msr <= 0x1fff) {
8d14695f
YZ
4920 if (type & MSR_TYPE_R)
4921 /* read-low */
4922 __clear_bit(msr, msr_bitmap + 0x000 / f);
4923
4924 if (type & MSR_TYPE_W)
4925 /* write-low */
4926 __clear_bit(msr, msr_bitmap + 0x800 / f);
4927
25c5f225
SY
4928 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4929 msr &= 0x1fff;
8d14695f
YZ
4930 if (type & MSR_TYPE_R)
4931 /* read-high */
4932 __clear_bit(msr, msr_bitmap + 0x400 / f);
4933
4934 if (type & MSR_TYPE_W)
4935 /* write-high */
4936 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4937
4938 }
4939}
4940
f2b93280
WV
4941/*
4942 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4943 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4944 */
4945static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4946 unsigned long *msr_bitmap_nested,
4947 u32 msr, int type)
4948{
4949 int f = sizeof(unsigned long);
4950
4951 if (!cpu_has_vmx_msr_bitmap()) {
4952 WARN_ON(1);
4953 return;
4954 }
4955
4956 /*
4957 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4958 * have the write-low and read-high bitmap offsets the wrong way round.
4959 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4960 */
4961 if (msr <= 0x1fff) {
4962 if (type & MSR_TYPE_R &&
4963 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4964 /* read-low */
4965 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4966
4967 if (type & MSR_TYPE_W &&
4968 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4969 /* write-low */
4970 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4971
4972 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4973 msr &= 0x1fff;
4974 if (type & MSR_TYPE_R &&
4975 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4976 /* read-high */
4977 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4978
4979 if (type & MSR_TYPE_W &&
4980 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4981 /* write-high */
4982 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4983
4984 }
4985}
4986
5897297b
AK
4987static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4988{
4989 if (!longmode_only)
8d14695f
YZ
4990 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4991 msr, MSR_TYPE_R | MSR_TYPE_W);
4992 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4993 msr, MSR_TYPE_R | MSR_TYPE_W);
4994}
4995
2e69f865 4996static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
8d14695f 4997{
f6e90f9e 4998 if (apicv_active) {
c63e4563 4999 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
2e69f865 5000 msr, type);
c63e4563 5001 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
2e69f865 5002 msr, type);
f6e90f9e 5003 } else {
f6e90f9e 5004 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
2e69f865 5005 msr, type);
f6e90f9e 5006 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
2e69f865 5007 msr, type);
f6e90f9e 5008 }
5897297b
AK
5009}
5010
b2a05fef 5011static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
d50ab6c1 5012{
d62caabb 5013 return enable_apicv;
d50ab6c1
PB
5014}
5015
c9f04407
DM
5016static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
5017{
5018 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5019 gfn_t gfn;
5020
5021 /*
5022 * Don't need to mark the APIC access page dirty; it is never
5023 * written to by the CPU during APIC virtualization.
5024 */
5025
5026 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5027 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5028 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5029 }
5030
5031 if (nested_cpu_has_posted_intr(vmcs12)) {
5032 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5033 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5034 }
5035}
5036
5037
6342c50a 5038static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
705699a1
WV
5039{
5040 struct vcpu_vmx *vmx = to_vmx(vcpu);
5041 int max_irr;
5042 void *vapic_page;
5043 u16 status;
5044
c9f04407
DM
5045 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5046 return;
705699a1 5047
c9f04407
DM
5048 vmx->nested.pi_pending = false;
5049 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5050 return;
705699a1 5051
c9f04407
DM
5052 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5053 if (max_irr != 256) {
705699a1 5054 vapic_page = kmap(vmx->nested.virtual_apic_page);
705699a1
WV
5055 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
5056 kunmap(vmx->nested.virtual_apic_page);
5057
5058 status = vmcs_read16(GUEST_INTR_STATUS);
5059 if ((u8)max_irr > ((u8)status & 0xff)) {
5060 status &= ~0xff;
5061 status |= (u8)max_irr;
5062 vmcs_write16(GUEST_INTR_STATUS, status);
5063 }
5064 }
c9f04407
DM
5065
5066 nested_mark_vmcs12_pages_dirty(vcpu);
705699a1
WV
5067}
5068
06a5524f
WV
5069static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5070 bool nested)
21bc8dc5
RK
5071{
5072#ifdef CONFIG_SMP
06a5524f
WV
5073 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5074
21bc8dc5 5075 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6 5076 /*
5753743f
HZ
5077 * The vector of interrupt to be delivered to vcpu had
5078 * been set in PIR before this function.
5079 *
5080 * Following cases will be reached in this block, and
5081 * we always send a notification event in all cases as
5082 * explained below.
5083 *
5084 * Case 1: vcpu keeps in non-root mode. Sending a
5085 * notification event posts the interrupt to vcpu.
5086 *
5087 * Case 2: vcpu exits to root mode and is still
5088 * runnable. PIR will be synced to vIRR before the
5089 * next vcpu entry. Sending a notification event in
5090 * this case has no effect, as vcpu is not in root
5091 * mode.
28b835d6 5092 *
5753743f
HZ
5093 * Case 3: vcpu exits to root mode and is blocked.
5094 * vcpu_block() has already synced PIR to vIRR and
5095 * never blocks vcpu if vIRR is not cleared. Therefore,
5096 * a blocked vcpu here does not wait for any requested
5097 * interrupts in PIR, and sending a notification event
5098 * which has no effect is safe here.
28b835d6 5099 */
28b835d6 5100
06a5524f 5101 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
21bc8dc5
RK
5102 return true;
5103 }
5104#endif
5105 return false;
5106}
5107
705699a1
WV
5108static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5109 int vector)
5110{
5111 struct vcpu_vmx *vmx = to_vmx(vcpu);
5112
5113 if (is_guest_mode(vcpu) &&
5114 vector == vmx->nested.posted_intr_nv) {
5115 /* the PIR and ON have been set by L1. */
06a5524f 5116 kvm_vcpu_trigger_posted_interrupt(vcpu, true);
705699a1
WV
5117 /*
5118 * If a posted intr is not recognized by hardware,
5119 * we will accomplish it in the next vmentry.
5120 */
5121 vmx->nested.pi_pending = true;
5122 kvm_make_request(KVM_REQ_EVENT, vcpu);
5123 return 0;
5124 }
5125 return -1;
5126}
a20ed54d
YZ
5127/*
5128 * Send interrupt to vcpu via posted interrupt way.
5129 * 1. If target vcpu is running(non-root mode), send posted interrupt
5130 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5131 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5132 * interrupt from PIR in next vmentry.
5133 */
5134static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5135{
5136 struct vcpu_vmx *vmx = to_vmx(vcpu);
5137 int r;
5138
705699a1
WV
5139 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5140 if (!r)
5141 return;
5142
a20ed54d
YZ
5143 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5144 return;
5145
b95234c8
PB
5146 /* If a previous notification has sent the IPI, nothing to do. */
5147 if (pi_test_and_set_on(&vmx->pi_desc))
5148 return;
5149
06a5524f 5150 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
a20ed54d
YZ
5151 kvm_vcpu_kick(vcpu);
5152}
5153
a3a8ff8e
NHE
5154/*
5155 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5156 * will not change in the lifetime of the guest.
5157 * Note that host-state that does change is set elsewhere. E.g., host-state
5158 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5159 */
a547c6db 5160static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
5161{
5162 u32 low32, high32;
5163 unsigned long tmpl;
5164 struct desc_ptr dt;
d6e41f11 5165 unsigned long cr0, cr3, cr4;
a3a8ff8e 5166
04ac88ab
AL
5167 cr0 = read_cr0();
5168 WARN_ON(cr0 & X86_CR0_TS);
5169 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
d6e41f11
AL
5170
5171 /*
5172 * Save the most likely value for this task's CR3 in the VMCS.
5173 * We can't use __get_current_cr3_fast() because we're not atomic.
5174 */
6c690ee1 5175 cr3 = __read_cr3();
d6e41f11 5176 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
44889942 5177 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
a3a8ff8e 5178
d974baa3 5179 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 5180 cr4 = cr4_read_shadow();
d974baa3 5181 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
44889942 5182 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
d974baa3 5183
a3a8ff8e 5184 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
5185#ifdef CONFIG_X86_64
5186 /*
5187 * Load null selectors, so we can avoid reloading them in
5188 * __vmx_load_host_state(), in case userspace uses the null selectors
5189 * too (the expected case).
5190 */
5191 vmcs_write16(HOST_DS_SELECTOR, 0);
5192 vmcs_write16(HOST_ES_SELECTOR, 0);
5193#else
a3a8ff8e
NHE
5194 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5195 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 5196#endif
a3a8ff8e
NHE
5197 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5198 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5199
87930019 5200 store_idt(&dt);
a3a8ff8e 5201 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 5202 vmx->host_idt_base = dt.address;
a3a8ff8e 5203
83287ea4 5204 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
5205
5206 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5207 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5208 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5209 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5210
5211 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5212 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5213 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5214 }
5215}
5216
bf8179a0
NHE
5217static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5218{
5219 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5220 if (enable_ept)
5221 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
5222 if (is_guest_mode(&vmx->vcpu))
5223 vmx->vcpu.arch.cr4_guest_owned_bits &=
5224 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
5225 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5226}
5227
01e439be
YZ
5228static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5229{
5230 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5231
d62caabb 5232 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be 5233 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
64672c95
YJ
5234 /* Enable the preemption timer dynamically */
5235 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
5236 return pin_based_exec_ctrl;
5237}
5238
d62caabb
AS
5239static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5240{
5241 struct vcpu_vmx *vmx = to_vmx(vcpu);
5242
5243 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3ce424e4
RK
5244 if (cpu_has_secondary_exec_ctrls()) {
5245 if (kvm_vcpu_apicv_active(vcpu))
5246 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5247 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5248 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5249 else
5250 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5251 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5252 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5253 }
5254
5255 if (cpu_has_vmx_msr_bitmap())
5256 vmx_set_msr_bitmap(vcpu);
d62caabb
AS
5257}
5258
bf8179a0
NHE
5259static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5260{
5261 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
5262
5263 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5264 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5265
35754c98 5266 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
5267 exec_control &= ~CPU_BASED_TPR_SHADOW;
5268#ifdef CONFIG_X86_64
5269 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5270 CPU_BASED_CR8_LOAD_EXITING;
5271#endif
5272 }
5273 if (!enable_ept)
5274 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5275 CPU_BASED_CR3_LOAD_EXITING |
5276 CPU_BASED_INVLPG_EXITING;
5277 return exec_control;
5278}
5279
45ec368c 5280static bool vmx_rdrand_supported(void)
bf8179a0 5281{
45ec368c
JM
5282 return vmcs_config.cpu_based_2nd_exec_ctrl &
5283 SECONDARY_EXEC_RDRAND;
5284}
5285
75f4fc8d
JM
5286static bool vmx_rdseed_supported(void)
5287{
5288 return vmcs_config.cpu_based_2nd_exec_ctrl &
5289 SECONDARY_EXEC_RDSEED;
5290}
5291
80154d77 5292static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
bf8179a0 5293{
80154d77
PB
5294 struct kvm_vcpu *vcpu = &vmx->vcpu;
5295
bf8179a0 5296 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
80154d77 5297 if (!cpu_need_virtualize_apic_accesses(vcpu))
bf8179a0
NHE
5298 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5299 if (vmx->vpid == 0)
5300 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5301 if (!enable_ept) {
5302 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5303 enable_unrestricted_guest = 0;
ad756a16
MJ
5304 /* Enable INVPCID for non-ept guests may cause performance regression. */
5305 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
5306 }
5307 if (!enable_unrestricted_guest)
5308 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5309 if (!ple_gap)
5310 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
80154d77 5311 if (!kvm_vcpu_apicv_active(vcpu))
c7c9c56c
YZ
5312 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5313 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 5314 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
5315 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5316 (handle_vmptrld).
5317 We can NOT enable shadow_vmcs here because we don't have yet
5318 a current VMCS12
5319 */
5320 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
5321
5322 if (!enable_pml)
5323 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 5324
3db13480
PB
5325 if (vmx_xsaves_supported()) {
5326 /* Exposing XSAVES only when XSAVE is exposed */
5327 bool xsaves_enabled =
5328 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
5329 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
5330
5331 if (!xsaves_enabled)
5332 exec_control &= ~SECONDARY_EXEC_XSAVES;
5333
5334 if (nested) {
5335 if (xsaves_enabled)
5336 vmx->nested.nested_vmx_secondary_ctls_high |=
5337 SECONDARY_EXEC_XSAVES;
5338 else
5339 vmx->nested.nested_vmx_secondary_ctls_high &=
5340 ~SECONDARY_EXEC_XSAVES;
5341 }
5342 }
5343
80154d77
PB
5344 if (vmx_rdtscp_supported()) {
5345 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
5346 if (!rdtscp_enabled)
5347 exec_control &= ~SECONDARY_EXEC_RDTSCP;
5348
5349 if (nested) {
5350 if (rdtscp_enabled)
5351 vmx->nested.nested_vmx_secondary_ctls_high |=
5352 SECONDARY_EXEC_RDTSCP;
5353 else
5354 vmx->nested.nested_vmx_secondary_ctls_high &=
5355 ~SECONDARY_EXEC_RDTSCP;
5356 }
5357 }
5358
5359 if (vmx_invpcid_supported()) {
5360 /* Exposing INVPCID only when PCID is exposed */
5361 bool invpcid_enabled =
5362 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
5363 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
5364
5365 if (!invpcid_enabled) {
5366 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5367 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
5368 }
5369
5370 if (nested) {
5371 if (invpcid_enabled)
5372 vmx->nested.nested_vmx_secondary_ctls_high |=
5373 SECONDARY_EXEC_ENABLE_INVPCID;
5374 else
5375 vmx->nested.nested_vmx_secondary_ctls_high &=
5376 ~SECONDARY_EXEC_ENABLE_INVPCID;
5377 }
5378 }
5379
45ec368c
JM
5380 if (vmx_rdrand_supported()) {
5381 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
5382 if (rdrand_enabled)
5383 exec_control &= ~SECONDARY_EXEC_RDRAND;
5384
5385 if (nested) {
5386 if (rdrand_enabled)
5387 vmx->nested.nested_vmx_secondary_ctls_high |=
5388 SECONDARY_EXEC_RDRAND;
5389 else
5390 vmx->nested.nested_vmx_secondary_ctls_high &=
5391 ~SECONDARY_EXEC_RDRAND;
5392 }
5393 }
5394
75f4fc8d
JM
5395 if (vmx_rdseed_supported()) {
5396 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
5397 if (rdseed_enabled)
5398 exec_control &= ~SECONDARY_EXEC_RDSEED;
5399
5400 if (nested) {
5401 if (rdseed_enabled)
5402 vmx->nested.nested_vmx_secondary_ctls_high |=
5403 SECONDARY_EXEC_RDSEED;
5404 else
5405 vmx->nested.nested_vmx_secondary_ctls_high &=
5406 ~SECONDARY_EXEC_RDSEED;
5407 }
5408 }
5409
80154d77 5410 vmx->secondary_exec_control = exec_control;
bf8179a0
NHE
5411}
5412
ce88decf
XG
5413static void ept_set_mmio_spte_mask(void)
5414{
5415 /*
5416 * EPT Misconfigurations can be generated if the value of bits 2:0
5417 * of an EPT paging-structure entry is 110b (write/execute).
ce88decf 5418 */
dcdca5fe
PF
5419 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5420 VMX_EPT_MISCONFIG_WX_VALUE);
ce88decf
XG
5421}
5422
f53cd63c 5423#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
5424/*
5425 * Sets up the vmcs for emulated real mode.
5426 */
12d79917 5427static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 5428{
2e4ce7f5 5429#ifdef CONFIG_X86_64
6aa8b732 5430 unsigned long a;
2e4ce7f5 5431#endif
6aa8b732 5432 int i;
6aa8b732 5433
6aa8b732 5434 /* I/O */
3e7c73e9
AK
5435 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5436 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 5437
4607c2d7
AG
5438 if (enable_shadow_vmcs) {
5439 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5440 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5441 }
25c5f225 5442 if (cpu_has_vmx_msr_bitmap())
5897297b 5443 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 5444
6aa8b732
AK
5445 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5446
6aa8b732 5447 /* Control */
01e439be 5448 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
64672c95 5449 vmx->hv_deadline_tsc = -1;
6e5d865c 5450
bf8179a0 5451 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 5452
dfa169bb 5453 if (cpu_has_secondary_exec_ctrls()) {
80154d77 5454 vmx_compute_secondary_exec_control(vmx);
bf8179a0 5455 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
80154d77 5456 vmx->secondary_exec_control);
dfa169bb 5457 }
f78e0e2e 5458
d62caabb 5459 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
5460 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5461 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5462 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5463 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5464
5465 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 5466
0bcf261c 5467 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 5468 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
5469 }
5470
4b8d54f9
ZE
5471 if (ple_gap) {
5472 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
5473 vmx->ple_window = ple_window;
5474 vmx->ple_window_dirty = true;
4b8d54f9
ZE
5475 }
5476
c3707958
XG
5477 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5478 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
5479 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5480
9581d442
AK
5481 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5482 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 5483 vmx_set_constant_host_state(vmx);
05b3e0c2 5484#ifdef CONFIG_X86_64
6aa8b732
AK
5485 rdmsrl(MSR_FS_BASE, a);
5486 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5487 rdmsrl(MSR_GS_BASE, a);
5488 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5489#else
5490 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5491 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5492#endif
5493
2a499e49
BD
5494 if (cpu_has_vmx_vmfunc())
5495 vmcs_write64(VM_FUNCTION_CONTROL, 0);
5496
2cc51560
ED
5497 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5498 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 5499 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 5500 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 5501 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 5502
74545705
RK
5503 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5504 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 5505
03916db9 5506 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
5507 u32 index = vmx_msr_index[i];
5508 u32 data_low, data_high;
a2fa3e9f 5509 int j = vmx->nmsrs;
6aa8b732
AK
5510
5511 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5512 continue;
432bd6cb
AK
5513 if (wrmsr_safe(index, data_low, data_high) < 0)
5514 continue;
26bb0981
AK
5515 vmx->guest_msrs[j].index = i;
5516 vmx->guest_msrs[j].data = 0;
d5696725 5517 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 5518 ++vmx->nmsrs;
6aa8b732 5519 }
6aa8b732 5520
2961e876
GN
5521
5522 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
5523
5524 /* 22.2.1, 20.8.1 */
2961e876 5525 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 5526
bd7e5b08
PB
5527 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5528 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5529
bf8179a0 5530 set_cr4_guest_host_mask(vmx);
e00c8cf2 5531
f53cd63c
WL
5532 if (vmx_xsaves_supported())
5533 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5534
4e59516a
PF
5535 if (enable_pml) {
5536 ASSERT(vmx->pml_pg);
5537 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5538 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5539 }
e00c8cf2
AK
5540}
5541
d28bc9dd 5542static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
5543{
5544 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 5545 struct msr_data apic_base_msr;
d28bc9dd 5546 u64 cr0;
e00c8cf2 5547
7ffd92c5 5548 vmx->rmode.vm86_active = 0;
e00c8cf2 5549
ad312c7c 5550 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
5551 kvm_set_cr8(vcpu, 0);
5552
5553 if (!init_event) {
5554 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5555 MSR_IA32_APICBASE_ENABLE;
5556 if (kvm_vcpu_is_reset_bsp(vcpu))
5557 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5558 apic_base_msr.host_initiated = true;
5559 kvm_set_apic_base(vcpu, &apic_base_msr);
5560 }
e00c8cf2 5561
2fb92db1
AK
5562 vmx_segment_cache_clear(vmx);
5563
5706be0d 5564 seg_setup(VCPU_SREG_CS);
66450a21 5565 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 5566 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
5567
5568 seg_setup(VCPU_SREG_DS);
5569 seg_setup(VCPU_SREG_ES);
5570 seg_setup(VCPU_SREG_FS);
5571 seg_setup(VCPU_SREG_GS);
5572 seg_setup(VCPU_SREG_SS);
5573
5574 vmcs_write16(GUEST_TR_SELECTOR, 0);
5575 vmcs_writel(GUEST_TR_BASE, 0);
5576 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5577 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5578
5579 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5580 vmcs_writel(GUEST_LDTR_BASE, 0);
5581 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5582 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5583
d28bc9dd
NA
5584 if (!init_event) {
5585 vmcs_write32(GUEST_SYSENTER_CS, 0);
5586 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5587 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5588 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5589 }
e00c8cf2
AK
5590
5591 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 5592 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 5593
e00c8cf2
AK
5594 vmcs_writel(GUEST_GDTR_BASE, 0);
5595 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5596
5597 vmcs_writel(GUEST_IDTR_BASE, 0);
5598 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5599
443381a8 5600 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 5601 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 5602 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
e00c8cf2 5603
e00c8cf2
AK
5604 setup_msrs(vmx);
5605
6aa8b732
AK
5606 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5607
d28bc9dd 5608 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 5609 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 5610 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 5611 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 5612 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
5613 vmcs_write32(TPR_THRESHOLD, 0);
5614 }
5615
a73896cb 5616 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 5617
d62caabb 5618 if (kvm_vcpu_apicv_active(vcpu))
01e439be
YZ
5619 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5620
2384d2b3
SY
5621 if (vmx->vpid != 0)
5622 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5623
d28bc9dd 5624 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
d28bc9dd 5625 vmx->vcpu.arch.cr0 = cr0;
f2463247 5626 vmx_set_cr0(vcpu, cr0); /* enter rmode */
d28bc9dd 5627 vmx_set_cr4(vcpu, 0);
5690891b 5628 vmx_set_efer(vcpu, 0);
bd7e5b08 5629
d28bc9dd 5630 update_exception_bitmap(vcpu);
6aa8b732 5631
dd5f5341 5632 vpid_sync_context(vmx->vpid);
6aa8b732
AK
5633}
5634
b6f1250e
NHE
5635/*
5636 * In nested virtualization, check if L1 asked to exit on external interrupts.
5637 * For most existing hypervisors, this will always return true.
5638 */
5639static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5640{
5641 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5642 PIN_BASED_EXT_INTR_MASK;
5643}
5644
77b0f5d6
BD
5645/*
5646 * In nested virtualization, check if L1 has set
5647 * VM_EXIT_ACK_INTR_ON_EXIT
5648 */
5649static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5650{
5651 return get_vmcs12(vcpu)->vm_exit_controls &
5652 VM_EXIT_ACK_INTR_ON_EXIT;
5653}
5654
ea8ceb83
JK
5655static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5656{
5657 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5658 PIN_BASED_NMI_EXITING;
5659}
5660
c9a7953f 5661static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99 5662{
47c0152e
PB
5663 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5664 CPU_BASED_VIRTUAL_INTR_PENDING);
3b86cd99
JK
5665}
5666
c9a7953f 5667static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99 5668{
2c82878b 5669 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
c9a7953f
JK
5670 enable_irq_window(vcpu);
5671 return;
5672 }
3b86cd99 5673
47c0152e
PB
5674 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5675 CPU_BASED_VIRTUAL_NMI_PENDING);
3b86cd99
JK
5676}
5677
66fd3f7f 5678static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 5679{
9c8cba37 5680 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
5681 uint32_t intr;
5682 int irq = vcpu->arch.interrupt.nr;
9c8cba37 5683
229456fc 5684 trace_kvm_inj_virq(irq);
2714d1d3 5685
fa89a817 5686 ++vcpu->stat.irq_injections;
7ffd92c5 5687 if (vmx->rmode.vm86_active) {
71f9833b
SH
5688 int inc_eip = 0;
5689 if (vcpu->arch.interrupt.soft)
5690 inc_eip = vcpu->arch.event_exit_inst_len;
5691 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 5692 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
5693 return;
5694 }
66fd3f7f
GN
5695 intr = irq | INTR_INFO_VALID_MASK;
5696 if (vcpu->arch.interrupt.soft) {
5697 intr |= INTR_TYPE_SOFT_INTR;
5698 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5699 vmx->vcpu.arch.event_exit_inst_len);
5700 } else
5701 intr |= INTR_TYPE_EXT_INTR;
5702 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
5703}
5704
f08864b4
SY
5705static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5706{
66a5a347
JK
5707 struct vcpu_vmx *vmx = to_vmx(vcpu);
5708
4c4a6f79
PB
5709 ++vcpu->stat.nmi_injections;
5710 vmx->loaded_vmcs->nmi_known_unmasked = false;
3b86cd99 5711
7ffd92c5 5712 if (vmx->rmode.vm86_active) {
71f9833b 5713 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 5714 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
5715 return;
5716 }
c5a6d5f7 5717
f08864b4
SY
5718 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5719 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
5720}
5721
3cfc3092
JK
5722static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5723{
4c4a6f79
PB
5724 struct vcpu_vmx *vmx = to_vmx(vcpu);
5725 bool masked;
5726
5727 if (vmx->loaded_vmcs->nmi_known_unmasked)
9d58b931 5728 return false;
4c4a6f79
PB
5729 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5730 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5731 return masked;
3cfc3092
JK
5732}
5733
5734static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5735{
5736 struct vcpu_vmx *vmx = to_vmx(vcpu);
5737
4c4a6f79 5738 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
2c82878b
PB
5739 if (masked)
5740 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5741 GUEST_INTR_STATE_NMI);
5742 else
5743 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5744 GUEST_INTR_STATE_NMI);
3cfc3092
JK
5745}
5746
2505dc9f
JK
5747static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5748{
b6b8a145
JK
5749 if (to_vmx(vcpu)->nested.nested_run_pending)
5750 return 0;
ea8ceb83 5751
2505dc9f
JK
5752 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5753 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5754 | GUEST_INTR_STATE_NMI));
5755}
5756
78646121
GN
5757static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5758{
b6b8a145
JK
5759 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5760 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
5761 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5762 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
5763}
5764
cbc94022
IE
5765static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5766{
5767 int ret;
cbc94022 5768
1d8007bd
PB
5769 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5770 PAGE_SIZE * 3);
cbc94022
IE
5771 if (ret)
5772 return ret;
bfc6d222 5773 kvm->arch.tss_addr = addr;
1f755a82 5774 return init_rmode_tss(kvm);
cbc94022
IE
5775}
5776
0ca1b4f4 5777static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 5778{
77ab6db0 5779 switch (vec) {
77ab6db0 5780 case BP_VECTOR:
c573cd22
JK
5781 /*
5782 * Update instruction length as we may reinject the exception
5783 * from user space while in guest debugging mode.
5784 */
5785 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5786 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 5787 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
5788 return false;
5789 /* fall through */
5790 case DB_VECTOR:
5791 if (vcpu->guest_debug &
5792 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5793 return false;
d0bfb940
JK
5794 /* fall through */
5795 case DE_VECTOR:
77ab6db0
JK
5796 case OF_VECTOR:
5797 case BR_VECTOR:
5798 case UD_VECTOR:
5799 case DF_VECTOR:
5800 case SS_VECTOR:
5801 case GP_VECTOR:
5802 case MF_VECTOR:
0ca1b4f4
GN
5803 return true;
5804 break;
77ab6db0 5805 }
0ca1b4f4
GN
5806 return false;
5807}
5808
5809static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5810 int vec, u32 err_code)
5811{
5812 /*
5813 * Instruction with address size override prefix opcode 0x67
5814 * Cause the #SS fault with 0 error code in VM86 mode.
5815 */
5816 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5817 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5818 if (vcpu->arch.halt_request) {
5819 vcpu->arch.halt_request = 0;
5cb56059 5820 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5821 }
5822 return 1;
5823 }
5824 return 0;
5825 }
5826
5827 /*
5828 * Forward all other exceptions that are valid in real mode.
5829 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5830 * the required debugging infrastructure rework.
5831 */
5832 kvm_queue_exception(vcpu, vec);
5833 return 1;
6aa8b732
AK
5834}
5835
a0861c02
AK
5836/*
5837 * Trigger machine check on the host. We assume all the MSRs are already set up
5838 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5839 * We pass a fake environment to the machine check handler because we want
5840 * the guest to be always treated like user space, no matter what context
5841 * it used internally.
5842 */
5843static void kvm_machine_check(void)
5844{
5845#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5846 struct pt_regs regs = {
5847 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5848 .flags = X86_EFLAGS_IF,
5849 };
5850
5851 do_machine_check(&regs, 0);
5852#endif
5853}
5854
851ba692 5855static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5856{
5857 /* already handled by vcpu_run */
5858 return 1;
5859}
5860
851ba692 5861static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5862{
1155f76a 5863 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5864 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5865 u32 intr_info, ex_no, error_code;
42dbaa5a 5866 unsigned long cr2, rip, dr6;
6aa8b732
AK
5867 u32 vect_info;
5868 enum emulation_result er;
5869
1155f76a 5870 vect_info = vmx->idt_vectoring_info;
88786475 5871 intr_info = vmx->exit_intr_info;
6aa8b732 5872
a0861c02 5873 if (is_machine_check(intr_info))
851ba692 5874 return handle_machine_check(vcpu);
a0861c02 5875
ef85b673 5876 if (is_nmi(intr_info))
1b6269db 5877 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc 5878
7aa81cc0 5879 if (is_invalid_opcode(intr_info)) {
ae1f5767
JK
5880 if (is_guest_mode(vcpu)) {
5881 kvm_queue_exception(vcpu, UD_VECTOR);
5882 return 1;
5883 }
51d8b661 5884 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 5885 if (er != EMULATE_DONE)
7ee5d940 5886 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5887 return 1;
5888 }
5889
6aa8b732 5890 error_code = 0;
2e11384c 5891 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5892 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5893
5894 /*
5895 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5896 * MMIO, it is better to report an internal error.
5897 * See the comments in vmx_handle_exit.
5898 */
5899 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5900 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5901 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5902 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 5903 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
5904 vcpu->run->internal.data[0] = vect_info;
5905 vcpu->run->internal.data[1] = intr_info;
80f0e95d 5906 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
5907 return 0;
5908 }
5909
6aa8b732
AK
5910 if (is_page_fault(intr_info)) {
5911 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1261bfa3
WL
5912 /* EPT won't cause page fault directly */
5913 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
5914 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0,
5915 true);
6aa8b732
AK
5916 }
5917
d0bfb940 5918 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5919
5920 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5921 return handle_rmode_exception(vcpu, ex_no, error_code);
5922
42dbaa5a 5923 switch (ex_no) {
54a20552
EN
5924 case AC_VECTOR:
5925 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5926 return 1;
42dbaa5a
JK
5927 case DB_VECTOR:
5928 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5929 if (!(vcpu->guest_debug &
5930 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5931 vcpu->arch.dr6 &= ~15;
6f43ed01 5932 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5933 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5934 skip_emulated_instruction(vcpu);
5935
42dbaa5a
JK
5936 kvm_queue_exception(vcpu, DB_VECTOR);
5937 return 1;
5938 }
5939 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5940 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5941 /* fall through */
5942 case BP_VECTOR:
c573cd22
JK
5943 /*
5944 * Update instruction length as we may reinject #BP from
5945 * user space while in guest debugging mode. Reading it for
5946 * #DB as well causes no harm, it is not used in that case.
5947 */
5948 vmx->vcpu.arch.event_exit_inst_len =
5949 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5950 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5951 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5952 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5953 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5954 break;
5955 default:
d0bfb940
JK
5956 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5957 kvm_run->ex.exception = ex_no;
5958 kvm_run->ex.error_code = error_code;
42dbaa5a 5959 break;
6aa8b732 5960 }
6aa8b732
AK
5961 return 0;
5962}
5963
851ba692 5964static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 5965{
1165f5fe 5966 ++vcpu->stat.irq_exits;
6aa8b732
AK
5967 return 1;
5968}
5969
851ba692 5970static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 5971{
851ba692 5972 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
bbeac283 5973 vcpu->mmio_needed = 0;
988ad74f
AK
5974 return 0;
5975}
6aa8b732 5976
851ba692 5977static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 5978{
bfdaab09 5979 unsigned long exit_qualification;
6affcbed 5980 int size, in, string, ret;
039576c0 5981 unsigned port;
6aa8b732 5982
bfdaab09 5983 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 5984 string = (exit_qualification & 16) != 0;
cf8f70bf 5985 in = (exit_qualification & 8) != 0;
e70669ab 5986
cf8f70bf 5987 ++vcpu->stat.io_exits;
e70669ab 5988
cf8f70bf 5989 if (string || in)
51d8b661 5990 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 5991
cf8f70bf
GN
5992 port = exit_qualification >> 16;
5993 size = (exit_qualification & 7) + 1;
cf8f70bf 5994
6affcbed
KH
5995 ret = kvm_skip_emulated_instruction(vcpu);
5996
5997 /*
5998 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5999 * KVM_EXIT_DEBUG here.
6000 */
6001 return kvm_fast_pio_out(vcpu, size, port) && ret;
6aa8b732
AK
6002}
6003
102d8325
IM
6004static void
6005vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
6006{
6007 /*
6008 * Patch in the VMCALL instruction:
6009 */
6010 hypercall[0] = 0x0f;
6011 hypercall[1] = 0x01;
6012 hypercall[2] = 0xc1;
102d8325
IM
6013}
6014
0fa06071 6015/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
6016static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
6017{
eeadf9e7 6018 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
6019 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6020 unsigned long orig_val = val;
6021
eeadf9e7
NHE
6022 /*
6023 * We get here when L2 changed cr0 in a way that did not change
6024 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
6025 * but did change L0 shadowed bits. So we first calculate the
6026 * effective cr0 value that L1 would like to write into the
6027 * hardware. It consists of the L2-owned bits from the new
6028 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 6029 */
1a0d74e6
JK
6030 val = (val & ~vmcs12->cr0_guest_host_mask) |
6031 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
6032
3899152c 6033 if (!nested_guest_cr0_valid(vcpu, val))
eeadf9e7 6034 return 1;
1a0d74e6
JK
6035
6036 if (kvm_set_cr0(vcpu, val))
6037 return 1;
6038 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 6039 return 0;
1a0d74e6
JK
6040 } else {
6041 if (to_vmx(vcpu)->nested.vmxon &&
3899152c 6042 !nested_host_cr0_valid(vcpu, val))
1a0d74e6 6043 return 1;
3899152c 6044
eeadf9e7 6045 return kvm_set_cr0(vcpu, val);
1a0d74e6 6046 }
eeadf9e7
NHE
6047}
6048
6049static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
6050{
6051 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
6052 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6053 unsigned long orig_val = val;
6054
6055 /* analogously to handle_set_cr0 */
6056 val = (val & ~vmcs12->cr4_guest_host_mask) |
6057 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
6058 if (kvm_set_cr4(vcpu, val))
eeadf9e7 6059 return 1;
1a0d74e6 6060 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
6061 return 0;
6062 } else
6063 return kvm_set_cr4(vcpu, val);
6064}
6065
851ba692 6066static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 6067{
229456fc 6068 unsigned long exit_qualification, val;
6aa8b732
AK
6069 int cr;
6070 int reg;
49a9b07e 6071 int err;
6affcbed 6072 int ret;
6aa8b732 6073
bfdaab09 6074 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
6075 cr = exit_qualification & 15;
6076 reg = (exit_qualification >> 8) & 15;
6077 switch ((exit_qualification >> 4) & 3) {
6078 case 0: /* mov to cr */
1e32c079 6079 val = kvm_register_readl(vcpu, reg);
229456fc 6080 trace_kvm_cr_write(cr, val);
6aa8b732
AK
6081 switch (cr) {
6082 case 0:
eeadf9e7 6083 err = handle_set_cr0(vcpu, val);
6affcbed 6084 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 6085 case 3:
2390218b 6086 err = kvm_set_cr3(vcpu, val);
6affcbed 6087 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 6088 case 4:
eeadf9e7 6089 err = handle_set_cr4(vcpu, val);
6affcbed 6090 return kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
6091 case 8: {
6092 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 6093 u8 cr8 = (u8)val;
eea1cff9 6094 err = kvm_set_cr8(vcpu, cr8);
6affcbed 6095 ret = kvm_complete_insn_gp(vcpu, err);
35754c98 6096 if (lapic_in_kernel(vcpu))
6affcbed 6097 return ret;
0a5fff19 6098 if (cr8_prev <= cr8)
6affcbed
KH
6099 return ret;
6100 /*
6101 * TODO: we might be squashing a
6102 * KVM_GUESTDBG_SINGLESTEP-triggered
6103 * KVM_EXIT_DEBUG here.
6104 */
851ba692 6105 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
6106 return 0;
6107 }
4b8073e4 6108 }
6aa8b732 6109 break;
25c4c276 6110 case 2: /* clts */
bd7e5b08
PB
6111 WARN_ONCE(1, "Guest should always own CR0.TS");
6112 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4d4ec087 6113 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6affcbed 6114 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6115 case 1: /*mov from cr*/
6116 switch (cr) {
6117 case 3:
9f8fe504
AK
6118 val = kvm_read_cr3(vcpu);
6119 kvm_register_write(vcpu, reg, val);
6120 trace_kvm_cr_read(cr, val);
6affcbed 6121 return kvm_skip_emulated_instruction(vcpu);
6aa8b732 6122 case 8:
229456fc
MT
6123 val = kvm_get_cr8(vcpu);
6124 kvm_register_write(vcpu, reg, val);
6125 trace_kvm_cr_read(cr, val);
6affcbed 6126 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6127 }
6128 break;
6129 case 3: /* lmsw */
a1f83a74 6130 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 6131 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 6132 kvm_lmsw(vcpu, val);
6aa8b732 6133
6affcbed 6134 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6135 default:
6136 break;
6137 }
851ba692 6138 vcpu->run->exit_reason = 0;
a737f256 6139 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
6140 (int)(exit_qualification >> 4) & 3, cr);
6141 return 0;
6142}
6143
851ba692 6144static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 6145{
bfdaab09 6146 unsigned long exit_qualification;
16f8a6f9
NA
6147 int dr, dr7, reg;
6148
6149 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6150 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6151
6152 /* First, if DR does not exist, trigger UD */
6153 if (!kvm_require_dr(vcpu, dr))
6154 return 1;
6aa8b732 6155
f2483415 6156 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
6157 if (!kvm_require_cpl(vcpu, 0))
6158 return 1;
16f8a6f9
NA
6159 dr7 = vmcs_readl(GUEST_DR7);
6160 if (dr7 & DR7_GD) {
42dbaa5a
JK
6161 /*
6162 * As the vm-exit takes precedence over the debug trap, we
6163 * need to emulate the latter, either for the host or the
6164 * guest debugging itself.
6165 */
6166 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 6167 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 6168 vcpu->run->debug.arch.dr7 = dr7;
82b32774 6169 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
6170 vcpu->run->debug.arch.exception = DB_VECTOR;
6171 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
6172 return 0;
6173 } else {
7305eb5d 6174 vcpu->arch.dr6 &= ~15;
6f43ed01 6175 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
6176 kvm_queue_exception(vcpu, DB_VECTOR);
6177 return 1;
6178 }
6179 }
6180
81908bf4 6181 if (vcpu->guest_debug == 0) {
8f22372f
PB
6182 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6183 CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6184
6185 /*
6186 * No more DR vmexits; force a reload of the debug registers
6187 * and reenter on this instruction. The next vmexit will
6188 * retrieve the full state of the debug registers.
6189 */
6190 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6191 return 1;
6192 }
6193
42dbaa5a
JK
6194 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6195 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 6196 unsigned long val;
4c4d563b
JK
6197
6198 if (kvm_get_dr(vcpu, dr, &val))
6199 return 1;
6200 kvm_register_write(vcpu, reg, val);
020df079 6201 } else
5777392e 6202 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
6203 return 1;
6204
6affcbed 6205 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6206}
6207
73aaf249
JK
6208static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6209{
6210 return vcpu->arch.dr6;
6211}
6212
6213static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6214{
6215}
6216
81908bf4
PB
6217static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6218{
81908bf4
PB
6219 get_debugreg(vcpu->arch.db[0], 0);
6220 get_debugreg(vcpu->arch.db[1], 1);
6221 get_debugreg(vcpu->arch.db[2], 2);
6222 get_debugreg(vcpu->arch.db[3], 3);
6223 get_debugreg(vcpu->arch.dr6, 6);
6224 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6225
6226 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
8f22372f 6227 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6228}
6229
020df079
GN
6230static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6231{
6232 vmcs_writel(GUEST_DR7, val);
6233}
6234
851ba692 6235static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 6236{
6a908b62 6237 return kvm_emulate_cpuid(vcpu);
6aa8b732
AK
6238}
6239
851ba692 6240static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 6241{
ad312c7c 6242 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 6243 struct msr_data msr_info;
6aa8b732 6244
609e36d3
PB
6245 msr_info.index = ecx;
6246 msr_info.host_initiated = false;
6247 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 6248 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 6249 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6250 return 1;
6251 }
6252
609e36d3 6253 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 6254
6aa8b732 6255 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
6256 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6257 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6affcbed 6258 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6259}
6260
851ba692 6261static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 6262{
8fe8ab46 6263 struct msr_data msr;
ad312c7c
ZX
6264 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6265 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6266 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 6267
8fe8ab46
WA
6268 msr.data = data;
6269 msr.index = ecx;
6270 msr.host_initiated = false;
854e8bb1 6271 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 6272 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 6273 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6274 return 1;
6275 }
6276
59200273 6277 trace_kvm_msr_write(ecx, data);
6affcbed 6278 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6279}
6280
851ba692 6281static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 6282{
eb90f341 6283 kvm_apic_update_ppr(vcpu);
6e5d865c
YS
6284 return 1;
6285}
6286
851ba692 6287static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 6288{
47c0152e
PB
6289 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6290 CPU_BASED_VIRTUAL_INTR_PENDING);
2714d1d3 6291
3842d135
AK
6292 kvm_make_request(KVM_REQ_EVENT, vcpu);
6293
a26bf12a 6294 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
6295 return 1;
6296}
6297
851ba692 6298static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 6299{
d3bef15f 6300 return kvm_emulate_halt(vcpu);
6aa8b732
AK
6301}
6302
851ba692 6303static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 6304{
0d9c055e 6305 return kvm_emulate_hypercall(vcpu);
c21415e8
IM
6306}
6307
ec25d5e6
GN
6308static int handle_invd(struct kvm_vcpu *vcpu)
6309{
51d8b661 6310 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
6311}
6312
851ba692 6313static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 6314{
f9c617f6 6315 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
6316
6317 kvm_mmu_invlpg(vcpu, exit_qualification);
6affcbed 6318 return kvm_skip_emulated_instruction(vcpu);
a7052897
MT
6319}
6320
fee84b07
AK
6321static int handle_rdpmc(struct kvm_vcpu *vcpu)
6322{
6323 int err;
6324
6325 err = kvm_rdpmc(vcpu);
6affcbed 6326 return kvm_complete_insn_gp(vcpu, err);
fee84b07
AK
6327}
6328
851ba692 6329static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 6330{
6affcbed 6331 return kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
6332}
6333
2acf923e
DC
6334static int handle_xsetbv(struct kvm_vcpu *vcpu)
6335{
6336 u64 new_bv = kvm_read_edx_eax(vcpu);
6337 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6338
6339 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6affcbed 6340 return kvm_skip_emulated_instruction(vcpu);
2acf923e
DC
6341 return 1;
6342}
6343
f53cd63c
WL
6344static int handle_xsaves(struct kvm_vcpu *vcpu)
6345{
6affcbed 6346 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6347 WARN(1, "this should never happen\n");
6348 return 1;
6349}
6350
6351static int handle_xrstors(struct kvm_vcpu *vcpu)
6352{
6affcbed 6353 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6354 WARN(1, "this should never happen\n");
6355 return 1;
6356}
6357
851ba692 6358static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 6359{
58fbbf26
KT
6360 if (likely(fasteoi)) {
6361 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6362 int access_type, offset;
6363
6364 access_type = exit_qualification & APIC_ACCESS_TYPE;
6365 offset = exit_qualification & APIC_ACCESS_OFFSET;
6366 /*
6367 * Sane guest uses MOV to write EOI, with written value
6368 * not cared. So make a short-circuit here by avoiding
6369 * heavy instruction emulation.
6370 */
6371 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6372 (offset == APIC_EOI)) {
6373 kvm_lapic_set_eoi(vcpu);
6affcbed 6374 return kvm_skip_emulated_instruction(vcpu);
58fbbf26
KT
6375 }
6376 }
51d8b661 6377 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
6378}
6379
c7c9c56c
YZ
6380static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6381{
6382 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6383 int vector = exit_qualification & 0xff;
6384
6385 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6386 kvm_apic_set_eoi_accelerated(vcpu, vector);
6387 return 1;
6388}
6389
83d4c286
YZ
6390static int handle_apic_write(struct kvm_vcpu *vcpu)
6391{
6392 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6393 u32 offset = exit_qualification & 0xfff;
6394
6395 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6396 kvm_apic_write_nodecode(vcpu, offset);
6397 return 1;
6398}
6399
851ba692 6400static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 6401{
60637aac 6402 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 6403 unsigned long exit_qualification;
e269fb21
JK
6404 bool has_error_code = false;
6405 u32 error_code = 0;
37817f29 6406 u16 tss_selector;
7f3d35fd 6407 int reason, type, idt_v, idt_index;
64a7ec06
GN
6408
6409 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 6410 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 6411 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
6412
6413 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6414
6415 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
6416 if (reason == TASK_SWITCH_GATE && idt_v) {
6417 switch (type) {
6418 case INTR_TYPE_NMI_INTR:
6419 vcpu->arch.nmi_injected = false;
654f06fc 6420 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
6421 break;
6422 case INTR_TYPE_EXT_INTR:
66fd3f7f 6423 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
6424 kvm_clear_interrupt_queue(vcpu);
6425 break;
6426 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
6427 if (vmx->idt_vectoring_info &
6428 VECTORING_INFO_DELIVER_CODE_MASK) {
6429 has_error_code = true;
6430 error_code =
6431 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6432 }
6433 /* fall through */
64a7ec06
GN
6434 case INTR_TYPE_SOFT_EXCEPTION:
6435 kvm_clear_exception_queue(vcpu);
6436 break;
6437 default:
6438 break;
6439 }
60637aac 6440 }
37817f29
IE
6441 tss_selector = exit_qualification;
6442
64a7ec06
GN
6443 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6444 type != INTR_TYPE_EXT_INTR &&
6445 type != INTR_TYPE_NMI_INTR))
6446 skip_emulated_instruction(vcpu);
6447
7f3d35fd
KW
6448 if (kvm_task_switch(vcpu, tss_selector,
6449 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6450 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
6451 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6452 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6453 vcpu->run->internal.ndata = 0;
42dbaa5a 6454 return 0;
acb54517 6455 }
42dbaa5a 6456
42dbaa5a
JK
6457 /*
6458 * TODO: What about debug traps on tss switch?
6459 * Are we supposed to inject them and update dr6?
6460 */
6461
6462 return 1;
37817f29
IE
6463}
6464
851ba692 6465static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 6466{
f9c617f6 6467 unsigned long exit_qualification;
1439442c 6468 gpa_t gpa;
eebed243 6469 u64 error_code;
1439442c 6470
f9c617f6 6471 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 6472
0be9c7a8
GN
6473 /*
6474 * EPT violation happened while executing iret from NMI,
6475 * "blocked by NMI" bit has to be set before next VM entry.
6476 * There are errata that may cause this bit to not be set:
6477 * AAK134, BY25.
6478 */
bcd1c294 6479 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
bcd1c294 6480 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
6481 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6482
1439442c 6483 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 6484 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5 6485
27959a44 6486 /* Is it a read fault? */
ab22a473 6487 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
27959a44
JS
6488 ? PFERR_USER_MASK : 0;
6489 /* Is it a write fault? */
ab22a473 6490 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
27959a44
JS
6491 ? PFERR_WRITE_MASK : 0;
6492 /* Is it a fetch fault? */
ab22a473 6493 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
27959a44
JS
6494 ? PFERR_FETCH_MASK : 0;
6495 /* ept page table entry is present? */
6496 error_code |= (exit_qualification &
6497 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6498 EPT_VIOLATION_EXECUTABLE))
6499 ? PFERR_PRESENT_MASK : 0;
4f5982a5 6500
eebed243
PB
6501 error_code |= (exit_qualification & 0x100) != 0 ?
6502 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
25d92081 6503
25d92081 6504 vcpu->arch.exit_qualification = exit_qualification;
4f5982a5 6505 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
6506}
6507
851ba692 6508static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 6509{
f735d4af 6510 int ret;
68f89400
MT
6511 gpa_t gpa;
6512
9034e6e8
PB
6513 /*
6514 * A nested guest cannot optimize MMIO vmexits, because we have an
6515 * nGPA here instead of the required GPA.
6516 */
68f89400 6517 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
9034e6e8
PB
6518 if (!is_guest_mode(vcpu) &&
6519 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
931c33b1 6520 trace_kvm_fast_mmio(gpa);
6affcbed 6521 return kvm_skip_emulated_instruction(vcpu);
68c3b4d1 6522 }
68f89400 6523
e08d26f0
PB
6524 ret = kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
6525 if (ret >= 0)
6526 return ret;
ce88decf
XG
6527
6528 /* It is the real ept misconfig */
f735d4af 6529 WARN_ON(1);
68f89400 6530
851ba692
AK
6531 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6532 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
6533
6534 return 0;
6535}
6536
851ba692 6537static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4 6538{
47c0152e
PB
6539 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6540 CPU_BASED_VIRTUAL_NMI_PENDING);
f08864b4 6541 ++vcpu->stat.nmi_window_exits;
3842d135 6542 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
6543
6544 return 1;
6545}
6546
80ced186 6547static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 6548{
8b3079a5
AK
6549 struct vcpu_vmx *vmx = to_vmx(vcpu);
6550 enum emulation_result err = EMULATE_DONE;
80ced186 6551 int ret = 1;
49e9d557
AK
6552 u32 cpu_exec_ctrl;
6553 bool intr_window_requested;
b8405c18 6554 unsigned count = 130;
49e9d557
AK
6555
6556 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6557 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 6558
98eb2f8b 6559 while (vmx->emulation_required && count-- != 0) {
bdea48e3 6560 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
6561 return handle_interrupt_window(&vmx->vcpu);
6562
72875d8a 6563 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
de87dcdd
AK
6564 return 1;
6565
991eebf9 6566 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 6567
ac0a48c3 6568 if (err == EMULATE_USER_EXIT) {
94452b9e 6569 ++vcpu->stat.mmio_exits;
80ced186
MG
6570 ret = 0;
6571 goto out;
6572 }
1d5a4d9b 6573
de5f70e0
AK
6574 if (err != EMULATE_DONE) {
6575 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6576 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6577 vcpu->run->internal.ndata = 0;
6d77dbfc 6578 return 0;
de5f70e0 6579 }
ea953ef0 6580
8d76c49e
GN
6581 if (vcpu->arch.halt_request) {
6582 vcpu->arch.halt_request = 0;
5cb56059 6583 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
6584 goto out;
6585 }
6586
ea953ef0 6587 if (signal_pending(current))
80ced186 6588 goto out;
ea953ef0
MG
6589 if (need_resched())
6590 schedule();
6591 }
6592
80ced186
MG
6593out:
6594 return ret;
ea953ef0
MG
6595}
6596
b4a2d31d
RK
6597static int __grow_ple_window(int val)
6598{
6599 if (ple_window_grow < 1)
6600 return ple_window;
6601
6602 val = min(val, ple_window_actual_max);
6603
6604 if (ple_window_grow < ple_window)
6605 val *= ple_window_grow;
6606 else
6607 val += ple_window_grow;
6608
6609 return val;
6610}
6611
6612static int __shrink_ple_window(int val, int modifier, int minimum)
6613{
6614 if (modifier < 1)
6615 return ple_window;
6616
6617 if (modifier < ple_window)
6618 val /= modifier;
6619 else
6620 val -= modifier;
6621
6622 return max(val, minimum);
6623}
6624
6625static void grow_ple_window(struct kvm_vcpu *vcpu)
6626{
6627 struct vcpu_vmx *vmx = to_vmx(vcpu);
6628 int old = vmx->ple_window;
6629
6630 vmx->ple_window = __grow_ple_window(old);
6631
6632 if (vmx->ple_window != old)
6633 vmx->ple_window_dirty = true;
7b46268d
RK
6634
6635 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6636}
6637
6638static void shrink_ple_window(struct kvm_vcpu *vcpu)
6639{
6640 struct vcpu_vmx *vmx = to_vmx(vcpu);
6641 int old = vmx->ple_window;
6642
6643 vmx->ple_window = __shrink_ple_window(old,
6644 ple_window_shrink, ple_window);
6645
6646 if (vmx->ple_window != old)
6647 vmx->ple_window_dirty = true;
7b46268d
RK
6648
6649 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6650}
6651
6652/*
6653 * ple_window_actual_max is computed to be one grow_ple_window() below
6654 * ple_window_max. (See __grow_ple_window for the reason.)
6655 * This prevents overflows, because ple_window_max is int.
6656 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6657 * this process.
6658 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6659 */
6660static void update_ple_window_actual_max(void)
6661{
6662 ple_window_actual_max =
6663 __shrink_ple_window(max(ple_window_max, ple_window),
6664 ple_window_grow, INT_MIN);
6665}
6666
bf9f6ac8
FW
6667/*
6668 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6669 */
6670static void wakeup_handler(void)
6671{
6672 struct kvm_vcpu *vcpu;
6673 int cpu = smp_processor_id();
6674
6675 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6676 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6677 blocked_vcpu_list) {
6678 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6679
6680 if (pi_test_on(pi_desc) == 1)
6681 kvm_vcpu_kick(vcpu);
6682 }
6683 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6684}
6685
f160c7b7
JS
6686void vmx_enable_tdp(void)
6687{
6688 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6689 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6690 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6691 0ull, VMX_EPT_EXECUTABLE_MASK,
6692 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
d0ec49d4 6693 VMX_EPT_RWX_MASK, 0ull);
f160c7b7
JS
6694
6695 ept_set_mmio_spte_mask();
6696 kvm_enable_tdp();
6697}
6698
f2c7648d
TC
6699static __init int hardware_setup(void)
6700{
34a1cd60
TC
6701 int r = -ENOMEM, i, msr;
6702
6703 rdmsrl_safe(MSR_EFER, &host_efer);
6704
6705 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6706 kvm_define_shared_msr(i, vmx_msr_index[i]);
6707
23611332
RK
6708 for (i = 0; i < VMX_BITMAP_NR; i++) {
6709 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6710 if (!vmx_bitmap[i])
6711 goto out;
6712 }
34a1cd60
TC
6713
6714 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
34a1cd60
TC
6715 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6716 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6717
6718 /*
6719 * Allow direct access to the PC debug port (it is often used for I/O
6720 * delays, but the vmexits simply slow things down).
6721 */
6722 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6723 clear_bit(0x80, vmx_io_bitmap_a);
6724
6725 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6726
6727 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6728 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6729
34a1cd60
TC
6730 if (setup_vmcs_config(&vmcs_config) < 0) {
6731 r = -EIO;
23611332 6732 goto out;
baa03522 6733 }
f2c7648d
TC
6734
6735 if (boot_cpu_has(X86_FEATURE_NX))
6736 kvm_enable_efer_bits(EFER_NX);
6737
08d839c4
WL
6738 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6739 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
f2c7648d 6740 enable_vpid = 0;
08d839c4 6741
f2c7648d
TC
6742 if (!cpu_has_vmx_shadow_vmcs())
6743 enable_shadow_vmcs = 0;
6744 if (enable_shadow_vmcs)
6745 init_vmcs_shadow_fields();
6746
6747 if (!cpu_has_vmx_ept() ||
42aa53b4
DH
6748 !cpu_has_vmx_ept_4levels() ||
6749 !cpu_has_vmx_ept_mt_wb()) {
f2c7648d
TC
6750 enable_ept = 0;
6751 enable_unrestricted_guest = 0;
6752 enable_ept_ad_bits = 0;
6753 }
6754
fce6ac4c 6755 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
f2c7648d
TC
6756 enable_ept_ad_bits = 0;
6757
6758 if (!cpu_has_vmx_unrestricted_guest())
6759 enable_unrestricted_guest = 0;
6760
ad15a296 6761 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6762 flexpriority_enabled = 0;
6763
ad15a296
PB
6764 /*
6765 * set_apic_access_page_addr() is used to reload apic access
6766 * page upon invalidation. No need to do anything if not
6767 * using the APIC_ACCESS_ADDR VMCS field.
6768 */
6769 if (!flexpriority_enabled)
f2c7648d 6770 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6771
6772 if (!cpu_has_vmx_tpr_shadow())
6773 kvm_x86_ops->update_cr8_intercept = NULL;
6774
6775 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6776 kvm_disable_largepages();
6777
0f107682 6778 if (!cpu_has_vmx_ple()) {
f2c7648d 6779 ple_gap = 0;
0f107682
WL
6780 ple_window = 0;
6781 ple_window_grow = 0;
6782 ple_window_max = 0;
6783 ple_window_shrink = 0;
6784 }
f2c7648d 6785
76dfafd5 6786 if (!cpu_has_vmx_apicv()) {
f2c7648d 6787 enable_apicv = 0;
76dfafd5
PB
6788 kvm_x86_ops->sync_pir_to_irr = NULL;
6789 }
f2c7648d 6790
64903d61
HZ
6791 if (cpu_has_vmx_tsc_scaling()) {
6792 kvm_has_tsc_control = true;
6793 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6794 kvm_tsc_scaling_ratio_frac_bits = 48;
6795 }
6796
baa03522
TC
6797 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6798 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6799 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6800 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6801 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6802 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
baa03522 6803
c63e4563 6804 memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
baa03522 6805 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6806 memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
baa03522 6807 vmx_msr_bitmap_longmode, PAGE_SIZE);
c63e4563 6808 memcpy(vmx_msr_bitmap_legacy_x2apic,
f6e90f9e 6809 vmx_msr_bitmap_legacy, PAGE_SIZE);
c63e4563 6810 memcpy(vmx_msr_bitmap_longmode_x2apic,
f6e90f9e 6811 vmx_msr_bitmap_longmode, PAGE_SIZE);
baa03522 6812
04bb92e4
WL
6813 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6814
40d8338d
RK
6815 for (msr = 0x800; msr <= 0x8ff; msr++) {
6816 if (msr == 0x839 /* TMCCT */)
6817 continue;
2e69f865 6818 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
40d8338d 6819 }
3ce424e4 6820
f6e90f9e 6821 /*
2e69f865
RK
6822 * TPR reads and writes can be virtualized even if virtual interrupt
6823 * delivery is not in use.
f6e90f9e 6824 */
2e69f865
RK
6825 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6826 vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
3ce424e4 6827
3ce424e4 6828 /* EOI */
2e69f865 6829 vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
3ce424e4 6830 /* SELF-IPI */
2e69f865 6831 vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
baa03522 6832
f160c7b7
JS
6833 if (enable_ept)
6834 vmx_enable_tdp();
6835 else
baa03522
TC
6836 kvm_disable_tdp();
6837
6838 update_ple_window_actual_max();
6839
843e4330
KH
6840 /*
6841 * Only enable PML when hardware supports PML feature, and both EPT
6842 * and EPT A/D bit features are enabled -- PML depends on them to work.
6843 */
6844 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6845 enable_pml = 0;
6846
6847 if (!enable_pml) {
6848 kvm_x86_ops->slot_enable_log_dirty = NULL;
6849 kvm_x86_ops->slot_disable_log_dirty = NULL;
6850 kvm_x86_ops->flush_log_dirty = NULL;
6851 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6852 }
6853
64672c95
YJ
6854 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6855 u64 vmx_msr;
6856
6857 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6858 cpu_preemption_timer_multi =
6859 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6860 } else {
6861 kvm_x86_ops->set_hv_timer = NULL;
6862 kvm_x86_ops->cancel_hv_timer = NULL;
6863 }
6864
bf9f6ac8
FW
6865 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6866
c45dcc71
AR
6867 kvm_mce_cap_supported |= MCG_LMCE_P;
6868
f2c7648d 6869 return alloc_kvm_area();
34a1cd60 6870
34a1cd60 6871out:
23611332
RK
6872 for (i = 0; i < VMX_BITMAP_NR; i++)
6873 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60
TC
6874
6875 return r;
f2c7648d
TC
6876}
6877
6878static __exit void hardware_unsetup(void)
6879{
23611332
RK
6880 int i;
6881
6882 for (i = 0; i < VMX_BITMAP_NR; i++)
6883 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60 6884
f2c7648d
TC
6885 free_kvm_area();
6886}
6887
4b8d54f9
ZE
6888/*
6889 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6890 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6891 */
9fb41ba8 6892static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6893{
b4a2d31d
RK
6894 if (ple_gap)
6895 grow_ple_window(vcpu);
6896
de63ad4c
LM
6897 /*
6898 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
6899 * VM-execution control is ignored if CPL > 0. OTOH, KVM
6900 * never set PAUSE_EXITING and just set PLE if supported,
6901 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
6902 */
6903 kvm_vcpu_on_spin(vcpu, true);
6affcbed 6904 return kvm_skip_emulated_instruction(vcpu);
4b8d54f9
ZE
6905}
6906
87c00572 6907static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6908{
6affcbed 6909 return kvm_skip_emulated_instruction(vcpu);
59708670
SY
6910}
6911
87c00572
GS
6912static int handle_mwait(struct kvm_vcpu *vcpu)
6913{
6914 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6915 return handle_nop(vcpu);
6916}
6917
45ec368c
JM
6918static int handle_invalid_op(struct kvm_vcpu *vcpu)
6919{
6920 kvm_queue_exception(vcpu, UD_VECTOR);
6921 return 1;
6922}
6923
5f3d45e7
MD
6924static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6925{
6926 return 1;
6927}
6928
87c00572
GS
6929static int handle_monitor(struct kvm_vcpu *vcpu)
6930{
6931 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6932 return handle_nop(vcpu);
6933}
6934
ff2f6fe9
NHE
6935/*
6936 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6937 * We could reuse a single VMCS for all the L2 guests, but we also want the
6938 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6939 * allows keeping them loaded on the processor, and in the future will allow
6940 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6941 * every entry if they never change.
6942 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6943 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6944 *
6945 * The following functions allocate and free a vmcs02 in this pool.
6946 */
6947
6948/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6949static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6950{
6951 struct vmcs02_list *item;
6952 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6953 if (item->vmptr == vmx->nested.current_vmptr) {
6954 list_move(&item->list, &vmx->nested.vmcs02_pool);
6955 return &item->vmcs02;
6956 }
6957
6958 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6959 /* Recycle the least recently used VMCS. */
d74c0e6b
GT
6960 item = list_last_entry(&vmx->nested.vmcs02_pool,
6961 struct vmcs02_list, list);
ff2f6fe9
NHE
6962 item->vmptr = vmx->nested.current_vmptr;
6963 list_move(&item->list, &vmx->nested.vmcs02_pool);
6964 return &item->vmcs02;
6965 }
6966
6967 /* Create a new VMCS */
0fa24ce3 6968 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6969 if (!item)
6970 return NULL;
6971 item->vmcs02.vmcs = alloc_vmcs();
355f4fb1 6972 item->vmcs02.shadow_vmcs = NULL;
ff2f6fe9
NHE
6973 if (!item->vmcs02.vmcs) {
6974 kfree(item);
6975 return NULL;
6976 }
6977 loaded_vmcs_init(&item->vmcs02);
6978 item->vmptr = vmx->nested.current_vmptr;
6979 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6980 vmx->nested.vmcs02_num++;
6981 return &item->vmcs02;
6982}
6983
6984/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6985static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6986{
6987 struct vmcs02_list *item;
6988 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6989 if (item->vmptr == vmptr) {
6990 free_loaded_vmcs(&item->vmcs02);
6991 list_del(&item->list);
6992 kfree(item);
6993 vmx->nested.vmcs02_num--;
6994 return;
6995 }
6996}
6997
6998/*
6999 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
7000 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
7001 * must be &vmx->vmcs01.
ff2f6fe9
NHE
7002 */
7003static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
7004{
7005 struct vmcs02_list *item, *n;
4fa7734c
PB
7006
7007 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 7008 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
7009 /*
7010 * Something will leak if the above WARN triggers. Better than
7011 * a use-after-free.
7012 */
7013 if (vmx->loaded_vmcs == &item->vmcs02)
7014 continue;
7015
7016 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
7017 list_del(&item->list);
7018 kfree(item);
4fa7734c 7019 vmx->nested.vmcs02_num--;
ff2f6fe9 7020 }
ff2f6fe9
NHE
7021}
7022
0658fbaa
ACL
7023/*
7024 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
7025 * set the success or error code of an emulated VMX instruction, as specified
7026 * by Vol 2B, VMX Instruction Reference, "Conventions".
7027 */
7028static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
7029{
7030 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
7031 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7032 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
7033}
7034
7035static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
7036{
7037 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7038 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
7039 X86_EFLAGS_SF | X86_EFLAGS_OF))
7040 | X86_EFLAGS_CF);
7041}
7042
145c28dd 7043static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
7044 u32 vm_instruction_error)
7045{
7046 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
7047 /*
7048 * failValid writes the error number to the current VMCS, which
7049 * can't be done there isn't a current VMCS.
7050 */
7051 nested_vmx_failInvalid(vcpu);
7052 return;
7053 }
7054 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7055 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7056 X86_EFLAGS_SF | X86_EFLAGS_OF))
7057 | X86_EFLAGS_ZF);
7058 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
7059 /*
7060 * We don't need to force a shadow sync because
7061 * VM_INSTRUCTION_ERROR is not shadowed
7062 */
7063}
145c28dd 7064
ff651cb6
WV
7065static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
7066{
7067 /* TODO: not to reset guest simply here. */
7068 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
bbe41b95 7069 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
ff651cb6
WV
7070}
7071
f4124500
JK
7072static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
7073{
7074 struct vcpu_vmx *vmx =
7075 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
7076
7077 vmx->nested.preemption_timer_expired = true;
7078 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
7079 kvm_vcpu_kick(&vmx->vcpu);
7080
7081 return HRTIMER_NORESTART;
7082}
7083
19677e32
BD
7084/*
7085 * Decode the memory-address operand of a vmx instruction, as recorded on an
7086 * exit caused by such an instruction (run by a guest hypervisor).
7087 * On success, returns 0. When the operand is invalid, returns 1 and throws
7088 * #UD or #GP.
7089 */
7090static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
7091 unsigned long exit_qualification,
f9eb4af6 7092 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 7093{
f9eb4af6
EK
7094 gva_t off;
7095 bool exn;
7096 struct kvm_segment s;
7097
19677e32
BD
7098 /*
7099 * According to Vol. 3B, "Information for VM Exits Due to Instruction
7100 * Execution", on an exit, vmx_instruction_info holds most of the
7101 * addressing components of the operand. Only the displacement part
7102 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
7103 * For how an actual address is calculated from all these components,
7104 * refer to Vol. 1, "Operand Addressing".
7105 */
7106 int scaling = vmx_instruction_info & 3;
7107 int addr_size = (vmx_instruction_info >> 7) & 7;
7108 bool is_reg = vmx_instruction_info & (1u << 10);
7109 int seg_reg = (vmx_instruction_info >> 15) & 7;
7110 int index_reg = (vmx_instruction_info >> 18) & 0xf;
7111 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
7112 int base_reg = (vmx_instruction_info >> 23) & 0xf;
7113 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
7114
7115 if (is_reg) {
7116 kvm_queue_exception(vcpu, UD_VECTOR);
7117 return 1;
7118 }
7119
7120 /* Addr = segment_base + offset */
7121 /* offset = base + [index * scale] + displacement */
f9eb4af6 7122 off = exit_qualification; /* holds the displacement */
19677e32 7123 if (base_is_valid)
f9eb4af6 7124 off += kvm_register_read(vcpu, base_reg);
19677e32 7125 if (index_is_valid)
f9eb4af6
EK
7126 off += kvm_register_read(vcpu, index_reg)<<scaling;
7127 vmx_get_segment(vcpu, &s, seg_reg);
7128 *ret = s.base + off;
19677e32
BD
7129
7130 if (addr_size == 1) /* 32 bit */
7131 *ret &= 0xffffffff;
7132
f9eb4af6
EK
7133 /* Checks for #GP/#SS exceptions. */
7134 exn = false;
ff30ef40
QC
7135 if (is_long_mode(vcpu)) {
7136 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7137 * non-canonical form. This is the only check on the memory
7138 * destination for long mode!
7139 */
fd8cb433 7140 exn = is_noncanonical_address(*ret, vcpu);
ff30ef40 7141 } else if (is_protmode(vcpu)) {
f9eb4af6
EK
7142 /* Protected mode: apply checks for segment validity in the
7143 * following order:
7144 * - segment type check (#GP(0) may be thrown)
7145 * - usability check (#GP(0)/#SS(0))
7146 * - limit check (#GP(0)/#SS(0))
7147 */
7148 if (wr)
7149 /* #GP(0) if the destination operand is located in a
7150 * read-only data segment or any code segment.
7151 */
7152 exn = ((s.type & 0xa) == 0 || (s.type & 8));
7153 else
7154 /* #GP(0) if the source operand is located in an
7155 * execute-only code segment
7156 */
7157 exn = ((s.type & 0xa) == 8);
ff30ef40
QC
7158 if (exn) {
7159 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7160 return 1;
7161 }
f9eb4af6
EK
7162 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7163 */
7164 exn = (s.unusable != 0);
7165 /* Protected mode: #GP(0)/#SS(0) if the memory
7166 * operand is outside the segment limit.
7167 */
7168 exn = exn || (off + sizeof(u64) > s.limit);
7169 }
7170 if (exn) {
7171 kvm_queue_exception_e(vcpu,
7172 seg_reg == VCPU_SREG_SS ?
7173 SS_VECTOR : GP_VECTOR,
7174 0);
7175 return 1;
7176 }
7177
19677e32
BD
7178 return 0;
7179}
7180
cbf71279 7181static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
3573e22c
BD
7182{
7183 gva_t gva;
3573e22c 7184 struct x86_exception e;
3573e22c
BD
7185
7186 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7187 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
7188 return 1;
7189
cbf71279
RK
7190 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
7191 sizeof(*vmpointer), &e)) {
3573e22c
BD
7192 kvm_inject_page_fault(vcpu, &e);
7193 return 1;
7194 }
7195
3573e22c
BD
7196 return 0;
7197}
7198
e29acc55
JM
7199static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7200{
7201 struct vcpu_vmx *vmx = to_vmx(vcpu);
7202 struct vmcs *shadow_vmcs;
7203
7204 if (cpu_has_vmx_msr_bitmap()) {
7205 vmx->nested.msr_bitmap =
7206 (unsigned long *)__get_free_page(GFP_KERNEL);
7207 if (!vmx->nested.msr_bitmap)
7208 goto out_msr_bitmap;
7209 }
7210
7211 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7212 if (!vmx->nested.cached_vmcs12)
7213 goto out_cached_vmcs12;
7214
7215 if (enable_shadow_vmcs) {
7216 shadow_vmcs = alloc_vmcs();
7217 if (!shadow_vmcs)
7218 goto out_shadow_vmcs;
7219 /* mark vmcs as shadow */
7220 shadow_vmcs->revision_id |= (1u << 31);
7221 /* init shadow vmcs */
7222 vmcs_clear(shadow_vmcs);
7223 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7224 }
7225
7226 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7227 vmx->nested.vmcs02_num = 0;
7228
7229 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7230 HRTIMER_MODE_REL_PINNED);
7231 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7232
7233 vmx->nested.vmxon = true;
7234 return 0;
7235
7236out_shadow_vmcs:
7237 kfree(vmx->nested.cached_vmcs12);
7238
7239out_cached_vmcs12:
7240 free_page((unsigned long)vmx->nested.msr_bitmap);
7241
7242out_msr_bitmap:
7243 return -ENOMEM;
7244}
7245
ec378aee
NHE
7246/*
7247 * Emulate the VMXON instruction.
7248 * Currently, we just remember that VMX is active, and do not save or even
7249 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7250 * do not currently need to store anything in that guest-allocated memory
7251 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7252 * argument is different from the VMXON pointer (which the spec says they do).
7253 */
7254static int handle_vmon(struct kvm_vcpu *vcpu)
7255{
e29acc55 7256 int ret;
cbf71279
RK
7257 gpa_t vmptr;
7258 struct page *page;
ec378aee 7259 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3897a49
NHE
7260 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7261 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee 7262
70f3aac9
JM
7263 /*
7264 * The Intel VMX Instruction Reference lists a bunch of bits that are
7265 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7266 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7267 * Otherwise, we should fail with #UD. But most faulting conditions
7268 * have already been checked by hardware, prior to the VM-exit for
7269 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7270 * that bit set to 1 in non-root mode.
ec378aee 7271 */
70f3aac9 7272 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
ec378aee
NHE
7273 kvm_queue_exception(vcpu, UD_VECTOR);
7274 return 1;
7275 }
7276
145c28dd
AG
7277 if (vmx->nested.vmxon) {
7278 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6affcbed 7279 return kvm_skip_emulated_instruction(vcpu);
145c28dd 7280 }
b3897a49 7281
3b84080b 7282 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
b3897a49
NHE
7283 != VMXON_NEEDED_FEATURES) {
7284 kvm_inject_gp(vcpu, 0);
7285 return 1;
7286 }
7287
cbf71279 7288 if (nested_vmx_get_vmptr(vcpu, &vmptr))
21e7fbe7 7289 return 1;
cbf71279
RK
7290
7291 /*
7292 * SDM 3: 24.11.5
7293 * The first 4 bytes of VMXON region contain the supported
7294 * VMCS revision identifier
7295 *
7296 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7297 * which replaces physical address width with 32
7298 */
7299 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7300 nested_vmx_failInvalid(vcpu);
7301 return kvm_skip_emulated_instruction(vcpu);
7302 }
7303
5e2f30b7
DH
7304 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7305 if (is_error_page(page)) {
cbf71279
RK
7306 nested_vmx_failInvalid(vcpu);
7307 return kvm_skip_emulated_instruction(vcpu);
7308 }
7309 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7310 kunmap(page);
53a70daf 7311 kvm_release_page_clean(page);
cbf71279
RK
7312 nested_vmx_failInvalid(vcpu);
7313 return kvm_skip_emulated_instruction(vcpu);
7314 }
7315 kunmap(page);
53a70daf 7316 kvm_release_page_clean(page);
cbf71279
RK
7317
7318 vmx->nested.vmxon_ptr = vmptr;
e29acc55
JM
7319 ret = enter_vmx_operation(vcpu);
7320 if (ret)
7321 return ret;
ec378aee 7322
a25eb114 7323 nested_vmx_succeed(vcpu);
6affcbed 7324 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7325}
7326
7327/*
7328 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7329 * for running VMX instructions (except VMXON, whose prerequisites are
7330 * slightly different). It also specifies what exception to inject otherwise.
70f3aac9
JM
7331 * Note that many of these exceptions have priority over VM exits, so they
7332 * don't have to be checked again here.
ec378aee
NHE
7333 */
7334static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7335{
70f3aac9 7336 if (!to_vmx(vcpu)->nested.vmxon) {
ec378aee
NHE
7337 kvm_queue_exception(vcpu, UD_VECTOR);
7338 return 0;
7339 }
ec378aee
NHE
7340 return 1;
7341}
7342
8ca44e88
DM
7343static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7344{
7345 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7346 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7347}
7348
e7953d7f
AG
7349static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7350{
9a2a05b9
PB
7351 if (vmx->nested.current_vmptr == -1ull)
7352 return;
7353
012f83cb 7354 if (enable_shadow_vmcs) {
9a2a05b9
PB
7355 /* copy to memory all shadowed fields in case
7356 they were modified */
7357 copy_shadow_to_vmcs12(vmx);
7358 vmx->nested.sync_shadow_vmcs = false;
8ca44e88 7359 vmx_disable_shadow_vmcs(vmx);
012f83cb 7360 }
705699a1 7361 vmx->nested.posted_intr_nv = -1;
4f2777bc
DM
7362
7363 /* Flush VMCS12 to guest memory */
9f744c59
PB
7364 kvm_vcpu_write_guest_page(&vmx->vcpu,
7365 vmx->nested.current_vmptr >> PAGE_SHIFT,
7366 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4f2777bc 7367
9a2a05b9 7368 vmx->nested.current_vmptr = -1ull;
e7953d7f
AG
7369}
7370
ec378aee
NHE
7371/*
7372 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7373 * just stops using VMX.
7374 */
7375static void free_nested(struct vcpu_vmx *vmx)
7376{
7377 if (!vmx->nested.vmxon)
7378 return;
9a2a05b9 7379
ec378aee 7380 vmx->nested.vmxon = false;
5c614b35 7381 free_vpid(vmx->nested.vpid02);
8ca44e88
DM
7382 vmx->nested.posted_intr_nv = -1;
7383 vmx->nested.current_vmptr = -1ull;
d048c098
RK
7384 if (vmx->nested.msr_bitmap) {
7385 free_page((unsigned long)vmx->nested.msr_bitmap);
7386 vmx->nested.msr_bitmap = NULL;
7387 }
355f4fb1 7388 if (enable_shadow_vmcs) {
8ca44e88 7389 vmx_disable_shadow_vmcs(vmx);
355f4fb1
JM
7390 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7391 free_vmcs(vmx->vmcs01.shadow_vmcs);
7392 vmx->vmcs01.shadow_vmcs = NULL;
7393 }
4f2777bc 7394 kfree(vmx->nested.cached_vmcs12);
fe3ef05c
NHE
7395 /* Unpin physical memory we referred to in current vmcs02 */
7396 if (vmx->nested.apic_access_page) {
53a70daf 7397 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 7398 vmx->nested.apic_access_page = NULL;
fe3ef05c 7399 }
a7c0b07d 7400 if (vmx->nested.virtual_apic_page) {
53a70daf 7401 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 7402 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 7403 }
705699a1
WV
7404 if (vmx->nested.pi_desc_page) {
7405 kunmap(vmx->nested.pi_desc_page);
53a70daf 7406 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
7407 vmx->nested.pi_desc_page = NULL;
7408 vmx->nested.pi_desc = NULL;
7409 }
ff2f6fe9
NHE
7410
7411 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
7412}
7413
7414/* Emulate the VMXOFF instruction */
7415static int handle_vmoff(struct kvm_vcpu *vcpu)
7416{
7417 if (!nested_vmx_check_permission(vcpu))
7418 return 1;
7419 free_nested(to_vmx(vcpu));
a25eb114 7420 nested_vmx_succeed(vcpu);
6affcbed 7421 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7422}
7423
27d6c865
NHE
7424/* Emulate the VMCLEAR instruction */
7425static int handle_vmclear(struct kvm_vcpu *vcpu)
7426{
7427 struct vcpu_vmx *vmx = to_vmx(vcpu);
587d7e72 7428 u32 zero = 0;
27d6c865 7429 gpa_t vmptr;
27d6c865
NHE
7430
7431 if (!nested_vmx_check_permission(vcpu))
7432 return 1;
7433
cbf71279 7434 if (nested_vmx_get_vmptr(vcpu, &vmptr))
27d6c865 7435 return 1;
27d6c865 7436
cbf71279
RK
7437 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7438 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7439 return kvm_skip_emulated_instruction(vcpu);
7440 }
7441
7442 if (vmptr == vmx->nested.vmxon_ptr) {
7443 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7444 return kvm_skip_emulated_instruction(vcpu);
7445 }
7446
9a2a05b9 7447 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 7448 nested_release_vmcs12(vmx);
27d6c865 7449
587d7e72
JM
7450 kvm_vcpu_write_guest(vcpu,
7451 vmptr + offsetof(struct vmcs12, launch_state),
7452 &zero, sizeof(zero));
27d6c865
NHE
7453
7454 nested_free_vmcs02(vmx, vmptr);
7455
27d6c865 7456 nested_vmx_succeed(vcpu);
6affcbed 7457 return kvm_skip_emulated_instruction(vcpu);
27d6c865
NHE
7458}
7459
cd232ad0
NHE
7460static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7461
7462/* Emulate the VMLAUNCH instruction */
7463static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7464{
7465 return nested_vmx_run(vcpu, true);
7466}
7467
7468/* Emulate the VMRESUME instruction */
7469static int handle_vmresume(struct kvm_vcpu *vcpu)
7470{
7471
7472 return nested_vmx_run(vcpu, false);
7473}
7474
49f705c5
NHE
7475/*
7476 * Read a vmcs12 field. Since these can have varying lengths and we return
7477 * one type, we chose the biggest type (u64) and zero-extend the return value
7478 * to that size. Note that the caller, handle_vmread, might need to use only
7479 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7480 * 64-bit fields are to be returned).
7481 */
a2ae9df7
PB
7482static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7483 unsigned long field, u64 *ret)
49f705c5
NHE
7484{
7485 short offset = vmcs_field_to_offset(field);
7486 char *p;
7487
7488 if (offset < 0)
a2ae9df7 7489 return offset;
49f705c5
NHE
7490
7491 p = ((char *)(get_vmcs12(vcpu))) + offset;
7492
7493 switch (vmcs_field_type(field)) {
7494 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7495 *ret = *((natural_width *)p);
a2ae9df7 7496 return 0;
49f705c5
NHE
7497 case VMCS_FIELD_TYPE_U16:
7498 *ret = *((u16 *)p);
a2ae9df7 7499 return 0;
49f705c5
NHE
7500 case VMCS_FIELD_TYPE_U32:
7501 *ret = *((u32 *)p);
a2ae9df7 7502 return 0;
49f705c5
NHE
7503 case VMCS_FIELD_TYPE_U64:
7504 *ret = *((u64 *)p);
a2ae9df7 7505 return 0;
49f705c5 7506 default:
a2ae9df7
PB
7507 WARN_ON(1);
7508 return -ENOENT;
49f705c5
NHE
7509 }
7510}
7511
20b97fea 7512
a2ae9df7
PB
7513static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7514 unsigned long field, u64 field_value){
20b97fea
AG
7515 short offset = vmcs_field_to_offset(field);
7516 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7517 if (offset < 0)
a2ae9df7 7518 return offset;
20b97fea
AG
7519
7520 switch (vmcs_field_type(field)) {
7521 case VMCS_FIELD_TYPE_U16:
7522 *(u16 *)p = field_value;
a2ae9df7 7523 return 0;
20b97fea
AG
7524 case VMCS_FIELD_TYPE_U32:
7525 *(u32 *)p = field_value;
a2ae9df7 7526 return 0;
20b97fea
AG
7527 case VMCS_FIELD_TYPE_U64:
7528 *(u64 *)p = field_value;
a2ae9df7 7529 return 0;
20b97fea
AG
7530 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7531 *(natural_width *)p = field_value;
a2ae9df7 7532 return 0;
20b97fea 7533 default:
a2ae9df7
PB
7534 WARN_ON(1);
7535 return -ENOENT;
20b97fea
AG
7536 }
7537
7538}
7539
16f5b903
AG
7540static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7541{
7542 int i;
7543 unsigned long field;
7544 u64 field_value;
355f4fb1 7545 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c2bae893
MK
7546 const unsigned long *fields = shadow_read_write_fields;
7547 const int num_fields = max_shadow_read_write_fields;
16f5b903 7548
282da870
JK
7549 preempt_disable();
7550
16f5b903
AG
7551 vmcs_load(shadow_vmcs);
7552
7553 for (i = 0; i < num_fields; i++) {
7554 field = fields[i];
7555 switch (vmcs_field_type(field)) {
7556 case VMCS_FIELD_TYPE_U16:
7557 field_value = vmcs_read16(field);
7558 break;
7559 case VMCS_FIELD_TYPE_U32:
7560 field_value = vmcs_read32(field);
7561 break;
7562 case VMCS_FIELD_TYPE_U64:
7563 field_value = vmcs_read64(field);
7564 break;
7565 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7566 field_value = vmcs_readl(field);
7567 break;
a2ae9df7
PB
7568 default:
7569 WARN_ON(1);
7570 continue;
16f5b903
AG
7571 }
7572 vmcs12_write_any(&vmx->vcpu, field, field_value);
7573 }
7574
7575 vmcs_clear(shadow_vmcs);
7576 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7577
7578 preempt_enable();
16f5b903
AG
7579}
7580
c3114420
AG
7581static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7582{
c2bae893
MK
7583 const unsigned long *fields[] = {
7584 shadow_read_write_fields,
7585 shadow_read_only_fields
c3114420 7586 };
c2bae893 7587 const int max_fields[] = {
c3114420
AG
7588 max_shadow_read_write_fields,
7589 max_shadow_read_only_fields
7590 };
7591 int i, q;
7592 unsigned long field;
7593 u64 field_value = 0;
355f4fb1 7594 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c3114420
AG
7595
7596 vmcs_load(shadow_vmcs);
7597
c2bae893 7598 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7599 for (i = 0; i < max_fields[q]; i++) {
7600 field = fields[q][i];
7601 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7602
7603 switch (vmcs_field_type(field)) {
7604 case VMCS_FIELD_TYPE_U16:
7605 vmcs_write16(field, (u16)field_value);
7606 break;
7607 case VMCS_FIELD_TYPE_U32:
7608 vmcs_write32(field, (u32)field_value);
7609 break;
7610 case VMCS_FIELD_TYPE_U64:
7611 vmcs_write64(field, (u64)field_value);
7612 break;
7613 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7614 vmcs_writel(field, (long)field_value);
7615 break;
a2ae9df7
PB
7616 default:
7617 WARN_ON(1);
7618 break;
c3114420
AG
7619 }
7620 }
7621 }
7622
7623 vmcs_clear(shadow_vmcs);
7624 vmcs_load(vmx->loaded_vmcs->vmcs);
7625}
7626
49f705c5
NHE
7627/*
7628 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7629 * used before) all generate the same failure when it is missing.
7630 */
7631static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7632{
7633 struct vcpu_vmx *vmx = to_vmx(vcpu);
7634 if (vmx->nested.current_vmptr == -1ull) {
7635 nested_vmx_failInvalid(vcpu);
49f705c5
NHE
7636 return 0;
7637 }
7638 return 1;
7639}
7640
7641static int handle_vmread(struct kvm_vcpu *vcpu)
7642{
7643 unsigned long field;
7644 u64 field_value;
7645 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7646 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7647 gva_t gva = 0;
7648
eb277562 7649 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7650 return 1;
7651
6affcbed
KH
7652 if (!nested_vmx_check_vmcs12(vcpu))
7653 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7654
7655 /* Decode instruction info and find the field to read */
27e6fb5d 7656 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 7657 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 7658 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5 7659 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7660 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7661 }
7662 /*
7663 * Now copy part of this value to register or memory, as requested.
7664 * Note that the number of bits actually copied is 32 or 64 depending
7665 * on the guest's mode (32 or 64 bit), not on the given field's length.
7666 */
7667 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 7668 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
7669 field_value);
7670 } else {
7671 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7672 vmx_instruction_info, true, &gva))
49f705c5 7673 return 1;
70f3aac9 7674 /* _system ok, as hardware has verified cpl=0 */
49f705c5
NHE
7675 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7676 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7677 }
7678
7679 nested_vmx_succeed(vcpu);
6affcbed 7680 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7681}
7682
7683
7684static int handle_vmwrite(struct kvm_vcpu *vcpu)
7685{
7686 unsigned long field;
7687 gva_t gva;
7688 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7689 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7690 /* The value to write might be 32 or 64 bits, depending on L1's long
7691 * mode, and eventually we need to write that into a field of several
7692 * possible lengths. The code below first zero-extends the value to 64
6a6256f9 7693 * bit (field_value), and then copies only the appropriate number of
49f705c5
NHE
7694 * bits into the vmcs12 field.
7695 */
7696 u64 field_value = 0;
7697 struct x86_exception e;
7698
eb277562 7699 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
7700 return 1;
7701
6affcbed
KH
7702 if (!nested_vmx_check_vmcs12(vcpu))
7703 return kvm_skip_emulated_instruction(vcpu);
eb277562 7704
49f705c5 7705 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7706 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7707 (((vmx_instruction_info) >> 3) & 0xf));
7708 else {
7709 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7710 vmx_instruction_info, false, &gva))
49f705c5
NHE
7711 return 1;
7712 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7713 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7714 kvm_inject_page_fault(vcpu, &e);
7715 return 1;
7716 }
7717 }
7718
7719
27e6fb5d 7720 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7721 if (vmcs_field_readonly(field)) {
7722 nested_vmx_failValid(vcpu,
7723 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6affcbed 7724 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7725 }
7726
a2ae9df7 7727 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5 7728 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 7729 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7730 }
7731
7732 nested_vmx_succeed(vcpu);
6affcbed 7733 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
7734}
7735
a8bc284e
JM
7736static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7737{
7738 vmx->nested.current_vmptr = vmptr;
7739 if (enable_shadow_vmcs) {
7740 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7741 SECONDARY_EXEC_SHADOW_VMCS);
7742 vmcs_write64(VMCS_LINK_POINTER,
7743 __pa(vmx->vmcs01.shadow_vmcs));
7744 vmx->nested.sync_shadow_vmcs = true;
7745 }
7746}
7747
63846663
NHE
7748/* Emulate the VMPTRLD instruction */
7749static int handle_vmptrld(struct kvm_vcpu *vcpu)
7750{
7751 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7752 gpa_t vmptr;
63846663
NHE
7753
7754 if (!nested_vmx_check_permission(vcpu))
7755 return 1;
7756
cbf71279 7757 if (nested_vmx_get_vmptr(vcpu, &vmptr))
63846663 7758 return 1;
63846663 7759
cbf71279
RK
7760 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7761 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7762 return kvm_skip_emulated_instruction(vcpu);
7763 }
7764
7765 if (vmptr == vmx->nested.vmxon_ptr) {
7766 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7767 return kvm_skip_emulated_instruction(vcpu);
7768 }
7769
63846663
NHE
7770 if (vmx->nested.current_vmptr != vmptr) {
7771 struct vmcs12 *new_vmcs12;
7772 struct page *page;
5e2f30b7
DH
7773 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7774 if (is_error_page(page)) {
63846663 7775 nested_vmx_failInvalid(vcpu);
6affcbed 7776 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7777 }
7778 new_vmcs12 = kmap(page);
7779 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7780 kunmap(page);
53a70daf 7781 kvm_release_page_clean(page);
63846663
NHE
7782 nested_vmx_failValid(vcpu,
7783 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6affcbed 7784 return kvm_skip_emulated_instruction(vcpu);
63846663 7785 }
63846663 7786
9a2a05b9 7787 nested_release_vmcs12(vmx);
4f2777bc
DM
7788 /*
7789 * Load VMCS12 from guest memory since it is not already
7790 * cached.
7791 */
9f744c59
PB
7792 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
7793 kunmap(page);
53a70daf 7794 kvm_release_page_clean(page);
9f744c59 7795
a8bc284e 7796 set_current_vmptr(vmx, vmptr);
63846663
NHE
7797 }
7798
7799 nested_vmx_succeed(vcpu);
6affcbed 7800 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
7801}
7802
6a4d7550
NHE
7803/* Emulate the VMPTRST instruction */
7804static int handle_vmptrst(struct kvm_vcpu *vcpu)
7805{
7806 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7807 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7808 gva_t vmcs_gva;
7809 struct x86_exception e;
7810
7811 if (!nested_vmx_check_permission(vcpu))
7812 return 1;
7813
7814 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7815 vmx_instruction_info, true, &vmcs_gva))
6a4d7550 7816 return 1;
70f3aac9 7817 /* ok to use *_system, as hardware has verified cpl=0 */
6a4d7550
NHE
7818 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7819 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7820 sizeof(u64), &e)) {
7821 kvm_inject_page_fault(vcpu, &e);
7822 return 1;
7823 }
7824 nested_vmx_succeed(vcpu);
6affcbed 7825 return kvm_skip_emulated_instruction(vcpu);
6a4d7550
NHE
7826}
7827
bfd0a56b
NHE
7828/* Emulate the INVEPT instruction */
7829static int handle_invept(struct kvm_vcpu *vcpu)
7830{
b9c237bb 7831 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7832 u32 vmx_instruction_info, types;
7833 unsigned long type;
7834 gva_t gva;
7835 struct x86_exception e;
7836 struct {
7837 u64 eptp, gpa;
7838 } operand;
bfd0a56b 7839
b9c237bb
WV
7840 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7841 SECONDARY_EXEC_ENABLE_EPT) ||
7842 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7843 kvm_queue_exception(vcpu, UD_VECTOR);
7844 return 1;
7845 }
7846
7847 if (!nested_vmx_check_permission(vcpu))
7848 return 1;
7849
bfd0a56b 7850 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7851 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7852
b9c237bb 7853 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b 7854
85c856b3 7855 if (type >= 32 || !(types & (1 << type))) {
bfd0a56b
NHE
7856 nested_vmx_failValid(vcpu,
7857 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7858 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7859 }
7860
7861 /* According to the Intel VMX instruction reference, the memory
7862 * operand is read even if it isn't needed (e.g., for type==global)
7863 */
7864 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7865 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7866 return 1;
7867 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7868 sizeof(operand), &e)) {
7869 kvm_inject_page_fault(vcpu, &e);
7870 return 1;
7871 }
7872
7873 switch (type) {
bfd0a56b 7874 case VMX_EPT_EXTENT_GLOBAL:
45e11817
BD
7875 /*
7876 * TODO: track mappings and invalidate
7877 * single context requests appropriately
7878 */
7879 case VMX_EPT_EXTENT_CONTEXT:
bfd0a56b 7880 kvm_mmu_sync_roots(vcpu);
77c3913b 7881 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7882 nested_vmx_succeed(vcpu);
7883 break;
7884 default:
7885 BUG_ON(1);
7886 break;
7887 }
7888
6affcbed 7889 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7890}
7891
a642fc30
PM
7892static int handle_invvpid(struct kvm_vcpu *vcpu)
7893{
99b83ac8
WL
7894 struct vcpu_vmx *vmx = to_vmx(vcpu);
7895 u32 vmx_instruction_info;
7896 unsigned long type, types;
7897 gva_t gva;
7898 struct x86_exception e;
40352605
JM
7899 struct {
7900 u64 vpid;
7901 u64 gla;
7902 } operand;
99b83ac8
WL
7903
7904 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7905 SECONDARY_EXEC_ENABLE_VPID) ||
7906 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7907 kvm_queue_exception(vcpu, UD_VECTOR);
7908 return 1;
7909 }
7910
7911 if (!nested_vmx_check_permission(vcpu))
7912 return 1;
7913
7914 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7915 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7916
bcdde302
JD
7917 types = (vmx->nested.nested_vmx_vpid_caps &
7918 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
99b83ac8 7919
85c856b3 7920 if (type >= 32 || !(types & (1 << type))) {
99b83ac8
WL
7921 nested_vmx_failValid(vcpu,
7922 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7923 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7924 }
7925
7926 /* according to the intel vmx instruction reference, the memory
7927 * operand is read even if it isn't needed (e.g., for type==global)
7928 */
7929 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7930 vmx_instruction_info, false, &gva))
7931 return 1;
40352605
JM
7932 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7933 sizeof(operand), &e)) {
99b83ac8
WL
7934 kvm_inject_page_fault(vcpu, &e);
7935 return 1;
7936 }
40352605
JM
7937 if (operand.vpid >> 16) {
7938 nested_vmx_failValid(vcpu,
7939 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7940 return kvm_skip_emulated_instruction(vcpu);
7941 }
99b83ac8
WL
7942
7943 switch (type) {
bcdde302 7944 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
fd8cb433 7945 if (is_noncanonical_address(operand.gla, vcpu)) {
40352605
JM
7946 nested_vmx_failValid(vcpu,
7947 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7948 return kvm_skip_emulated_instruction(vcpu);
7949 }
7950 /* fall through */
ef697a71 7951 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
bcdde302 7952 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
40352605 7953 if (!operand.vpid) {
bcdde302
JD
7954 nested_vmx_failValid(vcpu,
7955 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 7956 return kvm_skip_emulated_instruction(vcpu);
bcdde302
JD
7957 }
7958 break;
99b83ac8 7959 case VMX_VPID_EXTENT_ALL_CONTEXT:
99b83ac8
WL
7960 break;
7961 default:
bcdde302 7962 WARN_ON_ONCE(1);
6affcbed 7963 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
7964 }
7965
bcdde302
JD
7966 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7967 nested_vmx_succeed(vcpu);
7968
6affcbed 7969 return kvm_skip_emulated_instruction(vcpu);
a642fc30
PM
7970}
7971
843e4330
KH
7972static int handle_pml_full(struct kvm_vcpu *vcpu)
7973{
7974 unsigned long exit_qualification;
7975
7976 trace_kvm_pml_full(vcpu->vcpu_id);
7977
7978 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7979
7980 /*
7981 * PML buffer FULL happened while executing iret from NMI,
7982 * "blocked by NMI" bit has to be set before next VM entry.
7983 */
7984 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
843e4330
KH
7985 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7986 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7987 GUEST_INTR_STATE_NMI);
7988
7989 /*
7990 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7991 * here.., and there's no userspace involvement needed for PML.
7992 */
7993 return 1;
7994}
7995
64672c95
YJ
7996static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7997{
7998 kvm_lapic_expired_hv_timer(vcpu);
7999 return 1;
8000}
8001
41ab9372
BD
8002static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
8003{
8004 struct vcpu_vmx *vmx = to_vmx(vcpu);
41ab9372
BD
8005 int maxphyaddr = cpuid_maxphyaddr(vcpu);
8006
8007 /* Check for memory type validity */
bb97a016
DH
8008 switch (address & VMX_EPTP_MT_MASK) {
8009 case VMX_EPTP_MT_UC:
41ab9372
BD
8010 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_UC_BIT))
8011 return false;
8012 break;
bb97a016 8013 case VMX_EPTP_MT_WB:
41ab9372
BD
8014 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_WB_BIT))
8015 return false;
8016 break;
8017 default:
8018 return false;
8019 }
8020
bb97a016
DH
8021 /* only 4 levels page-walk length are valid */
8022 if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
41ab9372
BD
8023 return false;
8024
8025 /* Reserved bits should not be set */
8026 if (address >> maxphyaddr || ((address >> 7) & 0x1f))
8027 return false;
8028
8029 /* AD, if set, should be supported */
bb97a016 8030 if (address & VMX_EPTP_AD_ENABLE_BIT) {
41ab9372
BD
8031 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_AD_BIT))
8032 return false;
8033 }
8034
8035 return true;
8036}
8037
8038static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
8039 struct vmcs12 *vmcs12)
8040{
8041 u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
8042 u64 address;
8043 bool accessed_dirty;
8044 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8045
8046 if (!nested_cpu_has_eptp_switching(vmcs12) ||
8047 !nested_cpu_has_ept(vmcs12))
8048 return 1;
8049
8050 if (index >= VMFUNC_EPTP_ENTRIES)
8051 return 1;
8052
8053
8054 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
8055 &address, index * 8, 8))
8056 return 1;
8057
bb97a016 8058 accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
41ab9372
BD
8059
8060 /*
8061 * If the (L2) guest does a vmfunc to the currently
8062 * active ept pointer, we don't have to do anything else
8063 */
8064 if (vmcs12->ept_pointer != address) {
8065 if (!valid_ept_address(vcpu, address))
8066 return 1;
8067
8068 kvm_mmu_unload(vcpu);
8069 mmu->ept_ad = accessed_dirty;
8070 mmu->base_role.ad_disabled = !accessed_dirty;
8071 vmcs12->ept_pointer = address;
8072 /*
8073 * TODO: Check what's the correct approach in case
8074 * mmu reload fails. Currently, we just let the next
8075 * reload potentially fail
8076 */
8077 kvm_mmu_reload(vcpu);
8078 }
8079
8080 return 0;
8081}
8082
2a499e49
BD
8083static int handle_vmfunc(struct kvm_vcpu *vcpu)
8084{
27c42a1b
BD
8085 struct vcpu_vmx *vmx = to_vmx(vcpu);
8086 struct vmcs12 *vmcs12;
8087 u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
8088
8089 /*
8090 * VMFUNC is only supported for nested guests, but we always enable the
8091 * secondary control for simplicity; for non-nested mode, fake that we
8092 * didn't by injecting #UD.
8093 */
8094 if (!is_guest_mode(vcpu)) {
8095 kvm_queue_exception(vcpu, UD_VECTOR);
8096 return 1;
8097 }
8098
8099 vmcs12 = get_vmcs12(vcpu);
8100 if ((vmcs12->vm_function_control & (1 << function)) == 0)
8101 goto fail;
41ab9372
BD
8102
8103 switch (function) {
8104 case 0:
8105 if (nested_vmx_eptp_switching(vcpu, vmcs12))
8106 goto fail;
8107 break;
8108 default:
8109 goto fail;
8110 }
8111 return kvm_skip_emulated_instruction(vcpu);
27c42a1b
BD
8112
8113fail:
8114 nested_vmx_vmexit(vcpu, vmx->exit_reason,
8115 vmcs_read32(VM_EXIT_INTR_INFO),
8116 vmcs_readl(EXIT_QUALIFICATION));
2a499e49
BD
8117 return 1;
8118}
8119
6aa8b732
AK
8120/*
8121 * The exit handlers return 1 if the exit was handled fully and guest execution
8122 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
8123 * to be done to userspace and return 0.
8124 */
772e0318 8125static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
8126 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
8127 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 8128 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 8129 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 8130 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
8131 [EXIT_REASON_CR_ACCESS] = handle_cr,
8132 [EXIT_REASON_DR_ACCESS] = handle_dr,
8133 [EXIT_REASON_CPUID] = handle_cpuid,
8134 [EXIT_REASON_MSR_READ] = handle_rdmsr,
8135 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
8136 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
8137 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 8138 [EXIT_REASON_INVD] = handle_invd,
a7052897 8139 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 8140 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 8141 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 8142 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 8143 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 8144 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 8145 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 8146 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 8147 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 8148 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
8149 [EXIT_REASON_VMOFF] = handle_vmoff,
8150 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
8151 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
8152 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 8153 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 8154 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 8155 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 8156 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 8157 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 8158 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
8159 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
8160 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 8161 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 8162 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 8163 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 8164 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 8165 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 8166 [EXIT_REASON_INVVPID] = handle_invvpid,
45ec368c 8167 [EXIT_REASON_RDRAND] = handle_invalid_op,
75f4fc8d 8168 [EXIT_REASON_RDSEED] = handle_invalid_op,
f53cd63c
WL
8169 [EXIT_REASON_XSAVES] = handle_xsaves,
8170 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 8171 [EXIT_REASON_PML_FULL] = handle_pml_full,
2a499e49 8172 [EXIT_REASON_VMFUNC] = handle_vmfunc,
64672c95 8173 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6aa8b732
AK
8174};
8175
8176static const int kvm_vmx_max_exit_handlers =
50a3485c 8177 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 8178
908a7bdd
JK
8179static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
8180 struct vmcs12 *vmcs12)
8181{
8182 unsigned long exit_qualification;
8183 gpa_t bitmap, last_bitmap;
8184 unsigned int port;
8185 int size;
8186 u8 b;
8187
908a7bdd 8188 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 8189 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
8190
8191 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8192
8193 port = exit_qualification >> 16;
8194 size = (exit_qualification & 7) + 1;
8195
8196 last_bitmap = (gpa_t)-1;
8197 b = -1;
8198
8199 while (size > 0) {
8200 if (port < 0x8000)
8201 bitmap = vmcs12->io_bitmap_a;
8202 else if (port < 0x10000)
8203 bitmap = vmcs12->io_bitmap_b;
8204 else
1d804d07 8205 return true;
908a7bdd
JK
8206 bitmap += (port & 0x7fff) / 8;
8207
8208 if (last_bitmap != bitmap)
54bf36aa 8209 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 8210 return true;
908a7bdd 8211 if (b & (1 << (port & 7)))
1d804d07 8212 return true;
908a7bdd
JK
8213
8214 port++;
8215 size--;
8216 last_bitmap = bitmap;
8217 }
8218
1d804d07 8219 return false;
908a7bdd
JK
8220}
8221
644d711a
NHE
8222/*
8223 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8224 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8225 * disinterest in the current event (read or write a specific MSR) by using an
8226 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8227 */
8228static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8229 struct vmcs12 *vmcs12, u32 exit_reason)
8230{
8231 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8232 gpa_t bitmap;
8233
cbd29cb6 8234 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 8235 return true;
644d711a
NHE
8236
8237 /*
8238 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8239 * for the four combinations of read/write and low/high MSR numbers.
8240 * First we need to figure out which of the four to use:
8241 */
8242 bitmap = vmcs12->msr_bitmap;
8243 if (exit_reason == EXIT_REASON_MSR_WRITE)
8244 bitmap += 2048;
8245 if (msr_index >= 0xc0000000) {
8246 msr_index -= 0xc0000000;
8247 bitmap += 1024;
8248 }
8249
8250 /* Then read the msr_index'th bit from this bitmap: */
8251 if (msr_index < 1024*8) {
8252 unsigned char b;
54bf36aa 8253 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 8254 return true;
644d711a
NHE
8255 return 1 & (b >> (msr_index & 7));
8256 } else
1d804d07 8257 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
8258}
8259
8260/*
8261 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8262 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8263 * intercept (via guest_host_mask etc.) the current event.
8264 */
8265static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8266 struct vmcs12 *vmcs12)
8267{
8268 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8269 int cr = exit_qualification & 15;
e1d39b17
JS
8270 int reg;
8271 unsigned long val;
644d711a
NHE
8272
8273 switch ((exit_qualification >> 4) & 3) {
8274 case 0: /* mov to cr */
e1d39b17
JS
8275 reg = (exit_qualification >> 8) & 15;
8276 val = kvm_register_readl(vcpu, reg);
644d711a
NHE
8277 switch (cr) {
8278 case 0:
8279 if (vmcs12->cr0_guest_host_mask &
8280 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8281 return true;
644d711a
NHE
8282 break;
8283 case 3:
8284 if ((vmcs12->cr3_target_count >= 1 &&
8285 vmcs12->cr3_target_value0 == val) ||
8286 (vmcs12->cr3_target_count >= 2 &&
8287 vmcs12->cr3_target_value1 == val) ||
8288 (vmcs12->cr3_target_count >= 3 &&
8289 vmcs12->cr3_target_value2 == val) ||
8290 (vmcs12->cr3_target_count >= 4 &&
8291 vmcs12->cr3_target_value3 == val))
1d804d07 8292 return false;
644d711a 8293 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 8294 return true;
644d711a
NHE
8295 break;
8296 case 4:
8297 if (vmcs12->cr4_guest_host_mask &
8298 (vmcs12->cr4_read_shadow ^ val))
1d804d07 8299 return true;
644d711a
NHE
8300 break;
8301 case 8:
8302 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 8303 return true;
644d711a
NHE
8304 break;
8305 }
8306 break;
8307 case 2: /* clts */
8308 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8309 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 8310 return true;
644d711a
NHE
8311 break;
8312 case 1: /* mov from cr */
8313 switch (cr) {
8314 case 3:
8315 if (vmcs12->cpu_based_vm_exec_control &
8316 CPU_BASED_CR3_STORE_EXITING)
1d804d07 8317 return true;
644d711a
NHE
8318 break;
8319 case 8:
8320 if (vmcs12->cpu_based_vm_exec_control &
8321 CPU_BASED_CR8_STORE_EXITING)
1d804d07 8322 return true;
644d711a
NHE
8323 break;
8324 }
8325 break;
8326 case 3: /* lmsw */
8327 /*
8328 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8329 * cr0. Other attempted changes are ignored, with no exit.
8330 */
e1d39b17 8331 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
644d711a
NHE
8332 if (vmcs12->cr0_guest_host_mask & 0xe &
8333 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8334 return true;
644d711a
NHE
8335 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8336 !(vmcs12->cr0_read_shadow & 0x1) &&
8337 (val & 0x1))
1d804d07 8338 return true;
644d711a
NHE
8339 break;
8340 }
1d804d07 8341 return false;
644d711a
NHE
8342}
8343
8344/*
8345 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8346 * should handle it ourselves in L0 (and then continue L2). Only call this
8347 * when in is_guest_mode (L2).
8348 */
7313c698 8349static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
644d711a 8350{
644d711a
NHE
8351 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8352 struct vcpu_vmx *vmx = to_vmx(vcpu);
8353 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8354
4f350c6d
JM
8355 if (vmx->nested.nested_run_pending)
8356 return false;
8357
8358 if (unlikely(vmx->fail)) {
8359 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8360 vmcs_read32(VM_INSTRUCTION_ERROR));
8361 return true;
8362 }
542060ea 8363
c9f04407
DM
8364 /*
8365 * The host physical addresses of some pages of guest memory
8366 * are loaded into VMCS02 (e.g. L1's Virtual APIC Page). The CPU
8367 * may write to these pages via their host physical address while
8368 * L2 is running, bypassing any address-translation-based dirty
8369 * tracking (e.g. EPT write protection).
8370 *
8371 * Mark them dirty on every exit from L2 to prevent them from
8372 * getting out of sync with dirty tracking.
8373 */
8374 nested_mark_vmcs12_pages_dirty(vcpu);
8375
4f350c6d
JM
8376 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8377 vmcs_readl(EXIT_QUALIFICATION),
8378 vmx->idt_vectoring_info,
8379 intr_info,
8380 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8381 KVM_ISA_VMX);
644d711a
NHE
8382
8383 switch (exit_reason) {
8384 case EXIT_REASON_EXCEPTION_NMI:
ef85b673 8385 if (is_nmi(intr_info))
1d804d07 8386 return false;
644d711a 8387 else if (is_page_fault(intr_info))
52a5c155 8388 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
e504c909 8389 else if (is_no_device(intr_info) &&
ccf9844e 8390 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 8391 return false;
6f05485d
JK
8392 else if (is_debug(intr_info) &&
8393 vcpu->guest_debug &
8394 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8395 return false;
8396 else if (is_breakpoint(intr_info) &&
8397 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8398 return false;
644d711a
NHE
8399 return vmcs12->exception_bitmap &
8400 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8401 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 8402 return false;
644d711a 8403 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 8404 return true;
644d711a 8405 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 8406 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 8407 case EXIT_REASON_NMI_WINDOW:
3b656cf7 8408 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 8409 case EXIT_REASON_TASK_SWITCH:
1d804d07 8410 return true;
644d711a 8411 case EXIT_REASON_CPUID:
1d804d07 8412 return true;
644d711a
NHE
8413 case EXIT_REASON_HLT:
8414 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8415 case EXIT_REASON_INVD:
1d804d07 8416 return true;
644d711a
NHE
8417 case EXIT_REASON_INVLPG:
8418 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8419 case EXIT_REASON_RDPMC:
8420 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
a5f46457
PB
8421 case EXIT_REASON_RDRAND:
8422 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8423 case EXIT_REASON_RDSEED:
8424 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
b3a2a907 8425 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
8426 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8427 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8428 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8429 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8430 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8431 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 8432 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
8433 /*
8434 * VMX instructions trap unconditionally. This allows L1 to
8435 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8436 */
1d804d07 8437 return true;
644d711a
NHE
8438 case EXIT_REASON_CR_ACCESS:
8439 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8440 case EXIT_REASON_DR_ACCESS:
8441 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8442 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 8443 return nested_vmx_exit_handled_io(vcpu, vmcs12);
1b07304c
PB
8444 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8445 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
644d711a
NHE
8446 case EXIT_REASON_MSR_READ:
8447 case EXIT_REASON_MSR_WRITE:
8448 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8449 case EXIT_REASON_INVALID_STATE:
1d804d07 8450 return true;
644d711a
NHE
8451 case EXIT_REASON_MWAIT_INSTRUCTION:
8452 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
8453 case EXIT_REASON_MONITOR_TRAP_FLAG:
8454 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
8455 case EXIT_REASON_MONITOR_INSTRUCTION:
8456 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8457 case EXIT_REASON_PAUSE_INSTRUCTION:
8458 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8459 nested_cpu_has2(vmcs12,
8460 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8461 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 8462 return false;
644d711a 8463 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 8464 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
8465 case EXIT_REASON_APIC_ACCESS:
8466 return nested_cpu_has2(vmcs12,
8467 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 8468 case EXIT_REASON_APIC_WRITE:
608406e2
WV
8469 case EXIT_REASON_EOI_INDUCED:
8470 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 8471 return true;
644d711a 8472 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
8473 /*
8474 * L0 always deals with the EPT violation. If nested EPT is
8475 * used, and the nested mmu code discovers that the address is
8476 * missing in the guest EPT table (EPT12), the EPT violation
8477 * will be injected with nested_ept_inject_page_fault()
8478 */
1d804d07 8479 return false;
644d711a 8480 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
8481 /*
8482 * L2 never uses directly L1's EPT, but rather L0's own EPT
8483 * table (shadow on EPT) or a merged EPT table that L0 built
8484 * (EPT on EPT). So any problems with the structure of the
8485 * table is L0's fault.
8486 */
1d804d07 8487 return false;
90a2db6d
PB
8488 case EXIT_REASON_INVPCID:
8489 return
8490 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
8491 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
644d711a
NHE
8492 case EXIT_REASON_WBINVD:
8493 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8494 case EXIT_REASON_XSETBV:
1d804d07 8495 return true;
81dc01f7
WL
8496 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8497 /*
8498 * This should never happen, since it is not possible to
8499 * set XSS to a non-zero value---neither in L1 nor in L2.
8500 * If if it were, XSS would have to be checked against
8501 * the XSS exit bitmap in vmcs12.
8502 */
8503 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
55123e3c
WL
8504 case EXIT_REASON_PREEMPTION_TIMER:
8505 return false;
ab007cc9 8506 case EXIT_REASON_PML_FULL:
03efce6f 8507 /* We emulate PML support to L1. */
ab007cc9 8508 return false;
2a499e49
BD
8509 case EXIT_REASON_VMFUNC:
8510 /* VM functions are emulated through L2->L0 vmexits. */
8511 return false;
644d711a 8512 default:
1d804d07 8513 return true;
644d711a
NHE
8514 }
8515}
8516
7313c698
PB
8517static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8518{
8519 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8520
8521 /*
8522 * At this point, the exit interruption info in exit_intr_info
8523 * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
8524 * we need to query the in-kernel LAPIC.
8525 */
8526 WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8527 if ((exit_intr_info &
8528 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8529 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8530 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8531 vmcs12->vm_exit_intr_error_code =
8532 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8533 }
8534
8535 nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8536 vmcs_readl(EXIT_QUALIFICATION));
8537 return 1;
8538}
8539
586f9607
AK
8540static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8541{
8542 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8543 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8544}
8545
a3eaa864 8546static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 8547{
a3eaa864
KH
8548 if (vmx->pml_pg) {
8549 __free_page(vmx->pml_pg);
8550 vmx->pml_pg = NULL;
8551 }
843e4330
KH
8552}
8553
54bf36aa 8554static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 8555{
54bf36aa 8556 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
8557 u64 *pml_buf;
8558 u16 pml_idx;
8559
8560 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8561
8562 /* Do nothing if PML buffer is empty */
8563 if (pml_idx == (PML_ENTITY_NUM - 1))
8564 return;
8565
8566 /* PML index always points to next available PML buffer entity */
8567 if (pml_idx >= PML_ENTITY_NUM)
8568 pml_idx = 0;
8569 else
8570 pml_idx++;
8571
8572 pml_buf = page_address(vmx->pml_pg);
8573 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8574 u64 gpa;
8575
8576 gpa = pml_buf[pml_idx];
8577 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 8578 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
8579 }
8580
8581 /* reset PML index */
8582 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8583}
8584
8585/*
8586 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8587 * Called before reporting dirty_bitmap to userspace.
8588 */
8589static void kvm_flush_pml_buffers(struct kvm *kvm)
8590{
8591 int i;
8592 struct kvm_vcpu *vcpu;
8593 /*
8594 * We only need to kick vcpu out of guest mode here, as PML buffer
8595 * is flushed at beginning of all VMEXITs, and it's obvious that only
8596 * vcpus running in guest are possible to have unflushed GPAs in PML
8597 * buffer.
8598 */
8599 kvm_for_each_vcpu(i, vcpu, kvm)
8600 kvm_vcpu_kick(vcpu);
8601}
8602
4eb64dce
PB
8603static void vmx_dump_sel(char *name, uint32_t sel)
8604{
8605 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
96794e4e 8606 name, vmcs_read16(sel),
4eb64dce
PB
8607 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8608 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8609 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8610}
8611
8612static void vmx_dump_dtsel(char *name, uint32_t limit)
8613{
8614 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8615 name, vmcs_read32(limit),
8616 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8617}
8618
8619static void dump_vmcs(void)
8620{
8621 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8622 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8623 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8624 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8625 u32 secondary_exec_control = 0;
8626 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 8627 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
8628 int i, n;
8629
8630 if (cpu_has_secondary_exec_ctrls())
8631 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8632
8633 pr_err("*** Guest State ***\n");
8634 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8635 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8636 vmcs_readl(CR0_GUEST_HOST_MASK));
8637 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8638 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8639 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8640 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8641 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8642 {
845c5b40
PB
8643 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8644 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8645 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8646 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
4eb64dce
PB
8647 }
8648 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8649 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8650 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8651 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8652 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8653 vmcs_readl(GUEST_SYSENTER_ESP),
8654 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8655 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8656 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8657 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8658 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8659 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8660 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8661 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8662 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8663 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8664 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8665 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8666 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
845c5b40
PB
8667 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8668 efer, vmcs_read64(GUEST_IA32_PAT));
8669 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8670 vmcs_read64(GUEST_IA32_DEBUGCTL),
4eb64dce
PB
8671 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8672 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8673 pr_err("PerfGlobCtl = 0x%016llx\n",
8674 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
4eb64dce 8675 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
845c5b40 8676 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
4eb64dce
PB
8677 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8678 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8679 vmcs_read32(GUEST_ACTIVITY_STATE));
8680 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8681 pr_err("InterruptStatus = %04x\n",
8682 vmcs_read16(GUEST_INTR_STATUS));
8683
8684 pr_err("*** Host State ***\n");
8685 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8686 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8687 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8688 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8689 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8690 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8691 vmcs_read16(HOST_TR_SELECTOR));
8692 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8693 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8694 vmcs_readl(HOST_TR_BASE));
8695 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8696 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8697 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8698 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8699 vmcs_readl(HOST_CR4));
8700 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8701 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8702 vmcs_read32(HOST_IA32_SYSENTER_CS),
8703 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8704 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
845c5b40
PB
8705 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8706 vmcs_read64(HOST_IA32_EFER),
8707 vmcs_read64(HOST_IA32_PAT));
4eb64dce 8708 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8709 pr_err("PerfGlobCtl = 0x%016llx\n",
8710 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
4eb64dce
PB
8711
8712 pr_err("*** Control State ***\n");
8713 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8714 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8715 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8716 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8717 vmcs_read32(EXCEPTION_BITMAP),
8718 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8719 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8720 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8721 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8722 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8723 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8724 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8725 vmcs_read32(VM_EXIT_INTR_INFO),
8726 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8727 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8728 pr_err(" reason=%08x qualification=%016lx\n",
8729 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8730 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8731 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8732 vmcs_read32(IDT_VECTORING_ERROR_CODE));
845c5b40 8733 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8cfe9866 8734 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
845c5b40
PB
8735 pr_err("TSC Multiplier = 0x%016llx\n",
8736 vmcs_read64(TSC_MULTIPLIER));
4eb64dce
PB
8737 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8738 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8739 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8740 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8741 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
845c5b40 8742 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
4eb64dce
PB
8743 n = vmcs_read32(CR3_TARGET_COUNT);
8744 for (i = 0; i + 1 < n; i += 4)
8745 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8746 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8747 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8748 if (i < n)
8749 pr_err("CR3 target%u=%016lx\n",
8750 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8751 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8752 pr_err("PLE Gap=%08x Window=%08x\n",
8753 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8754 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8755 pr_err("Virtual processor ID = 0x%04x\n",
8756 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8757}
8758
6aa8b732
AK
8759/*
8760 * The guest has exited. See if we can fix it or if we need userspace
8761 * assistance.
8762 */
851ba692 8763static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 8764{
29bd8a78 8765 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 8766 u32 exit_reason = vmx->exit_reason;
1155f76a 8767 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 8768
8b89fe1f
PB
8769 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8770
843e4330
KH
8771 /*
8772 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8773 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8774 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8775 * mode as if vcpus is in root mode, the PML buffer must has been
8776 * flushed already.
8777 */
8778 if (enable_pml)
54bf36aa 8779 vmx_flush_pml_buffer(vcpu);
843e4330 8780
80ced186 8781 /* If guest state is invalid, start emulating */
14168786 8782 if (vmx->emulation_required)
80ced186 8783 return handle_invalid_guest_state(vcpu);
1d5a4d9b 8784
7313c698
PB
8785 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
8786 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
644d711a 8787
5120702e 8788 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 8789 dump_vmcs();
5120702e
MG
8790 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8791 vcpu->run->fail_entry.hardware_entry_failure_reason
8792 = exit_reason;
8793 return 0;
8794 }
8795
29bd8a78 8796 if (unlikely(vmx->fail)) {
851ba692
AK
8797 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8798 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
8799 = vmcs_read32(VM_INSTRUCTION_ERROR);
8800 return 0;
8801 }
6aa8b732 8802
b9bf6882
XG
8803 /*
8804 * Note:
8805 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8806 * delivery event since it indicates guest is accessing MMIO.
8807 * The vm-exit can be triggered again after return to guest that
8808 * will cause infinite loop.
8809 */
d77c26fc 8810 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 8811 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 8812 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b244c9fc 8813 exit_reason != EXIT_REASON_PML_FULL &&
b9bf6882
XG
8814 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8815 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8816 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
70bcd708 8817 vcpu->run->internal.ndata = 3;
b9bf6882
XG
8818 vcpu->run->internal.data[0] = vectoring_info;
8819 vcpu->run->internal.data[1] = exit_reason;
70bcd708
PB
8820 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8821 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8822 vcpu->run->internal.ndata++;
8823 vcpu->run->internal.data[3] =
8824 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8825 }
b9bf6882
XG
8826 return 0;
8827 }
3b86cd99 8828
6aa8b732
AK
8829 if (exit_reason < kvm_vmx_max_exit_handlers
8830 && kvm_vmx_exit_handlers[exit_reason])
851ba692 8831 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 8832 else {
6c6c5e03
RK
8833 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8834 exit_reason);
2bc19dc3
MT
8835 kvm_queue_exception(vcpu, UD_VECTOR);
8836 return 1;
6aa8b732 8837 }
6aa8b732
AK
8838}
8839
95ba8273 8840static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 8841{
a7c0b07d
WL
8842 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8843
8844 if (is_guest_mode(vcpu) &&
8845 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8846 return;
8847
95ba8273 8848 if (irr == -1 || tpr < irr) {
6e5d865c
YS
8849 vmcs_write32(TPR_THRESHOLD, 0);
8850 return;
8851 }
8852
95ba8273 8853 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
8854}
8855
8d14695f
YZ
8856static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8857{
8858 u32 sec_exec_control;
8859
dccbfcf5
RK
8860 /* Postpone execution until vmcs01 is the current VMCS. */
8861 if (is_guest_mode(vcpu)) {
8862 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8863 return;
8864 }
8865
f6e90f9e 8866 if (!cpu_has_vmx_virtualize_x2apic_mode())
8d14695f
YZ
8867 return;
8868
35754c98 8869 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
8870 return;
8871
8872 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8873
8874 if (set) {
8875 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8876 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8877 } else {
8878 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8879 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
fb6c8198 8880 vmx_flush_tlb_ept_only(vcpu);
8d14695f
YZ
8881 }
8882 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8883
8884 vmx_set_msr_bitmap(vcpu);
8885}
8886
38b99173
TC
8887static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8888{
8889 struct vcpu_vmx *vmx = to_vmx(vcpu);
8890
8891 /*
8892 * Currently we do not handle the nested case where L2 has an
8893 * APIC access page of its own; that page is still pinned.
8894 * Hence, we skip the case where the VCPU is in guest mode _and_
8895 * L1 prepared an APIC access page for L2.
8896 *
8897 * For the case where L1 and L2 share the same APIC access page
8898 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8899 * in the vmcs12), this function will only update either the vmcs01
8900 * or the vmcs02. If the former, the vmcs02 will be updated by
8901 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8902 * the next L2->L1 exit.
8903 */
8904 if (!is_guest_mode(vcpu) ||
4f2777bc 8905 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
fb6c8198 8906 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
38b99173 8907 vmcs_write64(APIC_ACCESS_ADDR, hpa);
fb6c8198
JM
8908 vmx_flush_tlb_ept_only(vcpu);
8909 }
38b99173
TC
8910}
8911
67c9dddc 8912static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
c7c9c56c
YZ
8913{
8914 u16 status;
8915 u8 old;
8916
67c9dddc
PB
8917 if (max_isr == -1)
8918 max_isr = 0;
c7c9c56c
YZ
8919
8920 status = vmcs_read16(GUEST_INTR_STATUS);
8921 old = status >> 8;
67c9dddc 8922 if (max_isr != old) {
c7c9c56c 8923 status &= 0xff;
67c9dddc 8924 status |= max_isr << 8;
c7c9c56c
YZ
8925 vmcs_write16(GUEST_INTR_STATUS, status);
8926 }
8927}
8928
8929static void vmx_set_rvi(int vector)
8930{
8931 u16 status;
8932 u8 old;
8933
4114c27d
WW
8934 if (vector == -1)
8935 vector = 0;
8936
c7c9c56c
YZ
8937 status = vmcs_read16(GUEST_INTR_STATUS);
8938 old = (u8)status & 0xff;
8939 if ((u8)vector != old) {
8940 status &= ~0xff;
8941 status |= (u8)vector;
8942 vmcs_write16(GUEST_INTR_STATUS, status);
8943 }
8944}
8945
8946static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8947{
4114c27d
WW
8948 if (!is_guest_mode(vcpu)) {
8949 vmx_set_rvi(max_irr);
8950 return;
8951 }
8952
c7c9c56c
YZ
8953 if (max_irr == -1)
8954 return;
8955
963fee16 8956 /*
4114c27d
WW
8957 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8958 * handles it.
963fee16 8959 */
4114c27d 8960 if (nested_exit_on_intr(vcpu))
963fee16
WL
8961 return;
8962
963fee16 8963 /*
4114c27d 8964 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
8965 * is run without virtual interrupt delivery.
8966 */
8967 if (!kvm_event_needs_reinjection(vcpu) &&
8968 vmx_interrupt_allowed(vcpu)) {
8969 kvm_queue_interrupt(vcpu, max_irr, false);
8970 vmx_inject_irq(vcpu);
8971 }
c7c9c56c
YZ
8972}
8973
76dfafd5 8974static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
810e6def
PB
8975{
8976 struct vcpu_vmx *vmx = to_vmx(vcpu);
76dfafd5 8977 int max_irr;
810e6def 8978
76dfafd5
PB
8979 WARN_ON(!vcpu->arch.apicv_active);
8980 if (pi_test_on(&vmx->pi_desc)) {
8981 pi_clear_on(&vmx->pi_desc);
8982 /*
8983 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8984 * But on x86 this is just a compiler barrier anyway.
8985 */
8986 smp_mb__after_atomic();
8987 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8988 } else {
8989 max_irr = kvm_lapic_find_highest_irr(vcpu);
8990 }
8991 vmx_hwapic_irr_update(vcpu, max_irr);
8992 return max_irr;
810e6def
PB
8993}
8994
6308630b 8995static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 8996{
d62caabb 8997 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
8998 return;
8999
c7c9c56c
YZ
9000 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
9001 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
9002 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
9003 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
9004}
9005
967235d3
PB
9006static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
9007{
9008 struct vcpu_vmx *vmx = to_vmx(vcpu);
9009
9010 pi_clear_on(&vmx->pi_desc);
9011 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
9012}
9013
51aa01d1 9014static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 9015{
48ae0fb4
JM
9016 u32 exit_intr_info = 0;
9017 u16 basic_exit_reason = (u16)vmx->exit_reason;
00eba012 9018
48ae0fb4
JM
9019 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
9020 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
00eba012
AK
9021 return;
9022
48ae0fb4
JM
9023 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9024 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9025 vmx->exit_intr_info = exit_intr_info;
a0861c02 9026
1261bfa3
WL
9027 /* if exit due to PF check for async PF */
9028 if (is_page_fault(exit_intr_info))
9029 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
9030
a0861c02 9031 /* Handle machine checks before interrupts are enabled */
48ae0fb4
JM
9032 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
9033 is_machine_check(exit_intr_info))
a0861c02
AK
9034 kvm_machine_check();
9035
20f65983 9036 /* We need to handle NMIs before interrupts are enabled */
ef85b673 9037 if (is_nmi(exit_intr_info)) {
ff9d07a0 9038 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 9039 asm("int $2");
ff9d07a0
ZY
9040 kvm_after_handle_nmi(&vmx->vcpu);
9041 }
51aa01d1 9042}
20f65983 9043
a547c6db
YZ
9044static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
9045{
9046 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9047
a547c6db
YZ
9048 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
9049 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
9050 unsigned int vector;
9051 unsigned long entry;
9052 gate_desc *desc;
9053 struct vcpu_vmx *vmx = to_vmx(vcpu);
9054#ifdef CONFIG_X86_64
9055 unsigned long tmp;
9056#endif
9057
9058 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9059 desc = (gate_desc *)vmx->host_idt_base + vector;
64b163fa 9060 entry = gate_offset(desc);
a547c6db
YZ
9061 asm volatile(
9062#ifdef CONFIG_X86_64
9063 "mov %%" _ASM_SP ", %[sp]\n\t"
9064 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
9065 "push $%c[ss]\n\t"
9066 "push %[sp]\n\t"
9067#endif
9068 "pushf\n\t"
a547c6db
YZ
9069 __ASM_SIZE(push) " $%c[cs]\n\t"
9070 "call *%[entry]\n\t"
9071 :
9072#ifdef CONFIG_X86_64
3f62de5f 9073 [sp]"=&r"(tmp),
a547c6db 9074#endif
f5caf621 9075 ASM_CALL_CONSTRAINT
a547c6db
YZ
9076 :
9077 [entry]"r"(entry),
9078 [ss]"i"(__KERNEL_DS),
9079 [cs]"i"(__KERNEL_CS)
9080 );
f2485b3e 9081 }
a547c6db 9082}
c207aee4 9083STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
a547c6db 9084
6d396b55
PB
9085static bool vmx_has_high_real_mode_segbase(void)
9086{
9087 return enable_unrestricted_guest || emulate_invalid_guest_state;
9088}
9089
da8999d3
LJ
9090static bool vmx_mpx_supported(void)
9091{
9092 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
9093 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
9094}
9095
55412b2e
WL
9096static bool vmx_xsaves_supported(void)
9097{
9098 return vmcs_config.cpu_based_2nd_exec_ctrl &
9099 SECONDARY_EXEC_XSAVES;
9100}
9101
51aa01d1
AK
9102static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
9103{
c5ca8e57 9104 u32 exit_intr_info;
51aa01d1
AK
9105 bool unblock_nmi;
9106 u8 vector;
9107 bool idtv_info_valid;
9108
9109 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 9110
4c4a6f79 9111 if (vmx->loaded_vmcs->nmi_known_unmasked)
2c82878b
PB
9112 return;
9113 /*
9114 * Can't use vmx->exit_intr_info since we're not sure what
9115 * the exit reason is.
9116 */
9117 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9118 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
9119 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9120 /*
9121 * SDM 3: 27.7.1.2 (September 2008)
9122 * Re-set bit "block by NMI" before VM entry if vmexit caused by
9123 * a guest IRET fault.
9124 * SDM 3: 23.2.2 (September 2008)
9125 * Bit 12 is undefined in any of the following cases:
9126 * If the VM exit sets the valid bit in the IDT-vectoring
9127 * information field.
9128 * If the VM exit is due to a double fault.
9129 */
9130 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9131 vector != DF_VECTOR && !idtv_info_valid)
9132 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9133 GUEST_INTR_STATE_NMI);
9134 else
4c4a6f79 9135 vmx->loaded_vmcs->nmi_known_unmasked =
2c82878b
PB
9136 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9137 & GUEST_INTR_STATE_NMI);
51aa01d1
AK
9138}
9139
3ab66e8a 9140static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
9141 u32 idt_vectoring_info,
9142 int instr_len_field,
9143 int error_code_field)
51aa01d1 9144{
51aa01d1
AK
9145 u8 vector;
9146 int type;
9147 bool idtv_info_valid;
9148
9149 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 9150
3ab66e8a
JK
9151 vcpu->arch.nmi_injected = false;
9152 kvm_clear_exception_queue(vcpu);
9153 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
9154
9155 if (!idtv_info_valid)
9156 return;
9157
3ab66e8a 9158 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 9159
668f612f
AK
9160 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9161 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 9162
64a7ec06 9163 switch (type) {
37b96e98 9164 case INTR_TYPE_NMI_INTR:
3ab66e8a 9165 vcpu->arch.nmi_injected = true;
668f612f 9166 /*
7b4a25cb 9167 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
9168 * Clear bit "block by NMI" before VM entry if a NMI
9169 * delivery faulted.
668f612f 9170 */
3ab66e8a 9171 vmx_set_nmi_mask(vcpu, false);
37b96e98 9172 break;
37b96e98 9173 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 9174 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
9175 /* fall through */
9176 case INTR_TYPE_HARD_EXCEPTION:
35920a35 9177 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 9178 u32 err = vmcs_read32(error_code_field);
851eb667 9179 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 9180 } else
851eb667 9181 kvm_requeue_exception(vcpu, vector);
37b96e98 9182 break;
66fd3f7f 9183 case INTR_TYPE_SOFT_INTR:
3ab66e8a 9184 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 9185 /* fall through */
37b96e98 9186 case INTR_TYPE_EXT_INTR:
3ab66e8a 9187 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
9188 break;
9189 default:
9190 break;
f7d9238f 9191 }
cf393f75
AK
9192}
9193
83422e17
AK
9194static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9195{
3ab66e8a 9196 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
9197 VM_EXIT_INSTRUCTION_LEN,
9198 IDT_VECTORING_ERROR_CODE);
9199}
9200
b463a6f7
AK
9201static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9202{
3ab66e8a 9203 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
9204 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9205 VM_ENTRY_INSTRUCTION_LEN,
9206 VM_ENTRY_EXCEPTION_ERROR_CODE);
9207
9208 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9209}
9210
d7cd9796
GN
9211static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9212{
9213 int i, nr_msrs;
9214 struct perf_guest_switch_msr *msrs;
9215
9216 msrs = perf_guest_get_msrs(&nr_msrs);
9217
9218 if (!msrs)
9219 return;
9220
9221 for (i = 0; i < nr_msrs; i++)
9222 if (msrs[i].host == msrs[i].guest)
9223 clear_atomic_switch_msr(vmx, msrs[i].msr);
9224 else
9225 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9226 msrs[i].host);
9227}
9228
33365e7a 9229static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
64672c95
YJ
9230{
9231 struct vcpu_vmx *vmx = to_vmx(vcpu);
9232 u64 tscl;
9233 u32 delta_tsc;
9234
9235 if (vmx->hv_deadline_tsc == -1)
9236 return;
9237
9238 tscl = rdtsc();
9239 if (vmx->hv_deadline_tsc > tscl)
9240 /* sure to be 32 bit only because checked on set_hv_timer */
9241 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9242 cpu_preemption_timer_multi);
9243 else
9244 delta_tsc = 0;
9245
9246 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9247}
9248
a3b5ba49 9249static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 9250{
a2fa3e9f 9251 struct vcpu_vmx *vmx = to_vmx(vcpu);
d6e41f11 9252 unsigned long debugctlmsr, cr3, cr4;
104f226b 9253
104f226b
AK
9254 /* Don't enter VMX if guest state is invalid, let the exit handler
9255 start emulation until we arrive back to a valid state */
14168786 9256 if (vmx->emulation_required)
104f226b
AK
9257 return;
9258
a7653ecd
RK
9259 if (vmx->ple_window_dirty) {
9260 vmx->ple_window_dirty = false;
9261 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9262 }
9263
012f83cb
AG
9264 if (vmx->nested.sync_shadow_vmcs) {
9265 copy_vmcs12_to_shadow(vmx);
9266 vmx->nested.sync_shadow_vmcs = false;
9267 }
9268
104f226b
AK
9269 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9270 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9271 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9272 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9273
d6e41f11 9274 cr3 = __get_current_cr3_fast();
44889942 9275 if (unlikely(cr3 != vmx->loaded_vmcs->vmcs_host_cr3)) {
d6e41f11 9276 vmcs_writel(HOST_CR3, cr3);
44889942 9277 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
d6e41f11
AL
9278 }
9279
1e02ce4c 9280 cr4 = cr4_read_shadow();
44889942 9281 if (unlikely(cr4 != vmx->loaded_vmcs->vmcs_host_cr4)) {
d974baa3 9282 vmcs_writel(HOST_CR4, cr4);
44889942 9283 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
d974baa3
AL
9284 }
9285
104f226b
AK
9286 /* When single-stepping over STI and MOV SS, we must clear the
9287 * corresponding interruptibility bits in the guest state. Otherwise
9288 * vmentry fails as it then expects bit 14 (BS) in pending debug
9289 * exceptions being set, but that's not correct for the guest debugging
9290 * case. */
9291 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9292 vmx_set_interrupt_shadow(vcpu, 0);
9293
b9dd21e1
PB
9294 if (static_cpu_has(X86_FEATURE_PKU) &&
9295 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
9296 vcpu->arch.pkru != vmx->host_pkru)
9297 __write_pkru(vcpu->arch.pkru);
1be0e61c 9298
d7cd9796 9299 atomic_switch_perf_msrs(vmx);
2a7921b7 9300 debugctlmsr = get_debugctlmsr();
d7cd9796 9301
64672c95
YJ
9302 vmx_arm_hv_timer(vcpu);
9303
d462b819 9304 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 9305 asm(
6aa8b732 9306 /* Store host registers */
b188c81f
AK
9307 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9308 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9309 "push %%" _ASM_CX " \n\t"
9310 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 9311 "je 1f \n\t"
b188c81f 9312 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 9313 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 9314 "1: \n\t"
d3edefc0 9315 /* Reload cr2 if changed */
b188c81f
AK
9316 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9317 "mov %%cr2, %%" _ASM_DX " \n\t"
9318 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 9319 "je 2f \n\t"
b188c81f 9320 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 9321 "2: \n\t"
6aa8b732 9322 /* Check if vmlaunch of vmresume is needed */
e08aa78a 9323 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 9324 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
9325 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9326 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9327 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9328 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9329 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9330 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 9331#ifdef CONFIG_X86_64
e08aa78a
AK
9332 "mov %c[r8](%0), %%r8 \n\t"
9333 "mov %c[r9](%0), %%r9 \n\t"
9334 "mov %c[r10](%0), %%r10 \n\t"
9335 "mov %c[r11](%0), %%r11 \n\t"
9336 "mov %c[r12](%0), %%r12 \n\t"
9337 "mov %c[r13](%0), %%r13 \n\t"
9338 "mov %c[r14](%0), %%r14 \n\t"
9339 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 9340#endif
b188c81f 9341 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 9342
6aa8b732 9343 /* Enter guest mode */
83287ea4 9344 "jne 1f \n\t"
4ecac3fd 9345 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
9346 "jmp 2f \n\t"
9347 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9348 "2: "
6aa8b732 9349 /* Save guest registers, load host registers, keep flags */
b188c81f 9350 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 9351 "pop %0 \n\t"
b188c81f
AK
9352 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9353 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9354 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9355 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9356 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9357 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9358 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 9359#ifdef CONFIG_X86_64
e08aa78a
AK
9360 "mov %%r8, %c[r8](%0) \n\t"
9361 "mov %%r9, %c[r9](%0) \n\t"
9362 "mov %%r10, %c[r10](%0) \n\t"
9363 "mov %%r11, %c[r11](%0) \n\t"
9364 "mov %%r12, %c[r12](%0) \n\t"
9365 "mov %%r13, %c[r13](%0) \n\t"
9366 "mov %%r14, %c[r14](%0) \n\t"
9367 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 9368#endif
b188c81f
AK
9369 "mov %%cr2, %%" _ASM_AX " \n\t"
9370 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 9371
b188c81f 9372 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 9373 "setbe %c[fail](%0) \n\t"
83287ea4
AK
9374 ".pushsection .rodata \n\t"
9375 ".global vmx_return \n\t"
9376 "vmx_return: " _ASM_PTR " 2b \n\t"
9377 ".popsection"
e08aa78a 9378 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 9379 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 9380 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 9381 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
9382 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9383 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9384 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9385 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9386 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9387 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9388 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 9389#ifdef CONFIG_X86_64
ad312c7c
ZX
9390 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9391 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9392 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9393 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9394 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9395 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9396 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9397 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 9398#endif
40712fae
AK
9399 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9400 [wordsize]"i"(sizeof(ulong))
c2036300
LV
9401 : "cc", "memory"
9402#ifdef CONFIG_X86_64
b188c81f 9403 , "rax", "rbx", "rdi", "rsi"
c2036300 9404 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
9405#else
9406 , "eax", "ebx", "edi", "esi"
c2036300
LV
9407#endif
9408 );
6aa8b732 9409
2a7921b7
GN
9410 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9411 if (debugctlmsr)
9412 update_debugctlmsr(debugctlmsr);
9413
aa67f609
AK
9414#ifndef CONFIG_X86_64
9415 /*
9416 * The sysexit path does not restore ds/es, so we must set them to
9417 * a reasonable value ourselves.
9418 *
9419 * We can't defer this to vmx_load_host_state() since that function
9420 * may be executed in interrupt context, which saves and restore segments
9421 * around it, nullifying its effect.
9422 */
9423 loadsegment(ds, __USER_DS);
9424 loadsegment(es, __USER_DS);
9425#endif
9426
6de4f3ad 9427 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 9428 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 9429 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 9430 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 9431 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
9432 vcpu->arch.regs_dirty = 0;
9433
1be0e61c
XG
9434 /*
9435 * eager fpu is enabled if PKEY is supported and CR4 is switched
9436 * back on host, so it is safe to read guest PKRU from current
9437 * XSAVE.
9438 */
b9dd21e1
PB
9439 if (static_cpu_has(X86_FEATURE_PKU) &&
9440 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
9441 vcpu->arch.pkru = __read_pkru();
9442 if (vcpu->arch.pkru != vmx->host_pkru)
1be0e61c 9443 __write_pkru(vmx->host_pkru);
1be0e61c
XG
9444 }
9445
e0b890d3
GN
9446 /*
9447 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9448 * we did not inject a still-pending event to L1 now because of
9449 * nested_run_pending, we need to re-enable this bit.
9450 */
9451 if (vmx->nested.nested_run_pending)
9452 kvm_make_request(KVM_REQ_EVENT, vcpu);
9453
9454 vmx->nested.nested_run_pending = 0;
b060ca3b
JM
9455 vmx->idt_vectoring_info = 0;
9456
9457 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
9458 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9459 return;
9460
9461 vmx->loaded_vmcs->launched = 1;
9462 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
e0b890d3 9463
51aa01d1
AK
9464 vmx_complete_atomic_exit(vmx);
9465 vmx_recover_nmi_blocking(vmx);
cf393f75 9466 vmx_complete_interrupts(vmx);
6aa8b732 9467}
c207aee4 9468STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
6aa8b732 9469
1279a6b1 9470static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
4fa7734c
PB
9471{
9472 struct vcpu_vmx *vmx = to_vmx(vcpu);
9473 int cpu;
9474
1279a6b1 9475 if (vmx->loaded_vmcs == vmcs)
4fa7734c
PB
9476 return;
9477
9478 cpu = get_cpu();
1279a6b1 9479 vmx->loaded_vmcs = vmcs;
4fa7734c
PB
9480 vmx_vcpu_put(vcpu);
9481 vmx_vcpu_load(vcpu, cpu);
9482 vcpu->cpu = cpu;
9483 put_cpu();
9484}
9485
2f1fe811
JM
9486/*
9487 * Ensure that the current vmcs of the logical processor is the
9488 * vmcs01 of the vcpu before calling free_nested().
9489 */
9490static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9491{
9492 struct vcpu_vmx *vmx = to_vmx(vcpu);
9493 int r;
9494
9495 r = vcpu_load(vcpu);
9496 BUG_ON(r);
1279a6b1 9497 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2f1fe811
JM
9498 free_nested(vmx);
9499 vcpu_put(vcpu);
9500}
9501
6aa8b732
AK
9502static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9503{
fb3f0f51
RR
9504 struct vcpu_vmx *vmx = to_vmx(vcpu);
9505
843e4330 9506 if (enable_pml)
a3eaa864 9507 vmx_destroy_pml_buffer(vmx);
991e7a0e 9508 free_vpid(vmx->vpid);
4fa7734c 9509 leave_guest_mode(vcpu);
2f1fe811 9510 vmx_free_vcpu_nested(vcpu);
4fa7734c 9511 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
9512 kfree(vmx->guest_msrs);
9513 kvm_vcpu_uninit(vcpu);
a4770347 9514 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
9515}
9516
fb3f0f51 9517static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 9518{
fb3f0f51 9519 int err;
c16f862d 9520 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 9521 int cpu;
6aa8b732 9522
a2fa3e9f 9523 if (!vmx)
fb3f0f51
RR
9524 return ERR_PTR(-ENOMEM);
9525
991e7a0e 9526 vmx->vpid = allocate_vpid();
2384d2b3 9527
fb3f0f51
RR
9528 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9529 if (err)
9530 goto free_vcpu;
965b58a5 9531
4e59516a
PF
9532 err = -ENOMEM;
9533
9534 /*
9535 * If PML is turned on, failure on enabling PML just results in failure
9536 * of creating the vcpu, therefore we can simplify PML logic (by
9537 * avoiding dealing with cases, such as enabling PML partially on vcpus
9538 * for the guest, etc.
9539 */
9540 if (enable_pml) {
9541 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9542 if (!vmx->pml_pg)
9543 goto uninit_vcpu;
9544 }
9545
a2fa3e9f 9546 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
9547 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9548 > PAGE_SIZE);
0123be42 9549
4e59516a
PF
9550 if (!vmx->guest_msrs)
9551 goto free_pml;
965b58a5 9552
d462b819
NHE
9553 vmx->loaded_vmcs = &vmx->vmcs01;
9554 vmx->loaded_vmcs->vmcs = alloc_vmcs();
355f4fb1 9555 vmx->loaded_vmcs->shadow_vmcs = NULL;
d462b819 9556 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 9557 goto free_msrs;
d462b819 9558 loaded_vmcs_init(vmx->loaded_vmcs);
a2fa3e9f 9559
15ad7146
AK
9560 cpu = get_cpu();
9561 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 9562 vmx->vcpu.cpu = cpu;
12d79917 9563 vmx_vcpu_setup(vmx);
fb3f0f51 9564 vmx_vcpu_put(&vmx->vcpu);
15ad7146 9565 put_cpu();
35754c98 9566 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
9567 err = alloc_apic_access_page(kvm);
9568 if (err)
5e4a0b3c 9569 goto free_vmcs;
a63cb560 9570 }
fb3f0f51 9571
b927a3ce
SY
9572 if (enable_ept) {
9573 if (!kvm->arch.ept_identity_map_addr)
9574 kvm->arch.ept_identity_map_addr =
9575 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
f51770ed
TC
9576 err = init_rmode_identity_map(kvm);
9577 if (err)
93ea5388 9578 goto free_vmcs;
b927a3ce 9579 }
b7ebfb05 9580
5c614b35 9581 if (nested) {
b9c237bb 9582 nested_vmx_setup_ctls_msrs(vmx);
5c614b35
WL
9583 vmx->nested.vpid02 = allocate_vpid();
9584 }
b9c237bb 9585
705699a1 9586 vmx->nested.posted_intr_nv = -1;
a9d30f33 9587 vmx->nested.current_vmptr = -1ull;
a9d30f33 9588
37e4c997
HZ
9589 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9590
31afb2ea
PB
9591 /*
9592 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
9593 * or POSTED_INTR_WAKEUP_VECTOR.
9594 */
9595 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
9596 vmx->pi_desc.sn = 1;
9597
fb3f0f51
RR
9598 return &vmx->vcpu;
9599
9600free_vmcs:
5c614b35 9601 free_vpid(vmx->nested.vpid02);
5f3fbc34 9602 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 9603free_msrs:
fb3f0f51 9604 kfree(vmx->guest_msrs);
4e59516a
PF
9605free_pml:
9606 vmx_destroy_pml_buffer(vmx);
fb3f0f51
RR
9607uninit_vcpu:
9608 kvm_vcpu_uninit(&vmx->vcpu);
9609free_vcpu:
991e7a0e 9610 free_vpid(vmx->vpid);
a4770347 9611 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 9612 return ERR_PTR(err);
6aa8b732
AK
9613}
9614
002c7f7c
YS
9615static void __init vmx_check_processor_compat(void *rtn)
9616{
9617 struct vmcs_config vmcs_conf;
9618
9619 *(int *)rtn = 0;
9620 if (setup_vmcs_config(&vmcs_conf) < 0)
9621 *(int *)rtn = -EIO;
9622 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9623 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9624 smp_processor_id());
9625 *(int *)rtn = -EIO;
9626 }
9627}
9628
4b12f0de 9629static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 9630{
b18d5431
XG
9631 u8 cache;
9632 u64 ipat = 0;
4b12f0de 9633
522c68c4 9634 /* For VT-d and EPT combination
606decd6 9635 * 1. MMIO: always map as UC
522c68c4
SY
9636 * 2. EPT with VT-d:
9637 * a. VT-d without snooping control feature: can't guarantee the
606decd6 9638 * result, try to trust guest.
522c68c4
SY
9639 * b. VT-d with snooping control feature: snooping control feature of
9640 * VT-d engine can guarantee the cache correctness. Just set it
9641 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 9642 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
9643 * consistent with host MTRR
9644 */
606decd6
PB
9645 if (is_mmio) {
9646 cache = MTRR_TYPE_UNCACHABLE;
9647 goto exit;
9648 }
9649
9650 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
9651 ipat = VMX_EPT_IPAT_BIT;
9652 cache = MTRR_TYPE_WRBACK;
9653 goto exit;
9654 }
9655
9656 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9657 ipat = VMX_EPT_IPAT_BIT;
0da029ed 9658 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
9659 cache = MTRR_TYPE_WRBACK;
9660 else
9661 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
9662 goto exit;
9663 }
9664
ff53604b 9665 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
9666
9667exit:
9668 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
9669}
9670
17cc3935 9671static int vmx_get_lpage_level(void)
344f414f 9672{
878403b7
SY
9673 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9674 return PT_DIRECTORY_LEVEL;
9675 else
9676 /* For shadow and EPT supported 1GB page */
9677 return PT_PDPE_LEVEL;
344f414f
JR
9678}
9679
feda805f
XG
9680static void vmcs_set_secondary_exec_control(u32 new_ctl)
9681{
9682 /*
9683 * These bits in the secondary execution controls field
9684 * are dynamic, the others are mostly based on the hypervisor
9685 * architecture and the guest's CPUID. Do not touch the
9686 * dynamic bits.
9687 */
9688 u32 mask =
9689 SECONDARY_EXEC_SHADOW_VMCS |
9690 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9691 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9692
9693 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9694
9695 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9696 (new_ctl & ~mask) | (cur_ctl & mask));
9697}
9698
8322ebbb
DM
9699/*
9700 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9701 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9702 */
9703static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9704{
9705 struct vcpu_vmx *vmx = to_vmx(vcpu);
9706 struct kvm_cpuid_entry2 *entry;
9707
9708 vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9709 vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9710
9711#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9712 if (entry && (entry->_reg & (_cpuid_mask))) \
9713 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9714} while (0)
9715
9716 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9717 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
9718 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
9719 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
9720 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
9721 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
9722 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
9723 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
9724 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
9725 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
9726 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9727 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
9728 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
9729 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
9730 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
9731
9732 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9733 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
9734 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
9735 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
9736 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
9737 /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9738 cr4_fixed1_update(bit(11), ecx, bit(2));
9739
9740#undef cr4_fixed1_update
9741}
9742
0e851880
SY
9743static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9744{
4e47c7a6 9745 struct vcpu_vmx *vmx = to_vmx(vcpu);
4e47c7a6 9746
80154d77
PB
9747 if (cpu_has_secondary_exec_ctrls()) {
9748 vmx_compute_secondary_exec_control(vmx);
9749 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
ad756a16 9750 }
8b3e34e4 9751
37e4c997
HZ
9752 if (nested_vmx_allowed(vcpu))
9753 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9754 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9755 else
9756 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9757 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
8322ebbb
DM
9758
9759 if (nested_vmx_allowed(vcpu))
9760 nested_vmx_cr_fixed1_bits_update(vcpu);
0e851880
SY
9761}
9762
d4330ef2
JR
9763static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9764{
7b8050f5
NHE
9765 if (func == 1 && nested)
9766 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
9767}
9768
25d92081
YZ
9769static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9770 struct x86_exception *fault)
9771{
533558bc 9772 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
c5f983f6 9773 struct vcpu_vmx *vmx = to_vmx(vcpu);
533558bc 9774 u32 exit_reason;
c5f983f6 9775 unsigned long exit_qualification = vcpu->arch.exit_qualification;
25d92081 9776
c5f983f6
BD
9777 if (vmx->nested.pml_full) {
9778 exit_reason = EXIT_REASON_PML_FULL;
9779 vmx->nested.pml_full = false;
9780 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9781 } else if (fault->error_code & PFERR_RSVD_MASK)
533558bc 9782 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 9783 else
533558bc 9784 exit_reason = EXIT_REASON_EPT_VIOLATION;
c5f983f6
BD
9785
9786 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
25d92081
YZ
9787 vmcs12->guest_physical_address = fault->address;
9788}
9789
995f00a6
PF
9790static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9791{
bb97a016 9792 return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
995f00a6
PF
9793}
9794
155a97a3
NHE
9795/* Callbacks for nested_ept_init_mmu_context: */
9796
9797static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9798{
9799 /* return the page table to be shadowed - in our case, EPT12 */
9800 return get_vmcs12(vcpu)->ept_pointer;
9801}
9802
ae1e2d10 9803static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 9804{
ad896af0 9805 WARN_ON(mmu_is_nested(vcpu));
a057e0e2 9806 if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
ae1e2d10
PB
9807 return 1;
9808
9809 kvm_mmu_unload(vcpu);
ad896af0 9810 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb 9811 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
ae1e2d10 9812 VMX_EPT_EXECUTE_ONLY_BIT,
a057e0e2 9813 nested_ept_ad_enabled(vcpu));
155a97a3
NHE
9814 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9815 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9816 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9817
9818 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
ae1e2d10 9819 return 0;
155a97a3
NHE
9820}
9821
9822static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9823{
9824 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9825}
9826
19d5f10b
EK
9827static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9828 u16 error_code)
9829{
9830 bool inequality, bit;
9831
9832 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9833 inequality =
9834 (error_code & vmcs12->page_fault_error_code_mask) !=
9835 vmcs12->page_fault_error_code_match;
9836 return inequality ^ bit;
9837}
9838
feaf0c7d
GN
9839static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9840 struct x86_exception *fault)
9841{
9842 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9843
9844 WARN_ON(!is_guest_mode(vcpu));
9845
305d0ab4
WL
9846 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
9847 !to_vmx(vcpu)->nested.nested_run_pending) {
b96fb439
PB
9848 vmcs12->vm_exit_intr_error_code = fault->error_code;
9849 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9850 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
9851 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
9852 fault->address);
7313c698 9853 } else {
feaf0c7d 9854 kvm_inject_page_fault(vcpu, fault);
7313c698 9855 }
feaf0c7d
GN
9856}
9857
6beb7bd5
JM
9858static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9859 struct vmcs12 *vmcs12);
9860
9861static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
a2bcba50
WL
9862 struct vmcs12 *vmcs12)
9863{
9864 struct vcpu_vmx *vmx = to_vmx(vcpu);
5e2f30b7 9865 struct page *page;
6beb7bd5 9866 u64 hpa;
a2bcba50
WL
9867
9868 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a2bcba50
WL
9869 /*
9870 * Translate L1 physical address to host physical
9871 * address for vmcs02. Keep the page pinned, so this
9872 * physical address remains valid. We keep a reference
9873 * to it so we can release it later.
9874 */
5e2f30b7 9875 if (vmx->nested.apic_access_page) { /* shouldn't happen */
53a70daf 9876 kvm_release_page_dirty(vmx->nested.apic_access_page);
5e2f30b7
DH
9877 vmx->nested.apic_access_page = NULL;
9878 }
9879 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
6beb7bd5
JM
9880 /*
9881 * If translation failed, no matter: This feature asks
9882 * to exit when accessing the given address, and if it
9883 * can never be accessed, this feature won't do
9884 * anything anyway.
9885 */
5e2f30b7
DH
9886 if (!is_error_page(page)) {
9887 vmx->nested.apic_access_page = page;
6beb7bd5
JM
9888 hpa = page_to_phys(vmx->nested.apic_access_page);
9889 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9890 } else {
9891 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9892 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9893 }
9894 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9895 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9896 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9897 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9898 kvm_vcpu_reload_apic_access_page(vcpu);
a2bcba50 9899 }
a7c0b07d
WL
9900
9901 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5e2f30b7 9902 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
53a70daf 9903 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
5e2f30b7
DH
9904 vmx->nested.virtual_apic_page = NULL;
9905 }
9906 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
a7c0b07d
WL
9907
9908 /*
6beb7bd5
JM
9909 * If translation failed, VM entry will fail because
9910 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9911 * Failing the vm entry is _not_ what the processor
9912 * does but it's basically the only possibility we
9913 * have. We could still enter the guest if CR8 load
9914 * exits are enabled, CR8 store exits are enabled, and
9915 * virtualize APIC access is disabled; in this case
9916 * the processor would never use the TPR shadow and we
9917 * could simply clear the bit from the execution
9918 * control. But such a configuration is useless, so
9919 * let's keep the code simple.
a7c0b07d 9920 */
5e2f30b7
DH
9921 if (!is_error_page(page)) {
9922 vmx->nested.virtual_apic_page = page;
6beb7bd5
JM
9923 hpa = page_to_phys(vmx->nested.virtual_apic_page);
9924 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9925 }
a7c0b07d
WL
9926 }
9927
705699a1 9928 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
9929 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9930 kunmap(vmx->nested.pi_desc_page);
53a70daf 9931 kvm_release_page_dirty(vmx->nested.pi_desc_page);
5e2f30b7 9932 vmx->nested.pi_desc_page = NULL;
705699a1 9933 }
5e2f30b7
DH
9934 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
9935 if (is_error_page(page))
6beb7bd5 9936 return;
5e2f30b7
DH
9937 vmx->nested.pi_desc_page = page;
9938 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
705699a1
WV
9939 vmx->nested.pi_desc =
9940 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9941 (unsigned long)(vmcs12->posted_intr_desc_addr &
9942 (PAGE_SIZE - 1)));
6beb7bd5
JM
9943 vmcs_write64(POSTED_INTR_DESC_ADDR,
9944 page_to_phys(vmx->nested.pi_desc_page) +
9945 (unsigned long)(vmcs12->posted_intr_desc_addr &
9946 (PAGE_SIZE - 1)));
705699a1 9947 }
6beb7bd5
JM
9948 if (cpu_has_vmx_msr_bitmap() &&
9949 nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9950 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9951 ;
9952 else
9953 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9954 CPU_BASED_USE_MSR_BITMAPS);
a2bcba50
WL
9955}
9956
f4124500
JK
9957static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9958{
9959 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9960 struct vcpu_vmx *vmx = to_vmx(vcpu);
9961
9962 if (vcpu->arch.virtual_tsc_khz == 0)
9963 return;
9964
9965 /* Make sure short timeouts reliably trigger an immediate vmexit.
9966 * hrtimer_start does not guarantee this. */
9967 if (preemption_timeout <= 1) {
9968 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9969 return;
9970 }
9971
9972 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9973 preemption_timeout *= 1000000;
9974 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9975 hrtimer_start(&vmx->nested.preemption_timer,
9976 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9977}
9978
56a20510
JM
9979static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
9980 struct vmcs12 *vmcs12)
9981{
9982 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
9983 return 0;
9984
9985 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
9986 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
9987 return -EINVAL;
9988
9989 return 0;
9990}
9991
3af18d9c
WV
9992static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9993 struct vmcs12 *vmcs12)
9994{
3af18d9c
WV
9995 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9996 return 0;
9997
5fa99cbe 9998 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
3af18d9c
WV
9999 return -EINVAL;
10000
10001 return 0;
10002}
10003
712b12d7
JM
10004static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
10005 struct vmcs12 *vmcs12)
10006{
10007 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10008 return 0;
10009
10010 if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
10011 return -EINVAL;
10012
10013 return 0;
10014}
10015
3af18d9c
WV
10016/*
10017 * Merge L0's and L1's MSR bitmap, return false to indicate that
10018 * we do not use the hardware.
10019 */
10020static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
10021 struct vmcs12 *vmcs12)
10022{
82f0dd4b 10023 int msr;
f2b93280 10024 struct page *page;
d048c098
RK
10025 unsigned long *msr_bitmap_l1;
10026 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
f2b93280 10027
d048c098 10028 /* This shortcut is ok because we support only x2APIC MSRs so far. */
f2b93280
WV
10029 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
10030 return false;
10031
5e2f30b7
DH
10032 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
10033 if (is_error_page(page))
f2b93280 10034 return false;
d048c098 10035 msr_bitmap_l1 = (unsigned long *)kmap(page);
f2b93280 10036
d048c098
RK
10037 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
10038
f2b93280 10039 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
10040 if (nested_cpu_has_apic_reg_virt(vmcs12))
10041 for (msr = 0x800; msr <= 0x8ff; msr++)
10042 nested_vmx_disable_intercept_for_msr(
d048c098 10043 msr_bitmap_l1, msr_bitmap_l0,
82f0dd4b 10044 msr, MSR_TYPE_R);
d048c098
RK
10045
10046 nested_vmx_disable_intercept_for_msr(
10047 msr_bitmap_l1, msr_bitmap_l0,
f2b93280
WV
10048 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
10049 MSR_TYPE_R | MSR_TYPE_W);
d048c098 10050
608406e2 10051 if (nested_cpu_has_vid(vmcs12)) {
608406e2 10052 nested_vmx_disable_intercept_for_msr(
d048c098 10053 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
10054 APIC_BASE_MSR + (APIC_EOI >> 4),
10055 MSR_TYPE_W);
10056 nested_vmx_disable_intercept_for_msr(
d048c098 10057 msr_bitmap_l1, msr_bitmap_l0,
608406e2
WV
10058 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
10059 MSR_TYPE_W);
10060 }
82f0dd4b 10061 }
f2b93280 10062 kunmap(page);
53a70daf 10063 kvm_release_page_clean(page);
f2b93280
WV
10064
10065 return true;
10066}
10067
10068static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
10069 struct vmcs12 *vmcs12)
10070{
82f0dd4b 10071 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 10072 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
10073 !nested_cpu_has_vid(vmcs12) &&
10074 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
10075 return 0;
10076
10077 /*
10078 * If virtualize x2apic mode is enabled,
10079 * virtualize apic access must be disabled.
10080 */
82f0dd4b
WV
10081 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10082 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
10083 return -EINVAL;
10084
608406e2
WV
10085 /*
10086 * If virtual interrupt delivery is enabled,
10087 * we must exit on external interrupts.
10088 */
10089 if (nested_cpu_has_vid(vmcs12) &&
10090 !nested_exit_on_intr(vcpu))
10091 return -EINVAL;
10092
705699a1
WV
10093 /*
10094 * bits 15:8 should be zero in posted_intr_nv,
10095 * the descriptor address has been already checked
10096 * in nested_get_vmcs12_pages.
10097 */
10098 if (nested_cpu_has_posted_intr(vmcs12) &&
10099 (!nested_cpu_has_vid(vmcs12) ||
10100 !nested_exit_intr_ack_set(vcpu) ||
10101 vmcs12->posted_intr_nv & 0xff00))
10102 return -EINVAL;
10103
f2b93280
WV
10104 /* tpr shadow is needed by all apicv features. */
10105 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10106 return -EINVAL;
10107
10108 return 0;
3af18d9c
WV
10109}
10110
e9ac033e
EK
10111static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10112 unsigned long count_field,
92d71bc6 10113 unsigned long addr_field)
ff651cb6 10114{
92d71bc6 10115 int maxphyaddr;
e9ac033e
EK
10116 u64 count, addr;
10117
10118 if (vmcs12_read_any(vcpu, count_field, &count) ||
10119 vmcs12_read_any(vcpu, addr_field, &addr)) {
10120 WARN_ON(1);
10121 return -EINVAL;
10122 }
10123 if (count == 0)
10124 return 0;
92d71bc6 10125 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
10126 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10127 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
bbe41b95 10128 pr_debug_ratelimited(
e9ac033e
EK
10129 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10130 addr_field, maxphyaddr, count, addr);
10131 return -EINVAL;
10132 }
10133 return 0;
10134}
10135
10136static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10137 struct vmcs12 *vmcs12)
10138{
e9ac033e
EK
10139 if (vmcs12->vm_exit_msr_load_count == 0 &&
10140 vmcs12->vm_exit_msr_store_count == 0 &&
10141 vmcs12->vm_entry_msr_load_count == 0)
10142 return 0; /* Fast path */
e9ac033e 10143 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 10144 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 10145 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 10146 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 10147 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 10148 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
10149 return -EINVAL;
10150 return 0;
10151}
10152
c5f983f6
BD
10153static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10154 struct vmcs12 *vmcs12)
10155{
10156 u64 address = vmcs12->pml_address;
10157 int maxphyaddr = cpuid_maxphyaddr(vcpu);
10158
10159 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10160 if (!nested_cpu_has_ept(vmcs12) ||
10161 !IS_ALIGNED(address, 4096) ||
10162 address >> maxphyaddr)
10163 return -EINVAL;
10164 }
10165
10166 return 0;
10167}
10168
e9ac033e
EK
10169static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10170 struct vmx_msr_entry *e)
10171{
10172 /* x2APIC MSR accesses are not allowed */
8a9781f7 10173 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
10174 return -EINVAL;
10175 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10176 e->index == MSR_IA32_UCODE_REV)
10177 return -EINVAL;
10178 if (e->reserved != 0)
ff651cb6
WV
10179 return -EINVAL;
10180 return 0;
10181}
10182
e9ac033e
EK
10183static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
10184 struct vmx_msr_entry *e)
ff651cb6
WV
10185{
10186 if (e->index == MSR_FS_BASE ||
10187 e->index == MSR_GS_BASE ||
e9ac033e
EK
10188 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
10189 nested_vmx_msr_check_common(vcpu, e))
10190 return -EINVAL;
10191 return 0;
10192}
10193
10194static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
10195 struct vmx_msr_entry *e)
10196{
10197 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
10198 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
10199 return -EINVAL;
10200 return 0;
10201}
10202
10203/*
10204 * Load guest's/host's msr at nested entry/exit.
10205 * return 0 for success, entry index for failure.
10206 */
10207static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10208{
10209 u32 i;
10210 struct vmx_msr_entry e;
10211 struct msr_data msr;
10212
10213 msr.host_initiated = false;
10214 for (i = 0; i < count; i++) {
54bf36aa
PB
10215 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
10216 &e, sizeof(e))) {
bbe41b95 10217 pr_debug_ratelimited(
e9ac033e
EK
10218 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10219 __func__, i, gpa + i * sizeof(e));
ff651cb6 10220 goto fail;
e9ac033e
EK
10221 }
10222 if (nested_vmx_load_msr_check(vcpu, &e)) {
bbe41b95 10223 pr_debug_ratelimited(
e9ac033e
EK
10224 "%s check failed (%u, 0x%x, 0x%x)\n",
10225 __func__, i, e.index, e.reserved);
10226 goto fail;
10227 }
ff651cb6
WV
10228 msr.index = e.index;
10229 msr.data = e.value;
e9ac033e 10230 if (kvm_set_msr(vcpu, &msr)) {
bbe41b95 10231 pr_debug_ratelimited(
e9ac033e
EK
10232 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10233 __func__, i, e.index, e.value);
ff651cb6 10234 goto fail;
e9ac033e 10235 }
ff651cb6
WV
10236 }
10237 return 0;
10238fail:
10239 return i + 1;
10240}
10241
10242static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10243{
10244 u32 i;
10245 struct vmx_msr_entry e;
10246
10247 for (i = 0; i < count; i++) {
609e36d3 10248 struct msr_data msr_info;
54bf36aa
PB
10249 if (kvm_vcpu_read_guest(vcpu,
10250 gpa + i * sizeof(e),
10251 &e, 2 * sizeof(u32))) {
bbe41b95 10252 pr_debug_ratelimited(
e9ac033e
EK
10253 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10254 __func__, i, gpa + i * sizeof(e));
ff651cb6 10255 return -EINVAL;
e9ac033e
EK
10256 }
10257 if (nested_vmx_store_msr_check(vcpu, &e)) {
bbe41b95 10258 pr_debug_ratelimited(
e9ac033e
EK
10259 "%s check failed (%u, 0x%x, 0x%x)\n",
10260 __func__, i, e.index, e.reserved);
ff651cb6 10261 return -EINVAL;
e9ac033e 10262 }
609e36d3
PB
10263 msr_info.host_initiated = false;
10264 msr_info.index = e.index;
10265 if (kvm_get_msr(vcpu, &msr_info)) {
bbe41b95 10266 pr_debug_ratelimited(
e9ac033e
EK
10267 "%s cannot read MSR (%u, 0x%x)\n",
10268 __func__, i, e.index);
10269 return -EINVAL;
10270 }
54bf36aa
PB
10271 if (kvm_vcpu_write_guest(vcpu,
10272 gpa + i * sizeof(e) +
10273 offsetof(struct vmx_msr_entry, value),
10274 &msr_info.data, sizeof(msr_info.data))) {
bbe41b95 10275 pr_debug_ratelimited(
e9ac033e 10276 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 10277 __func__, i, e.index, msr_info.data);
e9ac033e
EK
10278 return -EINVAL;
10279 }
ff651cb6
WV
10280 }
10281 return 0;
10282}
10283
1dc35dac
LP
10284static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10285{
10286 unsigned long invalid_mask;
10287
10288 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10289 return (val & invalid_mask) == 0;
10290}
10291
9ed38ffa
LP
10292/*
10293 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10294 * emulating VM entry into a guest with EPT enabled.
10295 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10296 * is assigned to entry_failure_code on failure.
10297 */
10298static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
ca0bde28 10299 u32 *entry_failure_code)
9ed38ffa 10300{
9ed38ffa 10301 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1dc35dac 10302 if (!nested_cr3_valid(vcpu, cr3)) {
9ed38ffa
LP
10303 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10304 return 1;
10305 }
10306
10307 /*
10308 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10309 * must not be dereferenced.
10310 */
10311 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10312 !nested_ept) {
10313 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10314 *entry_failure_code = ENTRY_FAIL_PDPTE;
10315 return 1;
10316 }
10317 }
10318
10319 vcpu->arch.cr3 = cr3;
10320 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10321 }
10322
10323 kvm_mmu_reset_context(vcpu);
10324 return 0;
10325}
10326
fe3ef05c
NHE
10327/*
10328 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10329 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 10330 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
10331 * guest in a way that will both be appropriate to L1's requests, and our
10332 * needs. In addition to modifying the active vmcs (which is vmcs02), this
10333 * function also has additional necessary side-effects, like setting various
10334 * vcpu->arch fields.
ee146c1c
LP
10335 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10336 * is assigned to entry_failure_code on failure.
fe3ef05c 10337 */
ee146c1c 10338static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
ca0bde28 10339 bool from_vmentry, u32 *entry_failure_code)
fe3ef05c
NHE
10340{
10341 struct vcpu_vmx *vmx = to_vmx(vcpu);
03efce6f 10342 u32 exec_control, vmcs12_exec_ctrl;
fe3ef05c
NHE
10343
10344 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10345 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10346 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10347 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10348 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10349 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10350 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10351 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10352 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10353 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10354 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10355 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10356 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10357 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10358 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10359 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10360 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10361 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10362 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10363 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10364 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10365 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10366 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10367 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10368 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10369 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10370 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10371 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10372 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10373 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10374 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10375 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10376 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10377 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10378 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10379 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10380
cf8b84f4
JM
10381 if (from_vmentry &&
10382 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2996fca0
JK
10383 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10384 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10385 } else {
10386 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10387 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10388 }
cf8b84f4
JM
10389 if (from_vmentry) {
10390 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10391 vmcs12->vm_entry_intr_info_field);
10392 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10393 vmcs12->vm_entry_exception_error_code);
10394 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10395 vmcs12->vm_entry_instruction_len);
10396 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10397 vmcs12->guest_interruptibility_info);
2d6144e3
WL
10398 vmx->loaded_vmcs->nmi_known_unmasked =
10399 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
cf8b84f4
JM
10400 } else {
10401 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10402 }
fe3ef05c 10403 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 10404 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
10405 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10406 vmcs12->guest_pending_dbg_exceptions);
10407 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10408 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10409
81dc01f7
WL
10410 if (nested_cpu_has_xsaves(vmcs12))
10411 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
10412 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10413
f4124500 10414 exec_control = vmcs12->pin_based_vm_exec_control;
9314006d
PB
10415
10416 /* Preemption timer setting is only taken from vmcs01. */
705699a1 10417 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9314006d
PB
10418 exec_control |= vmcs_config.pin_based_exec_ctrl;
10419 if (vmx->hv_deadline_tsc == -1)
10420 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
705699a1 10421
9314006d 10422 /* Posted interrupts setting is only taken from vmcs12. */
705699a1 10423 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
10424 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10425 vmx->nested.pi_pending = false;
06a5524f 10426 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
6beb7bd5 10427 } else {
705699a1 10428 exec_control &= ~PIN_BASED_POSTED_INTR;
6beb7bd5 10429 }
705699a1 10430
f4124500 10431 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 10432
f4124500
JK
10433 vmx->nested.preemption_timer_expired = false;
10434 if (nested_cpu_has_preemption_timer(vmcs12))
10435 vmx_start_preemption_timer(vcpu);
0238ea91 10436
fe3ef05c
NHE
10437 /*
10438 * Whether page-faults are trapped is determined by a combination of
10439 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10440 * If enable_ept, L0 doesn't care about page faults and we should
10441 * set all of these to L1's desires. However, if !enable_ept, L0 does
10442 * care about (at least some) page faults, and because it is not easy
10443 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10444 * to exit on each and every L2 page fault. This is done by setting
10445 * MASK=MATCH=0 and (see below) EB.PF=1.
10446 * Note that below we don't need special code to set EB.PF beyond the
10447 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10448 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10449 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
fe3ef05c
NHE
10450 */
10451 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10452 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10453 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10454 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10455
10456 if (cpu_has_secondary_exec_ctrls()) {
80154d77 10457 exec_control = vmx->secondary_exec_control;
e2821620 10458
fe3ef05c 10459 /* Take the following fields only from vmcs12 */
696dfd95 10460 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
90a2db6d 10461 SECONDARY_EXEC_ENABLE_INVPCID |
b3a2a907 10462 SECONDARY_EXEC_RDTSCP |
3db13480 10463 SECONDARY_EXEC_XSAVES |
696dfd95 10464 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
27c42a1b
BD
10465 SECONDARY_EXEC_APIC_REGISTER_VIRT |
10466 SECONDARY_EXEC_ENABLE_VMFUNC);
fe3ef05c 10467 if (nested_cpu_has(vmcs12,
03efce6f
BD
10468 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10469 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10470 ~SECONDARY_EXEC_ENABLE_PML;
10471 exec_control |= vmcs12_exec_ctrl;
10472 }
fe3ef05c 10473
27c42a1b
BD
10474 /* All VMFUNCs are currently emulated through L0 vmexits. */
10475 if (exec_control & SECONDARY_EXEC_ENABLE_VMFUNC)
10476 vmcs_write64(VM_FUNCTION_CONTROL, 0);
10477
608406e2
WV
10478 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10479 vmcs_write64(EOI_EXIT_BITMAP0,
10480 vmcs12->eoi_exit_bitmap0);
10481 vmcs_write64(EOI_EXIT_BITMAP1,
10482 vmcs12->eoi_exit_bitmap1);
10483 vmcs_write64(EOI_EXIT_BITMAP2,
10484 vmcs12->eoi_exit_bitmap2);
10485 vmcs_write64(EOI_EXIT_BITMAP3,
10486 vmcs12->eoi_exit_bitmap3);
10487 vmcs_write16(GUEST_INTR_STATUS,
10488 vmcs12->guest_intr_status);
10489 }
10490
6beb7bd5
JM
10491 /*
10492 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10493 * nested_get_vmcs12_pages will either fix it up or
10494 * remove the VM execution control.
10495 */
10496 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10497 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10498
fe3ef05c
NHE
10499 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10500 }
10501
10502
10503 /*
10504 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10505 * Some constant fields are set here by vmx_set_constant_host_state().
10506 * Other fields are different per CPU, and will be set later when
10507 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10508 */
a547c6db 10509 vmx_set_constant_host_state(vmx);
fe3ef05c 10510
83bafef1
JM
10511 /*
10512 * Set the MSR load/store lists to match L0's settings.
10513 */
10514 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10515 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10516 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10517 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10518 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10519
fe3ef05c
NHE
10520 /*
10521 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10522 * entry, but only if the current (host) sp changed from the value
10523 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10524 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10525 * here we just force the write to happen on entry.
10526 */
10527 vmx->host_rsp = 0;
10528
10529 exec_control = vmx_exec_control(vmx); /* L0's desires */
10530 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10531 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10532 exec_control &= ~CPU_BASED_TPR_SHADOW;
10533 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d 10534
6beb7bd5
JM
10535 /*
10536 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10537 * nested_get_vmcs12_pages can't fix it up, the illegal value
10538 * will result in a VM entry failure.
10539 */
a7c0b07d 10540 if (exec_control & CPU_BASED_TPR_SHADOW) {
6beb7bd5 10541 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
a7c0b07d 10542 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
51aa68e7
JM
10543 } else {
10544#ifdef CONFIG_X86_64
10545 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
10546 CPU_BASED_CR8_STORE_EXITING;
10547#endif
a7c0b07d
WL
10548 }
10549
fe3ef05c 10550 /*
3af18d9c 10551 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
10552 * Rather, exit every time.
10553 */
fe3ef05c
NHE
10554 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10555 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10556
10557 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10558
10559 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10560 * bitwise-or of what L1 wants to trap for L2, and what we want to
10561 * trap. Note that CR0.TS also needs updating - we do this later.
10562 */
10563 update_exception_bitmap(vcpu);
10564 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10565 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10566
8049d651
NHE
10567 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10568 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10569 * bits are further modified by vmx_set_efer() below.
10570 */
f4124500 10571 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
10572
10573 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10574 * emulated by vmx_set_efer(), below.
10575 */
2961e876 10576 vm_entry_controls_init(vmx,
8049d651
NHE
10577 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10578 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
10579 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10580
cf8b84f4
JM
10581 if (from_vmentry &&
10582 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
fe3ef05c 10583 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02 10584 vcpu->arch.pat = vmcs12->guest_ia32_pat;
cf8b84f4 10585 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 10586 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
cf8b84f4 10587 }
fe3ef05c
NHE
10588
10589 set_cr4_guest_host_mask(vmx);
10590
cf8b84f4
JM
10591 if (from_vmentry &&
10592 vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
36be0b9d
PB
10593 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10594
27fc51b2
NHE
10595 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10596 vmcs_write64(TSC_OFFSET,
ea26e4ec 10597 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
27fc51b2 10598 else
ea26e4ec 10599 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
c95ba92a
PF
10600 if (kvm_has_tsc_control)
10601 decache_tsc_multiplier(vmx);
fe3ef05c
NHE
10602
10603 if (enable_vpid) {
10604 /*
5c614b35
WL
10605 * There is no direct mapping between vpid02 and vpid12, the
10606 * vpid02 is per-vCPU for L0 and reused while the value of
10607 * vpid12 is changed w/ one invvpid during nested vmentry.
10608 * The vpid12 is allocated by L1 for L2, so it will not
10609 * influence global bitmap(for vpid01 and vpid02 allocation)
10610 * even if spawn a lot of nested vCPUs.
fe3ef05c 10611 */
5c614b35
WL
10612 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10613 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10614 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10615 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10616 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10617 }
10618 } else {
10619 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10620 vmx_flush_tlb(vcpu);
10621 }
10622
fe3ef05c
NHE
10623 }
10624
1fb883bb
LP
10625 if (enable_pml) {
10626 /*
10627 * Conceptually we want to copy the PML address and index from
10628 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10629 * since we always flush the log on each vmexit, this happens
10630 * to be equivalent to simply resetting the fields in vmcs02.
10631 */
10632 ASSERT(vmx->pml_pg);
10633 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10634 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10635 }
10636
155a97a3 10637 if (nested_cpu_has_ept(vmcs12)) {
ae1e2d10
PB
10638 if (nested_ept_init_mmu_context(vcpu)) {
10639 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10640 return 1;
10641 }
fb6c8198
JM
10642 } else if (nested_cpu_has2(vmcs12,
10643 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10644 vmx_flush_tlb_ept_only(vcpu);
155a97a3
NHE
10645 }
10646
fe3ef05c 10647 /*
bd7e5b08
PB
10648 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10649 * bits which we consider mandatory enabled.
fe3ef05c
NHE
10650 * The CR0_READ_SHADOW is what L2 should have expected to read given
10651 * the specifications by L1; It's not enough to take
10652 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10653 * have more bits than L1 expected.
10654 */
10655 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10656 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10657
10658 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10659 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10660
cf8b84f4
JM
10661 if (from_vmentry &&
10662 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
5a6a9748
DM
10663 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10664 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10665 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10666 else
10667 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10668 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10669 vmx_set_efer(vcpu, vcpu->arch.efer);
10670
9ed38ffa 10671 /* Shadow page tables on either EPT or shadow page tables. */
7ad658b6 10672 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
9ed38ffa
LP
10673 entry_failure_code))
10674 return 1;
7ca29de2 10675
feaf0c7d
GN
10676 if (!enable_ept)
10677 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10678
3633cfc3
NHE
10679 /*
10680 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10681 */
10682 if (enable_ept) {
10683 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10684 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10685 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10686 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10687 }
10688
fe3ef05c
NHE
10689 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10690 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
ee146c1c 10691 return 0;
fe3ef05c
NHE
10692}
10693
ca0bde28 10694static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
cd232ad0 10695{
cd232ad0 10696 struct vcpu_vmx *vmx = to_vmx(vcpu);
7c177938 10697
6dfacadd 10698 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
ca0bde28
JM
10699 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10700 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
26539bd0 10701
56a20510
JM
10702 if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10703 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10704
ca0bde28
JM
10705 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10706 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10707
712b12d7
JM
10708 if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
10709 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10710
ca0bde28
JM
10711 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10712 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
f2b93280 10713
ca0bde28
JM
10714 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10715 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
e9ac033e 10716
c5f983f6
BD
10717 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10718 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10719
7c177938 10720 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
0115f9cb 10721 vmx->nested.nested_vmx_procbased_ctls_low,
b9c237bb 10722 vmx->nested.nested_vmx_procbased_ctls_high) ||
2e5b0bd9
JM
10723 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10724 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10725 vmx->nested.nested_vmx_secondary_ctls_low,
10726 vmx->nested.nested_vmx_secondary_ctls_high)) ||
7c177938 10727 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
10728 vmx->nested.nested_vmx_pinbased_ctls_low,
10729 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 10730 !vmx_control_verify(vmcs12->vm_exit_controls,
0115f9cb 10731 vmx->nested.nested_vmx_exit_ctls_low,
b9c237bb 10732 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 10733 !vmx_control_verify(vmcs12->vm_entry_controls,
0115f9cb 10734 vmx->nested.nested_vmx_entry_ctls_low,
b9c237bb 10735 vmx->nested.nested_vmx_entry_ctls_high))
ca0bde28 10736 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 10737
41ab9372
BD
10738 if (nested_cpu_has_vmfunc(vmcs12)) {
10739 if (vmcs12->vm_function_control &
10740 ~vmx->nested.nested_vmx_vmfunc_controls)
10741 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10742
10743 if (nested_cpu_has_eptp_switching(vmcs12)) {
10744 if (!nested_cpu_has_ept(vmcs12) ||
10745 !page_address_valid(vcpu, vmcs12->eptp_list_address))
10746 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10747 }
10748 }
27c42a1b 10749
c7c2c709
JM
10750 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10751 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10752
3899152c 10753 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
1dc35dac 10754 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
ca0bde28
JM
10755 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10756 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10757
10758 return 0;
10759}
10760
10761static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10762 u32 *exit_qual)
10763{
10764 bool ia32e;
10765
10766 *exit_qual = ENTRY_FAIL_DEFAULT;
7c177938 10767
3899152c 10768 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
ca0bde28 10769 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
b428018a 10770 return 1;
ca0bde28
JM
10771
10772 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10773 vmcs12->vmcs_link_pointer != -1ull) {
10774 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
b428018a 10775 return 1;
7c177938
NHE
10776 }
10777
384bb783 10778 /*
cb0c8cda 10779 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
10780 * are performed on the field for the IA32_EFER MSR:
10781 * - Bits reserved in the IA32_EFER MSR must be 0.
10782 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10783 * the IA-32e mode guest VM-exit control. It must also be identical
10784 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10785 * CR0.PG) is 1.
10786 */
ca0bde28
JM
10787 if (to_vmx(vcpu)->nested.nested_run_pending &&
10788 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
384bb783
JK
10789 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10790 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10791 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10792 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
ca0bde28 10793 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
b428018a 10794 return 1;
384bb783
JK
10795 }
10796
10797 /*
10798 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10799 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10800 * the values of the LMA and LME bits in the field must each be that of
10801 * the host address-space size VM-exit control.
10802 */
10803 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10804 ia32e = (vmcs12->vm_exit_controls &
10805 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10806 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10807 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
ca0bde28 10808 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
b428018a 10809 return 1;
ca0bde28
JM
10810 }
10811
10812 return 0;
10813}
10814
858e25c0
JM
10815static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10816{
10817 struct vcpu_vmx *vmx = to_vmx(vcpu);
10818 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10819 struct loaded_vmcs *vmcs02;
858e25c0
JM
10820 u32 msr_entry_idx;
10821 u32 exit_qual;
10822
10823 vmcs02 = nested_get_current_vmcs02(vmx);
10824 if (!vmcs02)
10825 return -ENOMEM;
10826
10827 enter_guest_mode(vcpu);
10828
10829 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10830 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10831
1279a6b1 10832 vmx_switch_vmcs(vcpu, vmcs02);
858e25c0
JM
10833 vmx_segment_cache_clear(vmx);
10834
10835 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10836 leave_guest_mode(vcpu);
1279a6b1 10837 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10838 nested_vmx_entry_failure(vcpu, vmcs12,
10839 EXIT_REASON_INVALID_STATE, exit_qual);
10840 return 1;
10841 }
10842
10843 nested_get_vmcs12_pages(vcpu, vmcs12);
10844
10845 msr_entry_idx = nested_vmx_load_msr(vcpu,
10846 vmcs12->vm_entry_msr_load_addr,
10847 vmcs12->vm_entry_msr_load_count);
10848 if (msr_entry_idx) {
10849 leave_guest_mode(vcpu);
1279a6b1 10850 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
858e25c0
JM
10851 nested_vmx_entry_failure(vcpu, vmcs12,
10852 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10853 return 1;
10854 }
10855
858e25c0
JM
10856 /*
10857 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10858 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10859 * returned as far as L1 is concerned. It will only return (and set
10860 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10861 */
10862 return 0;
10863}
10864
ca0bde28
JM
10865/*
10866 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10867 * for running an L2 nested guest.
10868 */
10869static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10870{
10871 struct vmcs12 *vmcs12;
10872 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3f1dfb6 10873 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
ca0bde28
JM
10874 u32 exit_qual;
10875 int ret;
10876
10877 if (!nested_vmx_check_permission(vcpu))
10878 return 1;
10879
10880 if (!nested_vmx_check_vmcs12(vcpu))
10881 goto out;
10882
10883 vmcs12 = get_vmcs12(vcpu);
10884
10885 if (enable_shadow_vmcs)
10886 copy_shadow_to_vmcs12(vmx);
10887
10888 /*
10889 * The nested entry process starts with enforcing various prerequisites
10890 * on vmcs12 as required by the Intel SDM, and act appropriately when
10891 * they fail: As the SDM explains, some conditions should cause the
10892 * instruction to fail, while others will cause the instruction to seem
10893 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10894 * To speed up the normal (success) code path, we should avoid checking
10895 * for misconfigurations which will anyway be caught by the processor
10896 * when using the merged vmcs02.
10897 */
b3f1dfb6
JM
10898 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
10899 nested_vmx_failValid(vcpu,
10900 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
10901 goto out;
10902 }
10903
ca0bde28
JM
10904 if (vmcs12->launch_state == launch) {
10905 nested_vmx_failValid(vcpu,
10906 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10907 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10908 goto out;
10909 }
10910
10911 ret = check_vmentry_prereqs(vcpu, vmcs12);
10912 if (ret) {
10913 nested_vmx_failValid(vcpu, ret);
10914 goto out;
10915 }
10916
10917 /*
10918 * After this point, the trap flag no longer triggers a singlestep trap
10919 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10920 * This is not 100% correct; for performance reasons, we delegate most
10921 * of the checks on host state to the processor. If those fail,
10922 * the singlestep trap is missed.
10923 */
10924 skip_emulated_instruction(vcpu);
10925
10926 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10927 if (ret) {
10928 nested_vmx_entry_failure(vcpu, vmcs12,
10929 EXIT_REASON_INVALID_STATE, exit_qual);
10930 return 1;
384bb783
JK
10931 }
10932
7c177938
NHE
10933 /*
10934 * We're finally done with prerequisite checking, and can start with
10935 * the nested entry.
10936 */
10937
858e25c0
JM
10938 ret = enter_vmx_non_root_mode(vcpu, true);
10939 if (ret)
10940 return ret;
ff651cb6 10941
6dfacadd 10942 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 10943 return kvm_vcpu_halt(vcpu);
6dfacadd 10944
7af40ad3
JK
10945 vmx->nested.nested_run_pending = 1;
10946
cd232ad0 10947 return 1;
eb277562
KH
10948
10949out:
6affcbed 10950 return kvm_skip_emulated_instruction(vcpu);
cd232ad0
NHE
10951}
10952
4704d0be
NHE
10953/*
10954 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10955 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10956 * This function returns the new value we should put in vmcs12.guest_cr0.
10957 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10958 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10959 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10960 * didn't trap the bit, because if L1 did, so would L0).
10961 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10962 * been modified by L2, and L1 knows it. So just leave the old value of
10963 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10964 * isn't relevant, because if L0 traps this bit it can set it to anything.
10965 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10966 * changed these bits, and therefore they need to be updated, but L0
10967 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10968 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10969 */
10970static inline unsigned long
10971vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10972{
10973 return
10974 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10975 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10976 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10977 vcpu->arch.cr0_guest_owned_bits));
10978}
10979
10980static inline unsigned long
10981vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10982{
10983 return
10984 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10985 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10986 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10987 vcpu->arch.cr4_guest_owned_bits));
10988}
10989
5f3d5799
JK
10990static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10991 struct vmcs12 *vmcs12)
10992{
10993 u32 idt_vectoring;
10994 unsigned int nr;
10995
664f8e26 10996 if (vcpu->arch.exception.injected) {
5f3d5799
JK
10997 nr = vcpu->arch.exception.nr;
10998 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10999
11000 if (kvm_exception_is_soft(nr)) {
11001 vmcs12->vm_exit_instruction_len =
11002 vcpu->arch.event_exit_inst_len;
11003 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
11004 } else
11005 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
11006
11007 if (vcpu->arch.exception.has_error_code) {
11008 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
11009 vmcs12->idt_vectoring_error_code =
11010 vcpu->arch.exception.error_code;
11011 }
11012
11013 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 11014 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
11015 vmcs12->idt_vectoring_info_field =
11016 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
11017 } else if (vcpu->arch.interrupt.pending) {
11018 nr = vcpu->arch.interrupt.nr;
11019 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11020
11021 if (vcpu->arch.interrupt.soft) {
11022 idt_vectoring |= INTR_TYPE_SOFT_INTR;
11023 vmcs12->vm_entry_instruction_len =
11024 vcpu->arch.event_exit_inst_len;
11025 } else
11026 idt_vectoring |= INTR_TYPE_EXT_INTR;
11027
11028 vmcs12->idt_vectoring_info_field = idt_vectoring;
11029 }
11030}
11031
b6b8a145
JK
11032static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
11033{
11034 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfcf83b1 11035 unsigned long exit_qual;
b6b8a145 11036
274bba52 11037 if (kvm_event_needs_reinjection(vcpu))
acc9ab60
WL
11038 return -EBUSY;
11039
bfcf83b1
WL
11040 if (vcpu->arch.exception.pending &&
11041 nested_vmx_check_exception(vcpu, &exit_qual)) {
11042 if (vmx->nested.nested_run_pending)
11043 return -EBUSY;
11044 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
11045 vcpu->arch.exception.pending = false;
11046 return 0;
11047 }
11048
f4124500
JK
11049 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
11050 vmx->nested.preemption_timer_expired) {
11051 if (vmx->nested.nested_run_pending)
11052 return -EBUSY;
11053 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
11054 return 0;
11055 }
11056
b6b8a145 11057 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
acc9ab60 11058 if (vmx->nested.nested_run_pending)
b6b8a145
JK
11059 return -EBUSY;
11060 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
11061 NMI_VECTOR | INTR_TYPE_NMI_INTR |
11062 INTR_INFO_VALID_MASK, 0);
11063 /*
11064 * The NMI-triggered VM exit counts as injection:
11065 * clear this one and block further NMIs.
11066 */
11067 vcpu->arch.nmi_pending = 0;
11068 vmx_set_nmi_mask(vcpu, true);
11069 return 0;
11070 }
11071
11072 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
11073 nested_exit_on_intr(vcpu)) {
11074 if (vmx->nested.nested_run_pending)
11075 return -EBUSY;
11076 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 11077 return 0;
b6b8a145
JK
11078 }
11079
6342c50a
DH
11080 vmx_complete_nested_posted_interrupt(vcpu);
11081 return 0;
b6b8a145
JK
11082}
11083
f4124500
JK
11084static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
11085{
11086 ktime_t remaining =
11087 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
11088 u64 value;
11089
11090 if (ktime_to_ns(remaining) <= 0)
11091 return 0;
11092
11093 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
11094 do_div(value, 1000000);
11095 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
11096}
11097
4704d0be 11098/*
cf8b84f4
JM
11099 * Update the guest state fields of vmcs12 to reflect changes that
11100 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
11101 * VM-entry controls is also updated, since this is really a guest
11102 * state bit.)
4704d0be 11103 */
cf8b84f4 11104static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4704d0be 11105{
4704d0be
NHE
11106 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
11107 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
11108
4704d0be
NHE
11109 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
11110 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
11111 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
11112
11113 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
11114 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
11115 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
11116 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
11117 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
11118 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
11119 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
11120 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
11121 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
11122 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
11123 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
11124 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
11125 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
11126 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
11127 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
11128 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
11129 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
11130 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
11131 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
11132 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
11133 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
11134 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
11135 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
11136 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
11137 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
11138 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
11139 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
11140 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
11141 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
11142 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
11143 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
11144 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
11145 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
11146 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
11147 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
11148 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
11149
4704d0be
NHE
11150 vmcs12->guest_interruptibility_info =
11151 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
11152 vmcs12->guest_pending_dbg_exceptions =
11153 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
11154 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11155 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
11156 else
11157 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 11158
f4124500
JK
11159 if (nested_cpu_has_preemption_timer(vmcs12)) {
11160 if (vmcs12->vm_exit_controls &
11161 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
11162 vmcs12->vmx_preemption_timer_value =
11163 vmx_get_preemption_timer_value(vcpu);
11164 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
11165 }
7854cbca 11166
3633cfc3
NHE
11167 /*
11168 * In some cases (usually, nested EPT), L2 is allowed to change its
11169 * own CR3 without exiting. If it has changed it, we must keep it.
11170 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11171 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11172 *
11173 * Additionally, restore L2's PDPTR to vmcs12.
11174 */
11175 if (enable_ept) {
f3531054 11176 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
11177 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
11178 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
11179 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
11180 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
11181 }
11182
d281e13b 11183 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
119a9c01 11184
608406e2
WV
11185 if (nested_cpu_has_vid(vmcs12))
11186 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
11187
c18911a2
JK
11188 vmcs12->vm_entry_controls =
11189 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 11190 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 11191
2996fca0
JK
11192 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
11193 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
11194 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11195 }
11196
4704d0be
NHE
11197 /* TODO: These cannot have changed unless we have MSR bitmaps and
11198 * the relevant bit asks not to trap the change */
b8c07d55 11199 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 11200 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
11201 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
11202 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
11203 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
11204 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
11205 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
a87036ad 11206 if (kvm_mpx_supported())
36be0b9d 11207 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
cf8b84f4
JM
11208}
11209
11210/*
11211 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11212 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11213 * and this function updates it to reflect the changes to the guest state while
11214 * L2 was running (and perhaps made some exits which were handled directly by L0
11215 * without going back to L1), and to reflect the exit reason.
11216 * Note that we do not have to copy here all VMCS fields, just those that
11217 * could have changed by the L2 guest or the exit - i.e., the guest-state and
11218 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11219 * which already writes to vmcs12 directly.
11220 */
11221static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11222 u32 exit_reason, u32 exit_intr_info,
11223 unsigned long exit_qualification)
11224{
11225 /* update guest state fields: */
11226 sync_vmcs12(vcpu, vmcs12);
4704d0be
NHE
11227
11228 /* update exit information fields: */
11229
533558bc
JK
11230 vmcs12->vm_exit_reason = exit_reason;
11231 vmcs12->exit_qualification = exit_qualification;
533558bc 11232 vmcs12->vm_exit_intr_info = exit_intr_info;
7313c698 11233
5f3d5799 11234 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
11235 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
11236 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
11237
5f3d5799 11238 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
7cdc2d62
JM
11239 vmcs12->launch_state = 1;
11240
5f3d5799
JK
11241 /* vm_entry_intr_info_field is cleared on exit. Emulate this
11242 * instead of reading the real value. */
4704d0be 11243 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
11244
11245 /*
11246 * Transfer the event that L0 or L1 may wanted to inject into
11247 * L2 to IDT_VECTORING_INFO_FIELD.
11248 */
11249 vmcs12_save_pending_event(vcpu, vmcs12);
11250 }
11251
11252 /*
11253 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11254 * preserved above and would only end up incorrectly in L1.
11255 */
11256 vcpu->arch.nmi_injected = false;
11257 kvm_clear_exception_queue(vcpu);
11258 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
11259}
11260
11261/*
11262 * A part of what we need to when the nested L2 guest exits and we want to
11263 * run its L1 parent, is to reset L1's guest state to the host state specified
11264 * in vmcs12.
11265 * This function is to be called not only on normal nested exit, but also on
11266 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11267 * Failures During or After Loading Guest State").
11268 * This function should be called when the active VMCS is L1's (vmcs01).
11269 */
733568f9
JK
11270static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
11271 struct vmcs12 *vmcs12)
4704d0be 11272{
21feb4eb 11273 struct kvm_segment seg;
ca0bde28 11274 u32 entry_failure_code;
21feb4eb 11275
4704d0be
NHE
11276 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
11277 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 11278 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
11279 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11280 else
11281 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11282 vmx_set_efer(vcpu, vcpu->arch.efer);
11283
11284 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
11285 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 11286 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
11287 /*
11288 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
bd7e5b08
PB
11289 * actually changed, because vmx_set_cr0 refers to efer set above.
11290 *
11291 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11292 * (KVM doesn't change it);
4704d0be 11293 */
bd7e5b08 11294 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
9e3e4dbf 11295 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be 11296
bd7e5b08 11297 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4704d0be 11298 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8eb3f87d 11299 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4704d0be 11300
29bf08f1 11301 nested_ept_uninit_mmu_context(vcpu);
155a97a3 11302
1dc35dac
LP
11303 /*
11304 * Only PDPTE load can fail as the value of cr3 was checked on entry and
11305 * couldn't have changed.
11306 */
11307 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11308 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4704d0be 11309
feaf0c7d
GN
11310 if (!enable_ept)
11311 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11312
4704d0be
NHE
11313 if (enable_vpid) {
11314 /*
11315 * Trivially support vpid by letting L2s share their parent
11316 * L1's vpid. TODO: move to a more elaborate solution, giving
11317 * each L2 its own vpid and exposing the vpid feature to L1.
11318 */
11319 vmx_flush_tlb(vcpu);
11320 }
06a5524f
WV
11321 /* Restore posted intr vector. */
11322 if (nested_cpu_has_posted_intr(vmcs12))
11323 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4704d0be
NHE
11324
11325 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11326 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11327 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11328 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11329 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 11330
36be0b9d
PB
11331 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
11332 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11333 vmcs_write64(GUEST_BNDCFGS, 0);
11334
44811c02 11335 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 11336 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
11337 vcpu->arch.pat = vmcs12->host_ia32_pat;
11338 }
4704d0be
NHE
11339 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11340 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11341 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 11342
21feb4eb
ACL
11343 /* Set L1 segment info according to Intel SDM
11344 27.5.2 Loading Host Segment and Descriptor-Table Registers */
11345 seg = (struct kvm_segment) {
11346 .base = 0,
11347 .limit = 0xFFFFFFFF,
11348 .selector = vmcs12->host_cs_selector,
11349 .type = 11,
11350 .present = 1,
11351 .s = 1,
11352 .g = 1
11353 };
11354 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11355 seg.l = 1;
11356 else
11357 seg.db = 1;
11358 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11359 seg = (struct kvm_segment) {
11360 .base = 0,
11361 .limit = 0xFFFFFFFF,
11362 .type = 3,
11363 .present = 1,
11364 .s = 1,
11365 .db = 1,
11366 .g = 1
11367 };
11368 seg.selector = vmcs12->host_ds_selector;
11369 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11370 seg.selector = vmcs12->host_es_selector;
11371 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11372 seg.selector = vmcs12->host_ss_selector;
11373 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11374 seg.selector = vmcs12->host_fs_selector;
11375 seg.base = vmcs12->host_fs_base;
11376 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11377 seg.selector = vmcs12->host_gs_selector;
11378 seg.base = vmcs12->host_gs_base;
11379 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11380 seg = (struct kvm_segment) {
205befd9 11381 .base = vmcs12->host_tr_base,
21feb4eb
ACL
11382 .limit = 0x67,
11383 .selector = vmcs12->host_tr_selector,
11384 .type = 11,
11385 .present = 1
11386 };
11387 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11388
503cd0c5
JK
11389 kvm_set_dr(vcpu, 7, 0x400);
11390 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 11391
3af18d9c
WV
11392 if (cpu_has_vmx_msr_bitmap())
11393 vmx_set_msr_bitmap(vcpu);
11394
ff651cb6
WV
11395 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11396 vmcs12->vm_exit_msr_load_count))
11397 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
11398}
11399
11400/*
11401 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11402 * and modify vmcs12 to make it see what it would expect to see there if
11403 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11404 */
533558bc
JK
11405static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11406 u32 exit_intr_info,
11407 unsigned long exit_qualification)
4704d0be
NHE
11408{
11409 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be
NHE
11410 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11411
5f3d5799
JK
11412 /* trying to cancel vmlaunch/vmresume is a bug */
11413 WARN_ON_ONCE(vmx->nested.nested_run_pending);
11414
4f350c6d
JM
11415 /*
11416 * The only expected VM-instruction error is "VM entry with
11417 * invalid control field(s)." Anything else indicates a
11418 * problem with L0.
11419 */
11420 WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
11421 VMXERR_ENTRY_INVALID_CONTROL_FIELD));
11422
4704d0be 11423 leave_guest_mode(vcpu);
4704d0be 11424
4f350c6d
JM
11425 if (likely(!vmx->fail)) {
11426 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11427 exit_qualification);
ff651cb6 11428
4f350c6d
JM
11429 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11430 vmcs12->vm_exit_msr_store_count))
11431 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11432 }
cf3215d9 11433
1279a6b1 11434 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
8391ce44
PB
11435 vm_entry_controls_reset_shadow(vmx);
11436 vm_exit_controls_reset_shadow(vmx);
36c3cc42
JK
11437 vmx_segment_cache_clear(vmx);
11438
4704d0be
NHE
11439 /* if no vmcs02 cache requested, remove the one we used */
11440 if (VMCS02_POOL_SIZE == 0)
11441 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11442
9314006d 11443 /* Update any VMCS fields that might have changed while L2 ran */
83bafef1
JM
11444 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11445 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
ea26e4ec 11446 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
9314006d
PB
11447 if (vmx->hv_deadline_tsc == -1)
11448 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11449 PIN_BASED_VMX_PREEMPTION_TIMER);
11450 else
11451 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11452 PIN_BASED_VMX_PREEMPTION_TIMER);
c95ba92a
PF
11453 if (kvm_has_tsc_control)
11454 decache_tsc_multiplier(vmx);
4704d0be 11455
dccbfcf5
RK
11456 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11457 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11458 vmx_set_virtual_x2apic_mode(vcpu,
11459 vcpu->arch.apic_base & X2APIC_ENABLE);
fb6c8198
JM
11460 } else if (!nested_cpu_has_ept(vmcs12) &&
11461 nested_cpu_has2(vmcs12,
11462 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11463 vmx_flush_tlb_ept_only(vcpu);
dccbfcf5 11464 }
4704d0be
NHE
11465
11466 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11467 vmx->host_rsp = 0;
11468
11469 /* Unpin physical memory we referred to in vmcs02 */
11470 if (vmx->nested.apic_access_page) {
53a70daf 11471 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 11472 vmx->nested.apic_access_page = NULL;
4704d0be 11473 }
a7c0b07d 11474 if (vmx->nested.virtual_apic_page) {
53a70daf 11475 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 11476 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 11477 }
705699a1
WV
11478 if (vmx->nested.pi_desc_page) {
11479 kunmap(vmx->nested.pi_desc_page);
53a70daf 11480 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
11481 vmx->nested.pi_desc_page = NULL;
11482 vmx->nested.pi_desc = NULL;
11483 }
4704d0be 11484
38b99173
TC
11485 /*
11486 * We are now running in L2, mmu_notifier will force to reload the
11487 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11488 */
c83b6d15 11489 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
38b99173 11490
012f83cb
AG
11491 if (enable_shadow_vmcs)
11492 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
11493
11494 /* in case we halted in L2 */
11495 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4f350c6d
JM
11496
11497 if (likely(!vmx->fail)) {
11498 /*
11499 * TODO: SDM says that with acknowledge interrupt on
11500 * exit, bit 31 of the VM-exit interrupt information
11501 * (valid interrupt) is always set to 1 on
11502 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
11503 * need kvm_cpu_has_interrupt(). See the commit
11504 * message for details.
11505 */
11506 if (nested_exit_intr_ack_set(vcpu) &&
11507 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
11508 kvm_cpu_has_interrupt(vcpu)) {
11509 int irq = kvm_cpu_get_interrupt(vcpu);
11510 WARN_ON(irq < 0);
11511 vmcs12->vm_exit_intr_info = irq |
11512 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11513 }
11514
11515 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11516 vmcs12->exit_qualification,
11517 vmcs12->idt_vectoring_info_field,
11518 vmcs12->vm_exit_intr_info,
11519 vmcs12->vm_exit_intr_error_code,
11520 KVM_ISA_VMX);
11521
11522 load_vmcs12_host_state(vcpu, vmcs12);
11523
11524 return;
11525 }
11526
11527 /*
11528 * After an early L2 VM-entry failure, we're now back
11529 * in L1 which thinks it just finished a VMLAUNCH or
11530 * VMRESUME instruction, so we need to set the failure
11531 * flag and the VM-instruction error field of the VMCS
11532 * accordingly.
11533 */
11534 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
11535 /*
11536 * The emulated instruction was already skipped in
11537 * nested_vmx_run, but the updated RIP was never
11538 * written back to the vmcs01.
11539 */
11540 skip_emulated_instruction(vcpu);
11541 vmx->fail = 0;
4704d0be
NHE
11542}
11543
42124925
JK
11544/*
11545 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11546 */
11547static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11548{
2f707d97
WL
11549 if (is_guest_mode(vcpu)) {
11550 to_vmx(vcpu)->nested.nested_run_pending = 0;
533558bc 11551 nested_vmx_vmexit(vcpu, -1, 0, 0);
2f707d97 11552 }
42124925
JK
11553 free_nested(to_vmx(vcpu));
11554}
11555
7c177938
NHE
11556/*
11557 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11558 * 23.7 "VM-entry failures during or after loading guest state" (this also
11559 * lists the acceptable exit-reason and exit-qualification parameters).
11560 * It should only be called before L2 actually succeeded to run, and when
11561 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11562 */
11563static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11564 struct vmcs12 *vmcs12,
11565 u32 reason, unsigned long qualification)
11566{
11567 load_vmcs12_host_state(vcpu, vmcs12);
11568 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11569 vmcs12->exit_qualification = qualification;
11570 nested_vmx_succeed(vcpu);
012f83cb
AG
11571 if (enable_shadow_vmcs)
11572 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
11573}
11574
8a76d7f2
JR
11575static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11576 struct x86_instruction_info *info,
11577 enum x86_intercept_stage stage)
11578{
11579 return X86EMUL_CONTINUE;
11580}
11581
64672c95
YJ
11582#ifdef CONFIG_X86_64
11583/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11584static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11585 u64 divisor, u64 *result)
11586{
11587 u64 low = a << shift, high = a >> (64 - shift);
11588
11589 /* To avoid the overflow on divq */
11590 if (high >= divisor)
11591 return 1;
11592
11593 /* Low hold the result, high hold rem which is discarded */
11594 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11595 "rm" (divisor), "0" (low), "1" (high));
11596 *result = low;
11597
11598 return 0;
11599}
11600
11601static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11602{
11603 struct vcpu_vmx *vmx = to_vmx(vcpu);
9175d2e9
PB
11604 u64 tscl = rdtsc();
11605 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11606 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
64672c95
YJ
11607
11608 /* Convert to host delta tsc if tsc scaling is enabled */
11609 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11610 u64_shl_div_u64(delta_tsc,
11611 kvm_tsc_scaling_ratio_frac_bits,
11612 vcpu->arch.tsc_scaling_ratio,
11613 &delta_tsc))
11614 return -ERANGE;
11615
11616 /*
11617 * If the delta tsc can't fit in the 32 bit after the multi shift,
11618 * we can't use the preemption timer.
11619 * It's possible that it fits on later vmentries, but checking
11620 * on every vmentry is costly so we just use an hrtimer.
11621 */
11622 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11623 return -ERANGE;
11624
11625 vmx->hv_deadline_tsc = tscl + delta_tsc;
11626 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11627 PIN_BASED_VMX_PREEMPTION_TIMER);
c8533544
WL
11628
11629 return delta_tsc == 0;
64672c95
YJ
11630}
11631
11632static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11633{
11634 struct vcpu_vmx *vmx = to_vmx(vcpu);
11635 vmx->hv_deadline_tsc = -1;
11636 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11637 PIN_BASED_VMX_PREEMPTION_TIMER);
11638}
11639#endif
11640
48d89b92 11641static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 11642{
b4a2d31d
RK
11643 if (ple_gap)
11644 shrink_ple_window(vcpu);
ae97a3b8
RK
11645}
11646
843e4330
KH
11647static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11648 struct kvm_memory_slot *slot)
11649{
11650 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11651 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11652}
11653
11654static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11655 struct kvm_memory_slot *slot)
11656{
11657 kvm_mmu_slot_set_dirty(kvm, slot);
11658}
11659
11660static void vmx_flush_log_dirty(struct kvm *kvm)
11661{
11662 kvm_flush_pml_buffers(kvm);
11663}
11664
c5f983f6
BD
11665static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11666{
11667 struct vmcs12 *vmcs12;
11668 struct vcpu_vmx *vmx = to_vmx(vcpu);
11669 gpa_t gpa;
11670 struct page *page = NULL;
11671 u64 *pml_address;
11672
11673 if (is_guest_mode(vcpu)) {
11674 WARN_ON_ONCE(vmx->nested.pml_full);
11675
11676 /*
11677 * Check if PML is enabled for the nested guest.
11678 * Whether eptp bit 6 is set is already checked
11679 * as part of A/D emulation.
11680 */
11681 vmcs12 = get_vmcs12(vcpu);
11682 if (!nested_cpu_has_pml(vmcs12))
11683 return 0;
11684
4769886b 11685 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
c5f983f6
BD
11686 vmx->nested.pml_full = true;
11687 return 1;
11688 }
11689
11690 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11691
5e2f30b7
DH
11692 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
11693 if (is_error_page(page))
c5f983f6
BD
11694 return 0;
11695
11696 pml_address = kmap(page);
11697 pml_address[vmcs12->guest_pml_index--] = gpa;
11698 kunmap(page);
53a70daf 11699 kvm_release_page_clean(page);
c5f983f6
BD
11700 }
11701
11702 return 0;
11703}
11704
843e4330
KH
11705static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11706 struct kvm_memory_slot *memslot,
11707 gfn_t offset, unsigned long mask)
11708{
11709 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11710}
11711
cd39e117
PB
11712static void __pi_post_block(struct kvm_vcpu *vcpu)
11713{
11714 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11715 struct pi_desc old, new;
11716 unsigned int dest;
cd39e117
PB
11717
11718 do {
11719 old.control = new.control = pi_desc->control;
8b306e2f
PB
11720 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
11721 "Wakeup handler not enabled while the VCPU is blocked\n");
cd39e117
PB
11722
11723 dest = cpu_physical_id(vcpu->cpu);
11724
11725 if (x2apic_enabled())
11726 new.ndst = dest;
11727 else
11728 new.ndst = (dest << 8) & 0xFF00;
11729
cd39e117
PB
11730 /* set 'NV' to 'notification vector' */
11731 new.nv = POSTED_INTR_VECTOR;
c0a1666b
PB
11732 } while (cmpxchg64(&pi_desc->control, old.control,
11733 new.control) != old.control);
cd39e117 11734
8b306e2f
PB
11735 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
11736 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
cd39e117 11737 list_del(&vcpu->blocked_vcpu_list);
8b306e2f 11738 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
cd39e117
PB
11739 vcpu->pre_pcpu = -1;
11740 }
11741}
11742
bf9f6ac8
FW
11743/*
11744 * This routine does the following things for vCPU which is going
11745 * to be blocked if VT-d PI is enabled.
11746 * - Store the vCPU to the wakeup list, so when interrupts happen
11747 * we can find the right vCPU to wake up.
11748 * - Change the Posted-interrupt descriptor as below:
11749 * 'NDST' <-- vcpu->pre_pcpu
11750 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11751 * - If 'ON' is set during this process, which means at least one
11752 * interrupt is posted for this vCPU, we cannot block it, in
11753 * this case, return 1, otherwise, return 0.
11754 *
11755 */
bc22512b 11756static int pi_pre_block(struct kvm_vcpu *vcpu)
bf9f6ac8 11757{
bf9f6ac8
FW
11758 unsigned int dest;
11759 struct pi_desc old, new;
11760 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11761
11762 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
11763 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11764 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
11765 return 0;
11766
8b306e2f
PB
11767 WARN_ON(irqs_disabled());
11768 local_irq_disable();
11769 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
11770 vcpu->pre_pcpu = vcpu->cpu;
11771 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11772 list_add_tail(&vcpu->blocked_vcpu_list,
11773 &per_cpu(blocked_vcpu_on_cpu,
11774 vcpu->pre_pcpu));
11775 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11776 }
bf9f6ac8
FW
11777
11778 do {
11779 old.control = new.control = pi_desc->control;
11780
bf9f6ac8
FW
11781 WARN((pi_desc->sn == 1),
11782 "Warning: SN field of posted-interrupts "
11783 "is set before blocking\n");
11784
11785 /*
11786 * Since vCPU can be preempted during this process,
11787 * vcpu->cpu could be different with pre_pcpu, we
11788 * need to set pre_pcpu as the destination of wakeup
11789 * notification event, then we can find the right vCPU
11790 * to wakeup in wakeup handler if interrupts happen
11791 * when the vCPU is in blocked state.
11792 */
11793 dest = cpu_physical_id(vcpu->pre_pcpu);
11794
11795 if (x2apic_enabled())
11796 new.ndst = dest;
11797 else
11798 new.ndst = (dest << 8) & 0xFF00;
11799
11800 /* set 'NV' to 'wakeup vector' */
11801 new.nv = POSTED_INTR_WAKEUP_VECTOR;
c0a1666b
PB
11802 } while (cmpxchg64(&pi_desc->control, old.control,
11803 new.control) != old.control);
bf9f6ac8 11804
8b306e2f
PB
11805 /* We should not block the vCPU if an interrupt is posted for it. */
11806 if (pi_test_on(pi_desc) == 1)
11807 __pi_post_block(vcpu);
11808
11809 local_irq_enable();
11810 return (vcpu->pre_pcpu == -1);
bf9f6ac8
FW
11811}
11812
bc22512b
YJ
11813static int vmx_pre_block(struct kvm_vcpu *vcpu)
11814{
11815 if (pi_pre_block(vcpu))
11816 return 1;
11817
64672c95
YJ
11818 if (kvm_lapic_hv_timer_in_use(vcpu))
11819 kvm_lapic_switch_to_sw_timer(vcpu);
11820
bc22512b
YJ
11821 return 0;
11822}
11823
11824static void pi_post_block(struct kvm_vcpu *vcpu)
bf9f6ac8 11825{
8b306e2f 11826 if (vcpu->pre_pcpu == -1)
bf9f6ac8
FW
11827 return;
11828
8b306e2f
PB
11829 WARN_ON(irqs_disabled());
11830 local_irq_disable();
cd39e117 11831 __pi_post_block(vcpu);
8b306e2f 11832 local_irq_enable();
bf9f6ac8
FW
11833}
11834
bc22512b
YJ
11835static void vmx_post_block(struct kvm_vcpu *vcpu)
11836{
64672c95
YJ
11837 if (kvm_x86_ops->set_hv_timer)
11838 kvm_lapic_switch_to_hv_timer(vcpu);
11839
bc22512b
YJ
11840 pi_post_block(vcpu);
11841}
11842
efc64404
FW
11843/*
11844 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11845 *
11846 * @kvm: kvm
11847 * @host_irq: host irq of the interrupt
11848 * @guest_irq: gsi of the interrupt
11849 * @set: set or unset PI
11850 * returns 0 on success, < 0 on failure
11851 */
11852static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11853 uint32_t guest_irq, bool set)
11854{
11855 struct kvm_kernel_irq_routing_entry *e;
11856 struct kvm_irq_routing_table *irq_rt;
11857 struct kvm_lapic_irq irq;
11858 struct kvm_vcpu *vcpu;
11859 struct vcpu_data vcpu_info;
3a8b0677 11860 int idx, ret = 0;
efc64404
FW
11861
11862 if (!kvm_arch_has_assigned_device(kvm) ||
a0052191
YZ
11863 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11864 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
efc64404
FW
11865 return 0;
11866
11867 idx = srcu_read_lock(&kvm->irq_srcu);
11868 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
3a8b0677
JS
11869 if (guest_irq >= irq_rt->nr_rt_entries ||
11870 hlist_empty(&irq_rt->map[guest_irq])) {
11871 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
11872 guest_irq, irq_rt->nr_rt_entries);
11873 goto out;
11874 }
efc64404
FW
11875
11876 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11877 if (e->type != KVM_IRQ_ROUTING_MSI)
11878 continue;
11879 /*
11880 * VT-d PI cannot support posting multicast/broadcast
11881 * interrupts to a vCPU, we still use interrupt remapping
11882 * for these kind of interrupts.
11883 *
11884 * For lowest-priority interrupts, we only support
11885 * those with single CPU as the destination, e.g. user
11886 * configures the interrupts via /proc/irq or uses
11887 * irqbalance to make the interrupts single-CPU.
11888 *
11889 * We will support full lowest-priority interrupt later.
11890 */
11891
37131313 11892 kvm_set_msi_irq(kvm, e, &irq);
23a1c257
FW
11893 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11894 /*
11895 * Make sure the IRTE is in remapped mode if
11896 * we don't handle it in posted mode.
11897 */
11898 ret = irq_set_vcpu_affinity(host_irq, NULL);
11899 if (ret < 0) {
11900 printk(KERN_INFO
11901 "failed to back to remapped mode, irq: %u\n",
11902 host_irq);
11903 goto out;
11904 }
11905
efc64404 11906 continue;
23a1c257 11907 }
efc64404
FW
11908
11909 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11910 vcpu_info.vector = irq.vector;
11911
b6ce9780 11912 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
efc64404
FW
11913 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11914
11915 if (set)
11916 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
dc91f2eb 11917 else
efc64404 11918 ret = irq_set_vcpu_affinity(host_irq, NULL);
efc64404
FW
11919
11920 if (ret < 0) {
11921 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11922 __func__);
11923 goto out;
11924 }
11925 }
11926
11927 ret = 0;
11928out:
11929 srcu_read_unlock(&kvm->irq_srcu, idx);
11930 return ret;
11931}
11932
c45dcc71
AR
11933static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11934{
11935 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11936 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11937 FEATURE_CONTROL_LMCE;
11938 else
11939 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11940 ~FEATURE_CONTROL_LMCE;
11941}
11942
404f6aac 11943static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
6aa8b732
AK
11944 .cpu_has_kvm_support = cpu_has_kvm_support,
11945 .disabled_by_bios = vmx_disabled_by_bios,
11946 .hardware_setup = hardware_setup,
11947 .hardware_unsetup = hardware_unsetup,
002c7f7c 11948 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
11949 .hardware_enable = hardware_enable,
11950 .hardware_disable = hardware_disable,
04547156 11951 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 11952 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
11953
11954 .vcpu_create = vmx_create_vcpu,
11955 .vcpu_free = vmx_free_vcpu,
04d2cc77 11956 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 11957
04d2cc77 11958 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
11959 .vcpu_load = vmx_vcpu_load,
11960 .vcpu_put = vmx_vcpu_put,
11961
a96036b8 11962 .update_bp_intercept = update_exception_bitmap,
6aa8b732
AK
11963 .get_msr = vmx_get_msr,
11964 .set_msr = vmx_set_msr,
11965 .get_segment_base = vmx_get_segment_base,
11966 .get_segment = vmx_get_segment,
11967 .set_segment = vmx_set_segment,
2e4d2653 11968 .get_cpl = vmx_get_cpl,
6aa8b732 11969 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 11970 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 11971 .decache_cr3 = vmx_decache_cr3,
25c4c276 11972 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 11973 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
11974 .set_cr3 = vmx_set_cr3,
11975 .set_cr4 = vmx_set_cr4,
6aa8b732 11976 .set_efer = vmx_set_efer,
6aa8b732
AK
11977 .get_idt = vmx_get_idt,
11978 .set_idt = vmx_set_idt,
11979 .get_gdt = vmx_get_gdt,
11980 .set_gdt = vmx_set_gdt,
73aaf249
JK
11981 .get_dr6 = vmx_get_dr6,
11982 .set_dr6 = vmx_set_dr6,
020df079 11983 .set_dr7 = vmx_set_dr7,
81908bf4 11984 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 11985 .cache_reg = vmx_cache_reg,
6aa8b732
AK
11986 .get_rflags = vmx_get_rflags,
11987 .set_rflags = vmx_set_rflags,
be94f6b7 11988
6aa8b732 11989 .tlb_flush = vmx_flush_tlb,
6aa8b732 11990
6aa8b732 11991 .run = vmx_vcpu_run,
6062d012 11992 .handle_exit = vmx_handle_exit,
6aa8b732 11993 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
11994 .set_interrupt_shadow = vmx_set_interrupt_shadow,
11995 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 11996 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 11997 .set_irq = vmx_inject_irq,
95ba8273 11998 .set_nmi = vmx_inject_nmi,
298101da 11999 .queue_exception = vmx_queue_exception,
b463a6f7 12000 .cancel_injection = vmx_cancel_injection,
78646121 12001 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 12002 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
12003 .get_nmi_mask = vmx_get_nmi_mask,
12004 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
12005 .enable_nmi_window = enable_nmi_window,
12006 .enable_irq_window = enable_irq_window,
12007 .update_cr8_intercept = update_cr8_intercept,
8d14695f 12008 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 12009 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
12010 .get_enable_apicv = vmx_get_enable_apicv,
12011 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c 12012 .load_eoi_exitmap = vmx_load_eoi_exitmap,
967235d3 12013 .apicv_post_state_restore = vmx_apicv_post_state_restore,
c7c9c56c
YZ
12014 .hwapic_irr_update = vmx_hwapic_irr_update,
12015 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
12016 .sync_pir_to_irr = vmx_sync_pir_to_irr,
12017 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 12018
cbc94022 12019 .set_tss_addr = vmx_set_tss_addr,
67253af5 12020 .get_tdp_level = get_ept_level,
4b12f0de 12021 .get_mt_mask = vmx_get_mt_mask,
229456fc 12022
586f9607 12023 .get_exit_info = vmx_get_exit_info,
586f9607 12024
17cc3935 12025 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
12026
12027 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
12028
12029 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 12030 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
12031
12032 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
12033
12034 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a
ZA
12035
12036 .write_tsc_offset = vmx_write_tsc_offset,
1c97f0a0
JR
12037
12038 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
12039
12040 .check_intercept = vmx_check_intercept,
a547c6db 12041 .handle_external_intr = vmx_handle_external_intr,
da8999d3 12042 .mpx_supported = vmx_mpx_supported,
55412b2e 12043 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
12044
12045 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
12046
12047 .sched_in = vmx_sched_in,
843e4330
KH
12048
12049 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
12050 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
12051 .flush_log_dirty = vmx_flush_log_dirty,
12052 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
c5f983f6 12053 .write_log_dirty = vmx_write_pml_buffer,
25462f7f 12054
bf9f6ac8
FW
12055 .pre_block = vmx_pre_block,
12056 .post_block = vmx_post_block,
12057
25462f7f 12058 .pmu_ops = &intel_pmu_ops,
efc64404
FW
12059
12060 .update_pi_irte = vmx_update_pi_irte,
64672c95
YJ
12061
12062#ifdef CONFIG_X86_64
12063 .set_hv_timer = vmx_set_hv_timer,
12064 .cancel_hv_timer = vmx_cancel_hv_timer,
12065#endif
c45dcc71
AR
12066
12067 .setup_mce = vmx_setup_mce,
6aa8b732
AK
12068};
12069
12070static int __init vmx_init(void)
12071{
34a1cd60
TC
12072 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
12073 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 12074 if (r)
34a1cd60 12075 return r;
25c5f225 12076
2965faa5 12077#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
12078 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
12079 crash_vmclear_local_loaded_vmcss);
12080#endif
12081
fdef3ad1 12082 return 0;
6aa8b732
AK
12083}
12084
12085static void __exit vmx_exit(void)
12086{
2965faa5 12087#ifdef CONFIG_KEXEC_CORE
3b63a43f 12088 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
12089 synchronize_rcu();
12090#endif
12091
cb498ea2 12092 kvm_exit();
6aa8b732
AK
12093}
12094
12095module_init(vmx_init)
12096module_exit(vmx_exit)