]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: irqfd: fix race between EPOLLHUP and irq_bypass_register_consumer
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
c207aee4 36#include <linux/frame.h>
085331df 37#include <linux/nospec.h>
5fdbf976 38#include "kvm_cache_regs.h"
35920a35 39#include "x86.h"
e495606d 40
28b835d6 41#include <asm/cpu.h>
6aa8b732 42#include <asm/io.h>
3b3be0d1 43#include <asm/desc.h>
13673a90 44#include <asm/vmx.h>
6210e37b 45#include <asm/virtext.h>
a0861c02 46#include <asm/mce.h>
952f07ec 47#include <asm/fpu/internal.h>
d7cd9796 48#include <asm/perf_event.h>
81908bf4 49#include <asm/debugreg.h>
8f536b76 50#include <asm/kexec.h>
dab2087d 51#include <asm/apic.h>
efc64404 52#include <asm/irq_remapping.h>
d6e41f11 53#include <asm/mmu_context.h>
28a27752 54#include <asm/spec-ctrl.h>
773e8a04 55#include <asm/mshyperv.h>
6aa8b732 56
229456fc 57#include "trace.h"
25462f7f 58#include "pmu.h"
773e8a04 59#include "vmx_evmcs.h"
229456fc 60
4ecac3fd 61#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
62#define __ex_clear(x, reg) \
63 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 64
6aa8b732
AK
65MODULE_AUTHOR("Qumranet");
66MODULE_LICENSE("GPL");
67
e9bda3b3
JT
68static const struct x86_cpu_id vmx_cpu_id[] = {
69 X86_FEATURE_MATCH(X86_FEATURE_VMX),
70 {}
71};
72MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
73
476bc001 74static bool __read_mostly enable_vpid = 1;
736caefe 75module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 76
d02fcf50
PB
77static bool __read_mostly enable_vnmi = 1;
78module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
79
476bc001 80static bool __read_mostly flexpriority_enabled = 1;
736caefe 81module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 82
476bc001 83static bool __read_mostly enable_ept = 1;
736caefe 84module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 85
476bc001 86static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
87module_param_named(unrestricted_guest,
88 enable_unrestricted_guest, bool, S_IRUGO);
89
83c3a331
XH
90static bool __read_mostly enable_ept_ad_bits = 1;
91module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
92
a27685c3 93static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 94module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 95
476bc001 96static bool __read_mostly fasteoi = 1;
58fbbf26
KT
97module_param(fasteoi, bool, S_IRUGO);
98
5a71785d 99static bool __read_mostly enable_apicv = 1;
01e439be 100module_param(enable_apicv, bool, S_IRUGO);
83d4c286 101
abc4fc58
AG
102static bool __read_mostly enable_shadow_vmcs = 1;
103module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
104/*
105 * If nested=1, nested virtualization is supported, i.e., guests may use
106 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
107 * use VMX instructions.
108 */
476bc001 109static bool __read_mostly nested = 0;
801d3424
NHE
110module_param(nested, bool, S_IRUGO);
111
20300099
WL
112static u64 __read_mostly host_xss;
113
843e4330
KH
114static bool __read_mostly enable_pml = 1;
115module_param_named(pml, enable_pml, bool, S_IRUGO);
116
904e14fb
PB
117#define MSR_TYPE_R 1
118#define MSR_TYPE_W 2
119#define MSR_TYPE_RW 3
120
121#define MSR_BITMAP_MODE_X2APIC 1
122#define MSR_BITMAP_MODE_X2APIC_APICV 2
123#define MSR_BITMAP_MODE_LM 4
124
64903d61
HZ
125#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
126
64672c95
YJ
127/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
128static int __read_mostly cpu_preemption_timer_multi;
129static bool __read_mostly enable_preemption_timer = 1;
130#ifdef CONFIG_X86_64
131module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
132#endif
133
5037878e 134#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
1706bd0c
SC
135#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
136#define KVM_VM_CR0_ALWAYS_ON \
137 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
138 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
139#define KVM_CR4_GUEST_OWNED_BITS \
140 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
fd8cb433 141 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
4c38609a 142
5dc1f044 143#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
cdc0e244
AK
144#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
145#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
146
78ac8b47
AK
147#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
148
f4124500
JK
149#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
150
16c2aec6
JD
151/*
152 * Hyper-V requires all of these, so mark them as supported even though
153 * they are just treated the same as all-context.
154 */
155#define VMX_VPID_EXTENT_SUPPORTED_MASK \
156 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
157 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
158 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
159 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
160
4b8d54f9
ZE
161/*
162 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
163 * ple_gap: upper bound on the amount of time between two successive
164 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 165 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
166 * ple_window: upper bound on the amount of time a guest is allowed to execute
167 * in a PAUSE loop. Tests indicate that most spinlocks are held for
168 * less than 2^12 cycles
169 * Time is measured based on a counter that runs at the same rate as the TSC,
170 * refer SDM volume 3b section 21.6.13 & 22.1.3.
171 */
c8e88717 172static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
b4a2d31d 173
7fbc85a5
BM
174static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
175module_param(ple_window, uint, 0444);
4b8d54f9 176
b4a2d31d 177/* Default doubles per-vcpu window every exit. */
c8e88717 178static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
7fbc85a5 179module_param(ple_window_grow, uint, 0444);
b4a2d31d
RK
180
181/* Default resets per-vcpu window every exit to ple_window. */
c8e88717 182static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
7fbc85a5 183module_param(ple_window_shrink, uint, 0444);
b4a2d31d
RK
184
185/* Default is to compute the maximum so we can never overflow. */
7fbc85a5
BM
186static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
187module_param(ple_window_max, uint, 0444);
b4a2d31d 188
83287ea4
AK
189extern const ulong vmx_return;
190
40bbb9d0
SC
191struct kvm_vmx {
192 struct kvm kvm;
193
194 unsigned int tss_addr;
195 bool ept_identity_pagetable_done;
196 gpa_t ept_identity_map_addr;
197};
198
8bf00a52 199#define NR_AUTOLOAD_MSRS 8
61d2ef2c 200
a2fa3e9f
GH
201struct vmcs {
202 u32 revision_id;
203 u32 abort;
204 char data[0];
205};
206
d462b819
NHE
207/*
208 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
209 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
210 * loaded on this CPU (so we can clear them if the CPU goes down).
211 */
212struct loaded_vmcs {
213 struct vmcs *vmcs;
355f4fb1 214 struct vmcs *shadow_vmcs;
d462b819 215 int cpu;
4c4a6f79
PB
216 bool launched;
217 bool nmi_known_unmasked;
44889942
LP
218 unsigned long vmcs_host_cr3; /* May not match real cr3 */
219 unsigned long vmcs_host_cr4; /* May not match real cr4 */
8a1b4392
PB
220 /* Support for vnmi-less CPUs */
221 int soft_vnmi_blocked;
222 ktime_t entry_time;
223 s64 vnmi_blocked_time;
904e14fb 224 unsigned long *msr_bitmap;
d462b819
NHE
225 struct list_head loaded_vmcss_on_cpu_link;
226};
227
26bb0981
AK
228struct shared_msr_entry {
229 unsigned index;
230 u64 data;
d5696725 231 u64 mask;
26bb0981
AK
232};
233
a9d30f33
NHE
234/*
235 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
236 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
237 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
238 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
239 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
240 * More than one of these structures may exist, if L1 runs multiple L2 guests.
de3a0021 241 * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
a9d30f33
NHE
242 * underlying hardware which will be used to run L2.
243 * This structure is packed to ensure that its layout is identical across
244 * machines (necessary for live migration).
245 * If there are changes in this struct, VMCS12_REVISION must be changed.
246 */
22bd0358 247typedef u64 natural_width;
a9d30f33
NHE
248struct __packed vmcs12 {
249 /* According to the Intel spec, a VMCS region must start with the
250 * following two fields. Then follow implementation-specific data.
251 */
252 u32 revision_id;
253 u32 abort;
22bd0358 254
27d6c865
NHE
255 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
256 u32 padding[7]; /* room for future expansion */
257
22bd0358
NHE
258 u64 io_bitmap_a;
259 u64 io_bitmap_b;
260 u64 msr_bitmap;
261 u64 vm_exit_msr_store_addr;
262 u64 vm_exit_msr_load_addr;
263 u64 vm_entry_msr_load_addr;
264 u64 tsc_offset;
265 u64 virtual_apic_page_addr;
266 u64 apic_access_addr;
705699a1 267 u64 posted_intr_desc_addr;
27c42a1b 268 u64 vm_function_control;
22bd0358 269 u64 ept_pointer;
608406e2
WV
270 u64 eoi_exit_bitmap0;
271 u64 eoi_exit_bitmap1;
272 u64 eoi_exit_bitmap2;
273 u64 eoi_exit_bitmap3;
41ab9372 274 u64 eptp_list_address;
81dc01f7 275 u64 xss_exit_bitmap;
22bd0358
NHE
276 u64 guest_physical_address;
277 u64 vmcs_link_pointer;
c5f983f6 278 u64 pml_address;
22bd0358
NHE
279 u64 guest_ia32_debugctl;
280 u64 guest_ia32_pat;
281 u64 guest_ia32_efer;
282 u64 guest_ia32_perf_global_ctrl;
283 u64 guest_pdptr0;
284 u64 guest_pdptr1;
285 u64 guest_pdptr2;
286 u64 guest_pdptr3;
36be0b9d 287 u64 guest_bndcfgs;
22bd0358
NHE
288 u64 host_ia32_pat;
289 u64 host_ia32_efer;
290 u64 host_ia32_perf_global_ctrl;
291 u64 padding64[8]; /* room for future expansion */
292 /*
293 * To allow migration of L1 (complete with its L2 guests) between
294 * machines of different natural widths (32 or 64 bit), we cannot have
295 * unsigned long fields with no explict size. We use u64 (aliased
296 * natural_width) instead. Luckily, x86 is little-endian.
297 */
298 natural_width cr0_guest_host_mask;
299 natural_width cr4_guest_host_mask;
300 natural_width cr0_read_shadow;
301 natural_width cr4_read_shadow;
302 natural_width cr3_target_value0;
303 natural_width cr3_target_value1;
304 natural_width cr3_target_value2;
305 natural_width cr3_target_value3;
306 natural_width exit_qualification;
307 natural_width guest_linear_address;
308 natural_width guest_cr0;
309 natural_width guest_cr3;
310 natural_width guest_cr4;
311 natural_width guest_es_base;
312 natural_width guest_cs_base;
313 natural_width guest_ss_base;
314 natural_width guest_ds_base;
315 natural_width guest_fs_base;
316 natural_width guest_gs_base;
317 natural_width guest_ldtr_base;
318 natural_width guest_tr_base;
319 natural_width guest_gdtr_base;
320 natural_width guest_idtr_base;
321 natural_width guest_dr7;
322 natural_width guest_rsp;
323 natural_width guest_rip;
324 natural_width guest_rflags;
325 natural_width guest_pending_dbg_exceptions;
326 natural_width guest_sysenter_esp;
327 natural_width guest_sysenter_eip;
328 natural_width host_cr0;
329 natural_width host_cr3;
330 natural_width host_cr4;
331 natural_width host_fs_base;
332 natural_width host_gs_base;
333 natural_width host_tr_base;
334 natural_width host_gdtr_base;
335 natural_width host_idtr_base;
336 natural_width host_ia32_sysenter_esp;
337 natural_width host_ia32_sysenter_eip;
338 natural_width host_rsp;
339 natural_width host_rip;
340 natural_width paddingl[8]; /* room for future expansion */
341 u32 pin_based_vm_exec_control;
342 u32 cpu_based_vm_exec_control;
343 u32 exception_bitmap;
344 u32 page_fault_error_code_mask;
345 u32 page_fault_error_code_match;
346 u32 cr3_target_count;
347 u32 vm_exit_controls;
348 u32 vm_exit_msr_store_count;
349 u32 vm_exit_msr_load_count;
350 u32 vm_entry_controls;
351 u32 vm_entry_msr_load_count;
352 u32 vm_entry_intr_info_field;
353 u32 vm_entry_exception_error_code;
354 u32 vm_entry_instruction_len;
355 u32 tpr_threshold;
356 u32 secondary_vm_exec_control;
357 u32 vm_instruction_error;
358 u32 vm_exit_reason;
359 u32 vm_exit_intr_info;
360 u32 vm_exit_intr_error_code;
361 u32 idt_vectoring_info_field;
362 u32 idt_vectoring_error_code;
363 u32 vm_exit_instruction_len;
364 u32 vmx_instruction_info;
365 u32 guest_es_limit;
366 u32 guest_cs_limit;
367 u32 guest_ss_limit;
368 u32 guest_ds_limit;
369 u32 guest_fs_limit;
370 u32 guest_gs_limit;
371 u32 guest_ldtr_limit;
372 u32 guest_tr_limit;
373 u32 guest_gdtr_limit;
374 u32 guest_idtr_limit;
375 u32 guest_es_ar_bytes;
376 u32 guest_cs_ar_bytes;
377 u32 guest_ss_ar_bytes;
378 u32 guest_ds_ar_bytes;
379 u32 guest_fs_ar_bytes;
380 u32 guest_gs_ar_bytes;
381 u32 guest_ldtr_ar_bytes;
382 u32 guest_tr_ar_bytes;
383 u32 guest_interruptibility_info;
384 u32 guest_activity_state;
385 u32 guest_sysenter_cs;
386 u32 host_ia32_sysenter_cs;
0238ea91
JK
387 u32 vmx_preemption_timer_value;
388 u32 padding32[7]; /* room for future expansion */
22bd0358 389 u16 virtual_processor_id;
705699a1 390 u16 posted_intr_nv;
22bd0358
NHE
391 u16 guest_es_selector;
392 u16 guest_cs_selector;
393 u16 guest_ss_selector;
394 u16 guest_ds_selector;
395 u16 guest_fs_selector;
396 u16 guest_gs_selector;
397 u16 guest_ldtr_selector;
398 u16 guest_tr_selector;
608406e2 399 u16 guest_intr_status;
c5f983f6 400 u16 guest_pml_index;
22bd0358
NHE
401 u16 host_es_selector;
402 u16 host_cs_selector;
403 u16 host_ss_selector;
404 u16 host_ds_selector;
405 u16 host_fs_selector;
406 u16 host_gs_selector;
407 u16 host_tr_selector;
a9d30f33
NHE
408};
409
410/*
411 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
412 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
413 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
414 */
415#define VMCS12_REVISION 0x11e57ed0
416
417/*
418 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
419 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
420 * current implementation, 4K are reserved to avoid future complications.
421 */
422#define VMCS12_SIZE 0x1000
423
5b15706d
JM
424/*
425 * VMCS12_MAX_FIELD_INDEX is the highest index value used in any
426 * supported VMCS12 field encoding.
427 */
428#define VMCS12_MAX_FIELD_INDEX 0x17
429
6677f3da
PB
430struct nested_vmx_msrs {
431 /*
432 * We only store the "true" versions of the VMX capability MSRs. We
433 * generate the "non-true" versions by setting the must-be-1 bits
434 * according to the SDM.
435 */
436 u32 procbased_ctls_low;
437 u32 procbased_ctls_high;
438 u32 secondary_ctls_low;
439 u32 secondary_ctls_high;
440 u32 pinbased_ctls_low;
441 u32 pinbased_ctls_high;
442 u32 exit_ctls_low;
443 u32 exit_ctls_high;
444 u32 entry_ctls_low;
445 u32 entry_ctls_high;
446 u32 misc_low;
447 u32 misc_high;
448 u32 ept_caps;
449 u32 vpid_caps;
450 u64 basic;
451 u64 cr0_fixed0;
452 u64 cr0_fixed1;
453 u64 cr4_fixed0;
454 u64 cr4_fixed1;
455 u64 vmcs_enum;
456 u64 vmfunc_controls;
457};
458
ec378aee
NHE
459/*
460 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
461 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
462 */
463struct nested_vmx {
464 /* Has the level1 guest done vmxon? */
465 bool vmxon;
3573e22c 466 gpa_t vmxon_ptr;
c5f983f6 467 bool pml_full;
a9d30f33
NHE
468
469 /* The guest-physical address of the current VMCS L1 keeps for L2 */
470 gpa_t current_vmptr;
4f2777bc
DM
471 /*
472 * Cache of the guest's VMCS, existing outside of guest memory.
473 * Loaded from guest memory during VMPTRLD. Flushed to guest
8ca44e88 474 * memory during VMCLEAR and VMPTRLD.
4f2777bc
DM
475 */
476 struct vmcs12 *cached_vmcs12;
012f83cb
AG
477 /*
478 * Indicates if the shadow vmcs must be updated with the
479 * data hold by vmcs12
480 */
481 bool sync_shadow_vmcs;
74a497fa 482 bool dirty_vmcs12;
ff2f6fe9 483
dccbfcf5 484 bool change_vmcs01_virtual_x2apic_mode;
644d711a
NHE
485 /* L2 must run next, and mustn't decide to exit to L1. */
486 bool nested_run_pending;
de3a0021
JM
487
488 struct loaded_vmcs vmcs02;
489
fe3ef05c 490 /*
de3a0021
JM
491 * Guest pages referred to in the vmcs02 with host-physical
492 * pointers, so we must keep them pinned while L2 runs.
fe3ef05c
NHE
493 */
494 struct page *apic_access_page;
a7c0b07d 495 struct page *virtual_apic_page;
705699a1
WV
496 struct page *pi_desc_page;
497 struct pi_desc *pi_desc;
498 bool pi_pending;
499 u16 posted_intr_nv;
f4124500
JK
500
501 struct hrtimer preemption_timer;
502 bool preemption_timer_expired;
2996fca0
JK
503
504 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
505 u64 vmcs01_debugctl;
b9c237bb 506
5c614b35
WL
507 u16 vpid02;
508 u16 last_vpid;
509
6677f3da 510 struct nested_vmx_msrs msrs;
72e9cbdb
LP
511
512 /* SMM related state */
513 struct {
514 /* in VMX operation on SMM entry? */
515 bool vmxon;
516 /* in guest mode on SMM entry? */
517 bool guest_mode;
518 } smm;
ec378aee
NHE
519};
520
01e439be 521#define POSTED_INTR_ON 0
ebbfc765
FW
522#define POSTED_INTR_SN 1
523
01e439be
YZ
524/* Posted-Interrupt Descriptor */
525struct pi_desc {
526 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
527 union {
528 struct {
529 /* bit 256 - Outstanding Notification */
530 u16 on : 1,
531 /* bit 257 - Suppress Notification */
532 sn : 1,
533 /* bit 271:258 - Reserved */
534 rsvd_1 : 14;
535 /* bit 279:272 - Notification Vector */
536 u8 nv;
537 /* bit 287:280 - Reserved */
538 u8 rsvd_2;
539 /* bit 319:288 - Notification Destination */
540 u32 ndst;
541 };
542 u64 control;
543 };
544 u32 rsvd[6];
01e439be
YZ
545} __aligned(64);
546
a20ed54d
YZ
547static bool pi_test_and_set_on(struct pi_desc *pi_desc)
548{
549 return test_and_set_bit(POSTED_INTR_ON,
550 (unsigned long *)&pi_desc->control);
551}
552
553static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
554{
555 return test_and_clear_bit(POSTED_INTR_ON,
556 (unsigned long *)&pi_desc->control);
557}
558
559static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
560{
561 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
562}
563
ebbfc765
FW
564static inline void pi_clear_sn(struct pi_desc *pi_desc)
565{
566 return clear_bit(POSTED_INTR_SN,
567 (unsigned long *)&pi_desc->control);
568}
569
570static inline void pi_set_sn(struct pi_desc *pi_desc)
571{
572 return set_bit(POSTED_INTR_SN,
573 (unsigned long *)&pi_desc->control);
574}
575
ad361091
PB
576static inline void pi_clear_on(struct pi_desc *pi_desc)
577{
578 clear_bit(POSTED_INTR_ON,
579 (unsigned long *)&pi_desc->control);
580}
581
ebbfc765
FW
582static inline int pi_test_on(struct pi_desc *pi_desc)
583{
584 return test_bit(POSTED_INTR_ON,
585 (unsigned long *)&pi_desc->control);
586}
587
588static inline int pi_test_sn(struct pi_desc *pi_desc)
589{
590 return test_bit(POSTED_INTR_SN,
591 (unsigned long *)&pi_desc->control);
592}
593
a2fa3e9f 594struct vcpu_vmx {
fb3f0f51 595 struct kvm_vcpu vcpu;
313dbd49 596 unsigned long host_rsp;
29bd8a78 597 u8 fail;
904e14fb 598 u8 msr_bitmap_mode;
51aa01d1 599 u32 exit_intr_info;
1155f76a 600 u32 idt_vectoring_info;
6de12732 601 ulong rflags;
26bb0981 602 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
603 int nmsrs;
604 int save_nmsrs;
a547c6db 605 unsigned long host_idt_base;
a2fa3e9f 606#ifdef CONFIG_X86_64
44ea2b17
AK
607 u64 msr_host_kernel_gs_base;
608 u64 msr_guest_kernel_gs_base;
a2fa3e9f 609#endif
15d45071 610
28c1c9fa 611 u64 arch_capabilities;
d28b387f 612 u64 spec_ctrl;
28c1c9fa 613
2961e876
GN
614 u32 vm_entry_controls_shadow;
615 u32 vm_exit_controls_shadow;
80154d77
PB
616 u32 secondary_exec_control;
617
d462b819
NHE
618 /*
619 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
620 * non-nested (L1) guest, it always points to vmcs01. For a nested
621 * guest (L2), it points to a different VMCS.
622 */
623 struct loaded_vmcs vmcs01;
624 struct loaded_vmcs *loaded_vmcs;
625 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
626 struct msr_autoload {
627 unsigned nr;
628 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
629 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
630 } msr_autoload;
a2fa3e9f
GH
631 struct {
632 int loaded;
633 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
634#ifdef CONFIG_X86_64
635 u16 ds_sel, es_sel;
636#endif
152d3f2f
LV
637 int gs_ldt_reload_needed;
638 int fs_reload_needed;
da8999d3 639 u64 msr_host_bndcfgs;
d77c26fc 640 } host_state;
9c8cba37 641 struct {
7ffd92c5 642 int vm86_active;
78ac8b47 643 ulong save_rflags;
f5f7b2fe
AK
644 struct kvm_segment segs[8];
645 } rmode;
646 struct {
647 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
648 struct kvm_save_segment {
649 u16 selector;
650 unsigned long base;
651 u32 limit;
652 u32 ar;
f5f7b2fe 653 } seg[8];
2fb92db1 654 } segment_cache;
2384d2b3 655 int vpid;
04fa4d32 656 bool emulation_required;
3b86cd99 657
a0861c02 658 u32 exit_reason;
4e47c7a6 659
01e439be
YZ
660 /* Posted interrupt descriptor */
661 struct pi_desc pi_desc;
662
ec378aee
NHE
663 /* Support for a guest hypervisor (nested VMX) */
664 struct nested_vmx nested;
a7653ecd
RK
665
666 /* Dynamic PLE window. */
667 int ple_window;
668 bool ple_window_dirty;
843e4330
KH
669
670 /* Support for PML */
671#define PML_ENTITY_NUM 512
672 struct page *pml_pg;
2680d6da 673
64672c95
YJ
674 /* apic deadline value in host tsc */
675 u64 hv_deadline_tsc;
676
2680d6da 677 u64 current_tsc_ratio;
1be0e61c 678
1be0e61c 679 u32 host_pkru;
3b84080b 680
74c55931
WL
681 unsigned long host_debugctlmsr;
682
37e4c997
HZ
683 /*
684 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
685 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
686 * in msr_ia32_feature_control_valid_bits.
687 */
3b84080b 688 u64 msr_ia32_feature_control;
37e4c997 689 u64 msr_ia32_feature_control_valid_bits;
a2fa3e9f
GH
690};
691
2fb92db1
AK
692enum segment_cache_field {
693 SEG_FIELD_SEL = 0,
694 SEG_FIELD_BASE = 1,
695 SEG_FIELD_LIMIT = 2,
696 SEG_FIELD_AR = 3,
697
698 SEG_FIELD_NR = 4
699};
700
40bbb9d0
SC
701static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
702{
703 return container_of(kvm, struct kvm_vmx, kvm);
704}
705
a2fa3e9f
GH
706static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
707{
fb3f0f51 708 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
709}
710
efc64404
FW
711static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
712{
713 return &(to_vmx(vcpu)->pi_desc);
714}
715
58e9ffae 716#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
22bd0358 717#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
58e9ffae
JM
718#define FIELD(number, name) [ROL16(number, 6)] = VMCS12_OFFSET(name)
719#define FIELD64(number, name) \
720 FIELD(number, name), \
721 [ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32)
22bd0358 722
4607c2d7 723
44900ba6 724static u16 shadow_read_only_fields[] = {
c9e9deae
PB
725#define SHADOW_FIELD_RO(x) x,
726#include "vmx_shadow_fields.h"
4607c2d7 727};
fe2b201b 728static int max_shadow_read_only_fields =
4607c2d7
AG
729 ARRAY_SIZE(shadow_read_only_fields);
730
44900ba6 731static u16 shadow_read_write_fields[] = {
c9e9deae
PB
732#define SHADOW_FIELD_RW(x) x,
733#include "vmx_shadow_fields.h"
4607c2d7 734};
fe2b201b 735static int max_shadow_read_write_fields =
4607c2d7
AG
736 ARRAY_SIZE(shadow_read_write_fields);
737
772e0318 738static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 739 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 740 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
741 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
742 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
743 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
744 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
745 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
746 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
747 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
748 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 749 FIELD(GUEST_INTR_STATUS, guest_intr_status),
c5f983f6 750 FIELD(GUEST_PML_INDEX, guest_pml_index),
22bd0358
NHE
751 FIELD(HOST_ES_SELECTOR, host_es_selector),
752 FIELD(HOST_CS_SELECTOR, host_cs_selector),
753 FIELD(HOST_SS_SELECTOR, host_ss_selector),
754 FIELD(HOST_DS_SELECTOR, host_ds_selector),
755 FIELD(HOST_FS_SELECTOR, host_fs_selector),
756 FIELD(HOST_GS_SELECTOR, host_gs_selector),
757 FIELD(HOST_TR_SELECTOR, host_tr_selector),
758 FIELD64(IO_BITMAP_A, io_bitmap_a),
759 FIELD64(IO_BITMAP_B, io_bitmap_b),
760 FIELD64(MSR_BITMAP, msr_bitmap),
761 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
762 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
763 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
764 FIELD64(TSC_OFFSET, tsc_offset),
765 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
766 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 767 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
27c42a1b 768 FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
22bd0358 769 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
770 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
771 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
772 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
773 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
41ab9372 774 FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
81dc01f7 775 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
776 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
777 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
c5f983f6 778 FIELD64(PML_ADDRESS, pml_address),
22bd0358
NHE
779 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
780 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
781 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
782 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
783 FIELD64(GUEST_PDPTR0, guest_pdptr0),
784 FIELD64(GUEST_PDPTR1, guest_pdptr1),
785 FIELD64(GUEST_PDPTR2, guest_pdptr2),
786 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 787 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
788 FIELD64(HOST_IA32_PAT, host_ia32_pat),
789 FIELD64(HOST_IA32_EFER, host_ia32_efer),
790 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
791 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
792 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
793 FIELD(EXCEPTION_BITMAP, exception_bitmap),
794 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
795 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
796 FIELD(CR3_TARGET_COUNT, cr3_target_count),
797 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
798 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
799 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
800 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
801 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
802 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
803 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
804 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
805 FIELD(TPR_THRESHOLD, tpr_threshold),
806 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
807 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
808 FIELD(VM_EXIT_REASON, vm_exit_reason),
809 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
810 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
811 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
812 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
813 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
814 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
815 FIELD(GUEST_ES_LIMIT, guest_es_limit),
816 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
817 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
818 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
819 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
820 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
821 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
822 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
823 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
824 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
825 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
826 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
827 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
828 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
829 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
830 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
831 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
832 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
833 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
834 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
835 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
836 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 837 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
838 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
839 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
840 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
841 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
842 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
843 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
844 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
845 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
846 FIELD(EXIT_QUALIFICATION, exit_qualification),
847 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
848 FIELD(GUEST_CR0, guest_cr0),
849 FIELD(GUEST_CR3, guest_cr3),
850 FIELD(GUEST_CR4, guest_cr4),
851 FIELD(GUEST_ES_BASE, guest_es_base),
852 FIELD(GUEST_CS_BASE, guest_cs_base),
853 FIELD(GUEST_SS_BASE, guest_ss_base),
854 FIELD(GUEST_DS_BASE, guest_ds_base),
855 FIELD(GUEST_FS_BASE, guest_fs_base),
856 FIELD(GUEST_GS_BASE, guest_gs_base),
857 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
858 FIELD(GUEST_TR_BASE, guest_tr_base),
859 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
860 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
861 FIELD(GUEST_DR7, guest_dr7),
862 FIELD(GUEST_RSP, guest_rsp),
863 FIELD(GUEST_RIP, guest_rip),
864 FIELD(GUEST_RFLAGS, guest_rflags),
865 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
866 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
867 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
868 FIELD(HOST_CR0, host_cr0),
869 FIELD(HOST_CR3, host_cr3),
870 FIELD(HOST_CR4, host_cr4),
871 FIELD(HOST_FS_BASE, host_fs_base),
872 FIELD(HOST_GS_BASE, host_gs_base),
873 FIELD(HOST_TR_BASE, host_tr_base),
874 FIELD(HOST_GDTR_BASE, host_gdtr_base),
875 FIELD(HOST_IDTR_BASE, host_idtr_base),
876 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
877 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
878 FIELD(HOST_RSP, host_rsp),
879 FIELD(HOST_RIP, host_rip),
880};
22bd0358
NHE
881
882static inline short vmcs_field_to_offset(unsigned long field)
883{
085331df
DW
884 const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table);
885 unsigned short offset;
58e9ffae
JM
886 unsigned index;
887
888 if (field >> 15)
889 return -ENOENT;
a2ae9df7 890
58e9ffae 891 index = ROL16(field, 6);
15303ba5 892 if (index >= size)
75f139aa
AH
893 return -ENOENT;
894
15303ba5
LT
895 index = array_index_nospec(index, size);
896 offset = vmcs_field_to_offset_table[index];
085331df 897 if (offset == 0)
a2ae9df7 898 return -ENOENT;
085331df 899 return offset;
22bd0358
NHE
900}
901
a9d30f33
NHE
902static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
903{
4f2777bc 904 return to_vmx(vcpu)->nested.cached_vmcs12;
a9d30f33
NHE
905}
906
995f00a6 907static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
bfd0a56b 908static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
995f00a6 909static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
f53cd63c 910static bool vmx_xsaves_supported(void);
b246dd5d
OW
911static void vmx_set_segment(struct kvm_vcpu *vcpu,
912 struct kvm_segment *var, int seg);
913static void vmx_get_segment(struct kvm_vcpu *vcpu,
914 struct kvm_segment *var, int seg);
d99e4152
GN
915static bool guest_state_valid(struct kvm_vcpu *vcpu);
916static u32 vmx_segment_access_rights(struct kvm_segment *var);
16f5b903 917static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
b96fb439
PB
918static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
919static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
920static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
921 u16 error_code);
904e14fb 922static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
15d45071
AR
923static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
924 u32 msr, int type);
75880a01 925
6aa8b732
AK
926static DEFINE_PER_CPU(struct vmcs *, vmxarea);
927static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
928/*
929 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
930 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
931 */
932static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
6aa8b732 933
bf9f6ac8
FW
934/*
935 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
936 * can find which vCPU should be waken up.
937 */
938static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
939static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
940
23611332 941enum {
23611332
RK
942 VMX_VMREAD_BITMAP,
943 VMX_VMWRITE_BITMAP,
944 VMX_BITMAP_NR
945};
946
947static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
948
23611332
RK
949#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
950#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
fdef3ad1 951
110312c8 952static bool cpu_has_load_ia32_efer;
8bf00a52 953static bool cpu_has_load_perf_global_ctrl;
110312c8 954
2384d2b3
SY
955static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
956static DEFINE_SPINLOCK(vmx_vpid_lock);
957
1c3d14fe 958static struct vmcs_config {
6aa8b732
AK
959 int size;
960 int order;
9ac7e3e8 961 u32 basic_cap;
6aa8b732 962 u32 revision_id;
1c3d14fe
YS
963 u32 pin_based_exec_ctrl;
964 u32 cpu_based_exec_ctrl;
f78e0e2e 965 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
966 u32 vmexit_ctrl;
967 u32 vmentry_ctrl;
1389309c 968 struct nested_vmx_msrs nested;
1c3d14fe 969} vmcs_config;
6aa8b732 970
efff9e53 971static struct vmx_capability {
d56f546d
SY
972 u32 ept;
973 u32 vpid;
974} vmx_capability;
975
6aa8b732
AK
976#define VMX_SEGMENT_FIELD(seg) \
977 [VCPU_SREG_##seg] = { \
978 .selector = GUEST_##seg##_SELECTOR, \
979 .base = GUEST_##seg##_BASE, \
980 .limit = GUEST_##seg##_LIMIT, \
981 .ar_bytes = GUEST_##seg##_AR_BYTES, \
982 }
983
772e0318 984static const struct kvm_vmx_segment_field {
6aa8b732
AK
985 unsigned selector;
986 unsigned base;
987 unsigned limit;
988 unsigned ar_bytes;
989} kvm_vmx_segment_fields[] = {
990 VMX_SEGMENT_FIELD(CS),
991 VMX_SEGMENT_FIELD(DS),
992 VMX_SEGMENT_FIELD(ES),
993 VMX_SEGMENT_FIELD(FS),
994 VMX_SEGMENT_FIELD(GS),
995 VMX_SEGMENT_FIELD(SS),
996 VMX_SEGMENT_FIELD(TR),
997 VMX_SEGMENT_FIELD(LDTR),
998};
999
26bb0981
AK
1000static u64 host_efer;
1001
6de4f3ad
AK
1002static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1003
4d56c8a7 1004/*
8c06585d 1005 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
1006 * away by decrementing the array size.
1007 */
6aa8b732 1008static const u32 vmx_msr_index[] = {
05b3e0c2 1009#ifdef CONFIG_X86_64
44ea2b17 1010 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 1011#endif
8c06585d 1012 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 1013};
6aa8b732 1014
773e8a04
VK
1015DEFINE_STATIC_KEY_FALSE(enable_evmcs);
1016
1017#define current_evmcs ((struct hv_enlightened_vmcs *)this_cpu_read(current_vmcs))
1018
1019#define KVM_EVMCS_VERSION 1
1020
1021#if IS_ENABLED(CONFIG_HYPERV)
1022static bool __read_mostly enlightened_vmcs = true;
1023module_param(enlightened_vmcs, bool, 0444);
1024
1025static inline void evmcs_write64(unsigned long field, u64 value)
1026{
1027 u16 clean_field;
1028 int offset = get_evmcs_offset(field, &clean_field);
1029
1030 if (offset < 0)
1031 return;
1032
1033 *(u64 *)((char *)current_evmcs + offset) = value;
1034
1035 current_evmcs->hv_clean_fields &= ~clean_field;
1036}
1037
1038static inline void evmcs_write32(unsigned long field, u32 value)
1039{
1040 u16 clean_field;
1041 int offset = get_evmcs_offset(field, &clean_field);
1042
1043 if (offset < 0)
1044 return;
1045
1046 *(u32 *)((char *)current_evmcs + offset) = value;
1047 current_evmcs->hv_clean_fields &= ~clean_field;
1048}
1049
1050static inline void evmcs_write16(unsigned long field, u16 value)
1051{
1052 u16 clean_field;
1053 int offset = get_evmcs_offset(field, &clean_field);
1054
1055 if (offset < 0)
1056 return;
1057
1058 *(u16 *)((char *)current_evmcs + offset) = value;
1059 current_evmcs->hv_clean_fields &= ~clean_field;
1060}
1061
1062static inline u64 evmcs_read64(unsigned long field)
1063{
1064 int offset = get_evmcs_offset(field, NULL);
1065
1066 if (offset < 0)
1067 return 0;
1068
1069 return *(u64 *)((char *)current_evmcs + offset);
1070}
1071
1072static inline u32 evmcs_read32(unsigned long field)
1073{
1074 int offset = get_evmcs_offset(field, NULL);
1075
1076 if (offset < 0)
1077 return 0;
1078
1079 return *(u32 *)((char *)current_evmcs + offset);
1080}
1081
1082static inline u16 evmcs_read16(unsigned long field)
1083{
1084 int offset = get_evmcs_offset(field, NULL);
1085
1086 if (offset < 0)
1087 return 0;
1088
1089 return *(u16 *)((char *)current_evmcs + offset);
1090}
1091
1092static void evmcs_load(u64 phys_addr)
1093{
1094 struct hv_vp_assist_page *vp_ap =
1095 hv_get_vp_assist_page(smp_processor_id());
1096
1097 vp_ap->current_nested_vmcs = phys_addr;
1098 vp_ap->enlighten_vmentry = 1;
1099}
1100
1101static void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf)
1102{
1103 /*
1104 * Enlightened VMCSv1 doesn't support these:
1105 *
1106 * POSTED_INTR_NV = 0x00000002,
1107 * GUEST_INTR_STATUS = 0x00000810,
1108 * APIC_ACCESS_ADDR = 0x00002014,
1109 * POSTED_INTR_DESC_ADDR = 0x00002016,
1110 * EOI_EXIT_BITMAP0 = 0x0000201c,
1111 * EOI_EXIT_BITMAP1 = 0x0000201e,
1112 * EOI_EXIT_BITMAP2 = 0x00002020,
1113 * EOI_EXIT_BITMAP3 = 0x00002022,
1114 */
1115 vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
1116 vmcs_conf->cpu_based_2nd_exec_ctrl &=
1117 ~SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1118 vmcs_conf->cpu_based_2nd_exec_ctrl &=
1119 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1120 vmcs_conf->cpu_based_2nd_exec_ctrl &=
1121 ~SECONDARY_EXEC_APIC_REGISTER_VIRT;
1122
1123 /*
1124 * GUEST_PML_INDEX = 0x00000812,
1125 * PML_ADDRESS = 0x0000200e,
1126 */
1127 vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_PML;
1128
1129 /* VM_FUNCTION_CONTROL = 0x00002018, */
1130 vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
1131
1132 /*
1133 * EPTP_LIST_ADDRESS = 0x00002024,
1134 * VMREAD_BITMAP = 0x00002026,
1135 * VMWRITE_BITMAP = 0x00002028,
1136 */
1137 vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_SHADOW_VMCS;
1138
1139 /*
1140 * TSC_MULTIPLIER = 0x00002032,
1141 */
1142 vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_TSC_SCALING;
1143
1144 /*
1145 * PLE_GAP = 0x00004020,
1146 * PLE_WINDOW = 0x00004022,
1147 */
1148 vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1149
1150 /*
1151 * VMX_PREEMPTION_TIMER_VALUE = 0x0000482E,
1152 */
1153 vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
1154
1155 /*
1156 * GUEST_IA32_PERF_GLOBAL_CTRL = 0x00002808,
1157 * HOST_IA32_PERF_GLOBAL_CTRL = 0x00002c04,
1158 */
1159 vmcs_conf->vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
1160 vmcs_conf->vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
1161
1162 /*
1163 * Currently unsupported in KVM:
1164 * GUEST_IA32_RTIT_CTL = 0x00002814,
1165 */
1166}
1167#else /* !IS_ENABLED(CONFIG_HYPERV) */
1168static inline void evmcs_write64(unsigned long field, u64 value) {}
1169static inline void evmcs_write32(unsigned long field, u32 value) {}
1170static inline void evmcs_write16(unsigned long field, u16 value) {}
1171static inline u64 evmcs_read64(unsigned long field) { return 0; }
1172static inline u32 evmcs_read32(unsigned long field) { return 0; }
1173static inline u16 evmcs_read16(unsigned long field) { return 0; }
1174static inline void evmcs_load(u64 phys_addr) {}
1175static inline void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) {}
1176#endif /* IS_ENABLED(CONFIG_HYPERV) */
1177
5bb16016 1178static inline bool is_exception_n(u32 intr_info, u8 vector)
6aa8b732
AK
1179{
1180 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1181 INTR_INFO_VALID_MASK)) ==
5bb16016
JK
1182 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1183}
1184
6f05485d
JK
1185static inline bool is_debug(u32 intr_info)
1186{
1187 return is_exception_n(intr_info, DB_VECTOR);
1188}
1189
1190static inline bool is_breakpoint(u32 intr_info)
1191{
1192 return is_exception_n(intr_info, BP_VECTOR);
1193}
1194
5bb16016
JK
1195static inline bool is_page_fault(u32 intr_info)
1196{
1197 return is_exception_n(intr_info, PF_VECTOR);
6aa8b732
AK
1198}
1199
31299944 1200static inline bool is_no_device(u32 intr_info)
2ab455cc 1201{
5bb16016 1202 return is_exception_n(intr_info, NM_VECTOR);
2ab455cc
AL
1203}
1204
31299944 1205static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0 1206{
5bb16016 1207 return is_exception_n(intr_info, UD_VECTOR);
7aa81cc0
AL
1208}
1209
9e869480
LA
1210static inline bool is_gp_fault(u32 intr_info)
1211{
1212 return is_exception_n(intr_info, GP_VECTOR);
1213}
1214
31299944 1215static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
1216{
1217 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1218 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1219}
1220
31299944 1221static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
1222{
1223 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1224 INTR_INFO_VALID_MASK)) ==
1225 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1226}
1227
32d43cd3
LT
1228/* Undocumented: icebp/int1 */
1229static inline bool is_icebp(u32 intr_info)
1230{
1231 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1232 == (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK);
1233}
1234
31299944 1235static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1236{
04547156 1237 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1238}
1239
31299944 1240static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1241{
04547156 1242 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1243}
1244
35754c98 1245static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1246{
35754c98 1247 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1248}
1249
31299944 1250static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1251{
04547156
SY
1252 return vmcs_config.cpu_based_exec_ctrl &
1253 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1254}
1255
774ead3a 1256static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1257{
04547156
SY
1258 return vmcs_config.cpu_based_2nd_exec_ctrl &
1259 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1260}
1261
8d14695f
YZ
1262static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1263{
1264 return vmcs_config.cpu_based_2nd_exec_ctrl &
1265 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1266}
1267
83d4c286
YZ
1268static inline bool cpu_has_vmx_apic_register_virt(void)
1269{
1270 return vmcs_config.cpu_based_2nd_exec_ctrl &
1271 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1272}
1273
c7c9c56c
YZ
1274static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1275{
1276 return vmcs_config.cpu_based_2nd_exec_ctrl &
1277 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1278}
1279
64672c95
YJ
1280/*
1281 * Comment's format: document - errata name - stepping - processor name.
1282 * Refer from
1283 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1284 */
1285static u32 vmx_preemption_cpu_tfms[] = {
1286/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
12870x000206E6,
1288/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1289/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1290/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
12910x00020652,
1292/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
12930x00020655,
1294/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1295/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1296/*
1297 * 320767.pdf - AAP86 - B1 -
1298 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1299 */
13000x000106E5,
1301/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
13020x000106A0,
1303/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
13040x000106A1,
1305/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
13060x000106A4,
1307 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1308 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1309 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
13100x000106A5,
1311};
1312
1313static inline bool cpu_has_broken_vmx_preemption_timer(void)
1314{
1315 u32 eax = cpuid_eax(0x00000001), i;
1316
1317 /* Clear the reserved bits */
1318 eax &= ~(0x3U << 14 | 0xfU << 28);
03f6a22a 1319 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
64672c95
YJ
1320 if (eax == vmx_preemption_cpu_tfms[i])
1321 return true;
1322
1323 return false;
1324}
1325
1326static inline bool cpu_has_vmx_preemption_timer(void)
1327{
64672c95
YJ
1328 return vmcs_config.pin_based_exec_ctrl &
1329 PIN_BASED_VMX_PREEMPTION_TIMER;
1330}
1331
01e439be
YZ
1332static inline bool cpu_has_vmx_posted_intr(void)
1333{
d6a858d1
PB
1334 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1335 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1336}
1337
1338static inline bool cpu_has_vmx_apicv(void)
1339{
1340 return cpu_has_vmx_apic_register_virt() &&
1341 cpu_has_vmx_virtual_intr_delivery() &&
1342 cpu_has_vmx_posted_intr();
1343}
1344
04547156
SY
1345static inline bool cpu_has_vmx_flexpriority(void)
1346{
1347 return cpu_has_vmx_tpr_shadow() &&
1348 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1349}
1350
e799794e
MT
1351static inline bool cpu_has_vmx_ept_execute_only(void)
1352{
31299944 1353 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1354}
1355
e799794e
MT
1356static inline bool cpu_has_vmx_ept_2m_page(void)
1357{
31299944 1358 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1359}
1360
878403b7
SY
1361static inline bool cpu_has_vmx_ept_1g_page(void)
1362{
31299944 1363 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1364}
1365
4bc9b982
SY
1366static inline bool cpu_has_vmx_ept_4levels(void)
1367{
1368 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1369}
1370
42aa53b4
DH
1371static inline bool cpu_has_vmx_ept_mt_wb(void)
1372{
1373 return vmx_capability.ept & VMX_EPTP_WB_BIT;
1374}
1375
855feb67
YZ
1376static inline bool cpu_has_vmx_ept_5levels(void)
1377{
1378 return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1379}
1380
83c3a331
XH
1381static inline bool cpu_has_vmx_ept_ad_bits(void)
1382{
1383 return vmx_capability.ept & VMX_EPT_AD_BIT;
1384}
1385
31299944 1386static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1387{
31299944 1388 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1389}
1390
31299944 1391static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1392{
31299944 1393 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1394}
1395
518c8aee
GJ
1396static inline bool cpu_has_vmx_invvpid_single(void)
1397{
1398 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1399}
1400
b9d762fa
GJ
1401static inline bool cpu_has_vmx_invvpid_global(void)
1402{
1403 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1404}
1405
08d839c4
WL
1406static inline bool cpu_has_vmx_invvpid(void)
1407{
1408 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1409}
1410
31299944 1411static inline bool cpu_has_vmx_ept(void)
d56f546d 1412{
04547156
SY
1413 return vmcs_config.cpu_based_2nd_exec_ctrl &
1414 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1415}
1416
31299944 1417static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1418{
1419 return vmcs_config.cpu_based_2nd_exec_ctrl &
1420 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1421}
1422
31299944 1423static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1424{
1425 return vmcs_config.cpu_based_2nd_exec_ctrl &
1426 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1427}
1428
9ac7e3e8
JD
1429static inline bool cpu_has_vmx_basic_inout(void)
1430{
1431 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1432}
1433
35754c98 1434static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1435{
35754c98 1436 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1437}
1438
31299944 1439static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1440{
04547156
SY
1441 return vmcs_config.cpu_based_2nd_exec_ctrl &
1442 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1443}
1444
31299944 1445static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1446{
1447 return vmcs_config.cpu_based_2nd_exec_ctrl &
1448 SECONDARY_EXEC_RDTSCP;
1449}
1450
ad756a16
MJ
1451static inline bool cpu_has_vmx_invpcid(void)
1452{
1453 return vmcs_config.cpu_based_2nd_exec_ctrl &
1454 SECONDARY_EXEC_ENABLE_INVPCID;
1455}
1456
8a1b4392
PB
1457static inline bool cpu_has_virtual_nmis(void)
1458{
1459 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1460}
1461
f5f48ee1
SY
1462static inline bool cpu_has_vmx_wbinvd_exit(void)
1463{
1464 return vmcs_config.cpu_based_2nd_exec_ctrl &
1465 SECONDARY_EXEC_WBINVD_EXITING;
1466}
1467
abc4fc58
AG
1468static inline bool cpu_has_vmx_shadow_vmcs(void)
1469{
1470 u64 vmx_msr;
1471 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1472 /* check if the cpu supports writing r/o exit information fields */
1473 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1474 return false;
1475
1476 return vmcs_config.cpu_based_2nd_exec_ctrl &
1477 SECONDARY_EXEC_SHADOW_VMCS;
1478}
1479
843e4330
KH
1480static inline bool cpu_has_vmx_pml(void)
1481{
1482 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1483}
1484
64903d61
HZ
1485static inline bool cpu_has_vmx_tsc_scaling(void)
1486{
1487 return vmcs_config.cpu_based_2nd_exec_ctrl &
1488 SECONDARY_EXEC_TSC_SCALING;
1489}
1490
2a499e49
BD
1491static inline bool cpu_has_vmx_vmfunc(void)
1492{
1493 return vmcs_config.cpu_based_2nd_exec_ctrl &
1494 SECONDARY_EXEC_ENABLE_VMFUNC;
1495}
1496
64f7a115
SC
1497static bool vmx_umip_emulated(void)
1498{
1499 return vmcs_config.cpu_based_2nd_exec_ctrl &
1500 SECONDARY_EXEC_DESC;
1501}
1502
04547156
SY
1503static inline bool report_flexpriority(void)
1504{
1505 return flexpriority_enabled;
1506}
1507
c7c2c709
JM
1508static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1509{
6677f3da 1510 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.msrs.misc_low);
c7c2c709
JM
1511}
1512
fe3ef05c
NHE
1513static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1514{
1515 return vmcs12->cpu_based_vm_exec_control & bit;
1516}
1517
1518static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1519{
1520 return (vmcs12->cpu_based_vm_exec_control &
1521 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1522 (vmcs12->secondary_vm_exec_control & bit);
1523}
1524
f4124500
JK
1525static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1526{
1527 return vmcs12->pin_based_vm_exec_control &
1528 PIN_BASED_VMX_PREEMPTION_TIMER;
1529}
1530
0c7f650e
KS
1531static inline bool nested_cpu_has_nmi_exiting(struct vmcs12 *vmcs12)
1532{
1533 return vmcs12->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING;
1534}
1535
1536static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1537{
1538 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1539}
1540
155a97a3
NHE
1541static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1542{
1543 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1544}
1545
81dc01f7
WL
1546static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1547{
3db13480 1548 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
81dc01f7
WL
1549}
1550
c5f983f6
BD
1551static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1552{
1553 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1554}
1555
f2b93280
WV
1556static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1557{
1558 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1559}
1560
5c614b35
WL
1561static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1562{
1563 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1564}
1565
82f0dd4b
WV
1566static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1567{
1568 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1569}
1570
608406e2
WV
1571static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1572{
1573 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1574}
1575
705699a1
WV
1576static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1577{
1578 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1579}
1580
27c42a1b
BD
1581static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1582{
1583 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1584}
1585
41ab9372
BD
1586static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1587{
1588 return nested_cpu_has_vmfunc(vmcs12) &&
1589 (vmcs12->vm_function_control &
1590 VMX_VMFUNC_EPTP_SWITCHING);
1591}
1592
ef85b673 1593static inline bool is_nmi(u32 intr_info)
644d711a
NHE
1594{
1595 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
ef85b673 1596 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
644d711a
NHE
1597}
1598
533558bc
JK
1599static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1600 u32 exit_intr_info,
1601 unsigned long exit_qualification);
7c177938
NHE
1602static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1603 struct vmcs12 *vmcs12,
1604 u32 reason, unsigned long qualification);
1605
8b9cf98c 1606static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1607{
1608 int i;
1609
a2fa3e9f 1610 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1611 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1612 return i;
1613 return -1;
1614}
1615
2384d2b3
SY
1616static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1617{
1618 struct {
1619 u64 vpid : 16;
1620 u64 rsvd : 48;
1621 u64 gva;
1622 } operand = { vpid, 0, gva };
1623
4ecac3fd 1624 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1625 /* CF==1 or ZF==1 --> rc = -1 */
1626 "; ja 1f ; ud2 ; 1:"
1627 : : "a"(&operand), "c"(ext) : "cc", "memory");
1628}
1629
1439442c
SY
1630static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1631{
1632 struct {
1633 u64 eptp, gpa;
1634 } operand = {eptp, gpa};
1635
4ecac3fd 1636 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1637 /* CF==1 or ZF==1 --> rc = -1 */
1638 "; ja 1f ; ud2 ; 1:\n"
1639 : : "a" (&operand), "c" (ext) : "cc", "memory");
1640}
1641
26bb0981 1642static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1643{
1644 int i;
1645
8b9cf98c 1646 i = __find_msr_index(vmx, msr);
a75beee6 1647 if (i >= 0)
a2fa3e9f 1648 return &vmx->guest_msrs[i];
8b6d44c7 1649 return NULL;
7725f0ba
AK
1650}
1651
6aa8b732
AK
1652static void vmcs_clear(struct vmcs *vmcs)
1653{
1654 u64 phys_addr = __pa(vmcs);
1655 u8 error;
1656
4ecac3fd 1657 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1658 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1659 : "cc", "memory");
1660 if (error)
1661 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1662 vmcs, phys_addr);
1663}
1664
d462b819
NHE
1665static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1666{
1667 vmcs_clear(loaded_vmcs->vmcs);
355f4fb1
JM
1668 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1669 vmcs_clear(loaded_vmcs->shadow_vmcs);
d462b819
NHE
1670 loaded_vmcs->cpu = -1;
1671 loaded_vmcs->launched = 0;
1672}
1673
7725b894
DX
1674static void vmcs_load(struct vmcs *vmcs)
1675{
1676 u64 phys_addr = __pa(vmcs);
1677 u8 error;
1678
773e8a04
VK
1679 if (static_branch_unlikely(&enable_evmcs))
1680 return evmcs_load(phys_addr);
1681
7725b894 1682 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1683 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1684 : "cc", "memory");
1685 if (error)
2844d849 1686 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1687 vmcs, phys_addr);
1688}
1689
2965faa5 1690#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1691/*
1692 * This bitmap is used to indicate whether the vmclear
1693 * operation is enabled on all cpus. All disabled by
1694 * default.
1695 */
1696static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1697
1698static inline void crash_enable_local_vmclear(int cpu)
1699{
1700 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1701}
1702
1703static inline void crash_disable_local_vmclear(int cpu)
1704{
1705 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1706}
1707
1708static inline int crash_local_vmclear_enabled(int cpu)
1709{
1710 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1711}
1712
1713static void crash_vmclear_local_loaded_vmcss(void)
1714{
1715 int cpu = raw_smp_processor_id();
1716 struct loaded_vmcs *v;
1717
1718 if (!crash_local_vmclear_enabled(cpu))
1719 return;
1720
1721 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1722 loaded_vmcss_on_cpu_link)
1723 vmcs_clear(v->vmcs);
1724}
1725#else
1726static inline void crash_enable_local_vmclear(int cpu) { }
1727static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1728#endif /* CONFIG_KEXEC_CORE */
8f536b76 1729
d462b819 1730static void __loaded_vmcs_clear(void *arg)
6aa8b732 1731{
d462b819 1732 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1733 int cpu = raw_smp_processor_id();
6aa8b732 1734
d462b819
NHE
1735 if (loaded_vmcs->cpu != cpu)
1736 return; /* vcpu migration can race with cpu offline */
1737 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1738 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1739 crash_disable_local_vmclear(cpu);
d462b819 1740 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1741
1742 /*
1743 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1744 * is before setting loaded_vmcs->vcpu to -1 which is done in
1745 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1746 * then adds the vmcs into percpu list before it is deleted.
1747 */
1748 smp_wmb();
1749
d462b819 1750 loaded_vmcs_init(loaded_vmcs);
8f536b76 1751 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1752}
1753
d462b819 1754static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1755{
e6c7d321
XG
1756 int cpu = loaded_vmcs->cpu;
1757
1758 if (cpu != -1)
1759 smp_call_function_single(cpu,
1760 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1761}
1762
dd5f5341 1763static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1764{
dd5f5341 1765 if (vpid == 0)
2384d2b3
SY
1766 return;
1767
518c8aee 1768 if (cpu_has_vmx_invvpid_single())
dd5f5341 1769 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1770}
1771
b9d762fa
GJ
1772static inline void vpid_sync_vcpu_global(void)
1773{
1774 if (cpu_has_vmx_invvpid_global())
1775 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1776}
1777
dd5f5341 1778static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1779{
1780 if (cpu_has_vmx_invvpid_single())
dd5f5341 1781 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1782 else
1783 vpid_sync_vcpu_global();
1784}
1785
1439442c
SY
1786static inline void ept_sync_global(void)
1787{
f5f51586 1788 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1439442c
SY
1789}
1790
1791static inline void ept_sync_context(u64 eptp)
1792{
0e1252dc
DH
1793 if (cpu_has_vmx_invept_context())
1794 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1795 else
1796 ept_sync_global();
1439442c
SY
1797}
1798
8a86aea9
PB
1799static __always_inline void vmcs_check16(unsigned long field)
1800{
1801 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1802 "16-bit accessor invalid for 64-bit field");
1803 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1804 "16-bit accessor invalid for 64-bit high field");
1805 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1806 "16-bit accessor invalid for 32-bit high field");
1807 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1808 "16-bit accessor invalid for natural width field");
1809}
1810
1811static __always_inline void vmcs_check32(unsigned long field)
1812{
1813 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1814 "32-bit accessor invalid for 16-bit field");
1815 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1816 "32-bit accessor invalid for natural width field");
1817}
1818
1819static __always_inline void vmcs_check64(unsigned long field)
1820{
1821 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1822 "64-bit accessor invalid for 16-bit field");
1823 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1824 "64-bit accessor invalid for 64-bit high field");
1825 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1826 "64-bit accessor invalid for 32-bit field");
1827 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1828 "64-bit accessor invalid for natural width field");
1829}
1830
1831static __always_inline void vmcs_checkl(unsigned long field)
1832{
1833 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1834 "Natural width accessor invalid for 16-bit field");
1835 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1836 "Natural width accessor invalid for 64-bit field");
1837 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1838 "Natural width accessor invalid for 64-bit high field");
1839 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1840 "Natural width accessor invalid for 32-bit field");
1841}
1842
1843static __always_inline unsigned long __vmcs_readl(unsigned long field)
6aa8b732 1844{
5e520e62 1845 unsigned long value;
6aa8b732 1846
5e520e62
AK
1847 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1848 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1849 return value;
1850}
1851
96304217 1852static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732 1853{
8a86aea9 1854 vmcs_check16(field);
773e8a04
VK
1855 if (static_branch_unlikely(&enable_evmcs))
1856 return evmcs_read16(field);
8a86aea9 1857 return __vmcs_readl(field);
6aa8b732
AK
1858}
1859
96304217 1860static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732 1861{
8a86aea9 1862 vmcs_check32(field);
773e8a04
VK
1863 if (static_branch_unlikely(&enable_evmcs))
1864 return evmcs_read32(field);
8a86aea9 1865 return __vmcs_readl(field);
6aa8b732
AK
1866}
1867
96304217 1868static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1869{
8a86aea9 1870 vmcs_check64(field);
773e8a04
VK
1871 if (static_branch_unlikely(&enable_evmcs))
1872 return evmcs_read64(field);
05b3e0c2 1873#ifdef CONFIG_X86_64
8a86aea9 1874 return __vmcs_readl(field);
6aa8b732 1875#else
8a86aea9 1876 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
6aa8b732
AK
1877#endif
1878}
1879
8a86aea9
PB
1880static __always_inline unsigned long vmcs_readl(unsigned long field)
1881{
1882 vmcs_checkl(field);
773e8a04
VK
1883 if (static_branch_unlikely(&enable_evmcs))
1884 return evmcs_read64(field);
8a86aea9
PB
1885 return __vmcs_readl(field);
1886}
1887
e52de1b8
AK
1888static noinline void vmwrite_error(unsigned long field, unsigned long value)
1889{
1890 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1891 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1892 dump_stack();
1893}
1894
8a86aea9 1895static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
6aa8b732
AK
1896{
1897 u8 error;
1898
4ecac3fd 1899 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1900 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1901 if (unlikely(error))
1902 vmwrite_error(field, value);
6aa8b732
AK
1903}
1904
8a86aea9 1905static __always_inline void vmcs_write16(unsigned long field, u16 value)
6aa8b732 1906{
8a86aea9 1907 vmcs_check16(field);
773e8a04
VK
1908 if (static_branch_unlikely(&enable_evmcs))
1909 return evmcs_write16(field, value);
1910
8a86aea9 1911 __vmcs_writel(field, value);
6aa8b732
AK
1912}
1913
8a86aea9 1914static __always_inline void vmcs_write32(unsigned long field, u32 value)
6aa8b732 1915{
8a86aea9 1916 vmcs_check32(field);
773e8a04
VK
1917 if (static_branch_unlikely(&enable_evmcs))
1918 return evmcs_write32(field, value);
1919
8a86aea9 1920 __vmcs_writel(field, value);
6aa8b732
AK
1921}
1922
8a86aea9 1923static __always_inline void vmcs_write64(unsigned long field, u64 value)
6aa8b732 1924{
8a86aea9 1925 vmcs_check64(field);
773e8a04
VK
1926 if (static_branch_unlikely(&enable_evmcs))
1927 return evmcs_write64(field, value);
1928
8a86aea9 1929 __vmcs_writel(field, value);
7682f2d0 1930#ifndef CONFIG_X86_64
6aa8b732 1931 asm volatile ("");
8a86aea9 1932 __vmcs_writel(field+1, value >> 32);
6aa8b732
AK
1933#endif
1934}
1935
8a86aea9 1936static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2ab455cc 1937{
8a86aea9 1938 vmcs_checkl(field);
773e8a04
VK
1939 if (static_branch_unlikely(&enable_evmcs))
1940 return evmcs_write64(field, value);
1941
8a86aea9 1942 __vmcs_writel(field, value);
2ab455cc
AL
1943}
1944
8a86aea9 1945static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2ab455cc 1946{
8a86aea9
PB
1947 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1948 "vmcs_clear_bits does not support 64-bit fields");
773e8a04
VK
1949 if (static_branch_unlikely(&enable_evmcs))
1950 return evmcs_write32(field, evmcs_read32(field) & ~mask);
1951
8a86aea9 1952 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2ab455cc
AL
1953}
1954
8a86aea9 1955static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2ab455cc 1956{
8a86aea9
PB
1957 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1958 "vmcs_set_bits does not support 64-bit fields");
773e8a04
VK
1959 if (static_branch_unlikely(&enable_evmcs))
1960 return evmcs_write32(field, evmcs_read32(field) | mask);
1961
8a86aea9 1962 __vmcs_writel(field, __vmcs_readl(field) | mask);
2ab455cc
AL
1963}
1964
8391ce44
PB
1965static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1966{
1967 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1968}
1969
2961e876
GN
1970static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1971{
1972 vmcs_write32(VM_ENTRY_CONTROLS, val);
1973 vmx->vm_entry_controls_shadow = val;
1974}
1975
1976static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1977{
1978 if (vmx->vm_entry_controls_shadow != val)
1979 vm_entry_controls_init(vmx, val);
1980}
1981
1982static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1983{
1984 return vmx->vm_entry_controls_shadow;
1985}
1986
1987
1988static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1989{
1990 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1991}
1992
1993static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1994{
1995 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1996}
1997
8391ce44
PB
1998static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1999{
2000 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
2001}
2002
2961e876
GN
2003static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
2004{
2005 vmcs_write32(VM_EXIT_CONTROLS, val);
2006 vmx->vm_exit_controls_shadow = val;
2007}
2008
2009static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
2010{
2011 if (vmx->vm_exit_controls_shadow != val)
2012 vm_exit_controls_init(vmx, val);
2013}
2014
2015static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
2016{
2017 return vmx->vm_exit_controls_shadow;
2018}
2019
2020
2021static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
2022{
2023 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
2024}
2025
2026static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
2027{
2028 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
2029}
2030
2fb92db1
AK
2031static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
2032{
2033 vmx->segment_cache.bitmask = 0;
2034}
2035
2036static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
2037 unsigned field)
2038{
2039 bool ret;
2040 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
2041
2042 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
2043 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
2044 vmx->segment_cache.bitmask = 0;
2045 }
2046 ret = vmx->segment_cache.bitmask & mask;
2047 vmx->segment_cache.bitmask |= mask;
2048 return ret;
2049}
2050
2051static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
2052{
2053 u16 *p = &vmx->segment_cache.seg[seg].selector;
2054
2055 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
2056 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
2057 return *p;
2058}
2059
2060static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
2061{
2062 ulong *p = &vmx->segment_cache.seg[seg].base;
2063
2064 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
2065 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
2066 return *p;
2067}
2068
2069static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
2070{
2071 u32 *p = &vmx->segment_cache.seg[seg].limit;
2072
2073 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
2074 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
2075 return *p;
2076}
2077
2078static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
2079{
2080 u32 *p = &vmx->segment_cache.seg[seg].ar;
2081
2082 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
2083 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
2084 return *p;
2085}
2086
abd3f2d6
AK
2087static void update_exception_bitmap(struct kvm_vcpu *vcpu)
2088{
2089 u32 eb;
2090
fd7373cc 2091 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
bd7e5b08 2092 (1u << DB_VECTOR) | (1u << AC_VECTOR);
9e869480
LA
2093 /*
2094 * Guest access to VMware backdoor ports could legitimately
2095 * trigger #GP because of TSS I/O permission bitmap.
2096 * We intercept those #GP and allow access to them anyway
2097 * as VMware does.
2098 */
2099 if (enable_vmware_backdoor)
2100 eb |= (1u << GP_VECTOR);
fd7373cc
JK
2101 if ((vcpu->guest_debug &
2102 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
2103 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
2104 eb |= 1u << BP_VECTOR;
7ffd92c5 2105 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 2106 eb = ~0;
089d034e 2107 if (enable_ept)
1439442c 2108 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
36cf24e0
NHE
2109
2110 /* When we are running a nested L2 guest and L1 specified for it a
2111 * certain exception bitmap, we must trap the same exceptions and pass
2112 * them to L1. When running L2, we will only handle the exceptions
2113 * specified above if L1 did not want them.
2114 */
2115 if (is_guest_mode(vcpu))
2116 eb |= get_vmcs12(vcpu)->exception_bitmap;
2117
abd3f2d6
AK
2118 vmcs_write32(EXCEPTION_BITMAP, eb);
2119}
2120
d28b387f
KA
2121/*
2122 * Check if MSR is intercepted for currently loaded MSR bitmap.
2123 */
2124static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
2125{
2126 unsigned long *msr_bitmap;
2127 int f = sizeof(unsigned long);
2128
2129 if (!cpu_has_vmx_msr_bitmap())
2130 return true;
2131
2132 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
2133
2134 if (msr <= 0x1fff) {
2135 return !!test_bit(msr, msr_bitmap + 0x800 / f);
2136 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2137 msr &= 0x1fff;
2138 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
2139 }
2140
2141 return true;
2142}
2143
15d45071
AR
2144/*
2145 * Check if MSR is intercepted for L01 MSR bitmap.
2146 */
2147static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
2148{
2149 unsigned long *msr_bitmap;
2150 int f = sizeof(unsigned long);
2151
2152 if (!cpu_has_vmx_msr_bitmap())
2153 return true;
2154
2155 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
2156
2157 if (msr <= 0x1fff) {
2158 return !!test_bit(msr, msr_bitmap + 0x800 / f);
2159 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2160 msr &= 0x1fff;
2161 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
2162 }
2163
2164 return true;
2165}
2166
2961e876
GN
2167static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
2168 unsigned long entry, unsigned long exit)
8bf00a52 2169{
2961e876
GN
2170 vm_entry_controls_clearbit(vmx, entry);
2171 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
2172}
2173
61d2ef2c
AK
2174static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
2175{
2176 unsigned i;
2177 struct msr_autoload *m = &vmx->msr_autoload;
2178
8bf00a52
GN
2179 switch (msr) {
2180 case MSR_EFER:
2181 if (cpu_has_load_ia32_efer) {
2961e876
GN
2182 clear_atomic_switch_msr_special(vmx,
2183 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
2184 VM_EXIT_LOAD_IA32_EFER);
2185 return;
2186 }
2187 break;
2188 case MSR_CORE_PERF_GLOBAL_CTRL:
2189 if (cpu_has_load_perf_global_ctrl) {
2961e876 2190 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
2191 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
2192 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2193 return;
2194 }
2195 break;
110312c8
AK
2196 }
2197
61d2ef2c
AK
2198 for (i = 0; i < m->nr; ++i)
2199 if (m->guest[i].index == msr)
2200 break;
2201
2202 if (i == m->nr)
2203 return;
2204 --m->nr;
2205 m->guest[i] = m->guest[m->nr];
2206 m->host[i] = m->host[m->nr];
2207 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2208 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2209}
2210
2961e876
GN
2211static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
2212 unsigned long entry, unsigned long exit,
2213 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
2214 u64 guest_val, u64 host_val)
8bf00a52
GN
2215{
2216 vmcs_write64(guest_val_vmcs, guest_val);
2217 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
2218 vm_entry_controls_setbit(vmx, entry);
2219 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
2220}
2221
61d2ef2c
AK
2222static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
2223 u64 guest_val, u64 host_val)
2224{
2225 unsigned i;
2226 struct msr_autoload *m = &vmx->msr_autoload;
2227
8bf00a52
GN
2228 switch (msr) {
2229 case MSR_EFER:
2230 if (cpu_has_load_ia32_efer) {
2961e876
GN
2231 add_atomic_switch_msr_special(vmx,
2232 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
2233 VM_EXIT_LOAD_IA32_EFER,
2234 GUEST_IA32_EFER,
2235 HOST_IA32_EFER,
2236 guest_val, host_val);
2237 return;
2238 }
2239 break;
2240 case MSR_CORE_PERF_GLOBAL_CTRL:
2241 if (cpu_has_load_perf_global_ctrl) {
2961e876 2242 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
2243 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
2244 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
2245 GUEST_IA32_PERF_GLOBAL_CTRL,
2246 HOST_IA32_PERF_GLOBAL_CTRL,
2247 guest_val, host_val);
2248 return;
2249 }
2250 break;
7099e2e1
RK
2251 case MSR_IA32_PEBS_ENABLE:
2252 /* PEBS needs a quiescent period after being disabled (to write
2253 * a record). Disabling PEBS through VMX MSR swapping doesn't
2254 * provide that period, so a CPU could write host's record into
2255 * guest's memory.
2256 */
2257 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
110312c8
AK
2258 }
2259
61d2ef2c
AK
2260 for (i = 0; i < m->nr; ++i)
2261 if (m->guest[i].index == msr)
2262 break;
2263
e7fc6f93 2264 if (i == NR_AUTOLOAD_MSRS) {
60266204 2265 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
2266 "Can't add msr %x\n", msr);
2267 return;
2268 } else if (i == m->nr) {
61d2ef2c
AK
2269 ++m->nr;
2270 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2271 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2272 }
2273
2274 m->guest[i].index = msr;
2275 m->guest[i].value = guest_val;
2276 m->host[i].index = msr;
2277 m->host[i].value = host_val;
2278}
2279
92c0d900 2280static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 2281{
844a5fe2
PB
2282 u64 guest_efer = vmx->vcpu.arch.efer;
2283 u64 ignore_bits = 0;
2284
2285 if (!enable_ept) {
2286 /*
2287 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2288 * host CPUID is more efficient than testing guest CPUID
2289 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2290 */
2291 if (boot_cpu_has(X86_FEATURE_SMEP))
2292 guest_efer |= EFER_NX;
2293 else if (!(guest_efer & EFER_NX))
2294 ignore_bits |= EFER_NX;
2295 }
3a34a881 2296
51c6cf66 2297 /*
844a5fe2 2298 * LMA and LME handled by hardware; SCE meaningless outside long mode.
51c6cf66 2299 */
844a5fe2 2300 ignore_bits |= EFER_SCE;
51c6cf66
AK
2301#ifdef CONFIG_X86_64
2302 ignore_bits |= EFER_LMA | EFER_LME;
2303 /* SCE is meaningful only in long mode on Intel */
2304 if (guest_efer & EFER_LMA)
2305 ignore_bits &= ~(u64)EFER_SCE;
2306#endif
84ad33ef
AK
2307
2308 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
2309
2310 /*
2311 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2312 * On CPUs that support "load IA32_EFER", always switch EFER
2313 * atomically, since it's faster than switching it manually.
2314 */
2315 if (cpu_has_load_ia32_efer ||
2316 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
2317 if (!(guest_efer & EFER_LMA))
2318 guest_efer &= ~EFER_LME;
54b98bff
AL
2319 if (guest_efer != host_efer)
2320 add_atomic_switch_msr(vmx, MSR_EFER,
2321 guest_efer, host_efer);
84ad33ef 2322 return false;
844a5fe2
PB
2323 } else {
2324 guest_efer &= ~ignore_bits;
2325 guest_efer |= host_efer & ignore_bits;
2326
2327 vmx->guest_msrs[efer_offset].data = guest_efer;
2328 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef 2329
844a5fe2
PB
2330 return true;
2331 }
51c6cf66
AK
2332}
2333
e28baead
AL
2334#ifdef CONFIG_X86_32
2335/*
2336 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2337 * VMCS rather than the segment table. KVM uses this helper to figure
2338 * out the current bases to poke them into the VMCS before entry.
2339 */
2d49ec72
GN
2340static unsigned long segment_base(u16 selector)
2341{
8c2e41f7 2342 struct desc_struct *table;
2d49ec72
GN
2343 unsigned long v;
2344
8c2e41f7 2345 if (!(selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2346 return 0;
2347
45fc8757 2348 table = get_current_gdt_ro();
2d49ec72 2349
8c2e41f7 2350 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2d49ec72
GN
2351 u16 ldt_selector = kvm_read_ldt();
2352
8c2e41f7 2353 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2354 return 0;
2355
8c2e41f7 2356 table = (struct desc_struct *)segment_base(ldt_selector);
2d49ec72 2357 }
8c2e41f7 2358 v = get_desc_base(&table[selector >> 3]);
2d49ec72
GN
2359 return v;
2360}
e28baead 2361#endif
2d49ec72 2362
04d2cc77 2363static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 2364{
04d2cc77 2365 struct vcpu_vmx *vmx = to_vmx(vcpu);
51e8a8cc 2366#ifdef CONFIG_X86_64
35060ed6 2367 int cpu = raw_smp_processor_id();
b062b794 2368 unsigned long fs_base, kernel_gs_base;
51e8a8cc 2369#endif
26bb0981 2370 int i;
04d2cc77 2371
a2fa3e9f 2372 if (vmx->host_state.loaded)
33ed6329
AK
2373 return;
2374
a2fa3e9f 2375 vmx->host_state.loaded = 1;
33ed6329
AK
2376 /*
2377 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2378 * allow segment selectors with cpl > 0 or ti == 1.
2379 */
d6e88aec 2380 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 2381 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
42b933b5
VK
2382
2383#ifdef CONFIG_X86_64
b062b794
VK
2384 if (likely(is_64bit_mm(current->mm))) {
2385 save_fsgs_for_kvm();
2386 vmx->host_state.fs_sel = current->thread.fsindex;
2387 vmx->host_state.gs_sel = current->thread.gsindex;
2388 fs_base = current->thread.fsbase;
2389 kernel_gs_base = current->thread.gsbase;
2390 } else {
2391#endif
2392 savesegment(fs, vmx->host_state.fs_sel);
2393 savesegment(gs, vmx->host_state.gs_sel);
2394#ifdef CONFIG_X86_64
2395 fs_base = read_msr(MSR_FS_BASE);
2396 kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
2397 }
42b933b5 2398#endif
152d3f2f 2399 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 2400 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
2401 vmx->host_state.fs_reload_needed = 0;
2402 } else {
33ed6329 2403 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 2404 vmx->host_state.fs_reload_needed = 1;
33ed6329 2405 }
a2fa3e9f
GH
2406 if (!(vmx->host_state.gs_sel & 7))
2407 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
2408 else {
2409 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 2410 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
2411 }
2412
b2da15ac
AK
2413#ifdef CONFIG_X86_64
2414 savesegment(ds, vmx->host_state.ds_sel);
2415 savesegment(es, vmx->host_state.es_sel);
b2da15ac 2416
b062b794 2417 vmcs_writel(HOST_FS_BASE, fs_base);
35060ed6 2418 vmcs_writel(HOST_GS_BASE, cpu_kernelmode_gs_base(cpu));
707c0874 2419
b062b794 2420 vmx->msr_host_kernel_gs_base = kernel_gs_base;
c8770e7b 2421 if (is_long_mode(&vmx->vcpu))
44ea2b17 2422 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
4fde8d57
PB
2423#else
2424 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2425 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
707c0874 2426#endif
da8999d3
LJ
2427 if (boot_cpu_has(X86_FEATURE_MPX))
2428 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
2429 for (i = 0; i < vmx->save_nmsrs; ++i)
2430 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
2431 vmx->guest_msrs[i].data,
2432 vmx->guest_msrs[i].mask);
33ed6329
AK
2433}
2434
a9b21b62 2435static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 2436{
a2fa3e9f 2437 if (!vmx->host_state.loaded)
33ed6329
AK
2438 return;
2439
e1beb1d3 2440 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 2441 vmx->host_state.loaded = 0;
c8770e7b
AK
2442#ifdef CONFIG_X86_64
2443 if (is_long_mode(&vmx->vcpu))
2444 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2445#endif
152d3f2f 2446 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 2447 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 2448#ifdef CONFIG_X86_64
9581d442 2449 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
2450#else
2451 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 2452#endif
33ed6329 2453 }
0a77fe4c
AK
2454 if (vmx->host_state.fs_reload_needed)
2455 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
2456#ifdef CONFIG_X86_64
2457 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2458 loadsegment(ds, vmx->host_state.ds_sel);
2459 loadsegment(es, vmx->host_state.es_sel);
2460 }
b2da15ac 2461#endif
b7ffc44d 2462 invalidate_tss_limit();
44ea2b17 2463#ifdef CONFIG_X86_64
c8770e7b 2464 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 2465#endif
da8999d3
LJ
2466 if (vmx->host_state.msr_host_bndcfgs)
2467 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
45fc8757 2468 load_fixmap_gdt(raw_smp_processor_id());
33ed6329
AK
2469}
2470
a9b21b62
AK
2471static void vmx_load_host_state(struct vcpu_vmx *vmx)
2472{
2473 preempt_disable();
2474 __vmx_load_host_state(vmx);
2475 preempt_enable();
2476}
2477
28b835d6
FW
2478static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2479{
2480 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2481 struct pi_desc old, new;
2482 unsigned int dest;
2483
31afb2ea
PB
2484 /*
2485 * In case of hot-plug or hot-unplug, we may have to undo
2486 * vmx_vcpu_pi_put even if there is no assigned device. And we
2487 * always keep PI.NDST up to date for simplicity: it makes the
2488 * code easier, and CPU migration is not a fast path.
2489 */
2490 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
28b835d6
FW
2491 return;
2492
31afb2ea
PB
2493 /*
2494 * First handle the simple case where no cmpxchg is necessary; just
2495 * allow posting non-urgent interrupts.
2496 *
2497 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
2498 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
2499 * expects the VCPU to be on the blocked_vcpu_list that matches
2500 * PI.NDST.
2501 */
2502 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
2503 vcpu->cpu == cpu) {
2504 pi_clear_sn(pi_desc);
28b835d6 2505 return;
31afb2ea 2506 }
28b835d6 2507
31afb2ea 2508 /* The full case. */
28b835d6
FW
2509 do {
2510 old.control = new.control = pi_desc->control;
2511
31afb2ea 2512 dest = cpu_physical_id(cpu);
28b835d6 2513
31afb2ea
PB
2514 if (x2apic_enabled())
2515 new.ndst = dest;
2516 else
2517 new.ndst = (dest << 8) & 0xFF00;
28b835d6 2518
28b835d6 2519 new.sn = 0;
c0a1666b
PB
2520 } while (cmpxchg64(&pi_desc->control, old.control,
2521 new.control) != old.control);
28b835d6 2522}
1be0e61c 2523
c95ba92a
PF
2524static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2525{
2526 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2527 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2528}
2529
6aa8b732
AK
2530/*
2531 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2532 * vcpu mutex is already taken.
2533 */
15ad7146 2534static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2535{
a2fa3e9f 2536 struct vcpu_vmx *vmx = to_vmx(vcpu);
b80c76ec 2537 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
6aa8b732 2538
b80c76ec 2539 if (!already_loaded) {
fe0e80be 2540 loaded_vmcs_clear(vmx->loaded_vmcs);
92fe13be 2541 local_irq_disable();
8f536b76 2542 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2543
2544 /*
2545 * Read loaded_vmcs->cpu should be before fetching
2546 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2547 * See the comments in __loaded_vmcs_clear().
2548 */
2549 smp_rmb();
2550
d462b819
NHE
2551 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2552 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2553 crash_enable_local_vmclear(cpu);
92fe13be 2554 local_irq_enable();
b80c76ec
JM
2555 }
2556
2557 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2558 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2559 vmcs_load(vmx->loaded_vmcs->vmcs);
15d45071 2560 indirect_branch_prediction_barrier();
b80c76ec
JM
2561 }
2562
2563 if (!already_loaded) {
59c58ceb 2564 void *gdt = get_current_gdt_ro();
b80c76ec
JM
2565 unsigned long sysenter_esp;
2566
2567 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2568
6aa8b732
AK
2569 /*
2570 * Linux uses per-cpu TSS and GDT, so set these when switching
e0c23063 2571 * processors. See 22.2.4.
6aa8b732 2572 */
e0c23063 2573 vmcs_writel(HOST_TR_BASE,
72f5e08d 2574 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
59c58ceb 2575 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
6aa8b732 2576
b7ffc44d
AL
2577 /*
2578 * VM exits change the host TR limit to 0x67 after a VM
2579 * exit. This is okay, since 0x67 covers everything except
2580 * the IO bitmap and have have code to handle the IO bitmap
2581 * being lost after a VM exit.
2582 */
2583 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2584
6aa8b732
AK
2585 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2586 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18 2587
d462b819 2588 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2589 }
28b835d6 2590
2680d6da
OH
2591 /* Setup TSC multiplier */
2592 if (kvm_has_tsc_control &&
c95ba92a
PF
2593 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2594 decache_tsc_multiplier(vmx);
2680d6da 2595
28b835d6 2596 vmx_vcpu_pi_load(vcpu, cpu);
1be0e61c 2597 vmx->host_pkru = read_pkru();
74c55931 2598 vmx->host_debugctlmsr = get_debugctlmsr();
28b835d6
FW
2599}
2600
2601static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2602{
2603 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2604
2605 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2606 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2607 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2608 return;
2609
2610 /* Set SN when the vCPU is preempted */
2611 if (vcpu->preempted)
2612 pi_set_sn(pi_desc);
6aa8b732
AK
2613}
2614
2615static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2616{
28b835d6
FW
2617 vmx_vcpu_pi_put(vcpu);
2618
a9b21b62 2619 __vmx_load_host_state(to_vmx(vcpu));
6aa8b732
AK
2620}
2621
f244deed
WL
2622static bool emulation_required(struct kvm_vcpu *vcpu)
2623{
2624 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2625}
2626
edcafe3c
AK
2627static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2628
fe3ef05c
NHE
2629/*
2630 * Return the cr0 value that a nested guest would read. This is a combination
2631 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2632 * its hypervisor (cr0_read_shadow).
2633 */
2634static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2635{
2636 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2637 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2638}
2639static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2640{
2641 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2642 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2643}
2644
6aa8b732
AK
2645static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2646{
78ac8b47 2647 unsigned long rflags, save_rflags;
345dcaa8 2648
6de12732
AK
2649 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2650 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2651 rflags = vmcs_readl(GUEST_RFLAGS);
2652 if (to_vmx(vcpu)->rmode.vm86_active) {
2653 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2654 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2655 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2656 }
2657 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2658 }
6de12732 2659 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2660}
2661
2662static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2663{
f244deed
WL
2664 unsigned long old_rflags = vmx_get_rflags(vcpu);
2665
6de12732
AK
2666 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2667 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2668 if (to_vmx(vcpu)->rmode.vm86_active) {
2669 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2670 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2671 }
6aa8b732 2672 vmcs_writel(GUEST_RFLAGS, rflags);
f244deed
WL
2673
2674 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2675 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
6aa8b732
AK
2676}
2677
37ccdcbe 2678static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2679{
2680 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2681 int ret = 0;
2682
2683 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2684 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2685 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2686 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2687
37ccdcbe 2688 return ret;
2809f5d2
GC
2689}
2690
2691static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2692{
2693 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2694 u32 interruptibility = interruptibility_old;
2695
2696 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2697
48005f64 2698 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2699 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2700 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2701 interruptibility |= GUEST_INTR_STATE_STI;
2702
2703 if ((interruptibility != interruptibility_old))
2704 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2705}
2706
6aa8b732
AK
2707static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2708{
2709 unsigned long rip;
6aa8b732 2710
5fdbf976 2711 rip = kvm_rip_read(vcpu);
6aa8b732 2712 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2713 kvm_rip_write(vcpu, rip);
6aa8b732 2714
2809f5d2
GC
2715 /* skipping an emulated instruction also counts */
2716 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2717}
2718
b96fb439
PB
2719static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2720 unsigned long exit_qual)
2721{
2722 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2723 unsigned int nr = vcpu->arch.exception.nr;
2724 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2725
2726 if (vcpu->arch.exception.has_error_code) {
2727 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2728 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2729 }
2730
2731 if (kvm_exception_is_soft(nr))
2732 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2733 else
2734 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2735
2736 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2737 vmx_get_nmi_mask(vcpu))
2738 intr_info |= INTR_INFO_UNBLOCK_NMI;
2739
2740 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2741}
2742
0b6ac343
NHE
2743/*
2744 * KVM wants to inject page-faults which it got to the guest. This function
2745 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2746 */
bfcf83b1 2747static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
0b6ac343
NHE
2748{
2749 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
adfe20fb 2750 unsigned int nr = vcpu->arch.exception.nr;
0b6ac343 2751
b96fb439
PB
2752 if (nr == PF_VECTOR) {
2753 if (vcpu->arch.exception.nested_apf) {
bfcf83b1 2754 *exit_qual = vcpu->arch.apf.nested_apf_token;
b96fb439
PB
2755 return 1;
2756 }
2757 /*
2758 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2759 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2760 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2761 * can be written only when inject_pending_event runs. This should be
2762 * conditional on a new capability---if the capability is disabled,
2763 * kvm_multiple_exception would write the ancillary information to
2764 * CR2 or DR6, for backwards ABI-compatibility.
2765 */
2766 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2767 vcpu->arch.exception.error_code)) {
bfcf83b1 2768 *exit_qual = vcpu->arch.cr2;
b96fb439
PB
2769 return 1;
2770 }
2771 } else {
b96fb439 2772 if (vmcs12->exception_bitmap & (1u << nr)) {
bfcf83b1
WL
2773 if (nr == DB_VECTOR)
2774 *exit_qual = vcpu->arch.dr6;
2775 else
2776 *exit_qual = 0;
b96fb439
PB
2777 return 1;
2778 }
adfe20fb
WL
2779 }
2780
b96fb439 2781 return 0;
0b6ac343
NHE
2782}
2783
caa057a2
WL
2784static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
2785{
2786 /*
2787 * Ensure that we clear the HLT state in the VMCS. We don't need to
2788 * explicitly skip the instruction because if the HLT state is set,
2789 * then the instruction is already executing and RIP has already been
2790 * advanced.
2791 */
2792 if (kvm_hlt_in_guest(vcpu->kvm) &&
2793 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
2794 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
2795}
2796
cfcd20e5 2797static void vmx_queue_exception(struct kvm_vcpu *vcpu)
298101da 2798{
77ab6db0 2799 struct vcpu_vmx *vmx = to_vmx(vcpu);
cfcd20e5
WL
2800 unsigned nr = vcpu->arch.exception.nr;
2801 bool has_error_code = vcpu->arch.exception.has_error_code;
cfcd20e5 2802 u32 error_code = vcpu->arch.exception.error_code;
8ab2d2e2 2803 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2804
8ab2d2e2 2805 if (has_error_code) {
77ab6db0 2806 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2807 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2808 }
77ab6db0 2809
7ffd92c5 2810 if (vmx->rmode.vm86_active) {
71f9833b
SH
2811 int inc_eip = 0;
2812 if (kvm_exception_is_soft(nr))
2813 inc_eip = vcpu->arch.event_exit_inst_len;
2814 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2815 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2816 return;
2817 }
2818
add5ff7a
SC
2819 WARN_ON_ONCE(vmx->emulation_required);
2820
66fd3f7f
GN
2821 if (kvm_exception_is_soft(nr)) {
2822 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2823 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2824 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2825 } else
2826 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2827
2828 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
caa057a2
WL
2829
2830 vmx_clear_hlt(vcpu);
298101da
AK
2831}
2832
4e47c7a6
SY
2833static bool vmx_rdtscp_supported(void)
2834{
2835 return cpu_has_vmx_rdtscp();
2836}
2837
ad756a16
MJ
2838static bool vmx_invpcid_supported(void)
2839{
2840 return cpu_has_vmx_invpcid() && enable_ept;
2841}
2842
a75beee6
ED
2843/*
2844 * Swap MSR entry in host/guest MSR entry array.
2845 */
8b9cf98c 2846static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2847{
26bb0981 2848 struct shared_msr_entry tmp;
a2fa3e9f
GH
2849
2850 tmp = vmx->guest_msrs[to];
2851 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2852 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2853}
2854
e38aea3e
AK
2855/*
2856 * Set up the vmcs to automatically save and restore system
2857 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2858 * mode, as fiddling with msrs is very expensive.
2859 */
8b9cf98c 2860static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2861{
26bb0981 2862 int save_nmsrs, index;
e38aea3e 2863
a75beee6
ED
2864 save_nmsrs = 0;
2865#ifdef CONFIG_X86_64
8b9cf98c 2866 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2867 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2868 if (index >= 0)
8b9cf98c
RR
2869 move_msr_up(vmx, index, save_nmsrs++);
2870 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2871 if (index >= 0)
8b9cf98c
RR
2872 move_msr_up(vmx, index, save_nmsrs++);
2873 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2874 if (index >= 0)
8b9cf98c 2875 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2876 index = __find_msr_index(vmx, MSR_TSC_AUX);
d6321d49 2877 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
4e47c7a6 2878 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2879 /*
8c06585d 2880 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2881 * if efer.sce is enabled.
2882 */
8c06585d 2883 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2884 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2885 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2886 }
2887#endif
92c0d900
AK
2888 index = __find_msr_index(vmx, MSR_EFER);
2889 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2890 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2891
26bb0981 2892 vmx->save_nmsrs = save_nmsrs;
5897297b 2893
8d14695f 2894 if (cpu_has_vmx_msr_bitmap())
904e14fb 2895 vmx_update_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2896}
2897
e79f245d 2898static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
6aa8b732 2899{
e79f245d 2900 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6aa8b732 2901
e79f245d
KA
2902 if (is_guest_mode(vcpu) &&
2903 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
2904 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
2905
2906 return vcpu->arch.tsc_offset;
6aa8b732
AK
2907}
2908
2909/*
99e3e30a 2910 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2911 */
99e3e30a 2912static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2913{
27fc51b2 2914 if (is_guest_mode(vcpu)) {
7991825b 2915 /*
27fc51b2
NHE
2916 * We're here if L1 chose not to trap WRMSR to TSC. According
2917 * to the spec, this should set L1's TSC; The offset that L1
2918 * set for L2 remains unchanged, and still needs to be added
2919 * to the newly set TSC to get L2's TSC.
7991825b 2920 */
27fc51b2 2921 struct vmcs12 *vmcs12;
27fc51b2
NHE
2922 /* recalculate vmcs02.TSC_OFFSET: */
2923 vmcs12 = get_vmcs12(vcpu);
2924 vmcs_write64(TSC_OFFSET, offset +
2925 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2926 vmcs12->tsc_offset : 0));
2927 } else {
489223ed
YY
2928 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2929 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2930 vmcs_write64(TSC_OFFSET, offset);
2931 }
6aa8b732
AK
2932}
2933
801d3424
NHE
2934/*
2935 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2936 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2937 * all guests if the "nested" module option is off, and can also be disabled
2938 * for a single guest by disabling its VMX cpuid bit.
2939 */
2940static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2941{
d6321d49 2942 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
801d3424
NHE
2943}
2944
b87a51ae
NHE
2945/*
2946 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2947 * returned for the various VMX controls MSRs when nested VMX is enabled.
2948 * The same values should also be used to verify that vmcs12 control fields are
2949 * valid during nested entry from L1 to L2.
2950 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2951 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2952 * bit in the high half is on if the corresponding bit in the control field
2953 * may be on. See also vmx_control_verify().
b87a51ae 2954 */
6677f3da 2955static void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, bool apicv)
b87a51ae 2956{
1389309c
PB
2957 if (!nested) {
2958 memset(msrs, 0, sizeof(*msrs));
2959 return;
2960 }
2961
b87a51ae
NHE
2962 /*
2963 * Note that as a general rule, the high half of the MSRs (bits in
2964 * the control fields which may be 1) should be initialized by the
2965 * intersection of the underlying hardware's MSR (i.e., features which
2966 * can be supported) and the list of features we want to expose -
2967 * because they are known to be properly supported in our code.
2968 * Also, usually, the low half of the MSRs (bits which must be 1) can
2969 * be set to 0, meaning that L1 may turn off any of these bits. The
2970 * reason is that if one of these bits is necessary, it will appear
2971 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2972 * fields of vmcs01 and vmcs02, will turn these bits off - and
7313c698 2973 * nested_vmx_exit_reflected() will not pass related exits to L1.
b87a51ae
NHE
2974 * These rules have exceptions below.
2975 */
2976
2977 /* pin-based controls */
eabeaacc 2978 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6677f3da
PB
2979 msrs->pinbased_ctls_low,
2980 msrs->pinbased_ctls_high);
2981 msrs->pinbased_ctls_low |=
b9c237bb 2982 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6677f3da 2983 msrs->pinbased_ctls_high &=
b9c237bb
WV
2984 PIN_BASED_EXT_INTR_MASK |
2985 PIN_BASED_NMI_EXITING |
1389309c
PB
2986 PIN_BASED_VIRTUAL_NMIS |
2987 (apicv ? PIN_BASED_POSTED_INTR : 0);
6677f3da 2988 msrs->pinbased_ctls_high |=
b9c237bb 2989 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2990 PIN_BASED_VMX_PREEMPTION_TIMER;
b87a51ae 2991
3dbcd8da 2992 /* exit controls */
c0dfee58 2993 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6677f3da
PB
2994 msrs->exit_ctls_low,
2995 msrs->exit_ctls_high);
2996 msrs->exit_ctls_low =
b9c237bb 2997 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2998
6677f3da 2999 msrs->exit_ctls_high &=
b87a51ae 3000#ifdef CONFIG_X86_64
c0dfee58 3001 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 3002#endif
f4124500 3003 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
6677f3da 3004 msrs->exit_ctls_high |=
b9c237bb 3005 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 3006 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
3007 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
3008
a87036ad 3009 if (kvm_mpx_supported())
6677f3da 3010 msrs->exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 3011
2996fca0 3012 /* We support free control of debug control saving. */
6677f3da 3013 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2996fca0 3014
b87a51ae
NHE
3015 /* entry controls */
3016 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6677f3da
PB
3017 msrs->entry_ctls_low,
3018 msrs->entry_ctls_high);
3019 msrs->entry_ctls_low =
b9c237bb 3020 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6677f3da 3021 msrs->entry_ctls_high &=
57435349
JK
3022#ifdef CONFIG_X86_64
3023 VM_ENTRY_IA32E_MODE |
3024#endif
3025 VM_ENTRY_LOAD_IA32_PAT;
6677f3da 3026 msrs->entry_ctls_high |=
b9c237bb 3027 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
a87036ad 3028 if (kvm_mpx_supported())
6677f3da 3029 msrs->entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 3030
2996fca0 3031 /* We support free control of debug control loading. */
6677f3da 3032 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2996fca0 3033
b87a51ae
NHE
3034 /* cpu-based controls */
3035 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6677f3da
PB
3036 msrs->procbased_ctls_low,
3037 msrs->procbased_ctls_high);
3038 msrs->procbased_ctls_low =
b9c237bb 3039 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6677f3da 3040 msrs->procbased_ctls_high &=
a294c9bb
JK
3041 CPU_BASED_VIRTUAL_INTR_PENDING |
3042 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
3043 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
3044 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
3045 CPU_BASED_CR3_STORE_EXITING |
3046#ifdef CONFIG_X86_64
3047 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
3048#endif
3049 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
3050 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
3051 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
3052 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
3053 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
3054 /*
3055 * We can allow some features even when not supported by the
3056 * hardware. For example, L1 can specify an MSR bitmap - and we
3057 * can use it to avoid exits to L1 - even when L0 runs L2
3058 * without MSR bitmaps.
3059 */
6677f3da 3060 msrs->procbased_ctls_high |=
b9c237bb 3061 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 3062 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 3063
3dcdf3ec 3064 /* We support free control of CR3 access interception. */
6677f3da 3065 msrs->procbased_ctls_low &=
3dcdf3ec
JK
3066 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
3067
80154d77
PB
3068 /*
3069 * secondary cpu-based controls. Do not include those that
3070 * depend on CPUID bits, they are added later by vmx_cpuid_update.
3071 */
b87a51ae 3072 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6677f3da
PB
3073 msrs->secondary_ctls_low,
3074 msrs->secondary_ctls_high);
3075 msrs->secondary_ctls_low = 0;
3076 msrs->secondary_ctls_high &=
d6851fbe 3077 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1b07304c 3078 SECONDARY_EXEC_DESC |
f2b93280 3079 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
82f0dd4b 3080 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 3081 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3db13480 3082 SECONDARY_EXEC_WBINVD_EXITING;
c18911a2 3083
afa61f75
NHE
3084 if (enable_ept) {
3085 /* nested EPT: emulate EPT also to L1 */
6677f3da 3086 msrs->secondary_ctls_high |=
0790ec17 3087 SECONDARY_EXEC_ENABLE_EPT;
6677f3da 3088 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
7db74265 3089 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
02120c45 3090 if (cpu_has_vmx_ept_execute_only())
6677f3da 3091 msrs->ept_caps |=
02120c45 3092 VMX_EPT_EXECUTE_ONLY_BIT;
6677f3da
PB
3093 msrs->ept_caps &= vmx_capability.ept;
3094 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7db74265
PB
3095 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
3096 VMX_EPT_1GB_PAGE_BIT;
03efce6f 3097 if (enable_ept_ad_bits) {
6677f3da 3098 msrs->secondary_ctls_high |=
03efce6f 3099 SECONDARY_EXEC_ENABLE_PML;
6677f3da 3100 msrs->ept_caps |= VMX_EPT_AD_BIT;
03efce6f 3101 }
1c13bffd 3102 }
afa61f75 3103
27c42a1b 3104 if (cpu_has_vmx_vmfunc()) {
6677f3da 3105 msrs->secondary_ctls_high |=
27c42a1b 3106 SECONDARY_EXEC_ENABLE_VMFUNC;
41ab9372
BD
3107 /*
3108 * Advertise EPTP switching unconditionally
3109 * since we emulate it
3110 */
575b3a2c 3111 if (enable_ept)
6677f3da 3112 msrs->vmfunc_controls =
575b3a2c 3113 VMX_VMFUNC_EPTP_SWITCHING;
27c42a1b
BD
3114 }
3115
ef697a71
PB
3116 /*
3117 * Old versions of KVM use the single-context version without
3118 * checking for support, so declare that it is supported even
3119 * though it is treated as global context. The alternative is
3120 * not failing the single-context invvpid, and it is worse.
3121 */
63cb6d5f 3122 if (enable_vpid) {
6677f3da 3123 msrs->secondary_ctls_high |=
63cb6d5f 3124 SECONDARY_EXEC_ENABLE_VPID;
6677f3da 3125 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
bcdde302 3126 VMX_VPID_EXTENT_SUPPORTED_MASK;
1c13bffd 3127 }
99b83ac8 3128
0790ec17 3129 if (enable_unrestricted_guest)
6677f3da 3130 msrs->secondary_ctls_high |=
0790ec17
RK
3131 SECONDARY_EXEC_UNRESTRICTED_GUEST;
3132
c18911a2 3133 /* miscellaneous data */
b9c237bb 3134 rdmsr(MSR_IA32_VMX_MISC,
6677f3da
PB
3135 msrs->misc_low,
3136 msrs->misc_high);
3137 msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
3138 msrs->misc_low |=
b9c237bb 3139 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 3140 VMX_MISC_ACTIVITY_HLT;
6677f3da 3141 msrs->misc_high = 0;
62cc6b9d
DM
3142
3143 /*
3144 * This MSR reports some information about VMX support. We
3145 * should return information about the VMX we emulate for the
3146 * guest, and the VMCS structure we give it - not about the
3147 * VMX support of the underlying hardware.
3148 */
6677f3da 3149 msrs->basic =
62cc6b9d
DM
3150 VMCS12_REVISION |
3151 VMX_BASIC_TRUE_CTLS |
3152 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
3153 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
3154
3155 if (cpu_has_vmx_basic_inout())
6677f3da 3156 msrs->basic |= VMX_BASIC_INOUT;
62cc6b9d
DM
3157
3158 /*
8322ebbb 3159 * These MSRs specify bits which the guest must keep fixed on
62cc6b9d
DM
3160 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
3161 * We picked the standard core2 setting.
3162 */
3163#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
3164#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
6677f3da
PB
3165 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
3166 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
8322ebbb
DM
3167
3168 /* These MSRs specify bits which the guest must keep fixed off. */
6677f3da
PB
3169 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
3170 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
62cc6b9d
DM
3171
3172 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6677f3da 3173 msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
b87a51ae
NHE
3174}
3175
3899152c
DM
3176/*
3177 * if fixed0[i] == 1: val[i] must be 1
3178 * if fixed1[i] == 0: val[i] must be 0
3179 */
3180static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
3181{
3182 return ((val & fixed1) | fixed0) == val;
b87a51ae
NHE
3183}
3184
3185static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
3186{
3899152c 3187 return fixed_bits_valid(control, low, high);
b87a51ae
NHE
3188}
3189
3190static inline u64 vmx_control_msr(u32 low, u32 high)
3191{
3192 return low | ((u64)high << 32);
3193}
3194
62cc6b9d
DM
3195static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
3196{
3197 superset &= mask;
3198 subset &= mask;
3199
3200 return (superset | subset) == superset;
3201}
3202
3203static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
3204{
3205 const u64 feature_and_reserved =
3206 /* feature (except bit 48; see below) */
3207 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
3208 /* reserved */
3209 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
6677f3da 3210 u64 vmx_basic = vmx->nested.msrs.basic;
62cc6b9d
DM
3211
3212 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
3213 return -EINVAL;
3214
3215 /*
3216 * KVM does not emulate a version of VMX that constrains physical
3217 * addresses of VMX structures (e.g. VMCS) to 32-bits.
3218 */
3219 if (data & BIT_ULL(48))
3220 return -EINVAL;
3221
3222 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
3223 vmx_basic_vmcs_revision_id(data))
3224 return -EINVAL;
3225
3226 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
3227 return -EINVAL;
3228
6677f3da 3229 vmx->nested.msrs.basic = data;
62cc6b9d
DM
3230 return 0;
3231}
3232
3233static int
3234vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3235{
3236 u64 supported;
3237 u32 *lowp, *highp;
3238
3239 switch (msr_index) {
3240 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
6677f3da
PB
3241 lowp = &vmx->nested.msrs.pinbased_ctls_low;
3242 highp = &vmx->nested.msrs.pinbased_ctls_high;
62cc6b9d
DM
3243 break;
3244 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
6677f3da
PB
3245 lowp = &vmx->nested.msrs.procbased_ctls_low;
3246 highp = &vmx->nested.msrs.procbased_ctls_high;
62cc6b9d
DM
3247 break;
3248 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
6677f3da
PB
3249 lowp = &vmx->nested.msrs.exit_ctls_low;
3250 highp = &vmx->nested.msrs.exit_ctls_high;
62cc6b9d
DM
3251 break;
3252 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
6677f3da
PB
3253 lowp = &vmx->nested.msrs.entry_ctls_low;
3254 highp = &vmx->nested.msrs.entry_ctls_high;
62cc6b9d
DM
3255 break;
3256 case MSR_IA32_VMX_PROCBASED_CTLS2:
6677f3da
PB
3257 lowp = &vmx->nested.msrs.secondary_ctls_low;
3258 highp = &vmx->nested.msrs.secondary_ctls_high;
62cc6b9d
DM
3259 break;
3260 default:
3261 BUG();
3262 }
3263
3264 supported = vmx_control_msr(*lowp, *highp);
3265
3266 /* Check must-be-1 bits are still 1. */
3267 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
3268 return -EINVAL;
3269
3270 /* Check must-be-0 bits are still 0. */
3271 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3272 return -EINVAL;
3273
3274 *lowp = data;
3275 *highp = data >> 32;
3276 return 0;
3277}
3278
3279static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3280{
3281 const u64 feature_and_reserved_bits =
3282 /* feature */
3283 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3284 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3285 /* reserved */
3286 GENMASK_ULL(13, 9) | BIT_ULL(31);
3287 u64 vmx_misc;
3288
6677f3da
PB
3289 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
3290 vmx->nested.msrs.misc_high);
62cc6b9d
DM
3291
3292 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3293 return -EINVAL;
3294
6677f3da 3295 if ((vmx->nested.msrs.pinbased_ctls_high &
62cc6b9d
DM
3296 PIN_BASED_VMX_PREEMPTION_TIMER) &&
3297 vmx_misc_preemption_timer_rate(data) !=
3298 vmx_misc_preemption_timer_rate(vmx_misc))
3299 return -EINVAL;
3300
3301 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3302 return -EINVAL;
3303
3304 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3305 return -EINVAL;
3306
3307 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3308 return -EINVAL;
3309
6677f3da
PB
3310 vmx->nested.msrs.misc_low = data;
3311 vmx->nested.msrs.misc_high = data >> 32;
62cc6b9d
DM
3312 return 0;
3313}
3314
3315static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3316{
3317 u64 vmx_ept_vpid_cap;
3318
6677f3da
PB
3319 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
3320 vmx->nested.msrs.vpid_caps);
62cc6b9d
DM
3321
3322 /* Every bit is either reserved or a feature bit. */
3323 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3324 return -EINVAL;
3325
6677f3da
PB
3326 vmx->nested.msrs.ept_caps = data;
3327 vmx->nested.msrs.vpid_caps = data >> 32;
62cc6b9d
DM
3328 return 0;
3329}
3330
3331static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3332{
3333 u64 *msr;
3334
3335 switch (msr_index) {
3336 case MSR_IA32_VMX_CR0_FIXED0:
6677f3da 3337 msr = &vmx->nested.msrs.cr0_fixed0;
62cc6b9d
DM
3338 break;
3339 case MSR_IA32_VMX_CR4_FIXED0:
6677f3da 3340 msr = &vmx->nested.msrs.cr4_fixed0;
62cc6b9d
DM
3341 break;
3342 default:
3343 BUG();
3344 }
3345
3346 /*
3347 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3348 * must be 1 in the restored value.
3349 */
3350 if (!is_bitwise_subset(data, *msr, -1ULL))
3351 return -EINVAL;
3352
3353 *msr = data;
3354 return 0;
3355}
3356
3357/*
3358 * Called when userspace is restoring VMX MSRs.
3359 *
3360 * Returns 0 on success, non-0 otherwise.
3361 */
3362static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
b87a51ae 3363{
b9c237bb
WV
3364 struct vcpu_vmx *vmx = to_vmx(vcpu);
3365
b87a51ae 3366 switch (msr_index) {
b87a51ae 3367 case MSR_IA32_VMX_BASIC:
62cc6b9d
DM
3368 return vmx_restore_vmx_basic(vmx, data);
3369 case MSR_IA32_VMX_PINBASED_CTLS:
3370 case MSR_IA32_VMX_PROCBASED_CTLS:
3371 case MSR_IA32_VMX_EXIT_CTLS:
3372 case MSR_IA32_VMX_ENTRY_CTLS:
b87a51ae 3373 /*
62cc6b9d
DM
3374 * The "non-true" VMX capability MSRs are generated from the
3375 * "true" MSRs, so we do not support restoring them directly.
3376 *
3377 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3378 * should restore the "true" MSRs with the must-be-1 bits
3379 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3380 * DEFAULT SETTINGS".
b87a51ae 3381 */
62cc6b9d
DM
3382 return -EINVAL;
3383 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3384 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3385 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3386 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3387 case MSR_IA32_VMX_PROCBASED_CTLS2:
3388 return vmx_restore_control_msr(vmx, msr_index, data);
3389 case MSR_IA32_VMX_MISC:
3390 return vmx_restore_vmx_misc(vmx, data);
3391 case MSR_IA32_VMX_CR0_FIXED0:
3392 case MSR_IA32_VMX_CR4_FIXED0:
3393 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3394 case MSR_IA32_VMX_CR0_FIXED1:
3395 case MSR_IA32_VMX_CR4_FIXED1:
3396 /*
3397 * These MSRs are generated based on the vCPU's CPUID, so we
3398 * do not support restoring them directly.
3399 */
3400 return -EINVAL;
3401 case MSR_IA32_VMX_EPT_VPID_CAP:
3402 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3403 case MSR_IA32_VMX_VMCS_ENUM:
6677f3da 3404 vmx->nested.msrs.vmcs_enum = data;
62cc6b9d
DM
3405 return 0;
3406 default:
b87a51ae 3407 /*
62cc6b9d 3408 * The rest of the VMX capability MSRs do not support restore.
b87a51ae 3409 */
62cc6b9d
DM
3410 return -EINVAL;
3411 }
3412}
3413
3414/* Returns 0 on success, non-0 otherwise. */
6677f3da 3415static int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
62cc6b9d 3416{
62cc6b9d
DM
3417 switch (msr_index) {
3418 case MSR_IA32_VMX_BASIC:
6677f3da 3419 *pdata = msrs->basic;
b87a51ae
NHE
3420 break;
3421 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3422 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb 3423 *pdata = vmx_control_msr(
6677f3da
PB
3424 msrs->pinbased_ctls_low,
3425 msrs->pinbased_ctls_high);
0115f9cb
DM
3426 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3427 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3428 break;
3429 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3430 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb 3431 *pdata = vmx_control_msr(
6677f3da
PB
3432 msrs->procbased_ctls_low,
3433 msrs->procbased_ctls_high);
0115f9cb
DM
3434 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3435 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3436 break;
3437 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3438 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb 3439 *pdata = vmx_control_msr(
6677f3da
PB
3440 msrs->exit_ctls_low,
3441 msrs->exit_ctls_high);
0115f9cb
DM
3442 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3443 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3444 break;
3445 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3446 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb 3447 *pdata = vmx_control_msr(
6677f3da
PB
3448 msrs->entry_ctls_low,
3449 msrs->entry_ctls_high);
0115f9cb
DM
3450 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3451 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3452 break;
3453 case MSR_IA32_VMX_MISC:
b9c237bb 3454 *pdata = vmx_control_msr(
6677f3da
PB
3455 msrs->misc_low,
3456 msrs->misc_high);
b87a51ae 3457 break;
b87a51ae 3458 case MSR_IA32_VMX_CR0_FIXED0:
6677f3da 3459 *pdata = msrs->cr0_fixed0;
b87a51ae
NHE
3460 break;
3461 case MSR_IA32_VMX_CR0_FIXED1:
6677f3da 3462 *pdata = msrs->cr0_fixed1;
b87a51ae
NHE
3463 break;
3464 case MSR_IA32_VMX_CR4_FIXED0:
6677f3da 3465 *pdata = msrs->cr4_fixed0;
b87a51ae
NHE
3466 break;
3467 case MSR_IA32_VMX_CR4_FIXED1:
6677f3da 3468 *pdata = msrs->cr4_fixed1;
b87a51ae
NHE
3469 break;
3470 case MSR_IA32_VMX_VMCS_ENUM:
6677f3da 3471 *pdata = msrs->vmcs_enum;
b87a51ae
NHE
3472 break;
3473 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb 3474 *pdata = vmx_control_msr(
6677f3da
PB
3475 msrs->secondary_ctls_low,
3476 msrs->secondary_ctls_high);
b87a51ae
NHE
3477 break;
3478 case MSR_IA32_VMX_EPT_VPID_CAP:
6677f3da
PB
3479 *pdata = msrs->ept_caps |
3480 ((u64)msrs->vpid_caps << 32);
b87a51ae 3481 break;
27c42a1b 3482 case MSR_IA32_VMX_VMFUNC:
6677f3da 3483 *pdata = msrs->vmfunc_controls;
27c42a1b 3484 break;
b87a51ae 3485 default:
b87a51ae 3486 return 1;
b3897a49
NHE
3487 }
3488
b87a51ae
NHE
3489 return 0;
3490}
3491
37e4c997
HZ
3492static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3493 uint64_t val)
3494{
3495 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3496
3497 return !(val & ~valid_bits);
3498}
3499
801e459a
TL
3500static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
3501{
1389309c
PB
3502 switch (msr->index) {
3503 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3504 if (!nested)
3505 return 1;
3506 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
3507 default:
3508 return 1;
3509 }
3510
3511 return 0;
801e459a
TL
3512}
3513
6aa8b732
AK
3514/*
3515 * Reads an msr value (of 'msr_index') into 'pdata'.
3516 * Returns 0 on success, non-0 otherwise.
3517 * Assumes vcpu_load() was already called.
3518 */
609e36d3 3519static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3520{
a6cb099a 3521 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 3522 struct shared_msr_entry *msr;
6aa8b732 3523
609e36d3 3524 switch (msr_info->index) {
05b3e0c2 3525#ifdef CONFIG_X86_64
6aa8b732 3526 case MSR_FS_BASE:
609e36d3 3527 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
3528 break;
3529 case MSR_GS_BASE:
609e36d3 3530 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 3531 break;
44ea2b17 3532 case MSR_KERNEL_GS_BASE:
a6cb099a
BP
3533 vmx_load_host_state(vmx);
3534 msr_info->data = vmx->msr_guest_kernel_gs_base;
44ea2b17 3535 break;
26bb0981 3536#endif
6aa8b732 3537 case MSR_EFER:
609e36d3 3538 return kvm_get_msr_common(vcpu, msr_info);
d28b387f
KA
3539 case MSR_IA32_SPEC_CTRL:
3540 if (!msr_info->host_initiated &&
d28b387f
KA
3541 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
3542 return 1;
3543
3544 msr_info->data = to_vmx(vcpu)->spec_ctrl;
3545 break;
28c1c9fa
KA
3546 case MSR_IA32_ARCH_CAPABILITIES:
3547 if (!msr_info->host_initiated &&
3548 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3549 return 1;
3550 msr_info->data = to_vmx(vcpu)->arch_capabilities;
3551 break;
6aa8b732 3552 case MSR_IA32_SYSENTER_CS:
609e36d3 3553 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
3554 break;
3555 case MSR_IA32_SYSENTER_EIP:
609e36d3 3556 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
3557 break;
3558 case MSR_IA32_SYSENTER_ESP:
609e36d3 3559 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 3560 break;
0dd376e7 3561 case MSR_IA32_BNDCFGS:
691bd434 3562 if (!kvm_mpx_supported() ||
d6321d49
RK
3563 (!msr_info->host_initiated &&
3564 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3565 return 1;
609e36d3 3566 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 3567 break;
c45dcc71
AR
3568 case MSR_IA32_MCG_EXT_CTL:
3569 if (!msr_info->host_initiated &&
a6cb099a 3570 !(vmx->msr_ia32_feature_control &
c45dcc71 3571 FEATURE_CONTROL_LMCE))
cae50139 3572 return 1;
c45dcc71
AR
3573 msr_info->data = vcpu->arch.mcg_ext_ctl;
3574 break;
cae50139 3575 case MSR_IA32_FEATURE_CONTROL:
a6cb099a 3576 msr_info->data = vmx->msr_ia32_feature_control;
cae50139
JK
3577 break;
3578 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3579 if (!nested_vmx_allowed(vcpu))
3580 return 1;
6677f3da
PB
3581 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
3582 &msr_info->data);
20300099
WL
3583 case MSR_IA32_XSS:
3584 if (!vmx_xsaves_supported())
3585 return 1;
609e36d3 3586 msr_info->data = vcpu->arch.ia32_xss;
20300099 3587 break;
4e47c7a6 3588 case MSR_TSC_AUX:
d6321d49
RK
3589 if (!msr_info->host_initiated &&
3590 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3591 return 1;
3592 /* Otherwise falls through */
6aa8b732 3593 default:
a6cb099a 3594 msr = find_msr_entry(vmx, msr_info->index);
3bab1f5d 3595 if (msr) {
609e36d3 3596 msr_info->data = msr->data;
3bab1f5d 3597 break;
6aa8b732 3598 }
609e36d3 3599 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
3600 }
3601
6aa8b732
AK
3602 return 0;
3603}
3604
cae50139
JK
3605static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3606
6aa8b732
AK
3607/*
3608 * Writes msr value into into the appropriate "register".
3609 * Returns 0 on success, non-0 otherwise.
3610 * Assumes vcpu_load() was already called.
3611 */
8fe8ab46 3612static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3613{
a2fa3e9f 3614 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 3615 struct shared_msr_entry *msr;
2cc51560 3616 int ret = 0;
8fe8ab46
WA
3617 u32 msr_index = msr_info->index;
3618 u64 data = msr_info->data;
2cc51560 3619
6aa8b732 3620 switch (msr_index) {
3bab1f5d 3621 case MSR_EFER:
8fe8ab46 3622 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 3623 break;
16175a79 3624#ifdef CONFIG_X86_64
6aa8b732 3625 case MSR_FS_BASE:
2fb92db1 3626 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3627 vmcs_writel(GUEST_FS_BASE, data);
3628 break;
3629 case MSR_GS_BASE:
2fb92db1 3630 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3631 vmcs_writel(GUEST_GS_BASE, data);
3632 break;
44ea2b17
AK
3633 case MSR_KERNEL_GS_BASE:
3634 vmx_load_host_state(vmx);
3635 vmx->msr_guest_kernel_gs_base = data;
3636 break;
6aa8b732
AK
3637#endif
3638 case MSR_IA32_SYSENTER_CS:
3639 vmcs_write32(GUEST_SYSENTER_CS, data);
3640 break;
3641 case MSR_IA32_SYSENTER_EIP:
f5b42c33 3642 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
3643 break;
3644 case MSR_IA32_SYSENTER_ESP:
f5b42c33 3645 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 3646 break;
0dd376e7 3647 case MSR_IA32_BNDCFGS:
691bd434 3648 if (!kvm_mpx_supported() ||
d6321d49
RK
3649 (!msr_info->host_initiated &&
3650 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3651 return 1;
fd8cb433 3652 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
4531662d 3653 (data & MSR_IA32_BNDCFGS_RSVD))
93c4adc7 3654 return 1;
0dd376e7
LJ
3655 vmcs_write64(GUEST_BNDCFGS, data);
3656 break;
d28b387f
KA
3657 case MSR_IA32_SPEC_CTRL:
3658 if (!msr_info->host_initiated &&
d28b387f
KA
3659 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
3660 return 1;
3661
3662 /* The STIBP bit doesn't fault even if it's not advertised */
9f65fb29 3663 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
d28b387f
KA
3664 return 1;
3665
3666 vmx->spec_ctrl = data;
3667
3668 if (!data)
3669 break;
3670
3671 /*
3672 * For non-nested:
3673 * When it's written (to non-zero) for the first time, pass
3674 * it through.
3675 *
3676 * For nested:
3677 * The handling of the MSR bitmap for L2 guests is done in
3678 * nested_vmx_merge_msr_bitmap. We should not touch the
3679 * vmcs02.msr_bitmap here since it gets completely overwritten
3680 * in the merging. We update the vmcs01 here for L1 as well
3681 * since it will end up touching the MSR anyway now.
3682 */
3683 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
3684 MSR_IA32_SPEC_CTRL,
3685 MSR_TYPE_RW);
3686 break;
15d45071
AR
3687 case MSR_IA32_PRED_CMD:
3688 if (!msr_info->host_initiated &&
15d45071
AR
3689 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
3690 return 1;
3691
3692 if (data & ~PRED_CMD_IBPB)
3693 return 1;
3694
3695 if (!data)
3696 break;
3697
3698 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3699
3700 /*
3701 * For non-nested:
3702 * When it's written (to non-zero) for the first time, pass
3703 * it through.
3704 *
3705 * For nested:
3706 * The handling of the MSR bitmap for L2 guests is done in
3707 * nested_vmx_merge_msr_bitmap. We should not touch the
3708 * vmcs02.msr_bitmap here since it gets completely overwritten
3709 * in the merging.
3710 */
3711 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
3712 MSR_TYPE_W);
3713 break;
28c1c9fa
KA
3714 case MSR_IA32_ARCH_CAPABILITIES:
3715 if (!msr_info->host_initiated)
3716 return 1;
3717 vmx->arch_capabilities = data;
3718 break;
468d472f
SY
3719 case MSR_IA32_CR_PAT:
3720 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
3721 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3722 return 1;
468d472f
SY
3723 vmcs_write64(GUEST_IA32_PAT, data);
3724 vcpu->arch.pat = data;
3725 break;
3726 }
8fe8ab46 3727 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3728 break;
ba904635
WA
3729 case MSR_IA32_TSC_ADJUST:
3730 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3731 break;
c45dcc71
AR
3732 case MSR_IA32_MCG_EXT_CTL:
3733 if ((!msr_info->host_initiated &&
3734 !(to_vmx(vcpu)->msr_ia32_feature_control &
3735 FEATURE_CONTROL_LMCE)) ||
3736 (data & ~MCG_EXT_CTL_LMCE_EN))
3737 return 1;
3738 vcpu->arch.mcg_ext_ctl = data;
3739 break;
cae50139 3740 case MSR_IA32_FEATURE_CONTROL:
37e4c997 3741 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3b84080b 3742 (to_vmx(vcpu)->msr_ia32_feature_control &
cae50139
JK
3743 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3744 return 1;
3b84080b 3745 vmx->msr_ia32_feature_control = data;
cae50139
JK
3746 if (msr_info->host_initiated && data == 0)
3747 vmx_leave_nested(vcpu);
3748 break;
3749 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
62cc6b9d
DM
3750 if (!msr_info->host_initiated)
3751 return 1; /* they are read-only */
3752 if (!nested_vmx_allowed(vcpu))
3753 return 1;
3754 return vmx_set_vmx_msr(vcpu, msr_index, data);
20300099
WL
3755 case MSR_IA32_XSS:
3756 if (!vmx_xsaves_supported())
3757 return 1;
3758 /*
3759 * The only supported bit as of Skylake is bit 8, but
3760 * it is not supported on KVM.
3761 */
3762 if (data != 0)
3763 return 1;
3764 vcpu->arch.ia32_xss = data;
3765 if (vcpu->arch.ia32_xss != host_xss)
3766 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3767 vcpu->arch.ia32_xss, host_xss);
3768 else
3769 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3770 break;
4e47c7a6 3771 case MSR_TSC_AUX:
d6321d49
RK
3772 if (!msr_info->host_initiated &&
3773 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3774 return 1;
3775 /* Check reserved bit, higher 32 bits should be zero */
3776 if ((data >> 32) != 0)
3777 return 1;
3778 /* Otherwise falls through */
6aa8b732 3779 default:
8b9cf98c 3780 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 3781 if (msr) {
8b3c3104 3782 u64 old_msr_data = msr->data;
3bab1f5d 3783 msr->data = data;
2225fd56
AK
3784 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3785 preempt_disable();
8b3c3104
AH
3786 ret = kvm_set_shared_msr(msr->index, msr->data,
3787 msr->mask);
2225fd56 3788 preempt_enable();
8b3c3104
AH
3789 if (ret)
3790 msr->data = old_msr_data;
2225fd56 3791 }
3bab1f5d 3792 break;
6aa8b732 3793 }
8fe8ab46 3794 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
3795 }
3796
2cc51560 3797 return ret;
6aa8b732
AK
3798}
3799
5fdbf976 3800static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 3801{
5fdbf976
MT
3802 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3803 switch (reg) {
3804 case VCPU_REGS_RSP:
3805 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3806 break;
3807 case VCPU_REGS_RIP:
3808 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3809 break;
6de4f3ad
AK
3810 case VCPU_EXREG_PDPTR:
3811 if (enable_ept)
3812 ept_save_pdptrs(vcpu);
3813 break;
5fdbf976
MT
3814 default:
3815 break;
3816 }
6aa8b732
AK
3817}
3818
6aa8b732
AK
3819static __init int cpu_has_kvm_support(void)
3820{
6210e37b 3821 return cpu_has_vmx();
6aa8b732
AK
3822}
3823
3824static __init int vmx_disabled_by_bios(void)
3825{
3826 u64 msr;
3827
3828 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 3829 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 3830 /* launched w/ TXT and VMX disabled */
cafd6659
SW
3831 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3832 && tboot_enabled())
3833 return 1;
23f3e991 3834 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 3835 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 3836 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
3837 && !tboot_enabled()) {
3838 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 3839 "activate TXT before enabling KVM\n");
cafd6659 3840 return 1;
f9335afe 3841 }
23f3e991
JC
3842 /* launched w/o TXT and VMX disabled */
3843 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3844 && !tboot_enabled())
3845 return 1;
cafd6659
SW
3846 }
3847
3848 return 0;
6aa8b732
AK
3849}
3850
7725b894
DX
3851static void kvm_cpu_vmxon(u64 addr)
3852{
fe0e80be 3853 cr4_set_bits(X86_CR4_VMXE);
1c5ac21a
AS
3854 intel_pt_handle_vmx(1);
3855
7725b894
DX
3856 asm volatile (ASM_VMX_VMXON_RAX
3857 : : "a"(&addr), "m"(addr)
3858 : "memory", "cc");
3859}
3860
13a34e06 3861static int hardware_enable(void)
6aa8b732
AK
3862{
3863 int cpu = raw_smp_processor_id();
3864 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3865 u64 old, test_bits;
6aa8b732 3866
1e02ce4c 3867 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3868 return -EBUSY;
3869
773e8a04
VK
3870 /*
3871 * This can happen if we hot-added a CPU but failed to allocate
3872 * VP assist page for it.
3873 */
3874 if (static_branch_unlikely(&enable_evmcs) &&
3875 !hv_get_vp_assist_page(cpu))
3876 return -EFAULT;
3877
d462b819 3878 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3879 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3880 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3881
3882 /*
3883 * Now we can enable the vmclear operation in kdump
3884 * since the loaded_vmcss_on_cpu list on this cpu
3885 * has been initialized.
3886 *
3887 * Though the cpu is not in VMX operation now, there
3888 * is no problem to enable the vmclear operation
3889 * for the loaded_vmcss_on_cpu list is empty!
3890 */
3891 crash_enable_local_vmclear(cpu);
3892
6aa8b732 3893 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3894
3895 test_bits = FEATURE_CONTROL_LOCKED;
3896 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3897 if (tboot_enabled())
3898 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3899
3900 if ((old & test_bits) != test_bits) {
6aa8b732 3901 /* enable and lock */
cafd6659
SW
3902 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3903 }
fe0e80be 3904 kvm_cpu_vmxon(phys_addr);
fdf288bf
DH
3905 if (enable_ept)
3906 ept_sync_global();
10474ae8
AG
3907
3908 return 0;
6aa8b732
AK
3909}
3910
d462b819 3911static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3912{
3913 int cpu = raw_smp_processor_id();
d462b819 3914 struct loaded_vmcs *v, *n;
543e4243 3915
d462b819
NHE
3916 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3917 loaded_vmcss_on_cpu_link)
3918 __loaded_vmcs_clear(v);
543e4243
AK
3919}
3920
710ff4a8
EH
3921
3922/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3923 * tricks.
3924 */
3925static void kvm_cpu_vmxoff(void)
6aa8b732 3926{
4ecac3fd 3927 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1c5ac21a
AS
3928
3929 intel_pt_handle_vmx(0);
fe0e80be 3930 cr4_clear_bits(X86_CR4_VMXE);
6aa8b732
AK
3931}
3932
13a34e06 3933static void hardware_disable(void)
710ff4a8 3934{
fe0e80be
DH
3935 vmclear_local_loaded_vmcss();
3936 kvm_cpu_vmxoff();
710ff4a8
EH
3937}
3938
1c3d14fe 3939static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3940 u32 msr, u32 *result)
1c3d14fe
YS
3941{
3942 u32 vmx_msr_low, vmx_msr_high;
3943 u32 ctl = ctl_min | ctl_opt;
3944
3945 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3946
3947 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3948 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3949
3950 /* Ensure minimum (required) set of control bits are supported. */
3951 if (ctl_min & ~ctl)
002c7f7c 3952 return -EIO;
1c3d14fe
YS
3953
3954 *result = ctl;
3955 return 0;
3956}
3957
110312c8
AK
3958static __init bool allow_1_setting(u32 msr, u32 ctl)
3959{
3960 u32 vmx_msr_low, vmx_msr_high;
3961
3962 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3963 return vmx_msr_high & ctl;
3964}
3965
002c7f7c 3966static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3967{
3968 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3969 u32 min, opt, min2, opt2;
1c3d14fe
YS
3970 u32 _pin_based_exec_control = 0;
3971 u32 _cpu_based_exec_control = 0;
f78e0e2e 3972 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3973 u32 _vmexit_control = 0;
3974 u32 _vmentry_control = 0;
3975
1389309c 3976 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
10166744 3977 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3978#ifdef CONFIG_X86_64
3979 CPU_BASED_CR8_LOAD_EXITING |
3980 CPU_BASED_CR8_STORE_EXITING |
3981#endif
d56f546d
SY
3982 CPU_BASED_CR3_LOAD_EXITING |
3983 CPU_BASED_CR3_STORE_EXITING |
8eb73e2d 3984 CPU_BASED_UNCOND_IO_EXITING |
1c3d14fe 3985 CPU_BASED_MOV_DR_EXITING |
a7052897 3986 CPU_BASED_USE_TSC_OFFSETING |
4d5422ce
WL
3987 CPU_BASED_MWAIT_EXITING |
3988 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
3989 CPU_BASED_INVLPG_EXITING |
3990 CPU_BASED_RDPMC_EXITING;
443381a8 3991
f78e0e2e 3992 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3993 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3994 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3995 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3996 &_cpu_based_exec_control) < 0)
002c7f7c 3997 return -EIO;
6e5d865c
YS
3998#ifdef CONFIG_X86_64
3999 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
4000 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
4001 ~CPU_BASED_CR8_STORE_EXITING;
4002#endif
f78e0e2e 4003 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
4004 min2 = 0;
4005 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 4006 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 4007 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 4008 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 4009 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 4010 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 4011 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
0367f205 4012 SECONDARY_EXEC_DESC |
ad756a16 4013 SECONDARY_EXEC_RDTSCP |
83d4c286 4014 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 4015 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 4016 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 4017 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 4018 SECONDARY_EXEC_XSAVES |
736fdf72
DH
4019 SECONDARY_EXEC_RDSEED_EXITING |
4020 SECONDARY_EXEC_RDRAND_EXITING |
8b3e34e4 4021 SECONDARY_EXEC_ENABLE_PML |
2a499e49
BD
4022 SECONDARY_EXEC_TSC_SCALING |
4023 SECONDARY_EXEC_ENABLE_VMFUNC;
d56f546d
SY
4024 if (adjust_vmx_controls(min2, opt2,
4025 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
4026 &_cpu_based_2nd_exec_control) < 0)
4027 return -EIO;
4028 }
4029#ifndef CONFIG_X86_64
4030 if (!(_cpu_based_2nd_exec_control &
4031 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
4032 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
4033#endif
83d4c286
YZ
4034
4035 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
4036 _cpu_based_2nd_exec_control &= ~(
8d14695f 4037 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
4038 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
4039 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 4040
61f1dd90
WL
4041 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
4042 &vmx_capability.ept, &vmx_capability.vpid);
4043
d56f546d 4044 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
4045 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
4046 enabled */
5fff7d27
GN
4047 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4048 CPU_BASED_CR3_STORE_EXITING |
4049 CPU_BASED_INVLPG_EXITING);
61f1dd90
WL
4050 } else if (vmx_capability.ept) {
4051 vmx_capability.ept = 0;
4052 pr_warn_once("EPT CAP should not exist if not support "
4053 "1-setting enable EPT VM-execution control\n");
4054 }
4055 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
4056 vmx_capability.vpid) {
4057 vmx_capability.vpid = 0;
4058 pr_warn_once("VPID CAP should not exist if not support "
4059 "1-setting enable VPID VM-execution control\n");
d56f546d 4060 }
1c3d14fe 4061
91fa0f8e 4062 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
1c3d14fe
YS
4063#ifdef CONFIG_X86_64
4064 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
4065#endif
a547c6db 4066 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
91fa0f8e 4067 VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
4068 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
4069 &_vmexit_control) < 0)
002c7f7c 4070 return -EIO;
1c3d14fe 4071
8a1b4392
PB
4072 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
4073 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
4074 PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
4075 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
4076 &_pin_based_exec_control) < 0)
4077 return -EIO;
4078
1c17c3e6
PB
4079 if (cpu_has_broken_vmx_preemption_timer())
4080 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be 4081 if (!(_cpu_based_2nd_exec_control &
91fa0f8e 4082 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
01e439be
YZ
4083 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
4084
c845f9c6 4085 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 4086 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
4087 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
4088 &_vmentry_control) < 0)
002c7f7c 4089 return -EIO;
6aa8b732 4090
c68876fd 4091 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
4092
4093 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
4094 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 4095 return -EIO;
1c3d14fe
YS
4096
4097#ifdef CONFIG_X86_64
4098 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
4099 if (vmx_msr_high & (1u<<16))
002c7f7c 4100 return -EIO;
1c3d14fe
YS
4101#endif
4102
4103 /* Require Write-Back (WB) memory type for VMCS accesses. */
4104 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 4105 return -EIO;
1c3d14fe 4106
002c7f7c 4107 vmcs_conf->size = vmx_msr_high & 0x1fff;
16cb0255 4108 vmcs_conf->order = get_order(vmcs_conf->size);
9ac7e3e8 4109 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
773e8a04
VK
4110
4111 /* KVM supports Enlightened VMCS v1 only */
4112 if (static_branch_unlikely(&enable_evmcs))
4113 vmcs_conf->revision_id = KVM_EVMCS_VERSION;
4114 else
4115 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 4116
002c7f7c
YS
4117 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
4118 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 4119 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
4120 vmcs_conf->vmexit_ctrl = _vmexit_control;
4121 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 4122
773e8a04
VK
4123 if (static_branch_unlikely(&enable_evmcs))
4124 evmcs_sanitize_exec_ctrls(vmcs_conf);
4125
110312c8
AK
4126 cpu_has_load_ia32_efer =
4127 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
4128 VM_ENTRY_LOAD_IA32_EFER)
4129 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
4130 VM_EXIT_LOAD_IA32_EFER);
4131
8bf00a52
GN
4132 cpu_has_load_perf_global_ctrl =
4133 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
4134 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
4135 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
4136 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
4137
4138 /*
4139 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
bb3541f1 4140 * but due to errata below it can't be used. Workaround is to use
8bf00a52
GN
4141 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
4142 *
4143 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
4144 *
4145 * AAK155 (model 26)
4146 * AAP115 (model 30)
4147 * AAT100 (model 37)
4148 * BC86,AAY89,BD102 (model 44)
4149 * BA97 (model 46)
4150 *
4151 */
4152 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
4153 switch (boot_cpu_data.x86_model) {
4154 case 26:
4155 case 30:
4156 case 37:
4157 case 44:
4158 case 46:
4159 cpu_has_load_perf_global_ctrl = false;
4160 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
4161 "does not work properly. Using workaround\n");
4162 break;
4163 default:
4164 break;
4165 }
4166 }
4167
782511b0 4168 if (boot_cpu_has(X86_FEATURE_XSAVES))
20300099
WL
4169 rdmsrl(MSR_IA32_XSS, host_xss);
4170
1c3d14fe 4171 return 0;
c68876fd 4172}
6aa8b732
AK
4173
4174static struct vmcs *alloc_vmcs_cpu(int cpu)
4175{
4176 int node = cpu_to_node(cpu);
4177 struct page *pages;
4178 struct vmcs *vmcs;
4179
96db800f 4180 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
4181 if (!pages)
4182 return NULL;
4183 vmcs = page_address(pages);
1c3d14fe
YS
4184 memset(vmcs, 0, vmcs_config.size);
4185 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
4186 return vmcs;
4187}
4188
6aa8b732
AK
4189static void free_vmcs(struct vmcs *vmcs)
4190{
1c3d14fe 4191 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
4192}
4193
d462b819
NHE
4194/*
4195 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
4196 */
4197static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
4198{
4199 if (!loaded_vmcs->vmcs)
4200 return;
4201 loaded_vmcs_clear(loaded_vmcs);
4202 free_vmcs(loaded_vmcs->vmcs);
4203 loaded_vmcs->vmcs = NULL;
904e14fb
PB
4204 if (loaded_vmcs->msr_bitmap)
4205 free_page((unsigned long)loaded_vmcs->msr_bitmap);
355f4fb1 4206 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
d462b819
NHE
4207}
4208
f21f165e
PB
4209static struct vmcs *alloc_vmcs(void)
4210{
4211 return alloc_vmcs_cpu(raw_smp_processor_id());
4212}
4213
4214static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
4215{
4216 loaded_vmcs->vmcs = alloc_vmcs();
4217 if (!loaded_vmcs->vmcs)
4218 return -ENOMEM;
4219
4220 loaded_vmcs->shadow_vmcs = NULL;
4221 loaded_vmcs_init(loaded_vmcs);
904e14fb
PB
4222
4223 if (cpu_has_vmx_msr_bitmap()) {
4224 loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
4225 if (!loaded_vmcs->msr_bitmap)
4226 goto out_vmcs;
4227 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
4228 }
f21f165e 4229 return 0;
904e14fb
PB
4230
4231out_vmcs:
4232 free_loaded_vmcs(loaded_vmcs);
4233 return -ENOMEM;
f21f165e
PB
4234}
4235
39959588 4236static void free_kvm_area(void)
6aa8b732
AK
4237{
4238 int cpu;
4239
3230bb47 4240 for_each_possible_cpu(cpu) {
6aa8b732 4241 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
4242 per_cpu(vmxarea, cpu) = NULL;
4243 }
6aa8b732
AK
4244}
4245
d37f4267
JM
4246enum vmcs_field_width {
4247 VMCS_FIELD_WIDTH_U16 = 0,
4248 VMCS_FIELD_WIDTH_U64 = 1,
4249 VMCS_FIELD_WIDTH_U32 = 2,
4250 VMCS_FIELD_WIDTH_NATURAL_WIDTH = 3
85fd514e
JM
4251};
4252
d37f4267 4253static inline int vmcs_field_width(unsigned long field)
85fd514e
JM
4254{
4255 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
d37f4267 4256 return VMCS_FIELD_WIDTH_U32;
85fd514e
JM
4257 return (field >> 13) & 0x3 ;
4258}
4259
4260static inline int vmcs_field_readonly(unsigned long field)
4261{
4262 return (((field >> 10) & 0x3) == 1);
4263}
4264
fe2b201b
BD
4265static void init_vmcs_shadow_fields(void)
4266{
4267 int i, j;
4268
44900ba6
PB
4269 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
4270 u16 field = shadow_read_only_fields[i];
d37f4267 4271 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
44900ba6
PB
4272 (i + 1 == max_shadow_read_only_fields ||
4273 shadow_read_only_fields[i + 1] != field + 1))
4274 pr_err("Missing field from shadow_read_only_field %x\n",
4275 field + 1);
4276
4277 clear_bit(field, vmx_vmread_bitmap);
4278#ifdef CONFIG_X86_64
4279 if (field & 1)
4280 continue;
4281#endif
4282 if (j < i)
4283 shadow_read_only_fields[j] = field;
4284 j++;
4285 }
4286 max_shadow_read_only_fields = j;
fe2b201b
BD
4287
4288 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
44900ba6 4289 u16 field = shadow_read_write_fields[i];
d37f4267 4290 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
44900ba6
PB
4291 (i + 1 == max_shadow_read_write_fields ||
4292 shadow_read_write_fields[i + 1] != field + 1))
4293 pr_err("Missing field from shadow_read_write_field %x\n",
4294 field + 1);
4295
c5d167b2
PB
4296 /*
4297 * PML and the preemption timer can be emulated, but the
4298 * processor cannot vmwrite to fields that don't exist
4299 * on bare metal.
4300 */
44900ba6 4301 switch (field) {
c5d167b2
PB
4302 case GUEST_PML_INDEX:
4303 if (!cpu_has_vmx_pml())
4304 continue;
4305 break;
4306 case VMX_PREEMPTION_TIMER_VALUE:
4307 if (!cpu_has_vmx_preemption_timer())
4308 continue;
4309 break;
4310 case GUEST_INTR_STATUS:
4311 if (!cpu_has_vmx_apicv())
fe2b201b
BD
4312 continue;
4313 break;
4314 default:
4315 break;
4316 }
4317
44900ba6
PB
4318 clear_bit(field, vmx_vmwrite_bitmap);
4319 clear_bit(field, vmx_vmread_bitmap);
4320#ifdef CONFIG_X86_64
4321 if (field & 1)
4322 continue;
4323#endif
fe2b201b 4324 if (j < i)
44900ba6 4325 shadow_read_write_fields[j] = field;
fe2b201b
BD
4326 j++;
4327 }
4328 max_shadow_read_write_fields = j;
fe2b201b
BD
4329}
4330
6aa8b732
AK
4331static __init int alloc_kvm_area(void)
4332{
4333 int cpu;
4334
3230bb47 4335 for_each_possible_cpu(cpu) {
6aa8b732
AK
4336 struct vmcs *vmcs;
4337
4338 vmcs = alloc_vmcs_cpu(cpu);
4339 if (!vmcs) {
4340 free_kvm_area();
4341 return -ENOMEM;
4342 }
4343
4344 per_cpu(vmxarea, cpu) = vmcs;
4345 }
4346 return 0;
4347}
4348
91b0aa2c 4349static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 4350 struct kvm_segment *save)
6aa8b732 4351{
d99e4152
GN
4352 if (!emulate_invalid_guest_state) {
4353 /*
4354 * CS and SS RPL should be equal during guest entry according
4355 * to VMX spec, but in reality it is not always so. Since vcpu
4356 * is in the middle of the transition from real mode to
4357 * protected mode it is safe to assume that RPL 0 is a good
4358 * default value.
4359 */
4360 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
4361 save->selector &= ~SEGMENT_RPL_MASK;
4362 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 4363 save->s = 1;
6aa8b732 4364 }
d99e4152 4365 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
4366}
4367
4368static void enter_pmode(struct kvm_vcpu *vcpu)
4369{
4370 unsigned long flags;
a89a8fb9 4371 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 4372
d99e4152
GN
4373 /*
4374 * Update real mode segment cache. It may be not up-to-date if sement
4375 * register was written while vcpu was in a guest mode.
4376 */
4377 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4378 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4379 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4380 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
4381 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4382 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
4383
7ffd92c5 4384 vmx->rmode.vm86_active = 0;
6aa8b732 4385
2fb92db1
AK
4386 vmx_segment_cache_clear(vmx);
4387
f5f7b2fe 4388 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
4389
4390 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
4391 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
4392 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
4393 vmcs_writel(GUEST_RFLAGS, flags);
4394
66aee91a
RR
4395 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
4396 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
4397
4398 update_exception_bitmap(vcpu);
4399
91b0aa2c
GN
4400 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4401 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4402 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4403 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4404 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4405 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
4406}
4407
f5f7b2fe 4408static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 4409{
772e0318 4410 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
4411 struct kvm_segment var = *save;
4412
4413 var.dpl = 0x3;
4414 if (seg == VCPU_SREG_CS)
4415 var.type = 0x3;
4416
4417 if (!emulate_invalid_guest_state) {
4418 var.selector = var.base >> 4;
4419 var.base = var.base & 0xffff0;
4420 var.limit = 0xffff;
4421 var.g = 0;
4422 var.db = 0;
4423 var.present = 1;
4424 var.s = 1;
4425 var.l = 0;
4426 var.unusable = 0;
4427 var.type = 0x3;
4428 var.avl = 0;
4429 if (save->base & 0xf)
4430 printk_once(KERN_WARNING "kvm: segment base is not "
4431 "paragraph aligned when entering "
4432 "protected mode (seg=%d)", seg);
4433 }
6aa8b732 4434
d99e4152 4435 vmcs_write16(sf->selector, var.selector);
96794e4e 4436 vmcs_writel(sf->base, var.base);
d99e4152
GN
4437 vmcs_write32(sf->limit, var.limit);
4438 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
4439}
4440
4441static void enter_rmode(struct kvm_vcpu *vcpu)
4442{
4443 unsigned long flags;
a89a8fb9 4444 struct vcpu_vmx *vmx = to_vmx(vcpu);
40bbb9d0 4445 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
6aa8b732 4446
f5f7b2fe
AK
4447 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4448 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4449 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4450 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4451 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
4452 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4453 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 4454
7ffd92c5 4455 vmx->rmode.vm86_active = 1;
6aa8b732 4456
776e58ea
GN
4457 /*
4458 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 4459 * vcpu. Warn the user that an update is overdue.
776e58ea 4460 */
40bbb9d0 4461 if (!kvm_vmx->tss_addr)
776e58ea
GN
4462 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4463 "called before entering vcpu\n");
776e58ea 4464
2fb92db1
AK
4465 vmx_segment_cache_clear(vmx);
4466
40bbb9d0 4467 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
6aa8b732 4468 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
4469 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4470
4471 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 4472 vmx->rmode.save_rflags = flags;
6aa8b732 4473
053de044 4474 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
4475
4476 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 4477 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
4478 update_exception_bitmap(vcpu);
4479
d99e4152
GN
4480 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4481 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4482 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4483 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4484 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4485 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 4486
8668a3c4 4487 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
4488}
4489
401d10de
AS
4490static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4491{
4492 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
4493 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4494
4495 if (!msr)
4496 return;
401d10de 4497
44ea2b17
AK
4498 /*
4499 * Force kernel_gs_base reloading before EFER changes, as control
4500 * of this msr depends on is_long_mode().
4501 */
4502 vmx_load_host_state(to_vmx(vcpu));
f6801dff 4503 vcpu->arch.efer = efer;
401d10de 4504 if (efer & EFER_LMA) {
2961e876 4505 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4506 msr->data = efer;
4507 } else {
2961e876 4508 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4509
4510 msr->data = efer & ~EFER_LME;
4511 }
4512 setup_msrs(vmx);
4513}
4514
05b3e0c2 4515#ifdef CONFIG_X86_64
6aa8b732
AK
4516
4517static void enter_lmode(struct kvm_vcpu *vcpu)
4518{
4519 u32 guest_tr_ar;
4520
2fb92db1
AK
4521 vmx_segment_cache_clear(to_vmx(vcpu));
4522
6aa8b732 4523 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 4524 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
4525 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4526 __func__);
6aa8b732 4527 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
4528 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4529 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 4530 }
da38f438 4531 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
4532}
4533
4534static void exit_lmode(struct kvm_vcpu *vcpu)
4535{
2961e876 4536 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 4537 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
4538}
4539
4540#endif
4541
c2ba05cc
WL
4542static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid,
4543 bool invalidate_gpa)
2384d2b3 4544{
c2ba05cc 4545 if (enable_ept && (invalidate_gpa || !enable_vpid)) {
dd180b3e
XG
4546 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4547 return;
995f00a6 4548 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
f0b98c02
JM
4549 } else {
4550 vpid_sync_context(vpid);
dd180b3e 4551 }
2384d2b3
SY
4552}
4553
c2ba05cc 4554static void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
dd5f5341 4555{
c2ba05cc 4556 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa);
dd5f5341
WL
4557}
4558
e8467fda
AK
4559static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4560{
4561 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4562
4563 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4564 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4565}
4566
aff48baa
AK
4567static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4568{
b4d18517 4569 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
aff48baa
AK
4570 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4571 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4572}
4573
25c4c276 4574static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 4575{
fc78f519
AK
4576 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4577
4578 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4579 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
4580}
4581
1439442c
SY
4582static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4583{
d0d538b9
GN
4584 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4585
6de4f3ad
AK
4586 if (!test_bit(VCPU_EXREG_PDPTR,
4587 (unsigned long *)&vcpu->arch.regs_dirty))
4588 return;
4589
1439442c 4590 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4591 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4592 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4593 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4594 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
4595 }
4596}
4597
8f5d549f
AK
4598static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4599{
d0d538b9
GN
4600 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4601
8f5d549f 4602 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4603 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4604 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4605 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4606 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 4607 }
6de4f3ad
AK
4608
4609 __set_bit(VCPU_EXREG_PDPTR,
4610 (unsigned long *)&vcpu->arch.regs_avail);
4611 __set_bit(VCPU_EXREG_PDPTR,
4612 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
4613}
4614
3899152c
DM
4615static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4616{
6677f3da
PB
4617 u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
4618 u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
3899152c
DM
4619 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4620
6677f3da 4621 if (to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
3899152c
DM
4622 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4623 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4624 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4625
4626 return fixed_bits_valid(val, fixed0, fixed1);
4627}
4628
4629static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4630{
6677f3da
PB
4631 u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
4632 u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
3899152c
DM
4633
4634 return fixed_bits_valid(val, fixed0, fixed1);
4635}
4636
4637static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4638{
6677f3da
PB
4639 u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr4_fixed0;
4640 u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr4_fixed1;
3899152c
DM
4641
4642 return fixed_bits_valid(val, fixed0, fixed1);
4643}
4644
4645/* No difference in the restrictions on guest and host CR4 in VMX operation. */
4646#define nested_guest_cr4_valid nested_cr4_valid
4647#define nested_host_cr4_valid nested_cr4_valid
4648
5e1746d6 4649static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
4650
4651static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4652 unsigned long cr0,
4653 struct kvm_vcpu *vcpu)
4654{
5233dd51
MT
4655 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4656 vmx_decache_cr3(vcpu);
1439442c
SY
4657 if (!(cr0 & X86_CR0_PG)) {
4658 /* From paging/starting to nonpaging */
4659 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4660 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
4661 (CPU_BASED_CR3_LOAD_EXITING |
4662 CPU_BASED_CR3_STORE_EXITING));
4663 vcpu->arch.cr0 = cr0;
fc78f519 4664 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
4665 } else if (!is_paging(vcpu)) {
4666 /* From nonpaging to paging */
4667 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4668 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
4669 ~(CPU_BASED_CR3_LOAD_EXITING |
4670 CPU_BASED_CR3_STORE_EXITING));
4671 vcpu->arch.cr0 = cr0;
fc78f519 4672 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 4673 }
95eb84a7
SY
4674
4675 if (!(cr0 & X86_CR0_WP))
4676 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
4677}
4678
6aa8b732
AK
4679static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4680{
7ffd92c5 4681 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
4682 unsigned long hw_cr0;
4683
5037878e 4684 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 4685 if (enable_unrestricted_guest)
5037878e 4686 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 4687 else {
5037878e 4688 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 4689
218e763f
GN
4690 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4691 enter_pmode(vcpu);
6aa8b732 4692
218e763f
GN
4693 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4694 enter_rmode(vcpu);
4695 }
6aa8b732 4696
05b3e0c2 4697#ifdef CONFIG_X86_64
f6801dff 4698 if (vcpu->arch.efer & EFER_LME) {
707d92fa 4699 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 4700 enter_lmode(vcpu);
707d92fa 4701 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
4702 exit_lmode(vcpu);
4703 }
4704#endif
4705
b4d18517 4706 if (enable_ept && !enable_unrestricted_guest)
1439442c
SY
4707 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4708
6aa8b732 4709 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 4710 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 4711 vcpu->arch.cr0 = cr0;
14168786
GN
4712
4713 /* depends on vcpu->arch.cr0 to be set to a new value */
4714 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4715}
4716
855feb67
YZ
4717static int get_ept_level(struct kvm_vcpu *vcpu)
4718{
4719 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
4720 return 5;
4721 return 4;
4722}
4723
995f00a6 4724static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
1439442c 4725{
855feb67
YZ
4726 u64 eptp = VMX_EPTP_MT_WB;
4727
4728 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
1439442c 4729
995f00a6
PF
4730 if (enable_ept_ad_bits &&
4731 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
bb97a016 4732 eptp |= VMX_EPTP_AD_ENABLE_BIT;
1439442c
SY
4733 eptp |= (root_hpa & PAGE_MASK);
4734
4735 return eptp;
4736}
4737
6aa8b732
AK
4738static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4739{
1439442c
SY
4740 unsigned long guest_cr3;
4741 u64 eptp;
4742
4743 guest_cr3 = cr3;
089d034e 4744 if (enable_ept) {
995f00a6 4745 eptp = construct_eptp(vcpu, cr3);
1439442c 4746 vmcs_write64(EPT_POINTER, eptp);
e90008df
SC
4747 if (enable_unrestricted_guest || is_paging(vcpu) ||
4748 is_guest_mode(vcpu))
59ab5a8f
JK
4749 guest_cr3 = kvm_read_cr3(vcpu);
4750 else
40bbb9d0 4751 guest_cr3 = to_kvm_vmx(vcpu->kvm)->ept_identity_map_addr;
7c93be44 4752 ept_load_pdptrs(vcpu);
1439442c
SY
4753 }
4754
c2ba05cc 4755 vmx_flush_tlb(vcpu, true);
1439442c 4756 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
4757}
4758
5e1746d6 4759static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 4760{
085e68ee
BS
4761 /*
4762 * Pass through host's Machine Check Enable value to hw_cr4, which
4763 * is in force while we are in guest mode. Do not let guests control
4764 * this bit, even if host CR4.MCE == 0.
4765 */
5dc1f044
SC
4766 unsigned long hw_cr4;
4767
4768 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
4769 if (enable_unrestricted_guest)
4770 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
4771 else if (to_vmx(vcpu)->rmode.vm86_active)
4772 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
4773 else
4774 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
1439442c 4775
64f7a115
SC
4776 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
4777 if (cr4 & X86_CR4_UMIP) {
4778 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
0367f205 4779 SECONDARY_EXEC_DESC);
64f7a115
SC
4780 hw_cr4 &= ~X86_CR4_UMIP;
4781 } else if (!is_guest_mode(vcpu) ||
4782 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
4783 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
4784 SECONDARY_EXEC_DESC);
4785 }
0367f205 4786
5e1746d6
NHE
4787 if (cr4 & X86_CR4_VMXE) {
4788 /*
4789 * To use VMXON (and later other VMX instructions), a guest
4790 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4791 * So basically the check on whether to allow nested VMX
4792 * is here.
4793 */
4794 if (!nested_vmx_allowed(vcpu))
4795 return 1;
1a0d74e6 4796 }
3899152c
DM
4797
4798 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
5e1746d6
NHE
4799 return 1;
4800
ad312c7c 4801 vcpu->arch.cr4 = cr4;
5dc1f044
SC
4802
4803 if (!enable_unrestricted_guest) {
4804 if (enable_ept) {
4805 if (!is_paging(vcpu)) {
4806 hw_cr4 &= ~X86_CR4_PAE;
4807 hw_cr4 |= X86_CR4_PSE;
4808 } else if (!(cr4 & X86_CR4_PAE)) {
4809 hw_cr4 &= ~X86_CR4_PAE;
4810 }
bc23008b 4811 }
1439442c 4812
656ec4a4 4813 /*
ddba2628
HH
4814 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4815 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4816 * to be manually disabled when guest switches to non-paging
4817 * mode.
4818 *
4819 * If !enable_unrestricted_guest, the CPU is always running
4820 * with CR0.PG=1 and CR4 needs to be modified.
4821 * If enable_unrestricted_guest, the CPU automatically
4822 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
656ec4a4 4823 */
5dc1f044
SC
4824 if (!is_paging(vcpu))
4825 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4826 }
656ec4a4 4827
1439442c
SY
4828 vmcs_writel(CR4_READ_SHADOW, cr4);
4829 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 4830 return 0;
6aa8b732
AK
4831}
4832
6aa8b732
AK
4833static void vmx_get_segment(struct kvm_vcpu *vcpu,
4834 struct kvm_segment *var, int seg)
4835{
a9179499 4836 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
4837 u32 ar;
4838
c6ad1153 4839 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 4840 *var = vmx->rmode.segs[seg];
a9179499 4841 if (seg == VCPU_SREG_TR
2fb92db1 4842 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 4843 return;
1390a28b
AK
4844 var->base = vmx_read_guest_seg_base(vmx, seg);
4845 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4846 return;
a9179499 4847 }
2fb92db1
AK
4848 var->base = vmx_read_guest_seg_base(vmx, seg);
4849 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4850 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4851 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 4852 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
4853 var->type = ar & 15;
4854 var->s = (ar >> 4) & 1;
4855 var->dpl = (ar >> 5) & 3;
03617c18
GN
4856 /*
4857 * Some userspaces do not preserve unusable property. Since usable
4858 * segment has to be present according to VMX spec we can use present
4859 * property to amend userspace bug by making unusable segment always
4860 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4861 * segment as unusable.
4862 */
4863 var->present = !var->unusable;
6aa8b732
AK
4864 var->avl = (ar >> 12) & 1;
4865 var->l = (ar >> 13) & 1;
4866 var->db = (ar >> 14) & 1;
4867 var->g = (ar >> 15) & 1;
6aa8b732
AK
4868}
4869
a9179499
AK
4870static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4871{
a9179499
AK
4872 struct kvm_segment s;
4873
4874 if (to_vmx(vcpu)->rmode.vm86_active) {
4875 vmx_get_segment(vcpu, &s, seg);
4876 return s.base;
4877 }
2fb92db1 4878 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
4879}
4880
b09408d0 4881static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 4882{
b09408d0
MT
4883 struct vcpu_vmx *vmx = to_vmx(vcpu);
4884
ae9fedc7 4885 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 4886 return 0;
ae9fedc7
PB
4887 else {
4888 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 4889 return VMX_AR_DPL(ar);
69c73028 4890 }
69c73028
AK
4891}
4892
653e3108 4893static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 4894{
6aa8b732
AK
4895 u32 ar;
4896
f0495f9b 4897 if (var->unusable || !var->present)
6aa8b732
AK
4898 ar = 1 << 16;
4899 else {
4900 ar = var->type & 15;
4901 ar |= (var->s & 1) << 4;
4902 ar |= (var->dpl & 3) << 5;
4903 ar |= (var->present & 1) << 7;
4904 ar |= (var->avl & 1) << 12;
4905 ar |= (var->l & 1) << 13;
4906 ar |= (var->db & 1) << 14;
4907 ar |= (var->g & 1) << 15;
4908 }
653e3108
AK
4909
4910 return ar;
4911}
4912
4913static void vmx_set_segment(struct kvm_vcpu *vcpu,
4914 struct kvm_segment *var, int seg)
4915{
7ffd92c5 4916 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 4917 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 4918
2fb92db1
AK
4919 vmx_segment_cache_clear(vmx);
4920
1ecd50a9
GN
4921 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4922 vmx->rmode.segs[seg] = *var;
4923 if (seg == VCPU_SREG_TR)
4924 vmcs_write16(sf->selector, var->selector);
4925 else if (var->s)
4926 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 4927 goto out;
653e3108 4928 }
1ecd50a9 4929
653e3108
AK
4930 vmcs_writel(sf->base, var->base);
4931 vmcs_write32(sf->limit, var->limit);
4932 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
4933
4934 /*
4935 * Fix the "Accessed" bit in AR field of segment registers for older
4936 * qemu binaries.
4937 * IA32 arch specifies that at the time of processor reset the
4938 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 4939 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
4940 * state vmexit when "unrestricted guest" mode is turned on.
4941 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4942 * tree. Newer qemu binaries with that qemu fix would not need this
4943 * kvm hack.
4944 */
4945 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 4946 var->type |= 0x1; /* Accessed */
3a624e29 4947
f924d66d 4948 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
4949
4950out:
98eb2f8b 4951 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4952}
4953
6aa8b732
AK
4954static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4955{
2fb92db1 4956 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
4957
4958 *db = (ar >> 14) & 1;
4959 *l = (ar >> 13) & 1;
4960}
4961
89a27f4d 4962static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4963{
89a27f4d
GN
4964 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4965 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
4966}
4967
89a27f4d 4968static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4969{
89a27f4d
GN
4970 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4971 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
4972}
4973
89a27f4d 4974static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4975{
89a27f4d
GN
4976 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4977 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
4978}
4979
89a27f4d 4980static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4981{
89a27f4d
GN
4982 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4983 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
4984}
4985
648dfaa7
MG
4986static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4987{
4988 struct kvm_segment var;
4989 u32 ar;
4990
4991 vmx_get_segment(vcpu, &var, seg);
07f42f5f 4992 var.dpl = 0x3;
0647f4aa
GN
4993 if (seg == VCPU_SREG_CS)
4994 var.type = 0x3;
648dfaa7
MG
4995 ar = vmx_segment_access_rights(&var);
4996
4997 if (var.base != (var.selector << 4))
4998 return false;
89efbed0 4999 if (var.limit != 0xffff)
648dfaa7 5000 return false;
07f42f5f 5001 if (ar != 0xf3)
648dfaa7
MG
5002 return false;
5003
5004 return true;
5005}
5006
5007static bool code_segment_valid(struct kvm_vcpu *vcpu)
5008{
5009 struct kvm_segment cs;
5010 unsigned int cs_rpl;
5011
5012 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 5013 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 5014
1872a3f4
AK
5015 if (cs.unusable)
5016 return false;
4d283ec9 5017 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
5018 return false;
5019 if (!cs.s)
5020 return false;
4d283ec9 5021 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
5022 if (cs.dpl > cs_rpl)
5023 return false;
1872a3f4 5024 } else {
648dfaa7
MG
5025 if (cs.dpl != cs_rpl)
5026 return false;
5027 }
5028 if (!cs.present)
5029 return false;
5030
5031 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
5032 return true;
5033}
5034
5035static bool stack_segment_valid(struct kvm_vcpu *vcpu)
5036{
5037 struct kvm_segment ss;
5038 unsigned int ss_rpl;
5039
5040 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 5041 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 5042
1872a3f4
AK
5043 if (ss.unusable)
5044 return true;
5045 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
5046 return false;
5047 if (!ss.s)
5048 return false;
5049 if (ss.dpl != ss_rpl) /* DPL != RPL */
5050 return false;
5051 if (!ss.present)
5052 return false;
5053
5054 return true;
5055}
5056
5057static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
5058{
5059 struct kvm_segment var;
5060 unsigned int rpl;
5061
5062 vmx_get_segment(vcpu, &var, seg);
b32a9918 5063 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 5064
1872a3f4
AK
5065 if (var.unusable)
5066 return true;
648dfaa7
MG
5067 if (!var.s)
5068 return false;
5069 if (!var.present)
5070 return false;
4d283ec9 5071 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
5072 if (var.dpl < rpl) /* DPL < RPL */
5073 return false;
5074 }
5075
5076 /* TODO: Add other members to kvm_segment_field to allow checking for other access
5077 * rights flags
5078 */
5079 return true;
5080}
5081
5082static bool tr_valid(struct kvm_vcpu *vcpu)
5083{
5084 struct kvm_segment tr;
5085
5086 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
5087
1872a3f4
AK
5088 if (tr.unusable)
5089 return false;
b32a9918 5090 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 5091 return false;
1872a3f4 5092 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
5093 return false;
5094 if (!tr.present)
5095 return false;
5096
5097 return true;
5098}
5099
5100static bool ldtr_valid(struct kvm_vcpu *vcpu)
5101{
5102 struct kvm_segment ldtr;
5103
5104 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
5105
1872a3f4
AK
5106 if (ldtr.unusable)
5107 return true;
b32a9918 5108 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
5109 return false;
5110 if (ldtr.type != 2)
5111 return false;
5112 if (!ldtr.present)
5113 return false;
5114
5115 return true;
5116}
5117
5118static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
5119{
5120 struct kvm_segment cs, ss;
5121
5122 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5123 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
5124
b32a9918
NA
5125 return ((cs.selector & SEGMENT_RPL_MASK) ==
5126 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
5127}
5128
5129/*
5130 * Check if guest state is valid. Returns true if valid, false if
5131 * not.
5132 * We assume that registers are always usable
5133 */
5134static bool guest_state_valid(struct kvm_vcpu *vcpu)
5135{
c5e97c80
GN
5136 if (enable_unrestricted_guest)
5137 return true;
5138
648dfaa7 5139 /* real mode guest state checks */
f13882d8 5140 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
5141 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
5142 return false;
5143 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
5144 return false;
5145 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
5146 return false;
5147 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
5148 return false;
5149 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
5150 return false;
5151 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
5152 return false;
5153 } else {
5154 /* protected mode guest state checks */
5155 if (!cs_ss_rpl_check(vcpu))
5156 return false;
5157 if (!code_segment_valid(vcpu))
5158 return false;
5159 if (!stack_segment_valid(vcpu))
5160 return false;
5161 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
5162 return false;
5163 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
5164 return false;
5165 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
5166 return false;
5167 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
5168 return false;
5169 if (!tr_valid(vcpu))
5170 return false;
5171 if (!ldtr_valid(vcpu))
5172 return false;
5173 }
5174 /* TODO:
5175 * - Add checks on RIP
5176 * - Add checks on RFLAGS
5177 */
5178
5179 return true;
5180}
5181
5fa99cbe
JM
5182static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
5183{
5184 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
5185}
5186
d77c26fc 5187static int init_rmode_tss(struct kvm *kvm)
6aa8b732 5188{
40dcaa9f 5189 gfn_t fn;
195aefde 5190 u16 data = 0;
1f755a82 5191 int idx, r;
6aa8b732 5192
40dcaa9f 5193 idx = srcu_read_lock(&kvm->srcu);
40bbb9d0 5194 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
195aefde
IE
5195 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
5196 if (r < 0)
10589a46 5197 goto out;
195aefde 5198 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
5199 r = kvm_write_guest_page(kvm, fn++, &data,
5200 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 5201 if (r < 0)
10589a46 5202 goto out;
195aefde
IE
5203 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
5204 if (r < 0)
10589a46 5205 goto out;
195aefde
IE
5206 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
5207 if (r < 0)
10589a46 5208 goto out;
195aefde 5209 data = ~0;
10589a46
MT
5210 r = kvm_write_guest_page(kvm, fn, &data,
5211 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
5212 sizeof(u8));
10589a46 5213out:
40dcaa9f 5214 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 5215 return r;
6aa8b732
AK
5216}
5217
b7ebfb05
SY
5218static int init_rmode_identity_map(struct kvm *kvm)
5219{
40bbb9d0 5220 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
f51770ed 5221 int i, idx, r = 0;
ba049e93 5222 kvm_pfn_t identity_map_pfn;
b7ebfb05
SY
5223 u32 tmp;
5224
40bbb9d0 5225 /* Protect kvm_vmx->ept_identity_pagetable_done. */
a255d479
TC
5226 mutex_lock(&kvm->slots_lock);
5227
40bbb9d0 5228 if (likely(kvm_vmx->ept_identity_pagetable_done))
a255d479 5229 goto out2;
a255d479 5230
40bbb9d0
SC
5231 if (!kvm_vmx->ept_identity_map_addr)
5232 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
5233 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
a255d479 5234
d8a6e365 5235 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
40bbb9d0 5236 kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
f51770ed 5237 if (r < 0)
a255d479
TC
5238 goto out2;
5239
40dcaa9f 5240 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
5241 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
5242 if (r < 0)
5243 goto out;
5244 /* Set up identity-mapping pagetable for EPT in real mode */
5245 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
5246 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
5247 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
5248 r = kvm_write_guest_page(kvm, identity_map_pfn,
5249 &tmp, i * sizeof(tmp), sizeof(tmp));
5250 if (r < 0)
5251 goto out;
5252 }
40bbb9d0 5253 kvm_vmx->ept_identity_pagetable_done = true;
f51770ed 5254
b7ebfb05 5255out:
40dcaa9f 5256 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
5257
5258out2:
5259 mutex_unlock(&kvm->slots_lock);
f51770ed 5260 return r;
b7ebfb05
SY
5261}
5262
6aa8b732
AK
5263static void seg_setup(int seg)
5264{
772e0318 5265 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 5266 unsigned int ar;
6aa8b732
AK
5267
5268 vmcs_write16(sf->selector, 0);
5269 vmcs_writel(sf->base, 0);
5270 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
5271 ar = 0x93;
5272 if (seg == VCPU_SREG_CS)
5273 ar |= 0x08; /* code segment */
3a624e29
NK
5274
5275 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
5276}
5277
f78e0e2e
SY
5278static int alloc_apic_access_page(struct kvm *kvm)
5279{
4484141a 5280 struct page *page;
f78e0e2e
SY
5281 int r = 0;
5282
79fac95e 5283 mutex_lock(&kvm->slots_lock);
c24ae0dc 5284 if (kvm->arch.apic_access_page_done)
f78e0e2e 5285 goto out;
1d8007bd
PB
5286 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
5287 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
5288 if (r)
5289 goto out;
72dc67a6 5290
73a6d941 5291 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
5292 if (is_error_page(page)) {
5293 r = -EFAULT;
5294 goto out;
5295 }
5296
c24ae0dc
TC
5297 /*
5298 * Do not pin the page in memory, so that memory hot-unplug
5299 * is able to migrate it.
5300 */
5301 put_page(page);
5302 kvm->arch.apic_access_page_done = true;
f78e0e2e 5303out:
79fac95e 5304 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
5305 return r;
5306}
5307
991e7a0e 5308static int allocate_vpid(void)
2384d2b3
SY
5309{
5310 int vpid;
5311
919818ab 5312 if (!enable_vpid)
991e7a0e 5313 return 0;
2384d2b3
SY
5314 spin_lock(&vmx_vpid_lock);
5315 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 5316 if (vpid < VMX_NR_VPIDS)
2384d2b3 5317 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
5318 else
5319 vpid = 0;
2384d2b3 5320 spin_unlock(&vmx_vpid_lock);
991e7a0e 5321 return vpid;
2384d2b3
SY
5322}
5323
991e7a0e 5324static void free_vpid(int vpid)
cdbecfc3 5325{
991e7a0e 5326 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
5327 return;
5328 spin_lock(&vmx_vpid_lock);
991e7a0e 5329 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
5330 spin_unlock(&vmx_vpid_lock);
5331}
5332
904e14fb
PB
5333static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
5334 u32 msr, int type)
25c5f225 5335{
3e7c73e9 5336 int f = sizeof(unsigned long);
25c5f225
SY
5337
5338 if (!cpu_has_vmx_msr_bitmap())
5339 return;
5340
5341 /*
5342 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5343 * have the write-low and read-high bitmap offsets the wrong way round.
5344 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5345 */
25c5f225 5346 if (msr <= 0x1fff) {
8d14695f
YZ
5347 if (type & MSR_TYPE_R)
5348 /* read-low */
5349 __clear_bit(msr, msr_bitmap + 0x000 / f);
5350
5351 if (type & MSR_TYPE_W)
5352 /* write-low */
5353 __clear_bit(msr, msr_bitmap + 0x800 / f);
5354
25c5f225
SY
5355 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5356 msr &= 0x1fff;
8d14695f
YZ
5357 if (type & MSR_TYPE_R)
5358 /* read-high */
5359 __clear_bit(msr, msr_bitmap + 0x400 / f);
5360
5361 if (type & MSR_TYPE_W)
5362 /* write-high */
5363 __clear_bit(msr, msr_bitmap + 0xc00 / f);
5364
5365 }
5366}
5367
904e14fb
PB
5368static void __always_inline vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
5369 u32 msr, int type)
5370{
5371 int f = sizeof(unsigned long);
5372
5373 if (!cpu_has_vmx_msr_bitmap())
5374 return;
5375
5376 /*
5377 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5378 * have the write-low and read-high bitmap offsets the wrong way round.
5379 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5380 */
5381 if (msr <= 0x1fff) {
5382 if (type & MSR_TYPE_R)
5383 /* read-low */
5384 __set_bit(msr, msr_bitmap + 0x000 / f);
5385
5386 if (type & MSR_TYPE_W)
5387 /* write-low */
5388 __set_bit(msr, msr_bitmap + 0x800 / f);
5389
5390 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5391 msr &= 0x1fff;
5392 if (type & MSR_TYPE_R)
5393 /* read-high */
5394 __set_bit(msr, msr_bitmap + 0x400 / f);
5395
5396 if (type & MSR_TYPE_W)
5397 /* write-high */
5398 __set_bit(msr, msr_bitmap + 0xc00 / f);
5399
5400 }
5401}
5402
5403static void __always_inline vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
5404 u32 msr, int type, bool value)
5405{
5406 if (value)
5407 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
5408 else
5409 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
5410}
5411
f2b93280
WV
5412/*
5413 * If a msr is allowed by L0, we should check whether it is allowed by L1.
5414 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
5415 */
5416static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
5417 unsigned long *msr_bitmap_nested,
5418 u32 msr, int type)
5419{
5420 int f = sizeof(unsigned long);
5421
f2b93280
WV
5422 /*
5423 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5424 * have the write-low and read-high bitmap offsets the wrong way round.
5425 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5426 */
5427 if (msr <= 0x1fff) {
5428 if (type & MSR_TYPE_R &&
5429 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
5430 /* read-low */
5431 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
5432
5433 if (type & MSR_TYPE_W &&
5434 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
5435 /* write-low */
5436 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
5437
5438 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5439 msr &= 0x1fff;
5440 if (type & MSR_TYPE_R &&
5441 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
5442 /* read-high */
5443 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
5444
5445 if (type & MSR_TYPE_W &&
5446 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
5447 /* write-high */
5448 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
5449
5450 }
5451}
5452
904e14fb 5453static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
5897297b 5454{
904e14fb
PB
5455 u8 mode = 0;
5456
5457 if (cpu_has_secondary_exec_ctrls() &&
5458 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
5459 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
5460 mode |= MSR_BITMAP_MODE_X2APIC;
5461 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
5462 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
5463 }
5464
5465 if (is_long_mode(vcpu))
5466 mode |= MSR_BITMAP_MODE_LM;
5467
5468 return mode;
8d14695f
YZ
5469}
5470
904e14fb
PB
5471#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
5472
5473static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
5474 u8 mode)
8d14695f 5475{
904e14fb
PB
5476 int msr;
5477
5478 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
5479 unsigned word = msr / BITS_PER_LONG;
5480 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
5481 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
5482 }
5483
5484 if (mode & MSR_BITMAP_MODE_X2APIC) {
5485 /*
5486 * TPR reads and writes can be virtualized even if virtual interrupt
5487 * delivery is not in use.
5488 */
5489 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
5490 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
5491 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
5492 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
5493 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
5494 }
f6e90f9e 5495 }
5897297b
AK
5496}
5497
904e14fb
PB
5498static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
5499{
5500 struct vcpu_vmx *vmx = to_vmx(vcpu);
5501 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
5502 u8 mode = vmx_msr_bitmap_mode(vcpu);
5503 u8 changed = mode ^ vmx->msr_bitmap_mode;
5504
5505 if (!changed)
5506 return;
5507
5508 vmx_set_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW,
5509 !(mode & MSR_BITMAP_MODE_LM));
5510
5511 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
5512 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
5513
5514 vmx->msr_bitmap_mode = mode;
5515}
5516
b2a05fef 5517static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
d50ab6c1 5518{
d62caabb 5519 return enable_apicv;
d50ab6c1
PB
5520}
5521
c9f04407
DM
5522static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
5523{
5524 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5525 gfn_t gfn;
5526
5527 /*
5528 * Don't need to mark the APIC access page dirty; it is never
5529 * written to by the CPU during APIC virtualization.
5530 */
5531
5532 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5533 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5534 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5535 }
5536
5537 if (nested_cpu_has_posted_intr(vmcs12)) {
5538 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5539 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5540 }
5541}
5542
5543
6342c50a 5544static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
705699a1
WV
5545{
5546 struct vcpu_vmx *vmx = to_vmx(vcpu);
5547 int max_irr;
5548 void *vapic_page;
5549 u16 status;
5550
c9f04407
DM
5551 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5552 return;
705699a1 5553
c9f04407
DM
5554 vmx->nested.pi_pending = false;
5555 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5556 return;
705699a1 5557
c9f04407
DM
5558 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5559 if (max_irr != 256) {
705699a1 5560 vapic_page = kmap(vmx->nested.virtual_apic_page);
e7387b0e
LA
5561 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
5562 vapic_page, &max_irr);
705699a1
WV
5563 kunmap(vmx->nested.virtual_apic_page);
5564
5565 status = vmcs_read16(GUEST_INTR_STATUS);
5566 if ((u8)max_irr > ((u8)status & 0xff)) {
5567 status &= ~0xff;
5568 status |= (u8)max_irr;
5569 vmcs_write16(GUEST_INTR_STATUS, status);
5570 }
5571 }
c9f04407
DM
5572
5573 nested_mark_vmcs12_pages_dirty(vcpu);
705699a1
WV
5574}
5575
06a5524f
WV
5576static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5577 bool nested)
21bc8dc5
RK
5578{
5579#ifdef CONFIG_SMP
06a5524f
WV
5580 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5581
21bc8dc5 5582 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6 5583 /*
5753743f
HZ
5584 * The vector of interrupt to be delivered to vcpu had
5585 * been set in PIR before this function.
5586 *
5587 * Following cases will be reached in this block, and
5588 * we always send a notification event in all cases as
5589 * explained below.
5590 *
5591 * Case 1: vcpu keeps in non-root mode. Sending a
5592 * notification event posts the interrupt to vcpu.
5593 *
5594 * Case 2: vcpu exits to root mode and is still
5595 * runnable. PIR will be synced to vIRR before the
5596 * next vcpu entry. Sending a notification event in
5597 * this case has no effect, as vcpu is not in root
5598 * mode.
28b835d6 5599 *
5753743f
HZ
5600 * Case 3: vcpu exits to root mode and is blocked.
5601 * vcpu_block() has already synced PIR to vIRR and
5602 * never blocks vcpu if vIRR is not cleared. Therefore,
5603 * a blocked vcpu here does not wait for any requested
5604 * interrupts in PIR, and sending a notification event
5605 * which has no effect is safe here.
28b835d6 5606 */
28b835d6 5607
06a5524f 5608 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
21bc8dc5
RK
5609 return true;
5610 }
5611#endif
5612 return false;
5613}
5614
705699a1
WV
5615static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5616 int vector)
5617{
5618 struct vcpu_vmx *vmx = to_vmx(vcpu);
5619
5620 if (is_guest_mode(vcpu) &&
5621 vector == vmx->nested.posted_intr_nv) {
705699a1
WV
5622 /*
5623 * If a posted intr is not recognized by hardware,
5624 * we will accomplish it in the next vmentry.
5625 */
5626 vmx->nested.pi_pending = true;
5627 kvm_make_request(KVM_REQ_EVENT, vcpu);
6b697711
LA
5628 /* the PIR and ON have been set by L1. */
5629 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
5630 kvm_vcpu_kick(vcpu);
705699a1
WV
5631 return 0;
5632 }
5633 return -1;
5634}
a20ed54d
YZ
5635/*
5636 * Send interrupt to vcpu via posted interrupt way.
5637 * 1. If target vcpu is running(non-root mode), send posted interrupt
5638 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5639 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5640 * interrupt from PIR in next vmentry.
5641 */
5642static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5643{
5644 struct vcpu_vmx *vmx = to_vmx(vcpu);
5645 int r;
5646
705699a1
WV
5647 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5648 if (!r)
5649 return;
5650
a20ed54d
YZ
5651 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5652 return;
5653
b95234c8
PB
5654 /* If a previous notification has sent the IPI, nothing to do. */
5655 if (pi_test_and_set_on(&vmx->pi_desc))
5656 return;
5657
06a5524f 5658 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
a20ed54d
YZ
5659 kvm_vcpu_kick(vcpu);
5660}
5661
a3a8ff8e
NHE
5662/*
5663 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5664 * will not change in the lifetime of the guest.
5665 * Note that host-state that does change is set elsewhere. E.g., host-state
5666 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5667 */
a547c6db 5668static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
5669{
5670 u32 low32, high32;
5671 unsigned long tmpl;
5672 struct desc_ptr dt;
d6e41f11 5673 unsigned long cr0, cr3, cr4;
a3a8ff8e 5674
04ac88ab
AL
5675 cr0 = read_cr0();
5676 WARN_ON(cr0 & X86_CR0_TS);
5677 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
d6e41f11
AL
5678
5679 /*
5680 * Save the most likely value for this task's CR3 in the VMCS.
5681 * We can't use __get_current_cr3_fast() because we're not atomic.
5682 */
6c690ee1 5683 cr3 = __read_cr3();
d6e41f11 5684 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
44889942 5685 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
a3a8ff8e 5686
d974baa3 5687 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 5688 cr4 = cr4_read_shadow();
d974baa3 5689 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
44889942 5690 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
d974baa3 5691
a3a8ff8e 5692 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
5693#ifdef CONFIG_X86_64
5694 /*
5695 * Load null selectors, so we can avoid reloading them in
5696 * __vmx_load_host_state(), in case userspace uses the null selectors
5697 * too (the expected case).
5698 */
5699 vmcs_write16(HOST_DS_SELECTOR, 0);
5700 vmcs_write16(HOST_ES_SELECTOR, 0);
5701#else
a3a8ff8e
NHE
5702 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5703 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 5704#endif
a3a8ff8e
NHE
5705 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5706 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5707
87930019 5708 store_idt(&dt);
a3a8ff8e 5709 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 5710 vmx->host_idt_base = dt.address;
a3a8ff8e 5711
83287ea4 5712 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
5713
5714 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5715 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5716 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5717 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5718
5719 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5720 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5721 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5722 }
5723}
5724
bf8179a0
NHE
5725static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5726{
5727 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5728 if (enable_ept)
5729 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
5730 if (is_guest_mode(&vmx->vcpu))
5731 vmx->vcpu.arch.cr4_guest_owned_bits &=
5732 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
5733 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5734}
5735
01e439be
YZ
5736static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5737{
5738 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5739
d62caabb 5740 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be 5741 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
d02fcf50
PB
5742
5743 if (!enable_vnmi)
5744 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
5745
64672c95
YJ
5746 /* Enable the preemption timer dynamically */
5747 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
5748 return pin_based_exec_ctrl;
5749}
5750
d62caabb
AS
5751static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5752{
5753 struct vcpu_vmx *vmx = to_vmx(vcpu);
5754
5755 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3ce424e4
RK
5756 if (cpu_has_secondary_exec_ctrls()) {
5757 if (kvm_vcpu_apicv_active(vcpu))
5758 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5759 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5760 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5761 else
5762 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5763 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5764 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5765 }
5766
5767 if (cpu_has_vmx_msr_bitmap())
904e14fb 5768 vmx_update_msr_bitmap(vcpu);
d62caabb
AS
5769}
5770
bf8179a0
NHE
5771static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5772{
5773 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
5774
5775 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5776 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5777
35754c98 5778 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
5779 exec_control &= ~CPU_BASED_TPR_SHADOW;
5780#ifdef CONFIG_X86_64
5781 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5782 CPU_BASED_CR8_LOAD_EXITING;
5783#endif
5784 }
5785 if (!enable_ept)
5786 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5787 CPU_BASED_CR3_LOAD_EXITING |
5788 CPU_BASED_INVLPG_EXITING;
4d5422ce
WL
5789 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
5790 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
5791 CPU_BASED_MONITOR_EXITING);
caa057a2
WL
5792 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
5793 exec_control &= ~CPU_BASED_HLT_EXITING;
bf8179a0
NHE
5794 return exec_control;
5795}
5796
45ec368c 5797static bool vmx_rdrand_supported(void)
bf8179a0 5798{
45ec368c 5799 return vmcs_config.cpu_based_2nd_exec_ctrl &
736fdf72 5800 SECONDARY_EXEC_RDRAND_EXITING;
45ec368c
JM
5801}
5802
75f4fc8d
JM
5803static bool vmx_rdseed_supported(void)
5804{
5805 return vmcs_config.cpu_based_2nd_exec_ctrl &
736fdf72 5806 SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d
JM
5807}
5808
80154d77 5809static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
bf8179a0 5810{
80154d77
PB
5811 struct kvm_vcpu *vcpu = &vmx->vcpu;
5812
bf8179a0 5813 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
0367f205 5814
80154d77 5815 if (!cpu_need_virtualize_apic_accesses(vcpu))
bf8179a0
NHE
5816 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5817 if (vmx->vpid == 0)
5818 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5819 if (!enable_ept) {
5820 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5821 enable_unrestricted_guest = 0;
ad756a16
MJ
5822 /* Enable INVPCID for non-ept guests may cause performance regression. */
5823 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
5824 }
5825 if (!enable_unrestricted_guest)
5826 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
b31c114b 5827 if (kvm_pause_in_guest(vmx->vcpu.kvm))
bf8179a0 5828 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
80154d77 5829 if (!kvm_vcpu_apicv_active(vcpu))
c7c9c56c
YZ
5830 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5831 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 5832 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
0367f205
PB
5833
5834 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
5835 * in vmx_set_cr4. */
5836 exec_control &= ~SECONDARY_EXEC_DESC;
5837
abc4fc58
AG
5838 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5839 (handle_vmptrld).
5840 We can NOT enable shadow_vmcs here because we don't have yet
5841 a current VMCS12
5842 */
5843 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
5844
5845 if (!enable_pml)
5846 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 5847
3db13480
PB
5848 if (vmx_xsaves_supported()) {
5849 /* Exposing XSAVES only when XSAVE is exposed */
5850 bool xsaves_enabled =
5851 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
5852 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
5853
5854 if (!xsaves_enabled)
5855 exec_control &= ~SECONDARY_EXEC_XSAVES;
5856
5857 if (nested) {
5858 if (xsaves_enabled)
6677f3da 5859 vmx->nested.msrs.secondary_ctls_high |=
3db13480
PB
5860 SECONDARY_EXEC_XSAVES;
5861 else
6677f3da 5862 vmx->nested.msrs.secondary_ctls_high &=
3db13480
PB
5863 ~SECONDARY_EXEC_XSAVES;
5864 }
5865 }
5866
80154d77
PB
5867 if (vmx_rdtscp_supported()) {
5868 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
5869 if (!rdtscp_enabled)
5870 exec_control &= ~SECONDARY_EXEC_RDTSCP;
5871
5872 if (nested) {
5873 if (rdtscp_enabled)
6677f3da 5874 vmx->nested.msrs.secondary_ctls_high |=
80154d77
PB
5875 SECONDARY_EXEC_RDTSCP;
5876 else
6677f3da 5877 vmx->nested.msrs.secondary_ctls_high &=
80154d77
PB
5878 ~SECONDARY_EXEC_RDTSCP;
5879 }
5880 }
5881
5882 if (vmx_invpcid_supported()) {
5883 /* Exposing INVPCID only when PCID is exposed */
5884 bool invpcid_enabled =
5885 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
5886 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
5887
5888 if (!invpcid_enabled) {
5889 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5890 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
5891 }
5892
5893 if (nested) {
5894 if (invpcid_enabled)
6677f3da 5895 vmx->nested.msrs.secondary_ctls_high |=
80154d77
PB
5896 SECONDARY_EXEC_ENABLE_INVPCID;
5897 else
6677f3da 5898 vmx->nested.msrs.secondary_ctls_high &=
80154d77
PB
5899 ~SECONDARY_EXEC_ENABLE_INVPCID;
5900 }
5901 }
5902
45ec368c
JM
5903 if (vmx_rdrand_supported()) {
5904 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
5905 if (rdrand_enabled)
736fdf72 5906 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
45ec368c
JM
5907
5908 if (nested) {
5909 if (rdrand_enabled)
6677f3da 5910 vmx->nested.msrs.secondary_ctls_high |=
736fdf72 5911 SECONDARY_EXEC_RDRAND_EXITING;
45ec368c 5912 else
6677f3da 5913 vmx->nested.msrs.secondary_ctls_high &=
736fdf72 5914 ~SECONDARY_EXEC_RDRAND_EXITING;
45ec368c
JM
5915 }
5916 }
5917
75f4fc8d
JM
5918 if (vmx_rdseed_supported()) {
5919 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
5920 if (rdseed_enabled)
736fdf72 5921 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d
JM
5922
5923 if (nested) {
5924 if (rdseed_enabled)
6677f3da 5925 vmx->nested.msrs.secondary_ctls_high |=
736fdf72 5926 SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d 5927 else
6677f3da 5928 vmx->nested.msrs.secondary_ctls_high &=
736fdf72 5929 ~SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d
JM
5930 }
5931 }
5932
80154d77 5933 vmx->secondary_exec_control = exec_control;
bf8179a0
NHE
5934}
5935
ce88decf
XG
5936static void ept_set_mmio_spte_mask(void)
5937{
5938 /*
5939 * EPT Misconfigurations can be generated if the value of bits 2:0
5940 * of an EPT paging-structure entry is 110b (write/execute).
ce88decf 5941 */
dcdca5fe
PF
5942 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5943 VMX_EPT_MISCONFIG_WX_VALUE);
ce88decf
XG
5944}
5945
f53cd63c 5946#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
5947/*
5948 * Sets up the vmcs for emulated real mode.
5949 */
12d79917 5950static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 5951{
2e4ce7f5 5952#ifdef CONFIG_X86_64
6aa8b732 5953 unsigned long a;
2e4ce7f5 5954#endif
6aa8b732 5955 int i;
6aa8b732 5956
4607c2d7
AG
5957 if (enable_shadow_vmcs) {
5958 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5959 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5960 }
25c5f225 5961 if (cpu_has_vmx_msr_bitmap())
904e14fb 5962 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
25c5f225 5963
6aa8b732
AK
5964 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5965
6aa8b732 5966 /* Control */
01e439be 5967 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
64672c95 5968 vmx->hv_deadline_tsc = -1;
6e5d865c 5969
bf8179a0 5970 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 5971
dfa169bb 5972 if (cpu_has_secondary_exec_ctrls()) {
80154d77 5973 vmx_compute_secondary_exec_control(vmx);
bf8179a0 5974 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
80154d77 5975 vmx->secondary_exec_control);
dfa169bb 5976 }
f78e0e2e 5977
d62caabb 5978 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
5979 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5980 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5981 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5982 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5983
5984 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 5985
0bcf261c 5986 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 5987 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
5988 }
5989
b31c114b 5990 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4b8d54f9 5991 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
5992 vmx->ple_window = ple_window;
5993 vmx->ple_window_dirty = true;
4b8d54f9
ZE
5994 }
5995
c3707958
XG
5996 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5997 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
5998 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5999
9581d442
AK
6000 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
6001 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 6002 vmx_set_constant_host_state(vmx);
05b3e0c2 6003#ifdef CONFIG_X86_64
6aa8b732
AK
6004 rdmsrl(MSR_FS_BASE, a);
6005 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
6006 rdmsrl(MSR_GS_BASE, a);
6007 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
6008#else
6009 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
6010 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
6011#endif
6012
2a499e49
BD
6013 if (cpu_has_vmx_vmfunc())
6014 vmcs_write64(VM_FUNCTION_CONTROL, 0);
6015
2cc51560
ED
6016 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
6017 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 6018 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 6019 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 6020 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 6021
74545705
RK
6022 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6023 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 6024
03916db9 6025 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
6026 u32 index = vmx_msr_index[i];
6027 u32 data_low, data_high;
a2fa3e9f 6028 int j = vmx->nmsrs;
6aa8b732
AK
6029
6030 if (rdmsr_safe(index, &data_low, &data_high) < 0)
6031 continue;
432bd6cb
AK
6032 if (wrmsr_safe(index, data_low, data_high) < 0)
6033 continue;
26bb0981
AK
6034 vmx->guest_msrs[j].index = i;
6035 vmx->guest_msrs[j].data = 0;
d5696725 6036 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 6037 ++vmx->nmsrs;
6aa8b732 6038 }
6aa8b732 6039
28c1c9fa
KA
6040 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
6041 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, vmx->arch_capabilities);
2961e876
GN
6042
6043 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
6044
6045 /* 22.2.1, 20.8.1 */
2961e876 6046 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 6047
bd7e5b08
PB
6048 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
6049 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
6050
bf8179a0 6051 set_cr4_guest_host_mask(vmx);
e00c8cf2 6052
f53cd63c
WL
6053 if (vmx_xsaves_supported())
6054 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
6055
4e59516a
PF
6056 if (enable_pml) {
6057 ASSERT(vmx->pml_pg);
6058 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
6059 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6060 }
e00c8cf2
AK
6061}
6062
d28bc9dd 6063static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
6064{
6065 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 6066 struct msr_data apic_base_msr;
d28bc9dd 6067 u64 cr0;
e00c8cf2 6068
7ffd92c5 6069 vmx->rmode.vm86_active = 0;
d28b387f 6070 vmx->spec_ctrl = 0;
e00c8cf2 6071
518e7b94 6072 vcpu->arch.microcode_version = 0x100000000ULL;
ad312c7c 6073 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
6074 kvm_set_cr8(vcpu, 0);
6075
6076 if (!init_event) {
6077 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
6078 MSR_IA32_APICBASE_ENABLE;
6079 if (kvm_vcpu_is_reset_bsp(vcpu))
6080 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
6081 apic_base_msr.host_initiated = true;
6082 kvm_set_apic_base(vcpu, &apic_base_msr);
6083 }
e00c8cf2 6084
2fb92db1
AK
6085 vmx_segment_cache_clear(vmx);
6086
5706be0d 6087 seg_setup(VCPU_SREG_CS);
66450a21 6088 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 6089 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
6090
6091 seg_setup(VCPU_SREG_DS);
6092 seg_setup(VCPU_SREG_ES);
6093 seg_setup(VCPU_SREG_FS);
6094 seg_setup(VCPU_SREG_GS);
6095 seg_setup(VCPU_SREG_SS);
6096
6097 vmcs_write16(GUEST_TR_SELECTOR, 0);
6098 vmcs_writel(GUEST_TR_BASE, 0);
6099 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
6100 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
6101
6102 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
6103 vmcs_writel(GUEST_LDTR_BASE, 0);
6104 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
6105 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
6106
d28bc9dd
NA
6107 if (!init_event) {
6108 vmcs_write32(GUEST_SYSENTER_CS, 0);
6109 vmcs_writel(GUEST_SYSENTER_ESP, 0);
6110 vmcs_writel(GUEST_SYSENTER_EIP, 0);
6111 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
6112 }
e00c8cf2 6113
c37c2873 6114 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
66450a21 6115 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 6116
e00c8cf2
AK
6117 vmcs_writel(GUEST_GDTR_BASE, 0);
6118 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
6119
6120 vmcs_writel(GUEST_IDTR_BASE, 0);
6121 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
6122
443381a8 6123 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 6124 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 6125 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
a554d207
WL
6126 if (kvm_mpx_supported())
6127 vmcs_write64(GUEST_BNDCFGS, 0);
e00c8cf2 6128
e00c8cf2
AK
6129 setup_msrs(vmx);
6130
6aa8b732
AK
6131 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
6132
d28bc9dd 6133 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 6134 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 6135 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 6136 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 6137 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
6138 vmcs_write32(TPR_THRESHOLD, 0);
6139 }
6140
a73896cb 6141 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 6142
2384d2b3
SY
6143 if (vmx->vpid != 0)
6144 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6145
d28bc9dd 6146 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
d28bc9dd 6147 vmx->vcpu.arch.cr0 = cr0;
f2463247 6148 vmx_set_cr0(vcpu, cr0); /* enter rmode */
d28bc9dd 6149 vmx_set_cr4(vcpu, 0);
5690891b 6150 vmx_set_efer(vcpu, 0);
bd7e5b08 6151
d28bc9dd 6152 update_exception_bitmap(vcpu);
6aa8b732 6153
dd5f5341 6154 vpid_sync_context(vmx->vpid);
caa057a2
WL
6155 if (init_event)
6156 vmx_clear_hlt(vcpu);
6aa8b732
AK
6157}
6158
b6f1250e
NHE
6159/*
6160 * In nested virtualization, check if L1 asked to exit on external interrupts.
6161 * For most existing hypervisors, this will always return true.
6162 */
6163static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
6164{
6165 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
6166 PIN_BASED_EXT_INTR_MASK;
6167}
6168
77b0f5d6
BD
6169/*
6170 * In nested virtualization, check if L1 has set
6171 * VM_EXIT_ACK_INTR_ON_EXIT
6172 */
6173static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
6174{
6175 return get_vmcs12(vcpu)->vm_exit_controls &
6176 VM_EXIT_ACK_INTR_ON_EXIT;
6177}
6178
ea8ceb83
JK
6179static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
6180{
0c7f650e 6181 return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
ea8ceb83
JK
6182}
6183
c9a7953f 6184static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99 6185{
47c0152e
PB
6186 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
6187 CPU_BASED_VIRTUAL_INTR_PENDING);
3b86cd99
JK
6188}
6189
c9a7953f 6190static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99 6191{
d02fcf50 6192 if (!enable_vnmi ||
8a1b4392 6193 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
c9a7953f
JK
6194 enable_irq_window(vcpu);
6195 return;
6196 }
3b86cd99 6197
47c0152e
PB
6198 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
6199 CPU_BASED_VIRTUAL_NMI_PENDING);
3b86cd99
JK
6200}
6201
66fd3f7f 6202static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 6203{
9c8cba37 6204 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
6205 uint32_t intr;
6206 int irq = vcpu->arch.interrupt.nr;
9c8cba37 6207
229456fc 6208 trace_kvm_inj_virq(irq);
2714d1d3 6209
fa89a817 6210 ++vcpu->stat.irq_injections;
7ffd92c5 6211 if (vmx->rmode.vm86_active) {
71f9833b
SH
6212 int inc_eip = 0;
6213 if (vcpu->arch.interrupt.soft)
6214 inc_eip = vcpu->arch.event_exit_inst_len;
6215 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 6216 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
6217 return;
6218 }
66fd3f7f
GN
6219 intr = irq | INTR_INFO_VALID_MASK;
6220 if (vcpu->arch.interrupt.soft) {
6221 intr |= INTR_TYPE_SOFT_INTR;
6222 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6223 vmx->vcpu.arch.event_exit_inst_len);
6224 } else
6225 intr |= INTR_TYPE_EXT_INTR;
6226 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
caa057a2
WL
6227
6228 vmx_clear_hlt(vcpu);
85f455f7
ED
6229}
6230
f08864b4
SY
6231static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
6232{
66a5a347
JK
6233 struct vcpu_vmx *vmx = to_vmx(vcpu);
6234
d02fcf50 6235 if (!enable_vnmi) {
8a1b4392
PB
6236 /*
6237 * Tracking the NMI-blocked state in software is built upon
6238 * finding the next open IRQ window. This, in turn, depends on
6239 * well-behaving guests: They have to keep IRQs disabled at
6240 * least as long as the NMI handler runs. Otherwise we may
6241 * cause NMI nesting, maybe breaking the guest. But as this is
6242 * highly unlikely, we can live with the residual risk.
6243 */
6244 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
6245 vmx->loaded_vmcs->vnmi_blocked_time = 0;
6246 }
6247
4c4a6f79
PB
6248 ++vcpu->stat.nmi_injections;
6249 vmx->loaded_vmcs->nmi_known_unmasked = false;
3b86cd99 6250
7ffd92c5 6251 if (vmx->rmode.vm86_active) {
71f9833b 6252 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 6253 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
6254 return;
6255 }
c5a6d5f7 6256
f08864b4
SY
6257 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6258 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
caa057a2
WL
6259
6260 vmx_clear_hlt(vcpu);
f08864b4
SY
6261}
6262
3cfc3092
JK
6263static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
6264{
4c4a6f79
PB
6265 struct vcpu_vmx *vmx = to_vmx(vcpu);
6266 bool masked;
6267
d02fcf50 6268 if (!enable_vnmi)
8a1b4392 6269 return vmx->loaded_vmcs->soft_vnmi_blocked;
4c4a6f79 6270 if (vmx->loaded_vmcs->nmi_known_unmasked)
9d58b931 6271 return false;
4c4a6f79
PB
6272 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
6273 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
6274 return masked;
3cfc3092
JK
6275}
6276
6277static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
6278{
6279 struct vcpu_vmx *vmx = to_vmx(vcpu);
6280
d02fcf50 6281 if (!enable_vnmi) {
8a1b4392
PB
6282 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
6283 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
6284 vmx->loaded_vmcs->vnmi_blocked_time = 0;
6285 }
6286 } else {
6287 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
6288 if (masked)
6289 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6290 GUEST_INTR_STATE_NMI);
6291 else
6292 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
6293 GUEST_INTR_STATE_NMI);
6294 }
3cfc3092
JK
6295}
6296
2505dc9f
JK
6297static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
6298{
b6b8a145
JK
6299 if (to_vmx(vcpu)->nested.nested_run_pending)
6300 return 0;
ea8ceb83 6301
d02fcf50 6302 if (!enable_vnmi &&
8a1b4392
PB
6303 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
6304 return 0;
6305
2505dc9f
JK
6306 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
6307 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
6308 | GUEST_INTR_STATE_NMI));
6309}
6310
78646121
GN
6311static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
6312{
b6b8a145
JK
6313 return (!to_vmx(vcpu)->nested.nested_run_pending &&
6314 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
6315 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
6316 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
6317}
6318
cbc94022
IE
6319static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
6320{
6321 int ret;
cbc94022 6322
f7eaeb0a
SC
6323 if (enable_unrestricted_guest)
6324 return 0;
6325
1d8007bd
PB
6326 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
6327 PAGE_SIZE * 3);
cbc94022
IE
6328 if (ret)
6329 return ret;
40bbb9d0 6330 to_kvm_vmx(kvm)->tss_addr = addr;
1f755a82 6331 return init_rmode_tss(kvm);
cbc94022
IE
6332}
6333
2ac52ab8
SC
6334static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
6335{
40bbb9d0 6336 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
2ac52ab8
SC
6337 return 0;
6338}
6339
0ca1b4f4 6340static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 6341{
77ab6db0 6342 switch (vec) {
77ab6db0 6343 case BP_VECTOR:
c573cd22
JK
6344 /*
6345 * Update instruction length as we may reinject the exception
6346 * from user space while in guest debugging mode.
6347 */
6348 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
6349 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 6350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
6351 return false;
6352 /* fall through */
6353 case DB_VECTOR:
6354 if (vcpu->guest_debug &
6355 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6356 return false;
d0bfb940
JK
6357 /* fall through */
6358 case DE_VECTOR:
77ab6db0
JK
6359 case OF_VECTOR:
6360 case BR_VECTOR:
6361 case UD_VECTOR:
6362 case DF_VECTOR:
6363 case SS_VECTOR:
6364 case GP_VECTOR:
6365 case MF_VECTOR:
0ca1b4f4
GN
6366 return true;
6367 break;
77ab6db0 6368 }
0ca1b4f4
GN
6369 return false;
6370}
6371
6372static int handle_rmode_exception(struct kvm_vcpu *vcpu,
6373 int vec, u32 err_code)
6374{
6375 /*
6376 * Instruction with address size override prefix opcode 0x67
6377 * Cause the #SS fault with 0 error code in VM86 mode.
6378 */
6379 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
6380 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
6381 if (vcpu->arch.halt_request) {
6382 vcpu->arch.halt_request = 0;
5cb56059 6383 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
6384 }
6385 return 1;
6386 }
6387 return 0;
6388 }
6389
6390 /*
6391 * Forward all other exceptions that are valid in real mode.
6392 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
6393 * the required debugging infrastructure rework.
6394 */
6395 kvm_queue_exception(vcpu, vec);
6396 return 1;
6aa8b732
AK
6397}
6398
a0861c02
AK
6399/*
6400 * Trigger machine check on the host. We assume all the MSRs are already set up
6401 * by the CPU and that we still run on the same CPU as the MCE occurred on.
6402 * We pass a fake environment to the machine check handler because we want
6403 * the guest to be always treated like user space, no matter what context
6404 * it used internally.
6405 */
6406static void kvm_machine_check(void)
6407{
6408#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
6409 struct pt_regs regs = {
6410 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
6411 .flags = X86_EFLAGS_IF,
6412 };
6413
6414 do_machine_check(&regs, 0);
6415#endif
6416}
6417
851ba692 6418static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
6419{
6420 /* already handled by vcpu_run */
6421 return 1;
6422}
6423
851ba692 6424static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 6425{
1155f76a 6426 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 6427 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 6428 u32 intr_info, ex_no, error_code;
42dbaa5a 6429 unsigned long cr2, rip, dr6;
6aa8b732
AK
6430 u32 vect_info;
6431 enum emulation_result er;
6432
1155f76a 6433 vect_info = vmx->idt_vectoring_info;
88786475 6434 intr_info = vmx->exit_intr_info;
6aa8b732 6435
a0861c02 6436 if (is_machine_check(intr_info))
851ba692 6437 return handle_machine_check(vcpu);
a0861c02 6438
ef85b673 6439 if (is_nmi(intr_info))
1b6269db 6440 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc 6441
082d06ed
WL
6442 if (is_invalid_opcode(intr_info))
6443 return handle_ud(vcpu);
7aa81cc0 6444
6aa8b732 6445 error_code = 0;
2e11384c 6446 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 6447 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e 6448
9e869480
LA
6449 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
6450 WARN_ON_ONCE(!enable_vmware_backdoor);
6451 er = emulate_instruction(vcpu,
6452 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
6453 if (er == EMULATE_USER_EXIT)
6454 return 0;
6455 else if (er != EMULATE_DONE)
6456 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
6457 return 1;
6458 }
6459
bf4ca23e
XG
6460 /*
6461 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
6462 * MMIO, it is better to report an internal error.
6463 * See the comments in vmx_handle_exit.
6464 */
6465 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
6466 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
6467 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6468 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 6469 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
6470 vcpu->run->internal.data[0] = vect_info;
6471 vcpu->run->internal.data[1] = intr_info;
80f0e95d 6472 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
6473 return 0;
6474 }
6475
6aa8b732
AK
6476 if (is_page_fault(intr_info)) {
6477 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1261bfa3
WL
6478 /* EPT won't cause page fault directly */
6479 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
d0006530 6480 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
6aa8b732
AK
6481 }
6482
d0bfb940 6483 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
6484
6485 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
6486 return handle_rmode_exception(vcpu, ex_no, error_code);
6487
42dbaa5a 6488 switch (ex_no) {
54a20552
EN
6489 case AC_VECTOR:
6490 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
6491 return 1;
42dbaa5a
JK
6492 case DB_VECTOR:
6493 dr6 = vmcs_readl(EXIT_QUALIFICATION);
6494 if (!(vcpu->guest_debug &
6495 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 6496 vcpu->arch.dr6 &= ~15;
6f43ed01 6497 vcpu->arch.dr6 |= dr6 | DR6_RTM;
32d43cd3 6498 if (is_icebp(intr_info))
fd2a445a
HD
6499 skip_emulated_instruction(vcpu);
6500
42dbaa5a
JK
6501 kvm_queue_exception(vcpu, DB_VECTOR);
6502 return 1;
6503 }
6504 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
6505 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
6506 /* fall through */
6507 case BP_VECTOR:
c573cd22
JK
6508 /*
6509 * Update instruction length as we may reinject #BP from
6510 * user space while in guest debugging mode. Reading it for
6511 * #DB as well causes no harm, it is not used in that case.
6512 */
6513 vmx->vcpu.arch.event_exit_inst_len =
6514 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 6515 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 6516 rip = kvm_rip_read(vcpu);
d0bfb940
JK
6517 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
6518 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
6519 break;
6520 default:
d0bfb940
JK
6521 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
6522 kvm_run->ex.exception = ex_no;
6523 kvm_run->ex.error_code = error_code;
42dbaa5a 6524 break;
6aa8b732 6525 }
6aa8b732
AK
6526 return 0;
6527}
6528
851ba692 6529static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 6530{
1165f5fe 6531 ++vcpu->stat.irq_exits;
6aa8b732
AK
6532 return 1;
6533}
6534
851ba692 6535static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 6536{
851ba692 6537 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
bbeac283 6538 vcpu->mmio_needed = 0;
988ad74f
AK
6539 return 0;
6540}
6aa8b732 6541
851ba692 6542static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 6543{
bfdaab09 6544 unsigned long exit_qualification;
dca7f128 6545 int size, in, string;
039576c0 6546 unsigned port;
6aa8b732 6547
bfdaab09 6548 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 6549 string = (exit_qualification & 16) != 0;
e70669ab 6550
cf8f70bf 6551 ++vcpu->stat.io_exits;
e70669ab 6552
432baf60 6553 if (string)
51d8b661 6554 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 6555
cf8f70bf
GN
6556 port = exit_qualification >> 16;
6557 size = (exit_qualification & 7) + 1;
432baf60 6558 in = (exit_qualification & 8) != 0;
cf8f70bf 6559
dca7f128 6560 return kvm_fast_pio(vcpu, size, port, in);
6aa8b732
AK
6561}
6562
102d8325
IM
6563static void
6564vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
6565{
6566 /*
6567 * Patch in the VMCALL instruction:
6568 */
6569 hypercall[0] = 0x0f;
6570 hypercall[1] = 0x01;
6571 hypercall[2] = 0xc1;
102d8325
IM
6572}
6573
0fa06071 6574/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
6575static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
6576{
eeadf9e7 6577 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
6578 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6579 unsigned long orig_val = val;
6580
eeadf9e7
NHE
6581 /*
6582 * We get here when L2 changed cr0 in a way that did not change
6583 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
6584 * but did change L0 shadowed bits. So we first calculate the
6585 * effective cr0 value that L1 would like to write into the
6586 * hardware. It consists of the L2-owned bits from the new
6587 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 6588 */
1a0d74e6
JK
6589 val = (val & ~vmcs12->cr0_guest_host_mask) |
6590 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
6591
3899152c 6592 if (!nested_guest_cr0_valid(vcpu, val))
eeadf9e7 6593 return 1;
1a0d74e6
JK
6594
6595 if (kvm_set_cr0(vcpu, val))
6596 return 1;
6597 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 6598 return 0;
1a0d74e6
JK
6599 } else {
6600 if (to_vmx(vcpu)->nested.vmxon &&
3899152c 6601 !nested_host_cr0_valid(vcpu, val))
1a0d74e6 6602 return 1;
3899152c 6603
eeadf9e7 6604 return kvm_set_cr0(vcpu, val);
1a0d74e6 6605 }
eeadf9e7
NHE
6606}
6607
6608static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
6609{
6610 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
6611 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6612 unsigned long orig_val = val;
6613
6614 /* analogously to handle_set_cr0 */
6615 val = (val & ~vmcs12->cr4_guest_host_mask) |
6616 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
6617 if (kvm_set_cr4(vcpu, val))
eeadf9e7 6618 return 1;
1a0d74e6 6619 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
6620 return 0;
6621 } else
6622 return kvm_set_cr4(vcpu, val);
6623}
6624
0367f205
PB
6625static int handle_desc(struct kvm_vcpu *vcpu)
6626{
6627 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
6628 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6629}
6630
851ba692 6631static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 6632{
229456fc 6633 unsigned long exit_qualification, val;
6aa8b732
AK
6634 int cr;
6635 int reg;
49a9b07e 6636 int err;
6affcbed 6637 int ret;
6aa8b732 6638
bfdaab09 6639 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
6640 cr = exit_qualification & 15;
6641 reg = (exit_qualification >> 8) & 15;
6642 switch ((exit_qualification >> 4) & 3) {
6643 case 0: /* mov to cr */
1e32c079 6644 val = kvm_register_readl(vcpu, reg);
229456fc 6645 trace_kvm_cr_write(cr, val);
6aa8b732
AK
6646 switch (cr) {
6647 case 0:
eeadf9e7 6648 err = handle_set_cr0(vcpu, val);
6affcbed 6649 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 6650 case 3:
e1de91cc 6651 WARN_ON_ONCE(enable_unrestricted_guest);
2390218b 6652 err = kvm_set_cr3(vcpu, val);
6affcbed 6653 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 6654 case 4:
eeadf9e7 6655 err = handle_set_cr4(vcpu, val);
6affcbed 6656 return kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
6657 case 8: {
6658 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 6659 u8 cr8 = (u8)val;
eea1cff9 6660 err = kvm_set_cr8(vcpu, cr8);
6affcbed 6661 ret = kvm_complete_insn_gp(vcpu, err);
35754c98 6662 if (lapic_in_kernel(vcpu))
6affcbed 6663 return ret;
0a5fff19 6664 if (cr8_prev <= cr8)
6affcbed
KH
6665 return ret;
6666 /*
6667 * TODO: we might be squashing a
6668 * KVM_GUESTDBG_SINGLESTEP-triggered
6669 * KVM_EXIT_DEBUG here.
6670 */
851ba692 6671 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
6672 return 0;
6673 }
4b8073e4 6674 }
6aa8b732 6675 break;
25c4c276 6676 case 2: /* clts */
bd7e5b08
PB
6677 WARN_ONCE(1, "Guest should always own CR0.TS");
6678 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4d4ec087 6679 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6affcbed 6680 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6681 case 1: /*mov from cr*/
6682 switch (cr) {
6683 case 3:
e1de91cc 6684 WARN_ON_ONCE(enable_unrestricted_guest);
9f8fe504
AK
6685 val = kvm_read_cr3(vcpu);
6686 kvm_register_write(vcpu, reg, val);
6687 trace_kvm_cr_read(cr, val);
6affcbed 6688 return kvm_skip_emulated_instruction(vcpu);
6aa8b732 6689 case 8:
229456fc
MT
6690 val = kvm_get_cr8(vcpu);
6691 kvm_register_write(vcpu, reg, val);
6692 trace_kvm_cr_read(cr, val);
6affcbed 6693 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6694 }
6695 break;
6696 case 3: /* lmsw */
a1f83a74 6697 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 6698 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 6699 kvm_lmsw(vcpu, val);
6aa8b732 6700
6affcbed 6701 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6702 default:
6703 break;
6704 }
851ba692 6705 vcpu->run->exit_reason = 0;
a737f256 6706 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
6707 (int)(exit_qualification >> 4) & 3, cr);
6708 return 0;
6709}
6710
851ba692 6711static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 6712{
bfdaab09 6713 unsigned long exit_qualification;
16f8a6f9
NA
6714 int dr, dr7, reg;
6715
6716 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6717 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6718
6719 /* First, if DR does not exist, trigger UD */
6720 if (!kvm_require_dr(vcpu, dr))
6721 return 1;
6aa8b732 6722
f2483415 6723 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
6724 if (!kvm_require_cpl(vcpu, 0))
6725 return 1;
16f8a6f9
NA
6726 dr7 = vmcs_readl(GUEST_DR7);
6727 if (dr7 & DR7_GD) {
42dbaa5a
JK
6728 /*
6729 * As the vm-exit takes precedence over the debug trap, we
6730 * need to emulate the latter, either for the host or the
6731 * guest debugging itself.
6732 */
6733 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 6734 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 6735 vcpu->run->debug.arch.dr7 = dr7;
82b32774 6736 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
6737 vcpu->run->debug.arch.exception = DB_VECTOR;
6738 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
6739 return 0;
6740 } else {
7305eb5d 6741 vcpu->arch.dr6 &= ~15;
6f43ed01 6742 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
6743 kvm_queue_exception(vcpu, DB_VECTOR);
6744 return 1;
6745 }
6746 }
6747
81908bf4 6748 if (vcpu->guest_debug == 0) {
8f22372f
PB
6749 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6750 CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6751
6752 /*
6753 * No more DR vmexits; force a reload of the debug registers
6754 * and reenter on this instruction. The next vmexit will
6755 * retrieve the full state of the debug registers.
6756 */
6757 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6758 return 1;
6759 }
6760
42dbaa5a
JK
6761 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6762 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 6763 unsigned long val;
4c4d563b
JK
6764
6765 if (kvm_get_dr(vcpu, dr, &val))
6766 return 1;
6767 kvm_register_write(vcpu, reg, val);
020df079 6768 } else
5777392e 6769 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
6770 return 1;
6771
6affcbed 6772 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6773}
6774
73aaf249
JK
6775static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6776{
6777 return vcpu->arch.dr6;
6778}
6779
6780static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6781{
6782}
6783
81908bf4
PB
6784static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6785{
81908bf4
PB
6786 get_debugreg(vcpu->arch.db[0], 0);
6787 get_debugreg(vcpu->arch.db[1], 1);
6788 get_debugreg(vcpu->arch.db[2], 2);
6789 get_debugreg(vcpu->arch.db[3], 3);
6790 get_debugreg(vcpu->arch.dr6, 6);
6791 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6792
6793 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
8f22372f 6794 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6795}
6796
020df079
GN
6797static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6798{
6799 vmcs_writel(GUEST_DR7, val);
6800}
6801
851ba692 6802static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 6803{
6a908b62 6804 return kvm_emulate_cpuid(vcpu);
6aa8b732
AK
6805}
6806
851ba692 6807static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 6808{
ad312c7c 6809 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 6810 struct msr_data msr_info;
6aa8b732 6811
609e36d3
PB
6812 msr_info.index = ecx;
6813 msr_info.host_initiated = false;
6814 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 6815 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 6816 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6817 return 1;
6818 }
6819
609e36d3 6820 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 6821
6aa8b732 6822 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
6823 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6824 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6affcbed 6825 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6826}
6827
851ba692 6828static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 6829{
8fe8ab46 6830 struct msr_data msr;
ad312c7c
ZX
6831 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6832 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6833 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 6834
8fe8ab46
WA
6835 msr.data = data;
6836 msr.index = ecx;
6837 msr.host_initiated = false;
854e8bb1 6838 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 6839 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 6840 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6841 return 1;
6842 }
6843
59200273 6844 trace_kvm_msr_write(ecx, data);
6affcbed 6845 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6846}
6847
851ba692 6848static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 6849{
eb90f341 6850 kvm_apic_update_ppr(vcpu);
6e5d865c
YS
6851 return 1;
6852}
6853
851ba692 6854static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 6855{
47c0152e
PB
6856 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6857 CPU_BASED_VIRTUAL_INTR_PENDING);
2714d1d3 6858
3842d135
AK
6859 kvm_make_request(KVM_REQ_EVENT, vcpu);
6860
a26bf12a 6861 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
6862 return 1;
6863}
6864
851ba692 6865static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 6866{
d3bef15f 6867 return kvm_emulate_halt(vcpu);
6aa8b732
AK
6868}
6869
851ba692 6870static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 6871{
0d9c055e 6872 return kvm_emulate_hypercall(vcpu);
c21415e8
IM
6873}
6874
ec25d5e6
GN
6875static int handle_invd(struct kvm_vcpu *vcpu)
6876{
51d8b661 6877 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
6878}
6879
851ba692 6880static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 6881{
f9c617f6 6882 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
6883
6884 kvm_mmu_invlpg(vcpu, exit_qualification);
6affcbed 6885 return kvm_skip_emulated_instruction(vcpu);
a7052897
MT
6886}
6887
fee84b07
AK
6888static int handle_rdpmc(struct kvm_vcpu *vcpu)
6889{
6890 int err;
6891
6892 err = kvm_rdpmc(vcpu);
6affcbed 6893 return kvm_complete_insn_gp(vcpu, err);
fee84b07
AK
6894}
6895
851ba692 6896static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 6897{
6affcbed 6898 return kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
6899}
6900
2acf923e
DC
6901static int handle_xsetbv(struct kvm_vcpu *vcpu)
6902{
6903 u64 new_bv = kvm_read_edx_eax(vcpu);
6904 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6905
6906 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6affcbed 6907 return kvm_skip_emulated_instruction(vcpu);
2acf923e
DC
6908 return 1;
6909}
6910
f53cd63c
WL
6911static int handle_xsaves(struct kvm_vcpu *vcpu)
6912{
6affcbed 6913 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6914 WARN(1, "this should never happen\n");
6915 return 1;
6916}
6917
6918static int handle_xrstors(struct kvm_vcpu *vcpu)
6919{
6affcbed 6920 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6921 WARN(1, "this should never happen\n");
6922 return 1;
6923}
6924
851ba692 6925static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 6926{
58fbbf26
KT
6927 if (likely(fasteoi)) {
6928 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6929 int access_type, offset;
6930
6931 access_type = exit_qualification & APIC_ACCESS_TYPE;
6932 offset = exit_qualification & APIC_ACCESS_OFFSET;
6933 /*
6934 * Sane guest uses MOV to write EOI, with written value
6935 * not cared. So make a short-circuit here by avoiding
6936 * heavy instruction emulation.
6937 */
6938 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6939 (offset == APIC_EOI)) {
6940 kvm_lapic_set_eoi(vcpu);
6affcbed 6941 return kvm_skip_emulated_instruction(vcpu);
58fbbf26
KT
6942 }
6943 }
51d8b661 6944 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
6945}
6946
c7c9c56c
YZ
6947static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6948{
6949 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6950 int vector = exit_qualification & 0xff;
6951
6952 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6953 kvm_apic_set_eoi_accelerated(vcpu, vector);
6954 return 1;
6955}
6956
83d4c286
YZ
6957static int handle_apic_write(struct kvm_vcpu *vcpu)
6958{
6959 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6960 u32 offset = exit_qualification & 0xfff;
6961
6962 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6963 kvm_apic_write_nodecode(vcpu, offset);
6964 return 1;
6965}
6966
851ba692 6967static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 6968{
60637aac 6969 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 6970 unsigned long exit_qualification;
e269fb21
JK
6971 bool has_error_code = false;
6972 u32 error_code = 0;
37817f29 6973 u16 tss_selector;
7f3d35fd 6974 int reason, type, idt_v, idt_index;
64a7ec06
GN
6975
6976 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 6977 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 6978 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
6979
6980 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6981
6982 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
6983 if (reason == TASK_SWITCH_GATE && idt_v) {
6984 switch (type) {
6985 case INTR_TYPE_NMI_INTR:
6986 vcpu->arch.nmi_injected = false;
654f06fc 6987 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
6988 break;
6989 case INTR_TYPE_EXT_INTR:
66fd3f7f 6990 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
6991 kvm_clear_interrupt_queue(vcpu);
6992 break;
6993 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
6994 if (vmx->idt_vectoring_info &
6995 VECTORING_INFO_DELIVER_CODE_MASK) {
6996 has_error_code = true;
6997 error_code =
6998 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6999 }
7000 /* fall through */
64a7ec06
GN
7001 case INTR_TYPE_SOFT_EXCEPTION:
7002 kvm_clear_exception_queue(vcpu);
7003 break;
7004 default:
7005 break;
7006 }
60637aac 7007 }
37817f29
IE
7008 tss_selector = exit_qualification;
7009
64a7ec06
GN
7010 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
7011 type != INTR_TYPE_EXT_INTR &&
7012 type != INTR_TYPE_NMI_INTR))
7013 skip_emulated_instruction(vcpu);
7014
7f3d35fd
KW
7015 if (kvm_task_switch(vcpu, tss_selector,
7016 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
7017 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
7018 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7019 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7020 vcpu->run->internal.ndata = 0;
42dbaa5a 7021 return 0;
acb54517 7022 }
42dbaa5a 7023
42dbaa5a
JK
7024 /*
7025 * TODO: What about debug traps on tss switch?
7026 * Are we supposed to inject them and update dr6?
7027 */
7028
7029 return 1;
37817f29
IE
7030}
7031
851ba692 7032static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 7033{
f9c617f6 7034 unsigned long exit_qualification;
1439442c 7035 gpa_t gpa;
eebed243 7036 u64 error_code;
1439442c 7037
f9c617f6 7038 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 7039
0be9c7a8
GN
7040 /*
7041 * EPT violation happened while executing iret from NMI,
7042 * "blocked by NMI" bit has to be set before next VM entry.
7043 * There are errata that may cause this bit to not be set:
7044 * AAK134, BY25.
7045 */
bcd1c294 7046 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
d02fcf50 7047 enable_vnmi &&
bcd1c294 7048 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
7049 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
7050
1439442c 7051 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 7052 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5 7053
27959a44 7054 /* Is it a read fault? */
ab22a473 7055 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
27959a44
JS
7056 ? PFERR_USER_MASK : 0;
7057 /* Is it a write fault? */
ab22a473 7058 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
27959a44
JS
7059 ? PFERR_WRITE_MASK : 0;
7060 /* Is it a fetch fault? */
ab22a473 7061 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
27959a44
JS
7062 ? PFERR_FETCH_MASK : 0;
7063 /* ept page table entry is present? */
7064 error_code |= (exit_qualification &
7065 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
7066 EPT_VIOLATION_EXECUTABLE))
7067 ? PFERR_PRESENT_MASK : 0;
4f5982a5 7068
eebed243
PB
7069 error_code |= (exit_qualification & 0x100) != 0 ?
7070 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
25d92081 7071
25d92081 7072 vcpu->arch.exit_qualification = exit_qualification;
4f5982a5 7073 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
7074}
7075
851ba692 7076static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 7077{
68f89400
MT
7078 gpa_t gpa;
7079
9034e6e8
PB
7080 /*
7081 * A nested guest cannot optimize MMIO vmexits, because we have an
7082 * nGPA here instead of the required GPA.
7083 */
68f89400 7084 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
9034e6e8
PB
7085 if (!is_guest_mode(vcpu) &&
7086 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
931c33b1 7087 trace_kvm_fast_mmio(gpa);
d391f120
VK
7088 /*
7089 * Doing kvm_skip_emulated_instruction() depends on undefined
7090 * behavior: Intel's manual doesn't mandate
7091 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
7092 * occurs and while on real hardware it was observed to be set,
7093 * other hypervisors (namely Hyper-V) don't set it, we end up
7094 * advancing IP with some random value. Disable fast mmio when
7095 * running nested and keep it for real hardware in hope that
7096 * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
7097 */
7098 if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
7099 return kvm_skip_emulated_instruction(vcpu);
7100 else
7101 return x86_emulate_instruction(vcpu, gpa, EMULTYPE_SKIP,
7102 NULL, 0) == EMULATE_DONE;
68c3b4d1 7103 }
68f89400 7104
c75d0edc 7105 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
68f89400
MT
7106}
7107
851ba692 7108static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4 7109{
d02fcf50 7110 WARN_ON_ONCE(!enable_vnmi);
47c0152e
PB
7111 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
7112 CPU_BASED_VIRTUAL_NMI_PENDING);
f08864b4 7113 ++vcpu->stat.nmi_window_exits;
3842d135 7114 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
7115
7116 return 1;
7117}
7118
80ced186 7119static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 7120{
8b3079a5
AK
7121 struct vcpu_vmx *vmx = to_vmx(vcpu);
7122 enum emulation_result err = EMULATE_DONE;
80ced186 7123 int ret = 1;
49e9d557
AK
7124 u32 cpu_exec_ctrl;
7125 bool intr_window_requested;
b8405c18 7126 unsigned count = 130;
49e9d557 7127
2bb8cafe
SC
7128 /*
7129 * We should never reach the point where we are emulating L2
7130 * due to invalid guest state as that means we incorrectly
7131 * allowed a nested VMEntry with an invalid vmcs12.
7132 */
7133 WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
7134
49e9d557
AK
7135 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7136 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 7137
98eb2f8b 7138 while (vmx->emulation_required && count-- != 0) {
bdea48e3 7139 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
7140 return handle_interrupt_window(&vmx->vcpu);
7141
72875d8a 7142 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
de87dcdd
AK
7143 return 1;
7144
9b8ae637 7145 err = emulate_instruction(vcpu, 0);
ea953ef0 7146
ac0a48c3 7147 if (err == EMULATE_USER_EXIT) {
94452b9e 7148 ++vcpu->stat.mmio_exits;
80ced186
MG
7149 ret = 0;
7150 goto out;
7151 }
1d5a4d9b 7152
add5ff7a
SC
7153 if (err != EMULATE_DONE)
7154 goto emulation_error;
7155
7156 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
7157 vcpu->arch.exception.pending)
7158 goto emulation_error;
ea953ef0 7159
8d76c49e
GN
7160 if (vcpu->arch.halt_request) {
7161 vcpu->arch.halt_request = 0;
5cb56059 7162 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
7163 goto out;
7164 }
7165
ea953ef0 7166 if (signal_pending(current))
80ced186 7167 goto out;
ea953ef0
MG
7168 if (need_resched())
7169 schedule();
7170 }
7171
80ced186
MG
7172out:
7173 return ret;
b4a2d31d 7174
add5ff7a
SC
7175emulation_error:
7176 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7177 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7178 vcpu->run->internal.ndata = 0;
7179 return 0;
b4a2d31d
RK
7180}
7181
7182static void grow_ple_window(struct kvm_vcpu *vcpu)
7183{
7184 struct vcpu_vmx *vmx = to_vmx(vcpu);
7185 int old = vmx->ple_window;
7186
c8e88717
BM
7187 vmx->ple_window = __grow_ple_window(old, ple_window,
7188 ple_window_grow,
7189 ple_window_max);
b4a2d31d
RK
7190
7191 if (vmx->ple_window != old)
7192 vmx->ple_window_dirty = true;
7b46268d
RK
7193
7194 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
7195}
7196
7197static void shrink_ple_window(struct kvm_vcpu *vcpu)
7198{
7199 struct vcpu_vmx *vmx = to_vmx(vcpu);
7200 int old = vmx->ple_window;
7201
c8e88717
BM
7202 vmx->ple_window = __shrink_ple_window(old, ple_window,
7203 ple_window_shrink,
7204 ple_window);
b4a2d31d
RK
7205
7206 if (vmx->ple_window != old)
7207 vmx->ple_window_dirty = true;
7b46268d
RK
7208
7209 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
7210}
7211
bf9f6ac8
FW
7212/*
7213 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
7214 */
7215static void wakeup_handler(void)
7216{
7217 struct kvm_vcpu *vcpu;
7218 int cpu = smp_processor_id();
7219
7220 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
7221 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
7222 blocked_vcpu_list) {
7223 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7224
7225 if (pi_test_on(pi_desc) == 1)
7226 kvm_vcpu_kick(vcpu);
7227 }
7228 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
7229}
7230
e01bca2f 7231static void vmx_enable_tdp(void)
f160c7b7
JS
7232{
7233 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
7234 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
7235 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
7236 0ull, VMX_EPT_EXECUTABLE_MASK,
7237 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
d0ec49d4 7238 VMX_EPT_RWX_MASK, 0ull);
f160c7b7
JS
7239
7240 ept_set_mmio_spte_mask();
7241 kvm_enable_tdp();
7242}
7243
f2c7648d
TC
7244static __init int hardware_setup(void)
7245{
904e14fb 7246 int r = -ENOMEM, i;
34a1cd60
TC
7247
7248 rdmsrl_safe(MSR_EFER, &host_efer);
7249
7250 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7251 kvm_define_shared_msr(i, vmx_msr_index[i]);
7252
23611332
RK
7253 for (i = 0; i < VMX_BITMAP_NR; i++) {
7254 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
7255 if (!vmx_bitmap[i])
7256 goto out;
7257 }
34a1cd60 7258
34a1cd60
TC
7259 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
7260 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
7261
34a1cd60
TC
7262 if (setup_vmcs_config(&vmcs_config) < 0) {
7263 r = -EIO;
23611332 7264 goto out;
baa03522 7265 }
f2c7648d
TC
7266
7267 if (boot_cpu_has(X86_FEATURE_NX))
7268 kvm_enable_efer_bits(EFER_NX);
7269
08d839c4
WL
7270 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7271 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
f2c7648d 7272 enable_vpid = 0;
08d839c4 7273
f2c7648d 7274 if (!cpu_has_vmx_ept() ||
42aa53b4 7275 !cpu_has_vmx_ept_4levels() ||
f5f51586 7276 !cpu_has_vmx_ept_mt_wb() ||
8ad8182e 7277 !cpu_has_vmx_invept_global())
f2c7648d 7278 enable_ept = 0;
f2c7648d 7279
fce6ac4c 7280 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
f2c7648d
TC
7281 enable_ept_ad_bits = 0;
7282
8ad8182e 7283 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
f2c7648d
TC
7284 enable_unrestricted_guest = 0;
7285
ad15a296 7286 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
7287 flexpriority_enabled = 0;
7288
d02fcf50
PB
7289 if (!cpu_has_virtual_nmis())
7290 enable_vnmi = 0;
7291
ad15a296
PB
7292 /*
7293 * set_apic_access_page_addr() is used to reload apic access
7294 * page upon invalidation. No need to do anything if not
7295 * using the APIC_ACCESS_ADDR VMCS field.
7296 */
7297 if (!flexpriority_enabled)
f2c7648d 7298 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
7299
7300 if (!cpu_has_vmx_tpr_shadow())
7301 kvm_x86_ops->update_cr8_intercept = NULL;
7302
7303 if (enable_ept && !cpu_has_vmx_ept_2m_page())
7304 kvm_disable_largepages();
7305
0f107682 7306 if (!cpu_has_vmx_ple()) {
f2c7648d 7307 ple_gap = 0;
0f107682
WL
7308 ple_window = 0;
7309 ple_window_grow = 0;
7310 ple_window_max = 0;
7311 ple_window_shrink = 0;
7312 }
f2c7648d 7313
76dfafd5 7314 if (!cpu_has_vmx_apicv()) {
f2c7648d 7315 enable_apicv = 0;
76dfafd5
PB
7316 kvm_x86_ops->sync_pir_to_irr = NULL;
7317 }
f2c7648d 7318
64903d61
HZ
7319 if (cpu_has_vmx_tsc_scaling()) {
7320 kvm_has_tsc_control = true;
7321 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7322 kvm_tsc_scaling_ratio_frac_bits = 48;
7323 }
7324
04bb92e4
WL
7325 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7326
f160c7b7
JS
7327 if (enable_ept)
7328 vmx_enable_tdp();
7329 else
baa03522
TC
7330 kvm_disable_tdp();
7331
843e4330
KH
7332 /*
7333 * Only enable PML when hardware supports PML feature, and both EPT
7334 * and EPT A/D bit features are enabled -- PML depends on them to work.
7335 */
7336 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7337 enable_pml = 0;
7338
7339 if (!enable_pml) {
7340 kvm_x86_ops->slot_enable_log_dirty = NULL;
7341 kvm_x86_ops->slot_disable_log_dirty = NULL;
7342 kvm_x86_ops->flush_log_dirty = NULL;
7343 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7344 }
7345
64672c95
YJ
7346 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
7347 u64 vmx_msr;
7348
7349 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7350 cpu_preemption_timer_multi =
7351 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7352 } else {
7353 kvm_x86_ops->set_hv_timer = NULL;
7354 kvm_x86_ops->cancel_hv_timer = NULL;
7355 }
7356
c5d167b2
PB
7357 if (!cpu_has_vmx_shadow_vmcs())
7358 enable_shadow_vmcs = 0;
7359 if (enable_shadow_vmcs)
7360 init_vmcs_shadow_fields();
7361
bf9f6ac8 7362 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
1389309c 7363 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, enable_apicv);
bf9f6ac8 7364
c45dcc71
AR
7365 kvm_mce_cap_supported |= MCG_LMCE_P;
7366
f2c7648d 7367 return alloc_kvm_area();
34a1cd60 7368
34a1cd60 7369out:
23611332
RK
7370 for (i = 0; i < VMX_BITMAP_NR; i++)
7371 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60
TC
7372
7373 return r;
f2c7648d
TC
7374}
7375
7376static __exit void hardware_unsetup(void)
7377{
23611332
RK
7378 int i;
7379
7380 for (i = 0; i < VMX_BITMAP_NR; i++)
7381 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60 7382
f2c7648d
TC
7383 free_kvm_area();
7384}
7385
4b8d54f9
ZE
7386/*
7387 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
7388 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
7389 */
9fb41ba8 7390static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 7391{
b31c114b 7392 if (!kvm_pause_in_guest(vcpu->kvm))
b4a2d31d
RK
7393 grow_ple_window(vcpu);
7394
de63ad4c
LM
7395 /*
7396 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
7397 * VM-execution control is ignored if CPL > 0. OTOH, KVM
7398 * never set PAUSE_EXITING and just set PLE if supported,
7399 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
7400 */
7401 kvm_vcpu_on_spin(vcpu, true);
6affcbed 7402 return kvm_skip_emulated_instruction(vcpu);
4b8d54f9
ZE
7403}
7404
87c00572 7405static int handle_nop(struct kvm_vcpu *vcpu)
59708670 7406{
6affcbed 7407 return kvm_skip_emulated_instruction(vcpu);
59708670
SY
7408}
7409
87c00572
GS
7410static int handle_mwait(struct kvm_vcpu *vcpu)
7411{
7412 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
7413 return handle_nop(vcpu);
7414}
7415
45ec368c
JM
7416static int handle_invalid_op(struct kvm_vcpu *vcpu)
7417{
7418 kvm_queue_exception(vcpu, UD_VECTOR);
7419 return 1;
7420}
7421
5f3d45e7
MD
7422static int handle_monitor_trap(struct kvm_vcpu *vcpu)
7423{
7424 return 1;
7425}
7426
87c00572
GS
7427static int handle_monitor(struct kvm_vcpu *vcpu)
7428{
7429 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
7430 return handle_nop(vcpu);
7431}
7432
0658fbaa
ACL
7433/*
7434 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
7435 * set the success or error code of an emulated VMX instruction, as specified
7436 * by Vol 2B, VMX Instruction Reference, "Conventions".
7437 */
7438static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
7439{
7440 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
7441 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7442 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
7443}
7444
7445static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
7446{
7447 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7448 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
7449 X86_EFLAGS_SF | X86_EFLAGS_OF))
7450 | X86_EFLAGS_CF);
7451}
7452
145c28dd 7453static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
7454 u32 vm_instruction_error)
7455{
7456 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
7457 /*
7458 * failValid writes the error number to the current VMCS, which
7459 * can't be done there isn't a current VMCS.
7460 */
7461 nested_vmx_failInvalid(vcpu);
7462 return;
7463 }
7464 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7465 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7466 X86_EFLAGS_SF | X86_EFLAGS_OF))
7467 | X86_EFLAGS_ZF);
7468 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
7469 /*
7470 * We don't need to force a shadow sync because
7471 * VM_INSTRUCTION_ERROR is not shadowed
7472 */
7473}
145c28dd 7474
ff651cb6
WV
7475static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
7476{
7477 /* TODO: not to reset guest simply here. */
7478 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
bbe41b95 7479 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
ff651cb6
WV
7480}
7481
f4124500
JK
7482static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
7483{
7484 struct vcpu_vmx *vmx =
7485 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
7486
7487 vmx->nested.preemption_timer_expired = true;
7488 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
7489 kvm_vcpu_kick(&vmx->vcpu);
7490
7491 return HRTIMER_NORESTART;
7492}
7493
19677e32
BD
7494/*
7495 * Decode the memory-address operand of a vmx instruction, as recorded on an
7496 * exit caused by such an instruction (run by a guest hypervisor).
7497 * On success, returns 0. When the operand is invalid, returns 1 and throws
7498 * #UD or #GP.
7499 */
7500static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
7501 unsigned long exit_qualification,
f9eb4af6 7502 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 7503{
f9eb4af6
EK
7504 gva_t off;
7505 bool exn;
7506 struct kvm_segment s;
7507
19677e32
BD
7508 /*
7509 * According to Vol. 3B, "Information for VM Exits Due to Instruction
7510 * Execution", on an exit, vmx_instruction_info holds most of the
7511 * addressing components of the operand. Only the displacement part
7512 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
7513 * For how an actual address is calculated from all these components,
7514 * refer to Vol. 1, "Operand Addressing".
7515 */
7516 int scaling = vmx_instruction_info & 3;
7517 int addr_size = (vmx_instruction_info >> 7) & 7;
7518 bool is_reg = vmx_instruction_info & (1u << 10);
7519 int seg_reg = (vmx_instruction_info >> 15) & 7;
7520 int index_reg = (vmx_instruction_info >> 18) & 0xf;
7521 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
7522 int base_reg = (vmx_instruction_info >> 23) & 0xf;
7523 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
7524
7525 if (is_reg) {
7526 kvm_queue_exception(vcpu, UD_VECTOR);
7527 return 1;
7528 }
7529
7530 /* Addr = segment_base + offset */
7531 /* offset = base + [index * scale] + displacement */
f9eb4af6 7532 off = exit_qualification; /* holds the displacement */
19677e32 7533 if (base_is_valid)
f9eb4af6 7534 off += kvm_register_read(vcpu, base_reg);
19677e32 7535 if (index_is_valid)
f9eb4af6
EK
7536 off += kvm_register_read(vcpu, index_reg)<<scaling;
7537 vmx_get_segment(vcpu, &s, seg_reg);
7538 *ret = s.base + off;
19677e32
BD
7539
7540 if (addr_size == 1) /* 32 bit */
7541 *ret &= 0xffffffff;
7542
f9eb4af6
EK
7543 /* Checks for #GP/#SS exceptions. */
7544 exn = false;
ff30ef40
QC
7545 if (is_long_mode(vcpu)) {
7546 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7547 * non-canonical form. This is the only check on the memory
7548 * destination for long mode!
7549 */
fd8cb433 7550 exn = is_noncanonical_address(*ret, vcpu);
ff30ef40 7551 } else if (is_protmode(vcpu)) {
f9eb4af6
EK
7552 /* Protected mode: apply checks for segment validity in the
7553 * following order:
7554 * - segment type check (#GP(0) may be thrown)
7555 * - usability check (#GP(0)/#SS(0))
7556 * - limit check (#GP(0)/#SS(0))
7557 */
7558 if (wr)
7559 /* #GP(0) if the destination operand is located in a
7560 * read-only data segment or any code segment.
7561 */
7562 exn = ((s.type & 0xa) == 0 || (s.type & 8));
7563 else
7564 /* #GP(0) if the source operand is located in an
7565 * execute-only code segment
7566 */
7567 exn = ((s.type & 0xa) == 8);
ff30ef40
QC
7568 if (exn) {
7569 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7570 return 1;
7571 }
f9eb4af6
EK
7572 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7573 */
7574 exn = (s.unusable != 0);
7575 /* Protected mode: #GP(0)/#SS(0) if the memory
7576 * operand is outside the segment limit.
7577 */
7578 exn = exn || (off + sizeof(u64) > s.limit);
7579 }
7580 if (exn) {
7581 kvm_queue_exception_e(vcpu,
7582 seg_reg == VCPU_SREG_SS ?
7583 SS_VECTOR : GP_VECTOR,
7584 0);
7585 return 1;
7586 }
7587
19677e32
BD
7588 return 0;
7589}
7590
cbf71279 7591static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
3573e22c
BD
7592{
7593 gva_t gva;
3573e22c 7594 struct x86_exception e;
3573e22c
BD
7595
7596 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7597 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
7598 return 1;
7599
cbf71279
RK
7600 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
7601 sizeof(*vmpointer), &e)) {
3573e22c
BD
7602 kvm_inject_page_fault(vcpu, &e);
7603 return 1;
7604 }
7605
3573e22c
BD
7606 return 0;
7607}
7608
e29acc55
JM
7609static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7610{
7611 struct vcpu_vmx *vmx = to_vmx(vcpu);
7612 struct vmcs *shadow_vmcs;
f21f165e 7613 int r;
e29acc55 7614
f21f165e
PB
7615 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
7616 if (r < 0)
de3a0021 7617 goto out_vmcs02;
e29acc55
JM
7618
7619 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7620 if (!vmx->nested.cached_vmcs12)
7621 goto out_cached_vmcs12;
7622
7623 if (enable_shadow_vmcs) {
7624 shadow_vmcs = alloc_vmcs();
7625 if (!shadow_vmcs)
7626 goto out_shadow_vmcs;
7627 /* mark vmcs as shadow */
7628 shadow_vmcs->revision_id |= (1u << 31);
7629 /* init shadow vmcs */
7630 vmcs_clear(shadow_vmcs);
7631 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7632 }
7633
e29acc55
JM
7634 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7635 HRTIMER_MODE_REL_PINNED);
7636 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7637
7638 vmx->nested.vmxon = true;
7639 return 0;
7640
7641out_shadow_vmcs:
7642 kfree(vmx->nested.cached_vmcs12);
7643
7644out_cached_vmcs12:
de3a0021 7645 free_loaded_vmcs(&vmx->nested.vmcs02);
e29acc55 7646
de3a0021 7647out_vmcs02:
e29acc55
JM
7648 return -ENOMEM;
7649}
7650
ec378aee
NHE
7651/*
7652 * Emulate the VMXON instruction.
7653 * Currently, we just remember that VMX is active, and do not save or even
7654 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7655 * do not currently need to store anything in that guest-allocated memory
7656 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7657 * argument is different from the VMXON pointer (which the spec says they do).
7658 */
7659static int handle_vmon(struct kvm_vcpu *vcpu)
7660{
e29acc55 7661 int ret;
cbf71279
RK
7662 gpa_t vmptr;
7663 struct page *page;
ec378aee 7664 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3897a49
NHE
7665 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7666 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee 7667
70f3aac9
JM
7668 /*
7669 * The Intel VMX Instruction Reference lists a bunch of bits that are
7670 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7671 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7672 * Otherwise, we should fail with #UD. But most faulting conditions
7673 * have already been checked by hardware, prior to the VM-exit for
7674 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7675 * that bit set to 1 in non-root mode.
ec378aee 7676 */
70f3aac9 7677 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
ec378aee
NHE
7678 kvm_queue_exception(vcpu, UD_VECTOR);
7679 return 1;
7680 }
7681
145c28dd
AG
7682 if (vmx->nested.vmxon) {
7683 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6affcbed 7684 return kvm_skip_emulated_instruction(vcpu);
145c28dd 7685 }
b3897a49 7686
3b84080b 7687 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
b3897a49
NHE
7688 != VMXON_NEEDED_FEATURES) {
7689 kvm_inject_gp(vcpu, 0);
7690 return 1;
7691 }
7692
cbf71279 7693 if (nested_vmx_get_vmptr(vcpu, &vmptr))
21e7fbe7 7694 return 1;
cbf71279
RK
7695
7696 /*
7697 * SDM 3: 24.11.5
7698 * The first 4 bytes of VMXON region contain the supported
7699 * VMCS revision identifier
7700 *
7701 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7702 * which replaces physical address width with 32
7703 */
7704 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7705 nested_vmx_failInvalid(vcpu);
7706 return kvm_skip_emulated_instruction(vcpu);
7707 }
7708
5e2f30b7
DH
7709 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7710 if (is_error_page(page)) {
cbf71279
RK
7711 nested_vmx_failInvalid(vcpu);
7712 return kvm_skip_emulated_instruction(vcpu);
7713 }
7714 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7715 kunmap(page);
53a70daf 7716 kvm_release_page_clean(page);
cbf71279
RK
7717 nested_vmx_failInvalid(vcpu);
7718 return kvm_skip_emulated_instruction(vcpu);
7719 }
7720 kunmap(page);
53a70daf 7721 kvm_release_page_clean(page);
cbf71279
RK
7722
7723 vmx->nested.vmxon_ptr = vmptr;
e29acc55
JM
7724 ret = enter_vmx_operation(vcpu);
7725 if (ret)
7726 return ret;
ec378aee 7727
a25eb114 7728 nested_vmx_succeed(vcpu);
6affcbed 7729 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7730}
7731
7732/*
7733 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7734 * for running VMX instructions (except VMXON, whose prerequisites are
7735 * slightly different). It also specifies what exception to inject otherwise.
70f3aac9
JM
7736 * Note that many of these exceptions have priority over VM exits, so they
7737 * don't have to be checked again here.
ec378aee
NHE
7738 */
7739static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7740{
70f3aac9 7741 if (!to_vmx(vcpu)->nested.vmxon) {
ec378aee
NHE
7742 kvm_queue_exception(vcpu, UD_VECTOR);
7743 return 0;
7744 }
ec378aee
NHE
7745 return 1;
7746}
7747
8ca44e88
DM
7748static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7749{
7750 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7751 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7752}
7753
e7953d7f
AG
7754static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7755{
9a2a05b9
PB
7756 if (vmx->nested.current_vmptr == -1ull)
7757 return;
7758
012f83cb 7759 if (enable_shadow_vmcs) {
9a2a05b9
PB
7760 /* copy to memory all shadowed fields in case
7761 they were modified */
7762 copy_shadow_to_vmcs12(vmx);
7763 vmx->nested.sync_shadow_vmcs = false;
8ca44e88 7764 vmx_disable_shadow_vmcs(vmx);
012f83cb 7765 }
705699a1 7766 vmx->nested.posted_intr_nv = -1;
4f2777bc
DM
7767
7768 /* Flush VMCS12 to guest memory */
9f744c59
PB
7769 kvm_vcpu_write_guest_page(&vmx->vcpu,
7770 vmx->nested.current_vmptr >> PAGE_SHIFT,
7771 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4f2777bc 7772
9a2a05b9 7773 vmx->nested.current_vmptr = -1ull;
e7953d7f
AG
7774}
7775
ec378aee
NHE
7776/*
7777 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7778 * just stops using VMX.
7779 */
7780static void free_nested(struct vcpu_vmx *vmx)
7781{
b7455825 7782 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
ec378aee 7783 return;
9a2a05b9 7784
ec378aee 7785 vmx->nested.vmxon = false;
b7455825 7786 vmx->nested.smm.vmxon = false;
5c614b35 7787 free_vpid(vmx->nested.vpid02);
8ca44e88
DM
7788 vmx->nested.posted_intr_nv = -1;
7789 vmx->nested.current_vmptr = -1ull;
355f4fb1 7790 if (enable_shadow_vmcs) {
8ca44e88 7791 vmx_disable_shadow_vmcs(vmx);
355f4fb1
JM
7792 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7793 free_vmcs(vmx->vmcs01.shadow_vmcs);
7794 vmx->vmcs01.shadow_vmcs = NULL;
7795 }
4f2777bc 7796 kfree(vmx->nested.cached_vmcs12);
de3a0021 7797 /* Unpin physical memory we referred to in the vmcs02 */
fe3ef05c 7798 if (vmx->nested.apic_access_page) {
53a70daf 7799 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 7800 vmx->nested.apic_access_page = NULL;
fe3ef05c 7801 }
a7c0b07d 7802 if (vmx->nested.virtual_apic_page) {
53a70daf 7803 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 7804 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 7805 }
705699a1
WV
7806 if (vmx->nested.pi_desc_page) {
7807 kunmap(vmx->nested.pi_desc_page);
53a70daf 7808 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
7809 vmx->nested.pi_desc_page = NULL;
7810 vmx->nested.pi_desc = NULL;
7811 }
ff2f6fe9 7812
de3a0021 7813 free_loaded_vmcs(&vmx->nested.vmcs02);
ec378aee
NHE
7814}
7815
7816/* Emulate the VMXOFF instruction */
7817static int handle_vmoff(struct kvm_vcpu *vcpu)
7818{
7819 if (!nested_vmx_check_permission(vcpu))
7820 return 1;
7821 free_nested(to_vmx(vcpu));
a25eb114 7822 nested_vmx_succeed(vcpu);
6affcbed 7823 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7824}
7825
27d6c865
NHE
7826/* Emulate the VMCLEAR instruction */
7827static int handle_vmclear(struct kvm_vcpu *vcpu)
7828{
7829 struct vcpu_vmx *vmx = to_vmx(vcpu);
587d7e72 7830 u32 zero = 0;
27d6c865 7831 gpa_t vmptr;
27d6c865
NHE
7832
7833 if (!nested_vmx_check_permission(vcpu))
7834 return 1;
7835
cbf71279 7836 if (nested_vmx_get_vmptr(vcpu, &vmptr))
27d6c865 7837 return 1;
27d6c865 7838
cbf71279
RK
7839 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7840 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7841 return kvm_skip_emulated_instruction(vcpu);
7842 }
7843
7844 if (vmptr == vmx->nested.vmxon_ptr) {
7845 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7846 return kvm_skip_emulated_instruction(vcpu);
7847 }
7848
9a2a05b9 7849 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 7850 nested_release_vmcs12(vmx);
27d6c865 7851
587d7e72
JM
7852 kvm_vcpu_write_guest(vcpu,
7853 vmptr + offsetof(struct vmcs12, launch_state),
7854 &zero, sizeof(zero));
27d6c865 7855
27d6c865 7856 nested_vmx_succeed(vcpu);
6affcbed 7857 return kvm_skip_emulated_instruction(vcpu);
27d6c865
NHE
7858}
7859
cd232ad0
NHE
7860static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7861
7862/* Emulate the VMLAUNCH instruction */
7863static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7864{
7865 return nested_vmx_run(vcpu, true);
7866}
7867
7868/* Emulate the VMRESUME instruction */
7869static int handle_vmresume(struct kvm_vcpu *vcpu)
7870{
7871
7872 return nested_vmx_run(vcpu, false);
7873}
7874
49f705c5
NHE
7875/*
7876 * Read a vmcs12 field. Since these can have varying lengths and we return
7877 * one type, we chose the biggest type (u64) and zero-extend the return value
7878 * to that size. Note that the caller, handle_vmread, might need to use only
7879 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7880 * 64-bit fields are to be returned).
7881 */
a2ae9df7
PB
7882static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7883 unsigned long field, u64 *ret)
49f705c5
NHE
7884{
7885 short offset = vmcs_field_to_offset(field);
7886 char *p;
7887
7888 if (offset < 0)
a2ae9df7 7889 return offset;
49f705c5
NHE
7890
7891 p = ((char *)(get_vmcs12(vcpu))) + offset;
7892
d37f4267
JM
7893 switch (vmcs_field_width(field)) {
7894 case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
49f705c5 7895 *ret = *((natural_width *)p);
a2ae9df7 7896 return 0;
d37f4267 7897 case VMCS_FIELD_WIDTH_U16:
49f705c5 7898 *ret = *((u16 *)p);
a2ae9df7 7899 return 0;
d37f4267 7900 case VMCS_FIELD_WIDTH_U32:
49f705c5 7901 *ret = *((u32 *)p);
a2ae9df7 7902 return 0;
d37f4267 7903 case VMCS_FIELD_WIDTH_U64:
49f705c5 7904 *ret = *((u64 *)p);
a2ae9df7 7905 return 0;
49f705c5 7906 default:
a2ae9df7
PB
7907 WARN_ON(1);
7908 return -ENOENT;
49f705c5
NHE
7909 }
7910}
7911
20b97fea 7912
a2ae9df7
PB
7913static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7914 unsigned long field, u64 field_value){
20b97fea
AG
7915 short offset = vmcs_field_to_offset(field);
7916 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7917 if (offset < 0)
a2ae9df7 7918 return offset;
20b97fea 7919
d37f4267
JM
7920 switch (vmcs_field_width(field)) {
7921 case VMCS_FIELD_WIDTH_U16:
20b97fea 7922 *(u16 *)p = field_value;
a2ae9df7 7923 return 0;
d37f4267 7924 case VMCS_FIELD_WIDTH_U32:
20b97fea 7925 *(u32 *)p = field_value;
a2ae9df7 7926 return 0;
d37f4267 7927 case VMCS_FIELD_WIDTH_U64:
20b97fea 7928 *(u64 *)p = field_value;
a2ae9df7 7929 return 0;
d37f4267 7930 case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
20b97fea 7931 *(natural_width *)p = field_value;
a2ae9df7 7932 return 0;
20b97fea 7933 default:
a2ae9df7
PB
7934 WARN_ON(1);
7935 return -ENOENT;
20b97fea
AG
7936 }
7937
7938}
7939
16f5b903
AG
7940static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7941{
7942 int i;
7943 unsigned long field;
7944 u64 field_value;
355f4fb1 7945 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
44900ba6 7946 const u16 *fields = shadow_read_write_fields;
c2bae893 7947 const int num_fields = max_shadow_read_write_fields;
16f5b903 7948
282da870
JK
7949 preempt_disable();
7950
16f5b903
AG
7951 vmcs_load(shadow_vmcs);
7952
7953 for (i = 0; i < num_fields; i++) {
7954 field = fields[i];
44900ba6 7955 field_value = __vmcs_readl(field);
16f5b903
AG
7956 vmcs12_write_any(&vmx->vcpu, field, field_value);
7957 }
7958
7959 vmcs_clear(shadow_vmcs);
7960 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7961
7962 preempt_enable();
16f5b903
AG
7963}
7964
c3114420
AG
7965static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7966{
44900ba6 7967 const u16 *fields[] = {
c2bae893
MK
7968 shadow_read_write_fields,
7969 shadow_read_only_fields
c3114420 7970 };
c2bae893 7971 const int max_fields[] = {
c3114420
AG
7972 max_shadow_read_write_fields,
7973 max_shadow_read_only_fields
7974 };
7975 int i, q;
7976 unsigned long field;
7977 u64 field_value = 0;
355f4fb1 7978 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c3114420
AG
7979
7980 vmcs_load(shadow_vmcs);
7981
c2bae893 7982 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7983 for (i = 0; i < max_fields[q]; i++) {
7984 field = fields[q][i];
7985 vmcs12_read_any(&vmx->vcpu, field, &field_value);
44900ba6 7986 __vmcs_writel(field, field_value);
c3114420
AG
7987 }
7988 }
7989
7990 vmcs_clear(shadow_vmcs);
7991 vmcs_load(vmx->loaded_vmcs->vmcs);
7992}
7993
49f705c5
NHE
7994/*
7995 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7996 * used before) all generate the same failure when it is missing.
7997 */
7998static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7999{
8000 struct vcpu_vmx *vmx = to_vmx(vcpu);
8001 if (vmx->nested.current_vmptr == -1ull) {
8002 nested_vmx_failInvalid(vcpu);
49f705c5
NHE
8003 return 0;
8004 }
8005 return 1;
8006}
8007
8008static int handle_vmread(struct kvm_vcpu *vcpu)
8009{
8010 unsigned long field;
8011 u64 field_value;
8012 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8013 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8014 gva_t gva = 0;
8015
eb277562 8016 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
8017 return 1;
8018
6affcbed
KH
8019 if (!nested_vmx_check_vmcs12(vcpu))
8020 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
8021
8022 /* Decode instruction info and find the field to read */
27e6fb5d 8023 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 8024 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 8025 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5 8026 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 8027 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
8028 }
8029 /*
8030 * Now copy part of this value to register or memory, as requested.
8031 * Note that the number of bits actually copied is 32 or 64 depending
8032 * on the guest's mode (32 or 64 bit), not on the given field's length.
8033 */
8034 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 8035 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
8036 field_value);
8037 } else {
8038 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 8039 vmx_instruction_info, true, &gva))
49f705c5 8040 return 1;
70f3aac9 8041 /* _system ok, as hardware has verified cpl=0 */
49f705c5
NHE
8042 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
8043 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
8044 }
8045
8046 nested_vmx_succeed(vcpu);
6affcbed 8047 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
8048}
8049
8050
8051static int handle_vmwrite(struct kvm_vcpu *vcpu)
8052{
8053 unsigned long field;
8054 gva_t gva;
74a497fa 8055 struct vcpu_vmx *vmx = to_vmx(vcpu);
49f705c5
NHE
8056 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8057 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
74a497fa 8058
49f705c5
NHE
8059 /* The value to write might be 32 or 64 bits, depending on L1's long
8060 * mode, and eventually we need to write that into a field of several
8061 * possible lengths. The code below first zero-extends the value to 64
6a6256f9 8062 * bit (field_value), and then copies only the appropriate number of
49f705c5
NHE
8063 * bits into the vmcs12 field.
8064 */
8065 u64 field_value = 0;
8066 struct x86_exception e;
8067
eb277562 8068 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
8069 return 1;
8070
6affcbed
KH
8071 if (!nested_vmx_check_vmcs12(vcpu))
8072 return kvm_skip_emulated_instruction(vcpu);
eb277562 8073
49f705c5 8074 if (vmx_instruction_info & (1u << 10))
27e6fb5d 8075 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
8076 (((vmx_instruction_info) >> 3) & 0xf));
8077 else {
8078 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 8079 vmx_instruction_info, false, &gva))
49f705c5
NHE
8080 return 1;
8081 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 8082 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
8083 kvm_inject_page_fault(vcpu, &e);
8084 return 1;
8085 }
8086 }
8087
8088
27e6fb5d 8089 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
8090 if (vmcs_field_readonly(field)) {
8091 nested_vmx_failValid(vcpu,
8092 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6affcbed 8093 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
8094 }
8095
a2ae9df7 8096 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5 8097 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 8098 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
8099 }
8100
74a497fa
PB
8101 switch (field) {
8102#define SHADOW_FIELD_RW(x) case x:
8103#include "vmx_shadow_fields.h"
8104 /*
8105 * The fields that can be updated by L1 without a vmexit are
8106 * always updated in the vmcs02, the others go down the slow
8107 * path of prepare_vmcs02.
8108 */
8109 break;
8110 default:
8111 vmx->nested.dirty_vmcs12 = true;
8112 break;
8113 }
8114
49f705c5 8115 nested_vmx_succeed(vcpu);
6affcbed 8116 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
8117}
8118
a8bc284e
JM
8119static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
8120{
8121 vmx->nested.current_vmptr = vmptr;
8122 if (enable_shadow_vmcs) {
8123 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
8124 SECONDARY_EXEC_SHADOW_VMCS);
8125 vmcs_write64(VMCS_LINK_POINTER,
8126 __pa(vmx->vmcs01.shadow_vmcs));
8127 vmx->nested.sync_shadow_vmcs = true;
8128 }
74a497fa 8129 vmx->nested.dirty_vmcs12 = true;
a8bc284e
JM
8130}
8131
63846663
NHE
8132/* Emulate the VMPTRLD instruction */
8133static int handle_vmptrld(struct kvm_vcpu *vcpu)
8134{
8135 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 8136 gpa_t vmptr;
63846663
NHE
8137
8138 if (!nested_vmx_check_permission(vcpu))
8139 return 1;
8140
cbf71279 8141 if (nested_vmx_get_vmptr(vcpu, &vmptr))
63846663 8142 return 1;
63846663 8143
cbf71279
RK
8144 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
8145 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
8146 return kvm_skip_emulated_instruction(vcpu);
8147 }
8148
8149 if (vmptr == vmx->nested.vmxon_ptr) {
8150 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
8151 return kvm_skip_emulated_instruction(vcpu);
8152 }
8153
63846663
NHE
8154 if (vmx->nested.current_vmptr != vmptr) {
8155 struct vmcs12 *new_vmcs12;
8156 struct page *page;
5e2f30b7
DH
8157 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
8158 if (is_error_page(page)) {
63846663 8159 nested_vmx_failInvalid(vcpu);
6affcbed 8160 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
8161 }
8162 new_vmcs12 = kmap(page);
8163 if (new_vmcs12->revision_id != VMCS12_REVISION) {
8164 kunmap(page);
53a70daf 8165 kvm_release_page_clean(page);
63846663
NHE
8166 nested_vmx_failValid(vcpu,
8167 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6affcbed 8168 return kvm_skip_emulated_instruction(vcpu);
63846663 8169 }
63846663 8170
9a2a05b9 8171 nested_release_vmcs12(vmx);
4f2777bc
DM
8172 /*
8173 * Load VMCS12 from guest memory since it is not already
8174 * cached.
8175 */
9f744c59
PB
8176 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
8177 kunmap(page);
53a70daf 8178 kvm_release_page_clean(page);
9f744c59 8179
a8bc284e 8180 set_current_vmptr(vmx, vmptr);
63846663
NHE
8181 }
8182
8183 nested_vmx_succeed(vcpu);
6affcbed 8184 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
8185}
8186
6a4d7550
NHE
8187/* Emulate the VMPTRST instruction */
8188static int handle_vmptrst(struct kvm_vcpu *vcpu)
8189{
8190 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8191 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8192 gva_t vmcs_gva;
8193 struct x86_exception e;
8194
8195 if (!nested_vmx_check_permission(vcpu))
8196 return 1;
8197
8198 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 8199 vmx_instruction_info, true, &vmcs_gva))
6a4d7550 8200 return 1;
70f3aac9 8201 /* ok to use *_system, as hardware has verified cpl=0 */
6a4d7550
NHE
8202 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
8203 (void *)&to_vmx(vcpu)->nested.current_vmptr,
8204 sizeof(u64), &e)) {
8205 kvm_inject_page_fault(vcpu, &e);
8206 return 1;
8207 }
8208 nested_vmx_succeed(vcpu);
6affcbed 8209 return kvm_skip_emulated_instruction(vcpu);
6a4d7550
NHE
8210}
8211
bfd0a56b
NHE
8212/* Emulate the INVEPT instruction */
8213static int handle_invept(struct kvm_vcpu *vcpu)
8214{
b9c237bb 8215 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
8216 u32 vmx_instruction_info, types;
8217 unsigned long type;
8218 gva_t gva;
8219 struct x86_exception e;
8220 struct {
8221 u64 eptp, gpa;
8222 } operand;
bfd0a56b 8223
6677f3da 8224 if (!(vmx->nested.msrs.secondary_ctls_high &
b9c237bb 8225 SECONDARY_EXEC_ENABLE_EPT) ||
6677f3da 8226 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
8227 kvm_queue_exception(vcpu, UD_VECTOR);
8228 return 1;
8229 }
8230
8231 if (!nested_vmx_check_permission(vcpu))
8232 return 1;
8233
bfd0a56b 8234 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 8235 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 8236
6677f3da 8237 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b 8238
85c856b3 8239 if (type >= 32 || !(types & (1 << type))) {
bfd0a56b
NHE
8240 nested_vmx_failValid(vcpu,
8241 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 8242 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
8243 }
8244
8245 /* According to the Intel VMX instruction reference, the memory
8246 * operand is read even if it isn't needed (e.g., for type==global)
8247 */
8248 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 8249 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
8250 return 1;
8251 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
8252 sizeof(operand), &e)) {
8253 kvm_inject_page_fault(vcpu, &e);
8254 return 1;
8255 }
8256
8257 switch (type) {
bfd0a56b 8258 case VMX_EPT_EXTENT_GLOBAL:
45e11817
BD
8259 /*
8260 * TODO: track mappings and invalidate
8261 * single context requests appropriately
8262 */
8263 case VMX_EPT_EXTENT_CONTEXT:
bfd0a56b 8264 kvm_mmu_sync_roots(vcpu);
77c3913b 8265 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
8266 nested_vmx_succeed(vcpu);
8267 break;
8268 default:
8269 BUG_ON(1);
8270 break;
8271 }
8272
6affcbed 8273 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
8274}
8275
a642fc30
PM
8276static int handle_invvpid(struct kvm_vcpu *vcpu)
8277{
99b83ac8
WL
8278 struct vcpu_vmx *vmx = to_vmx(vcpu);
8279 u32 vmx_instruction_info;
8280 unsigned long type, types;
8281 gva_t gva;
8282 struct x86_exception e;
40352605
JM
8283 struct {
8284 u64 vpid;
8285 u64 gla;
8286 } operand;
99b83ac8 8287
6677f3da 8288 if (!(vmx->nested.msrs.secondary_ctls_high &
99b83ac8 8289 SECONDARY_EXEC_ENABLE_VPID) ||
6677f3da 8290 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
99b83ac8
WL
8291 kvm_queue_exception(vcpu, UD_VECTOR);
8292 return 1;
8293 }
8294
8295 if (!nested_vmx_check_permission(vcpu))
8296 return 1;
8297
8298 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8299 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
8300
6677f3da 8301 types = (vmx->nested.msrs.vpid_caps &
bcdde302 8302 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
99b83ac8 8303
85c856b3 8304 if (type >= 32 || !(types & (1 << type))) {
99b83ac8
WL
8305 nested_vmx_failValid(vcpu,
8306 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 8307 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
8308 }
8309
8310 /* according to the intel vmx instruction reference, the memory
8311 * operand is read even if it isn't needed (e.g., for type==global)
8312 */
8313 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
8314 vmx_instruction_info, false, &gva))
8315 return 1;
40352605
JM
8316 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
8317 sizeof(operand), &e)) {
99b83ac8
WL
8318 kvm_inject_page_fault(vcpu, &e);
8319 return 1;
8320 }
40352605
JM
8321 if (operand.vpid >> 16) {
8322 nested_vmx_failValid(vcpu,
8323 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8324 return kvm_skip_emulated_instruction(vcpu);
8325 }
99b83ac8
WL
8326
8327 switch (type) {
bcdde302 8328 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
fd8cb433 8329 if (is_noncanonical_address(operand.gla, vcpu)) {
40352605
JM
8330 nested_vmx_failValid(vcpu,
8331 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8332 return kvm_skip_emulated_instruction(vcpu);
8333 }
8334 /* fall through */
ef697a71 8335 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
bcdde302 8336 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
40352605 8337 if (!operand.vpid) {
bcdde302
JD
8338 nested_vmx_failValid(vcpu,
8339 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 8340 return kvm_skip_emulated_instruction(vcpu);
bcdde302
JD
8341 }
8342 break;
99b83ac8 8343 case VMX_VPID_EXTENT_ALL_CONTEXT:
99b83ac8
WL
8344 break;
8345 default:
bcdde302 8346 WARN_ON_ONCE(1);
6affcbed 8347 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
8348 }
8349
c2ba05cc 8350 __vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
bcdde302
JD
8351 nested_vmx_succeed(vcpu);
8352
6affcbed 8353 return kvm_skip_emulated_instruction(vcpu);
a642fc30
PM
8354}
8355
843e4330
KH
8356static int handle_pml_full(struct kvm_vcpu *vcpu)
8357{
8358 unsigned long exit_qualification;
8359
8360 trace_kvm_pml_full(vcpu->vcpu_id);
8361
8362 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8363
8364 /*
8365 * PML buffer FULL happened while executing iret from NMI,
8366 * "blocked by NMI" bit has to be set before next VM entry.
8367 */
8368 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
d02fcf50 8369 enable_vnmi &&
843e4330
KH
8370 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
8371 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8372 GUEST_INTR_STATE_NMI);
8373
8374 /*
8375 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
8376 * here.., and there's no userspace involvement needed for PML.
8377 */
8378 return 1;
8379}
8380
64672c95
YJ
8381static int handle_preemption_timer(struct kvm_vcpu *vcpu)
8382{
8383 kvm_lapic_expired_hv_timer(vcpu);
8384 return 1;
8385}
8386
41ab9372
BD
8387static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
8388{
8389 struct vcpu_vmx *vmx = to_vmx(vcpu);
41ab9372
BD
8390 int maxphyaddr = cpuid_maxphyaddr(vcpu);
8391
8392 /* Check for memory type validity */
bb97a016
DH
8393 switch (address & VMX_EPTP_MT_MASK) {
8394 case VMX_EPTP_MT_UC:
6677f3da 8395 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
41ab9372
BD
8396 return false;
8397 break;
bb97a016 8398 case VMX_EPTP_MT_WB:
6677f3da 8399 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
41ab9372
BD
8400 return false;
8401 break;
8402 default:
8403 return false;
8404 }
8405
bb97a016
DH
8406 /* only 4 levels page-walk length are valid */
8407 if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
41ab9372
BD
8408 return false;
8409
8410 /* Reserved bits should not be set */
8411 if (address >> maxphyaddr || ((address >> 7) & 0x1f))
8412 return false;
8413
8414 /* AD, if set, should be supported */
bb97a016 8415 if (address & VMX_EPTP_AD_ENABLE_BIT) {
6677f3da 8416 if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
41ab9372
BD
8417 return false;
8418 }
8419
8420 return true;
8421}
8422
8423static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
8424 struct vmcs12 *vmcs12)
8425{
8426 u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
8427 u64 address;
8428 bool accessed_dirty;
8429 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8430
8431 if (!nested_cpu_has_eptp_switching(vmcs12) ||
8432 !nested_cpu_has_ept(vmcs12))
8433 return 1;
8434
8435 if (index >= VMFUNC_EPTP_ENTRIES)
8436 return 1;
8437
8438
8439 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
8440 &address, index * 8, 8))
8441 return 1;
8442
bb97a016 8443 accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
41ab9372
BD
8444
8445 /*
8446 * If the (L2) guest does a vmfunc to the currently
8447 * active ept pointer, we don't have to do anything else
8448 */
8449 if (vmcs12->ept_pointer != address) {
8450 if (!valid_ept_address(vcpu, address))
8451 return 1;
8452
8453 kvm_mmu_unload(vcpu);
8454 mmu->ept_ad = accessed_dirty;
8455 mmu->base_role.ad_disabled = !accessed_dirty;
8456 vmcs12->ept_pointer = address;
8457 /*
8458 * TODO: Check what's the correct approach in case
8459 * mmu reload fails. Currently, we just let the next
8460 * reload potentially fail
8461 */
8462 kvm_mmu_reload(vcpu);
8463 }
8464
8465 return 0;
8466}
8467
2a499e49
BD
8468static int handle_vmfunc(struct kvm_vcpu *vcpu)
8469{
27c42a1b
BD
8470 struct vcpu_vmx *vmx = to_vmx(vcpu);
8471 struct vmcs12 *vmcs12;
8472 u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
8473
8474 /*
8475 * VMFUNC is only supported for nested guests, but we always enable the
8476 * secondary control for simplicity; for non-nested mode, fake that we
8477 * didn't by injecting #UD.
8478 */
8479 if (!is_guest_mode(vcpu)) {
8480 kvm_queue_exception(vcpu, UD_VECTOR);
8481 return 1;
8482 }
8483
8484 vmcs12 = get_vmcs12(vcpu);
8485 if ((vmcs12->vm_function_control & (1 << function)) == 0)
8486 goto fail;
41ab9372
BD
8487
8488 switch (function) {
8489 case 0:
8490 if (nested_vmx_eptp_switching(vcpu, vmcs12))
8491 goto fail;
8492 break;
8493 default:
8494 goto fail;
8495 }
8496 return kvm_skip_emulated_instruction(vcpu);
27c42a1b
BD
8497
8498fail:
8499 nested_vmx_vmexit(vcpu, vmx->exit_reason,
8500 vmcs_read32(VM_EXIT_INTR_INFO),
8501 vmcs_readl(EXIT_QUALIFICATION));
2a499e49
BD
8502 return 1;
8503}
8504
6aa8b732
AK
8505/*
8506 * The exit handlers return 1 if the exit was handled fully and guest execution
8507 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
8508 * to be done to userspace and return 0.
8509 */
772e0318 8510static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
8511 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
8512 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 8513 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 8514 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 8515 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
8516 [EXIT_REASON_CR_ACCESS] = handle_cr,
8517 [EXIT_REASON_DR_ACCESS] = handle_dr,
8518 [EXIT_REASON_CPUID] = handle_cpuid,
8519 [EXIT_REASON_MSR_READ] = handle_rdmsr,
8520 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
8521 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
8522 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 8523 [EXIT_REASON_INVD] = handle_invd,
a7052897 8524 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 8525 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 8526 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 8527 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 8528 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 8529 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 8530 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 8531 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 8532 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 8533 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
8534 [EXIT_REASON_VMOFF] = handle_vmoff,
8535 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
8536 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
8537 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 8538 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 8539 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 8540 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 8541 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 8542 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 8543 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
0367f205
PB
8544 [EXIT_REASON_GDTR_IDTR] = handle_desc,
8545 [EXIT_REASON_LDTR_TR] = handle_desc,
68f89400
MT
8546 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
8547 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 8548 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 8549 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 8550 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 8551 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 8552 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 8553 [EXIT_REASON_INVVPID] = handle_invvpid,
45ec368c 8554 [EXIT_REASON_RDRAND] = handle_invalid_op,
75f4fc8d 8555 [EXIT_REASON_RDSEED] = handle_invalid_op,
f53cd63c
WL
8556 [EXIT_REASON_XSAVES] = handle_xsaves,
8557 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 8558 [EXIT_REASON_PML_FULL] = handle_pml_full,
2a499e49 8559 [EXIT_REASON_VMFUNC] = handle_vmfunc,
64672c95 8560 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6aa8b732
AK
8561};
8562
8563static const int kvm_vmx_max_exit_handlers =
50a3485c 8564 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 8565
908a7bdd
JK
8566static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
8567 struct vmcs12 *vmcs12)
8568{
8569 unsigned long exit_qualification;
8570 gpa_t bitmap, last_bitmap;
8571 unsigned int port;
8572 int size;
8573 u8 b;
8574
908a7bdd 8575 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 8576 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
8577
8578 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8579
8580 port = exit_qualification >> 16;
8581 size = (exit_qualification & 7) + 1;
8582
8583 last_bitmap = (gpa_t)-1;
8584 b = -1;
8585
8586 while (size > 0) {
8587 if (port < 0x8000)
8588 bitmap = vmcs12->io_bitmap_a;
8589 else if (port < 0x10000)
8590 bitmap = vmcs12->io_bitmap_b;
8591 else
1d804d07 8592 return true;
908a7bdd
JK
8593 bitmap += (port & 0x7fff) / 8;
8594
8595 if (last_bitmap != bitmap)
54bf36aa 8596 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 8597 return true;
908a7bdd 8598 if (b & (1 << (port & 7)))
1d804d07 8599 return true;
908a7bdd
JK
8600
8601 port++;
8602 size--;
8603 last_bitmap = bitmap;
8604 }
8605
1d804d07 8606 return false;
908a7bdd
JK
8607}
8608
644d711a
NHE
8609/*
8610 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8611 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8612 * disinterest in the current event (read or write a specific MSR) by using an
8613 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8614 */
8615static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8616 struct vmcs12 *vmcs12, u32 exit_reason)
8617{
8618 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8619 gpa_t bitmap;
8620
cbd29cb6 8621 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 8622 return true;
644d711a
NHE
8623
8624 /*
8625 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8626 * for the four combinations of read/write and low/high MSR numbers.
8627 * First we need to figure out which of the four to use:
8628 */
8629 bitmap = vmcs12->msr_bitmap;
8630 if (exit_reason == EXIT_REASON_MSR_WRITE)
8631 bitmap += 2048;
8632 if (msr_index >= 0xc0000000) {
8633 msr_index -= 0xc0000000;
8634 bitmap += 1024;
8635 }
8636
8637 /* Then read the msr_index'th bit from this bitmap: */
8638 if (msr_index < 1024*8) {
8639 unsigned char b;
54bf36aa 8640 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 8641 return true;
644d711a
NHE
8642 return 1 & (b >> (msr_index & 7));
8643 } else
1d804d07 8644 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
8645}
8646
8647/*
8648 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8649 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8650 * intercept (via guest_host_mask etc.) the current event.
8651 */
8652static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8653 struct vmcs12 *vmcs12)
8654{
8655 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8656 int cr = exit_qualification & 15;
e1d39b17
JS
8657 int reg;
8658 unsigned long val;
644d711a
NHE
8659
8660 switch ((exit_qualification >> 4) & 3) {
8661 case 0: /* mov to cr */
e1d39b17
JS
8662 reg = (exit_qualification >> 8) & 15;
8663 val = kvm_register_readl(vcpu, reg);
644d711a
NHE
8664 switch (cr) {
8665 case 0:
8666 if (vmcs12->cr0_guest_host_mask &
8667 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8668 return true;
644d711a
NHE
8669 break;
8670 case 3:
8671 if ((vmcs12->cr3_target_count >= 1 &&
8672 vmcs12->cr3_target_value0 == val) ||
8673 (vmcs12->cr3_target_count >= 2 &&
8674 vmcs12->cr3_target_value1 == val) ||
8675 (vmcs12->cr3_target_count >= 3 &&
8676 vmcs12->cr3_target_value2 == val) ||
8677 (vmcs12->cr3_target_count >= 4 &&
8678 vmcs12->cr3_target_value3 == val))
1d804d07 8679 return false;
644d711a 8680 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 8681 return true;
644d711a
NHE
8682 break;
8683 case 4:
8684 if (vmcs12->cr4_guest_host_mask &
8685 (vmcs12->cr4_read_shadow ^ val))
1d804d07 8686 return true;
644d711a
NHE
8687 break;
8688 case 8:
8689 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 8690 return true;
644d711a
NHE
8691 break;
8692 }
8693 break;
8694 case 2: /* clts */
8695 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8696 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 8697 return true;
644d711a
NHE
8698 break;
8699 case 1: /* mov from cr */
8700 switch (cr) {
8701 case 3:
8702 if (vmcs12->cpu_based_vm_exec_control &
8703 CPU_BASED_CR3_STORE_EXITING)
1d804d07 8704 return true;
644d711a
NHE
8705 break;
8706 case 8:
8707 if (vmcs12->cpu_based_vm_exec_control &
8708 CPU_BASED_CR8_STORE_EXITING)
1d804d07 8709 return true;
644d711a
NHE
8710 break;
8711 }
8712 break;
8713 case 3: /* lmsw */
8714 /*
8715 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8716 * cr0. Other attempted changes are ignored, with no exit.
8717 */
e1d39b17 8718 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
644d711a
NHE
8719 if (vmcs12->cr0_guest_host_mask & 0xe &
8720 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8721 return true;
644d711a
NHE
8722 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8723 !(vmcs12->cr0_read_shadow & 0x1) &&
8724 (val & 0x1))
1d804d07 8725 return true;
644d711a
NHE
8726 break;
8727 }
1d804d07 8728 return false;
644d711a
NHE
8729}
8730
8731/*
8732 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8733 * should handle it ourselves in L0 (and then continue L2). Only call this
8734 * when in is_guest_mode (L2).
8735 */
7313c698 8736static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
644d711a 8737{
644d711a
NHE
8738 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8739 struct vcpu_vmx *vmx = to_vmx(vcpu);
8740 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8741
4f350c6d
JM
8742 if (vmx->nested.nested_run_pending)
8743 return false;
8744
8745 if (unlikely(vmx->fail)) {
8746 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8747 vmcs_read32(VM_INSTRUCTION_ERROR));
8748 return true;
8749 }
542060ea 8750
c9f04407
DM
8751 /*
8752 * The host physical addresses of some pages of guest memory
de3a0021
JM
8753 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
8754 * Page). The CPU may write to these pages via their host
8755 * physical address while L2 is running, bypassing any
8756 * address-translation-based dirty tracking (e.g. EPT write
8757 * protection).
c9f04407
DM
8758 *
8759 * Mark them dirty on every exit from L2 to prevent them from
8760 * getting out of sync with dirty tracking.
8761 */
8762 nested_mark_vmcs12_pages_dirty(vcpu);
8763
4f350c6d
JM
8764 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8765 vmcs_readl(EXIT_QUALIFICATION),
8766 vmx->idt_vectoring_info,
8767 intr_info,
8768 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8769 KVM_ISA_VMX);
644d711a
NHE
8770
8771 switch (exit_reason) {
8772 case EXIT_REASON_EXCEPTION_NMI:
ef85b673 8773 if (is_nmi(intr_info))
1d804d07 8774 return false;
644d711a 8775 else if (is_page_fault(intr_info))
52a5c155 8776 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
e504c909 8777 else if (is_no_device(intr_info) &&
ccf9844e 8778 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 8779 return false;
6f05485d
JK
8780 else if (is_debug(intr_info) &&
8781 vcpu->guest_debug &
8782 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8783 return false;
8784 else if (is_breakpoint(intr_info) &&
8785 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8786 return false;
644d711a
NHE
8787 return vmcs12->exception_bitmap &
8788 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8789 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 8790 return false;
644d711a 8791 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 8792 return true;
644d711a 8793 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 8794 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 8795 case EXIT_REASON_NMI_WINDOW:
3b656cf7 8796 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 8797 case EXIT_REASON_TASK_SWITCH:
1d804d07 8798 return true;
644d711a 8799 case EXIT_REASON_CPUID:
1d804d07 8800 return true;
644d711a
NHE
8801 case EXIT_REASON_HLT:
8802 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8803 case EXIT_REASON_INVD:
1d804d07 8804 return true;
644d711a
NHE
8805 case EXIT_REASON_INVLPG:
8806 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8807 case EXIT_REASON_RDPMC:
8808 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
a5f46457 8809 case EXIT_REASON_RDRAND:
736fdf72 8810 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
a5f46457 8811 case EXIT_REASON_RDSEED:
736fdf72 8812 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
b3a2a907 8813 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
8814 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8815 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8816 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8817 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8818 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8819 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 8820 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
8821 /*
8822 * VMX instructions trap unconditionally. This allows L1 to
8823 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8824 */
1d804d07 8825 return true;
644d711a
NHE
8826 case EXIT_REASON_CR_ACCESS:
8827 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8828 case EXIT_REASON_DR_ACCESS:
8829 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8830 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 8831 return nested_vmx_exit_handled_io(vcpu, vmcs12);
1b07304c
PB
8832 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8833 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
644d711a
NHE
8834 case EXIT_REASON_MSR_READ:
8835 case EXIT_REASON_MSR_WRITE:
8836 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8837 case EXIT_REASON_INVALID_STATE:
1d804d07 8838 return true;
644d711a
NHE
8839 case EXIT_REASON_MWAIT_INSTRUCTION:
8840 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
8841 case EXIT_REASON_MONITOR_TRAP_FLAG:
8842 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
8843 case EXIT_REASON_MONITOR_INSTRUCTION:
8844 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8845 case EXIT_REASON_PAUSE_INSTRUCTION:
8846 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8847 nested_cpu_has2(vmcs12,
8848 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8849 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 8850 return false;
644d711a 8851 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 8852 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
8853 case EXIT_REASON_APIC_ACCESS:
8854 return nested_cpu_has2(vmcs12,
8855 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 8856 case EXIT_REASON_APIC_WRITE:
608406e2
WV
8857 case EXIT_REASON_EOI_INDUCED:
8858 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 8859 return true;
644d711a 8860 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
8861 /*
8862 * L0 always deals with the EPT violation. If nested EPT is
8863 * used, and the nested mmu code discovers that the address is
8864 * missing in the guest EPT table (EPT12), the EPT violation
8865 * will be injected with nested_ept_inject_page_fault()
8866 */
1d804d07 8867 return false;
644d711a 8868 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
8869 /*
8870 * L2 never uses directly L1's EPT, but rather L0's own EPT
8871 * table (shadow on EPT) or a merged EPT table that L0 built
8872 * (EPT on EPT). So any problems with the structure of the
8873 * table is L0's fault.
8874 */
1d804d07 8875 return false;
90a2db6d
PB
8876 case EXIT_REASON_INVPCID:
8877 return
8878 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
8879 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
644d711a
NHE
8880 case EXIT_REASON_WBINVD:
8881 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8882 case EXIT_REASON_XSETBV:
1d804d07 8883 return true;
81dc01f7
WL
8884 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8885 /*
8886 * This should never happen, since it is not possible to
8887 * set XSS to a non-zero value---neither in L1 nor in L2.
8888 * If if it were, XSS would have to be checked against
8889 * the XSS exit bitmap in vmcs12.
8890 */
8891 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
55123e3c
WL
8892 case EXIT_REASON_PREEMPTION_TIMER:
8893 return false;
ab007cc9 8894 case EXIT_REASON_PML_FULL:
03efce6f 8895 /* We emulate PML support to L1. */
ab007cc9 8896 return false;
2a499e49
BD
8897 case EXIT_REASON_VMFUNC:
8898 /* VM functions are emulated through L2->L0 vmexits. */
8899 return false;
644d711a 8900 default:
1d804d07 8901 return true;
644d711a
NHE
8902 }
8903}
8904
7313c698
PB
8905static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8906{
8907 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8908
8909 /*
8910 * At this point, the exit interruption info in exit_intr_info
8911 * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
8912 * we need to query the in-kernel LAPIC.
8913 */
8914 WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8915 if ((exit_intr_info &
8916 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8917 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8918 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8919 vmcs12->vm_exit_intr_error_code =
8920 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8921 }
8922
8923 nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8924 vmcs_readl(EXIT_QUALIFICATION));
8925 return 1;
8926}
8927
586f9607
AK
8928static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8929{
8930 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8931 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8932}
8933
a3eaa864 8934static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 8935{
a3eaa864
KH
8936 if (vmx->pml_pg) {
8937 __free_page(vmx->pml_pg);
8938 vmx->pml_pg = NULL;
8939 }
843e4330
KH
8940}
8941
54bf36aa 8942static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 8943{
54bf36aa 8944 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
8945 u64 *pml_buf;
8946 u16 pml_idx;
8947
8948 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8949
8950 /* Do nothing if PML buffer is empty */
8951 if (pml_idx == (PML_ENTITY_NUM - 1))
8952 return;
8953
8954 /* PML index always points to next available PML buffer entity */
8955 if (pml_idx >= PML_ENTITY_NUM)
8956 pml_idx = 0;
8957 else
8958 pml_idx++;
8959
8960 pml_buf = page_address(vmx->pml_pg);
8961 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8962 u64 gpa;
8963
8964 gpa = pml_buf[pml_idx];
8965 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 8966 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
8967 }
8968
8969 /* reset PML index */
8970 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8971}
8972
8973/*
8974 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8975 * Called before reporting dirty_bitmap to userspace.
8976 */
8977static void kvm_flush_pml_buffers(struct kvm *kvm)
8978{
8979 int i;
8980 struct kvm_vcpu *vcpu;
8981 /*
8982 * We only need to kick vcpu out of guest mode here, as PML buffer
8983 * is flushed at beginning of all VMEXITs, and it's obvious that only
8984 * vcpus running in guest are possible to have unflushed GPAs in PML
8985 * buffer.
8986 */
8987 kvm_for_each_vcpu(i, vcpu, kvm)
8988 kvm_vcpu_kick(vcpu);
8989}
8990
4eb64dce
PB
8991static void vmx_dump_sel(char *name, uint32_t sel)
8992{
8993 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
96794e4e 8994 name, vmcs_read16(sel),
4eb64dce
PB
8995 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8996 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8997 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8998}
8999
9000static void vmx_dump_dtsel(char *name, uint32_t limit)
9001{
9002 pr_err("%s limit=0x%08x, base=0x%016lx\n",
9003 name, vmcs_read32(limit),
9004 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
9005}
9006
9007static void dump_vmcs(void)
9008{
9009 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
9010 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
9011 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
9012 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
9013 u32 secondary_exec_control = 0;
9014 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 9015 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
9016 int i, n;
9017
9018 if (cpu_has_secondary_exec_ctrls())
9019 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9020
9021 pr_err("*** Guest State ***\n");
9022 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
9023 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
9024 vmcs_readl(CR0_GUEST_HOST_MASK));
9025 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
9026 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
9027 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
9028 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
9029 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
9030 {
845c5b40
PB
9031 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
9032 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
9033 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
9034 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
4eb64dce
PB
9035 }
9036 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
9037 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
9038 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
9039 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
9040 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
9041 vmcs_readl(GUEST_SYSENTER_ESP),
9042 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
9043 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
9044 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
9045 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
9046 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
9047 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
9048 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
9049 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
9050 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
9051 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
9052 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
9053 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
9054 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
845c5b40
PB
9055 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
9056 efer, vmcs_read64(GUEST_IA32_PAT));
9057 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
9058 vmcs_read64(GUEST_IA32_DEBUGCTL),
4eb64dce 9059 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
773e8a04
VK
9060 if (cpu_has_load_perf_global_ctrl &&
9061 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
9062 pr_err("PerfGlobCtl = 0x%016llx\n",
9063 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
4eb64dce 9064 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
845c5b40 9065 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
4eb64dce
PB
9066 pr_err("Interruptibility = %08x ActivityState = %08x\n",
9067 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
9068 vmcs_read32(GUEST_ACTIVITY_STATE));
9069 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
9070 pr_err("InterruptStatus = %04x\n",
9071 vmcs_read16(GUEST_INTR_STATUS));
9072
9073 pr_err("*** Host State ***\n");
9074 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
9075 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
9076 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
9077 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
9078 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
9079 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
9080 vmcs_read16(HOST_TR_SELECTOR));
9081 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
9082 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
9083 vmcs_readl(HOST_TR_BASE));
9084 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
9085 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
9086 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
9087 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
9088 vmcs_readl(HOST_CR4));
9089 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
9090 vmcs_readl(HOST_IA32_SYSENTER_ESP),
9091 vmcs_read32(HOST_IA32_SYSENTER_CS),
9092 vmcs_readl(HOST_IA32_SYSENTER_EIP));
9093 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
845c5b40
PB
9094 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
9095 vmcs_read64(HOST_IA32_EFER),
9096 vmcs_read64(HOST_IA32_PAT));
773e8a04
VK
9097 if (cpu_has_load_perf_global_ctrl &&
9098 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
9099 pr_err("PerfGlobCtl = 0x%016llx\n",
9100 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
4eb64dce
PB
9101
9102 pr_err("*** Control State ***\n");
9103 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
9104 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
9105 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
9106 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
9107 vmcs_read32(EXCEPTION_BITMAP),
9108 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
9109 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
9110 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
9111 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9112 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
9113 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
9114 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
9115 vmcs_read32(VM_EXIT_INTR_INFO),
9116 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
9117 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
9118 pr_err(" reason=%08x qualification=%016lx\n",
9119 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
9120 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
9121 vmcs_read32(IDT_VECTORING_INFO_FIELD),
9122 vmcs_read32(IDT_VECTORING_ERROR_CODE));
845c5b40 9123 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8cfe9866 9124 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
845c5b40
PB
9125 pr_err("TSC Multiplier = 0x%016llx\n",
9126 vmcs_read64(TSC_MULTIPLIER));
4eb64dce
PB
9127 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
9128 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
9129 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
9130 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
9131 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
845c5b40 9132 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
4eb64dce
PB
9133 n = vmcs_read32(CR3_TARGET_COUNT);
9134 for (i = 0; i + 1 < n; i += 4)
9135 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
9136 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
9137 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
9138 if (i < n)
9139 pr_err("CR3 target%u=%016lx\n",
9140 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
9141 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
9142 pr_err("PLE Gap=%08x Window=%08x\n",
9143 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
9144 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
9145 pr_err("Virtual processor ID = 0x%04x\n",
9146 vmcs_read16(VIRTUAL_PROCESSOR_ID));
9147}
9148
6aa8b732
AK
9149/*
9150 * The guest has exited. See if we can fix it or if we need userspace
9151 * assistance.
9152 */
851ba692 9153static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 9154{
29bd8a78 9155 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 9156 u32 exit_reason = vmx->exit_reason;
1155f76a 9157 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 9158
8b89fe1f
PB
9159 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
9160
843e4330
KH
9161 /*
9162 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
9163 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
9164 * querying dirty_bitmap, we only need to kick all vcpus out of guest
9165 * mode as if vcpus is in root mode, the PML buffer must has been
9166 * flushed already.
9167 */
9168 if (enable_pml)
54bf36aa 9169 vmx_flush_pml_buffer(vcpu);
843e4330 9170
80ced186 9171 /* If guest state is invalid, start emulating */
14168786 9172 if (vmx->emulation_required)
80ced186 9173 return handle_invalid_guest_state(vcpu);
1d5a4d9b 9174
7313c698
PB
9175 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
9176 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
644d711a 9177
5120702e 9178 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 9179 dump_vmcs();
5120702e
MG
9180 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
9181 vcpu->run->fail_entry.hardware_entry_failure_reason
9182 = exit_reason;
9183 return 0;
9184 }
9185
29bd8a78 9186 if (unlikely(vmx->fail)) {
851ba692
AK
9187 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
9188 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
9189 = vmcs_read32(VM_INSTRUCTION_ERROR);
9190 return 0;
9191 }
6aa8b732 9192
b9bf6882
XG
9193 /*
9194 * Note:
9195 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
9196 * delivery event since it indicates guest is accessing MMIO.
9197 * The vm-exit can be triggered again after return to guest that
9198 * will cause infinite loop.
9199 */
d77c26fc 9200 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 9201 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 9202 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b244c9fc 9203 exit_reason != EXIT_REASON_PML_FULL &&
b9bf6882
XG
9204 exit_reason != EXIT_REASON_TASK_SWITCH)) {
9205 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9206 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
70bcd708 9207 vcpu->run->internal.ndata = 3;
b9bf6882
XG
9208 vcpu->run->internal.data[0] = vectoring_info;
9209 vcpu->run->internal.data[1] = exit_reason;
70bcd708
PB
9210 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
9211 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
9212 vcpu->run->internal.ndata++;
9213 vcpu->run->internal.data[3] =
9214 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
9215 }
b9bf6882
XG
9216 return 0;
9217 }
3b86cd99 9218
d02fcf50 9219 if (unlikely(!enable_vnmi &&
8a1b4392
PB
9220 vmx->loaded_vmcs->soft_vnmi_blocked)) {
9221 if (vmx_interrupt_allowed(vcpu)) {
9222 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
9223 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
9224 vcpu->arch.nmi_pending) {
9225 /*
9226 * This CPU don't support us in finding the end of an
9227 * NMI-blocked window if the guest runs with IRQs
9228 * disabled. So we pull the trigger after 1 s of
9229 * futile waiting, but inform the user about this.
9230 */
9231 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
9232 "state on VCPU %d after 1 s timeout\n",
9233 __func__, vcpu->vcpu_id);
9234 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
9235 }
9236 }
9237
6aa8b732
AK
9238 if (exit_reason < kvm_vmx_max_exit_handlers
9239 && kvm_vmx_exit_handlers[exit_reason])
851ba692 9240 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 9241 else {
6c6c5e03
RK
9242 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
9243 exit_reason);
2bc19dc3
MT
9244 kvm_queue_exception(vcpu, UD_VECTOR);
9245 return 1;
6aa8b732 9246 }
6aa8b732
AK
9247}
9248
95ba8273 9249static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 9250{
a7c0b07d
WL
9251 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9252
9253 if (is_guest_mode(vcpu) &&
9254 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9255 return;
9256
95ba8273 9257 if (irr == -1 || tpr < irr) {
6e5d865c
YS
9258 vmcs_write32(TPR_THRESHOLD, 0);
9259 return;
9260 }
9261
95ba8273 9262 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
9263}
9264
8d14695f
YZ
9265static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
9266{
9267 u32 sec_exec_control;
9268
dccbfcf5
RK
9269 /* Postpone execution until vmcs01 is the current VMCS. */
9270 if (is_guest_mode(vcpu)) {
9271 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
9272 return;
9273 }
9274
f6e90f9e 9275 if (!cpu_has_vmx_virtualize_x2apic_mode())
8d14695f
YZ
9276 return;
9277
35754c98 9278 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
9279 return;
9280
9281 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9282
9283 if (set) {
9284 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9285 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
9286 } else {
9287 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
9288 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
a468f2db 9289 vmx_flush_tlb(vcpu, true);
8d14695f
YZ
9290 }
9291 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
9292
904e14fb 9293 vmx_update_msr_bitmap(vcpu);
8d14695f
YZ
9294}
9295
38b99173
TC
9296static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
9297{
9298 struct vcpu_vmx *vmx = to_vmx(vcpu);
9299
9300 /*
9301 * Currently we do not handle the nested case where L2 has an
9302 * APIC access page of its own; that page is still pinned.
9303 * Hence, we skip the case where the VCPU is in guest mode _and_
9304 * L1 prepared an APIC access page for L2.
9305 *
9306 * For the case where L1 and L2 share the same APIC access page
9307 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
9308 * in the vmcs12), this function will only update either the vmcs01
9309 * or the vmcs02. If the former, the vmcs02 will be updated by
9310 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
9311 * the next L2->L1 exit.
9312 */
9313 if (!is_guest_mode(vcpu) ||
4f2777bc 9314 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
fb6c8198 9315 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
38b99173 9316 vmcs_write64(APIC_ACCESS_ADDR, hpa);
a468f2db 9317 vmx_flush_tlb(vcpu, true);
fb6c8198 9318 }
38b99173
TC
9319}
9320
67c9dddc 9321static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
c7c9c56c
YZ
9322{
9323 u16 status;
9324 u8 old;
9325
67c9dddc
PB
9326 if (max_isr == -1)
9327 max_isr = 0;
c7c9c56c
YZ
9328
9329 status = vmcs_read16(GUEST_INTR_STATUS);
9330 old = status >> 8;
67c9dddc 9331 if (max_isr != old) {
c7c9c56c 9332 status &= 0xff;
67c9dddc 9333 status |= max_isr << 8;
c7c9c56c
YZ
9334 vmcs_write16(GUEST_INTR_STATUS, status);
9335 }
9336}
9337
9338static void vmx_set_rvi(int vector)
9339{
9340 u16 status;
9341 u8 old;
9342
4114c27d
WW
9343 if (vector == -1)
9344 vector = 0;
9345
c7c9c56c
YZ
9346 status = vmcs_read16(GUEST_INTR_STATUS);
9347 old = (u8)status & 0xff;
9348 if ((u8)vector != old) {
9349 status &= ~0xff;
9350 status |= (u8)vector;
9351 vmcs_write16(GUEST_INTR_STATUS, status);
9352 }
9353}
9354
9355static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
9356{
963fee16 9357 /*
851c1a18
LA
9358 * When running L2, updating RVI is only relevant when
9359 * vmcs12 virtual-interrupt-delivery enabled.
9360 * However, it can be enabled only when L1 also
9361 * intercepts external-interrupts and in that case
9362 * we should not update vmcs02 RVI but instead intercept
9363 * interrupt. Therefore, do nothing when running L2.
963fee16 9364 */
851c1a18
LA
9365 if (!is_guest_mode(vcpu))
9366 vmx_set_rvi(max_irr);
c7c9c56c
YZ
9367}
9368
76dfafd5 9369static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
810e6def
PB
9370{
9371 struct vcpu_vmx *vmx = to_vmx(vcpu);
76dfafd5 9372 int max_irr;
f27a85c4 9373 bool max_irr_updated;
810e6def 9374
76dfafd5
PB
9375 WARN_ON(!vcpu->arch.apicv_active);
9376 if (pi_test_on(&vmx->pi_desc)) {
9377 pi_clear_on(&vmx->pi_desc);
9378 /*
9379 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
9380 * But on x86 this is just a compiler barrier anyway.
9381 */
9382 smp_mb__after_atomic();
f27a85c4
LA
9383 max_irr_updated =
9384 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
9385
9386 /*
9387 * If we are running L2 and L1 has a new pending interrupt
9388 * which can be injected, we should re-evaluate
9389 * what should be done with this new L1 interrupt.
851c1a18
LA
9390 * If L1 intercepts external-interrupts, we should
9391 * exit from L2 to L1. Otherwise, interrupt should be
9392 * delivered directly to L2.
f27a85c4 9393 */
851c1a18
LA
9394 if (is_guest_mode(vcpu) && max_irr_updated) {
9395 if (nested_exit_on_intr(vcpu))
9396 kvm_vcpu_exiting_guest_mode(vcpu);
9397 else
9398 kvm_make_request(KVM_REQ_EVENT, vcpu);
9399 }
76dfafd5
PB
9400 } else {
9401 max_irr = kvm_lapic_find_highest_irr(vcpu);
9402 }
9403 vmx_hwapic_irr_update(vcpu, max_irr);
9404 return max_irr;
810e6def
PB
9405}
9406
6308630b 9407static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 9408{
d62caabb 9409 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
9410 return;
9411
c7c9c56c
YZ
9412 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
9413 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
9414 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
9415 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
9416}
9417
967235d3
PB
9418static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
9419{
9420 struct vcpu_vmx *vmx = to_vmx(vcpu);
9421
9422 pi_clear_on(&vmx->pi_desc);
9423 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
9424}
9425
51aa01d1 9426static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 9427{
48ae0fb4
JM
9428 u32 exit_intr_info = 0;
9429 u16 basic_exit_reason = (u16)vmx->exit_reason;
00eba012 9430
48ae0fb4
JM
9431 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
9432 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
00eba012
AK
9433 return;
9434
48ae0fb4
JM
9435 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9436 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9437 vmx->exit_intr_info = exit_intr_info;
a0861c02 9438
1261bfa3
WL
9439 /* if exit due to PF check for async PF */
9440 if (is_page_fault(exit_intr_info))
9441 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
9442
a0861c02 9443 /* Handle machine checks before interrupts are enabled */
48ae0fb4
JM
9444 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
9445 is_machine_check(exit_intr_info))
a0861c02
AK
9446 kvm_machine_check();
9447
20f65983 9448 /* We need to handle NMIs before interrupts are enabled */
ef85b673 9449 if (is_nmi(exit_intr_info)) {
dd60d217 9450 kvm_before_interrupt(&vmx->vcpu);
20f65983 9451 asm("int $2");
dd60d217 9452 kvm_after_interrupt(&vmx->vcpu);
ff9d07a0 9453 }
51aa01d1 9454}
20f65983 9455
a547c6db
YZ
9456static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
9457{
9458 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9459
a547c6db
YZ
9460 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
9461 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
9462 unsigned int vector;
9463 unsigned long entry;
9464 gate_desc *desc;
9465 struct vcpu_vmx *vmx = to_vmx(vcpu);
9466#ifdef CONFIG_X86_64
9467 unsigned long tmp;
9468#endif
9469
9470 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9471 desc = (gate_desc *)vmx->host_idt_base + vector;
64b163fa 9472 entry = gate_offset(desc);
a547c6db
YZ
9473 asm volatile(
9474#ifdef CONFIG_X86_64
9475 "mov %%" _ASM_SP ", %[sp]\n\t"
9476 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
9477 "push $%c[ss]\n\t"
9478 "push %[sp]\n\t"
9479#endif
9480 "pushf\n\t"
a547c6db 9481 __ASM_SIZE(push) " $%c[cs]\n\t"
c940a3fb 9482 CALL_NOSPEC
a547c6db
YZ
9483 :
9484#ifdef CONFIG_X86_64
3f62de5f 9485 [sp]"=&r"(tmp),
a547c6db 9486#endif
f5caf621 9487 ASM_CALL_CONSTRAINT
a547c6db 9488 :
c940a3fb 9489 THUNK_TARGET(entry),
a547c6db
YZ
9490 [ss]"i"(__KERNEL_DS),
9491 [cs]"i"(__KERNEL_CS)
9492 );
f2485b3e 9493 }
a547c6db 9494}
c207aee4 9495STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
a547c6db 9496
bc226f07 9497static bool vmx_has_emulated_msr(int index)
6d396b55 9498{
bc226f07
TL
9499 switch (index) {
9500 case MSR_IA32_SMBASE:
9501 /*
9502 * We cannot do SMM unless we can run the guest in big
9503 * real mode.
9504 */
9505 return enable_unrestricted_guest || emulate_invalid_guest_state;
9506 case MSR_AMD64_VIRT_SPEC_CTRL:
9507 /* This is AMD only. */
9508 return false;
9509 default:
9510 return true;
9511 }
6d396b55
PB
9512}
9513
da8999d3
LJ
9514static bool vmx_mpx_supported(void)
9515{
9516 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
9517 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
9518}
9519
55412b2e
WL
9520static bool vmx_xsaves_supported(void)
9521{
9522 return vmcs_config.cpu_based_2nd_exec_ctrl &
9523 SECONDARY_EXEC_XSAVES;
9524}
9525
51aa01d1
AK
9526static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
9527{
c5ca8e57 9528 u32 exit_intr_info;
51aa01d1
AK
9529 bool unblock_nmi;
9530 u8 vector;
9531 bool idtv_info_valid;
9532
9533 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 9534
d02fcf50 9535 if (enable_vnmi) {
8a1b4392
PB
9536 if (vmx->loaded_vmcs->nmi_known_unmasked)
9537 return;
9538 /*
9539 * Can't use vmx->exit_intr_info since we're not sure what
9540 * the exit reason is.
9541 */
9542 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9543 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
9544 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9545 /*
9546 * SDM 3: 27.7.1.2 (September 2008)
9547 * Re-set bit "block by NMI" before VM entry if vmexit caused by
9548 * a guest IRET fault.
9549 * SDM 3: 23.2.2 (September 2008)
9550 * Bit 12 is undefined in any of the following cases:
9551 * If the VM exit sets the valid bit in the IDT-vectoring
9552 * information field.
9553 * If the VM exit is due to a double fault.
9554 */
9555 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9556 vector != DF_VECTOR && !idtv_info_valid)
9557 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9558 GUEST_INTR_STATE_NMI);
9559 else
9560 vmx->loaded_vmcs->nmi_known_unmasked =
9561 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9562 & GUEST_INTR_STATE_NMI);
9563 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
9564 vmx->loaded_vmcs->vnmi_blocked_time +=
9565 ktime_to_ns(ktime_sub(ktime_get(),
9566 vmx->loaded_vmcs->entry_time));
51aa01d1
AK
9567}
9568
3ab66e8a 9569static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
9570 u32 idt_vectoring_info,
9571 int instr_len_field,
9572 int error_code_field)
51aa01d1 9573{
51aa01d1
AK
9574 u8 vector;
9575 int type;
9576 bool idtv_info_valid;
9577
9578 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 9579
3ab66e8a
JK
9580 vcpu->arch.nmi_injected = false;
9581 kvm_clear_exception_queue(vcpu);
9582 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
9583
9584 if (!idtv_info_valid)
9585 return;
9586
3ab66e8a 9587 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 9588
668f612f
AK
9589 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9590 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 9591
64a7ec06 9592 switch (type) {
37b96e98 9593 case INTR_TYPE_NMI_INTR:
3ab66e8a 9594 vcpu->arch.nmi_injected = true;
668f612f 9595 /*
7b4a25cb 9596 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
9597 * Clear bit "block by NMI" before VM entry if a NMI
9598 * delivery faulted.
668f612f 9599 */
3ab66e8a 9600 vmx_set_nmi_mask(vcpu, false);
37b96e98 9601 break;
37b96e98 9602 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 9603 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
9604 /* fall through */
9605 case INTR_TYPE_HARD_EXCEPTION:
35920a35 9606 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 9607 u32 err = vmcs_read32(error_code_field);
851eb667 9608 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 9609 } else
851eb667 9610 kvm_requeue_exception(vcpu, vector);
37b96e98 9611 break;
66fd3f7f 9612 case INTR_TYPE_SOFT_INTR:
3ab66e8a 9613 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 9614 /* fall through */
37b96e98 9615 case INTR_TYPE_EXT_INTR:
3ab66e8a 9616 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
9617 break;
9618 default:
9619 break;
f7d9238f 9620 }
cf393f75
AK
9621}
9622
83422e17
AK
9623static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9624{
3ab66e8a 9625 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
9626 VM_EXIT_INSTRUCTION_LEN,
9627 IDT_VECTORING_ERROR_CODE);
9628}
9629
b463a6f7
AK
9630static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9631{
3ab66e8a 9632 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
9633 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9634 VM_ENTRY_INSTRUCTION_LEN,
9635 VM_ENTRY_EXCEPTION_ERROR_CODE);
9636
9637 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9638}
9639
d7cd9796
GN
9640static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9641{
9642 int i, nr_msrs;
9643 struct perf_guest_switch_msr *msrs;
9644
9645 msrs = perf_guest_get_msrs(&nr_msrs);
9646
9647 if (!msrs)
9648 return;
9649
9650 for (i = 0; i < nr_msrs; i++)
9651 if (msrs[i].host == msrs[i].guest)
9652 clear_atomic_switch_msr(vmx, msrs[i].msr);
9653 else
9654 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9655 msrs[i].host);
9656}
9657
33365e7a 9658static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
64672c95
YJ
9659{
9660 struct vcpu_vmx *vmx = to_vmx(vcpu);
9661 u64 tscl;
9662 u32 delta_tsc;
9663
9664 if (vmx->hv_deadline_tsc == -1)
9665 return;
9666
9667 tscl = rdtsc();
9668 if (vmx->hv_deadline_tsc > tscl)
9669 /* sure to be 32 bit only because checked on set_hv_timer */
9670 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9671 cpu_preemption_timer_multi);
9672 else
9673 delta_tsc = 0;
9674
9675 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9676}
9677
a3b5ba49 9678static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 9679{
a2fa3e9f 9680 struct vcpu_vmx *vmx = to_vmx(vcpu);
773e8a04 9681 unsigned long cr3, cr4, evmcs_rsp;
104f226b 9682
8a1b4392 9683 /* Record the guest's net vcpu time for enforced NMI injections. */
d02fcf50 9684 if (unlikely(!enable_vnmi &&
8a1b4392
PB
9685 vmx->loaded_vmcs->soft_vnmi_blocked))
9686 vmx->loaded_vmcs->entry_time = ktime_get();
9687
104f226b
AK
9688 /* Don't enter VMX if guest state is invalid, let the exit handler
9689 start emulation until we arrive back to a valid state */
14168786 9690 if (vmx->emulation_required)
104f226b
AK
9691 return;
9692
a7653ecd
RK
9693 if (vmx->ple_window_dirty) {
9694 vmx->ple_window_dirty = false;
9695 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9696 }
9697
012f83cb
AG
9698 if (vmx->nested.sync_shadow_vmcs) {
9699 copy_vmcs12_to_shadow(vmx);
9700 vmx->nested.sync_shadow_vmcs = false;
9701 }
9702
104f226b
AK
9703 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9704 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9705 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9706 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9707
d6e41f11 9708 cr3 = __get_current_cr3_fast();
44889942 9709 if (unlikely(cr3 != vmx->loaded_vmcs->vmcs_host_cr3)) {
d6e41f11 9710 vmcs_writel(HOST_CR3, cr3);
44889942 9711 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
d6e41f11
AL
9712 }
9713
1e02ce4c 9714 cr4 = cr4_read_shadow();
44889942 9715 if (unlikely(cr4 != vmx->loaded_vmcs->vmcs_host_cr4)) {
d974baa3 9716 vmcs_writel(HOST_CR4, cr4);
44889942 9717 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
d974baa3
AL
9718 }
9719
104f226b
AK
9720 /* When single-stepping over STI and MOV SS, we must clear the
9721 * corresponding interruptibility bits in the guest state. Otherwise
9722 * vmentry fails as it then expects bit 14 (BS) in pending debug
9723 * exceptions being set, but that's not correct for the guest debugging
9724 * case. */
9725 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9726 vmx_set_interrupt_shadow(vcpu, 0);
9727
b9dd21e1
PB
9728 if (static_cpu_has(X86_FEATURE_PKU) &&
9729 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
9730 vcpu->arch.pkru != vmx->host_pkru)
9731 __write_pkru(vcpu->arch.pkru);
1be0e61c 9732
d7cd9796
GN
9733 atomic_switch_perf_msrs(vmx);
9734
64672c95
YJ
9735 vmx_arm_hv_timer(vcpu);
9736
d28b387f
KA
9737 /*
9738 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
9739 * it's non-zero. Since vmentry is serialising on affected CPUs, there
9740 * is no need to worry about the conditional branch over the wrmsr
9741 * being speculatively taken.
9742 */
ccbcd267 9743 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
d28b387f 9744
d462b819 9745 vmx->__launched = vmx->loaded_vmcs->launched;
773e8a04
VK
9746
9747 evmcs_rsp = static_branch_unlikely(&enable_evmcs) ?
9748 (unsigned long)&current_evmcs->host_rsp : 0;
9749
104f226b 9750 asm(
6aa8b732 9751 /* Store host registers */
b188c81f
AK
9752 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9753 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9754 "push %%" _ASM_CX " \n\t"
9755 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 9756 "je 1f \n\t"
b188c81f 9757 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
773e8a04
VK
9758 /* Avoid VMWRITE when Enlightened VMCS is in use */
9759 "test %%" _ASM_SI ", %%" _ASM_SI " \n\t"
9760 "jz 2f \n\t"
9761 "mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t"
9762 "jmp 1f \n\t"
9763 "2: \n\t"
4ecac3fd 9764 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 9765 "1: \n\t"
d3edefc0 9766 /* Reload cr2 if changed */
b188c81f
AK
9767 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9768 "mov %%cr2, %%" _ASM_DX " \n\t"
9769 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
773e8a04 9770 "je 3f \n\t"
b188c81f 9771 "mov %%" _ASM_AX", %%cr2 \n\t"
773e8a04 9772 "3: \n\t"
6aa8b732 9773 /* Check if vmlaunch of vmresume is needed */
e08aa78a 9774 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 9775 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
9776 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9777 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9778 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9779 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9780 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9781 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 9782#ifdef CONFIG_X86_64
e08aa78a
AK
9783 "mov %c[r8](%0), %%r8 \n\t"
9784 "mov %c[r9](%0), %%r9 \n\t"
9785 "mov %c[r10](%0), %%r10 \n\t"
9786 "mov %c[r11](%0), %%r11 \n\t"
9787 "mov %c[r12](%0), %%r12 \n\t"
9788 "mov %c[r13](%0), %%r13 \n\t"
9789 "mov %c[r14](%0), %%r14 \n\t"
9790 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 9791#endif
b188c81f 9792 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 9793
6aa8b732 9794 /* Enter guest mode */
83287ea4 9795 "jne 1f \n\t"
4ecac3fd 9796 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
9797 "jmp 2f \n\t"
9798 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9799 "2: "
6aa8b732 9800 /* Save guest registers, load host registers, keep flags */
b188c81f 9801 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 9802 "pop %0 \n\t"
0cb5b306 9803 "setbe %c[fail](%0)\n\t"
b188c81f
AK
9804 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9805 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9806 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9807 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9808 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9809 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9810 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 9811#ifdef CONFIG_X86_64
e08aa78a
AK
9812 "mov %%r8, %c[r8](%0) \n\t"
9813 "mov %%r9, %c[r9](%0) \n\t"
9814 "mov %%r10, %c[r10](%0) \n\t"
9815 "mov %%r11, %c[r11](%0) \n\t"
9816 "mov %%r12, %c[r12](%0) \n\t"
9817 "mov %%r13, %c[r13](%0) \n\t"
9818 "mov %%r14, %c[r14](%0) \n\t"
9819 "mov %%r15, %c[r15](%0) \n\t"
0cb5b306
JM
9820 "xor %%r8d, %%r8d \n\t"
9821 "xor %%r9d, %%r9d \n\t"
9822 "xor %%r10d, %%r10d \n\t"
9823 "xor %%r11d, %%r11d \n\t"
9824 "xor %%r12d, %%r12d \n\t"
9825 "xor %%r13d, %%r13d \n\t"
9826 "xor %%r14d, %%r14d \n\t"
9827 "xor %%r15d, %%r15d \n\t"
6aa8b732 9828#endif
b188c81f
AK
9829 "mov %%cr2, %%" _ASM_AX " \n\t"
9830 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 9831
0cb5b306
JM
9832 "xor %%eax, %%eax \n\t"
9833 "xor %%ebx, %%ebx \n\t"
9834 "xor %%esi, %%esi \n\t"
9835 "xor %%edi, %%edi \n\t"
b188c81f 9836 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
83287ea4
AK
9837 ".pushsection .rodata \n\t"
9838 ".global vmx_return \n\t"
9839 "vmx_return: " _ASM_PTR " 2b \n\t"
9840 ".popsection"
773e8a04 9841 : : "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp),
d462b819 9842 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 9843 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 9844 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
9845 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9846 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9847 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9848 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9849 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9850 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9851 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 9852#ifdef CONFIG_X86_64
ad312c7c
ZX
9853 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9854 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9855 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9856 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9857 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9858 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9859 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9860 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 9861#endif
40712fae
AK
9862 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9863 [wordsize]"i"(sizeof(ulong))
c2036300
LV
9864 : "cc", "memory"
9865#ifdef CONFIG_X86_64
773e8a04 9866 , "rax", "rbx", "rdi"
c2036300 9867 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f 9868#else
773e8a04 9869 , "eax", "ebx", "edi"
c2036300
LV
9870#endif
9871 );
6aa8b732 9872
d28b387f
KA
9873 /*
9874 * We do not use IBRS in the kernel. If this vCPU has used the
9875 * SPEC_CTRL MSR it may have left it on; save the value and
9876 * turn it off. This is much more efficient than blindly adding
9877 * it to the atomic save/restore list. Especially as the former
9878 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
9879 *
9880 * For non-nested case:
9881 * If the L01 MSR bitmap does not intercept the MSR, then we need to
9882 * save it.
9883 *
9884 * For nested case:
9885 * If the L02 MSR bitmap does not intercept the MSR, then we need to
9886 * save it.
9887 */
946fbbc1 9888 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
ecb586bd 9889 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
d28b387f 9890
ccbcd267 9891 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
d28b387f 9892
117cc7a9
DW
9893 /* Eliminate branch target predictions from guest mode */
9894 vmexit_fill_RSB();
9895
773e8a04
VK
9896 /* All fields are clean at this point */
9897 if (static_branch_unlikely(&enable_evmcs))
9898 current_evmcs->hv_clean_fields |=
9899 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
9900
2a7921b7 9901 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
74c55931
WL
9902 if (vmx->host_debugctlmsr)
9903 update_debugctlmsr(vmx->host_debugctlmsr);
2a7921b7 9904
aa67f609
AK
9905#ifndef CONFIG_X86_64
9906 /*
9907 * The sysexit path does not restore ds/es, so we must set them to
9908 * a reasonable value ourselves.
9909 *
9910 * We can't defer this to vmx_load_host_state() since that function
9911 * may be executed in interrupt context, which saves and restore segments
9912 * around it, nullifying its effect.
9913 */
9914 loadsegment(ds, __USER_DS);
9915 loadsegment(es, __USER_DS);
9916#endif
9917
6de4f3ad 9918 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 9919 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 9920 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 9921 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 9922 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
9923 vcpu->arch.regs_dirty = 0;
9924
1be0e61c
XG
9925 /*
9926 * eager fpu is enabled if PKEY is supported and CR4 is switched
9927 * back on host, so it is safe to read guest PKRU from current
9928 * XSAVE.
9929 */
b9dd21e1
PB
9930 if (static_cpu_has(X86_FEATURE_PKU) &&
9931 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
9932 vcpu->arch.pkru = __read_pkru();
9933 if (vcpu->arch.pkru != vmx->host_pkru)
1be0e61c 9934 __write_pkru(vmx->host_pkru);
1be0e61c
XG
9935 }
9936
e0b890d3 9937 vmx->nested.nested_run_pending = 0;
b060ca3b
JM
9938 vmx->idt_vectoring_info = 0;
9939
9940 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
9941 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9942 return;
9943
9944 vmx->loaded_vmcs->launched = 1;
9945 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
e0b890d3 9946
51aa01d1
AK
9947 vmx_complete_atomic_exit(vmx);
9948 vmx_recover_nmi_blocking(vmx);
cf393f75 9949 vmx_complete_interrupts(vmx);
6aa8b732 9950}
c207aee4 9951STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
6aa8b732 9952
434a1e94
SC
9953static struct kvm *vmx_vm_alloc(void)
9954{
40bbb9d0
SC
9955 struct kvm_vmx *kvm_vmx = kzalloc(sizeof(struct kvm_vmx), GFP_KERNEL);
9956 return &kvm_vmx->kvm;
434a1e94
SC
9957}
9958
9959static void vmx_vm_free(struct kvm *kvm)
9960{
40bbb9d0 9961 kfree(to_kvm_vmx(kvm));
434a1e94
SC
9962}
9963
1279a6b1 9964static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
4fa7734c
PB
9965{
9966 struct vcpu_vmx *vmx = to_vmx(vcpu);
9967 int cpu;
9968
1279a6b1 9969 if (vmx->loaded_vmcs == vmcs)
4fa7734c
PB
9970 return;
9971
9972 cpu = get_cpu();
1279a6b1 9973 vmx->loaded_vmcs = vmcs;
4fa7734c
PB
9974 vmx_vcpu_put(vcpu);
9975 vmx_vcpu_load(vcpu, cpu);
4fa7734c
PB
9976 put_cpu();
9977}
9978
2f1fe811
JM
9979/*
9980 * Ensure that the current vmcs of the logical processor is the
9981 * vmcs01 of the vcpu before calling free_nested().
9982 */
9983static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9984{
9985 struct vcpu_vmx *vmx = to_vmx(vcpu);
2f1fe811 9986
ec7660cc 9987 vcpu_load(vcpu);
1279a6b1 9988 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2f1fe811
JM
9989 free_nested(vmx);
9990 vcpu_put(vcpu);
9991}
9992
6aa8b732
AK
9993static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9994{
fb3f0f51
RR
9995 struct vcpu_vmx *vmx = to_vmx(vcpu);
9996
843e4330 9997 if (enable_pml)
a3eaa864 9998 vmx_destroy_pml_buffer(vmx);
991e7a0e 9999 free_vpid(vmx->vpid);
4fa7734c 10000 leave_guest_mode(vcpu);
2f1fe811 10001 vmx_free_vcpu_nested(vcpu);
4fa7734c 10002 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
10003 kfree(vmx->guest_msrs);
10004 kvm_vcpu_uninit(vcpu);
a4770347 10005 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
10006}
10007
fb3f0f51 10008static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 10009{
fb3f0f51 10010 int err;
c16f862d 10011 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
904e14fb 10012 unsigned long *msr_bitmap;
15ad7146 10013 int cpu;
6aa8b732 10014
a2fa3e9f 10015 if (!vmx)
fb3f0f51
RR
10016 return ERR_PTR(-ENOMEM);
10017
991e7a0e 10018 vmx->vpid = allocate_vpid();
2384d2b3 10019
fb3f0f51
RR
10020 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
10021 if (err)
10022 goto free_vcpu;
965b58a5 10023
4e59516a
PF
10024 err = -ENOMEM;
10025
10026 /*
10027 * If PML is turned on, failure on enabling PML just results in failure
10028 * of creating the vcpu, therefore we can simplify PML logic (by
10029 * avoiding dealing with cases, such as enabling PML partially on vcpus
10030 * for the guest, etc.
10031 */
10032 if (enable_pml) {
10033 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
10034 if (!vmx->pml_pg)
10035 goto uninit_vcpu;
10036 }
10037
a2fa3e9f 10038 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
10039 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
10040 > PAGE_SIZE);
0123be42 10041
4e59516a
PF
10042 if (!vmx->guest_msrs)
10043 goto free_pml;
965b58a5 10044
f21f165e
PB
10045 err = alloc_loaded_vmcs(&vmx->vmcs01);
10046 if (err < 0)
fb3f0f51 10047 goto free_msrs;
a2fa3e9f 10048
904e14fb
PB
10049 msr_bitmap = vmx->vmcs01.msr_bitmap;
10050 vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
10051 vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
10052 vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
10053 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
10054 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
10055 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
10056 vmx->msr_bitmap_mode = 0;
10057
f21f165e 10058 vmx->loaded_vmcs = &vmx->vmcs01;
15ad7146
AK
10059 cpu = get_cpu();
10060 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 10061 vmx->vcpu.cpu = cpu;
12d79917 10062 vmx_vcpu_setup(vmx);
fb3f0f51 10063 vmx_vcpu_put(&vmx->vcpu);
15ad7146 10064 put_cpu();
35754c98 10065 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
10066 err = alloc_apic_access_page(kvm);
10067 if (err)
5e4a0b3c 10068 goto free_vmcs;
a63cb560 10069 }
fb3f0f51 10070
e90008df 10071 if (enable_ept && !enable_unrestricted_guest) {
f51770ed
TC
10072 err = init_rmode_identity_map(kvm);
10073 if (err)
93ea5388 10074 goto free_vmcs;
b927a3ce 10075 }
b7ebfb05 10076
5c614b35 10077 if (nested) {
6677f3da
PB
10078 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
10079 kvm_vcpu_apicv_active(&vmx->vcpu));
5c614b35
WL
10080 vmx->nested.vpid02 = allocate_vpid();
10081 }
b9c237bb 10082
705699a1 10083 vmx->nested.posted_intr_nv = -1;
a9d30f33 10084 vmx->nested.current_vmptr = -1ull;
a9d30f33 10085
37e4c997
HZ
10086 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
10087
31afb2ea
PB
10088 /*
10089 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
10090 * or POSTED_INTR_WAKEUP_VECTOR.
10091 */
10092 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
10093 vmx->pi_desc.sn = 1;
10094
fb3f0f51
RR
10095 return &vmx->vcpu;
10096
10097free_vmcs:
5c614b35 10098 free_vpid(vmx->nested.vpid02);
5f3fbc34 10099 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 10100free_msrs:
fb3f0f51 10101 kfree(vmx->guest_msrs);
4e59516a
PF
10102free_pml:
10103 vmx_destroy_pml_buffer(vmx);
fb3f0f51
RR
10104uninit_vcpu:
10105 kvm_vcpu_uninit(&vmx->vcpu);
10106free_vcpu:
991e7a0e 10107 free_vpid(vmx->vpid);
a4770347 10108 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 10109 return ERR_PTR(err);
6aa8b732
AK
10110}
10111
b31c114b
WL
10112static int vmx_vm_init(struct kvm *kvm)
10113{
10114 if (!ple_gap)
10115 kvm->arch.pause_in_guest = true;
10116 return 0;
10117}
10118
002c7f7c
YS
10119static void __init vmx_check_processor_compat(void *rtn)
10120{
10121 struct vmcs_config vmcs_conf;
10122
10123 *(int *)rtn = 0;
10124 if (setup_vmcs_config(&vmcs_conf) < 0)
10125 *(int *)rtn = -EIO;
1389309c 10126 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, enable_apicv);
002c7f7c
YS
10127 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
10128 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
10129 smp_processor_id());
10130 *(int *)rtn = -EIO;
10131 }
10132}
10133
4b12f0de 10134static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 10135{
b18d5431
XG
10136 u8 cache;
10137 u64 ipat = 0;
4b12f0de 10138
522c68c4 10139 /* For VT-d and EPT combination
606decd6 10140 * 1. MMIO: always map as UC
522c68c4
SY
10141 * 2. EPT with VT-d:
10142 * a. VT-d without snooping control feature: can't guarantee the
606decd6 10143 * result, try to trust guest.
522c68c4
SY
10144 * b. VT-d with snooping control feature: snooping control feature of
10145 * VT-d engine can guarantee the cache correctness. Just set it
10146 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 10147 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
10148 * consistent with host MTRR
10149 */
606decd6
PB
10150 if (is_mmio) {
10151 cache = MTRR_TYPE_UNCACHABLE;
10152 goto exit;
10153 }
10154
10155 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
10156 ipat = VMX_EPT_IPAT_BIT;
10157 cache = MTRR_TYPE_WRBACK;
10158 goto exit;
10159 }
10160
10161 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
10162 ipat = VMX_EPT_IPAT_BIT;
0da029ed 10163 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
10164 cache = MTRR_TYPE_WRBACK;
10165 else
10166 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
10167 goto exit;
10168 }
10169
ff53604b 10170 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
10171
10172exit:
10173 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
10174}
10175
17cc3935 10176static int vmx_get_lpage_level(void)
344f414f 10177{
878403b7
SY
10178 if (enable_ept && !cpu_has_vmx_ept_1g_page())
10179 return PT_DIRECTORY_LEVEL;
10180 else
10181 /* For shadow and EPT supported 1GB page */
10182 return PT_PDPE_LEVEL;
344f414f
JR
10183}
10184
feda805f
XG
10185static void vmcs_set_secondary_exec_control(u32 new_ctl)
10186{
10187 /*
10188 * These bits in the secondary execution controls field
10189 * are dynamic, the others are mostly based on the hypervisor
10190 * architecture and the guest's CPUID. Do not touch the
10191 * dynamic bits.
10192 */
10193 u32 mask =
10194 SECONDARY_EXEC_SHADOW_VMCS |
10195 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
0367f205
PB
10196 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10197 SECONDARY_EXEC_DESC;
feda805f
XG
10198
10199 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
10200
10201 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
10202 (new_ctl & ~mask) | (cur_ctl & mask));
10203}
10204
8322ebbb
DM
10205/*
10206 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
10207 * (indicating "allowed-1") if they are supported in the guest's CPUID.
10208 */
10209static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
10210{
10211 struct vcpu_vmx *vmx = to_vmx(vcpu);
10212 struct kvm_cpuid_entry2 *entry;
10213
6677f3da
PB
10214 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
10215 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
8322ebbb
DM
10216
10217#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
10218 if (entry && (entry->_reg & (_cpuid_mask))) \
6677f3da 10219 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
8322ebbb
DM
10220} while (0)
10221
10222 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
10223 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
10224 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
10225 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
10226 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
10227 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
10228 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
10229 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
10230 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
10231 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
10232 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
10233 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
10234 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
10235 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
10236 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
10237
10238 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
10239 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
10240 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
10241 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
10242 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
c4ad77e0 10243 cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP));
8322ebbb
DM
10244
10245#undef cr4_fixed1_update
10246}
10247
0e851880
SY
10248static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
10249{
4e47c7a6 10250 struct vcpu_vmx *vmx = to_vmx(vcpu);
4e47c7a6 10251
80154d77
PB
10252 if (cpu_has_secondary_exec_ctrls()) {
10253 vmx_compute_secondary_exec_control(vmx);
10254 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
ad756a16 10255 }
8b3e34e4 10256
37e4c997
HZ
10257 if (nested_vmx_allowed(vcpu))
10258 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
10259 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
10260 else
10261 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
10262 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
8322ebbb
DM
10263
10264 if (nested_vmx_allowed(vcpu))
10265 nested_vmx_cr_fixed1_bits_update(vcpu);
0e851880
SY
10266}
10267
d4330ef2
JR
10268static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
10269{
7b8050f5
NHE
10270 if (func == 1 && nested)
10271 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
10272}
10273
25d92081
YZ
10274static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
10275 struct x86_exception *fault)
10276{
533558bc 10277 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
c5f983f6 10278 struct vcpu_vmx *vmx = to_vmx(vcpu);
533558bc 10279 u32 exit_reason;
c5f983f6 10280 unsigned long exit_qualification = vcpu->arch.exit_qualification;
25d92081 10281
c5f983f6
BD
10282 if (vmx->nested.pml_full) {
10283 exit_reason = EXIT_REASON_PML_FULL;
10284 vmx->nested.pml_full = false;
10285 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
10286 } else if (fault->error_code & PFERR_RSVD_MASK)
533558bc 10287 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 10288 else
533558bc 10289 exit_reason = EXIT_REASON_EPT_VIOLATION;
c5f983f6
BD
10290
10291 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
25d92081
YZ
10292 vmcs12->guest_physical_address = fault->address;
10293}
10294
995f00a6
PF
10295static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
10296{
bb97a016 10297 return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
995f00a6
PF
10298}
10299
155a97a3
NHE
10300/* Callbacks for nested_ept_init_mmu_context: */
10301
10302static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
10303{
10304 /* return the page table to be shadowed - in our case, EPT12 */
10305 return get_vmcs12(vcpu)->ept_pointer;
10306}
10307
ae1e2d10 10308static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 10309{
ad896af0 10310 WARN_ON(mmu_is_nested(vcpu));
a057e0e2 10311 if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
ae1e2d10
PB
10312 return 1;
10313
10314 kvm_mmu_unload(vcpu);
ad896af0 10315 kvm_init_shadow_ept_mmu(vcpu,
6677f3da 10316 to_vmx(vcpu)->nested.msrs.ept_caps &
ae1e2d10 10317 VMX_EPT_EXECUTE_ONLY_BIT,
a057e0e2 10318 nested_ept_ad_enabled(vcpu));
155a97a3
NHE
10319 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
10320 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
10321 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
10322
10323 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
ae1e2d10 10324 return 0;
155a97a3
NHE
10325}
10326
10327static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
10328{
10329 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
10330}
10331
19d5f10b
EK
10332static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
10333 u16 error_code)
10334{
10335 bool inequality, bit;
10336
10337 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
10338 inequality =
10339 (error_code & vmcs12->page_fault_error_code_mask) !=
10340 vmcs12->page_fault_error_code_match;
10341 return inequality ^ bit;
10342}
10343
feaf0c7d
GN
10344static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
10345 struct x86_exception *fault)
10346{
10347 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10348
10349 WARN_ON(!is_guest_mode(vcpu));
10350
305d0ab4
WL
10351 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
10352 !to_vmx(vcpu)->nested.nested_run_pending) {
b96fb439
PB
10353 vmcs12->vm_exit_intr_error_code = fault->error_code;
10354 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10355 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
10356 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
10357 fault->address);
7313c698 10358 } else {
feaf0c7d 10359 kvm_inject_page_fault(vcpu, fault);
7313c698 10360 }
feaf0c7d
GN
10361}
10362
c992384b
PB
10363static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
10364 struct vmcs12 *vmcs12);
6beb7bd5
JM
10365
10366static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
a2bcba50
WL
10367 struct vmcs12 *vmcs12)
10368{
10369 struct vcpu_vmx *vmx = to_vmx(vcpu);
5e2f30b7 10370 struct page *page;
6beb7bd5 10371 u64 hpa;
a2bcba50
WL
10372
10373 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a2bcba50
WL
10374 /*
10375 * Translate L1 physical address to host physical
10376 * address for vmcs02. Keep the page pinned, so this
10377 * physical address remains valid. We keep a reference
10378 * to it so we can release it later.
10379 */
5e2f30b7 10380 if (vmx->nested.apic_access_page) { /* shouldn't happen */
53a70daf 10381 kvm_release_page_dirty(vmx->nested.apic_access_page);
5e2f30b7
DH
10382 vmx->nested.apic_access_page = NULL;
10383 }
10384 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
6beb7bd5
JM
10385 /*
10386 * If translation failed, no matter: This feature asks
10387 * to exit when accessing the given address, and if it
10388 * can never be accessed, this feature won't do
10389 * anything anyway.
10390 */
5e2f30b7
DH
10391 if (!is_error_page(page)) {
10392 vmx->nested.apic_access_page = page;
6beb7bd5
JM
10393 hpa = page_to_phys(vmx->nested.apic_access_page);
10394 vmcs_write64(APIC_ACCESS_ADDR, hpa);
10395 } else {
10396 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
10397 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
10398 }
10399 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
10400 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
10401 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
10402 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
10403 kvm_vcpu_reload_apic_access_page(vcpu);
a2bcba50 10404 }
a7c0b07d
WL
10405
10406 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5e2f30b7 10407 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
53a70daf 10408 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
5e2f30b7
DH
10409 vmx->nested.virtual_apic_page = NULL;
10410 }
10411 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
a7c0b07d
WL
10412
10413 /*
6beb7bd5
JM
10414 * If translation failed, VM entry will fail because
10415 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
10416 * Failing the vm entry is _not_ what the processor
10417 * does but it's basically the only possibility we
10418 * have. We could still enter the guest if CR8 load
10419 * exits are enabled, CR8 store exits are enabled, and
10420 * virtualize APIC access is disabled; in this case
10421 * the processor would never use the TPR shadow and we
10422 * could simply clear the bit from the execution
10423 * control. But such a configuration is useless, so
10424 * let's keep the code simple.
a7c0b07d 10425 */
5e2f30b7
DH
10426 if (!is_error_page(page)) {
10427 vmx->nested.virtual_apic_page = page;
6beb7bd5
JM
10428 hpa = page_to_phys(vmx->nested.virtual_apic_page);
10429 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
10430 }
a7c0b07d
WL
10431 }
10432
705699a1 10433 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
10434 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
10435 kunmap(vmx->nested.pi_desc_page);
53a70daf 10436 kvm_release_page_dirty(vmx->nested.pi_desc_page);
5e2f30b7 10437 vmx->nested.pi_desc_page = NULL;
705699a1 10438 }
5e2f30b7
DH
10439 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
10440 if (is_error_page(page))
6beb7bd5 10441 return;
5e2f30b7
DH
10442 vmx->nested.pi_desc_page = page;
10443 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
705699a1
WV
10444 vmx->nested.pi_desc =
10445 (struct pi_desc *)((void *)vmx->nested.pi_desc +
10446 (unsigned long)(vmcs12->posted_intr_desc_addr &
10447 (PAGE_SIZE - 1)));
6beb7bd5
JM
10448 vmcs_write64(POSTED_INTR_DESC_ADDR,
10449 page_to_phys(vmx->nested.pi_desc_page) +
10450 (unsigned long)(vmcs12->posted_intr_desc_addr &
10451 (PAGE_SIZE - 1)));
705699a1 10452 }
d4667ca1 10453 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3712caeb
KA
10454 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
10455 CPU_BASED_USE_MSR_BITMAPS);
6beb7bd5
JM
10456 else
10457 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
10458 CPU_BASED_USE_MSR_BITMAPS);
a2bcba50
WL
10459}
10460
f4124500
JK
10461static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
10462{
10463 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
10464 struct vcpu_vmx *vmx = to_vmx(vcpu);
10465
10466 if (vcpu->arch.virtual_tsc_khz == 0)
10467 return;
10468
10469 /* Make sure short timeouts reliably trigger an immediate vmexit.
10470 * hrtimer_start does not guarantee this. */
10471 if (preemption_timeout <= 1) {
10472 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
10473 return;
10474 }
10475
10476 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10477 preemption_timeout *= 1000000;
10478 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
10479 hrtimer_start(&vmx->nested.preemption_timer,
10480 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
10481}
10482
56a20510
JM
10483static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
10484 struct vmcs12 *vmcs12)
10485{
10486 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
10487 return 0;
10488
10489 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
10490 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
10491 return -EINVAL;
10492
10493 return 0;
10494}
10495
3af18d9c
WV
10496static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
10497 struct vmcs12 *vmcs12)
10498{
3af18d9c
WV
10499 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
10500 return 0;
10501
5fa99cbe 10502 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
3af18d9c
WV
10503 return -EINVAL;
10504
10505 return 0;
10506}
10507
712b12d7
JM
10508static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
10509 struct vmcs12 *vmcs12)
10510{
10511 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10512 return 0;
10513
10514 if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
10515 return -EINVAL;
10516
10517 return 0;
10518}
10519
3af18d9c
WV
10520/*
10521 * Merge L0's and L1's MSR bitmap, return false to indicate that
10522 * we do not use the hardware.
10523 */
c992384b
PB
10524static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
10525 struct vmcs12 *vmcs12)
3af18d9c 10526{
82f0dd4b 10527 int msr;
f2b93280 10528 struct page *page;
d048c098 10529 unsigned long *msr_bitmap_l1;
904e14fb 10530 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
15d45071 10531 /*
d28b387f 10532 * pred_cmd & spec_ctrl are trying to verify two things:
15d45071
AR
10533 *
10534 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
10535 * ensures that we do not accidentally generate an L02 MSR bitmap
10536 * from the L12 MSR bitmap that is too permissive.
10537 * 2. That L1 or L2s have actually used the MSR. This avoids
10538 * unnecessarily merging of the bitmap if the MSR is unused. This
10539 * works properly because we only update the L01 MSR bitmap lazily.
10540 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
10541 * updated to reflect this when L1 (or its L2s) actually write to
10542 * the MSR.
10543 */
206587a9
KA
10544 bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
10545 bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
f2b93280 10546
c992384b
PB
10547 /* Nothing to do if the MSR bitmap is not in use. */
10548 if (!cpu_has_vmx_msr_bitmap() ||
10549 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
10550 return false;
10551
15d45071 10552 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
d28b387f 10553 !pred_cmd && !spec_ctrl)
f2b93280
WV
10554 return false;
10555
5e2f30b7
DH
10556 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
10557 if (is_error_page(page))
f2b93280 10558 return false;
f2b93280 10559
c992384b
PB
10560 msr_bitmap_l1 = (unsigned long *)kmap(page);
10561 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
10562 /*
10563 * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
10564 * just lets the processor take the value from the virtual-APIC page;
10565 * take those 256 bits directly from the L1 bitmap.
10566 */
10567 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
10568 unsigned word = msr / BITS_PER_LONG;
10569 msr_bitmap_l0[word] = msr_bitmap_l1[word];
10570 msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
10571 }
10572 } else {
10573 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
10574 unsigned word = msr / BITS_PER_LONG;
10575 msr_bitmap_l0[word] = ~0;
10576 msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
10577 }
10578 }
d048c098 10579
c992384b
PB
10580 nested_vmx_disable_intercept_for_msr(
10581 msr_bitmap_l1, msr_bitmap_l0,
d7231e75 10582 X2APIC_MSR(APIC_TASKPRI),
c992384b 10583 MSR_TYPE_W);
d048c098 10584
c992384b 10585 if (nested_cpu_has_vid(vmcs12)) {
d048c098 10586 nested_vmx_disable_intercept_for_msr(
c992384b 10587 msr_bitmap_l1, msr_bitmap_l0,
d7231e75 10588 X2APIC_MSR(APIC_EOI),
c992384b
PB
10589 MSR_TYPE_W);
10590 nested_vmx_disable_intercept_for_msr(
10591 msr_bitmap_l1, msr_bitmap_l0,
d7231e75 10592 X2APIC_MSR(APIC_SELF_IPI),
c992384b 10593 MSR_TYPE_W);
82f0dd4b 10594 }
15d45071 10595
d28b387f
KA
10596 if (spec_ctrl)
10597 nested_vmx_disable_intercept_for_msr(
10598 msr_bitmap_l1, msr_bitmap_l0,
10599 MSR_IA32_SPEC_CTRL,
10600 MSR_TYPE_R | MSR_TYPE_W);
10601
15d45071
AR
10602 if (pred_cmd)
10603 nested_vmx_disable_intercept_for_msr(
10604 msr_bitmap_l1, msr_bitmap_l0,
10605 MSR_IA32_PRED_CMD,
10606 MSR_TYPE_W);
10607
f2b93280 10608 kunmap(page);
53a70daf 10609 kvm_release_page_clean(page);
f2b93280
WV
10610
10611 return true;
10612}
10613
f0f4cf5b
KS
10614static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
10615 struct vmcs12 *vmcs12)
10616{
10617 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
10618 !page_address_valid(vcpu, vmcs12->apic_access_addr))
10619 return -EINVAL;
10620 else
10621 return 0;
10622}
10623
f2b93280
WV
10624static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
10625 struct vmcs12 *vmcs12)
10626{
82f0dd4b 10627 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 10628 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
10629 !nested_cpu_has_vid(vmcs12) &&
10630 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
10631 return 0;
10632
10633 /*
10634 * If virtualize x2apic mode is enabled,
10635 * virtualize apic access must be disabled.
10636 */
82f0dd4b
WV
10637 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10638 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
10639 return -EINVAL;
10640
608406e2
WV
10641 /*
10642 * If virtual interrupt delivery is enabled,
10643 * we must exit on external interrupts.
10644 */
10645 if (nested_cpu_has_vid(vmcs12) &&
10646 !nested_exit_on_intr(vcpu))
10647 return -EINVAL;
10648
705699a1
WV
10649 /*
10650 * bits 15:8 should be zero in posted_intr_nv,
10651 * the descriptor address has been already checked
10652 * in nested_get_vmcs12_pages.
10653 */
10654 if (nested_cpu_has_posted_intr(vmcs12) &&
10655 (!nested_cpu_has_vid(vmcs12) ||
10656 !nested_exit_intr_ack_set(vcpu) ||
10657 vmcs12->posted_intr_nv & 0xff00))
10658 return -EINVAL;
10659
f2b93280
WV
10660 /* tpr shadow is needed by all apicv features. */
10661 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10662 return -EINVAL;
10663
10664 return 0;
3af18d9c
WV
10665}
10666
e9ac033e
EK
10667static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10668 unsigned long count_field,
92d71bc6 10669 unsigned long addr_field)
ff651cb6 10670{
92d71bc6 10671 int maxphyaddr;
e9ac033e
EK
10672 u64 count, addr;
10673
10674 if (vmcs12_read_any(vcpu, count_field, &count) ||
10675 vmcs12_read_any(vcpu, addr_field, &addr)) {
10676 WARN_ON(1);
10677 return -EINVAL;
10678 }
10679 if (count == 0)
10680 return 0;
92d71bc6 10681 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
10682 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10683 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
bbe41b95 10684 pr_debug_ratelimited(
e9ac033e
EK
10685 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10686 addr_field, maxphyaddr, count, addr);
10687 return -EINVAL;
10688 }
10689 return 0;
10690}
10691
10692static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10693 struct vmcs12 *vmcs12)
10694{
e9ac033e
EK
10695 if (vmcs12->vm_exit_msr_load_count == 0 &&
10696 vmcs12->vm_exit_msr_store_count == 0 &&
10697 vmcs12->vm_entry_msr_load_count == 0)
10698 return 0; /* Fast path */
e9ac033e 10699 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 10700 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 10701 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 10702 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 10703 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 10704 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
10705 return -EINVAL;
10706 return 0;
10707}
10708
c5f983f6
BD
10709static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10710 struct vmcs12 *vmcs12)
10711{
10712 u64 address = vmcs12->pml_address;
10713 int maxphyaddr = cpuid_maxphyaddr(vcpu);
10714
10715 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10716 if (!nested_cpu_has_ept(vmcs12) ||
10717 !IS_ALIGNED(address, 4096) ||
10718 address >> maxphyaddr)
10719 return -EINVAL;
10720 }
10721
10722 return 0;
10723}
10724
e9ac033e
EK
10725static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10726 struct vmx_msr_entry *e)
10727{
10728 /* x2APIC MSR accesses are not allowed */
8a9781f7 10729 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
10730 return -EINVAL;
10731 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10732 e->index == MSR_IA32_UCODE_REV)
10733 return -EINVAL;
10734 if (e->reserved != 0)
ff651cb6
WV
10735 return -EINVAL;
10736 return 0;
10737}
10738
e9ac033e
EK
10739static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
10740 struct vmx_msr_entry *e)
ff651cb6
WV
10741{
10742 if (e->index == MSR_FS_BASE ||
10743 e->index == MSR_GS_BASE ||
e9ac033e
EK
10744 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
10745 nested_vmx_msr_check_common(vcpu, e))
10746 return -EINVAL;
10747 return 0;
10748}
10749
10750static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
10751 struct vmx_msr_entry *e)
10752{
10753 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
10754 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
10755 return -EINVAL;
10756 return 0;
10757}
10758
10759/*
10760 * Load guest's/host's msr at nested entry/exit.
10761 * return 0 for success, entry index for failure.
10762 */
10763static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10764{
10765 u32 i;
10766 struct vmx_msr_entry e;
10767 struct msr_data msr;
10768
10769 msr.host_initiated = false;
10770 for (i = 0; i < count; i++) {
54bf36aa
PB
10771 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
10772 &e, sizeof(e))) {
bbe41b95 10773 pr_debug_ratelimited(
e9ac033e
EK
10774 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10775 __func__, i, gpa + i * sizeof(e));
ff651cb6 10776 goto fail;
e9ac033e
EK
10777 }
10778 if (nested_vmx_load_msr_check(vcpu, &e)) {
bbe41b95 10779 pr_debug_ratelimited(
e9ac033e
EK
10780 "%s check failed (%u, 0x%x, 0x%x)\n",
10781 __func__, i, e.index, e.reserved);
10782 goto fail;
10783 }
ff651cb6
WV
10784 msr.index = e.index;
10785 msr.data = e.value;
e9ac033e 10786 if (kvm_set_msr(vcpu, &msr)) {
bbe41b95 10787 pr_debug_ratelimited(
e9ac033e
EK
10788 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10789 __func__, i, e.index, e.value);
ff651cb6 10790 goto fail;
e9ac033e 10791 }
ff651cb6
WV
10792 }
10793 return 0;
10794fail:
10795 return i + 1;
10796}
10797
10798static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10799{
10800 u32 i;
10801 struct vmx_msr_entry e;
10802
10803 for (i = 0; i < count; i++) {
609e36d3 10804 struct msr_data msr_info;
54bf36aa
PB
10805 if (kvm_vcpu_read_guest(vcpu,
10806 gpa + i * sizeof(e),
10807 &e, 2 * sizeof(u32))) {
bbe41b95 10808 pr_debug_ratelimited(
e9ac033e
EK
10809 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10810 __func__, i, gpa + i * sizeof(e));
ff651cb6 10811 return -EINVAL;
e9ac033e
EK
10812 }
10813 if (nested_vmx_store_msr_check(vcpu, &e)) {
bbe41b95 10814 pr_debug_ratelimited(
e9ac033e
EK
10815 "%s check failed (%u, 0x%x, 0x%x)\n",
10816 __func__, i, e.index, e.reserved);
ff651cb6 10817 return -EINVAL;
e9ac033e 10818 }
609e36d3
PB
10819 msr_info.host_initiated = false;
10820 msr_info.index = e.index;
10821 if (kvm_get_msr(vcpu, &msr_info)) {
bbe41b95 10822 pr_debug_ratelimited(
e9ac033e
EK
10823 "%s cannot read MSR (%u, 0x%x)\n",
10824 __func__, i, e.index);
10825 return -EINVAL;
10826 }
54bf36aa
PB
10827 if (kvm_vcpu_write_guest(vcpu,
10828 gpa + i * sizeof(e) +
10829 offsetof(struct vmx_msr_entry, value),
10830 &msr_info.data, sizeof(msr_info.data))) {
bbe41b95 10831 pr_debug_ratelimited(
e9ac033e 10832 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 10833 __func__, i, e.index, msr_info.data);
e9ac033e
EK
10834 return -EINVAL;
10835 }
ff651cb6
WV
10836 }
10837 return 0;
10838}
10839
1dc35dac
LP
10840static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10841{
10842 unsigned long invalid_mask;
10843
10844 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10845 return (val & invalid_mask) == 0;
10846}
10847
9ed38ffa
LP
10848/*
10849 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10850 * emulating VM entry into a guest with EPT enabled.
10851 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10852 * is assigned to entry_failure_code on failure.
10853 */
10854static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
ca0bde28 10855 u32 *entry_failure_code)
9ed38ffa 10856{
9ed38ffa 10857 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1dc35dac 10858 if (!nested_cr3_valid(vcpu, cr3)) {
9ed38ffa
LP
10859 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10860 return 1;
10861 }
10862
10863 /*
10864 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10865 * must not be dereferenced.
10866 */
10867 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10868 !nested_ept) {
10869 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10870 *entry_failure_code = ENTRY_FAIL_PDPTE;
10871 return 1;
10872 }
10873 }
10874
10875 vcpu->arch.cr3 = cr3;
10876 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10877 }
10878
10879 kvm_mmu_reset_context(vcpu);
10880 return 0;
10881}
10882
74a497fa
PB
10883static void prepare_vmcs02_full(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10884 bool from_vmentry)
fe3ef05c
NHE
10885{
10886 struct vcpu_vmx *vmx = to_vmx(vcpu);
fe3ef05c
NHE
10887
10888 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
fe3ef05c
NHE
10889 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10890 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10891 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10892 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10893 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10894 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10895 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
fe3ef05c
NHE
10896 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10897 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10898 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10899 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10900 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10901 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10902 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10903 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10904 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
fe3ef05c
NHE
10905 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10906 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10907 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10908 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10909 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10910 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
fe3ef05c
NHE
10911 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10912 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10913 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10914 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10915 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10916 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10917 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10918 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10919
25a2e4fe
PB
10920 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
10921 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10922 vmcs12->guest_pending_dbg_exceptions);
10923 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10924 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10925
10926 if (nested_cpu_has_xsaves(vmcs12))
10927 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
10928 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10929
10930 if (cpu_has_vmx_posted_intr())
10931 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
10932
10933 /*
10934 * Whether page-faults are trapped is determined by a combination of
10935 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10936 * If enable_ept, L0 doesn't care about page faults and we should
10937 * set all of these to L1's desires. However, if !enable_ept, L0 does
10938 * care about (at least some) page faults, and because it is not easy
10939 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10940 * to exit on each and every L2 page fault. This is done by setting
10941 * MASK=MATCH=0 and (see below) EB.PF=1.
10942 * Note that below we don't need special code to set EB.PF beyond the
10943 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10944 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10945 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10946 */
10947 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10948 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10949 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10950 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10951
10952 /* All VMFUNCs are currently emulated through L0 vmexits. */
10953 if (cpu_has_vmx_vmfunc())
10954 vmcs_write64(VM_FUNCTION_CONTROL, 0);
10955
10956 if (cpu_has_vmx_apicv()) {
10957 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
10958 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
10959 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
10960 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
10961 }
10962
10963 /*
10964 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10965 * Some constant fields are set here by vmx_set_constant_host_state().
10966 * Other fields are different per CPU, and will be set later when
10967 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10968 */
10969 vmx_set_constant_host_state(vmx);
10970
10971 /*
10972 * Set the MSR load/store lists to match L0's settings.
10973 */
10974 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10975 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10976 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10977 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10978 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10979
10980 set_cr4_guest_host_mask(vmx);
10981
10982 if (vmx_mpx_supported())
10983 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10984
10985 if (enable_vpid) {
10986 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
10987 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10988 else
10989 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10990 }
10991
10992 /*
10993 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10994 */
10995 if (enable_ept) {
10996 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10997 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10998 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10999 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
11000 }
80132f4c
RK
11001
11002 if (cpu_has_vmx_msr_bitmap())
11003 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
8665c3f9
PB
11004}
11005
11006/*
11007 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
11008 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
11009 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
11010 * guest in a way that will both be appropriate to L1's requests, and our
11011 * needs. In addition to modifying the active vmcs (which is vmcs02), this
11012 * function also has additional necessary side-effects, like setting various
11013 * vcpu->arch fields.
11014 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
11015 * is assigned to entry_failure_code on failure.
11016 */
11017static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11018 bool from_vmentry, u32 *entry_failure_code)
11019{
11020 struct vcpu_vmx *vmx = to_vmx(vcpu);
11021 u32 exec_control, vmcs12_exec_ctrl;
11022
9d1887ef
SC
11023 if (vmx->nested.dirty_vmcs12) {
11024 prepare_vmcs02_full(vcpu, vmcs12, from_vmentry);
11025 vmx->nested.dirty_vmcs12 = false;
11026 }
11027
8665c3f9
PB
11028 /*
11029 * First, the fields that are shadowed. This must be kept in sync
11030 * with vmx_shadow_fields.h.
11031 */
11032
11033 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
11034 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
11035 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
11036 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
11037 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
11038
11039 /*
11040 * Not in vmcs02: GUEST_PML_INDEX, HOST_FS_SELECTOR, HOST_GS_SELECTOR,
11041 * HOST_FS_BASE, HOST_GS_BASE.
11042 */
fe3ef05c 11043
cf8b84f4
JM
11044 if (from_vmentry &&
11045 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2996fca0
JK
11046 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
11047 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
11048 } else {
11049 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
11050 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
11051 }
cf8b84f4
JM
11052 if (from_vmentry) {
11053 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
11054 vmcs12->vm_entry_intr_info_field);
11055 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
11056 vmcs12->vm_entry_exception_error_code);
11057 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
11058 vmcs12->vm_entry_instruction_len);
11059 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
11060 vmcs12->guest_interruptibility_info);
2d6144e3
WL
11061 vmx->loaded_vmcs->nmi_known_unmasked =
11062 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
cf8b84f4
JM
11063 } else {
11064 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
11065 }
63fbf59f 11066 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c 11067
f4124500 11068 exec_control = vmcs12->pin_based_vm_exec_control;
9314006d
PB
11069
11070 /* Preemption timer setting is only taken from vmcs01. */
705699a1 11071 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9314006d
PB
11072 exec_control |= vmcs_config.pin_based_exec_ctrl;
11073 if (vmx->hv_deadline_tsc == -1)
11074 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
705699a1 11075
9314006d 11076 /* Posted interrupts setting is only taken from vmcs12. */
705699a1 11077 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
11078 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
11079 vmx->nested.pi_pending = false;
6beb7bd5 11080 } else {
705699a1 11081 exec_control &= ~PIN_BASED_POSTED_INTR;
6beb7bd5 11082 }
705699a1 11083
f4124500 11084 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 11085
f4124500
JK
11086 vmx->nested.preemption_timer_expired = false;
11087 if (nested_cpu_has_preemption_timer(vmcs12))
11088 vmx_start_preemption_timer(vcpu);
0238ea91 11089
fe3ef05c 11090 if (cpu_has_secondary_exec_ctrls()) {
80154d77 11091 exec_control = vmx->secondary_exec_control;
e2821620 11092
fe3ef05c 11093 /* Take the following fields only from vmcs12 */
696dfd95 11094 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
90a2db6d 11095 SECONDARY_EXEC_ENABLE_INVPCID |
b3a2a907 11096 SECONDARY_EXEC_RDTSCP |
3db13480 11097 SECONDARY_EXEC_XSAVES |
696dfd95 11098 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
27c42a1b
BD
11099 SECONDARY_EXEC_APIC_REGISTER_VIRT |
11100 SECONDARY_EXEC_ENABLE_VMFUNC);
fe3ef05c 11101 if (nested_cpu_has(vmcs12,
03efce6f
BD
11102 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
11103 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
11104 ~SECONDARY_EXEC_ENABLE_PML;
11105 exec_control |= vmcs12_exec_ctrl;
11106 }
fe3ef05c 11107
25a2e4fe 11108 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
608406e2
WV
11109 vmcs_write16(GUEST_INTR_STATUS,
11110 vmcs12->guest_intr_status);
608406e2 11111
6beb7bd5
JM
11112 /*
11113 * Write an illegal value to APIC_ACCESS_ADDR. Later,
11114 * nested_get_vmcs12_pages will either fix it up or
11115 * remove the VM execution control.
11116 */
11117 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
11118 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
11119
fe3ef05c
NHE
11120 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
11121 }
11122
fe3ef05c
NHE
11123 /*
11124 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
11125 * entry, but only if the current (host) sp changed from the value
11126 * we wrote last (vmx->host_rsp). This cache is no longer relevant
11127 * if we switch vmcs, and rather than hold a separate cache per vmcs,
11128 * here we just force the write to happen on entry.
11129 */
11130 vmx->host_rsp = 0;
11131
11132 exec_control = vmx_exec_control(vmx); /* L0's desires */
11133 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
11134 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
11135 exec_control &= ~CPU_BASED_TPR_SHADOW;
11136 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d 11137
6beb7bd5
JM
11138 /*
11139 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
11140 * nested_get_vmcs12_pages can't fix it up, the illegal value
11141 * will result in a VM entry failure.
11142 */
a7c0b07d 11143 if (exec_control & CPU_BASED_TPR_SHADOW) {
6beb7bd5 11144 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
a7c0b07d 11145 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
51aa68e7
JM
11146 } else {
11147#ifdef CONFIG_X86_64
11148 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
11149 CPU_BASED_CR8_STORE_EXITING;
11150#endif
a7c0b07d
WL
11151 }
11152
fe3ef05c 11153 /*
8eb73e2d
QX
11154 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
11155 * for I/O port accesses.
fe3ef05c 11156 */
fe3ef05c
NHE
11157 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
11158 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
11159
11160 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
11161
11162 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
11163 * bitwise-or of what L1 wants to trap for L2, and what we want to
11164 * trap. Note that CR0.TS also needs updating - we do this later.
11165 */
11166 update_exception_bitmap(vcpu);
11167 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
11168 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
11169
8049d651
NHE
11170 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
11171 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
11172 * bits are further modified by vmx_set_efer() below.
11173 */
f4124500 11174 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
11175
11176 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
11177 * emulated by vmx_set_efer(), below.
11178 */
2961e876 11179 vm_entry_controls_init(vmx,
8049d651
NHE
11180 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
11181 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
11182 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
11183
cf8b84f4
JM
11184 if (from_vmentry &&
11185 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
fe3ef05c 11186 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02 11187 vcpu->arch.pat = vmcs12->guest_ia32_pat;
cf8b84f4 11188 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 11189 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
cf8b84f4 11190 }
fe3ef05c 11191
e79f245d
KA
11192 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11193
c95ba92a
PF
11194 if (kvm_has_tsc_control)
11195 decache_tsc_multiplier(vmx);
fe3ef05c
NHE
11196
11197 if (enable_vpid) {
11198 /*
5c614b35
WL
11199 * There is no direct mapping between vpid02 and vpid12, the
11200 * vpid02 is per-vCPU for L0 and reused while the value of
11201 * vpid12 is changed w/ one invvpid during nested vmentry.
11202 * The vpid12 is allocated by L1 for L2, so it will not
11203 * influence global bitmap(for vpid01 and vpid02 allocation)
11204 * even if spawn a lot of nested vCPUs.
fe3ef05c 11205 */
5c614b35 11206 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
5c614b35
WL
11207 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
11208 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
c2ba05cc 11209 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02, true);
5c614b35
WL
11210 }
11211 } else {
c2ba05cc 11212 vmx_flush_tlb(vcpu, true);
5c614b35 11213 }
fe3ef05c
NHE
11214 }
11215
1fb883bb
LP
11216 if (enable_pml) {
11217 /*
11218 * Conceptually we want to copy the PML address and index from
11219 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
11220 * since we always flush the log on each vmexit, this happens
11221 * to be equivalent to simply resetting the fields in vmcs02.
11222 */
11223 ASSERT(vmx->pml_pg);
11224 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
11225 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
11226 }
11227
155a97a3 11228 if (nested_cpu_has_ept(vmcs12)) {
ae1e2d10
PB
11229 if (nested_ept_init_mmu_context(vcpu)) {
11230 *entry_failure_code = ENTRY_FAIL_DEFAULT;
11231 return 1;
11232 }
fb6c8198
JM
11233 } else if (nested_cpu_has2(vmcs12,
11234 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a468f2db 11235 vmx_flush_tlb(vcpu, true);
155a97a3
NHE
11236 }
11237
fe3ef05c 11238 /*
bd7e5b08
PB
11239 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
11240 * bits which we consider mandatory enabled.
fe3ef05c
NHE
11241 * The CR0_READ_SHADOW is what L2 should have expected to read given
11242 * the specifications by L1; It's not enough to take
11243 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
11244 * have more bits than L1 expected.
11245 */
11246 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
11247 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
11248
11249 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
11250 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
11251
cf8b84f4
JM
11252 if (from_vmentry &&
11253 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
5a6a9748
DM
11254 vcpu->arch.efer = vmcs12->guest_ia32_efer;
11255 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
11256 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11257 else
11258 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11259 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
11260 vmx_set_efer(vcpu, vcpu->arch.efer);
11261
2bb8cafe
SC
11262 /*
11263 * Guest state is invalid and unrestricted guest is disabled,
11264 * which means L1 attempted VMEntry to L2 with invalid state.
11265 * Fail the VMEntry.
11266 */
3184a995
PB
11267 if (vmx->emulation_required) {
11268 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2bb8cafe 11269 return 1;
3184a995 11270 }
2bb8cafe 11271
9ed38ffa 11272 /* Shadow page tables on either EPT or shadow page tables. */
7ad658b6 11273 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
9ed38ffa
LP
11274 entry_failure_code))
11275 return 1;
7ca29de2 11276
feaf0c7d
GN
11277 if (!enable_ept)
11278 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
11279
fe3ef05c
NHE
11280 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
11281 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
ee146c1c 11282 return 0;
fe3ef05c
NHE
11283}
11284
0c7f650e
KS
11285static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
11286{
11287 if (!nested_cpu_has_nmi_exiting(vmcs12) &&
11288 nested_cpu_has_virtual_nmis(vmcs12))
11289 return -EINVAL;
11290
11291 if (!nested_cpu_has_virtual_nmis(vmcs12) &&
11292 nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
11293 return -EINVAL;
11294
11295 return 0;
11296}
11297
ca0bde28 11298static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
cd232ad0 11299{
cd232ad0 11300 struct vcpu_vmx *vmx = to_vmx(vcpu);
7c177938 11301
6dfacadd 11302 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
ca0bde28
JM
11303 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
11304 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
26539bd0 11305
56a20510
JM
11306 if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
11307 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11308
ca0bde28
JM
11309 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
11310 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 11311
f0f4cf5b
KS
11312 if (nested_vmx_check_apic_access_controls(vcpu, vmcs12))
11313 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11314
712b12d7
JM
11315 if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
11316 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11317
ca0bde28
JM
11318 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
11319 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
f2b93280 11320
ca0bde28
JM
11321 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
11322 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
e9ac033e 11323
c5f983f6
BD
11324 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
11325 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11326
7c177938 11327 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6677f3da
PB
11328 vmx->nested.msrs.procbased_ctls_low,
11329 vmx->nested.msrs.procbased_ctls_high) ||
2e5b0bd9
JM
11330 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
11331 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6677f3da
PB
11332 vmx->nested.msrs.secondary_ctls_low,
11333 vmx->nested.msrs.secondary_ctls_high)) ||
7c177938 11334 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6677f3da
PB
11335 vmx->nested.msrs.pinbased_ctls_low,
11336 vmx->nested.msrs.pinbased_ctls_high) ||
7c177938 11337 !vmx_control_verify(vmcs12->vm_exit_controls,
6677f3da
PB
11338 vmx->nested.msrs.exit_ctls_low,
11339 vmx->nested.msrs.exit_ctls_high) ||
7c177938 11340 !vmx_control_verify(vmcs12->vm_entry_controls,
6677f3da
PB
11341 vmx->nested.msrs.entry_ctls_low,
11342 vmx->nested.msrs.entry_ctls_high))
ca0bde28 11343 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 11344
0c7f650e 11345 if (nested_vmx_check_nmi_controls(vmcs12))
ca0bde28 11346 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 11347
41ab9372
BD
11348 if (nested_cpu_has_vmfunc(vmcs12)) {
11349 if (vmcs12->vm_function_control &
6677f3da 11350 ~vmx->nested.msrs.vmfunc_controls)
41ab9372
BD
11351 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11352
11353 if (nested_cpu_has_eptp_switching(vmcs12)) {
11354 if (!nested_cpu_has_ept(vmcs12) ||
11355 !page_address_valid(vcpu, vmcs12->eptp_list_address))
11356 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11357 }
11358 }
27c42a1b 11359
c7c2c709
JM
11360 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
11361 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11362
3899152c 11363 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
1dc35dac 11364 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
ca0bde28
JM
11365 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
11366 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
11367
11368 return 0;
11369}
11370
11371static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11372 u32 *exit_qual)
11373{
11374 bool ia32e;
11375
11376 *exit_qual = ENTRY_FAIL_DEFAULT;
7c177938 11377
3899152c 11378 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
ca0bde28 11379 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
b428018a 11380 return 1;
ca0bde28
JM
11381
11382 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
11383 vmcs12->vmcs_link_pointer != -1ull) {
11384 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
b428018a 11385 return 1;
7c177938
NHE
11386 }
11387
384bb783 11388 /*
cb0c8cda 11389 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
11390 * are performed on the field for the IA32_EFER MSR:
11391 * - Bits reserved in the IA32_EFER MSR must be 0.
11392 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
11393 * the IA-32e mode guest VM-exit control. It must also be identical
11394 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
11395 * CR0.PG) is 1.
11396 */
ca0bde28
JM
11397 if (to_vmx(vcpu)->nested.nested_run_pending &&
11398 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
384bb783
JK
11399 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
11400 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
11401 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
11402 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
ca0bde28 11403 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
b428018a 11404 return 1;
384bb783
JK
11405 }
11406
11407 /*
11408 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
11409 * IA32_EFER MSR must be 0 in the field for that register. In addition,
11410 * the values of the LMA and LME bits in the field must each be that of
11411 * the host address-space size VM-exit control.
11412 */
11413 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
11414 ia32e = (vmcs12->vm_exit_controls &
11415 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
11416 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
11417 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
ca0bde28 11418 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
b428018a 11419 return 1;
ca0bde28
JM
11420 }
11421
f1b026a3
WL
11422 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
11423 (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
11424 (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
11425 return 1;
11426
ca0bde28
JM
11427 return 0;
11428}
11429
858e25c0
JM
11430static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
11431{
11432 struct vcpu_vmx *vmx = to_vmx(vcpu);
11433 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
858e25c0 11434 u32 exit_qual;
e79f245d 11435 int r;
858e25c0 11436
858e25c0
JM
11437 enter_guest_mode(vcpu);
11438
11439 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
11440 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11441
de3a0021 11442 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
858e25c0
JM
11443 vmx_segment_cache_clear(vmx);
11444
e79f245d
KA
11445 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
11446 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
11447
11448 r = EXIT_REASON_INVALID_STATE;
11449 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual))
11450 goto fail;
858e25c0
JM
11451
11452 nested_get_vmcs12_pages(vcpu, vmcs12);
11453
e79f245d 11454 r = EXIT_REASON_MSR_LOAD_FAIL;
0b88abdc
JM
11455 exit_qual = nested_vmx_load_msr(vcpu,
11456 vmcs12->vm_entry_msr_load_addr,
11457 vmcs12->vm_entry_msr_load_count);
11458 if (exit_qual)
e79f245d 11459 goto fail;
858e25c0 11460
858e25c0
JM
11461 /*
11462 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
11463 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
11464 * returned as far as L1 is concerned. It will only return (and set
11465 * the success flag) when L2 exits (see nested_vmx_vmexit()).
11466 */
11467 return 0;
e79f245d
KA
11468
11469fail:
11470 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
11471 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
11472 leave_guest_mode(vcpu);
11473 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11474 nested_vmx_entry_failure(vcpu, vmcs12, r, exit_qual);
11475 return 1;
858e25c0
JM
11476}
11477
ca0bde28
JM
11478/*
11479 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
11480 * for running an L2 nested guest.
11481 */
11482static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
11483{
11484 struct vmcs12 *vmcs12;
11485 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3f1dfb6 11486 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
ca0bde28
JM
11487 u32 exit_qual;
11488 int ret;
11489
11490 if (!nested_vmx_check_permission(vcpu))
11491 return 1;
11492
11493 if (!nested_vmx_check_vmcs12(vcpu))
11494 goto out;
11495
11496 vmcs12 = get_vmcs12(vcpu);
11497
11498 if (enable_shadow_vmcs)
11499 copy_shadow_to_vmcs12(vmx);
11500
11501 /*
11502 * The nested entry process starts with enforcing various prerequisites
11503 * on vmcs12 as required by the Intel SDM, and act appropriately when
11504 * they fail: As the SDM explains, some conditions should cause the
11505 * instruction to fail, while others will cause the instruction to seem
11506 * to succeed, but return an EXIT_REASON_INVALID_STATE.
11507 * To speed up the normal (success) code path, we should avoid checking
11508 * for misconfigurations which will anyway be caught by the processor
11509 * when using the merged vmcs02.
11510 */
b3f1dfb6
JM
11511 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
11512 nested_vmx_failValid(vcpu,
11513 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
11514 goto out;
11515 }
11516
ca0bde28
JM
11517 if (vmcs12->launch_state == launch) {
11518 nested_vmx_failValid(vcpu,
11519 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
11520 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
11521 goto out;
11522 }
11523
11524 ret = check_vmentry_prereqs(vcpu, vmcs12);
11525 if (ret) {
11526 nested_vmx_failValid(vcpu, ret);
11527 goto out;
11528 }
11529
11530 /*
11531 * After this point, the trap flag no longer triggers a singlestep trap
11532 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
11533 * This is not 100% correct; for performance reasons, we delegate most
11534 * of the checks on host state to the processor. If those fail,
11535 * the singlestep trap is missed.
11536 */
11537 skip_emulated_instruction(vcpu);
11538
11539 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
11540 if (ret) {
11541 nested_vmx_entry_failure(vcpu, vmcs12,
11542 EXIT_REASON_INVALID_STATE, exit_qual);
11543 return 1;
384bb783
JK
11544 }
11545
7c177938
NHE
11546 /*
11547 * We're finally done with prerequisite checking, and can start with
11548 * the nested entry.
11549 */
11550
858e25c0
JM
11551 ret = enter_vmx_non_root_mode(vcpu, true);
11552 if (ret)
11553 return ret;
ff651cb6 11554
135a06c3
CG
11555 /*
11556 * If we're entering a halted L2 vcpu and the L2 vcpu won't be woken
11557 * by event injection, halt vcpu.
11558 */
11559 if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
11560 !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK))
5cb56059 11561 return kvm_vcpu_halt(vcpu);
6dfacadd 11562
7af40ad3
JK
11563 vmx->nested.nested_run_pending = 1;
11564
cd232ad0 11565 return 1;
eb277562
KH
11566
11567out:
6affcbed 11568 return kvm_skip_emulated_instruction(vcpu);
cd232ad0
NHE
11569}
11570
4704d0be
NHE
11571/*
11572 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
11573 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
11574 * This function returns the new value we should put in vmcs12.guest_cr0.
11575 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
11576 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
11577 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
11578 * didn't trap the bit, because if L1 did, so would L0).
11579 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
11580 * been modified by L2, and L1 knows it. So just leave the old value of
11581 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
11582 * isn't relevant, because if L0 traps this bit it can set it to anything.
11583 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
11584 * changed these bits, and therefore they need to be updated, but L0
11585 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
11586 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
11587 */
11588static inline unsigned long
11589vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11590{
11591 return
11592 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
11593 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
11594 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
11595 vcpu->arch.cr0_guest_owned_bits));
11596}
11597
11598static inline unsigned long
11599vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11600{
11601 return
11602 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
11603 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
11604 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
11605 vcpu->arch.cr4_guest_owned_bits));
11606}
11607
5f3d5799
JK
11608static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
11609 struct vmcs12 *vmcs12)
11610{
11611 u32 idt_vectoring;
11612 unsigned int nr;
11613
664f8e26 11614 if (vcpu->arch.exception.injected) {
5f3d5799
JK
11615 nr = vcpu->arch.exception.nr;
11616 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11617
11618 if (kvm_exception_is_soft(nr)) {
11619 vmcs12->vm_exit_instruction_len =
11620 vcpu->arch.event_exit_inst_len;
11621 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
11622 } else
11623 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
11624
11625 if (vcpu->arch.exception.has_error_code) {
11626 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
11627 vmcs12->idt_vectoring_error_code =
11628 vcpu->arch.exception.error_code;
11629 }
11630
11631 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 11632 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
11633 vmcs12->idt_vectoring_info_field =
11634 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
04140b41 11635 } else if (vcpu->arch.interrupt.injected) {
5f3d5799
JK
11636 nr = vcpu->arch.interrupt.nr;
11637 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11638
11639 if (vcpu->arch.interrupt.soft) {
11640 idt_vectoring |= INTR_TYPE_SOFT_INTR;
11641 vmcs12->vm_entry_instruction_len =
11642 vcpu->arch.event_exit_inst_len;
11643 } else
11644 idt_vectoring |= INTR_TYPE_EXT_INTR;
11645
11646 vmcs12->idt_vectoring_info_field = idt_vectoring;
11647 }
11648}
11649
b6b8a145
JK
11650static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
11651{
11652 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfcf83b1 11653 unsigned long exit_qual;
917dc606
LA
11654 bool block_nested_events =
11655 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
acc9ab60 11656
bfcf83b1
WL
11657 if (vcpu->arch.exception.pending &&
11658 nested_vmx_check_exception(vcpu, &exit_qual)) {
917dc606 11659 if (block_nested_events)
bfcf83b1
WL
11660 return -EBUSY;
11661 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
bfcf83b1
WL
11662 return 0;
11663 }
11664
f4124500
JK
11665 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
11666 vmx->nested.preemption_timer_expired) {
917dc606 11667 if (block_nested_events)
f4124500
JK
11668 return -EBUSY;
11669 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
11670 return 0;
11671 }
11672
b6b8a145 11673 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
917dc606 11674 if (block_nested_events)
b6b8a145
JK
11675 return -EBUSY;
11676 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
11677 NMI_VECTOR | INTR_TYPE_NMI_INTR |
11678 INTR_INFO_VALID_MASK, 0);
11679 /*
11680 * The NMI-triggered VM exit counts as injection:
11681 * clear this one and block further NMIs.
11682 */
11683 vcpu->arch.nmi_pending = 0;
11684 vmx_set_nmi_mask(vcpu, true);
11685 return 0;
11686 }
11687
11688 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
11689 nested_exit_on_intr(vcpu)) {
917dc606 11690 if (block_nested_events)
b6b8a145
JK
11691 return -EBUSY;
11692 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 11693 return 0;
b6b8a145
JK
11694 }
11695
6342c50a
DH
11696 vmx_complete_nested_posted_interrupt(vcpu);
11697 return 0;
b6b8a145
JK
11698}
11699
f4124500
JK
11700static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
11701{
11702 ktime_t remaining =
11703 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
11704 u64 value;
11705
11706 if (ktime_to_ns(remaining) <= 0)
11707 return 0;
11708
11709 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
11710 do_div(value, 1000000);
11711 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
11712}
11713
4704d0be 11714/*
cf8b84f4
JM
11715 * Update the guest state fields of vmcs12 to reflect changes that
11716 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
11717 * VM-entry controls is also updated, since this is really a guest
11718 * state bit.)
4704d0be 11719 */
cf8b84f4 11720static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4704d0be 11721{
4704d0be
NHE
11722 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
11723 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
11724
4704d0be
NHE
11725 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
11726 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
11727 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
11728
11729 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
11730 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
11731 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
11732 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
11733 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
11734 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
11735 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
11736 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
11737 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
11738 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
11739 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
11740 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
11741 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
11742 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
11743 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
11744 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
11745 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
11746 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
11747 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
11748 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
11749 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
11750 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
11751 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
11752 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
11753 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
11754 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
11755 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
11756 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
11757 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
11758 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
11759 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
11760 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
11761 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
11762 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
11763 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
11764 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
11765
4704d0be
NHE
11766 vmcs12->guest_interruptibility_info =
11767 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
11768 vmcs12->guest_pending_dbg_exceptions =
11769 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
11770 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11771 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
11772 else
11773 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 11774
f4124500
JK
11775 if (nested_cpu_has_preemption_timer(vmcs12)) {
11776 if (vmcs12->vm_exit_controls &
11777 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
11778 vmcs12->vmx_preemption_timer_value =
11779 vmx_get_preemption_timer_value(vcpu);
11780 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
11781 }
7854cbca 11782
3633cfc3
NHE
11783 /*
11784 * In some cases (usually, nested EPT), L2 is allowed to change its
11785 * own CR3 without exiting. If it has changed it, we must keep it.
11786 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11787 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11788 *
11789 * Additionally, restore L2's PDPTR to vmcs12.
11790 */
11791 if (enable_ept) {
f3531054 11792 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
11793 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
11794 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
11795 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
11796 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
11797 }
11798
d281e13b 11799 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
119a9c01 11800
608406e2
WV
11801 if (nested_cpu_has_vid(vmcs12))
11802 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
11803
c18911a2
JK
11804 vmcs12->vm_entry_controls =
11805 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 11806 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 11807
2996fca0
JK
11808 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
11809 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
11810 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11811 }
11812
4704d0be
NHE
11813 /* TODO: These cannot have changed unless we have MSR bitmaps and
11814 * the relevant bit asks not to trap the change */
b8c07d55 11815 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 11816 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
11817 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
11818 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
11819 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
11820 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
11821 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
a87036ad 11822 if (kvm_mpx_supported())
36be0b9d 11823 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
cf8b84f4
JM
11824}
11825
11826/*
11827 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11828 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11829 * and this function updates it to reflect the changes to the guest state while
11830 * L2 was running (and perhaps made some exits which were handled directly by L0
11831 * without going back to L1), and to reflect the exit reason.
11832 * Note that we do not have to copy here all VMCS fields, just those that
11833 * could have changed by the L2 guest or the exit - i.e., the guest-state and
11834 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11835 * which already writes to vmcs12 directly.
11836 */
11837static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11838 u32 exit_reason, u32 exit_intr_info,
11839 unsigned long exit_qualification)
11840{
11841 /* update guest state fields: */
11842 sync_vmcs12(vcpu, vmcs12);
4704d0be
NHE
11843
11844 /* update exit information fields: */
11845
533558bc
JK
11846 vmcs12->vm_exit_reason = exit_reason;
11847 vmcs12->exit_qualification = exit_qualification;
533558bc 11848 vmcs12->vm_exit_intr_info = exit_intr_info;
7313c698 11849
5f3d5799 11850 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
11851 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
11852 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
11853
5f3d5799 11854 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
7cdc2d62
JM
11855 vmcs12->launch_state = 1;
11856
5f3d5799
JK
11857 /* vm_entry_intr_info_field is cleared on exit. Emulate this
11858 * instead of reading the real value. */
4704d0be 11859 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
11860
11861 /*
11862 * Transfer the event that L0 or L1 may wanted to inject into
11863 * L2 to IDT_VECTORING_INFO_FIELD.
11864 */
11865 vmcs12_save_pending_event(vcpu, vmcs12);
11866 }
11867
11868 /*
11869 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11870 * preserved above and would only end up incorrectly in L1.
11871 */
11872 vcpu->arch.nmi_injected = false;
11873 kvm_clear_exception_queue(vcpu);
11874 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
11875}
11876
5af41573
WL
11877static void load_vmcs12_mmu_host_state(struct kvm_vcpu *vcpu,
11878 struct vmcs12 *vmcs12)
11879{
11880 u32 entry_failure_code;
11881
11882 nested_ept_uninit_mmu_context(vcpu);
11883
11884 /*
11885 * Only PDPTE load can fail as the value of cr3 was checked on entry and
11886 * couldn't have changed.
11887 */
11888 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11889 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
11890
11891 if (!enable_ept)
11892 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11893}
11894
4704d0be
NHE
11895/*
11896 * A part of what we need to when the nested L2 guest exits and we want to
11897 * run its L1 parent, is to reset L1's guest state to the host state specified
11898 * in vmcs12.
11899 * This function is to be called not only on normal nested exit, but also on
11900 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11901 * Failures During or After Loading Guest State").
11902 * This function should be called when the active VMCS is L1's (vmcs01).
11903 */
733568f9
JK
11904static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
11905 struct vmcs12 *vmcs12)
4704d0be 11906{
21feb4eb
ACL
11907 struct kvm_segment seg;
11908
4704d0be
NHE
11909 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
11910 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 11911 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
11912 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11913 else
11914 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11915 vmx_set_efer(vcpu, vcpu->arch.efer);
11916
11917 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
11918 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 11919 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
11920 /*
11921 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
bd7e5b08
PB
11922 * actually changed, because vmx_set_cr0 refers to efer set above.
11923 *
11924 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11925 * (KVM doesn't change it);
4704d0be 11926 */
bd7e5b08 11927 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
9e3e4dbf 11928 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be 11929
bd7e5b08 11930 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4704d0be 11931 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8eb3f87d 11932 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4704d0be 11933
5af41573 11934 load_vmcs12_mmu_host_state(vcpu, vmcs12);
feaf0c7d 11935
4704d0be
NHE
11936 if (enable_vpid) {
11937 /*
11938 * Trivially support vpid by letting L2s share their parent
11939 * L1's vpid. TODO: move to a more elaborate solution, giving
11940 * each L2 its own vpid and exposing the vpid feature to L1.
11941 */
c2ba05cc 11942 vmx_flush_tlb(vcpu, true);
4704d0be 11943 }
4704d0be
NHE
11944
11945 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11946 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11947 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11948 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11949 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
21f2d551
LP
11950 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
11951 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4704d0be 11952
36be0b9d
PB
11953 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
11954 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11955 vmcs_write64(GUEST_BNDCFGS, 0);
11956
44811c02 11957 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 11958 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
11959 vcpu->arch.pat = vmcs12->host_ia32_pat;
11960 }
4704d0be
NHE
11961 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11962 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11963 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 11964
21feb4eb
ACL
11965 /* Set L1 segment info according to Intel SDM
11966 27.5.2 Loading Host Segment and Descriptor-Table Registers */
11967 seg = (struct kvm_segment) {
11968 .base = 0,
11969 .limit = 0xFFFFFFFF,
11970 .selector = vmcs12->host_cs_selector,
11971 .type = 11,
11972 .present = 1,
11973 .s = 1,
11974 .g = 1
11975 };
11976 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11977 seg.l = 1;
11978 else
11979 seg.db = 1;
11980 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11981 seg = (struct kvm_segment) {
11982 .base = 0,
11983 .limit = 0xFFFFFFFF,
11984 .type = 3,
11985 .present = 1,
11986 .s = 1,
11987 .db = 1,
11988 .g = 1
11989 };
11990 seg.selector = vmcs12->host_ds_selector;
11991 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11992 seg.selector = vmcs12->host_es_selector;
11993 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11994 seg.selector = vmcs12->host_ss_selector;
11995 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11996 seg.selector = vmcs12->host_fs_selector;
11997 seg.base = vmcs12->host_fs_base;
11998 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11999 seg.selector = vmcs12->host_gs_selector;
12000 seg.base = vmcs12->host_gs_base;
12001 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
12002 seg = (struct kvm_segment) {
205befd9 12003 .base = vmcs12->host_tr_base,
21feb4eb
ACL
12004 .limit = 0x67,
12005 .selector = vmcs12->host_tr_selector,
12006 .type = 11,
12007 .present = 1
12008 };
12009 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
12010
503cd0c5
JK
12011 kvm_set_dr(vcpu, 7, 0x400);
12012 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 12013
3af18d9c 12014 if (cpu_has_vmx_msr_bitmap())
904e14fb 12015 vmx_update_msr_bitmap(vcpu);
3af18d9c 12016
ff651cb6
WV
12017 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
12018 vmcs12->vm_exit_msr_load_count))
12019 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
12020}
12021
12022/*
12023 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
12024 * and modify vmcs12 to make it see what it would expect to see there if
12025 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
12026 */
533558bc
JK
12027static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
12028 u32 exit_intr_info,
12029 unsigned long exit_qualification)
4704d0be
NHE
12030{
12031 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be
NHE
12032 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
12033
5f3d5799
JK
12034 /* trying to cancel vmlaunch/vmresume is a bug */
12035 WARN_ON_ONCE(vmx->nested.nested_run_pending);
12036
4f350c6d
JM
12037 /*
12038 * The only expected VM-instruction error is "VM entry with
12039 * invalid control field(s)." Anything else indicates a
12040 * problem with L0.
12041 */
12042 WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
12043 VMXERR_ENTRY_INVALID_CONTROL_FIELD));
12044
4704d0be 12045 leave_guest_mode(vcpu);
4704d0be 12046
e79f245d
KA
12047 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
12048 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
12049
4f350c6d 12050 if (likely(!vmx->fail)) {
72e9cbdb
LP
12051 if (exit_reason == -1)
12052 sync_vmcs12(vcpu, vmcs12);
12053 else
12054 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
12055 exit_qualification);
ff651cb6 12056
4f350c6d
JM
12057 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
12058 vmcs12->vm_exit_msr_store_count))
12059 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
12060 }
cf3215d9 12061
1279a6b1 12062 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
8391ce44
PB
12063 vm_entry_controls_reset_shadow(vmx);
12064 vm_exit_controls_reset_shadow(vmx);
36c3cc42
JK
12065 vmx_segment_cache_clear(vmx);
12066
9314006d 12067 /* Update any VMCS fields that might have changed while L2 ran */
83bafef1
JM
12068 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
12069 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
ea26e4ec 12070 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
9314006d
PB
12071 if (vmx->hv_deadline_tsc == -1)
12072 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
12073 PIN_BASED_VMX_PREEMPTION_TIMER);
12074 else
12075 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
12076 PIN_BASED_VMX_PREEMPTION_TIMER);
c95ba92a
PF
12077 if (kvm_has_tsc_control)
12078 decache_tsc_multiplier(vmx);
4704d0be 12079
dccbfcf5
RK
12080 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
12081 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
12082 vmx_set_virtual_x2apic_mode(vcpu,
12083 vcpu->arch.apic_base & X2APIC_ENABLE);
fb6c8198
JM
12084 } else if (!nested_cpu_has_ept(vmcs12) &&
12085 nested_cpu_has2(vmcs12,
12086 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a468f2db 12087 vmx_flush_tlb(vcpu, true);
dccbfcf5 12088 }
4704d0be
NHE
12089
12090 /* This is needed for same reason as it was needed in prepare_vmcs02 */
12091 vmx->host_rsp = 0;
12092
12093 /* Unpin physical memory we referred to in vmcs02 */
12094 if (vmx->nested.apic_access_page) {
53a70daf 12095 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 12096 vmx->nested.apic_access_page = NULL;
4704d0be 12097 }
a7c0b07d 12098 if (vmx->nested.virtual_apic_page) {
53a70daf 12099 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 12100 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 12101 }
705699a1
WV
12102 if (vmx->nested.pi_desc_page) {
12103 kunmap(vmx->nested.pi_desc_page);
53a70daf 12104 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
12105 vmx->nested.pi_desc_page = NULL;
12106 vmx->nested.pi_desc = NULL;
12107 }
4704d0be 12108
38b99173
TC
12109 /*
12110 * We are now running in L2, mmu_notifier will force to reload the
12111 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
12112 */
c83b6d15 12113 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
38b99173 12114
72e9cbdb 12115 if (enable_shadow_vmcs && exit_reason != -1)
012f83cb 12116 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
12117
12118 /* in case we halted in L2 */
12119 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4f350c6d
JM
12120
12121 if (likely(!vmx->fail)) {
12122 /*
12123 * TODO: SDM says that with acknowledge interrupt on
12124 * exit, bit 31 of the VM-exit interrupt information
12125 * (valid interrupt) is always set to 1 on
12126 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
12127 * need kvm_cpu_has_interrupt(). See the commit
12128 * message for details.
12129 */
12130 if (nested_exit_intr_ack_set(vcpu) &&
12131 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
12132 kvm_cpu_has_interrupt(vcpu)) {
12133 int irq = kvm_cpu_get_interrupt(vcpu);
12134 WARN_ON(irq < 0);
12135 vmcs12->vm_exit_intr_info = irq |
12136 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
12137 }
12138
72e9cbdb
LP
12139 if (exit_reason != -1)
12140 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
12141 vmcs12->exit_qualification,
12142 vmcs12->idt_vectoring_info_field,
12143 vmcs12->vm_exit_intr_info,
12144 vmcs12->vm_exit_intr_error_code,
12145 KVM_ISA_VMX);
4f350c6d
JM
12146
12147 load_vmcs12_host_state(vcpu, vmcs12);
12148
12149 return;
12150 }
12151
12152 /*
12153 * After an early L2 VM-entry failure, we're now back
12154 * in L1 which thinks it just finished a VMLAUNCH or
12155 * VMRESUME instruction, so we need to set the failure
12156 * flag and the VM-instruction error field of the VMCS
12157 * accordingly.
12158 */
12159 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5af41573
WL
12160
12161 load_vmcs12_mmu_host_state(vcpu, vmcs12);
12162
4f350c6d
JM
12163 /*
12164 * The emulated instruction was already skipped in
12165 * nested_vmx_run, but the updated RIP was never
12166 * written back to the vmcs01.
12167 */
12168 skip_emulated_instruction(vcpu);
12169 vmx->fail = 0;
4704d0be
NHE
12170}
12171
42124925
JK
12172/*
12173 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
12174 */
12175static void vmx_leave_nested(struct kvm_vcpu *vcpu)
12176{
2f707d97
WL
12177 if (is_guest_mode(vcpu)) {
12178 to_vmx(vcpu)->nested.nested_run_pending = 0;
533558bc 12179 nested_vmx_vmexit(vcpu, -1, 0, 0);
2f707d97 12180 }
42124925
JK
12181 free_nested(to_vmx(vcpu));
12182}
12183
7c177938
NHE
12184/*
12185 * L1's failure to enter L2 is a subset of a normal exit, as explained in
12186 * 23.7 "VM-entry failures during or after loading guest state" (this also
12187 * lists the acceptable exit-reason and exit-qualification parameters).
12188 * It should only be called before L2 actually succeeded to run, and when
12189 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
12190 */
12191static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
12192 struct vmcs12 *vmcs12,
12193 u32 reason, unsigned long qualification)
12194{
12195 load_vmcs12_host_state(vcpu, vmcs12);
12196 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
12197 vmcs12->exit_qualification = qualification;
12198 nested_vmx_succeed(vcpu);
012f83cb
AG
12199 if (enable_shadow_vmcs)
12200 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
12201}
12202
8a76d7f2
JR
12203static int vmx_check_intercept(struct kvm_vcpu *vcpu,
12204 struct x86_instruction_info *info,
12205 enum x86_intercept_stage stage)
12206{
fb6d4d34
PB
12207 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
12208 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
12209
12210 /*
12211 * RDPID causes #UD if disabled through secondary execution controls.
12212 * Because it is marked as EmulateOnUD, we need to intercept it here.
12213 */
12214 if (info->intercept == x86_intercept_rdtscp &&
12215 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
12216 ctxt->exception.vector = UD_VECTOR;
12217 ctxt->exception.error_code_valid = false;
12218 return X86EMUL_PROPAGATE_FAULT;
12219 }
12220
12221 /* TODO: check more intercepts... */
8a76d7f2
JR
12222 return X86EMUL_CONTINUE;
12223}
12224
64672c95
YJ
12225#ifdef CONFIG_X86_64
12226/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
12227static inline int u64_shl_div_u64(u64 a, unsigned int shift,
12228 u64 divisor, u64 *result)
12229{
12230 u64 low = a << shift, high = a >> (64 - shift);
12231
12232 /* To avoid the overflow on divq */
12233 if (high >= divisor)
12234 return 1;
12235
12236 /* Low hold the result, high hold rem which is discarded */
12237 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
12238 "rm" (divisor), "0" (low), "1" (high));
12239 *result = low;
12240
12241 return 0;
12242}
12243
12244static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
12245{
386c6ddb
KA
12246 struct vcpu_vmx *vmx;
12247 u64 tscl, guest_tscl, delta_tsc;
12248
12249 if (kvm_mwait_in_guest(vcpu->kvm))
12250 return -EOPNOTSUPP;
12251
12252 vmx = to_vmx(vcpu);
12253 tscl = rdtsc();
12254 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
12255 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
64672c95
YJ
12256
12257 /* Convert to host delta tsc if tsc scaling is enabled */
12258 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
12259 u64_shl_div_u64(delta_tsc,
12260 kvm_tsc_scaling_ratio_frac_bits,
12261 vcpu->arch.tsc_scaling_ratio,
12262 &delta_tsc))
12263 return -ERANGE;
12264
12265 /*
12266 * If the delta tsc can't fit in the 32 bit after the multi shift,
12267 * we can't use the preemption timer.
12268 * It's possible that it fits on later vmentries, but checking
12269 * on every vmentry is costly so we just use an hrtimer.
12270 */
12271 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
12272 return -ERANGE;
12273
12274 vmx->hv_deadline_tsc = tscl + delta_tsc;
12275 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
12276 PIN_BASED_VMX_PREEMPTION_TIMER);
c8533544
WL
12277
12278 return delta_tsc == 0;
64672c95
YJ
12279}
12280
12281static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
12282{
12283 struct vcpu_vmx *vmx = to_vmx(vcpu);
12284 vmx->hv_deadline_tsc = -1;
12285 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
12286 PIN_BASED_VMX_PREEMPTION_TIMER);
12287}
12288#endif
12289
48d89b92 12290static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 12291{
b31c114b 12292 if (!kvm_pause_in_guest(vcpu->kvm))
b4a2d31d 12293 shrink_ple_window(vcpu);
ae97a3b8
RK
12294}
12295
843e4330
KH
12296static void vmx_slot_enable_log_dirty(struct kvm *kvm,
12297 struct kvm_memory_slot *slot)
12298{
12299 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
12300 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
12301}
12302
12303static void vmx_slot_disable_log_dirty(struct kvm *kvm,
12304 struct kvm_memory_slot *slot)
12305{
12306 kvm_mmu_slot_set_dirty(kvm, slot);
12307}
12308
12309static void vmx_flush_log_dirty(struct kvm *kvm)
12310{
12311 kvm_flush_pml_buffers(kvm);
12312}
12313
c5f983f6
BD
12314static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
12315{
12316 struct vmcs12 *vmcs12;
12317 struct vcpu_vmx *vmx = to_vmx(vcpu);
12318 gpa_t gpa;
12319 struct page *page = NULL;
12320 u64 *pml_address;
12321
12322 if (is_guest_mode(vcpu)) {
12323 WARN_ON_ONCE(vmx->nested.pml_full);
12324
12325 /*
12326 * Check if PML is enabled for the nested guest.
12327 * Whether eptp bit 6 is set is already checked
12328 * as part of A/D emulation.
12329 */
12330 vmcs12 = get_vmcs12(vcpu);
12331 if (!nested_cpu_has_pml(vmcs12))
12332 return 0;
12333
4769886b 12334 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
c5f983f6
BD
12335 vmx->nested.pml_full = true;
12336 return 1;
12337 }
12338
12339 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
12340
5e2f30b7
DH
12341 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
12342 if (is_error_page(page))
c5f983f6
BD
12343 return 0;
12344
12345 pml_address = kmap(page);
12346 pml_address[vmcs12->guest_pml_index--] = gpa;
12347 kunmap(page);
53a70daf 12348 kvm_release_page_clean(page);
c5f983f6
BD
12349 }
12350
12351 return 0;
12352}
12353
843e4330
KH
12354static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
12355 struct kvm_memory_slot *memslot,
12356 gfn_t offset, unsigned long mask)
12357{
12358 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
12359}
12360
cd39e117
PB
12361static void __pi_post_block(struct kvm_vcpu *vcpu)
12362{
12363 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
12364 struct pi_desc old, new;
12365 unsigned int dest;
cd39e117
PB
12366
12367 do {
12368 old.control = new.control = pi_desc->control;
8b306e2f
PB
12369 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
12370 "Wakeup handler not enabled while the VCPU is blocked\n");
cd39e117
PB
12371
12372 dest = cpu_physical_id(vcpu->cpu);
12373
12374 if (x2apic_enabled())
12375 new.ndst = dest;
12376 else
12377 new.ndst = (dest << 8) & 0xFF00;
12378
cd39e117
PB
12379 /* set 'NV' to 'notification vector' */
12380 new.nv = POSTED_INTR_VECTOR;
c0a1666b
PB
12381 } while (cmpxchg64(&pi_desc->control, old.control,
12382 new.control) != old.control);
cd39e117 12383
8b306e2f
PB
12384 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
12385 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
cd39e117 12386 list_del(&vcpu->blocked_vcpu_list);
8b306e2f 12387 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
cd39e117
PB
12388 vcpu->pre_pcpu = -1;
12389 }
12390}
12391
bf9f6ac8
FW
12392/*
12393 * This routine does the following things for vCPU which is going
12394 * to be blocked if VT-d PI is enabled.
12395 * - Store the vCPU to the wakeup list, so when interrupts happen
12396 * we can find the right vCPU to wake up.
12397 * - Change the Posted-interrupt descriptor as below:
12398 * 'NDST' <-- vcpu->pre_pcpu
12399 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
12400 * - If 'ON' is set during this process, which means at least one
12401 * interrupt is posted for this vCPU, we cannot block it, in
12402 * this case, return 1, otherwise, return 0.
12403 *
12404 */
bc22512b 12405static int pi_pre_block(struct kvm_vcpu *vcpu)
bf9f6ac8 12406{
bf9f6ac8
FW
12407 unsigned int dest;
12408 struct pi_desc old, new;
12409 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
12410
12411 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
12412 !irq_remapping_cap(IRQ_POSTING_CAP) ||
12413 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
12414 return 0;
12415
8b306e2f
PB
12416 WARN_ON(irqs_disabled());
12417 local_irq_disable();
12418 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
12419 vcpu->pre_pcpu = vcpu->cpu;
12420 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
12421 list_add_tail(&vcpu->blocked_vcpu_list,
12422 &per_cpu(blocked_vcpu_on_cpu,
12423 vcpu->pre_pcpu));
12424 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
12425 }
bf9f6ac8
FW
12426
12427 do {
12428 old.control = new.control = pi_desc->control;
12429
bf9f6ac8
FW
12430 WARN((pi_desc->sn == 1),
12431 "Warning: SN field of posted-interrupts "
12432 "is set before blocking\n");
12433
12434 /*
12435 * Since vCPU can be preempted during this process,
12436 * vcpu->cpu could be different with pre_pcpu, we
12437 * need to set pre_pcpu as the destination of wakeup
12438 * notification event, then we can find the right vCPU
12439 * to wakeup in wakeup handler if interrupts happen
12440 * when the vCPU is in blocked state.
12441 */
12442 dest = cpu_physical_id(vcpu->pre_pcpu);
12443
12444 if (x2apic_enabled())
12445 new.ndst = dest;
12446 else
12447 new.ndst = (dest << 8) & 0xFF00;
12448
12449 /* set 'NV' to 'wakeup vector' */
12450 new.nv = POSTED_INTR_WAKEUP_VECTOR;
c0a1666b
PB
12451 } while (cmpxchg64(&pi_desc->control, old.control,
12452 new.control) != old.control);
bf9f6ac8 12453
8b306e2f
PB
12454 /* We should not block the vCPU if an interrupt is posted for it. */
12455 if (pi_test_on(pi_desc) == 1)
12456 __pi_post_block(vcpu);
12457
12458 local_irq_enable();
12459 return (vcpu->pre_pcpu == -1);
bf9f6ac8
FW
12460}
12461
bc22512b
YJ
12462static int vmx_pre_block(struct kvm_vcpu *vcpu)
12463{
12464 if (pi_pre_block(vcpu))
12465 return 1;
12466
64672c95
YJ
12467 if (kvm_lapic_hv_timer_in_use(vcpu))
12468 kvm_lapic_switch_to_sw_timer(vcpu);
12469
bc22512b
YJ
12470 return 0;
12471}
12472
12473static void pi_post_block(struct kvm_vcpu *vcpu)
bf9f6ac8 12474{
8b306e2f 12475 if (vcpu->pre_pcpu == -1)
bf9f6ac8
FW
12476 return;
12477
8b306e2f
PB
12478 WARN_ON(irqs_disabled());
12479 local_irq_disable();
cd39e117 12480 __pi_post_block(vcpu);
8b306e2f 12481 local_irq_enable();
bf9f6ac8
FW
12482}
12483
bc22512b
YJ
12484static void vmx_post_block(struct kvm_vcpu *vcpu)
12485{
64672c95
YJ
12486 if (kvm_x86_ops->set_hv_timer)
12487 kvm_lapic_switch_to_hv_timer(vcpu);
12488
bc22512b
YJ
12489 pi_post_block(vcpu);
12490}
12491
efc64404
FW
12492/*
12493 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
12494 *
12495 * @kvm: kvm
12496 * @host_irq: host irq of the interrupt
12497 * @guest_irq: gsi of the interrupt
12498 * @set: set or unset PI
12499 * returns 0 on success, < 0 on failure
12500 */
12501static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
12502 uint32_t guest_irq, bool set)
12503{
12504 struct kvm_kernel_irq_routing_entry *e;
12505 struct kvm_irq_routing_table *irq_rt;
12506 struct kvm_lapic_irq irq;
12507 struct kvm_vcpu *vcpu;
12508 struct vcpu_data vcpu_info;
3a8b0677 12509 int idx, ret = 0;
efc64404
FW
12510
12511 if (!kvm_arch_has_assigned_device(kvm) ||
a0052191
YZ
12512 !irq_remapping_cap(IRQ_POSTING_CAP) ||
12513 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
efc64404
FW
12514 return 0;
12515
12516 idx = srcu_read_lock(&kvm->irq_srcu);
12517 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
3a8b0677
JS
12518 if (guest_irq >= irq_rt->nr_rt_entries ||
12519 hlist_empty(&irq_rt->map[guest_irq])) {
12520 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
12521 guest_irq, irq_rt->nr_rt_entries);
12522 goto out;
12523 }
efc64404
FW
12524
12525 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
12526 if (e->type != KVM_IRQ_ROUTING_MSI)
12527 continue;
12528 /*
12529 * VT-d PI cannot support posting multicast/broadcast
12530 * interrupts to a vCPU, we still use interrupt remapping
12531 * for these kind of interrupts.
12532 *
12533 * For lowest-priority interrupts, we only support
12534 * those with single CPU as the destination, e.g. user
12535 * configures the interrupts via /proc/irq or uses
12536 * irqbalance to make the interrupts single-CPU.
12537 *
12538 * We will support full lowest-priority interrupt later.
12539 */
12540
37131313 12541 kvm_set_msi_irq(kvm, e, &irq);
23a1c257
FW
12542 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
12543 /*
12544 * Make sure the IRTE is in remapped mode if
12545 * we don't handle it in posted mode.
12546 */
12547 ret = irq_set_vcpu_affinity(host_irq, NULL);
12548 if (ret < 0) {
12549 printk(KERN_INFO
12550 "failed to back to remapped mode, irq: %u\n",
12551 host_irq);
12552 goto out;
12553 }
12554
efc64404 12555 continue;
23a1c257 12556 }
efc64404
FW
12557
12558 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
12559 vcpu_info.vector = irq.vector;
12560
2698d82e 12561 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
efc64404
FW
12562 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
12563
12564 if (set)
12565 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
dc91f2eb 12566 else
efc64404 12567 ret = irq_set_vcpu_affinity(host_irq, NULL);
efc64404
FW
12568
12569 if (ret < 0) {
12570 printk(KERN_INFO "%s: failed to update PI IRTE\n",
12571 __func__);
12572 goto out;
12573 }
12574 }
12575
12576 ret = 0;
12577out:
12578 srcu_read_unlock(&kvm->irq_srcu, idx);
12579 return ret;
12580}
12581
c45dcc71
AR
12582static void vmx_setup_mce(struct kvm_vcpu *vcpu)
12583{
12584 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
12585 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
12586 FEATURE_CONTROL_LMCE;
12587 else
12588 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
12589 ~FEATURE_CONTROL_LMCE;
12590}
12591
72d7b374
LP
12592static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
12593{
72e9cbdb
LP
12594 /* we need a nested vmexit to enter SMM, postpone if run is pending */
12595 if (to_vmx(vcpu)->nested.nested_run_pending)
12596 return 0;
72d7b374
LP
12597 return 1;
12598}
12599
0234bf88
LP
12600static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
12601{
72e9cbdb
LP
12602 struct vcpu_vmx *vmx = to_vmx(vcpu);
12603
12604 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
12605 if (vmx->nested.smm.guest_mode)
12606 nested_vmx_vmexit(vcpu, -1, 0, 0);
12607
12608 vmx->nested.smm.vmxon = vmx->nested.vmxon;
12609 vmx->nested.vmxon = false;
caa057a2 12610 vmx_clear_hlt(vcpu);
0234bf88
LP
12611 return 0;
12612}
12613
12614static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
12615{
72e9cbdb
LP
12616 struct vcpu_vmx *vmx = to_vmx(vcpu);
12617 int ret;
12618
12619 if (vmx->nested.smm.vmxon) {
12620 vmx->nested.vmxon = true;
12621 vmx->nested.smm.vmxon = false;
12622 }
12623
12624 if (vmx->nested.smm.guest_mode) {
12625 vcpu->arch.hflags &= ~HF_SMM_MASK;
12626 ret = enter_vmx_non_root_mode(vcpu, false);
12627 vcpu->arch.hflags |= HF_SMM_MASK;
12628 if (ret)
12629 return ret;
12630
12631 vmx->nested.smm.guest_mode = false;
12632 }
0234bf88
LP
12633 return 0;
12634}
12635
cc3d967f
LP
12636static int enable_smi_window(struct kvm_vcpu *vcpu)
12637{
12638 return 0;
12639}
12640
404f6aac 12641static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
6aa8b732
AK
12642 .cpu_has_kvm_support = cpu_has_kvm_support,
12643 .disabled_by_bios = vmx_disabled_by_bios,
12644 .hardware_setup = hardware_setup,
12645 .hardware_unsetup = hardware_unsetup,
002c7f7c 12646 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
12647 .hardware_enable = hardware_enable,
12648 .hardware_disable = hardware_disable,
04547156 12649 .cpu_has_accelerated_tpr = report_flexpriority,
bc226f07 12650 .has_emulated_msr = vmx_has_emulated_msr,
6aa8b732 12651
b31c114b 12652 .vm_init = vmx_vm_init,
434a1e94
SC
12653 .vm_alloc = vmx_vm_alloc,
12654 .vm_free = vmx_vm_free,
b31c114b 12655
6aa8b732
AK
12656 .vcpu_create = vmx_create_vcpu,
12657 .vcpu_free = vmx_free_vcpu,
04d2cc77 12658 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 12659
04d2cc77 12660 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
12661 .vcpu_load = vmx_vcpu_load,
12662 .vcpu_put = vmx_vcpu_put,
12663
a96036b8 12664 .update_bp_intercept = update_exception_bitmap,
801e459a 12665 .get_msr_feature = vmx_get_msr_feature,
6aa8b732
AK
12666 .get_msr = vmx_get_msr,
12667 .set_msr = vmx_set_msr,
12668 .get_segment_base = vmx_get_segment_base,
12669 .get_segment = vmx_get_segment,
12670 .set_segment = vmx_set_segment,
2e4d2653 12671 .get_cpl = vmx_get_cpl,
6aa8b732 12672 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 12673 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 12674 .decache_cr3 = vmx_decache_cr3,
25c4c276 12675 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 12676 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
12677 .set_cr3 = vmx_set_cr3,
12678 .set_cr4 = vmx_set_cr4,
6aa8b732 12679 .set_efer = vmx_set_efer,
6aa8b732
AK
12680 .get_idt = vmx_get_idt,
12681 .set_idt = vmx_set_idt,
12682 .get_gdt = vmx_get_gdt,
12683 .set_gdt = vmx_set_gdt,
73aaf249
JK
12684 .get_dr6 = vmx_get_dr6,
12685 .set_dr6 = vmx_set_dr6,
020df079 12686 .set_dr7 = vmx_set_dr7,
81908bf4 12687 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 12688 .cache_reg = vmx_cache_reg,
6aa8b732
AK
12689 .get_rflags = vmx_get_rflags,
12690 .set_rflags = vmx_set_rflags,
be94f6b7 12691
6aa8b732 12692 .tlb_flush = vmx_flush_tlb,
6aa8b732 12693
6aa8b732 12694 .run = vmx_vcpu_run,
6062d012 12695 .handle_exit = vmx_handle_exit,
6aa8b732 12696 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
12697 .set_interrupt_shadow = vmx_set_interrupt_shadow,
12698 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 12699 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 12700 .set_irq = vmx_inject_irq,
95ba8273 12701 .set_nmi = vmx_inject_nmi,
298101da 12702 .queue_exception = vmx_queue_exception,
b463a6f7 12703 .cancel_injection = vmx_cancel_injection,
78646121 12704 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 12705 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
12706 .get_nmi_mask = vmx_get_nmi_mask,
12707 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
12708 .enable_nmi_window = enable_nmi_window,
12709 .enable_irq_window = enable_irq_window,
12710 .update_cr8_intercept = update_cr8_intercept,
8d14695f 12711 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 12712 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
12713 .get_enable_apicv = vmx_get_enable_apicv,
12714 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c 12715 .load_eoi_exitmap = vmx_load_eoi_exitmap,
967235d3 12716 .apicv_post_state_restore = vmx_apicv_post_state_restore,
c7c9c56c
YZ
12717 .hwapic_irr_update = vmx_hwapic_irr_update,
12718 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
12719 .sync_pir_to_irr = vmx_sync_pir_to_irr,
12720 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 12721
cbc94022 12722 .set_tss_addr = vmx_set_tss_addr,
2ac52ab8 12723 .set_identity_map_addr = vmx_set_identity_map_addr,
67253af5 12724 .get_tdp_level = get_ept_level,
4b12f0de 12725 .get_mt_mask = vmx_get_mt_mask,
229456fc 12726
586f9607 12727 .get_exit_info = vmx_get_exit_info,
586f9607 12728
17cc3935 12729 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
12730
12731 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
12732
12733 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 12734 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
12735
12736 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
12737
12738 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 12739
e79f245d 12740 .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
99e3e30a 12741 .write_tsc_offset = vmx_write_tsc_offset,
1c97f0a0
JR
12742
12743 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
12744
12745 .check_intercept = vmx_check_intercept,
a547c6db 12746 .handle_external_intr = vmx_handle_external_intr,
da8999d3 12747 .mpx_supported = vmx_mpx_supported,
55412b2e 12748 .xsaves_supported = vmx_xsaves_supported,
66336cab 12749 .umip_emulated = vmx_umip_emulated,
b6b8a145
JK
12750
12751 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
12752
12753 .sched_in = vmx_sched_in,
843e4330
KH
12754
12755 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
12756 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
12757 .flush_log_dirty = vmx_flush_log_dirty,
12758 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
c5f983f6 12759 .write_log_dirty = vmx_write_pml_buffer,
25462f7f 12760
bf9f6ac8
FW
12761 .pre_block = vmx_pre_block,
12762 .post_block = vmx_post_block,
12763
25462f7f 12764 .pmu_ops = &intel_pmu_ops,
efc64404
FW
12765
12766 .update_pi_irte = vmx_update_pi_irte,
64672c95
YJ
12767
12768#ifdef CONFIG_X86_64
12769 .set_hv_timer = vmx_set_hv_timer,
12770 .cancel_hv_timer = vmx_cancel_hv_timer,
12771#endif
c45dcc71
AR
12772
12773 .setup_mce = vmx_setup_mce,
0234bf88 12774
72d7b374 12775 .smi_allowed = vmx_smi_allowed,
0234bf88
LP
12776 .pre_enter_smm = vmx_pre_enter_smm,
12777 .pre_leave_smm = vmx_pre_leave_smm,
cc3d967f 12778 .enable_smi_window = enable_smi_window,
6aa8b732
AK
12779};
12780
12781static int __init vmx_init(void)
12782{
773e8a04
VK
12783 int r;
12784
12785#if IS_ENABLED(CONFIG_HYPERV)
12786 /*
12787 * Enlightened VMCS usage should be recommended and the host needs
12788 * to support eVMCS v1 or above. We can also disable eVMCS support
12789 * with module parameter.
12790 */
12791 if (enlightened_vmcs &&
12792 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
12793 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
12794 KVM_EVMCS_VERSION) {
12795 int cpu;
12796
12797 /* Check that we have assist pages on all online CPUs */
12798 for_each_online_cpu(cpu) {
12799 if (!hv_get_vp_assist_page(cpu)) {
12800 enlightened_vmcs = false;
12801 break;
12802 }
12803 }
12804
12805 if (enlightened_vmcs) {
12806 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
12807 static_branch_enable(&enable_evmcs);
12808 }
12809 } else {
12810 enlightened_vmcs = false;
12811 }
12812#endif
12813
12814 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
34a1cd60 12815 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 12816 if (r)
34a1cd60 12817 return r;
25c5f225 12818
2965faa5 12819#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
12820 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
12821 crash_vmclear_local_loaded_vmcss);
12822#endif
12823
fdef3ad1 12824 return 0;
6aa8b732
AK
12825}
12826
12827static void __exit vmx_exit(void)
12828{
2965faa5 12829#ifdef CONFIG_KEXEC_CORE
3b63a43f 12830 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
12831 synchronize_rcu();
12832#endif
12833
cb498ea2 12834 kvm_exit();
773e8a04
VK
12835
12836#if IS_ENABLED(CONFIG_HYPERV)
12837 if (static_branch_unlikely(&enable_evmcs)) {
12838 int cpu;
12839 struct hv_vp_assist_page *vp_ap;
12840 /*
12841 * Reset everything to support using non-enlightened VMCS
12842 * access later (e.g. when we reload the module with
12843 * enlightened_vmcs=0)
12844 */
12845 for_each_online_cpu(cpu) {
12846 vp_ap = hv_get_vp_assist_page(cpu);
12847
12848 if (!vp_ap)
12849 continue;
12850
12851 vp_ap->current_nested_vmcs = 0;
12852 vp_ap->enlighten_vmentry = 0;
12853 }
12854
12855 static_branch_disable(&enable_evmcs);
12856 }
12857#endif
6aa8b732
AK
12858}
12859
12860module_init(vmx_init)
12861module_exit(vmx_exit)