]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/x86.c
KVM: Introduce kvm_make_all_cpus_request_except()
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / x86.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
043405e1
CO
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
4d5c5d0f
BAY
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
043405e1
CO
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
4d5c5d0f
BAY
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
043405e1
CO
17 */
18
edf88417 19#include <linux/kvm_host.h>
313a3dc7 20#include "irq.h"
1d737c8a 21#include "mmu.h"
7837699f 22#include "i8254.h"
37817f29 23#include "tss.h"
5fdbf976 24#include "kvm_cache_regs.h"
2f728d66 25#include "kvm_emulate.h"
26eef70c 26#include "x86.h"
00b27a3e 27#include "cpuid.h"
474a5bb9 28#include "pmu.h"
e83d5887 29#include "hyperv.h"
8df14af4 30#include "lapic.h"
313a3dc7 31
18068523 32#include <linux/clocksource.h>
4d5c5d0f 33#include <linux/interrupt.h>
313a3dc7
CO
34#include <linux/kvm.h>
35#include <linux/fs.h>
36#include <linux/vmalloc.h>
1767e931
PG
37#include <linux/export.h>
38#include <linux/moduleparam.h>
0de10343 39#include <linux/mman.h>
2bacc55c 40#include <linux/highmem.h>
19de40a8 41#include <linux/iommu.h>
62c476c7 42#include <linux/intel-iommu.h>
c8076604 43#include <linux/cpufreq.h>
18863bdd 44#include <linux/user-return-notifier.h>
a983fb23 45#include <linux/srcu.h>
5a0e3ad6 46#include <linux/slab.h>
ff9d07a0 47#include <linux/perf_event.h>
7bee342a 48#include <linux/uaccess.h>
af585b92 49#include <linux/hash.h>
a1b60c1c 50#include <linux/pci.h>
16e8d74d
MT
51#include <linux/timekeeper_internal.h>
52#include <linux/pvclock_gtod.h>
87276880
FW
53#include <linux/kvm_irqfd.h>
54#include <linux/irqbypass.h>
3905f9ad 55#include <linux/sched/stat.h>
0c5f81da 56#include <linux/sched/isolation.h>
d0ec49d4 57#include <linux/mem_encrypt.h>
3905f9ad 58
aec51dc4 59#include <trace/events/kvm.h>
2ed152af 60
24f1e32c 61#include <asm/debugreg.h>
d825ed0a 62#include <asm/msr.h>
a5f61300 63#include <asm/desc.h>
890ca9ae 64#include <asm/mce.h>
f89e32e0 65#include <linux/kernel_stat.h>
78f7f1e5 66#include <asm/fpu/internal.h> /* Ugh! */
1d5f066e 67#include <asm/pvclock.h>
217fc9cf 68#include <asm/div64.h>
efc64404 69#include <asm/irq_remapping.h>
b0c39dc6 70#include <asm/mshyperv.h>
0092e434 71#include <asm/hypervisor.h>
bf8c55d8 72#include <asm/intel_pt.h>
b3dc0695 73#include <asm/emulate_prefix.h>
dd2cb348 74#include <clocksource/hyperv_timer.h>
043405e1 75
d1898b73
DH
76#define CREATE_TRACE_POINTS
77#include "trace.h"
78
313a3dc7 79#define MAX_IO_MSRS 256
890ca9ae 80#define KVM_MAX_MCE_BANKS 32
c45dcc71
AR
81u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
82EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
890ca9ae 83
0f65dd70 84#define emul_to_vcpu(ctxt) \
c9b8b07c 85 ((struct kvm_vcpu *)(ctxt)->vcpu)
0f65dd70 86
50a37eb4
JR
87/* EFER defaults:
88 * - enable syscall per default because its emulated by KVM
89 * - enable LME and LMA per default on 64 bit KVM
90 */
91#ifdef CONFIG_X86_64
1260edbe
LJ
92static
93u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
50a37eb4 94#else
1260edbe 95static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
50a37eb4 96#endif
313a3dc7 97
b11306b5
SC
98static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
99
833b45de
PB
100#define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
101#define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
417bc304 102
c519265f
RK
103#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
37131313 105
cb142eb7 106static void update_cr8_intercept(struct kvm_vcpu *vcpu);
7460fb4a 107static void process_nmi(struct kvm_vcpu *vcpu);
ee2cd4b7 108static void enter_smm(struct kvm_vcpu *vcpu);
6addfc42 109static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
01643c51
KH
110static void store_regs(struct kvm_vcpu *vcpu);
111static int sync_regs(struct kvm_vcpu *vcpu);
674eea0f 112
afaf0b2f 113struct kvm_x86_ops kvm_x86_ops __read_mostly;
5fdbf976 114EXPORT_SYMBOL_GPL(kvm_x86_ops);
97896d04 115
893590c7 116static bool __read_mostly ignore_msrs = 0;
476bc001 117module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
ed85c068 118
fab0aa3b
EM
119static bool __read_mostly report_ignored_msrs = true;
120module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
121
4c27625b 122unsigned int min_timer_period_us = 200;
9ed96e87
MT
123module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
124
630994b3
MT
125static bool __read_mostly kvmclock_periodic_sync = true;
126module_param(kvmclock_periodic_sync, bool, S_IRUGO);
127
893590c7 128bool __read_mostly kvm_has_tsc_control;
92a1f12d 129EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
893590c7 130u32 __read_mostly kvm_max_guest_tsc_khz;
92a1f12d 131EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
bc9b961b
HZ
132u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
133EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
134u64 __read_mostly kvm_max_tsc_scaling_ratio;
135EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
64672c95
YJ
136u64 __read_mostly kvm_default_tsc_scaling_ratio;
137EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
92a1f12d 138
cc578287 139/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
893590c7 140static u32 __read_mostly tsc_tolerance_ppm = 250;
cc578287
ZA
141module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
142
c3941d9e
SC
143/*
144 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
145 * adaptive tuning starting from default advancment of 1000ns. '0' disables
146 * advancement entirely. Any other value is used as-is and disables adaptive
147 * tuning, i.e. allows priveleged userspace to set an exact advancement time.
148 */
149static int __read_mostly lapic_timer_advance_ns = -1;
0e6edceb 150module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
d0659d94 151
52004014
FW
152static bool __read_mostly vector_hashing = true;
153module_param(vector_hashing, bool, S_IRUGO);
154
c4ae60e4
LA
155bool __read_mostly enable_vmware_backdoor = false;
156module_param(enable_vmware_backdoor, bool, S_IRUGO);
157EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
158
6c86eedc
WL
159static bool __read_mostly force_emulation_prefix = false;
160module_param(force_emulation_prefix, bool, S_IRUGO);
161
0c5f81da
WL
162int __read_mostly pi_inject_timer = -1;
163module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
164
18863bdd
AK
165#define KVM_NR_SHARED_MSRS 16
166
167struct kvm_shared_msrs_global {
168 int nr;
2bf78fa7 169 u32 msrs[KVM_NR_SHARED_MSRS];
18863bdd
AK
170};
171
172struct kvm_shared_msrs {
173 struct user_return_notifier urn;
174 bool registered;
2bf78fa7
SY
175 struct kvm_shared_msr_values {
176 u64 host;
177 u64 curr;
178 } values[KVM_NR_SHARED_MSRS];
18863bdd
AK
179};
180
181static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
013f6a5d 182static struct kvm_shared_msrs __percpu *shared_msrs;
18863bdd 183
cfc48181
SC
184#define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
185 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
186 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
187 | XFEATURE_MASK_PKRU)
188
91661989
SC
189u64 __read_mostly host_efer;
190EXPORT_SYMBOL_GPL(host_efer);
191
139a12cf 192static u64 __read_mostly host_xss;
408e9a31
PB
193u64 __read_mostly supported_xss;
194EXPORT_SYMBOL_GPL(supported_xss);
139a12cf 195
417bc304 196struct kvm_stats_debugfs_item debugfs_entries[] = {
ba1389b7
AK
197 { "pf_fixed", VCPU_STAT(pf_fixed) },
198 { "pf_guest", VCPU_STAT(pf_guest) },
199 { "tlb_flush", VCPU_STAT(tlb_flush) },
200 { "invlpg", VCPU_STAT(invlpg) },
201 { "exits", VCPU_STAT(exits) },
202 { "io_exits", VCPU_STAT(io_exits) },
203 { "mmio_exits", VCPU_STAT(mmio_exits) },
204 { "signal_exits", VCPU_STAT(signal_exits) },
205 { "irq_window", VCPU_STAT(irq_window_exits) },
f08864b4 206 { "nmi_window", VCPU_STAT(nmi_window_exits) },
ba1389b7 207 { "halt_exits", VCPU_STAT(halt_exits) },
f7819512 208 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
62bea5bf 209 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
3491caf2 210 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
ba1389b7 211 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
f11c3a8d 212 { "hypercalls", VCPU_STAT(hypercalls) },
ba1389b7
AK
213 { "request_irq", VCPU_STAT(request_irq_exits) },
214 { "irq_exits", VCPU_STAT(irq_exits) },
215 { "host_state_reload", VCPU_STAT(host_state_reload) },
ba1389b7
AK
216 { "fpu_reload", VCPU_STAT(fpu_reload) },
217 { "insn_emulation", VCPU_STAT(insn_emulation) },
218 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
fa89a817 219 { "irq_injections", VCPU_STAT(irq_injections) },
c4abb7c9 220 { "nmi_injections", VCPU_STAT(nmi_injections) },
0f1e261e 221 { "req_event", VCPU_STAT(req_event) },
c595ceee 222 { "l1d_flush", VCPU_STAT(l1d_flush) },
4cee5764
AK
223 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
224 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
225 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
226 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
227 { "mmu_flooded", VM_STAT(mmu_flooded) },
228 { "mmu_recycled", VM_STAT(mmu_recycled) },
dfc5aa00 229 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
4731d4c7 230 { "mmu_unsync", VM_STAT(mmu_unsync) },
0f74a24c 231 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
833b45de 232 { "largepages", VM_STAT(lpages, .mode = 0444) },
b8e8c830 233 { "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
f3414bc7
DM
234 { "max_mmu_page_hash_collisions",
235 VM_STAT(max_mmu_page_hash_collisions) },
417bc304
HB
236 { NULL }
237};
238
2acf923e 239u64 __read_mostly host_xcr0;
cfc48181
SC
240u64 __read_mostly supported_xcr0;
241EXPORT_SYMBOL_GPL(supported_xcr0);
2acf923e 242
b666a4b6
MO
243struct kmem_cache *x86_fpu_cache;
244EXPORT_SYMBOL_GPL(x86_fpu_cache);
245
c9b8b07c
SC
246static struct kmem_cache *x86_emulator_cache;
247
248static struct kmem_cache *kvm_alloc_emulator_cache(void)
249{
06add254
SC
250 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
251 unsigned int size = sizeof(struct x86_emulate_ctxt);
252
253 return kmem_cache_create_usercopy("x86_emulator", size,
c9b8b07c 254 __alignof__(struct x86_emulate_ctxt),
06add254
SC
255 SLAB_ACCOUNT, useroffset,
256 size - useroffset, NULL);
c9b8b07c
SC
257}
258
b6785def 259static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
d6aa1000 260
af585b92
GN
261static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
262{
263 int i;
264 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
265 vcpu->arch.apf.gfns[i] = ~0;
266}
267
18863bdd
AK
268static void kvm_on_user_return(struct user_return_notifier *urn)
269{
270 unsigned slot;
18863bdd
AK
271 struct kvm_shared_msrs *locals
272 = container_of(urn, struct kvm_shared_msrs, urn);
2bf78fa7 273 struct kvm_shared_msr_values *values;
1650b4eb
IA
274 unsigned long flags;
275
276 /*
277 * Disabling irqs at this point since the following code could be
278 * interrupted and executed through kvm_arch_hardware_disable()
279 */
280 local_irq_save(flags);
281 if (locals->registered) {
282 locals->registered = false;
283 user_return_notifier_unregister(urn);
284 }
285 local_irq_restore(flags);
18863bdd 286 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
2bf78fa7
SY
287 values = &locals->values[slot];
288 if (values->host != values->curr) {
289 wrmsrl(shared_msrs_global.msrs[slot], values->host);
290 values->curr = values->host;
18863bdd
AK
291 }
292 }
18863bdd
AK
293}
294
2bf78fa7
SY
295void kvm_define_shared_msr(unsigned slot, u32 msr)
296{
0123be42 297 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
c847fe88 298 shared_msrs_global.msrs[slot] = msr;
18863bdd
AK
299 if (slot >= shared_msrs_global.nr)
300 shared_msrs_global.nr = slot + 1;
18863bdd
AK
301}
302EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
303
304static void kvm_shared_msr_cpu_online(void)
305{
05c19c2f
SC
306 unsigned int cpu = smp_processor_id();
307 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
308 u64 value;
309 int i;
18863bdd 310
05c19c2f
SC
311 for (i = 0; i < shared_msrs_global.nr; ++i) {
312 rdmsrl_safe(shared_msrs_global.msrs[i], &value);
313 smsr->values[i].host = value;
314 smsr->values[i].curr = value;
315 }
18863bdd
AK
316}
317
8b3c3104 318int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
18863bdd 319{
013f6a5d
MT
320 unsigned int cpu = smp_processor_id();
321 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
8b3c3104 322 int err;
18863bdd 323
de1fca5d
PB
324 value = (value & mask) | (smsr->values[slot].host & ~mask);
325 if (value == smsr->values[slot].curr)
8b3c3104 326 return 0;
8b3c3104
AH
327 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
328 if (err)
329 return 1;
330
de1fca5d 331 smsr->values[slot].curr = value;
18863bdd
AK
332 if (!smsr->registered) {
333 smsr->urn.on_user_return = kvm_on_user_return;
334 user_return_notifier_register(&smsr->urn);
335 smsr->registered = true;
336 }
8b3c3104 337 return 0;
18863bdd
AK
338}
339EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
340
13a34e06 341static void drop_user_return_notifiers(void)
3548bab5 342{
013f6a5d
MT
343 unsigned int cpu = smp_processor_id();
344 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
3548bab5
AK
345
346 if (smsr->registered)
347 kvm_on_user_return(&smsr->urn);
348}
349
6866b83e
CO
350u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
351{
8a5a87d9 352 return vcpu->arch.apic_base;
6866b83e
CO
353}
354EXPORT_SYMBOL_GPL(kvm_get_apic_base);
355
58871649
JM
356enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
357{
358 return kvm_apic_mode(kvm_get_apic_base(vcpu));
359}
360EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
361
58cb628d
JK
362int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
363{
58871649
JM
364 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
365 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
d6321d49
RK
366 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
367 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
58cb628d 368
58871649 369 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
58cb628d 370 return 1;
58871649
JM
371 if (!msr_info->host_initiated) {
372 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
373 return 1;
374 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
375 return 1;
376 }
58cb628d
JK
377
378 kvm_lapic_set_base(vcpu, msr_info->data);
4abaffce 379 kvm_recalculate_apic_map(vcpu->kvm);
58cb628d 380 return 0;
6866b83e
CO
381}
382EXPORT_SYMBOL_GPL(kvm_set_apic_base);
383
2605fc21 384asmlinkage __visible void kvm_spurious_fault(void)
e3ba45b8
GL
385{
386 /* Fault while not rebooting. We want the trace. */
b4fdcf60 387 BUG_ON(!kvm_rebooting);
e3ba45b8
GL
388}
389EXPORT_SYMBOL_GPL(kvm_spurious_fault);
390
3fd28fce
ED
391#define EXCPT_BENIGN 0
392#define EXCPT_CONTRIBUTORY 1
393#define EXCPT_PF 2
394
395static int exception_class(int vector)
396{
397 switch (vector) {
398 case PF_VECTOR:
399 return EXCPT_PF;
400 case DE_VECTOR:
401 case TS_VECTOR:
402 case NP_VECTOR:
403 case SS_VECTOR:
404 case GP_VECTOR:
405 return EXCPT_CONTRIBUTORY;
406 default:
407 break;
408 }
409 return EXCPT_BENIGN;
410}
411
d6e8c854
NA
412#define EXCPT_FAULT 0
413#define EXCPT_TRAP 1
414#define EXCPT_ABORT 2
415#define EXCPT_INTERRUPT 3
416
417static int exception_type(int vector)
418{
419 unsigned int mask;
420
421 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
422 return EXCPT_INTERRUPT;
423
424 mask = 1 << vector;
425
426 /* #DB is trap, as instruction watchpoints are handled elsewhere */
427 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
428 return EXCPT_TRAP;
429
430 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
431 return EXCPT_ABORT;
432
433 /* Reserved exceptions will result in fault */
434 return EXCPT_FAULT;
435}
436
da998b46
JM
437void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
438{
439 unsigned nr = vcpu->arch.exception.nr;
440 bool has_payload = vcpu->arch.exception.has_payload;
441 unsigned long payload = vcpu->arch.exception.payload;
442
443 if (!has_payload)
444 return;
445
446 switch (nr) {
f10c729f
JM
447 case DB_VECTOR:
448 /*
449 * "Certain debug exceptions may clear bit 0-3. The
450 * remaining contents of the DR6 register are never
451 * cleared by the processor".
452 */
453 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
454 /*
455 * DR6.RTM is set by all #DB exceptions that don't clear it.
456 */
457 vcpu->arch.dr6 |= DR6_RTM;
458 vcpu->arch.dr6 |= payload;
459 /*
460 * Bit 16 should be set in the payload whenever the #DB
461 * exception should clear DR6.RTM. This makes the payload
462 * compatible with the pending debug exceptions under VMX.
463 * Though not currently documented in the SDM, this also
464 * makes the payload compatible with the exit qualification
465 * for #DB exceptions under VMX.
466 */
467 vcpu->arch.dr6 ^= payload & DR6_RTM;
307f1cfa
OU
468
469 /*
470 * The #DB payload is defined as compatible with the 'pending
471 * debug exceptions' field under VMX, not DR6. While bit 12 is
472 * defined in the 'pending debug exceptions' field (enabled
473 * breakpoint), it is reserved and must be zero in DR6.
474 */
475 vcpu->arch.dr6 &= ~BIT(12);
f10c729f 476 break;
da998b46
JM
477 case PF_VECTOR:
478 vcpu->arch.cr2 = payload;
479 break;
480 }
481
482 vcpu->arch.exception.has_payload = false;
483 vcpu->arch.exception.payload = 0;
484}
485EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
486
3fd28fce 487static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
ce7ddec4 488 unsigned nr, bool has_error, u32 error_code,
91e86d22 489 bool has_payload, unsigned long payload, bool reinject)
3fd28fce
ED
490{
491 u32 prev_nr;
492 int class1, class2;
493
3842d135
AK
494 kvm_make_request(KVM_REQ_EVENT, vcpu);
495
664f8e26 496 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
3fd28fce 497 queue:
3ffb2468
NA
498 if (has_error && !is_protmode(vcpu))
499 has_error = false;
664f8e26
WL
500 if (reinject) {
501 /*
502 * On vmentry, vcpu->arch.exception.pending is only
503 * true if an event injection was blocked by
504 * nested_run_pending. In that case, however,
505 * vcpu_enter_guest requests an immediate exit,
506 * and the guest shouldn't proceed far enough to
507 * need reinjection.
508 */
509 WARN_ON_ONCE(vcpu->arch.exception.pending);
510 vcpu->arch.exception.injected = true;
91e86d22
JM
511 if (WARN_ON_ONCE(has_payload)) {
512 /*
513 * A reinjected event has already
514 * delivered its payload.
515 */
516 has_payload = false;
517 payload = 0;
518 }
664f8e26
WL
519 } else {
520 vcpu->arch.exception.pending = true;
521 vcpu->arch.exception.injected = false;
522 }
3fd28fce
ED
523 vcpu->arch.exception.has_error_code = has_error;
524 vcpu->arch.exception.nr = nr;
525 vcpu->arch.exception.error_code = error_code;
91e86d22
JM
526 vcpu->arch.exception.has_payload = has_payload;
527 vcpu->arch.exception.payload = payload;
a06230b6 528 if (!is_guest_mode(vcpu))
da998b46 529 kvm_deliver_exception_payload(vcpu);
3fd28fce
ED
530 return;
531 }
532
533 /* to check exception */
534 prev_nr = vcpu->arch.exception.nr;
535 if (prev_nr == DF_VECTOR) {
536 /* triple fault -> shutdown */
a8eeb04a 537 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3fd28fce
ED
538 return;
539 }
540 class1 = exception_class(prev_nr);
541 class2 = exception_class(nr);
542 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
543 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
664f8e26
WL
544 /*
545 * Generate double fault per SDM Table 5-5. Set
546 * exception.pending = true so that the double fault
547 * can trigger a nested vmexit.
548 */
3fd28fce 549 vcpu->arch.exception.pending = true;
664f8e26 550 vcpu->arch.exception.injected = false;
3fd28fce
ED
551 vcpu->arch.exception.has_error_code = true;
552 vcpu->arch.exception.nr = DF_VECTOR;
553 vcpu->arch.exception.error_code = 0;
c851436a
JM
554 vcpu->arch.exception.has_payload = false;
555 vcpu->arch.exception.payload = 0;
3fd28fce
ED
556 } else
557 /* replace previous exception with a new one in a hope
558 that instruction re-execution will regenerate lost
559 exception */
560 goto queue;
561}
562
298101da
AK
563void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
564{
91e86d22 565 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
298101da
AK
566}
567EXPORT_SYMBOL_GPL(kvm_queue_exception);
568
ce7ddec4
JR
569void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
570{
91e86d22 571 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
ce7ddec4
JR
572}
573EXPORT_SYMBOL_GPL(kvm_requeue_exception);
574
4d5523cf
PB
575void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
576 unsigned long payload)
f10c729f
JM
577{
578 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
579}
4d5523cf 580EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
f10c729f 581
da998b46
JM
582static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
583 u32 error_code, unsigned long payload)
584{
585 kvm_multiple_exception(vcpu, nr, true, error_code,
586 true, payload, false);
587}
588
6affcbed 589int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
c3c91fee 590{
db8fcefa
AP
591 if (err)
592 kvm_inject_gp(vcpu, 0);
593 else
6affcbed
KH
594 return kvm_skip_emulated_instruction(vcpu);
595
596 return 1;
db8fcefa
AP
597}
598EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
8df25a32 599
6389ee94 600void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
c3c91fee
AK
601{
602 ++vcpu->stat.pf_guest;
adfe20fb
WL
603 vcpu->arch.exception.nested_apf =
604 is_guest_mode(vcpu) && fault->async_page_fault;
da998b46 605 if (vcpu->arch.exception.nested_apf) {
adfe20fb 606 vcpu->arch.apf.nested_apf_token = fault->address;
da998b46
JM
607 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
608 } else {
609 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
610 fault->address);
611 }
c3c91fee 612}
27d6c865 613EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
c3c91fee 614
ef54bcfe 615static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
d4f8cf66 616{
6389ee94
AK
617 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
618 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
d4f8cf66 619 else
44dd3ffa 620 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
ef54bcfe
PB
621
622 return fault->nested_page_fault;
d4f8cf66
JR
623}
624
3419ffc8
SY
625void kvm_inject_nmi(struct kvm_vcpu *vcpu)
626{
7460fb4a
AK
627 atomic_inc(&vcpu->arch.nmi_queued);
628 kvm_make_request(KVM_REQ_NMI, vcpu);
3419ffc8
SY
629}
630EXPORT_SYMBOL_GPL(kvm_inject_nmi);
631
298101da
AK
632void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
633{
91e86d22 634 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
298101da
AK
635}
636EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
637
ce7ddec4
JR
638void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
639{
91e86d22 640 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
ce7ddec4
JR
641}
642EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
643
0a79b009
AK
644/*
645 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
646 * a #GP and return false.
647 */
648bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
298101da 649{
afaf0b2f 650 if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
0a79b009
AK
651 return true;
652 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
653 return false;
298101da 654}
0a79b009 655EXPORT_SYMBOL_GPL(kvm_require_cpl);
298101da 656
16f8a6f9
NA
657bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
658{
659 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
660 return true;
661
662 kvm_queue_exception(vcpu, UD_VECTOR);
663 return false;
664}
665EXPORT_SYMBOL_GPL(kvm_require_dr);
666
ec92fe44
JR
667/*
668 * This function will be used to read from the physical memory of the currently
54bf36aa 669 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
ec92fe44
JR
670 * can read from guest physical or from the guest's guest physical memory.
671 */
672int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
673 gfn_t ngfn, void *data, int offset, int len,
674 u32 access)
675{
54987b7a 676 struct x86_exception exception;
ec92fe44
JR
677 gfn_t real_gfn;
678 gpa_t ngpa;
679
680 ngpa = gfn_to_gpa(ngfn);
54987b7a 681 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
ec92fe44
JR
682 if (real_gfn == UNMAPPED_GVA)
683 return -EFAULT;
684
685 real_gfn = gpa_to_gfn(real_gfn);
686
54bf36aa 687 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
ec92fe44
JR
688}
689EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
690
69b0049a 691static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3d06b8bf
JR
692 void *data, int offset, int len, u32 access)
693{
694 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
695 data, offset, len, access);
696}
697
16cfacc8
SC
698static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
699{
700 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
701 rsvd_bits(1, 2);
702}
703
a03490ed 704/*
16cfacc8 705 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
a03490ed 706 */
ff03a073 707int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
a03490ed
CO
708{
709 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
710 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
711 int i;
712 int ret;
ff03a073 713 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
a03490ed 714
ff03a073
JR
715 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
716 offset * sizeof(u64), sizeof(pdpte),
717 PFERR_USER_MASK|PFERR_WRITE_MASK);
a03490ed
CO
718 if (ret < 0) {
719 ret = 0;
720 goto out;
721 }
722 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
812f30b2 723 if ((pdpte[i] & PT_PRESENT_MASK) &&
16cfacc8 724 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
a03490ed
CO
725 ret = 0;
726 goto out;
727 }
728 }
729 ret = 1;
730
ff03a073 731 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
cb3c1e2f
SC
732 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
733
a03490ed 734out:
a03490ed
CO
735
736 return ret;
737}
cc4b6871 738EXPORT_SYMBOL_GPL(load_pdptrs);
a03490ed 739
9ed38ffa 740bool pdptrs_changed(struct kvm_vcpu *vcpu)
d835dfec 741{
ff03a073 742 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
3d06b8bf
JR
743 int offset;
744 gfn_t gfn;
d835dfec
AK
745 int r;
746
bf03d4f9 747 if (!is_pae_paging(vcpu))
d835dfec
AK
748 return false;
749
cb3c1e2f 750 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
6de4f3ad
AK
751 return true;
752
a512177e
PB
753 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
754 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
3d06b8bf
JR
755 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
756 PFERR_USER_MASK | PFERR_WRITE_MASK);
d835dfec 757 if (r < 0)
7f7f0d9c 758 return true;
d835dfec 759
7f7f0d9c 760 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
d835dfec 761}
9ed38ffa 762EXPORT_SYMBOL_GPL(pdptrs_changed);
d835dfec 763
49a9b07e 764int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
a03490ed 765{
aad82703 766 unsigned long old_cr0 = kvm_read_cr0(vcpu);
d81135a5 767 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
aad82703 768
f9a48e6a
AK
769 cr0 |= X86_CR0_ET;
770
ab344828 771#ifdef CONFIG_X86_64
0f12244f
GN
772 if (cr0 & 0xffffffff00000000UL)
773 return 1;
ab344828
GN
774#endif
775
776 cr0 &= ~CR0_RESERVED_BITS;
a03490ed 777
0f12244f
GN
778 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
779 return 1;
a03490ed 780
0f12244f
GN
781 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
782 return 1;
a03490ed
CO
783
784 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
785#ifdef CONFIG_X86_64
f6801dff 786 if ((vcpu->arch.efer & EFER_LME)) {
a03490ed
CO
787 int cs_db, cs_l;
788
0f12244f
GN
789 if (!is_pae(vcpu))
790 return 1;
afaf0b2f 791 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
0f12244f
GN
792 if (cs_l)
793 return 1;
a03490ed
CO
794 } else
795#endif
ff03a073 796 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
9f8fe504 797 kvm_read_cr3(vcpu)))
0f12244f 798 return 1;
a03490ed
CO
799 }
800
ad756a16
MJ
801 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
802 return 1;
803
afaf0b2f 804 kvm_x86_ops.set_cr0(vcpu, cr0);
a03490ed 805
d170c419 806 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
e5f3f027 807 kvm_clear_async_pf_completion_queue(vcpu);
d170c419
LJ
808 kvm_async_pf_hash_reset(vcpu);
809 }
e5f3f027 810
aad82703
SY
811 if ((cr0 ^ old_cr0) & update_bits)
812 kvm_mmu_reset_context(vcpu);
b18d5431 813
879ae188
LE
814 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
815 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
816 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
b18d5431
XG
817 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
818
0f12244f
GN
819 return 0;
820}
2d3ad1f4 821EXPORT_SYMBOL_GPL(kvm_set_cr0);
a03490ed 822
2d3ad1f4 823void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
a03490ed 824{
49a9b07e 825 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
a03490ed 826}
2d3ad1f4 827EXPORT_SYMBOL_GPL(kvm_lmsw);
a03490ed 828
139a12cf 829void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
42bdf991 830{
139a12cf
AL
831 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
832
833 if (vcpu->arch.xcr0 != host_xcr0)
834 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
835
836 if (vcpu->arch.xsaves_enabled &&
837 vcpu->arch.ia32_xss != host_xss)
838 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
839 }
42bdf991 840}
139a12cf 841EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
42bdf991 842
139a12cf 843void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
42bdf991 844{
139a12cf
AL
845 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
846
847 if (vcpu->arch.xcr0 != host_xcr0)
848 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
849
850 if (vcpu->arch.xsaves_enabled &&
851 vcpu->arch.ia32_xss != host_xss)
852 wrmsrl(MSR_IA32_XSS, host_xss);
853 }
854
42bdf991 855}
139a12cf 856EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
42bdf991 857
69b0049a 858static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
2acf923e 859{
56c103ec
LJ
860 u64 xcr0 = xcr;
861 u64 old_xcr0 = vcpu->arch.xcr0;
46c34cb0 862 u64 valid_bits;
2acf923e
DC
863
864 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
865 if (index != XCR_XFEATURE_ENABLED_MASK)
866 return 1;
d91cab78 867 if (!(xcr0 & XFEATURE_MASK_FP))
2acf923e 868 return 1;
d91cab78 869 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
2acf923e 870 return 1;
46c34cb0
PB
871
872 /*
873 * Do not allow the guest to set bits that we do not support
874 * saving. However, xcr0 bit 0 is always set, even if the
875 * emulated CPU does not support XSAVE (see fx_init).
876 */
d91cab78 877 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
46c34cb0 878 if (xcr0 & ~valid_bits)
2acf923e 879 return 1;
46c34cb0 880
d91cab78
DH
881 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
882 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
390bd528
LJ
883 return 1;
884
d91cab78
DH
885 if (xcr0 & XFEATURE_MASK_AVX512) {
886 if (!(xcr0 & XFEATURE_MASK_YMM))
612263b3 887 return 1;
d91cab78 888 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
612263b3
CP
889 return 1;
890 }
2acf923e 891 vcpu->arch.xcr0 = xcr0;
56c103ec 892
d91cab78 893 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
56c103ec 894 kvm_update_cpuid(vcpu);
2acf923e
DC
895 return 0;
896}
897
898int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
899{
afaf0b2f 900 if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
764bcbc5 901 __kvm_set_xcr(vcpu, index, xcr)) {
2acf923e
DC
902 kvm_inject_gp(vcpu, 0);
903 return 1;
904 }
905 return 0;
906}
907EXPORT_SYMBOL_GPL(kvm_set_xcr);
908
345599f9
SC
909#define __cr4_reserved_bits(__cpu_has, __c) \
910({ \
911 u64 __reserved_bits = CR4_RESERVED_BITS; \
912 \
913 if (!__cpu_has(__c, X86_FEATURE_XSAVE)) \
914 __reserved_bits |= X86_CR4_OSXSAVE; \
915 if (!__cpu_has(__c, X86_FEATURE_SMEP)) \
916 __reserved_bits |= X86_CR4_SMEP; \
917 if (!__cpu_has(__c, X86_FEATURE_SMAP)) \
918 __reserved_bits |= X86_CR4_SMAP; \
919 if (!__cpu_has(__c, X86_FEATURE_FSGSBASE)) \
920 __reserved_bits |= X86_CR4_FSGSBASE; \
921 if (!__cpu_has(__c, X86_FEATURE_PKU)) \
922 __reserved_bits |= X86_CR4_PKE; \
923 if (!__cpu_has(__c, X86_FEATURE_LA57)) \
924 __reserved_bits |= X86_CR4_LA57; \
d76c7fbc
SC
925 if (!__cpu_has(__c, X86_FEATURE_UMIP)) \
926 __reserved_bits |= X86_CR4_UMIP; \
345599f9
SC
927 __reserved_bits; \
928})
a03490ed 929
3ca94192 930static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
a03490ed 931{
b11306b5 932 if (cr4 & cr4_reserved_bits)
3ca94192 933 return -EINVAL;
b9baba86 934
345599f9 935 if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu))
3ca94192
WL
936 return -EINVAL;
937
938 return 0;
939}
940
941int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
942{
943 unsigned long old_cr4 = kvm_read_cr4(vcpu);
944 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
945 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
946
947 if (kvm_valid_cr4(vcpu, cr4))
ae3e61e1
PB
948 return 1;
949
a03490ed 950 if (is_long_mode(vcpu)) {
0f12244f
GN
951 if (!(cr4 & X86_CR4_PAE))
952 return 1;
a2edf57f
AK
953 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
954 && ((cr4 ^ old_cr4) & pdptr_bits)
9f8fe504
AK
955 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
956 kvm_read_cr3(vcpu)))
0f12244f
GN
957 return 1;
958
ad756a16 959 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
d6321d49 960 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
ad756a16
MJ
961 return 1;
962
963 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
964 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
965 return 1;
966 }
967
afaf0b2f 968 if (kvm_x86_ops.set_cr4(vcpu, cr4))
0f12244f 969 return 1;
a03490ed 970
ad756a16
MJ
971 if (((cr4 ^ old_cr4) & pdptr_bits) ||
972 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
aad82703 973 kvm_mmu_reset_context(vcpu);
0f12244f 974
b9baba86 975 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
00b27a3e 976 kvm_update_cpuid(vcpu);
2acf923e 977
0f12244f
GN
978 return 0;
979}
2d3ad1f4 980EXPORT_SYMBOL_GPL(kvm_set_cr4);
a03490ed 981
2390218b 982int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
a03490ed 983{
ade61e28 984 bool skip_tlb_flush = false;
ac146235 985#ifdef CONFIG_X86_64
c19986fe
JS
986 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
987
ade61e28 988 if (pcid_enabled) {
208320ba
JS
989 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
990 cr3 &= ~X86_CR3_PCID_NOFLUSH;
ade61e28 991 }
ac146235 992#endif
9d88fca7 993
9f8fe504 994 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
956bf353
JS
995 if (!skip_tlb_flush) {
996 kvm_mmu_sync_roots(vcpu);
ade61e28 997 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
956bf353 998 }
0f12244f 999 return 0;
d835dfec
AK
1000 }
1001
d1cd3ce9 1002 if (is_long_mode(vcpu) &&
a780a3ea 1003 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
d1cd3ce9 1004 return 1;
bf03d4f9
PB
1005 else if (is_pae_paging(vcpu) &&
1006 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
346874c9 1007 return 1;
a03490ed 1008
ade61e28 1009 kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
0f12244f 1010 vcpu->arch.cr3 = cr3;
cb3c1e2f 1011 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
7c390d35 1012
0f12244f
GN
1013 return 0;
1014}
2d3ad1f4 1015EXPORT_SYMBOL_GPL(kvm_set_cr3);
a03490ed 1016
eea1cff9 1017int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
a03490ed 1018{
0f12244f
GN
1019 if (cr8 & CR8_RESERVED_BITS)
1020 return 1;
35754c98 1021 if (lapic_in_kernel(vcpu))
a03490ed
CO
1022 kvm_lapic_set_tpr(vcpu, cr8);
1023 else
ad312c7c 1024 vcpu->arch.cr8 = cr8;
0f12244f
GN
1025 return 0;
1026}
2d3ad1f4 1027EXPORT_SYMBOL_GPL(kvm_set_cr8);
a03490ed 1028
2d3ad1f4 1029unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
a03490ed 1030{
35754c98 1031 if (lapic_in_kernel(vcpu))
a03490ed
CO
1032 return kvm_lapic_get_cr8(vcpu);
1033 else
ad312c7c 1034 return vcpu->arch.cr8;
a03490ed 1035}
2d3ad1f4 1036EXPORT_SYMBOL_GPL(kvm_get_cr8);
a03490ed 1037
ae561ede
NA
1038static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1039{
1040 int i;
1041
1042 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1043 for (i = 0; i < KVM_NR_DB_REGS; i++)
1044 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1045 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1046 }
1047}
1048
c8639010
JK
1049static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1050{
1051 unsigned long dr7;
1052
1053 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1054 dr7 = vcpu->arch.guest_debug_dr7;
1055 else
1056 dr7 = vcpu->arch.dr7;
afaf0b2f 1057 kvm_x86_ops.set_dr7(vcpu, dr7);
360b948d
PB
1058 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1059 if (dr7 & DR7_BP_EN_MASK)
1060 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
c8639010
JK
1061}
1062
6f43ed01
NA
1063static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1064{
1065 u64 fixed = DR6_FIXED_1;
1066
d6321d49 1067 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
6f43ed01
NA
1068 fixed |= DR6_RTM;
1069 return fixed;
1070}
1071
338dbc97 1072static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
020df079 1073{
ea740059
MP
1074 size_t size = ARRAY_SIZE(vcpu->arch.db);
1075
020df079
GN
1076 switch (dr) {
1077 case 0 ... 3:
ea740059 1078 vcpu->arch.db[array_index_nospec(dr, size)] = val;
020df079
GN
1079 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1080 vcpu->arch.eff_db[dr] = val;
1081 break;
1082 case 4:
020df079
GN
1083 /* fall through */
1084 case 6:
338dbc97
GN
1085 if (val & 0xffffffff00000000ULL)
1086 return -1; /* #GP */
6f43ed01 1087 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
020df079
GN
1088 break;
1089 case 5:
020df079
GN
1090 /* fall through */
1091 default: /* 7 */
b91991bf 1092 if (!kvm_dr7_valid(val))
338dbc97 1093 return -1; /* #GP */
020df079 1094 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
c8639010 1095 kvm_update_dr7(vcpu);
020df079
GN
1096 break;
1097 }
1098
1099 return 0;
1100}
338dbc97
GN
1101
1102int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1103{
16f8a6f9 1104 if (__kvm_set_dr(vcpu, dr, val)) {
338dbc97 1105 kvm_inject_gp(vcpu, 0);
16f8a6f9
NA
1106 return 1;
1107 }
1108 return 0;
338dbc97 1109}
020df079
GN
1110EXPORT_SYMBOL_GPL(kvm_set_dr);
1111
16f8a6f9 1112int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
020df079 1113{
ea740059
MP
1114 size_t size = ARRAY_SIZE(vcpu->arch.db);
1115
020df079
GN
1116 switch (dr) {
1117 case 0 ... 3:
ea740059 1118 *val = vcpu->arch.db[array_index_nospec(dr, size)];
020df079
GN
1119 break;
1120 case 4:
020df079
GN
1121 /* fall through */
1122 case 6:
5679b803 1123 *val = vcpu->arch.dr6;
020df079
GN
1124 break;
1125 case 5:
020df079
GN
1126 /* fall through */
1127 default: /* 7 */
1128 *val = vcpu->arch.dr7;
1129 break;
1130 }
338dbc97
GN
1131 return 0;
1132}
020df079
GN
1133EXPORT_SYMBOL_GPL(kvm_get_dr);
1134
022cd0e8
AK
1135bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1136{
de3cd117 1137 u32 ecx = kvm_rcx_read(vcpu);
022cd0e8
AK
1138 u64 data;
1139 int err;
1140
c6702c9d 1141 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
022cd0e8
AK
1142 if (err)
1143 return err;
de3cd117
SC
1144 kvm_rax_write(vcpu, (u32)data);
1145 kvm_rdx_write(vcpu, data >> 32);
022cd0e8
AK
1146 return err;
1147}
1148EXPORT_SYMBOL_GPL(kvm_rdpmc);
1149
043405e1
CO
1150/*
1151 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1152 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1153 *
7a5ee6ed
CQ
1154 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1155 * extract the supported MSRs from the related const lists.
1156 * msrs_to_save is selected from the msrs_to_save_all to reflect the
e3267cbb 1157 * capabilities of the host cpu. This capabilities test skips MSRs that are
7a5ee6ed 1158 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
62ef68bb 1159 * may depend on host virtualization features rather than host cpu features.
043405e1 1160 */
e3267cbb 1161
7a5ee6ed 1162static const u32 msrs_to_save_all[] = {
043405e1 1163 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
8c06585d 1164 MSR_STAR,
043405e1
CO
1165#ifdef CONFIG_X86_64
1166 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1167#endif
b3897a49 1168 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
32ad73db 1169 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
2bdb76c0 1170 MSR_IA32_SPEC_CTRL,
bf8c55d8
CP
1171 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1172 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1173 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1174 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1175 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1176 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
6e3ba4ab
TX
1177 MSR_IA32_UMWAIT_CONTROL,
1178
e2ada66e
JM
1179 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1180 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1181 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1182 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1183 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1184 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1185 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1186 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1187 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1188 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1189 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1190 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1191 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
e2ada66e
JM
1192 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1193 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1194 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1195 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1196 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1197 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1198 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1199 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1200 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
043405e1
CO
1201};
1202
7a5ee6ed 1203static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
043405e1
CO
1204static unsigned num_msrs_to_save;
1205
7a5ee6ed 1206static const u32 emulated_msrs_all[] = {
62ef68bb
PB
1207 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1208 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1209 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1210 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
72c139ba 1211 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
e7d9513b
AS
1212 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1213 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
e516cebb 1214 HV_X64_MSR_RESET,
11c4b1ca 1215 HV_X64_MSR_VP_INDEX,
9eec50b8 1216 HV_X64_MSR_VP_RUNTIME,
5c919412 1217 HV_X64_MSR_SCONTROL,
1f4b34f8 1218 HV_X64_MSR_STIMER0_CONFIG,
d4abc577 1219 HV_X64_MSR_VP_ASSIST_PAGE,
a2e164e7
VK
1220 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1221 HV_X64_MSR_TSC_EMULATION_STATUS,
1222
1223 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
62ef68bb
PB
1224 MSR_KVM_PV_EOI_EN,
1225
ba904635 1226 MSR_IA32_TSC_ADJUST,
a3e06bbe 1227 MSR_IA32_TSCDEADLINE,
2bdb76c0 1228 MSR_IA32_ARCH_CAPABILITIES,
043405e1 1229 MSR_IA32_MISC_ENABLE,
908e75f3
AK
1230 MSR_IA32_MCG_STATUS,
1231 MSR_IA32_MCG_CTL,
c45dcc71 1232 MSR_IA32_MCG_EXT_CTL,
64d60670 1233 MSR_IA32_SMBASE,
52797bf9 1234 MSR_SMI_COUNT,
db2336a8
KH
1235 MSR_PLATFORM_INFO,
1236 MSR_MISC_FEATURES_ENABLES,
bc226f07 1237 MSR_AMD64_VIRT_SPEC_CTRL,
6c6a2ab9 1238 MSR_IA32_POWER_CTL,
99634e3e 1239 MSR_IA32_UCODE_REV,
191c8137 1240
95c5c7c7
PB
1241 /*
1242 * The following list leaves out MSRs whose values are determined
1243 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1244 * We always support the "true" VMX control MSRs, even if the host
1245 * processor does not, so I am putting these registers here rather
7a5ee6ed 1246 * than in msrs_to_save_all.
95c5c7c7
PB
1247 */
1248 MSR_IA32_VMX_BASIC,
1249 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1250 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1251 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1252 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1253 MSR_IA32_VMX_MISC,
1254 MSR_IA32_VMX_CR0_FIXED0,
1255 MSR_IA32_VMX_CR4_FIXED0,
1256 MSR_IA32_VMX_VMCS_ENUM,
1257 MSR_IA32_VMX_PROCBASED_CTLS2,
1258 MSR_IA32_VMX_EPT_VPID_CAP,
1259 MSR_IA32_VMX_VMFUNC,
1260
191c8137 1261 MSR_K7_HWCR,
2d5ba19b 1262 MSR_KVM_POLL_CONTROL,
043405e1
CO
1263};
1264
7a5ee6ed 1265static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
62ef68bb
PB
1266static unsigned num_emulated_msrs;
1267
801e459a
TL
1268/*
1269 * List of msr numbers which are used to expose MSR-based features that
1270 * can be used by a hypervisor to validate requested CPU features.
1271 */
7a5ee6ed 1272static const u32 msr_based_features_all[] = {
1389309c
PB
1273 MSR_IA32_VMX_BASIC,
1274 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1275 MSR_IA32_VMX_PINBASED_CTLS,
1276 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1277 MSR_IA32_VMX_PROCBASED_CTLS,
1278 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1279 MSR_IA32_VMX_EXIT_CTLS,
1280 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1281 MSR_IA32_VMX_ENTRY_CTLS,
1282 MSR_IA32_VMX_MISC,
1283 MSR_IA32_VMX_CR0_FIXED0,
1284 MSR_IA32_VMX_CR0_FIXED1,
1285 MSR_IA32_VMX_CR4_FIXED0,
1286 MSR_IA32_VMX_CR4_FIXED1,
1287 MSR_IA32_VMX_VMCS_ENUM,
1288 MSR_IA32_VMX_PROCBASED_CTLS2,
1289 MSR_IA32_VMX_EPT_VPID_CAP,
1290 MSR_IA32_VMX_VMFUNC,
1291
d1d93fa9 1292 MSR_F10H_DECFG,
518e7b94 1293 MSR_IA32_UCODE_REV,
cd283252 1294 MSR_IA32_ARCH_CAPABILITIES,
801e459a
TL
1295};
1296
7a5ee6ed 1297static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
801e459a
TL
1298static unsigned int num_msr_based_features;
1299
4d22c17c 1300static u64 kvm_get_arch_capabilities(void)
5b76a3cf 1301{
4d22c17c 1302 u64 data = 0;
5b76a3cf 1303
4d22c17c
XL
1304 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1305 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
5b76a3cf 1306
b8e8c830
PB
1307 /*
1308 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1309 * the nested hypervisor runs with NX huge pages. If it is not,
1310 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1311 * L1 guests, so it need not worry about its own (L2) guests.
1312 */
1313 data |= ARCH_CAP_PSCHANGE_MC_NO;
1314
5b76a3cf
PB
1315 /*
1316 * If we're doing cache flushes (either "always" or "cond")
1317 * we will do one whenever the guest does a vmlaunch/vmresume.
1318 * If an outer hypervisor is doing the cache flush for us
1319 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1320 * capability to the guest too, and if EPT is disabled we're not
1321 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1322 * require a nested hypervisor to do a flush of its own.
1323 */
1324 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1325 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1326
0c54914d
PB
1327 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1328 data |= ARCH_CAP_RDCL_NO;
1329 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1330 data |= ARCH_CAP_SSB_NO;
1331 if (!boot_cpu_has_bug(X86_BUG_MDS))
1332 data |= ARCH_CAP_MDS_NO;
1333
e1d38b63 1334 /*
c11f83e0
PB
1335 * On TAA affected systems:
1336 * - nothing to do if TSX is disabled on the host.
1337 * - we emulate TSX_CTRL if present on the host.
1338 * This lets the guest use VERW to clear CPU buffers.
e1d38b63 1339 */
cbbaa272 1340 if (!boot_cpu_has(X86_FEATURE_RTM))
c11f83e0 1341 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
cbbaa272
PB
1342 else if (!boot_cpu_has_bug(X86_BUG_TAA))
1343 data |= ARCH_CAP_TAA_NO;
e1d38b63 1344
5b76a3cf
PB
1345 return data;
1346}
5b76a3cf 1347
66421c1e
WL
1348static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1349{
1350 switch (msr->index) {
cd283252 1351 case MSR_IA32_ARCH_CAPABILITIES:
5b76a3cf
PB
1352 msr->data = kvm_get_arch_capabilities();
1353 break;
1354 case MSR_IA32_UCODE_REV:
cd283252 1355 rdmsrl_safe(msr->index, &msr->data);
518e7b94 1356 break;
66421c1e 1357 default:
afaf0b2f 1358 if (kvm_x86_ops.get_msr_feature(msr))
66421c1e
WL
1359 return 1;
1360 }
1361 return 0;
1362}
1363
801e459a
TL
1364static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1365{
1366 struct kvm_msr_entry msr;
66421c1e 1367 int r;
801e459a
TL
1368
1369 msr.index = index;
66421c1e
WL
1370 r = kvm_get_msr_feature(&msr);
1371 if (r)
1372 return r;
801e459a
TL
1373
1374 *data = msr.data;
1375
1376 return 0;
1377}
1378
11988499 1379static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
15c4a640 1380{
1b4d56b8 1381 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
11988499 1382 return false;
1b2fd70c 1383
1b4d56b8 1384 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
11988499 1385 return false;
d8017474 1386
0a629563
SC
1387 if (efer & (EFER_LME | EFER_LMA) &&
1388 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1389 return false;
1390
1391 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1392 return false;
d8017474 1393
384bb783 1394 return true;
11988499
SC
1395
1396}
1397bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1398{
1399 if (efer & efer_reserved_bits)
1400 return false;
1401
1402 return __kvm_valid_efer(vcpu, efer);
384bb783
JK
1403}
1404EXPORT_SYMBOL_GPL(kvm_valid_efer);
1405
11988499 1406static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
384bb783
JK
1407{
1408 u64 old_efer = vcpu->arch.efer;
11988499 1409 u64 efer = msr_info->data;
384bb783 1410
11988499 1411 if (efer & efer_reserved_bits)
66f61c92 1412 return 1;
384bb783 1413
11988499
SC
1414 if (!msr_info->host_initiated) {
1415 if (!__kvm_valid_efer(vcpu, efer))
1416 return 1;
1417
1418 if (is_paging(vcpu) &&
1419 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1420 return 1;
1421 }
384bb783 1422
15c4a640 1423 efer &= ~EFER_LMA;
f6801dff 1424 efer |= vcpu->arch.efer & EFER_LMA;
15c4a640 1425
afaf0b2f 1426 kvm_x86_ops.set_efer(vcpu, efer);
a3d204e2 1427
aad82703
SY
1428 /* Update reserved bits */
1429 if ((efer ^ old_efer) & EFER_NX)
1430 kvm_mmu_reset_context(vcpu);
1431
b69e8cae 1432 return 0;
15c4a640
CO
1433}
1434
f2b4b7dd
JR
1435void kvm_enable_efer_bits(u64 mask)
1436{
1437 efer_reserved_bits &= ~mask;
1438}
1439EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1440
15c4a640 1441/*
f20935d8
SC
1442 * Write @data into the MSR specified by @index. Select MSR specific fault
1443 * checks are bypassed if @host_initiated is %true.
15c4a640
CO
1444 * Returns 0 on success, non-0 otherwise.
1445 * Assumes vcpu_load() was already called.
1446 */
f20935d8
SC
1447static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1448 bool host_initiated)
15c4a640 1449{
f20935d8
SC
1450 struct msr_data msr;
1451
1452 switch (index) {
854e8bb1
NA
1453 case MSR_FS_BASE:
1454 case MSR_GS_BASE:
1455 case MSR_KERNEL_GS_BASE:
1456 case MSR_CSTAR:
1457 case MSR_LSTAR:
f20935d8 1458 if (is_noncanonical_address(data, vcpu))
854e8bb1
NA
1459 return 1;
1460 break;
1461 case MSR_IA32_SYSENTER_EIP:
1462 case MSR_IA32_SYSENTER_ESP:
1463 /*
1464 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1465 * non-canonical address is written on Intel but not on
1466 * AMD (which ignores the top 32-bits, because it does
1467 * not implement 64-bit SYSENTER).
1468 *
1469 * 64-bit code should hence be able to write a non-canonical
1470 * value on AMD. Making the address canonical ensures that
1471 * vmentry does not fail on Intel after writing a non-canonical
1472 * value, and that something deterministic happens if the guest
1473 * invokes 64-bit SYSENTER.
1474 */
f20935d8 1475 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
854e8bb1 1476 }
f20935d8
SC
1477
1478 msr.data = data;
1479 msr.index = index;
1480 msr.host_initiated = host_initiated;
1481
afaf0b2f 1482 return kvm_x86_ops.set_msr(vcpu, &msr);
15c4a640
CO
1483}
1484
313a3dc7 1485/*
f20935d8
SC
1486 * Read the MSR specified by @index into @data. Select MSR specific fault
1487 * checks are bypassed if @host_initiated is %true.
1488 * Returns 0 on success, non-0 otherwise.
1489 * Assumes vcpu_load() was already called.
313a3dc7 1490 */
edef5c36
PB
1491int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1492 bool host_initiated)
609e36d3
PB
1493{
1494 struct msr_data msr;
f20935d8 1495 int ret;
609e36d3
PB
1496
1497 msr.index = index;
f20935d8 1498 msr.host_initiated = host_initiated;
609e36d3 1499
afaf0b2f 1500 ret = kvm_x86_ops.get_msr(vcpu, &msr);
f20935d8
SC
1501 if (!ret)
1502 *data = msr.data;
1503 return ret;
609e36d3
PB
1504}
1505
f20935d8 1506int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
313a3dc7 1507{
f20935d8
SC
1508 return __kvm_get_msr(vcpu, index, data, false);
1509}
1510EXPORT_SYMBOL_GPL(kvm_get_msr);
8fe8ab46 1511
f20935d8
SC
1512int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1513{
1514 return __kvm_set_msr(vcpu, index, data, false);
1515}
1516EXPORT_SYMBOL_GPL(kvm_set_msr);
1517
1edce0a9
SC
1518int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1519{
1520 u32 ecx = kvm_rcx_read(vcpu);
1521 u64 data;
1522
1523 if (kvm_get_msr(vcpu, ecx, &data)) {
1524 trace_kvm_msr_read_ex(ecx);
1525 kvm_inject_gp(vcpu, 0);
1526 return 1;
1527 }
1528
1529 trace_kvm_msr_read(ecx, data);
1530
1531 kvm_rax_write(vcpu, data & -1u);
1532 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1533 return kvm_skip_emulated_instruction(vcpu);
1534}
1535EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1536
1537int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1538{
1539 u32 ecx = kvm_rcx_read(vcpu);
1540 u64 data = kvm_read_edx_eax(vcpu);
1541
1542 if (kvm_set_msr(vcpu, ecx, data)) {
1543 trace_kvm_msr_write_ex(ecx, data);
1544 kvm_inject_gp(vcpu, 0);
1545 return 1;
1546 }
1547
1548 trace_kvm_msr_write(ecx, data);
1549 return kvm_skip_emulated_instruction(vcpu);
1550}
1551EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1552
1e9e2622
WL
1553/*
1554 * The fast path for frequent and performance sensitive wrmsr emulation,
1555 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1556 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1557 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1558 * other cases which must be called after interrupts are enabled on the host.
1559 */
1560static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1561{
e1be9ac8
WL
1562 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1563 return 1;
1564
1565 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1e9e2622 1566 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
4064a4c6
WL
1567 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1568 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1e9e2622 1569
d5361678
WL
1570 data &= ~(1 << 12);
1571 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1e9e2622 1572 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
d5361678
WL
1573 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1574 trace_kvm_apic_write(APIC_ICR, (u32)data);
1575 return 0;
1e9e2622
WL
1576 }
1577
1578 return 1;
1579}
1580
1581enum exit_fastpath_completion handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1582{
1583 u32 msr = kvm_rcx_read(vcpu);
8a1038de 1584 u64 data;
1e9e2622
WL
1585 int ret = 0;
1586
1587 switch (msr) {
1588 case APIC_BASE_MSR + (APIC_ICR >> 4):
8a1038de 1589 data = kvm_read_edx_eax(vcpu);
1e9e2622
WL
1590 ret = handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
1591 break;
1592 default:
1593 return EXIT_FASTPATH_NONE;
1594 }
1595
1596 if (!ret) {
1597 trace_kvm_msr_write(msr, data);
1598 return EXIT_FASTPATH_SKIP_EMUL_INS;
1599 }
1600
1601 return EXIT_FASTPATH_NONE;
1602}
1603EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1604
f20935d8
SC
1605/*
1606 * Adapt set_msr() to msr_io()'s calling convention
1607 */
1608static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1609{
1610 return __kvm_get_msr(vcpu, index, data, true);
1611}
1612
1613static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1614{
1615 return __kvm_set_msr(vcpu, index, *data, true);
313a3dc7
CO
1616}
1617
16e8d74d 1618#ifdef CONFIG_X86_64
53fafdbb
MT
1619struct pvclock_clock {
1620 int vclock_mode;
1621 u64 cycle_last;
1622 u64 mask;
1623 u32 mult;
1624 u32 shift;
917f9475
PB
1625 u64 base_cycles;
1626 u64 offset;
53fafdbb
MT
1627};
1628
16e8d74d
MT
1629struct pvclock_gtod_data {
1630 seqcount_t seq;
1631
53fafdbb
MT
1632 struct pvclock_clock clock; /* extract of a clocksource struct */
1633 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
16e8d74d 1634
917f9475 1635 ktime_t offs_boot;
55dd00a7 1636 u64 wall_time_sec;
16e8d74d
MT
1637};
1638
1639static struct pvclock_gtod_data pvclock_gtod_data;
1640
1641static void update_pvclock_gtod(struct timekeeper *tk)
1642{
1643 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1644
1645 write_seqcount_begin(&vdata->seq);
1646
1647 /* copy pvclock gtod data */
b95a8a27 1648 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
876e7881
PZ
1649 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1650 vdata->clock.mask = tk->tkr_mono.mask;
1651 vdata->clock.mult = tk->tkr_mono.mult;
1652 vdata->clock.shift = tk->tkr_mono.shift;
917f9475
PB
1653 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
1654 vdata->clock.offset = tk->tkr_mono.base;
16e8d74d 1655
b95a8a27 1656 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
53fafdbb
MT
1657 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
1658 vdata->raw_clock.mask = tk->tkr_raw.mask;
1659 vdata->raw_clock.mult = tk->tkr_raw.mult;
1660 vdata->raw_clock.shift = tk->tkr_raw.shift;
917f9475
PB
1661 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
1662 vdata->raw_clock.offset = tk->tkr_raw.base;
16e8d74d 1663
55dd00a7
MT
1664 vdata->wall_time_sec = tk->xtime_sec;
1665
917f9475 1666 vdata->offs_boot = tk->offs_boot;
53fafdbb 1667
16e8d74d
MT
1668 write_seqcount_end(&vdata->seq);
1669}
8171cd68
PB
1670
1671static s64 get_kvmclock_base_ns(void)
1672{
1673 /* Count up from boot time, but with the frequency of the raw clock. */
1674 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1675}
1676#else
1677static s64 get_kvmclock_base_ns(void)
1678{
1679 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
1680 return ktime_get_boottime_ns();
1681}
16e8d74d
MT
1682#endif
1683
bab5bb39
NK
1684void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1685{
bab5bb39 1686 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
4d151bf3 1687 kvm_vcpu_kick(vcpu);
bab5bb39 1688}
16e8d74d 1689
18068523
GOC
1690static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1691{
9ed3c444
AK
1692 int version;
1693 int r;
50d0a0f9 1694 struct pvclock_wall_clock wc;
8171cd68 1695 u64 wall_nsec;
18068523
GOC
1696
1697 if (!wall_clock)
1698 return;
1699
9ed3c444
AK
1700 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1701 if (r)
1702 return;
1703
1704 if (version & 1)
1705 ++version; /* first time write, random junk */
1706
1707 ++version;
18068523 1708
1dab1345
NK
1709 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1710 return;
18068523 1711
50d0a0f9
GH
1712 /*
1713 * The guest calculates current wall clock time by adding
34c238a1 1714 * system time (updated by kvm_guest_time_update below) to the
8171cd68 1715 * wall clock specified here. We do the reverse here.
50d0a0f9 1716 */
8171cd68 1717 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
50d0a0f9 1718
8171cd68
PB
1719 wc.nsec = do_div(wall_nsec, 1000000000);
1720 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
50d0a0f9 1721 wc.version = version;
18068523
GOC
1722
1723 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1724
1725 version++;
1726 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
18068523
GOC
1727}
1728
50d0a0f9
GH
1729static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1730{
b51012de
PB
1731 do_shl32_div32(dividend, divisor);
1732 return dividend;
50d0a0f9
GH
1733}
1734
3ae13faa 1735static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
5f4e3f88 1736 s8 *pshift, u32 *pmultiplier)
50d0a0f9 1737{
5f4e3f88 1738 uint64_t scaled64;
50d0a0f9
GH
1739 int32_t shift = 0;
1740 uint64_t tps64;
1741 uint32_t tps32;
1742
3ae13faa
PB
1743 tps64 = base_hz;
1744 scaled64 = scaled_hz;
50933623 1745 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
50d0a0f9
GH
1746 tps64 >>= 1;
1747 shift--;
1748 }
1749
1750 tps32 = (uint32_t)tps64;
50933623
JK
1751 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1752 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
5f4e3f88
ZA
1753 scaled64 >>= 1;
1754 else
1755 tps32 <<= 1;
50d0a0f9
GH
1756 shift++;
1757 }
1758
5f4e3f88
ZA
1759 *pshift = shift;
1760 *pmultiplier = div_frac(scaled64, tps32);
50d0a0f9
GH
1761}
1762
d828199e 1763#ifdef CONFIG_X86_64
16e8d74d 1764static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
d828199e 1765#endif
16e8d74d 1766
c8076604 1767static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
69b0049a 1768static unsigned long max_tsc_khz;
c8076604 1769
cc578287 1770static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1e993611 1771{
cc578287
ZA
1772 u64 v = (u64)khz * (1000000 + ppm);
1773 do_div(v, 1000000);
1774 return v;
1e993611
JR
1775}
1776
381d585c
HZ
1777static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1778{
1779 u64 ratio;
1780
1781 /* Guest TSC same frequency as host TSC? */
1782 if (!scale) {
1783 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1784 return 0;
1785 }
1786
1787 /* TSC scaling supported? */
1788 if (!kvm_has_tsc_control) {
1789 if (user_tsc_khz > tsc_khz) {
1790 vcpu->arch.tsc_catchup = 1;
1791 vcpu->arch.tsc_always_catchup = 1;
1792 return 0;
1793 } else {
3f16a5c3 1794 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
381d585c
HZ
1795 return -1;
1796 }
1797 }
1798
1799 /* TSC scaling required - calculate ratio */
1800 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1801 user_tsc_khz, tsc_khz);
1802
1803 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
3f16a5c3
PB
1804 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1805 user_tsc_khz);
381d585c
HZ
1806 return -1;
1807 }
1808
1809 vcpu->arch.tsc_scaling_ratio = ratio;
1810 return 0;
1811}
1812
4941b8cb 1813static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
759379dd 1814{
cc578287
ZA
1815 u32 thresh_lo, thresh_hi;
1816 int use_scaling = 0;
217fc9cf 1817
03ba32ca 1818 /* tsc_khz can be zero if TSC calibration fails */
4941b8cb 1819 if (user_tsc_khz == 0) {
ad721883
HZ
1820 /* set tsc_scaling_ratio to a safe value */
1821 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
381d585c 1822 return -1;
ad721883 1823 }
03ba32ca 1824
c285545f 1825 /* Compute a scale to convert nanoseconds in TSC cycles */
3ae13faa 1826 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
cc578287
ZA
1827 &vcpu->arch.virtual_tsc_shift,
1828 &vcpu->arch.virtual_tsc_mult);
4941b8cb 1829 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
cc578287
ZA
1830
1831 /*
1832 * Compute the variation in TSC rate which is acceptable
1833 * within the range of tolerance and decide if the
1834 * rate being applied is within that bounds of the hardware
1835 * rate. If so, no scaling or compensation need be done.
1836 */
1837 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1838 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
4941b8cb
PB
1839 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1840 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
cc578287
ZA
1841 use_scaling = 1;
1842 }
4941b8cb 1843 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
c285545f
ZA
1844}
1845
1846static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1847{
e26101b1 1848 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
cc578287
ZA
1849 vcpu->arch.virtual_tsc_mult,
1850 vcpu->arch.virtual_tsc_shift);
e26101b1 1851 tsc += vcpu->arch.this_tsc_write;
c285545f
ZA
1852 return tsc;
1853}
1854
b0c39dc6
VK
1855static inline int gtod_is_based_on_tsc(int mode)
1856{
b95a8a27 1857 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
b0c39dc6
VK
1858}
1859
69b0049a 1860static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
b48aa97e
MT
1861{
1862#ifdef CONFIG_X86_64
1863 bool vcpus_matched;
b48aa97e
MT
1864 struct kvm_arch *ka = &vcpu->kvm->arch;
1865 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1866
1867 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1868 atomic_read(&vcpu->kvm->online_vcpus));
1869
7f187922
MT
1870 /*
1871 * Once the masterclock is enabled, always perform request in
1872 * order to update it.
1873 *
1874 * In order to enable masterclock, the host clocksource must be TSC
1875 * and the vcpus need to have matched TSCs. When that happens,
1876 * perform request to enable masterclock.
1877 */
1878 if (ka->use_master_clock ||
b0c39dc6 1879 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
b48aa97e
MT
1880 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1881
1882 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1883 atomic_read(&vcpu->kvm->online_vcpus),
1884 ka->use_master_clock, gtod->clock.vclock_mode);
1885#endif
1886}
1887
ba904635
WA
1888static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1889{
afaf0b2f 1890 u64 curr_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu);
ba904635
WA
1891 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1892}
1893
35181e86
HZ
1894/*
1895 * Multiply tsc by a fixed point number represented by ratio.
1896 *
1897 * The most significant 64-N bits (mult) of ratio represent the
1898 * integral part of the fixed point number; the remaining N bits
1899 * (frac) represent the fractional part, ie. ratio represents a fixed
1900 * point number (mult + frac * 2^(-N)).
1901 *
1902 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1903 */
1904static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1905{
1906 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1907}
1908
1909u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1910{
1911 u64 _tsc = tsc;
1912 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1913
1914 if (ratio != kvm_default_tsc_scaling_ratio)
1915 _tsc = __scale_tsc(ratio, tsc);
1916
1917 return _tsc;
1918}
1919EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1920
07c1419a
HZ
1921static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1922{
1923 u64 tsc;
1924
1925 tsc = kvm_scale_tsc(vcpu, rdtsc());
1926
1927 return target_tsc - tsc;
1928}
1929
4ba76538
HZ
1930u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1931{
afaf0b2f 1932 u64 tsc_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu);
e79f245d
KA
1933
1934 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
4ba76538
HZ
1935}
1936EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1937
a545ab6a
LC
1938static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1939{
afaf0b2f 1940 vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
a545ab6a
LC
1941}
1942
b0c39dc6
VK
1943static inline bool kvm_check_tsc_unstable(void)
1944{
1945#ifdef CONFIG_X86_64
1946 /*
1947 * TSC is marked unstable when we're running on Hyper-V,
1948 * 'TSC page' clocksource is good.
1949 */
b95a8a27 1950 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
b0c39dc6
VK
1951 return false;
1952#endif
1953 return check_tsc_unstable();
1954}
1955
8fe8ab46 1956void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
99e3e30a
ZA
1957{
1958 struct kvm *kvm = vcpu->kvm;
f38e098f 1959 u64 offset, ns, elapsed;
99e3e30a 1960 unsigned long flags;
b48aa97e 1961 bool matched;
0d3da0d2 1962 bool already_matched;
8fe8ab46 1963 u64 data = msr->data;
c5e8ec8e 1964 bool synchronizing = false;
99e3e30a 1965
038f8c11 1966 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
07c1419a 1967 offset = kvm_compute_tsc_offset(vcpu, data);
8171cd68 1968 ns = get_kvmclock_base_ns();
f38e098f 1969 elapsed = ns - kvm->arch.last_tsc_nsec;
5d3cb0f6 1970
03ba32ca 1971 if (vcpu->arch.virtual_tsc_khz) {
bd8fab39
DP
1972 if (data == 0 && msr->host_initiated) {
1973 /*
1974 * detection of vcpu initialization -- need to sync
1975 * with other vCPUs. This particularly helps to keep
1976 * kvm_clock stable after CPU hotplug
1977 */
1978 synchronizing = true;
1979 } else {
1980 u64 tsc_exp = kvm->arch.last_tsc_write +
1981 nsec_to_cycles(vcpu, elapsed);
1982 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1983 /*
1984 * Special case: TSC write with a small delta (1 second)
1985 * of virtual cycle time against real time is
1986 * interpreted as an attempt to synchronize the CPU.
1987 */
1988 synchronizing = data < tsc_exp + tsc_hz &&
1989 data + tsc_hz > tsc_exp;
1990 }
c5e8ec8e 1991 }
f38e098f
ZA
1992
1993 /*
5d3cb0f6
ZA
1994 * For a reliable TSC, we can match TSC offsets, and for an unstable
1995 * TSC, we add elapsed time in this computation. We could let the
1996 * compensation code attempt to catch up if we fall behind, but
1997 * it's better to try to match offsets from the beginning.
1998 */
c5e8ec8e 1999 if (synchronizing &&
5d3cb0f6 2000 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
b0c39dc6 2001 if (!kvm_check_tsc_unstable()) {
e26101b1 2002 offset = kvm->arch.cur_tsc_offset;
f38e098f 2003 } else {
857e4099 2004 u64 delta = nsec_to_cycles(vcpu, elapsed);
5d3cb0f6 2005 data += delta;
07c1419a 2006 offset = kvm_compute_tsc_offset(vcpu, data);
f38e098f 2007 }
b48aa97e 2008 matched = true;
0d3da0d2 2009 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
e26101b1
ZA
2010 } else {
2011 /*
2012 * We split periods of matched TSC writes into generations.
2013 * For each generation, we track the original measured
2014 * nanosecond time, offset, and write, so if TSCs are in
2015 * sync, we can match exact offset, and if not, we can match
4a969980 2016 * exact software computation in compute_guest_tsc()
e26101b1
ZA
2017 *
2018 * These values are tracked in kvm->arch.cur_xxx variables.
2019 */
2020 kvm->arch.cur_tsc_generation++;
2021 kvm->arch.cur_tsc_nsec = ns;
2022 kvm->arch.cur_tsc_write = data;
2023 kvm->arch.cur_tsc_offset = offset;
b48aa97e 2024 matched = false;
f38e098f 2025 }
e26101b1
ZA
2026
2027 /*
2028 * We also track th most recent recorded KHZ, write and time to
2029 * allow the matching interval to be extended at each write.
2030 */
f38e098f
ZA
2031 kvm->arch.last_tsc_nsec = ns;
2032 kvm->arch.last_tsc_write = data;
5d3cb0f6 2033 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
99e3e30a 2034
b183aa58 2035 vcpu->arch.last_guest_tsc = data;
e26101b1
ZA
2036
2037 /* Keep track of which generation this VCPU has synchronized to */
2038 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2039 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2040 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2041
d6321d49 2042 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
ba904635 2043 update_ia32_tsc_adjust_msr(vcpu, offset);
d6321d49 2044
a545ab6a 2045 kvm_vcpu_write_tsc_offset(vcpu, offset);
e26101b1 2046 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
b48aa97e
MT
2047
2048 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
0d3da0d2 2049 if (!matched) {
b48aa97e 2050 kvm->arch.nr_vcpus_matched_tsc = 0;
0d3da0d2
TG
2051 } else if (!already_matched) {
2052 kvm->arch.nr_vcpus_matched_tsc++;
2053 }
b48aa97e
MT
2054
2055 kvm_track_tsc_matching(vcpu);
2056 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
99e3e30a 2057}
e26101b1 2058
99e3e30a
ZA
2059EXPORT_SYMBOL_GPL(kvm_write_tsc);
2060
58ea6767
HZ
2061static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2062 s64 adjustment)
2063{
afaf0b2f 2064 u64 tsc_offset = kvm_x86_ops.read_l1_tsc_offset(vcpu);
326e7425 2065 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
58ea6767
HZ
2066}
2067
2068static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2069{
2070 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2071 WARN_ON(adjustment < 0);
2072 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
ea26e4ec 2073 adjust_tsc_offset_guest(vcpu, adjustment);
58ea6767
HZ
2074}
2075
d828199e
MT
2076#ifdef CONFIG_X86_64
2077
a5a1d1c2 2078static u64 read_tsc(void)
d828199e 2079{
a5a1d1c2 2080 u64 ret = (u64)rdtsc_ordered();
03b9730b 2081 u64 last = pvclock_gtod_data.clock.cycle_last;
d828199e
MT
2082
2083 if (likely(ret >= last))
2084 return ret;
2085
2086 /*
2087 * GCC likes to generate cmov here, but this branch is extremely
6a6256f9 2088 * predictable (it's just a function of time and the likely is
d828199e
MT
2089 * very likely) and there's a data dependence, so force GCC
2090 * to generate a branch instead. I don't barrier() because
2091 * we don't actually need a barrier, and if this function
2092 * ever gets inlined it will generate worse code.
2093 */
2094 asm volatile ("");
2095 return last;
2096}
2097
53fafdbb
MT
2098static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2099 int *mode)
d828199e
MT
2100{
2101 long v;
b0c39dc6
VK
2102 u64 tsc_pg_val;
2103
53fafdbb 2104 switch (clock->vclock_mode) {
b95a8a27 2105 case VDSO_CLOCKMODE_HVCLOCK:
b0c39dc6
VK
2106 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2107 tsc_timestamp);
2108 if (tsc_pg_val != U64_MAX) {
2109 /* TSC page valid */
b95a8a27 2110 *mode = VDSO_CLOCKMODE_HVCLOCK;
53fafdbb
MT
2111 v = (tsc_pg_val - clock->cycle_last) &
2112 clock->mask;
b0c39dc6
VK
2113 } else {
2114 /* TSC page invalid */
b95a8a27 2115 *mode = VDSO_CLOCKMODE_NONE;
b0c39dc6
VK
2116 }
2117 break;
b95a8a27
TG
2118 case VDSO_CLOCKMODE_TSC:
2119 *mode = VDSO_CLOCKMODE_TSC;
b0c39dc6 2120 *tsc_timestamp = read_tsc();
53fafdbb
MT
2121 v = (*tsc_timestamp - clock->cycle_last) &
2122 clock->mask;
b0c39dc6
VK
2123 break;
2124 default:
b95a8a27 2125 *mode = VDSO_CLOCKMODE_NONE;
b0c39dc6 2126 }
d828199e 2127
b95a8a27 2128 if (*mode == VDSO_CLOCKMODE_NONE)
b0c39dc6 2129 *tsc_timestamp = v = 0;
d828199e 2130
53fafdbb 2131 return v * clock->mult;
d828199e
MT
2132}
2133
53fafdbb 2134static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
d828199e 2135{
cbcf2dd3 2136 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
d828199e 2137 unsigned long seq;
d828199e 2138 int mode;
cbcf2dd3 2139 u64 ns;
d828199e 2140
d828199e
MT
2141 do {
2142 seq = read_seqcount_begin(&gtod->seq);
917f9475 2143 ns = gtod->raw_clock.base_cycles;
53fafdbb 2144 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
917f9475
PB
2145 ns >>= gtod->raw_clock.shift;
2146 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
d828199e 2147 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
cbcf2dd3 2148 *t = ns;
d828199e
MT
2149
2150 return mode;
2151}
2152
899a31f5 2153static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
55dd00a7
MT
2154{
2155 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2156 unsigned long seq;
2157 int mode;
2158 u64 ns;
2159
2160 do {
2161 seq = read_seqcount_begin(&gtod->seq);
55dd00a7 2162 ts->tv_sec = gtod->wall_time_sec;
917f9475 2163 ns = gtod->clock.base_cycles;
53fafdbb 2164 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
55dd00a7
MT
2165 ns >>= gtod->clock.shift;
2166 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2167
2168 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2169 ts->tv_nsec = ns;
2170
2171 return mode;
2172}
2173
b0c39dc6
VK
2174/* returns true if host is using TSC based clocksource */
2175static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
d828199e 2176{
d828199e 2177 /* checked again under seqlock below */
b0c39dc6 2178 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
d828199e
MT
2179 return false;
2180
53fafdbb 2181 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
b0c39dc6 2182 tsc_timestamp));
d828199e 2183}
55dd00a7 2184
b0c39dc6 2185/* returns true if host is using TSC based clocksource */
899a31f5 2186static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
b0c39dc6 2187 u64 *tsc_timestamp)
55dd00a7
MT
2188{
2189 /* checked again under seqlock below */
b0c39dc6 2190 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
55dd00a7
MT
2191 return false;
2192
b0c39dc6 2193 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
55dd00a7 2194}
d828199e
MT
2195#endif
2196
2197/*
2198 *
b48aa97e
MT
2199 * Assuming a stable TSC across physical CPUS, and a stable TSC
2200 * across virtual CPUs, the following condition is possible.
2201 * Each numbered line represents an event visible to both
d828199e
MT
2202 * CPUs at the next numbered event.
2203 *
2204 * "timespecX" represents host monotonic time. "tscX" represents
2205 * RDTSC value.
2206 *
2207 * VCPU0 on CPU0 | VCPU1 on CPU1
2208 *
2209 * 1. read timespec0,tsc0
2210 * 2. | timespec1 = timespec0 + N
2211 * | tsc1 = tsc0 + M
2212 * 3. transition to guest | transition to guest
2213 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2214 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2215 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2216 *
2217 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2218 *
2219 * - ret0 < ret1
2220 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2221 * ...
2222 * - 0 < N - M => M < N
2223 *
2224 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2225 * always the case (the difference between two distinct xtime instances
2226 * might be smaller then the difference between corresponding TSC reads,
2227 * when updating guest vcpus pvclock areas).
2228 *
2229 * To avoid that problem, do not allow visibility of distinct
2230 * system_timestamp/tsc_timestamp values simultaneously: use a master
2231 * copy of host monotonic time values. Update that master copy
2232 * in lockstep.
2233 *
b48aa97e 2234 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
d828199e
MT
2235 *
2236 */
2237
2238static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2239{
2240#ifdef CONFIG_X86_64
2241 struct kvm_arch *ka = &kvm->arch;
2242 int vclock_mode;
b48aa97e
MT
2243 bool host_tsc_clocksource, vcpus_matched;
2244
2245 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2246 atomic_read(&kvm->online_vcpus));
d828199e
MT
2247
2248 /*
2249 * If the host uses TSC clock, then passthrough TSC as stable
2250 * to the guest.
2251 */
b48aa97e 2252 host_tsc_clocksource = kvm_get_time_and_clockread(
d828199e
MT
2253 &ka->master_kernel_ns,
2254 &ka->master_cycle_now);
2255
16a96021 2256 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
a826faf1 2257 && !ka->backwards_tsc_observed
54750f2c 2258 && !ka->boot_vcpu_runs_old_kvmclock;
b48aa97e 2259
d828199e
MT
2260 if (ka->use_master_clock)
2261 atomic_set(&kvm_guest_has_master_clock, 1);
2262
2263 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
b48aa97e
MT
2264 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2265 vcpus_matched);
d828199e
MT
2266#endif
2267}
2268
2860c4b1
PB
2269void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2270{
2271 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2272}
2273
2e762ff7
MT
2274static void kvm_gen_update_masterclock(struct kvm *kvm)
2275{
2276#ifdef CONFIG_X86_64
2277 int i;
2278 struct kvm_vcpu *vcpu;
2279 struct kvm_arch *ka = &kvm->arch;
2280
2281 spin_lock(&ka->pvclock_gtod_sync_lock);
2282 kvm_make_mclock_inprogress_request(kvm);
2283 /* no guest entries from this point */
2284 pvclock_update_vm_gtod_copy(kvm);
2285
2286 kvm_for_each_vcpu(i, vcpu, kvm)
105b21bb 2287 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2e762ff7
MT
2288
2289 /* guest entries allowed */
2290 kvm_for_each_vcpu(i, vcpu, kvm)
72875d8a 2291 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2e762ff7
MT
2292
2293 spin_unlock(&ka->pvclock_gtod_sync_lock);
2294#endif
2295}
2296
e891a32e 2297u64 get_kvmclock_ns(struct kvm *kvm)
108b249c 2298{
108b249c 2299 struct kvm_arch *ka = &kvm->arch;
8b953440 2300 struct pvclock_vcpu_time_info hv_clock;
e2c2206a 2301 u64 ret;
108b249c 2302
8b953440
PB
2303 spin_lock(&ka->pvclock_gtod_sync_lock);
2304 if (!ka->use_master_clock) {
2305 spin_unlock(&ka->pvclock_gtod_sync_lock);
8171cd68 2306 return get_kvmclock_base_ns() + ka->kvmclock_offset;
108b249c
PB
2307 }
2308
8b953440
PB
2309 hv_clock.tsc_timestamp = ka->master_cycle_now;
2310 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2311 spin_unlock(&ka->pvclock_gtod_sync_lock);
2312
e2c2206a
WL
2313 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2314 get_cpu();
2315
e70b57a6
WL
2316 if (__this_cpu_read(cpu_tsc_khz)) {
2317 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2318 &hv_clock.tsc_shift,
2319 &hv_clock.tsc_to_system_mul);
2320 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2321 } else
8171cd68 2322 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
e2c2206a
WL
2323
2324 put_cpu();
2325
2326 return ret;
108b249c
PB
2327}
2328
0d6dd2ff
PB
2329static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2330{
2331 struct kvm_vcpu_arch *vcpu = &v->arch;
2332 struct pvclock_vcpu_time_info guest_hv_clock;
2333
4e335d9e 2334 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
0d6dd2ff
PB
2335 &guest_hv_clock, sizeof(guest_hv_clock))))
2336 return;
2337
2338 /* This VCPU is paused, but it's legal for a guest to read another
2339 * VCPU's kvmclock, so we really have to follow the specification where
2340 * it says that version is odd if data is being modified, and even after
2341 * it is consistent.
2342 *
2343 * Version field updates must be kept separate. This is because
2344 * kvm_write_guest_cached might use a "rep movs" instruction, and
2345 * writes within a string instruction are weakly ordered. So there
2346 * are three writes overall.
2347 *
2348 * As a small optimization, only write the version field in the first
2349 * and third write. The vcpu->pv_time cache is still valid, because the
2350 * version field is the first in the struct.
2351 */
2352 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2353
51c4b8bb
LA
2354 if (guest_hv_clock.version & 1)
2355 ++guest_hv_clock.version; /* first time write, random junk */
2356
0d6dd2ff 2357 vcpu->hv_clock.version = guest_hv_clock.version + 1;
4e335d9e
PB
2358 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2359 &vcpu->hv_clock,
2360 sizeof(vcpu->hv_clock.version));
0d6dd2ff
PB
2361
2362 smp_wmb();
2363
2364 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2365 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2366
2367 if (vcpu->pvclock_set_guest_stopped_request) {
2368 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2369 vcpu->pvclock_set_guest_stopped_request = false;
2370 }
2371
2372 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2373
4e335d9e
PB
2374 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2375 &vcpu->hv_clock,
2376 sizeof(vcpu->hv_clock));
0d6dd2ff
PB
2377
2378 smp_wmb();
2379
2380 vcpu->hv_clock.version++;
4e335d9e
PB
2381 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2382 &vcpu->hv_clock,
2383 sizeof(vcpu->hv_clock.version));
0d6dd2ff
PB
2384}
2385
34c238a1 2386static int kvm_guest_time_update(struct kvm_vcpu *v)
18068523 2387{
78db6a50 2388 unsigned long flags, tgt_tsc_khz;
18068523 2389 struct kvm_vcpu_arch *vcpu = &v->arch;
d828199e 2390 struct kvm_arch *ka = &v->kvm->arch;
f25e656d 2391 s64 kernel_ns;
d828199e 2392 u64 tsc_timestamp, host_tsc;
51d59c6b 2393 u8 pvclock_flags;
d828199e
MT
2394 bool use_master_clock;
2395
2396 kernel_ns = 0;
2397 host_tsc = 0;
18068523 2398
d828199e
MT
2399 /*
2400 * If the host uses TSC clock, then passthrough TSC as stable
2401 * to the guest.
2402 */
2403 spin_lock(&ka->pvclock_gtod_sync_lock);
2404 use_master_clock = ka->use_master_clock;
2405 if (use_master_clock) {
2406 host_tsc = ka->master_cycle_now;
2407 kernel_ns = ka->master_kernel_ns;
2408 }
2409 spin_unlock(&ka->pvclock_gtod_sync_lock);
c09664bb
MT
2410
2411 /* Keep irq disabled to prevent changes to the clock */
2412 local_irq_save(flags);
78db6a50
PB
2413 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2414 if (unlikely(tgt_tsc_khz == 0)) {
c09664bb
MT
2415 local_irq_restore(flags);
2416 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2417 return 1;
2418 }
d828199e 2419 if (!use_master_clock) {
4ea1636b 2420 host_tsc = rdtsc();
8171cd68 2421 kernel_ns = get_kvmclock_base_ns();
d828199e
MT
2422 }
2423
4ba76538 2424 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
d828199e 2425
c285545f
ZA
2426 /*
2427 * We may have to catch up the TSC to match elapsed wall clock
2428 * time for two reasons, even if kvmclock is used.
2429 * 1) CPU could have been running below the maximum TSC rate
2430 * 2) Broken TSC compensation resets the base at each VCPU
2431 * entry to avoid unknown leaps of TSC even when running
2432 * again on the same CPU. This may cause apparent elapsed
2433 * time to disappear, and the guest to stand still or run
2434 * very slowly.
2435 */
2436 if (vcpu->tsc_catchup) {
2437 u64 tsc = compute_guest_tsc(v, kernel_ns);
2438 if (tsc > tsc_timestamp) {
f1e2b260 2439 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
c285545f
ZA
2440 tsc_timestamp = tsc;
2441 }
50d0a0f9
GH
2442 }
2443
18068523
GOC
2444 local_irq_restore(flags);
2445
0d6dd2ff 2446 /* With all the info we got, fill in the values */
18068523 2447
78db6a50
PB
2448 if (kvm_has_tsc_control)
2449 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2450
2451 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3ae13faa 2452 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
5f4e3f88
ZA
2453 &vcpu->hv_clock.tsc_shift,
2454 &vcpu->hv_clock.tsc_to_system_mul);
78db6a50 2455 vcpu->hw_tsc_khz = tgt_tsc_khz;
8cfdc000
ZA
2456 }
2457
1d5f066e 2458 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
759379dd 2459 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
28e4639a 2460 vcpu->last_guest_tsc = tsc_timestamp;
51d59c6b 2461
d828199e 2462 /* If the host uses TSC clocksource, then it is stable */
0d6dd2ff 2463 pvclock_flags = 0;
d828199e
MT
2464 if (use_master_clock)
2465 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2466
78c0337a
MT
2467 vcpu->hv_clock.flags = pvclock_flags;
2468
095cf55d
PB
2469 if (vcpu->pv_time_enabled)
2470 kvm_setup_pvclock_page(v);
2471 if (v == kvm_get_vcpu(v->kvm, 0))
2472 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
8cfdc000 2473 return 0;
c8076604
GH
2474}
2475
0061d53d
MT
2476/*
2477 * kvmclock updates which are isolated to a given vcpu, such as
2478 * vcpu->cpu migration, should not allow system_timestamp from
2479 * the rest of the vcpus to remain static. Otherwise ntp frequency
2480 * correction applies to one vcpu's system_timestamp but not
2481 * the others.
2482 *
2483 * So in those cases, request a kvmclock update for all vcpus.
7e44e449
AJ
2484 * We need to rate-limit these requests though, as they can
2485 * considerably slow guests that have a large number of vcpus.
2486 * The time for a remote vcpu to update its kvmclock is bound
2487 * by the delay we use to rate-limit the updates.
0061d53d
MT
2488 */
2489
7e44e449
AJ
2490#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2491
2492static void kvmclock_update_fn(struct work_struct *work)
0061d53d
MT
2493{
2494 int i;
7e44e449
AJ
2495 struct delayed_work *dwork = to_delayed_work(work);
2496 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2497 kvmclock_update_work);
2498 struct kvm *kvm = container_of(ka, struct kvm, arch);
0061d53d
MT
2499 struct kvm_vcpu *vcpu;
2500
2501 kvm_for_each_vcpu(i, vcpu, kvm) {
105b21bb 2502 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
0061d53d
MT
2503 kvm_vcpu_kick(vcpu);
2504 }
2505}
2506
7e44e449
AJ
2507static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2508{
2509 struct kvm *kvm = v->kvm;
2510
105b21bb 2511 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
7e44e449
AJ
2512 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2513 KVMCLOCK_UPDATE_DELAY);
2514}
2515
332967a3
AJ
2516#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2517
2518static void kvmclock_sync_fn(struct work_struct *work)
2519{
2520 struct delayed_work *dwork = to_delayed_work(work);
2521 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2522 kvmclock_sync_work);
2523 struct kvm *kvm = container_of(ka, struct kvm, arch);
2524
630994b3
MT
2525 if (!kvmclock_periodic_sync)
2526 return;
2527
332967a3
AJ
2528 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2529 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2530 KVMCLOCK_SYNC_PERIOD);
2531}
2532
191c8137
BP
2533/*
2534 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2535 */
2536static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2537{
2538 /* McStatusWrEn enabled? */
23493d0a 2539 if (guest_cpuid_is_amd_or_hygon(vcpu))
191c8137
BP
2540 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2541
2542 return false;
2543}
2544
9ffd986c 2545static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
15c4a640 2546{
890ca9ae
HY
2547 u64 mcg_cap = vcpu->arch.mcg_cap;
2548 unsigned bank_num = mcg_cap & 0xff;
9ffd986c
WL
2549 u32 msr = msr_info->index;
2550 u64 data = msr_info->data;
890ca9ae 2551
15c4a640 2552 switch (msr) {
15c4a640 2553 case MSR_IA32_MCG_STATUS:
890ca9ae 2554 vcpu->arch.mcg_status = data;
15c4a640 2555 break;
c7ac679c 2556 case MSR_IA32_MCG_CTL:
44883f01
PB
2557 if (!(mcg_cap & MCG_CTL_P) &&
2558 (data || !msr_info->host_initiated))
890ca9ae
HY
2559 return 1;
2560 if (data != 0 && data != ~(u64)0)
44883f01 2561 return 1;
890ca9ae
HY
2562 vcpu->arch.mcg_ctl = data;
2563 break;
2564 default:
2565 if (msr >= MSR_IA32_MC0_CTL &&
81760dcc 2566 msr < MSR_IA32_MCx_CTL(bank_num)) {
6ec4c5ee
MP
2567 u32 offset = array_index_nospec(
2568 msr - MSR_IA32_MC0_CTL,
2569 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2570
114be429
AP
2571 /* only 0 or all 1s can be written to IA32_MCi_CTL
2572 * some Linux kernels though clear bit 10 in bank 4 to
2573 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2574 * this to avoid an uncatched #GP in the guest
2575 */
890ca9ae 2576 if ((offset & 0x3) == 0 &&
114be429 2577 data != 0 && (data | (1 << 10)) != ~(u64)0)
890ca9ae 2578 return -1;
191c8137
BP
2579
2580 /* MCi_STATUS */
9ffd986c 2581 if (!msr_info->host_initiated &&
191c8137
BP
2582 (offset & 0x3) == 1 && data != 0) {
2583 if (!can_set_mci_status(vcpu))
2584 return -1;
2585 }
2586
890ca9ae
HY
2587 vcpu->arch.mce_banks[offset] = data;
2588 break;
2589 }
2590 return 1;
2591 }
2592 return 0;
2593}
2594
ffde22ac
ES
2595static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2596{
2597 struct kvm *kvm = vcpu->kvm;
2598 int lm = is_long_mode(vcpu);
2599 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2600 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2601 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2602 : kvm->arch.xen_hvm_config.blob_size_32;
2603 u32 page_num = data & ~PAGE_MASK;
2604 u64 page_addr = data & PAGE_MASK;
2605 u8 *page;
2606 int r;
2607
2608 r = -E2BIG;
2609 if (page_num >= blob_size)
2610 goto out;
2611 r = -ENOMEM;
ff5c2c03
SL
2612 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2613 if (IS_ERR(page)) {
2614 r = PTR_ERR(page);
ffde22ac 2615 goto out;
ff5c2c03 2616 }
54bf36aa 2617 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
ffde22ac
ES
2618 goto out_free;
2619 r = 0;
2620out_free:
2621 kfree(page);
2622out:
2623 return r;
2624}
2625
344d9588
GN
2626static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2627{
2628 gpa_t gpa = data & ~0x3f;
2629
52a5c155
WL
2630 /* Bits 3:5 are reserved, Should be zero */
2631 if (data & 0x38)
344d9588
GN
2632 return 1;
2633
2634 vcpu->arch.apf.msr_val = data;
2635
2636 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2637 kvm_clear_async_pf_completion_queue(vcpu);
2638 kvm_async_pf_hash_reset(vcpu);
2639 return 0;
2640 }
2641
4e335d9e 2642 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
8f964525 2643 sizeof(u32)))
344d9588
GN
2644 return 1;
2645
6adba527 2646 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
52a5c155 2647 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
344d9588
GN
2648 kvm_async_pf_wakeup_all(vcpu);
2649 return 0;
2650}
2651
12f9a48f
GC
2652static void kvmclock_reset(struct kvm_vcpu *vcpu)
2653{
0b79459b 2654 vcpu->arch.pv_time_enabled = false;
49dedf0d 2655 vcpu->arch.time = 0;
12f9a48f
GC
2656}
2657
f38a7b75
WL
2658static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2659{
2660 ++vcpu->stat.tlb_flush;
afaf0b2f 2661 kvm_x86_ops.tlb_flush(vcpu, invalidate_gpa);
f38a7b75
WL
2662}
2663
c9aaa895
GC
2664static void record_steal_time(struct kvm_vcpu *vcpu)
2665{
b0431382
BO
2666 struct kvm_host_map map;
2667 struct kvm_steal_time *st;
2668
c9aaa895
GC
2669 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2670 return;
2671
b0431382
BO
2672 /* -EAGAIN is returned in atomic context so we can just return. */
2673 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2674 &map, &vcpu->arch.st.cache, false))
c9aaa895
GC
2675 return;
2676
b0431382
BO
2677 st = map.hva +
2678 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2679
f38a7b75
WL
2680 /*
2681 * Doing a TLB flush here, on the guest's behalf, can avoid
2682 * expensive IPIs.
2683 */
b382f44e 2684 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
b0431382
BO
2685 st->preempted & KVM_VCPU_FLUSH_TLB);
2686 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
f38a7b75 2687 kvm_vcpu_flush_tlb(vcpu, false);
0b9f6c46 2688
a6bd811f 2689 vcpu->arch.st.preempted = 0;
35f3fae1 2690
b0431382
BO
2691 if (st->version & 1)
2692 st->version += 1; /* first time write, random junk */
35f3fae1 2693
b0431382 2694 st->version += 1;
35f3fae1
WL
2695
2696 smp_wmb();
2697
b0431382 2698 st->steal += current->sched_info.run_delay -
c54cdf14
LC
2699 vcpu->arch.st.last_steal;
2700 vcpu->arch.st.last_steal = current->sched_info.run_delay;
35f3fae1 2701
35f3fae1
WL
2702 smp_wmb();
2703
b0431382 2704 st->version += 1;
c9aaa895 2705
b0431382 2706 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
c9aaa895
GC
2707}
2708
8fe8ab46 2709int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
15c4a640 2710{
5753785f 2711 bool pr = false;
8fe8ab46
WA
2712 u32 msr = msr_info->index;
2713 u64 data = msr_info->data;
5753785f 2714
15c4a640 2715 switch (msr) {
2e32b719 2716 case MSR_AMD64_NB_CFG:
2e32b719
BP
2717 case MSR_IA32_UCODE_WRITE:
2718 case MSR_VM_HSAVE_PA:
2719 case MSR_AMD64_PATCH_LOADER:
2720 case MSR_AMD64_BU_CFG2:
405a353a 2721 case MSR_AMD64_DC_CFG:
0e1b869f 2722 case MSR_F15H_EX_CFG:
2e32b719
BP
2723 break;
2724
518e7b94
WL
2725 case MSR_IA32_UCODE_REV:
2726 if (msr_info->host_initiated)
2727 vcpu->arch.microcode_version = data;
2728 break;
0cf9135b
SC
2729 case MSR_IA32_ARCH_CAPABILITIES:
2730 if (!msr_info->host_initiated)
2731 return 1;
2732 vcpu->arch.arch_capabilities = data;
2733 break;
15c4a640 2734 case MSR_EFER:
11988499 2735 return set_efer(vcpu, msr_info);
8f1589d9
AP
2736 case MSR_K7_HWCR:
2737 data &= ~(u64)0x40; /* ignore flush filter disable */
82494028 2738 data &= ~(u64)0x100; /* ignore ignne emulation enable */
a223c313 2739 data &= ~(u64)0x8; /* ignore TLB cache disable */
191c8137
BP
2740
2741 /* Handle McStatusWrEn */
2742 if (data == BIT_ULL(18)) {
2743 vcpu->arch.msr_hwcr = data;
2744 } else if (data != 0) {
a737f256
CD
2745 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2746 data);
8f1589d9
AP
2747 return 1;
2748 }
15c4a640 2749 break;
f7c6d140
AP
2750 case MSR_FAM10H_MMIO_CONF_BASE:
2751 if (data != 0) {
a737f256
CD
2752 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2753 "0x%llx\n", data);
f7c6d140
AP
2754 return 1;
2755 }
15c4a640 2756 break;
b5e2fec0
AG
2757 case MSR_IA32_DEBUGCTLMSR:
2758 if (!data) {
2759 /* We support the non-activated case already */
2760 break;
2761 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2762 /* Values other than LBR and BTF are vendor-specific,
2763 thus reserved and should throw a #GP */
2764 return 1;
2765 }
a737f256
CD
2766 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2767 __func__, data);
b5e2fec0 2768 break;
9ba075a6 2769 case 0x200 ... 0x2ff:
ff53604b 2770 return kvm_mtrr_set_msr(vcpu, msr, data);
15c4a640 2771 case MSR_IA32_APICBASE:
58cb628d 2772 return kvm_set_apic_base(vcpu, msr_info);
0105d1a5
GN
2773 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2774 return kvm_x2apic_msr_write(vcpu, msr, data);
a3e06bbe
LJ
2775 case MSR_IA32_TSCDEADLINE:
2776 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2777 break;
ba904635 2778 case MSR_IA32_TSC_ADJUST:
d6321d49 2779 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
ba904635 2780 if (!msr_info->host_initiated) {
d913b904 2781 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
d7add054 2782 adjust_tsc_offset_guest(vcpu, adj);
ba904635
WA
2783 }
2784 vcpu->arch.ia32_tsc_adjust_msr = data;
2785 }
2786 break;
15c4a640 2787 case MSR_IA32_MISC_ENABLE:
511a8556
WL
2788 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2789 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2790 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2791 return 1;
2792 vcpu->arch.ia32_misc_enable_msr = data;
2793 kvm_update_cpuid(vcpu);
2794 } else {
2795 vcpu->arch.ia32_misc_enable_msr = data;
2796 }
15c4a640 2797 break;
64d60670
PB
2798 case MSR_IA32_SMBASE:
2799 if (!msr_info->host_initiated)
2800 return 1;
2801 vcpu->arch.smbase = data;
2802 break;
73f624f4
PB
2803 case MSR_IA32_POWER_CTL:
2804 vcpu->arch.msr_ia32_power_ctl = data;
2805 break;
dd259935
PB
2806 case MSR_IA32_TSC:
2807 kvm_write_tsc(vcpu, msr_info);
2808 break;
864e2ab2
AL
2809 case MSR_IA32_XSS:
2810 if (!msr_info->host_initiated &&
2811 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2812 return 1;
2813 /*
a1bead2a
SC
2814 * KVM supports exposing PT to the guest, but does not support
2815 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
2816 * XSAVES/XRSTORS to save/restore PT MSRs.
864e2ab2 2817 */
408e9a31 2818 if (data & ~supported_xss)
864e2ab2
AL
2819 return 1;
2820 vcpu->arch.ia32_xss = data;
2821 break;
52797bf9
LA
2822 case MSR_SMI_COUNT:
2823 if (!msr_info->host_initiated)
2824 return 1;
2825 vcpu->arch.smi_count = data;
2826 break;
11c6bffa 2827 case MSR_KVM_WALL_CLOCK_NEW:
18068523
GOC
2828 case MSR_KVM_WALL_CLOCK:
2829 vcpu->kvm->arch.wall_clock = data;
2830 kvm_write_wall_clock(vcpu->kvm, data);
2831 break;
11c6bffa 2832 case MSR_KVM_SYSTEM_TIME_NEW:
18068523 2833 case MSR_KVM_SYSTEM_TIME: {
54750f2c
MT
2834 struct kvm_arch *ka = &vcpu->kvm->arch;
2835
54750f2c
MT
2836 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2837 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2838
2839 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
1bd2009e 2840 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
54750f2c
MT
2841
2842 ka->boot_vcpu_runs_old_kvmclock = tmp;
2843 }
2844
18068523 2845 vcpu->arch.time = data;
0061d53d 2846 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
18068523
GOC
2847
2848 /* we verify if the enable bit is set... */
49dedf0d 2849 vcpu->arch.pv_time_enabled = false;
18068523
GOC
2850 if (!(data & 1))
2851 break;
2852
49dedf0d 2853 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
8f964525
AH
2854 &vcpu->arch.pv_time, data & ~1ULL,
2855 sizeof(struct pvclock_vcpu_time_info)))
0b79459b 2856 vcpu->arch.pv_time_enabled = true;
32cad84f 2857
18068523
GOC
2858 break;
2859 }
344d9588
GN
2860 case MSR_KVM_ASYNC_PF_EN:
2861 if (kvm_pv_enable_async_pf(vcpu, data))
2862 return 1;
2863 break;
c9aaa895
GC
2864 case MSR_KVM_STEAL_TIME:
2865
2866 if (unlikely(!sched_info_on()))
2867 return 1;
2868
2869 if (data & KVM_STEAL_RESERVED_MASK)
2870 return 1;
2871
c9aaa895
GC
2872 vcpu->arch.st.msr_val = data;
2873
2874 if (!(data & KVM_MSR_ENABLED))
2875 break;
2876
c9aaa895
GC
2877 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2878
2879 break;
ae7a2a3f 2880 case MSR_KVM_PV_EOI_EN:
72bbf935 2881 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
ae7a2a3f
MT
2882 return 1;
2883 break;
c9aaa895 2884
2d5ba19b
MT
2885 case MSR_KVM_POLL_CONTROL:
2886 /* only enable bit supported */
2887 if (data & (-1ULL << 1))
2888 return 1;
2889
2890 vcpu->arch.msr_kvm_poll_control = data;
2891 break;
2892
890ca9ae
HY
2893 case MSR_IA32_MCG_CTL:
2894 case MSR_IA32_MCG_STATUS:
81760dcc 2895 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
9ffd986c 2896 return set_msr_mce(vcpu, msr_info);
71db6023 2897
6912ac32
WH
2898 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2899 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2900 pr = true; /* fall through */
2901 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2902 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
c6702c9d 2903 if (kvm_pmu_is_valid_msr(vcpu, msr))
afd80d85 2904 return kvm_pmu_set_msr(vcpu, msr_info);
5753785f
GN
2905
2906 if (pr || data != 0)
a737f256
CD
2907 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2908 "0x%x data 0x%llx\n", msr, data);
5753785f 2909 break;
84e0cefa
JS
2910 case MSR_K7_CLK_CTL:
2911 /*
2912 * Ignore all writes to this no longer documented MSR.
2913 * Writes are only relevant for old K7 processors,
2914 * all pre-dating SVM, but a recommended workaround from
4a969980 2915 * AMD for these chips. It is possible to specify the
84e0cefa
JS
2916 * affected processor models on the command line, hence
2917 * the need to ignore the workaround.
2918 */
2919 break;
55cd8e5a 2920 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
e7d9513b
AS
2921 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2922 case HV_X64_MSR_CRASH_CTL:
1f4b34f8 2923 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
a2e164e7
VK
2924 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2925 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2926 case HV_X64_MSR_TSC_EMULATION_STATUS:
e7d9513b
AS
2927 return kvm_hv_set_msr_common(vcpu, msr, data,
2928 msr_info->host_initiated);
91c9c3ed 2929 case MSR_IA32_BBL_CR_CTL3:
2930 /* Drop writes to this legacy MSR -- see rdmsr
2931 * counterpart for further detail.
2932 */
fab0aa3b
EM
2933 if (report_ignored_msrs)
2934 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2935 msr, data);
91c9c3ed 2936 break;
2b036c6b 2937 case MSR_AMD64_OSVW_ID_LENGTH:
d6321d49 2938 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2b036c6b
BO
2939 return 1;
2940 vcpu->arch.osvw.length = data;
2941 break;
2942 case MSR_AMD64_OSVW_STATUS:
d6321d49 2943 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2b036c6b
BO
2944 return 1;
2945 vcpu->arch.osvw.status = data;
2946 break;
db2336a8
KH
2947 case MSR_PLATFORM_INFO:
2948 if (!msr_info->host_initiated ||
db2336a8
KH
2949 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2950 cpuid_fault_enabled(vcpu)))
2951 return 1;
2952 vcpu->arch.msr_platform_info = data;
2953 break;
2954 case MSR_MISC_FEATURES_ENABLES:
2955 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2956 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2957 !supports_cpuid_fault(vcpu)))
2958 return 1;
2959 vcpu->arch.msr_misc_features_enables = data;
2960 break;
15c4a640 2961 default:
ffde22ac
ES
2962 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2963 return xen_hvm_config(vcpu, data);
c6702c9d 2964 if (kvm_pmu_is_valid_msr(vcpu, msr))
afd80d85 2965 return kvm_pmu_set_msr(vcpu, msr_info);
ed85c068 2966 if (!ignore_msrs) {
ae0f5499 2967 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
a737f256 2968 msr, data);
ed85c068
AP
2969 return 1;
2970 } else {
fab0aa3b
EM
2971 if (report_ignored_msrs)
2972 vcpu_unimpl(vcpu,
2973 "ignored wrmsr: 0x%x data 0x%llx\n",
2974 msr, data);
ed85c068
AP
2975 break;
2976 }
15c4a640
CO
2977 }
2978 return 0;
2979}
2980EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2981
44883f01 2982static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
15c4a640
CO
2983{
2984 u64 data;
890ca9ae
HY
2985 u64 mcg_cap = vcpu->arch.mcg_cap;
2986 unsigned bank_num = mcg_cap & 0xff;
15c4a640
CO
2987
2988 switch (msr) {
15c4a640
CO
2989 case MSR_IA32_P5_MC_ADDR:
2990 case MSR_IA32_P5_MC_TYPE:
890ca9ae
HY
2991 data = 0;
2992 break;
15c4a640 2993 case MSR_IA32_MCG_CAP:
890ca9ae
HY
2994 data = vcpu->arch.mcg_cap;
2995 break;
c7ac679c 2996 case MSR_IA32_MCG_CTL:
44883f01 2997 if (!(mcg_cap & MCG_CTL_P) && !host)
890ca9ae
HY
2998 return 1;
2999 data = vcpu->arch.mcg_ctl;
3000 break;
3001 case MSR_IA32_MCG_STATUS:
3002 data = vcpu->arch.mcg_status;
3003 break;
3004 default:
3005 if (msr >= MSR_IA32_MC0_CTL &&
81760dcc 3006 msr < MSR_IA32_MCx_CTL(bank_num)) {
6ec4c5ee
MP
3007 u32 offset = array_index_nospec(
3008 msr - MSR_IA32_MC0_CTL,
3009 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3010
890ca9ae
HY
3011 data = vcpu->arch.mce_banks[offset];
3012 break;
3013 }
3014 return 1;
3015 }
3016 *pdata = data;
3017 return 0;
3018}
3019
609e36d3 3020int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
890ca9ae 3021{
609e36d3 3022 switch (msr_info->index) {
890ca9ae 3023 case MSR_IA32_PLATFORM_ID:
15c4a640 3024 case MSR_IA32_EBL_CR_POWERON:
b5e2fec0
AG
3025 case MSR_IA32_DEBUGCTLMSR:
3026 case MSR_IA32_LASTBRANCHFROMIP:
3027 case MSR_IA32_LASTBRANCHTOIP:
3028 case MSR_IA32_LASTINTFROMIP:
3029 case MSR_IA32_LASTINTTOIP:
60af2ecd 3030 case MSR_K8_SYSCFG:
3afb1121
PB
3031 case MSR_K8_TSEG_ADDR:
3032 case MSR_K8_TSEG_MASK:
61a6bd67 3033 case MSR_VM_HSAVE_PA:
1fdbd48c 3034 case MSR_K8_INT_PENDING_MSG:
c323c0e5 3035 case MSR_AMD64_NB_CFG:
f7c6d140 3036 case MSR_FAM10H_MMIO_CONF_BASE:
2e32b719 3037 case MSR_AMD64_BU_CFG2:
0c2df2a1 3038 case MSR_IA32_PERF_CTL:
405a353a 3039 case MSR_AMD64_DC_CFG:
0e1b869f 3040 case MSR_F15H_EX_CFG:
2ca1a06a
VS
3041 /*
3042 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3043 * limit) MSRs. Just return 0, as we do not want to expose the host
3044 * data here. Do not conditionalize this on CPUID, as KVM does not do
3045 * so for existing CPU-specific MSRs.
3046 */
3047 case MSR_RAPL_POWER_UNIT:
3048 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3049 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3050 case MSR_PKG_ENERGY_STATUS: /* Total package */
3051 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
609e36d3 3052 msr_info->data = 0;
15c4a640 3053 break;
c51eb52b 3054 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
6912ac32
WH
3055 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3056 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3057 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3058 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
c6702c9d 3059 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
609e36d3
PB
3060 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3061 msr_info->data = 0;
5753785f 3062 break;
742bc670 3063 case MSR_IA32_UCODE_REV:
518e7b94 3064 msr_info->data = vcpu->arch.microcode_version;
742bc670 3065 break;
0cf9135b
SC
3066 case MSR_IA32_ARCH_CAPABILITIES:
3067 if (!msr_info->host_initiated &&
3068 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3069 return 1;
3070 msr_info->data = vcpu->arch.arch_capabilities;
3071 break;
73f624f4
PB
3072 case MSR_IA32_POWER_CTL:
3073 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3074 break;
dd259935
PB
3075 case MSR_IA32_TSC:
3076 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
3077 break;
9ba075a6 3078 case MSR_MTRRcap:
9ba075a6 3079 case 0x200 ... 0x2ff:
ff53604b 3080 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
15c4a640 3081 case 0xcd: /* fsb frequency */
609e36d3 3082 msr_info->data = 3;
15c4a640 3083 break;
7b914098
JS
3084 /*
3085 * MSR_EBC_FREQUENCY_ID
3086 * Conservative value valid for even the basic CPU models.
3087 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3088 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3089 * and 266MHz for model 3, or 4. Set Core Clock
3090 * Frequency to System Bus Frequency Ratio to 1 (bits
3091 * 31:24) even though these are only valid for CPU
3092 * models > 2, however guests may end up dividing or
3093 * multiplying by zero otherwise.
3094 */
3095 case MSR_EBC_FREQUENCY_ID:
609e36d3 3096 msr_info->data = 1 << 24;
7b914098 3097 break;
15c4a640 3098 case MSR_IA32_APICBASE:
609e36d3 3099 msr_info->data = kvm_get_apic_base(vcpu);
15c4a640 3100 break;
0105d1a5 3101 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
609e36d3 3102 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
a3e06bbe 3103 case MSR_IA32_TSCDEADLINE:
609e36d3 3104 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
a3e06bbe 3105 break;
ba904635 3106 case MSR_IA32_TSC_ADJUST:
609e36d3 3107 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
ba904635 3108 break;
15c4a640 3109 case MSR_IA32_MISC_ENABLE:
609e36d3 3110 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
15c4a640 3111 break;
64d60670
PB
3112 case MSR_IA32_SMBASE:
3113 if (!msr_info->host_initiated)
3114 return 1;
3115 msr_info->data = vcpu->arch.smbase;
15c4a640 3116 break;
52797bf9
LA
3117 case MSR_SMI_COUNT:
3118 msr_info->data = vcpu->arch.smi_count;
3119 break;
847f0ad8
AG
3120 case MSR_IA32_PERF_STATUS:
3121 /* TSC increment by tick */
609e36d3 3122 msr_info->data = 1000ULL;
847f0ad8 3123 /* CPU multiplier */
b0996ae4 3124 msr_info->data |= (((uint64_t)4ULL) << 40);
847f0ad8 3125 break;
15c4a640 3126 case MSR_EFER:
609e36d3 3127 msr_info->data = vcpu->arch.efer;
15c4a640 3128 break;
18068523 3129 case MSR_KVM_WALL_CLOCK:
11c6bffa 3130 case MSR_KVM_WALL_CLOCK_NEW:
609e36d3 3131 msr_info->data = vcpu->kvm->arch.wall_clock;
18068523
GOC
3132 break;
3133 case MSR_KVM_SYSTEM_TIME:
11c6bffa 3134 case MSR_KVM_SYSTEM_TIME_NEW:
609e36d3 3135 msr_info->data = vcpu->arch.time;
18068523 3136 break;
344d9588 3137 case MSR_KVM_ASYNC_PF_EN:
609e36d3 3138 msr_info->data = vcpu->arch.apf.msr_val;
344d9588 3139 break;
c9aaa895 3140 case MSR_KVM_STEAL_TIME:
609e36d3 3141 msr_info->data = vcpu->arch.st.msr_val;
c9aaa895 3142 break;
1d92128f 3143 case MSR_KVM_PV_EOI_EN:
609e36d3 3144 msr_info->data = vcpu->arch.pv_eoi.msr_val;
1d92128f 3145 break;
2d5ba19b
MT
3146 case MSR_KVM_POLL_CONTROL:
3147 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3148 break;
890ca9ae
HY
3149 case MSR_IA32_P5_MC_ADDR:
3150 case MSR_IA32_P5_MC_TYPE:
3151 case MSR_IA32_MCG_CAP:
3152 case MSR_IA32_MCG_CTL:
3153 case MSR_IA32_MCG_STATUS:
81760dcc 3154 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
44883f01
PB
3155 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3156 msr_info->host_initiated);
864e2ab2
AL
3157 case MSR_IA32_XSS:
3158 if (!msr_info->host_initiated &&
3159 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3160 return 1;
3161 msr_info->data = vcpu->arch.ia32_xss;
3162 break;
84e0cefa
JS
3163 case MSR_K7_CLK_CTL:
3164 /*
3165 * Provide expected ramp-up count for K7. All other
3166 * are set to zero, indicating minimum divisors for
3167 * every field.
3168 *
3169 * This prevents guest kernels on AMD host with CPU
3170 * type 6, model 8 and higher from exploding due to
3171 * the rdmsr failing.
3172 */
609e36d3 3173 msr_info->data = 0x20000000;
84e0cefa 3174 break;
55cd8e5a 3175 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
e7d9513b
AS
3176 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3177 case HV_X64_MSR_CRASH_CTL:
1f4b34f8 3178 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
a2e164e7
VK
3179 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3180 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3181 case HV_X64_MSR_TSC_EMULATION_STATUS:
e83d5887 3182 return kvm_hv_get_msr_common(vcpu,
44883f01
PB
3183 msr_info->index, &msr_info->data,
3184 msr_info->host_initiated);
91c9c3ed 3185 case MSR_IA32_BBL_CR_CTL3:
3186 /* This legacy MSR exists but isn't fully documented in current
3187 * silicon. It is however accessed by winxp in very narrow
3188 * scenarios where it sets bit #19, itself documented as
3189 * a "reserved" bit. Best effort attempt to source coherent
3190 * read data here should the balance of the register be
3191 * interpreted by the guest:
3192 *
3193 * L2 cache control register 3: 64GB range, 256KB size,
3194 * enabled, latency 0x1, configured
3195 */
609e36d3 3196 msr_info->data = 0xbe702111;
91c9c3ed 3197 break;
2b036c6b 3198 case MSR_AMD64_OSVW_ID_LENGTH:
d6321d49 3199 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2b036c6b 3200 return 1;
609e36d3 3201 msr_info->data = vcpu->arch.osvw.length;
2b036c6b
BO
3202 break;
3203 case MSR_AMD64_OSVW_STATUS:
d6321d49 3204 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2b036c6b 3205 return 1;
609e36d3 3206 msr_info->data = vcpu->arch.osvw.status;
2b036c6b 3207 break;
db2336a8 3208 case MSR_PLATFORM_INFO:
6fbbde9a
DS
3209 if (!msr_info->host_initiated &&
3210 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3211 return 1;
db2336a8
KH
3212 msr_info->data = vcpu->arch.msr_platform_info;
3213 break;
3214 case MSR_MISC_FEATURES_ENABLES:
3215 msr_info->data = vcpu->arch.msr_misc_features_enables;
3216 break;
191c8137
BP
3217 case MSR_K7_HWCR:
3218 msr_info->data = vcpu->arch.msr_hwcr;
3219 break;
15c4a640 3220 default:
c6702c9d 3221 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
609e36d3 3222 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
ed85c068 3223 if (!ignore_msrs) {
ae0f5499
BD
3224 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3225 msr_info->index);
ed85c068
AP
3226 return 1;
3227 } else {
fab0aa3b
EM
3228 if (report_ignored_msrs)
3229 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3230 msr_info->index);
609e36d3 3231 msr_info->data = 0;
ed85c068
AP
3232 }
3233 break;
15c4a640 3234 }
15c4a640
CO
3235 return 0;
3236}
3237EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3238
313a3dc7
CO
3239/*
3240 * Read or write a bunch of msrs. All parameters are kernel addresses.
3241 *
3242 * @return number of msrs set successfully.
3243 */
3244static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3245 struct kvm_msr_entry *entries,
3246 int (*do_msr)(struct kvm_vcpu *vcpu,
3247 unsigned index, u64 *data))
3248{
801e459a 3249 int i;
313a3dc7 3250
313a3dc7
CO
3251 for (i = 0; i < msrs->nmsrs; ++i)
3252 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3253 break;
3254
313a3dc7
CO
3255 return i;
3256}
3257
3258/*
3259 * Read or write a bunch of msrs. Parameters are user addresses.
3260 *
3261 * @return number of msrs set successfully.
3262 */
3263static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3264 int (*do_msr)(struct kvm_vcpu *vcpu,
3265 unsigned index, u64 *data),
3266 int writeback)
3267{
3268 struct kvm_msrs msrs;
3269 struct kvm_msr_entry *entries;
3270 int r, n;
3271 unsigned size;
3272
3273 r = -EFAULT;
0e96f31e 3274 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
313a3dc7
CO
3275 goto out;
3276
3277 r = -E2BIG;
3278 if (msrs.nmsrs >= MAX_IO_MSRS)
3279 goto out;
3280
313a3dc7 3281 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
ff5c2c03
SL
3282 entries = memdup_user(user_msrs->entries, size);
3283 if (IS_ERR(entries)) {
3284 r = PTR_ERR(entries);
313a3dc7 3285 goto out;
ff5c2c03 3286 }
313a3dc7
CO
3287
3288 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3289 if (r < 0)
3290 goto out_free;
3291
3292 r = -EFAULT;
3293 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3294 goto out_free;
3295
3296 r = n;
3297
3298out_free:
7a73c028 3299 kfree(entries);
313a3dc7
CO
3300out:
3301 return r;
3302}
3303
4d5422ce
WL
3304static inline bool kvm_can_mwait_in_guest(void)
3305{
3306 return boot_cpu_has(X86_FEATURE_MWAIT) &&
8e9b29b6
KA
3307 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3308 boot_cpu_has(X86_FEATURE_ARAT);
4d5422ce
WL
3309}
3310
784aa3d7 3311int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
018d00d2 3312{
4d5422ce 3313 int r = 0;
018d00d2
ZX
3314
3315 switch (ext) {
3316 case KVM_CAP_IRQCHIP:
3317 case KVM_CAP_HLT:
3318 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
018d00d2 3319 case KVM_CAP_SET_TSS_ADDR:
07716717 3320 case KVM_CAP_EXT_CPUID:
9c15bb1d 3321 case KVM_CAP_EXT_EMUL_CPUID:
c8076604 3322 case KVM_CAP_CLOCKSOURCE:
7837699f 3323 case KVM_CAP_PIT:
a28e4f5a 3324 case KVM_CAP_NOP_IO_DELAY:
62d9f0db 3325 case KVM_CAP_MP_STATE:
ed848624 3326 case KVM_CAP_SYNC_MMU:
a355c85c 3327 case KVM_CAP_USER_NMI:
52d939a0 3328 case KVM_CAP_REINJECT_CONTROL:
4925663a 3329 case KVM_CAP_IRQ_INJECT_STATUS:
d34e6b17 3330 case KVM_CAP_IOEVENTFD:
f848a5a8 3331 case KVM_CAP_IOEVENTFD_NO_LENGTH:
c5ff41ce 3332 case KVM_CAP_PIT2:
e9f42757 3333 case KVM_CAP_PIT_STATE2:
b927a3ce 3334 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
ffde22ac 3335 case KVM_CAP_XEN_HVM:
3cfc3092 3336 case KVM_CAP_VCPU_EVENTS:
55cd8e5a 3337 case KVM_CAP_HYPERV:
10388a07 3338 case KVM_CAP_HYPERV_VAPIC:
c25bc163 3339 case KVM_CAP_HYPERV_SPIN:
5c919412 3340 case KVM_CAP_HYPERV_SYNIC:
efc479e6 3341 case KVM_CAP_HYPERV_SYNIC2:
d3457c87 3342 case KVM_CAP_HYPERV_VP_INDEX:
faeb7833 3343 case KVM_CAP_HYPERV_EVENTFD:
c1aea919 3344 case KVM_CAP_HYPERV_TLBFLUSH:
214ff83d 3345 case KVM_CAP_HYPERV_SEND_IPI:
2bc39970 3346 case KVM_CAP_HYPERV_CPUID:
ab9f4ecb 3347 case KVM_CAP_PCI_SEGMENT:
a1efbe77 3348 case KVM_CAP_DEBUGREGS:
d2be1651 3349 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2d5b5a66 3350 case KVM_CAP_XSAVE:
344d9588 3351 case KVM_CAP_ASYNC_PF:
92a1f12d 3352 case KVM_CAP_GET_TSC_KHZ:
1c0b28c2 3353 case KVM_CAP_KVMCLOCK_CTRL:
4d8b81ab 3354 case KVM_CAP_READONLY_MEM:
5f66b620 3355 case KVM_CAP_HYPERV_TIME:
100943c5 3356 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
defcf51f 3357 case KVM_CAP_TSC_DEADLINE_TIMER:
90de4a18 3358 case KVM_CAP_DISABLE_QUIRKS:
d71ba788 3359 case KVM_CAP_SET_BOOT_CPU_ID:
49df6397 3360 case KVM_CAP_SPLIT_IRQCHIP:
460df4c1 3361 case KVM_CAP_IMMEDIATE_EXIT:
66bb8a06 3362 case KVM_CAP_PMU_EVENT_FILTER:
801e459a 3363 case KVM_CAP_GET_MSR_FEATURES:
6fbbde9a 3364 case KVM_CAP_MSR_PLATFORM_INFO:
c4f55198 3365 case KVM_CAP_EXCEPTION_PAYLOAD:
b9b2782c 3366 case KVM_CAP_SET_GUEST_DEBUG:
018d00d2
ZX
3367 r = 1;
3368 break;
01643c51
KH
3369 case KVM_CAP_SYNC_REGS:
3370 r = KVM_SYNC_X86_VALID_FIELDS;
3371 break;
e3fd9a93
PB
3372 case KVM_CAP_ADJUST_CLOCK:
3373 r = KVM_CLOCK_TSC_STABLE;
3374 break;
4d5422ce 3375 case KVM_CAP_X86_DISABLE_EXITS:
b5170063
WL
3376 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3377 KVM_X86_DISABLE_EXITS_CSTATE;
4d5422ce
WL
3378 if(kvm_can_mwait_in_guest())
3379 r |= KVM_X86_DISABLE_EXITS_MWAIT;
668fffa3 3380 break;
6d396b55
PB
3381 case KVM_CAP_X86_SMM:
3382 /* SMBASE is usually relocated above 1M on modern chipsets,
3383 * and SMM handlers might indeed rely on 4G segment limits,
3384 * so do not report SMM to be available if real mode is
3385 * emulated via vm86 mode. Still, do not go to great lengths
3386 * to avoid userspace's usage of the feature, because it is a
3387 * fringe case that is not enabled except via specific settings
3388 * of the module parameters.
3389 */
afaf0b2f 3390 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
6d396b55 3391 break;
774ead3a 3392 case KVM_CAP_VAPIC:
afaf0b2f 3393 r = !kvm_x86_ops.cpu_has_accelerated_tpr();
774ead3a 3394 break;
f725230a 3395 case KVM_CAP_NR_VCPUS:
8c3ba334
SL
3396 r = KVM_SOFT_MAX_VCPUS;
3397 break;
3398 case KVM_CAP_MAX_VCPUS:
f725230a
AK
3399 r = KVM_MAX_VCPUS;
3400 break;
a86cb413
TH
3401 case KVM_CAP_MAX_VCPU_ID:
3402 r = KVM_MAX_VCPU_ID;
3403 break;
a68a6a72
MT
3404 case KVM_CAP_PV_MMU: /* obsolete */
3405 r = 0;
2f333bcb 3406 break;
890ca9ae
HY
3407 case KVM_CAP_MCE:
3408 r = KVM_MAX_MCE_BANKS;
3409 break;
2d5b5a66 3410 case KVM_CAP_XCRS:
d366bf7e 3411 r = boot_cpu_has(X86_FEATURE_XSAVE);
2d5b5a66 3412 break;
92a1f12d
JR
3413 case KVM_CAP_TSC_CONTROL:
3414 r = kvm_has_tsc_control;
3415 break;
37131313
RK
3416 case KVM_CAP_X2APIC_API:
3417 r = KVM_X2APIC_API_VALID_FLAGS;
3418 break;
8fcc4b59 3419 case KVM_CAP_NESTED_STATE:
afaf0b2f
SC
3420 r = kvm_x86_ops.get_nested_state ?
3421 kvm_x86_ops.get_nested_state(NULL, NULL, 0) : 0;
8fcc4b59 3422 break;
344c6c80 3423 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
afaf0b2f 3424 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
5a0165f6
VK
3425 break;
3426 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
afaf0b2f 3427 r = kvm_x86_ops.nested_enable_evmcs != NULL;
344c6c80 3428 break;
018d00d2 3429 default:
018d00d2
ZX
3430 break;
3431 }
3432 return r;
3433
3434}
3435
043405e1
CO
3436long kvm_arch_dev_ioctl(struct file *filp,
3437 unsigned int ioctl, unsigned long arg)
3438{
3439 void __user *argp = (void __user *)arg;
3440 long r;
3441
3442 switch (ioctl) {
3443 case KVM_GET_MSR_INDEX_LIST: {
3444 struct kvm_msr_list __user *user_msr_list = argp;
3445 struct kvm_msr_list msr_list;
3446 unsigned n;
3447
3448 r = -EFAULT;
0e96f31e 3449 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
043405e1
CO
3450 goto out;
3451 n = msr_list.nmsrs;
62ef68bb 3452 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
0e96f31e 3453 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
043405e1
CO
3454 goto out;
3455 r = -E2BIG;
e125e7b6 3456 if (n < msr_list.nmsrs)
043405e1
CO
3457 goto out;
3458 r = -EFAULT;
3459 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3460 num_msrs_to_save * sizeof(u32)))
3461 goto out;
e125e7b6 3462 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
043405e1 3463 &emulated_msrs,
62ef68bb 3464 num_emulated_msrs * sizeof(u32)))
043405e1
CO
3465 goto out;
3466 r = 0;
3467 break;
3468 }
9c15bb1d
BP
3469 case KVM_GET_SUPPORTED_CPUID:
3470 case KVM_GET_EMULATED_CPUID: {
674eea0f
AK
3471 struct kvm_cpuid2 __user *cpuid_arg = argp;
3472 struct kvm_cpuid2 cpuid;
3473
3474 r = -EFAULT;
0e96f31e 3475 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
674eea0f 3476 goto out;
9c15bb1d
BP
3477
3478 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3479 ioctl);
674eea0f
AK
3480 if (r)
3481 goto out;
3482
3483 r = -EFAULT;
0e96f31e 3484 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
674eea0f
AK
3485 goto out;
3486 r = 0;
3487 break;
3488 }
cf6c26ec 3489 case KVM_X86_GET_MCE_CAP_SUPPORTED:
890ca9ae 3490 r = -EFAULT;
c45dcc71
AR
3491 if (copy_to_user(argp, &kvm_mce_cap_supported,
3492 sizeof(kvm_mce_cap_supported)))
890ca9ae
HY
3493 goto out;
3494 r = 0;
3495 break;
801e459a
TL
3496 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3497 struct kvm_msr_list __user *user_msr_list = argp;
3498 struct kvm_msr_list msr_list;
3499 unsigned int n;
3500
3501 r = -EFAULT;
3502 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3503 goto out;
3504 n = msr_list.nmsrs;
3505 msr_list.nmsrs = num_msr_based_features;
3506 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3507 goto out;
3508 r = -E2BIG;
3509 if (n < msr_list.nmsrs)
3510 goto out;
3511 r = -EFAULT;
3512 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3513 num_msr_based_features * sizeof(u32)))
3514 goto out;
3515 r = 0;
3516 break;
3517 }
3518 case KVM_GET_MSRS:
3519 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3520 break;
043405e1
CO
3521 default:
3522 r = -EINVAL;
cf6c26ec 3523 break;
043405e1
CO
3524 }
3525out:
3526 return r;
3527}
3528
f5f48ee1
SY
3529static void wbinvd_ipi(void *garbage)
3530{
3531 wbinvd();
3532}
3533
3534static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3535{
e0f0bbc5 3536 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
f5f48ee1
SY
3537}
3538
313a3dc7
CO
3539void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3540{
f5f48ee1
SY
3541 /* Address WBINVD may be executed by guest */
3542 if (need_emulate_wbinvd(vcpu)) {
afaf0b2f 3543 if (kvm_x86_ops.has_wbinvd_exit())
f5f48ee1
SY
3544 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3545 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3546 smp_call_function_single(vcpu->cpu,
3547 wbinvd_ipi, NULL, 1);
3548 }
3549
afaf0b2f 3550 kvm_x86_ops.vcpu_load(vcpu, cpu);
8f6055cb 3551
0dd6a6ed
ZA
3552 /* Apply any externally detected TSC adjustments (due to suspend) */
3553 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3554 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3555 vcpu->arch.tsc_offset_adjustment = 0;
105b21bb 3556 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
0dd6a6ed 3557 }
8f6055cb 3558
b0c39dc6 3559 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
6f526ec5 3560 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4ea1636b 3561 rdtsc() - vcpu->arch.last_host_tsc;
e48672fa
ZA
3562 if (tsc_delta < 0)
3563 mark_tsc_unstable("KVM discovered backwards TSC");
ce7a058a 3564
b0c39dc6 3565 if (kvm_check_tsc_unstable()) {
07c1419a 3566 u64 offset = kvm_compute_tsc_offset(vcpu,
b183aa58 3567 vcpu->arch.last_guest_tsc);
a545ab6a 3568 kvm_vcpu_write_tsc_offset(vcpu, offset);
c285545f 3569 vcpu->arch.tsc_catchup = 1;
c285545f 3570 }
a749e247
PB
3571
3572 if (kvm_lapic_hv_timer_in_use(vcpu))
3573 kvm_lapic_restart_hv_timer(vcpu);
3574
d98d07ca
MT
3575 /*
3576 * On a host with synchronized TSC, there is no need to update
3577 * kvmclock on vcpu->cpu migration
3578 */
3579 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
0061d53d 3580 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
c285545f 3581 if (vcpu->cpu != cpu)
1bd2009e 3582 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
e48672fa 3583 vcpu->cpu = cpu;
6b7d7e76 3584 }
c9aaa895 3585
c9aaa895 3586 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
313a3dc7
CO
3587}
3588
0b9f6c46
PX
3589static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3590{
b0431382
BO
3591 struct kvm_host_map map;
3592 struct kvm_steal_time *st;
3593
0b9f6c46
PX
3594 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3595 return;
3596
a6bd811f 3597 if (vcpu->arch.st.preempted)
8c6de56a
BO
3598 return;
3599
b0431382
BO
3600 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3601 &vcpu->arch.st.cache, true))
3602 return;
3603
3604 st = map.hva +
3605 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
0b9f6c46 3606
a6bd811f 3607 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
0b9f6c46 3608
b0431382 3609 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
0b9f6c46
PX
3610}
3611
313a3dc7
CO
3612void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3613{
cc0d907c 3614 int idx;
de63ad4c
LM
3615
3616 if (vcpu->preempted)
afaf0b2f 3617 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
de63ad4c 3618
931f261b
AA
3619 /*
3620 * Disable page faults because we're in atomic context here.
3621 * kvm_write_guest_offset_cached() would call might_fault()
3622 * that relies on pagefault_disable() to tell if there's a
3623 * bug. NOTE: the write to guest memory may not go through if
3624 * during postcopy live migration or if there's heavy guest
3625 * paging.
3626 */
3627 pagefault_disable();
cc0d907c
AA
3628 /*
3629 * kvm_memslots() will be called by
3630 * kvm_write_guest_offset_cached() so take the srcu lock.
3631 */
3632 idx = srcu_read_lock(&vcpu->kvm->srcu);
0b9f6c46 3633 kvm_steal_time_set_preempted(vcpu);
cc0d907c 3634 srcu_read_unlock(&vcpu->kvm->srcu, idx);
931f261b 3635 pagefault_enable();
afaf0b2f 3636 kvm_x86_ops.vcpu_put(vcpu);
4ea1636b 3637 vcpu->arch.last_host_tsc = rdtsc();
efdab992 3638 /*
f9dcf08e
RK
3639 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3640 * on every vmexit, but if not, we might have a stale dr6 from the
3641 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
efdab992 3642 */
f9dcf08e 3643 set_debugreg(0, 6);
313a3dc7
CO
3644}
3645
313a3dc7
CO
3646static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3647 struct kvm_lapic_state *s)
3648{
fa59cc00 3649 if (vcpu->arch.apicv_active)
afaf0b2f 3650 kvm_x86_ops.sync_pir_to_irr(vcpu);
d62caabb 3651
a92e2543 3652 return kvm_apic_get_state(vcpu, s);
313a3dc7
CO
3653}
3654
3655static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3656 struct kvm_lapic_state *s)
3657{
a92e2543
RK
3658 int r;
3659
3660 r = kvm_apic_set_state(vcpu, s);
3661 if (r)
3662 return r;
cb142eb7 3663 update_cr8_intercept(vcpu);
313a3dc7
CO
3664
3665 return 0;
3666}
3667
127a457a
MG
3668static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3669{
3670 return (!lapic_in_kernel(vcpu) ||
3671 kvm_apic_accept_pic_intr(vcpu));
3672}
3673
782d422b
MG
3674/*
3675 * if userspace requested an interrupt window, check that the
3676 * interrupt window is open.
3677 *
3678 * No need to exit to userspace if we already have an interrupt queued.
3679 */
3680static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3681{
3682 return kvm_arch_interrupt_allowed(vcpu) &&
3683 !kvm_cpu_has_interrupt(vcpu) &&
3684 !kvm_event_needs_reinjection(vcpu) &&
3685 kvm_cpu_accept_dm_intr(vcpu);
3686}
3687
f77bc6a4
ZX
3688static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3689 struct kvm_interrupt *irq)
3690{
02cdb50f 3691 if (irq->irq >= KVM_NR_INTERRUPTS)
f77bc6a4 3692 return -EINVAL;
1c1a9ce9
SR
3693
3694 if (!irqchip_in_kernel(vcpu->kvm)) {
3695 kvm_queue_interrupt(vcpu, irq->irq, false);
3696 kvm_make_request(KVM_REQ_EVENT, vcpu);
3697 return 0;
3698 }
3699
3700 /*
3701 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3702 * fail for in-kernel 8259.
3703 */
3704 if (pic_in_kernel(vcpu->kvm))
f77bc6a4 3705 return -ENXIO;
f77bc6a4 3706
1c1a9ce9
SR
3707 if (vcpu->arch.pending_external_vector != -1)
3708 return -EEXIST;
f77bc6a4 3709
1c1a9ce9 3710 vcpu->arch.pending_external_vector = irq->irq;
934bf653 3711 kvm_make_request(KVM_REQ_EVENT, vcpu);
f77bc6a4
ZX
3712 return 0;
3713}
3714
c4abb7c9
JK
3715static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3716{
c4abb7c9 3717 kvm_inject_nmi(vcpu);
c4abb7c9
JK
3718
3719 return 0;
3720}
3721
f077825a
PB
3722static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3723{
64d60670
PB
3724 kvm_make_request(KVM_REQ_SMI, vcpu);
3725
f077825a
PB
3726 return 0;
3727}
3728
b209749f
AK
3729static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3730 struct kvm_tpr_access_ctl *tac)
3731{
3732 if (tac->flags)
3733 return -EINVAL;
3734 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3735 return 0;
3736}
3737
890ca9ae
HY
3738static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3739 u64 mcg_cap)
3740{
3741 int r;
3742 unsigned bank_num = mcg_cap & 0xff, bank;
3743
3744 r = -EINVAL;
a9e38c3e 3745 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
890ca9ae 3746 goto out;
c45dcc71 3747 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
890ca9ae
HY
3748 goto out;
3749 r = 0;
3750 vcpu->arch.mcg_cap = mcg_cap;
3751 /* Init IA32_MCG_CTL to all 1s */
3752 if (mcg_cap & MCG_CTL_P)
3753 vcpu->arch.mcg_ctl = ~(u64)0;
3754 /* Init IA32_MCi_CTL to all 1s */
3755 for (bank = 0; bank < bank_num; bank++)
3756 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
c45dcc71 3757
afaf0b2f 3758 kvm_x86_ops.setup_mce(vcpu);
890ca9ae
HY
3759out:
3760 return r;
3761}
3762
3763static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3764 struct kvm_x86_mce *mce)
3765{
3766 u64 mcg_cap = vcpu->arch.mcg_cap;
3767 unsigned bank_num = mcg_cap & 0xff;
3768 u64 *banks = vcpu->arch.mce_banks;
3769
3770 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3771 return -EINVAL;
3772 /*
3773 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3774 * reporting is disabled
3775 */
3776 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3777 vcpu->arch.mcg_ctl != ~(u64)0)
3778 return 0;
3779 banks += 4 * mce->bank;
3780 /*
3781 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3782 * reporting is disabled for the bank
3783 */
3784 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3785 return 0;
3786 if (mce->status & MCI_STATUS_UC) {
3787 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
fc78f519 3788 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
a8eeb04a 3789 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
890ca9ae
HY
3790 return 0;
3791 }
3792 if (banks[1] & MCI_STATUS_VAL)
3793 mce->status |= MCI_STATUS_OVER;
3794 banks[2] = mce->addr;
3795 banks[3] = mce->misc;
3796 vcpu->arch.mcg_status = mce->mcg_status;
3797 banks[1] = mce->status;
3798 kvm_queue_exception(vcpu, MC_VECTOR);
3799 } else if (!(banks[1] & MCI_STATUS_VAL)
3800 || !(banks[1] & MCI_STATUS_UC)) {
3801 if (banks[1] & MCI_STATUS_VAL)
3802 mce->status |= MCI_STATUS_OVER;
3803 banks[2] = mce->addr;
3804 banks[3] = mce->misc;
3805 banks[1] = mce->status;
3806 } else
3807 banks[1] |= MCI_STATUS_OVER;
3808 return 0;
3809}
3810
3cfc3092
JK
3811static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3812 struct kvm_vcpu_events *events)
3813{
7460fb4a 3814 process_nmi(vcpu);
59073aaf 3815
a06230b6
OU
3816 /*
3817 * In guest mode, payload delivery should be deferred,
3818 * so that the L1 hypervisor can intercept #PF before
3819 * CR2 is modified (or intercept #DB before DR6 is
3820 * modified under nVMX). Unless the per-VM capability,
3821 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
3822 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
3823 * opportunistically defer the exception payload, deliver it if the
3824 * capability hasn't been requested before processing a
3825 * KVM_GET_VCPU_EVENTS.
3826 */
3827 if (!vcpu->kvm->arch.exception_payload_enabled &&
3828 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
3829 kvm_deliver_exception_payload(vcpu);
3830
664f8e26 3831 /*
59073aaf
JM
3832 * The API doesn't provide the instruction length for software
3833 * exceptions, so don't report them. As long as the guest RIP
3834 * isn't advanced, we should expect to encounter the exception
3835 * again.
664f8e26 3836 */
59073aaf
JM
3837 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3838 events->exception.injected = 0;
3839 events->exception.pending = 0;
3840 } else {
3841 events->exception.injected = vcpu->arch.exception.injected;
3842 events->exception.pending = vcpu->arch.exception.pending;
3843 /*
3844 * For ABI compatibility, deliberately conflate
3845 * pending and injected exceptions when
3846 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3847 */
3848 if (!vcpu->kvm->arch.exception_payload_enabled)
3849 events->exception.injected |=
3850 vcpu->arch.exception.pending;
3851 }
3cfc3092
JK
3852 events->exception.nr = vcpu->arch.exception.nr;
3853 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3854 events->exception.error_code = vcpu->arch.exception.error_code;
59073aaf
JM
3855 events->exception_has_payload = vcpu->arch.exception.has_payload;
3856 events->exception_payload = vcpu->arch.exception.payload;
3cfc3092 3857
03b82a30 3858 events->interrupt.injected =
04140b41 3859 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3cfc3092 3860 events->interrupt.nr = vcpu->arch.interrupt.nr;
03b82a30 3861 events->interrupt.soft = 0;
afaf0b2f 3862 events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
3cfc3092
JK
3863
3864 events->nmi.injected = vcpu->arch.nmi_injected;
7460fb4a 3865 events->nmi.pending = vcpu->arch.nmi_pending != 0;
afaf0b2f 3866 events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
97e69aa6 3867 events->nmi.pad = 0;
3cfc3092 3868
66450a21 3869 events->sipi_vector = 0; /* never valid when reporting to user space */
3cfc3092 3870
f077825a
PB
3871 events->smi.smm = is_smm(vcpu);
3872 events->smi.pending = vcpu->arch.smi_pending;
3873 events->smi.smm_inside_nmi =
3874 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3875 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3876
dab4b911 3877 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
f077825a
PB
3878 | KVM_VCPUEVENT_VALID_SHADOW
3879 | KVM_VCPUEVENT_VALID_SMM);
59073aaf
JM
3880 if (vcpu->kvm->arch.exception_payload_enabled)
3881 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3882
97e69aa6 3883 memset(&events->reserved, 0, sizeof(events->reserved));
3cfc3092
JK
3884}
3885
c5833c7a 3886static void kvm_smm_changed(struct kvm_vcpu *vcpu);
6ef4e07e 3887
3cfc3092
JK
3888static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3889 struct kvm_vcpu_events *events)
3890{
dab4b911 3891 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
48005f64 3892 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
f077825a 3893 | KVM_VCPUEVENT_VALID_SHADOW
59073aaf
JM
3894 | KVM_VCPUEVENT_VALID_SMM
3895 | KVM_VCPUEVENT_VALID_PAYLOAD))
3cfc3092
JK
3896 return -EINVAL;
3897
59073aaf
JM
3898 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3899 if (!vcpu->kvm->arch.exception_payload_enabled)
3900 return -EINVAL;
3901 if (events->exception.pending)
3902 events->exception.injected = 0;
3903 else
3904 events->exception_has_payload = 0;
3905 } else {
3906 events->exception.pending = 0;
3907 events->exception_has_payload = 0;
3908 }
3909
3910 if ((events->exception.injected || events->exception.pending) &&
3911 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
78e546c8
PB
3912 return -EINVAL;
3913
28bf2888
DH
3914 /* INITs are latched while in SMM */
3915 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3916 (events->smi.smm || events->smi.pending) &&
3917 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3918 return -EINVAL;
3919
7460fb4a 3920 process_nmi(vcpu);
59073aaf
JM
3921 vcpu->arch.exception.injected = events->exception.injected;
3922 vcpu->arch.exception.pending = events->exception.pending;
3cfc3092
JK
3923 vcpu->arch.exception.nr = events->exception.nr;
3924 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3925 vcpu->arch.exception.error_code = events->exception.error_code;
59073aaf
JM
3926 vcpu->arch.exception.has_payload = events->exception_has_payload;
3927 vcpu->arch.exception.payload = events->exception_payload;
3cfc3092 3928
04140b41 3929 vcpu->arch.interrupt.injected = events->interrupt.injected;
3cfc3092
JK
3930 vcpu->arch.interrupt.nr = events->interrupt.nr;
3931 vcpu->arch.interrupt.soft = events->interrupt.soft;
48005f64 3932 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
afaf0b2f 3933 kvm_x86_ops.set_interrupt_shadow(vcpu,
48005f64 3934 events->interrupt.shadow);
3cfc3092
JK
3935
3936 vcpu->arch.nmi_injected = events->nmi.injected;
dab4b911
JK
3937 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3938 vcpu->arch.nmi_pending = events->nmi.pending;
afaf0b2f 3939 kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
3cfc3092 3940
66450a21 3941 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
bce87cce 3942 lapic_in_kernel(vcpu))
66450a21 3943 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3cfc3092 3944
f077825a 3945 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
c5833c7a
SC
3946 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3947 if (events->smi.smm)
3948 vcpu->arch.hflags |= HF_SMM_MASK;
3949 else
3950 vcpu->arch.hflags &= ~HF_SMM_MASK;
3951 kvm_smm_changed(vcpu);
3952 }
6ef4e07e 3953
f077825a 3954 vcpu->arch.smi_pending = events->smi.pending;
f4ef1910
WL
3955
3956 if (events->smi.smm) {
3957 if (events->smi.smm_inside_nmi)
3958 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
f077825a 3959 else
f4ef1910 3960 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
ff90afa7
LA
3961 }
3962
3963 if (lapic_in_kernel(vcpu)) {
3964 if (events->smi.latched_init)
3965 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3966 else
3967 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
f077825a
PB
3968 }
3969 }
3970
3842d135
AK
3971 kvm_make_request(KVM_REQ_EVENT, vcpu);
3972
3cfc3092
JK
3973 return 0;
3974}
3975
a1efbe77
JK
3976static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3977 struct kvm_debugregs *dbgregs)
3978{
73aaf249
JK
3979 unsigned long val;
3980
a1efbe77 3981 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
16f8a6f9 3982 kvm_get_dr(vcpu, 6, &val);
73aaf249 3983 dbgregs->dr6 = val;
a1efbe77
JK
3984 dbgregs->dr7 = vcpu->arch.dr7;
3985 dbgregs->flags = 0;
97e69aa6 3986 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
a1efbe77
JK
3987}
3988
3989static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3990 struct kvm_debugregs *dbgregs)
3991{
3992 if (dbgregs->flags)
3993 return -EINVAL;
3994
d14bdb55
PB
3995 if (dbgregs->dr6 & ~0xffffffffull)
3996 return -EINVAL;
3997 if (dbgregs->dr7 & ~0xffffffffull)
3998 return -EINVAL;
3999
a1efbe77 4000 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
ae561ede 4001 kvm_update_dr0123(vcpu);
a1efbe77
JK
4002 vcpu->arch.dr6 = dbgregs->dr6;
4003 vcpu->arch.dr7 = dbgregs->dr7;
9926c9fd 4004 kvm_update_dr7(vcpu);
a1efbe77 4005
a1efbe77
JK
4006 return 0;
4007}
4008
df1daba7
PB
4009#define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4010
4011static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4012{
b666a4b6 4013 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
400e4b20 4014 u64 xstate_bv = xsave->header.xfeatures;
df1daba7
PB
4015 u64 valid;
4016
4017 /*
4018 * Copy legacy XSAVE area, to avoid complications with CPUID
4019 * leaves 0 and 1 in the loop below.
4020 */
4021 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4022
4023 /* Set XSTATE_BV */
00c87e9a 4024 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
df1daba7
PB
4025 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4026
4027 /*
4028 * Copy each region from the possibly compacted offset to the
4029 * non-compacted offset.
4030 */
d91cab78 4031 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
df1daba7 4032 while (valid) {
abd16d68
SAS
4033 u64 xfeature_mask = valid & -valid;
4034 int xfeature_nr = fls64(xfeature_mask) - 1;
4035 void *src = get_xsave_addr(xsave, xfeature_nr);
df1daba7
PB
4036
4037 if (src) {
4038 u32 size, offset, ecx, edx;
abd16d68 4039 cpuid_count(XSTATE_CPUID, xfeature_nr,
df1daba7 4040 &size, &offset, &ecx, &edx);
abd16d68 4041 if (xfeature_nr == XFEATURE_PKRU)
38cfd5e3
PB
4042 memcpy(dest + offset, &vcpu->arch.pkru,
4043 sizeof(vcpu->arch.pkru));
4044 else
4045 memcpy(dest + offset, src, size);
4046
df1daba7
PB
4047 }
4048
abd16d68 4049 valid -= xfeature_mask;
df1daba7
PB
4050 }
4051}
4052
4053static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4054{
b666a4b6 4055 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
df1daba7
PB
4056 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4057 u64 valid;
4058
4059 /*
4060 * Copy legacy XSAVE area, to avoid complications with CPUID
4061 * leaves 0 and 1 in the loop below.
4062 */
4063 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4064
4065 /* Set XSTATE_BV and possibly XCOMP_BV. */
400e4b20 4066 xsave->header.xfeatures = xstate_bv;
782511b0 4067 if (boot_cpu_has(X86_FEATURE_XSAVES))
3a54450b 4068 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
df1daba7
PB
4069
4070 /*
4071 * Copy each region from the non-compacted offset to the
4072 * possibly compacted offset.
4073 */
d91cab78 4074 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
df1daba7 4075 while (valid) {
abd16d68
SAS
4076 u64 xfeature_mask = valid & -valid;
4077 int xfeature_nr = fls64(xfeature_mask) - 1;
4078 void *dest = get_xsave_addr(xsave, xfeature_nr);
df1daba7
PB
4079
4080 if (dest) {
4081 u32 size, offset, ecx, edx;
abd16d68 4082 cpuid_count(XSTATE_CPUID, xfeature_nr,
df1daba7 4083 &size, &offset, &ecx, &edx);
abd16d68 4084 if (xfeature_nr == XFEATURE_PKRU)
38cfd5e3
PB
4085 memcpy(&vcpu->arch.pkru, src + offset,
4086 sizeof(vcpu->arch.pkru));
4087 else
4088 memcpy(dest, src + offset, size);
ee4100da 4089 }
df1daba7 4090
abd16d68 4091 valid -= xfeature_mask;
df1daba7
PB
4092 }
4093}
4094
2d5b5a66
SY
4095static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4096 struct kvm_xsave *guest_xsave)
4097{
d366bf7e 4098 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
df1daba7
PB
4099 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4100 fill_xsave((u8 *) guest_xsave->region, vcpu);
4344ee98 4101 } else {
2d5b5a66 4102 memcpy(guest_xsave->region,
b666a4b6 4103 &vcpu->arch.guest_fpu->state.fxsave,
c47ada30 4104 sizeof(struct fxregs_state));
2d5b5a66 4105 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
d91cab78 4106 XFEATURE_MASK_FPSSE;
2d5b5a66
SY
4107 }
4108}
4109
a575813b
WL
4110#define XSAVE_MXCSR_OFFSET 24
4111
2d5b5a66
SY
4112static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4113 struct kvm_xsave *guest_xsave)
4114{
4115 u64 xstate_bv =
4116 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
a575813b 4117 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
2d5b5a66 4118
d366bf7e 4119 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
d7876f1b
PB
4120 /*
4121 * Here we allow setting states that are not present in
4122 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4123 * with old userspace.
4124 */
cfc48181 4125 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
d7876f1b 4126 return -EINVAL;
df1daba7 4127 load_xsave(vcpu, (u8 *)guest_xsave->region);
d7876f1b 4128 } else {
a575813b
WL
4129 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4130 mxcsr & ~mxcsr_feature_mask)
2d5b5a66 4131 return -EINVAL;
b666a4b6 4132 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
c47ada30 4133 guest_xsave->region, sizeof(struct fxregs_state));
2d5b5a66
SY
4134 }
4135 return 0;
4136}
4137
4138static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4139 struct kvm_xcrs *guest_xcrs)
4140{
d366bf7e 4141 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
2d5b5a66
SY
4142 guest_xcrs->nr_xcrs = 0;
4143 return;
4144 }
4145
4146 guest_xcrs->nr_xcrs = 1;
4147 guest_xcrs->flags = 0;
4148 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4149 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4150}
4151
4152static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4153 struct kvm_xcrs *guest_xcrs)
4154{
4155 int i, r = 0;
4156
d366bf7e 4157 if (!boot_cpu_has(X86_FEATURE_XSAVE))
2d5b5a66
SY
4158 return -EINVAL;
4159
4160 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4161 return -EINVAL;
4162
4163 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4164 /* Only support XCR0 currently */
c67a04cb 4165 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
2d5b5a66 4166 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
c67a04cb 4167 guest_xcrs->xcrs[i].value);
2d5b5a66
SY
4168 break;
4169 }
4170 if (r)
4171 r = -EINVAL;
4172 return r;
4173}
4174
1c0b28c2
EM
4175/*
4176 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4177 * stopped by the hypervisor. This function will be called from the host only.
4178 * EINVAL is returned when the host attempts to set the flag for a guest that
4179 * does not support pv clocks.
4180 */
4181static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4182{
0b79459b 4183 if (!vcpu->arch.pv_time_enabled)
1c0b28c2 4184 return -EINVAL;
51d59c6b 4185 vcpu->arch.pvclock_set_guest_stopped_request = true;
1c0b28c2
EM
4186 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4187 return 0;
4188}
4189
5c919412
AS
4190static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4191 struct kvm_enable_cap *cap)
4192{
57b119da
VK
4193 int r;
4194 uint16_t vmcs_version;
4195 void __user *user_ptr;
4196
5c919412
AS
4197 if (cap->flags)
4198 return -EINVAL;
4199
4200 switch (cap->cap) {
efc479e6
RK
4201 case KVM_CAP_HYPERV_SYNIC2:
4202 if (cap->args[0])
4203 return -EINVAL;
b2869f28
GS
4204 /* fall through */
4205
5c919412 4206 case KVM_CAP_HYPERV_SYNIC:
546d87e5
WL
4207 if (!irqchip_in_kernel(vcpu->kvm))
4208 return -EINVAL;
efc479e6
RK
4209 return kvm_hv_activate_synic(vcpu, cap->cap ==
4210 KVM_CAP_HYPERV_SYNIC2);
57b119da 4211 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
afaf0b2f 4212 if (!kvm_x86_ops.nested_enable_evmcs)
5158917c 4213 return -ENOTTY;
afaf0b2f 4214 r = kvm_x86_ops.nested_enable_evmcs(vcpu, &vmcs_version);
57b119da
VK
4215 if (!r) {
4216 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4217 if (copy_to_user(user_ptr, &vmcs_version,
4218 sizeof(vmcs_version)))
4219 r = -EFAULT;
4220 }
4221 return r;
344c6c80 4222 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
afaf0b2f 4223 if (!kvm_x86_ops.enable_direct_tlbflush)
344c6c80
TL
4224 return -ENOTTY;
4225
afaf0b2f 4226 return kvm_x86_ops.enable_direct_tlbflush(vcpu);
57b119da 4227
5c919412
AS
4228 default:
4229 return -EINVAL;
4230 }
4231}
4232
313a3dc7
CO
4233long kvm_arch_vcpu_ioctl(struct file *filp,
4234 unsigned int ioctl, unsigned long arg)
4235{
4236 struct kvm_vcpu *vcpu = filp->private_data;
4237 void __user *argp = (void __user *)arg;
4238 int r;
d1ac91d8
AK
4239 union {
4240 struct kvm_lapic_state *lapic;
4241 struct kvm_xsave *xsave;
4242 struct kvm_xcrs *xcrs;
4243 void *buffer;
4244 } u;
4245
9b062471
CD
4246 vcpu_load(vcpu);
4247
d1ac91d8 4248 u.buffer = NULL;
313a3dc7
CO
4249 switch (ioctl) {
4250 case KVM_GET_LAPIC: {
2204ae3c 4251 r = -EINVAL;
bce87cce 4252 if (!lapic_in_kernel(vcpu))
2204ae3c 4253 goto out;
254272ce
BG
4254 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4255 GFP_KERNEL_ACCOUNT);
313a3dc7 4256
b772ff36 4257 r = -ENOMEM;
d1ac91d8 4258 if (!u.lapic)
b772ff36 4259 goto out;
d1ac91d8 4260 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
313a3dc7
CO
4261 if (r)
4262 goto out;
4263 r = -EFAULT;
d1ac91d8 4264 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
313a3dc7
CO
4265 goto out;
4266 r = 0;
4267 break;
4268 }
4269 case KVM_SET_LAPIC: {
2204ae3c 4270 r = -EINVAL;
bce87cce 4271 if (!lapic_in_kernel(vcpu))
2204ae3c 4272 goto out;
ff5c2c03 4273 u.lapic = memdup_user(argp, sizeof(*u.lapic));
9b062471
CD
4274 if (IS_ERR(u.lapic)) {
4275 r = PTR_ERR(u.lapic);
4276 goto out_nofree;
4277 }
ff5c2c03 4278
d1ac91d8 4279 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
313a3dc7
CO
4280 break;
4281 }
f77bc6a4
ZX
4282 case KVM_INTERRUPT: {
4283 struct kvm_interrupt irq;
4284
4285 r = -EFAULT;
0e96f31e 4286 if (copy_from_user(&irq, argp, sizeof(irq)))
f77bc6a4
ZX
4287 goto out;
4288 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
f77bc6a4
ZX
4289 break;
4290 }
c4abb7c9
JK
4291 case KVM_NMI: {
4292 r = kvm_vcpu_ioctl_nmi(vcpu);
c4abb7c9
JK
4293 break;
4294 }
f077825a
PB
4295 case KVM_SMI: {
4296 r = kvm_vcpu_ioctl_smi(vcpu);
4297 break;
4298 }
313a3dc7
CO
4299 case KVM_SET_CPUID: {
4300 struct kvm_cpuid __user *cpuid_arg = argp;
4301 struct kvm_cpuid cpuid;
4302
4303 r = -EFAULT;
0e96f31e 4304 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
313a3dc7
CO
4305 goto out;
4306 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
313a3dc7
CO
4307 break;
4308 }
07716717
DK
4309 case KVM_SET_CPUID2: {
4310 struct kvm_cpuid2 __user *cpuid_arg = argp;
4311 struct kvm_cpuid2 cpuid;
4312
4313 r = -EFAULT;
0e96f31e 4314 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
07716717
DK
4315 goto out;
4316 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
19355475 4317 cpuid_arg->entries);
07716717
DK
4318 break;
4319 }
4320 case KVM_GET_CPUID2: {
4321 struct kvm_cpuid2 __user *cpuid_arg = argp;
4322 struct kvm_cpuid2 cpuid;
4323
4324 r = -EFAULT;
0e96f31e 4325 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
07716717
DK
4326 goto out;
4327 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
19355475 4328 cpuid_arg->entries);
07716717
DK
4329 if (r)
4330 goto out;
4331 r = -EFAULT;
0e96f31e 4332 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
07716717
DK
4333 goto out;
4334 r = 0;
4335 break;
4336 }
801e459a
TL
4337 case KVM_GET_MSRS: {
4338 int idx = srcu_read_lock(&vcpu->kvm->srcu);
609e36d3 4339 r = msr_io(vcpu, argp, do_get_msr, 1);
801e459a 4340 srcu_read_unlock(&vcpu->kvm->srcu, idx);
313a3dc7 4341 break;
801e459a
TL
4342 }
4343 case KVM_SET_MSRS: {
4344 int idx = srcu_read_lock(&vcpu->kvm->srcu);
313a3dc7 4345 r = msr_io(vcpu, argp, do_set_msr, 0);
801e459a 4346 srcu_read_unlock(&vcpu->kvm->srcu, idx);
313a3dc7 4347 break;
801e459a 4348 }
b209749f
AK
4349 case KVM_TPR_ACCESS_REPORTING: {
4350 struct kvm_tpr_access_ctl tac;
4351
4352 r = -EFAULT;
0e96f31e 4353 if (copy_from_user(&tac, argp, sizeof(tac)))
b209749f
AK
4354 goto out;
4355 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4356 if (r)
4357 goto out;
4358 r = -EFAULT;
0e96f31e 4359 if (copy_to_user(argp, &tac, sizeof(tac)))
b209749f
AK
4360 goto out;
4361 r = 0;
4362 break;
4363 };
b93463aa
AK
4364 case KVM_SET_VAPIC_ADDR: {
4365 struct kvm_vapic_addr va;
7301d6ab 4366 int idx;
b93463aa
AK
4367
4368 r = -EINVAL;
35754c98 4369 if (!lapic_in_kernel(vcpu))
b93463aa
AK
4370 goto out;
4371 r = -EFAULT;
0e96f31e 4372 if (copy_from_user(&va, argp, sizeof(va)))
b93463aa 4373 goto out;
7301d6ab 4374 idx = srcu_read_lock(&vcpu->kvm->srcu);
fda4e2e8 4375 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
7301d6ab 4376 srcu_read_unlock(&vcpu->kvm->srcu, idx);
b93463aa
AK
4377 break;
4378 }
890ca9ae
HY
4379 case KVM_X86_SETUP_MCE: {
4380 u64 mcg_cap;
4381
4382 r = -EFAULT;
0e96f31e 4383 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
890ca9ae
HY
4384 goto out;
4385 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4386 break;
4387 }
4388 case KVM_X86_SET_MCE: {
4389 struct kvm_x86_mce mce;
4390
4391 r = -EFAULT;
0e96f31e 4392 if (copy_from_user(&mce, argp, sizeof(mce)))
890ca9ae
HY
4393 goto out;
4394 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4395 break;
4396 }
3cfc3092
JK
4397 case KVM_GET_VCPU_EVENTS: {
4398 struct kvm_vcpu_events events;
4399
4400 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4401
4402 r = -EFAULT;
4403 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4404 break;
4405 r = 0;
4406 break;
4407 }
4408 case KVM_SET_VCPU_EVENTS: {
4409 struct kvm_vcpu_events events;
4410
4411 r = -EFAULT;
4412 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4413 break;
4414
4415 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4416 break;
4417 }
a1efbe77
JK
4418 case KVM_GET_DEBUGREGS: {
4419 struct kvm_debugregs dbgregs;
4420
4421 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4422
4423 r = -EFAULT;
4424 if (copy_to_user(argp, &dbgregs,
4425 sizeof(struct kvm_debugregs)))
4426 break;
4427 r = 0;
4428 break;
4429 }
4430 case KVM_SET_DEBUGREGS: {
4431 struct kvm_debugregs dbgregs;
4432
4433 r = -EFAULT;
4434 if (copy_from_user(&dbgregs, argp,
4435 sizeof(struct kvm_debugregs)))
4436 break;
4437
4438 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4439 break;
4440 }
2d5b5a66 4441 case KVM_GET_XSAVE: {
254272ce 4442 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
2d5b5a66 4443 r = -ENOMEM;
d1ac91d8 4444 if (!u.xsave)
2d5b5a66
SY
4445 break;
4446
d1ac91d8 4447 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2d5b5a66
SY
4448
4449 r = -EFAULT;
d1ac91d8 4450 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2d5b5a66
SY
4451 break;
4452 r = 0;
4453 break;
4454 }
4455 case KVM_SET_XSAVE: {
ff5c2c03 4456 u.xsave = memdup_user(argp, sizeof(*u.xsave));
9b062471
CD
4457 if (IS_ERR(u.xsave)) {
4458 r = PTR_ERR(u.xsave);
4459 goto out_nofree;
4460 }
2d5b5a66 4461
d1ac91d8 4462 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2d5b5a66
SY
4463 break;
4464 }
4465 case KVM_GET_XCRS: {
254272ce 4466 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
2d5b5a66 4467 r = -ENOMEM;
d1ac91d8 4468 if (!u.xcrs)
2d5b5a66
SY
4469 break;
4470
d1ac91d8 4471 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2d5b5a66
SY
4472
4473 r = -EFAULT;
d1ac91d8 4474 if (copy_to_user(argp, u.xcrs,
2d5b5a66
SY
4475 sizeof(struct kvm_xcrs)))
4476 break;
4477 r = 0;
4478 break;
4479 }
4480 case KVM_SET_XCRS: {
ff5c2c03 4481 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
9b062471
CD
4482 if (IS_ERR(u.xcrs)) {
4483 r = PTR_ERR(u.xcrs);
4484 goto out_nofree;
4485 }
2d5b5a66 4486
d1ac91d8 4487 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2d5b5a66
SY
4488 break;
4489 }
92a1f12d
JR
4490 case KVM_SET_TSC_KHZ: {
4491 u32 user_tsc_khz;
4492
4493 r = -EINVAL;
92a1f12d
JR
4494 user_tsc_khz = (u32)arg;
4495
4496 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4497 goto out;
4498
cc578287
ZA
4499 if (user_tsc_khz == 0)
4500 user_tsc_khz = tsc_khz;
4501
381d585c
HZ
4502 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4503 r = 0;
92a1f12d 4504
92a1f12d
JR
4505 goto out;
4506 }
4507 case KVM_GET_TSC_KHZ: {
cc578287 4508 r = vcpu->arch.virtual_tsc_khz;
92a1f12d
JR
4509 goto out;
4510 }
1c0b28c2
EM
4511 case KVM_KVMCLOCK_CTRL: {
4512 r = kvm_set_guest_paused(vcpu);
4513 goto out;
4514 }
5c919412
AS
4515 case KVM_ENABLE_CAP: {
4516 struct kvm_enable_cap cap;
4517
4518 r = -EFAULT;
4519 if (copy_from_user(&cap, argp, sizeof(cap)))
4520 goto out;
4521 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4522 break;
4523 }
8fcc4b59
JM
4524 case KVM_GET_NESTED_STATE: {
4525 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4526 u32 user_data_size;
4527
4528 r = -EINVAL;
afaf0b2f 4529 if (!kvm_x86_ops.get_nested_state)
8fcc4b59
JM
4530 break;
4531
4532 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
26b471c7 4533 r = -EFAULT;
8fcc4b59 4534 if (get_user(user_data_size, &user_kvm_nested_state->size))
26b471c7 4535 break;
8fcc4b59 4536
afaf0b2f 4537 r = kvm_x86_ops.get_nested_state(vcpu, user_kvm_nested_state,
8fcc4b59
JM
4538 user_data_size);
4539 if (r < 0)
26b471c7 4540 break;
8fcc4b59
JM
4541
4542 if (r > user_data_size) {
4543 if (put_user(r, &user_kvm_nested_state->size))
26b471c7
LA
4544 r = -EFAULT;
4545 else
4546 r = -E2BIG;
4547 break;
8fcc4b59 4548 }
26b471c7 4549
8fcc4b59
JM
4550 r = 0;
4551 break;
4552 }
4553 case KVM_SET_NESTED_STATE: {
4554 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4555 struct kvm_nested_state kvm_state;
ad5996d9 4556 int idx;
8fcc4b59
JM
4557
4558 r = -EINVAL;
afaf0b2f 4559 if (!kvm_x86_ops.set_nested_state)
8fcc4b59
JM
4560 break;
4561
26b471c7 4562 r = -EFAULT;
8fcc4b59 4563 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
26b471c7 4564 break;
8fcc4b59 4565
26b471c7 4566 r = -EINVAL;
8fcc4b59 4567 if (kvm_state.size < sizeof(kvm_state))
26b471c7 4568 break;
8fcc4b59
JM
4569
4570 if (kvm_state.flags &
8cab6507
VK
4571 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4572 | KVM_STATE_NESTED_EVMCS))
26b471c7 4573 break;
8fcc4b59
JM
4574
4575 /* nested_run_pending implies guest_mode. */
8cab6507
VK
4576 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4577 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
26b471c7 4578 break;
8fcc4b59 4579
ad5996d9 4580 idx = srcu_read_lock(&vcpu->kvm->srcu);
afaf0b2f 4581 r = kvm_x86_ops.set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
ad5996d9 4582 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8fcc4b59
JM
4583 break;
4584 }
2bc39970
VK
4585 case KVM_GET_SUPPORTED_HV_CPUID: {
4586 struct kvm_cpuid2 __user *cpuid_arg = argp;
4587 struct kvm_cpuid2 cpuid;
4588
4589 r = -EFAULT;
4590 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4591 goto out;
4592
4593 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4594 cpuid_arg->entries);
4595 if (r)
4596 goto out;
4597
4598 r = -EFAULT;
4599 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4600 goto out;
4601 r = 0;
4602 break;
4603 }
313a3dc7
CO
4604 default:
4605 r = -EINVAL;
4606 }
4607out:
d1ac91d8 4608 kfree(u.buffer);
9b062471
CD
4609out_nofree:
4610 vcpu_put(vcpu);
313a3dc7
CO
4611 return r;
4612}
4613
1499fa80 4614vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5b1c1493
CO
4615{
4616 return VM_FAULT_SIGBUS;
4617}
4618
1fe779f8
CO
4619static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4620{
4621 int ret;
4622
4623 if (addr > (unsigned int)(-3 * PAGE_SIZE))
951179ce 4624 return -EINVAL;
afaf0b2f 4625 ret = kvm_x86_ops.set_tss_addr(kvm, addr);
1fe779f8
CO
4626 return ret;
4627}
4628
b927a3ce
SY
4629static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4630 u64 ident_addr)
4631{
afaf0b2f 4632 return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
b927a3ce
SY
4633}
4634
1fe779f8 4635static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
bc8a3d89 4636 unsigned long kvm_nr_mmu_pages)
1fe779f8
CO
4637{
4638 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4639 return -EINVAL;
4640
79fac95e 4641 mutex_lock(&kvm->slots_lock);
1fe779f8
CO
4642
4643 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
f05e70ac 4644 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1fe779f8 4645
79fac95e 4646 mutex_unlock(&kvm->slots_lock);
1fe779f8
CO
4647 return 0;
4648}
4649
bc8a3d89 4650static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1fe779f8 4651{
39de71ec 4652 return kvm->arch.n_max_mmu_pages;
1fe779f8
CO
4653}
4654
1fe779f8
CO
4655static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4656{
90bca052 4657 struct kvm_pic *pic = kvm->arch.vpic;
1fe779f8
CO
4658 int r;
4659
4660 r = 0;
4661 switch (chip->chip_id) {
4662 case KVM_IRQCHIP_PIC_MASTER:
90bca052 4663 memcpy(&chip->chip.pic, &pic->pics[0],
1fe779f8
CO
4664 sizeof(struct kvm_pic_state));
4665 break;
4666 case KVM_IRQCHIP_PIC_SLAVE:
90bca052 4667 memcpy(&chip->chip.pic, &pic->pics[1],
1fe779f8
CO
4668 sizeof(struct kvm_pic_state));
4669 break;
4670 case KVM_IRQCHIP_IOAPIC:
33392b49 4671 kvm_get_ioapic(kvm, &chip->chip.ioapic);
1fe779f8
CO
4672 break;
4673 default:
4674 r = -EINVAL;
4675 break;
4676 }
4677 return r;
4678}
4679
4680static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4681{
90bca052 4682 struct kvm_pic *pic = kvm->arch.vpic;
1fe779f8
CO
4683 int r;
4684
4685 r = 0;
4686 switch (chip->chip_id) {
4687 case KVM_IRQCHIP_PIC_MASTER:
90bca052
DH
4688 spin_lock(&pic->lock);
4689 memcpy(&pic->pics[0], &chip->chip.pic,
1fe779f8 4690 sizeof(struct kvm_pic_state));
90bca052 4691 spin_unlock(&pic->lock);
1fe779f8
CO
4692 break;
4693 case KVM_IRQCHIP_PIC_SLAVE:
90bca052
DH
4694 spin_lock(&pic->lock);
4695 memcpy(&pic->pics[1], &chip->chip.pic,
1fe779f8 4696 sizeof(struct kvm_pic_state));
90bca052 4697 spin_unlock(&pic->lock);
1fe779f8
CO
4698 break;
4699 case KVM_IRQCHIP_IOAPIC:
33392b49 4700 kvm_set_ioapic(kvm, &chip->chip.ioapic);
1fe779f8
CO
4701 break;
4702 default:
4703 r = -EINVAL;
4704 break;
4705 }
90bca052 4706 kvm_pic_update_irq(pic);
1fe779f8
CO
4707 return r;
4708}
4709
e0f63cb9
SY
4710static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4711{
34f3941c
RK
4712 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4713
4714 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4715
4716 mutex_lock(&kps->lock);
4717 memcpy(ps, &kps->channels, sizeof(*ps));
4718 mutex_unlock(&kps->lock);
2da29bcc 4719 return 0;
e0f63cb9
SY
4720}
4721
4722static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4723{
0185604c 4724 int i;
09edea72
RK
4725 struct kvm_pit *pit = kvm->arch.vpit;
4726
4727 mutex_lock(&pit->pit_state.lock);
34f3941c 4728 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
0185604c 4729 for (i = 0; i < 3; i++)
09edea72
RK
4730 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4731 mutex_unlock(&pit->pit_state.lock);
2da29bcc 4732 return 0;
e9f42757
BK
4733}
4734
4735static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4736{
e9f42757
BK
4737 mutex_lock(&kvm->arch.vpit->pit_state.lock);
4738 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4739 sizeof(ps->channels));
4740 ps->flags = kvm->arch.vpit->pit_state.flags;
4741 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
97e69aa6 4742 memset(&ps->reserved, 0, sizeof(ps->reserved));
2da29bcc 4743 return 0;
e9f42757
BK
4744}
4745
4746static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4747{
2da29bcc 4748 int start = 0;
0185604c 4749 int i;
e9f42757 4750 u32 prev_legacy, cur_legacy;
09edea72
RK
4751 struct kvm_pit *pit = kvm->arch.vpit;
4752
4753 mutex_lock(&pit->pit_state.lock);
4754 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
e9f42757
BK
4755 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4756 if (!prev_legacy && cur_legacy)
4757 start = 1;
09edea72
RK
4758 memcpy(&pit->pit_state.channels, &ps->channels,
4759 sizeof(pit->pit_state.channels));
4760 pit->pit_state.flags = ps->flags;
0185604c 4761 for (i = 0; i < 3; i++)
09edea72 4762 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
e5e57e7a 4763 start && i == 0);
09edea72 4764 mutex_unlock(&pit->pit_state.lock);
2da29bcc 4765 return 0;
e0f63cb9
SY
4766}
4767
52d939a0
MT
4768static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4769 struct kvm_reinject_control *control)
4770{
71474e2f
RK
4771 struct kvm_pit *pit = kvm->arch.vpit;
4772
71474e2f
RK
4773 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4774 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4775 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4776 */
4777 mutex_lock(&pit->pit_state.lock);
4778 kvm_pit_set_reinject(pit, control->pit_reinject);
4779 mutex_unlock(&pit->pit_state.lock);
b39c90b6 4780
52d939a0
MT
4781 return 0;
4782}
4783
0dff0846 4784void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5bb064dc 4785{
88178fd4
KH
4786 /*
4787 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4788 */
afaf0b2f
SC
4789 if (kvm_x86_ops.flush_log_dirty)
4790 kvm_x86_ops.flush_log_dirty(kvm);
5bb064dc
ZX
4791}
4792
aa2fbe6d
YZ
4793int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4794 bool line_status)
23d43cf9
CD
4795{
4796 if (!irqchip_in_kernel(kvm))
4797 return -ENXIO;
4798
4799 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
aa2fbe6d
YZ
4800 irq_event->irq, irq_event->level,
4801 line_status);
23d43cf9
CD
4802 return 0;
4803}
4804
e5d83c74
PB
4805int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4806 struct kvm_enable_cap *cap)
90de4a18
NA
4807{
4808 int r;
4809
4810 if (cap->flags)
4811 return -EINVAL;
4812
4813 switch (cap->cap) {
4814 case KVM_CAP_DISABLE_QUIRKS:
4815 kvm->arch.disabled_quirks = cap->args[0];
4816 r = 0;
4817 break;
49df6397
SR
4818 case KVM_CAP_SPLIT_IRQCHIP: {
4819 mutex_lock(&kvm->lock);
b053b2ae
SR
4820 r = -EINVAL;
4821 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4822 goto split_irqchip_unlock;
49df6397
SR
4823 r = -EEXIST;
4824 if (irqchip_in_kernel(kvm))
4825 goto split_irqchip_unlock;
557abc40 4826 if (kvm->created_vcpus)
49df6397
SR
4827 goto split_irqchip_unlock;
4828 r = kvm_setup_empty_irq_routing(kvm);
5c0aea0e 4829 if (r)
49df6397
SR
4830 goto split_irqchip_unlock;
4831 /* Pairs with irqchip_in_kernel. */
4832 smp_wmb();
49776faf 4833 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
b053b2ae 4834 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
49df6397
SR
4835 r = 0;
4836split_irqchip_unlock:
4837 mutex_unlock(&kvm->lock);
4838 break;
4839 }
37131313
RK
4840 case KVM_CAP_X2APIC_API:
4841 r = -EINVAL;
4842 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4843 break;
4844
4845 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4846 kvm->arch.x2apic_format = true;
c519265f
RK
4847 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4848 kvm->arch.x2apic_broadcast_quirk_disabled = true;
37131313
RK
4849
4850 r = 0;
4851 break;
4d5422ce
WL
4852 case KVM_CAP_X86_DISABLE_EXITS:
4853 r = -EINVAL;
4854 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4855 break;
4856
4857 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4858 kvm_can_mwait_in_guest())
4859 kvm->arch.mwait_in_guest = true;
766d3571 4860 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
caa057a2 4861 kvm->arch.hlt_in_guest = true;
b31c114b
WL
4862 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4863 kvm->arch.pause_in_guest = true;
b5170063
WL
4864 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4865 kvm->arch.cstate_in_guest = true;
4d5422ce
WL
4866 r = 0;
4867 break;
6fbbde9a
DS
4868 case KVM_CAP_MSR_PLATFORM_INFO:
4869 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4870 r = 0;
c4f55198
JM
4871 break;
4872 case KVM_CAP_EXCEPTION_PAYLOAD:
4873 kvm->arch.exception_payload_enabled = cap->args[0];
4874 r = 0;
6fbbde9a 4875 break;
90de4a18
NA
4876 default:
4877 r = -EINVAL;
4878 break;
4879 }
4880 return r;
4881}
4882
1fe779f8
CO
4883long kvm_arch_vm_ioctl(struct file *filp,
4884 unsigned int ioctl, unsigned long arg)
4885{
4886 struct kvm *kvm = filp->private_data;
4887 void __user *argp = (void __user *)arg;
367e1319 4888 int r = -ENOTTY;
f0d66275
DH
4889 /*
4890 * This union makes it completely explicit to gcc-3.x
4891 * that these two variables' stack usage should be
4892 * combined, not added together.
4893 */
4894 union {
4895 struct kvm_pit_state ps;
e9f42757 4896 struct kvm_pit_state2 ps2;
c5ff41ce 4897 struct kvm_pit_config pit_config;
f0d66275 4898 } u;
1fe779f8
CO
4899
4900 switch (ioctl) {
4901 case KVM_SET_TSS_ADDR:
4902 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1fe779f8 4903 break;
b927a3ce
SY
4904 case KVM_SET_IDENTITY_MAP_ADDR: {
4905 u64 ident_addr;
4906
1af1ac91
DH
4907 mutex_lock(&kvm->lock);
4908 r = -EINVAL;
4909 if (kvm->created_vcpus)
4910 goto set_identity_unlock;
b927a3ce 4911 r = -EFAULT;
0e96f31e 4912 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
1af1ac91 4913 goto set_identity_unlock;
b927a3ce 4914 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
1af1ac91
DH
4915set_identity_unlock:
4916 mutex_unlock(&kvm->lock);
b927a3ce
SY
4917 break;
4918 }
1fe779f8
CO
4919 case KVM_SET_NR_MMU_PAGES:
4920 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1fe779f8
CO
4921 break;
4922 case KVM_GET_NR_MMU_PAGES:
4923 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4924 break;
3ddea128 4925 case KVM_CREATE_IRQCHIP: {
3ddea128 4926 mutex_lock(&kvm->lock);
09941366 4927
3ddea128 4928 r = -EEXIST;
35e6eaa3 4929 if (irqchip_in_kernel(kvm))
3ddea128 4930 goto create_irqchip_unlock;
09941366 4931
3e515705 4932 r = -EINVAL;
557abc40 4933 if (kvm->created_vcpus)
3e515705 4934 goto create_irqchip_unlock;
09941366
RK
4935
4936 r = kvm_pic_init(kvm);
4937 if (r)
3ddea128 4938 goto create_irqchip_unlock;
09941366
RK
4939
4940 r = kvm_ioapic_init(kvm);
4941 if (r) {
09941366 4942 kvm_pic_destroy(kvm);
3ddea128 4943 goto create_irqchip_unlock;
09941366
RK
4944 }
4945
399ec807
AK
4946 r = kvm_setup_default_irq_routing(kvm);
4947 if (r) {
72bb2fcd 4948 kvm_ioapic_destroy(kvm);
09941366 4949 kvm_pic_destroy(kvm);
71ba994c 4950 goto create_irqchip_unlock;
399ec807 4951 }
49776faf 4952 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
71ba994c 4953 smp_wmb();
49776faf 4954 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
3ddea128
MT
4955 create_irqchip_unlock:
4956 mutex_unlock(&kvm->lock);
1fe779f8 4957 break;
3ddea128 4958 }
7837699f 4959 case KVM_CREATE_PIT:
c5ff41ce
JK
4960 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4961 goto create_pit;
4962 case KVM_CREATE_PIT2:
4963 r = -EFAULT;
4964 if (copy_from_user(&u.pit_config, argp,
4965 sizeof(struct kvm_pit_config)))
4966 goto out;
4967 create_pit:
250715a6 4968 mutex_lock(&kvm->lock);
269e05e4
AK
4969 r = -EEXIST;
4970 if (kvm->arch.vpit)
4971 goto create_pit_unlock;
7837699f 4972 r = -ENOMEM;
c5ff41ce 4973 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7837699f
SY
4974 if (kvm->arch.vpit)
4975 r = 0;
269e05e4 4976 create_pit_unlock:
250715a6 4977 mutex_unlock(&kvm->lock);
7837699f 4978 break;
1fe779f8
CO
4979 case KVM_GET_IRQCHIP: {
4980 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
ff5c2c03 4981 struct kvm_irqchip *chip;
1fe779f8 4982
ff5c2c03
SL
4983 chip = memdup_user(argp, sizeof(*chip));
4984 if (IS_ERR(chip)) {
4985 r = PTR_ERR(chip);
1fe779f8 4986 goto out;
ff5c2c03
SL
4987 }
4988
1fe779f8 4989 r = -ENXIO;
826da321 4990 if (!irqchip_kernel(kvm))
f0d66275
DH
4991 goto get_irqchip_out;
4992 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1fe779f8 4993 if (r)
f0d66275 4994 goto get_irqchip_out;
1fe779f8 4995 r = -EFAULT;
0e96f31e 4996 if (copy_to_user(argp, chip, sizeof(*chip)))
f0d66275 4997 goto get_irqchip_out;
1fe779f8 4998 r = 0;
f0d66275
DH
4999 get_irqchip_out:
5000 kfree(chip);
1fe779f8
CO
5001 break;
5002 }
5003 case KVM_SET_IRQCHIP: {
5004 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
ff5c2c03 5005 struct kvm_irqchip *chip;
1fe779f8 5006
ff5c2c03
SL
5007 chip = memdup_user(argp, sizeof(*chip));
5008 if (IS_ERR(chip)) {
5009 r = PTR_ERR(chip);
1fe779f8 5010 goto out;
ff5c2c03
SL
5011 }
5012
1fe779f8 5013 r = -ENXIO;
826da321 5014 if (!irqchip_kernel(kvm))
f0d66275
DH
5015 goto set_irqchip_out;
5016 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
f0d66275
DH
5017 set_irqchip_out:
5018 kfree(chip);
1fe779f8
CO
5019 break;
5020 }
e0f63cb9 5021 case KVM_GET_PIT: {
e0f63cb9 5022 r = -EFAULT;
f0d66275 5023 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
e0f63cb9
SY
5024 goto out;
5025 r = -ENXIO;
5026 if (!kvm->arch.vpit)
5027 goto out;
f0d66275 5028 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
e0f63cb9
SY
5029 if (r)
5030 goto out;
5031 r = -EFAULT;
f0d66275 5032 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
e0f63cb9
SY
5033 goto out;
5034 r = 0;
5035 break;
5036 }
5037 case KVM_SET_PIT: {
e0f63cb9 5038 r = -EFAULT;
0e96f31e 5039 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
e0f63cb9 5040 goto out;
7289fdb5 5041 mutex_lock(&kvm->lock);
e0f63cb9
SY
5042 r = -ENXIO;
5043 if (!kvm->arch.vpit)
7289fdb5 5044 goto set_pit_out;
f0d66275 5045 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7289fdb5
SR
5046set_pit_out:
5047 mutex_unlock(&kvm->lock);
e0f63cb9
SY
5048 break;
5049 }
e9f42757
BK
5050 case KVM_GET_PIT2: {
5051 r = -ENXIO;
5052 if (!kvm->arch.vpit)
5053 goto out;
5054 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5055 if (r)
5056 goto out;
5057 r = -EFAULT;
5058 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5059 goto out;
5060 r = 0;
5061 break;
5062 }
5063 case KVM_SET_PIT2: {
5064 r = -EFAULT;
5065 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5066 goto out;
7289fdb5 5067 mutex_lock(&kvm->lock);
e9f42757
BK
5068 r = -ENXIO;
5069 if (!kvm->arch.vpit)
7289fdb5 5070 goto set_pit2_out;
e9f42757 5071 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7289fdb5
SR
5072set_pit2_out:
5073 mutex_unlock(&kvm->lock);
e9f42757
BK
5074 break;
5075 }
52d939a0
MT
5076 case KVM_REINJECT_CONTROL: {
5077 struct kvm_reinject_control control;
5078 r = -EFAULT;
5079 if (copy_from_user(&control, argp, sizeof(control)))
5080 goto out;
cad23e72
ML
5081 r = -ENXIO;
5082 if (!kvm->arch.vpit)
5083 goto out;
52d939a0 5084 r = kvm_vm_ioctl_reinject(kvm, &control);
52d939a0
MT
5085 break;
5086 }
d71ba788
PB
5087 case KVM_SET_BOOT_CPU_ID:
5088 r = 0;
5089 mutex_lock(&kvm->lock);
557abc40 5090 if (kvm->created_vcpus)
d71ba788
PB
5091 r = -EBUSY;
5092 else
5093 kvm->arch.bsp_vcpu_id = arg;
5094 mutex_unlock(&kvm->lock);
5095 break;
ffde22ac 5096 case KVM_XEN_HVM_CONFIG: {
51776043 5097 struct kvm_xen_hvm_config xhc;
ffde22ac 5098 r = -EFAULT;
51776043 5099 if (copy_from_user(&xhc, argp, sizeof(xhc)))
ffde22ac
ES
5100 goto out;
5101 r = -EINVAL;
51776043 5102 if (xhc.flags)
ffde22ac 5103 goto out;
51776043 5104 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
ffde22ac
ES
5105 r = 0;
5106 break;
5107 }
afbcf7ab 5108 case KVM_SET_CLOCK: {
afbcf7ab
GC
5109 struct kvm_clock_data user_ns;
5110 u64 now_ns;
afbcf7ab
GC
5111
5112 r = -EFAULT;
5113 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5114 goto out;
5115
5116 r = -EINVAL;
5117 if (user_ns.flags)
5118 goto out;
5119
5120 r = 0;
0bc48bea
RK
5121 /*
5122 * TODO: userspace has to take care of races with VCPU_RUN, so
5123 * kvm_gen_update_masterclock() can be cut down to locked
5124 * pvclock_update_vm_gtod_copy().
5125 */
5126 kvm_gen_update_masterclock(kvm);
e891a32e 5127 now_ns = get_kvmclock_ns(kvm);
108b249c 5128 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
0bc48bea 5129 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
afbcf7ab
GC
5130 break;
5131 }
5132 case KVM_GET_CLOCK: {
afbcf7ab
GC
5133 struct kvm_clock_data user_ns;
5134 u64 now_ns;
5135
e891a32e 5136 now_ns = get_kvmclock_ns(kvm);
108b249c 5137 user_ns.clock = now_ns;
e3fd9a93 5138 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
97e69aa6 5139 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
afbcf7ab
GC
5140
5141 r = -EFAULT;
5142 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5143 goto out;
5144 r = 0;
5145 break;
5146 }
5acc5c06
BS
5147 case KVM_MEMORY_ENCRYPT_OP: {
5148 r = -ENOTTY;
afaf0b2f
SC
5149 if (kvm_x86_ops.mem_enc_op)
5150 r = kvm_x86_ops.mem_enc_op(kvm, argp);
5acc5c06
BS
5151 break;
5152 }
69eaedee
BS
5153 case KVM_MEMORY_ENCRYPT_REG_REGION: {
5154 struct kvm_enc_region region;
5155
5156 r = -EFAULT;
5157 if (copy_from_user(&region, argp, sizeof(region)))
5158 goto out;
5159
5160 r = -ENOTTY;
afaf0b2f
SC
5161 if (kvm_x86_ops.mem_enc_reg_region)
5162 r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
69eaedee
BS
5163 break;
5164 }
5165 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5166 struct kvm_enc_region region;
5167
5168 r = -EFAULT;
5169 if (copy_from_user(&region, argp, sizeof(region)))
5170 goto out;
5171
5172 r = -ENOTTY;
afaf0b2f
SC
5173 if (kvm_x86_ops.mem_enc_unreg_region)
5174 r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
69eaedee
BS
5175 break;
5176 }
faeb7833
RK
5177 case KVM_HYPERV_EVENTFD: {
5178 struct kvm_hyperv_eventfd hvevfd;
5179
5180 r = -EFAULT;
5181 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5182 goto out;
5183 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5184 break;
5185 }
66bb8a06
EH
5186 case KVM_SET_PMU_EVENT_FILTER:
5187 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5188 break;
1fe779f8 5189 default:
ad6260da 5190 r = -ENOTTY;
1fe779f8
CO
5191 }
5192out:
5193 return r;
5194}
5195
a16b043c 5196static void kvm_init_msr_list(void)
043405e1 5197{
24c29b7a 5198 struct x86_pmu_capability x86_pmu;
043405e1 5199 u32 dummy[2];
7a5ee6ed 5200 unsigned i;
043405e1 5201
e2ada66e 5202 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
7a5ee6ed 5203 "Please update the fixed PMCs in msrs_to_saved_all[]");
24c29b7a
PB
5204
5205 perf_get_x86_pmu_capability(&x86_pmu);
e2ada66e 5206
6cbee2b9
XL
5207 num_msrs_to_save = 0;
5208 num_emulated_msrs = 0;
5209 num_msr_based_features = 0;
5210
7a5ee6ed
CQ
5211 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5212 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
043405e1 5213 continue;
93c4adc7
PB
5214
5215 /*
5216 * Even MSRs that are valid in the host may not be exposed
9dbe6cf9 5217 * to the guests in some cases.
93c4adc7 5218 */
7a5ee6ed 5219 switch (msrs_to_save_all[i]) {
93c4adc7 5220 case MSR_IA32_BNDCFGS:
503234b3 5221 if (!kvm_mpx_supported())
93c4adc7
PB
5222 continue;
5223 break;
9dbe6cf9 5224 case MSR_TSC_AUX:
13908510 5225 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
9dbe6cf9
PB
5226 continue;
5227 break;
bf8c55d8
CP
5228 case MSR_IA32_RTIT_CTL:
5229 case MSR_IA32_RTIT_STATUS:
7b874c26 5230 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
bf8c55d8
CP
5231 continue;
5232 break;
5233 case MSR_IA32_RTIT_CR3_MATCH:
7b874c26 5234 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
bf8c55d8
CP
5235 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5236 continue;
5237 break;
5238 case MSR_IA32_RTIT_OUTPUT_BASE:
5239 case MSR_IA32_RTIT_OUTPUT_MASK:
7b874c26 5240 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
bf8c55d8
CP
5241 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5242 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5243 continue;
5244 break;
5245 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
7b874c26 5246 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7a5ee6ed 5247 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
bf8c55d8
CP
5248 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5249 continue;
5250 break;
cf05a67b 5251 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
7a5ee6ed 5252 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
24c29b7a
PB
5253 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5254 continue;
5255 break;
cf05a67b 5256 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
7a5ee6ed 5257 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
24c29b7a
PB
5258 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5259 continue;
bf8c55d8 5260 }
93c4adc7
PB
5261 default:
5262 break;
5263 }
5264
7a5ee6ed 5265 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
043405e1 5266 }
62ef68bb 5267
7a5ee6ed 5268 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
afaf0b2f 5269 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
bc226f07 5270 continue;
62ef68bb 5271
7a5ee6ed 5272 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
62ef68bb 5273 }
801e459a 5274
7a5ee6ed 5275 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
801e459a
TL
5276 struct kvm_msr_entry msr;
5277
7a5ee6ed 5278 msr.index = msr_based_features_all[i];
66421c1e 5279 if (kvm_get_msr_feature(&msr))
801e459a
TL
5280 continue;
5281
7a5ee6ed 5282 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
801e459a 5283 }
043405e1
CO
5284}
5285
bda9020e
MT
5286static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5287 const void *v)
bbd9b64e 5288{
70252a10
AK
5289 int handled = 0;
5290 int n;
5291
5292 do {
5293 n = min(len, 8);
bce87cce 5294 if (!(lapic_in_kernel(vcpu) &&
e32edf4f
NN
5295 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5296 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
70252a10
AK
5297 break;
5298 handled += n;
5299 addr += n;
5300 len -= n;
5301 v += n;
5302 } while (len);
bbd9b64e 5303
70252a10 5304 return handled;
bbd9b64e
CO
5305}
5306
bda9020e 5307static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
bbd9b64e 5308{
70252a10
AK
5309 int handled = 0;
5310 int n;
5311
5312 do {
5313 n = min(len, 8);
bce87cce 5314 if (!(lapic_in_kernel(vcpu) &&
e32edf4f
NN
5315 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5316 addr, n, v))
5317 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
70252a10 5318 break;
e39d200f 5319 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
70252a10
AK
5320 handled += n;
5321 addr += n;
5322 len -= n;
5323 v += n;
5324 } while (len);
bbd9b64e 5325
70252a10 5326 return handled;
bbd9b64e
CO
5327}
5328
2dafc6c2
GN
5329static void kvm_set_segment(struct kvm_vcpu *vcpu,
5330 struct kvm_segment *var, int seg)
5331{
afaf0b2f 5332 kvm_x86_ops.set_segment(vcpu, var, seg);
2dafc6c2
GN
5333}
5334
5335void kvm_get_segment(struct kvm_vcpu *vcpu,
5336 struct kvm_segment *var, int seg)
5337{
afaf0b2f 5338 kvm_x86_ops.get_segment(vcpu, var, seg);
2dafc6c2
GN
5339}
5340
54987b7a
PB
5341gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5342 struct x86_exception *exception)
02f59dc9
JR
5343{
5344 gpa_t t_gpa;
02f59dc9
JR
5345
5346 BUG_ON(!mmu_is_nested(vcpu));
5347
5348 /* NPT walks are always user-walks */
5349 access |= PFERR_USER_MASK;
44dd3ffa 5350 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
02f59dc9
JR
5351
5352 return t_gpa;
5353}
5354
ab9ae313
AK
5355gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5356 struct x86_exception *exception)
1871c602 5357{
afaf0b2f 5358 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
ab9ae313 5359 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
1871c602
GN
5360}
5361
ab9ae313
AK
5362 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5363 struct x86_exception *exception)
1871c602 5364{
afaf0b2f 5365 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
1871c602 5366 access |= PFERR_FETCH_MASK;
ab9ae313 5367 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
1871c602
GN
5368}
5369
ab9ae313
AK
5370gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5371 struct x86_exception *exception)
1871c602 5372{
afaf0b2f 5373 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
1871c602 5374 access |= PFERR_WRITE_MASK;
ab9ae313 5375 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
1871c602
GN
5376}
5377
5378/* uses this to access any guest's mapped memory without checking CPL */
ab9ae313
AK
5379gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5380 struct x86_exception *exception)
1871c602 5381{
ab9ae313 5382 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
1871c602
GN
5383}
5384
5385static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5386 struct kvm_vcpu *vcpu, u32 access,
bcc55cba 5387 struct x86_exception *exception)
bbd9b64e
CO
5388{
5389 void *data = val;
10589a46 5390 int r = X86EMUL_CONTINUE;
bbd9b64e
CO
5391
5392 while (bytes) {
14dfe855 5393 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
ab9ae313 5394 exception);
bbd9b64e 5395 unsigned offset = addr & (PAGE_SIZE-1);
77c2002e 5396 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
bbd9b64e
CO
5397 int ret;
5398
bcc55cba 5399 if (gpa == UNMAPPED_GVA)
ab9ae313 5400 return X86EMUL_PROPAGATE_FAULT;
54bf36aa
PB
5401 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5402 offset, toread);
10589a46 5403 if (ret < 0) {
c3cd7ffa 5404 r = X86EMUL_IO_NEEDED;
10589a46
MT
5405 goto out;
5406 }
bbd9b64e 5407
77c2002e
IE
5408 bytes -= toread;
5409 data += toread;
5410 addr += toread;
bbd9b64e 5411 }
10589a46 5412out:
10589a46 5413 return r;
bbd9b64e 5414}
77c2002e 5415
1871c602 5416/* used for instruction fetching */
0f65dd70
AK
5417static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5418 gva_t addr, void *val, unsigned int bytes,
bcc55cba 5419 struct x86_exception *exception)
1871c602 5420{
0f65dd70 5421 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
afaf0b2f 5422 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
44583cba
PB
5423 unsigned offset;
5424 int ret;
0f65dd70 5425
44583cba
PB
5426 /* Inline kvm_read_guest_virt_helper for speed. */
5427 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5428 exception);
5429 if (unlikely(gpa == UNMAPPED_GVA))
5430 return X86EMUL_PROPAGATE_FAULT;
5431
5432 offset = addr & (PAGE_SIZE-1);
5433 if (WARN_ON(offset + bytes > PAGE_SIZE))
5434 bytes = (unsigned)PAGE_SIZE - offset;
54bf36aa
PB
5435 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5436 offset, bytes);
44583cba
PB
5437 if (unlikely(ret < 0))
5438 return X86EMUL_IO_NEEDED;
5439
5440 return X86EMUL_CONTINUE;
1871c602
GN
5441}
5442
ce14e868 5443int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
0f65dd70 5444 gva_t addr, void *val, unsigned int bytes,
bcc55cba 5445 struct x86_exception *exception)
1871c602 5446{
afaf0b2f 5447 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
0f65dd70 5448
353c0956
PB
5449 /*
5450 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5451 * is returned, but our callers are not ready for that and they blindly
5452 * call kvm_inject_page_fault. Ensure that they at least do not leak
5453 * uninitialized kernel stack memory into cr2 and error code.
5454 */
5455 memset(exception, 0, sizeof(*exception));
1871c602 5456 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
bcc55cba 5457 exception);
1871c602 5458}
064aea77 5459EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
1871c602 5460
ce14e868
PB
5461static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5462 gva_t addr, void *val, unsigned int bytes,
3c9fa24c 5463 struct x86_exception *exception, bool system)
1871c602 5464{
0f65dd70 5465 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3c9fa24c
PB
5466 u32 access = 0;
5467
afaf0b2f 5468 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
3c9fa24c
PB
5469 access |= PFERR_USER_MASK;
5470
5471 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
1871c602
GN
5472}
5473
7a036a6f
RK
5474static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5475 unsigned long addr, void *val, unsigned int bytes)
5476{
5477 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5478 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5479
5480 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5481}
5482
ce14e868
PB
5483static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5484 struct kvm_vcpu *vcpu, u32 access,
5485 struct x86_exception *exception)
77c2002e
IE
5486{
5487 void *data = val;
5488 int r = X86EMUL_CONTINUE;
5489
5490 while (bytes) {
14dfe855 5491 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
ce14e868 5492 access,
ab9ae313 5493 exception);
77c2002e
IE
5494 unsigned offset = addr & (PAGE_SIZE-1);
5495 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5496 int ret;
5497
bcc55cba 5498 if (gpa == UNMAPPED_GVA)
ab9ae313 5499 return X86EMUL_PROPAGATE_FAULT;
54bf36aa 5500 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
77c2002e 5501 if (ret < 0) {
c3cd7ffa 5502 r = X86EMUL_IO_NEEDED;
77c2002e
IE
5503 goto out;
5504 }
5505
5506 bytes -= towrite;
5507 data += towrite;
5508 addr += towrite;
5509 }
5510out:
5511 return r;
5512}
ce14e868
PB
5513
5514static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
3c9fa24c
PB
5515 unsigned int bytes, struct x86_exception *exception,
5516 bool system)
ce14e868
PB
5517{
5518 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3c9fa24c
PB
5519 u32 access = PFERR_WRITE_MASK;
5520
afaf0b2f 5521 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
3c9fa24c 5522 access |= PFERR_USER_MASK;
ce14e868
PB
5523
5524 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
3c9fa24c 5525 access, exception);
ce14e868
PB
5526}
5527
5528int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5529 unsigned int bytes, struct x86_exception *exception)
5530{
c595ceee
PB
5531 /* kvm_write_guest_virt_system can pull in tons of pages. */
5532 vcpu->arch.l1tf_flush_l1d = true;
5533
541ab2ae
FH
5534 /*
5535 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5536 * is returned, but our callers are not ready for that and they blindly
5537 * call kvm_inject_page_fault. Ensure that they at least do not leak
5538 * uninitialized kernel stack memory into cr2 and error code.
5539 */
5540 memset(exception, 0, sizeof(*exception));
ce14e868
PB
5541 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5542 PFERR_WRITE_MASK, exception);
5543}
6a4d7550 5544EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
77c2002e 5545
082d06ed
WL
5546int handle_ud(struct kvm_vcpu *vcpu)
5547{
b3dc0695 5548 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6c86eedc 5549 int emul_type = EMULTYPE_TRAP_UD;
6c86eedc
WL
5550 char sig[5]; /* ud2; .ascii "kvm" */
5551 struct x86_exception e;
5552
5553 if (force_emulation_prefix &&
3c9fa24c
PB
5554 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5555 sig, sizeof(sig), &e) == 0 &&
b3dc0695 5556 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6c86eedc 5557 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
b4000606 5558 emul_type = EMULTYPE_TRAP_UD_FORCED;
6c86eedc 5559 }
082d06ed 5560
60fc3d02 5561 return kvm_emulate_instruction(vcpu, emul_type);
082d06ed
WL
5562}
5563EXPORT_SYMBOL_GPL(handle_ud);
5564
0f89b207
TL
5565static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5566 gpa_t gpa, bool write)
5567{
5568 /* For APIC access vmexit */
5569 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5570 return 1;
5571
5572 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5573 trace_vcpu_match_mmio(gva, gpa, write, true);
5574 return 1;
5575 }
5576
5577 return 0;
5578}
5579
af7cc7d1
XG
5580static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5581 gpa_t *gpa, struct x86_exception *exception,
5582 bool write)
5583{
afaf0b2f 5584 u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
97d64b78 5585 | (write ? PFERR_WRITE_MASK : 0);
af7cc7d1 5586
be94f6b7
HH
5587 /*
5588 * currently PKRU is only applied to ept enabled guest so
5589 * there is no pkey in EPT page table for L1 guest or EPT
5590 * shadow page table for L2 guest.
5591 */
97d64b78 5592 if (vcpu_match_mmio_gva(vcpu, gva)
97ec8c06 5593 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
871bd034 5594 vcpu->arch.mmio_access, 0, access)) {
bebb106a
XG
5595 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5596 (gva & (PAGE_SIZE - 1));
4f022648 5597 trace_vcpu_match_mmio(gva, *gpa, write, false);
bebb106a
XG
5598 return 1;
5599 }
5600
af7cc7d1
XG
5601 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5602
5603 if (*gpa == UNMAPPED_GVA)
5604 return -1;
5605
0f89b207 5606 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
af7cc7d1
XG
5607}
5608
3200f405 5609int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
bcc55cba 5610 const void *val, int bytes)
bbd9b64e
CO
5611{
5612 int ret;
5613
54bf36aa 5614 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
9f811285 5615 if (ret < 0)
bbd9b64e 5616 return 0;
0eb05bf2 5617 kvm_page_track_write(vcpu, gpa, val, bytes);
bbd9b64e
CO
5618 return 1;
5619}
5620
77d197b2
XG
5621struct read_write_emulator_ops {
5622 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5623 int bytes);
5624 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5625 void *val, int bytes);
5626 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5627 int bytes, void *val);
5628 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5629 void *val, int bytes);
5630 bool write;
5631};
5632
5633static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5634{
5635 if (vcpu->mmio_read_completed) {
77d197b2 5636 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
e39d200f 5637 vcpu->mmio_fragments[0].gpa, val);
77d197b2
XG
5638 vcpu->mmio_read_completed = 0;
5639 return 1;
5640 }
5641
5642 return 0;
5643}
5644
5645static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5646 void *val, int bytes)
5647{
54bf36aa 5648 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
77d197b2
XG
5649}
5650
5651static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5652 void *val, int bytes)
5653{
5654 return emulator_write_phys(vcpu, gpa, val, bytes);
5655}
5656
5657static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5658{
e39d200f 5659 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
77d197b2
XG
5660 return vcpu_mmio_write(vcpu, gpa, bytes, val);
5661}
5662
5663static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5664 void *val, int bytes)
5665{
e39d200f 5666 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
77d197b2
XG
5667 return X86EMUL_IO_NEEDED;
5668}
5669
5670static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5671 void *val, int bytes)
5672{
f78146b0
AK
5673 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5674
87da7e66 5675 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
77d197b2
XG
5676 return X86EMUL_CONTINUE;
5677}
5678
0fbe9b0b 5679static const struct read_write_emulator_ops read_emultor = {
77d197b2
XG
5680 .read_write_prepare = read_prepare,
5681 .read_write_emulate = read_emulate,
5682 .read_write_mmio = vcpu_mmio_read,
5683 .read_write_exit_mmio = read_exit_mmio,
5684};
5685
0fbe9b0b 5686static const struct read_write_emulator_ops write_emultor = {
77d197b2
XG
5687 .read_write_emulate = write_emulate,
5688 .read_write_mmio = write_mmio,
5689 .read_write_exit_mmio = write_exit_mmio,
5690 .write = true,
5691};
5692
22388a3c
XG
5693static int emulator_read_write_onepage(unsigned long addr, void *val,
5694 unsigned int bytes,
5695 struct x86_exception *exception,
5696 struct kvm_vcpu *vcpu,
0fbe9b0b 5697 const struct read_write_emulator_ops *ops)
bbd9b64e 5698{
af7cc7d1
XG
5699 gpa_t gpa;
5700 int handled, ret;
22388a3c 5701 bool write = ops->write;
f78146b0 5702 struct kvm_mmio_fragment *frag;
c9b8b07c 5703 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
0f89b207
TL
5704
5705 /*
5706 * If the exit was due to a NPF we may already have a GPA.
5707 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5708 * Note, this cannot be used on string operations since string
5709 * operation using rep will only have the initial GPA from the NPF
5710 * occurred.
5711 */
744e699c
SC
5712 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
5713 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
5714 gpa = ctxt->gpa_val;
618232e2
BS
5715 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5716 } else {
5717 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5718 if (ret < 0)
5719 return X86EMUL_PROPAGATE_FAULT;
0f89b207 5720 }
10589a46 5721
618232e2 5722 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
bbd9b64e
CO
5723 return X86EMUL_CONTINUE;
5724
bbd9b64e
CO
5725 /*
5726 * Is this MMIO handled locally?
5727 */
22388a3c 5728 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
70252a10 5729 if (handled == bytes)
bbd9b64e 5730 return X86EMUL_CONTINUE;
bbd9b64e 5731
70252a10
AK
5732 gpa += handled;
5733 bytes -= handled;
5734 val += handled;
5735
87da7e66
XG
5736 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5737 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5738 frag->gpa = gpa;
5739 frag->data = val;
5740 frag->len = bytes;
f78146b0 5741 return X86EMUL_CONTINUE;
bbd9b64e
CO
5742}
5743
52eb5a6d
XL
5744static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5745 unsigned long addr,
22388a3c
XG
5746 void *val, unsigned int bytes,
5747 struct x86_exception *exception,
0fbe9b0b 5748 const struct read_write_emulator_ops *ops)
bbd9b64e 5749{
0f65dd70 5750 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
f78146b0
AK
5751 gpa_t gpa;
5752 int rc;
5753
5754 if (ops->read_write_prepare &&
5755 ops->read_write_prepare(vcpu, val, bytes))
5756 return X86EMUL_CONTINUE;
5757
5758 vcpu->mmio_nr_fragments = 0;
0f65dd70 5759
bbd9b64e
CO
5760 /* Crossing a page boundary? */
5761 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
f78146b0 5762 int now;
bbd9b64e
CO
5763
5764 now = -addr & ~PAGE_MASK;
22388a3c
XG
5765 rc = emulator_read_write_onepage(addr, val, now, exception,
5766 vcpu, ops);
5767
bbd9b64e
CO
5768 if (rc != X86EMUL_CONTINUE)
5769 return rc;
5770 addr += now;
bac15531
NA
5771 if (ctxt->mode != X86EMUL_MODE_PROT64)
5772 addr = (u32)addr;
bbd9b64e
CO
5773 val += now;
5774 bytes -= now;
5775 }
22388a3c 5776
f78146b0
AK
5777 rc = emulator_read_write_onepage(addr, val, bytes, exception,
5778 vcpu, ops);
5779 if (rc != X86EMUL_CONTINUE)
5780 return rc;
5781
5782 if (!vcpu->mmio_nr_fragments)
5783 return rc;
5784
5785 gpa = vcpu->mmio_fragments[0].gpa;
5786
5787 vcpu->mmio_needed = 1;
5788 vcpu->mmio_cur_fragment = 0;
5789
87da7e66 5790 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
f78146b0
AK
5791 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5792 vcpu->run->exit_reason = KVM_EXIT_MMIO;
5793 vcpu->run->mmio.phys_addr = gpa;
5794
5795 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
22388a3c
XG
5796}
5797
5798static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5799 unsigned long addr,
5800 void *val,
5801 unsigned int bytes,
5802 struct x86_exception *exception)
5803{
5804 return emulator_read_write(ctxt, addr, val, bytes,
5805 exception, &read_emultor);
5806}
5807
52eb5a6d 5808static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
22388a3c
XG
5809 unsigned long addr,
5810 const void *val,
5811 unsigned int bytes,
5812 struct x86_exception *exception)
5813{
5814 return emulator_read_write(ctxt, addr, (void *)val, bytes,
5815 exception, &write_emultor);
bbd9b64e 5816}
bbd9b64e 5817
daea3e73
AK
5818#define CMPXCHG_TYPE(t, ptr, old, new) \
5819 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5820
5821#ifdef CONFIG_X86_64
5822# define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5823#else
5824# define CMPXCHG64(ptr, old, new) \
9749a6c0 5825 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
daea3e73
AK
5826#endif
5827
0f65dd70
AK
5828static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5829 unsigned long addr,
bbd9b64e
CO
5830 const void *old,
5831 const void *new,
5832 unsigned int bytes,
0f65dd70 5833 struct x86_exception *exception)
bbd9b64e 5834{
42e35f80 5835 struct kvm_host_map map;
0f65dd70 5836 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9de6fe3c 5837 u64 page_line_mask;
daea3e73 5838 gpa_t gpa;
daea3e73
AK
5839 char *kaddr;
5840 bool exchanged;
2bacc55c 5841
daea3e73
AK
5842 /* guests cmpxchg8b have to be emulated atomically */
5843 if (bytes > 8 || (bytes & (bytes - 1)))
5844 goto emul_write;
10589a46 5845
daea3e73 5846 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
2bacc55c 5847
daea3e73
AK
5848 if (gpa == UNMAPPED_GVA ||
5849 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5850 goto emul_write;
2bacc55c 5851
9de6fe3c
XL
5852 /*
5853 * Emulate the atomic as a straight write to avoid #AC if SLD is
5854 * enabled in the host and the access splits a cache line.
5855 */
5856 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5857 page_line_mask = ~(cache_line_size() - 1);
5858 else
5859 page_line_mask = PAGE_MASK;
5860
5861 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
daea3e73 5862 goto emul_write;
72dc67a6 5863
42e35f80 5864 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
c19b8bd6 5865 goto emul_write;
72dc67a6 5866
42e35f80
KA
5867 kaddr = map.hva + offset_in_page(gpa);
5868
daea3e73
AK
5869 switch (bytes) {
5870 case 1:
5871 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5872 break;
5873 case 2:
5874 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5875 break;
5876 case 4:
5877 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5878 break;
5879 case 8:
5880 exchanged = CMPXCHG64(kaddr, old, new);
5881 break;
5882 default:
5883 BUG();
2bacc55c 5884 }
42e35f80
KA
5885
5886 kvm_vcpu_unmap(vcpu, &map, true);
daea3e73
AK
5887
5888 if (!exchanged)
5889 return X86EMUL_CMPXCHG_FAILED;
5890
0eb05bf2 5891 kvm_page_track_write(vcpu, gpa, new, bytes);
8f6abd06
GN
5892
5893 return X86EMUL_CONTINUE;
4a5f48f6 5894
3200f405 5895emul_write:
daea3e73 5896 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
2bacc55c 5897
0f65dd70 5898 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
bbd9b64e
CO
5899}
5900
cf8f70bf
GN
5901static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5902{
cbfc6c91 5903 int r = 0, i;
cf8f70bf 5904
cbfc6c91
WL
5905 for (i = 0; i < vcpu->arch.pio.count; i++) {
5906 if (vcpu->arch.pio.in)
5907 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5908 vcpu->arch.pio.size, pd);
5909 else
5910 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5911 vcpu->arch.pio.port, vcpu->arch.pio.size,
5912 pd);
5913 if (r)
5914 break;
5915 pd += vcpu->arch.pio.size;
5916 }
cf8f70bf
GN
5917 return r;
5918}
5919
6f6fbe98
XG
5920static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5921 unsigned short port, void *val,
5922 unsigned int count, bool in)
cf8f70bf 5923{
cf8f70bf 5924 vcpu->arch.pio.port = port;
6f6fbe98 5925 vcpu->arch.pio.in = in;
7972995b 5926 vcpu->arch.pio.count = count;
cf8f70bf
GN
5927 vcpu->arch.pio.size = size;
5928
5929 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
7972995b 5930 vcpu->arch.pio.count = 0;
cf8f70bf
GN
5931 return 1;
5932 }
5933
5934 vcpu->run->exit_reason = KVM_EXIT_IO;
6f6fbe98 5935 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
cf8f70bf
GN
5936 vcpu->run->io.size = size;
5937 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5938 vcpu->run->io.count = count;
5939 vcpu->run->io.port = port;
5940
5941 return 0;
5942}
5943
2e3bb4d8
SC
5944static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
5945 unsigned short port, void *val, unsigned int count)
cf8f70bf 5946{
6f6fbe98 5947 int ret;
ca1d4a9e 5948
6f6fbe98
XG
5949 if (vcpu->arch.pio.count)
5950 goto data_avail;
cf8f70bf 5951
cbfc6c91
WL
5952 memset(vcpu->arch.pio_data, 0, size * count);
5953
6f6fbe98
XG
5954 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5955 if (ret) {
5956data_avail:
5957 memcpy(val, vcpu->arch.pio_data, size * count);
1171903d 5958 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
7972995b 5959 vcpu->arch.pio.count = 0;
cf8f70bf
GN
5960 return 1;
5961 }
5962
cf8f70bf
GN
5963 return 0;
5964}
5965
2e3bb4d8
SC
5966static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5967 int size, unsigned short port, void *val,
5968 unsigned int count)
6f6fbe98 5969{
2e3bb4d8 5970 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6f6fbe98 5971
2e3bb4d8 5972}
6f6fbe98 5973
2e3bb4d8
SC
5974static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
5975 unsigned short port, const void *val,
5976 unsigned int count)
5977{
6f6fbe98 5978 memcpy(vcpu->arch.pio_data, val, size * count);
1171903d 5979 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6f6fbe98
XG
5980 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5981}
5982
2e3bb4d8
SC
5983static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5984 int size, unsigned short port,
5985 const void *val, unsigned int count)
5986{
5987 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
5988}
5989
bbd9b64e
CO
5990static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5991{
afaf0b2f 5992 return kvm_x86_ops.get_segment_base(vcpu, seg);
bbd9b64e
CO
5993}
5994
3cb16fe7 5995static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
bbd9b64e 5996{
3cb16fe7 5997 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
bbd9b64e
CO
5998}
5999
ae6a2375 6000static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
f5f48ee1
SY
6001{
6002 if (!need_emulate_wbinvd(vcpu))
6003 return X86EMUL_CONTINUE;
6004
afaf0b2f 6005 if (kvm_x86_ops.has_wbinvd_exit()) {
2eec7343
JK
6006 int cpu = get_cpu();
6007
6008 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
f5f48ee1
SY
6009 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6010 wbinvd_ipi, NULL, 1);
2eec7343 6011 put_cpu();
f5f48ee1 6012 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
2eec7343
JK
6013 } else
6014 wbinvd();
f5f48ee1
SY
6015 return X86EMUL_CONTINUE;
6016}
5cb56059
JS
6017
6018int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6019{
6affcbed
KH
6020 kvm_emulate_wbinvd_noskip(vcpu);
6021 return kvm_skip_emulated_instruction(vcpu);
5cb56059 6022}
f5f48ee1
SY
6023EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6024
5cb56059
JS
6025
6026
bcaf5cc5
AK
6027static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6028{
5cb56059 6029 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
bcaf5cc5
AK
6030}
6031
52eb5a6d
XL
6032static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6033 unsigned long *dest)
bbd9b64e 6034{
16f8a6f9 6035 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
bbd9b64e
CO
6036}
6037
52eb5a6d
XL
6038static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6039 unsigned long value)
bbd9b64e 6040{
338dbc97 6041
717746e3 6042 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
bbd9b64e
CO
6043}
6044
52a46617 6045static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5fdbf976 6046{
52a46617 6047 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5fdbf976
MT
6048}
6049
717746e3 6050static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
bbd9b64e 6051{
717746e3 6052 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
52a46617
GN
6053 unsigned long value;
6054
6055 switch (cr) {
6056 case 0:
6057 value = kvm_read_cr0(vcpu);
6058 break;
6059 case 2:
6060 value = vcpu->arch.cr2;
6061 break;
6062 case 3:
9f8fe504 6063 value = kvm_read_cr3(vcpu);
52a46617
GN
6064 break;
6065 case 4:
6066 value = kvm_read_cr4(vcpu);
6067 break;
6068 case 8:
6069 value = kvm_get_cr8(vcpu);
6070 break;
6071 default:
a737f256 6072 kvm_err("%s: unexpected cr %u\n", __func__, cr);
52a46617
GN
6073 return 0;
6074 }
6075
6076 return value;
6077}
6078
717746e3 6079static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
52a46617 6080{
717746e3 6081 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
0f12244f
GN
6082 int res = 0;
6083
52a46617
GN
6084 switch (cr) {
6085 case 0:
49a9b07e 6086 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
52a46617
GN
6087 break;
6088 case 2:
6089 vcpu->arch.cr2 = val;
6090 break;
6091 case 3:
2390218b 6092 res = kvm_set_cr3(vcpu, val);
52a46617
GN
6093 break;
6094 case 4:
a83b29c6 6095 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
52a46617
GN
6096 break;
6097 case 8:
eea1cff9 6098 res = kvm_set_cr8(vcpu, val);
52a46617
GN
6099 break;
6100 default:
a737f256 6101 kvm_err("%s: unexpected cr %u\n", __func__, cr);
0f12244f 6102 res = -1;
52a46617 6103 }
0f12244f
GN
6104
6105 return res;
52a46617
GN
6106}
6107
717746e3 6108static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
9c537244 6109{
afaf0b2f 6110 return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
9c537244
GN
6111}
6112
4bff1e86 6113static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
2dafc6c2 6114{
afaf0b2f 6115 kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
2dafc6c2
GN
6116}
6117
4bff1e86 6118static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
160ce1f1 6119{
afaf0b2f 6120 kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
160ce1f1
MG
6121}
6122
1ac9d0cf
AK
6123static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6124{
afaf0b2f 6125 kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
1ac9d0cf
AK
6126}
6127
6128static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6129{
afaf0b2f 6130 kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
1ac9d0cf
AK
6131}
6132
4bff1e86
AK
6133static unsigned long emulator_get_cached_segment_base(
6134 struct x86_emulate_ctxt *ctxt, int seg)
5951c442 6135{
4bff1e86 6136 return get_segment_base(emul_to_vcpu(ctxt), seg);
5951c442
GN
6137}
6138
1aa36616
AK
6139static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6140 struct desc_struct *desc, u32 *base3,
6141 int seg)
2dafc6c2
GN
6142{
6143 struct kvm_segment var;
6144
4bff1e86 6145 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
1aa36616 6146 *selector = var.selector;
2dafc6c2 6147
378a8b09
GN
6148 if (var.unusable) {
6149 memset(desc, 0, sizeof(*desc));
f0367ee1
RK
6150 if (base3)
6151 *base3 = 0;
2dafc6c2 6152 return false;
378a8b09 6153 }
2dafc6c2
GN
6154
6155 if (var.g)
6156 var.limit >>= 12;
6157 set_desc_limit(desc, var.limit);
6158 set_desc_base(desc, (unsigned long)var.base);
5601d05b
GN
6159#ifdef CONFIG_X86_64
6160 if (base3)
6161 *base3 = var.base >> 32;
6162#endif
2dafc6c2
GN
6163 desc->type = var.type;
6164 desc->s = var.s;
6165 desc->dpl = var.dpl;
6166 desc->p = var.present;
6167 desc->avl = var.avl;
6168 desc->l = var.l;
6169 desc->d = var.db;
6170 desc->g = var.g;
6171
6172 return true;
6173}
6174
1aa36616
AK
6175static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6176 struct desc_struct *desc, u32 base3,
6177 int seg)
2dafc6c2 6178{
4bff1e86 6179 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
2dafc6c2
GN
6180 struct kvm_segment var;
6181
1aa36616 6182 var.selector = selector;
2dafc6c2 6183 var.base = get_desc_base(desc);
5601d05b
GN
6184#ifdef CONFIG_X86_64
6185 var.base |= ((u64)base3) << 32;
6186#endif
2dafc6c2
GN
6187 var.limit = get_desc_limit(desc);
6188 if (desc->g)
6189 var.limit = (var.limit << 12) | 0xfff;
6190 var.type = desc->type;
2dafc6c2
GN
6191 var.dpl = desc->dpl;
6192 var.db = desc->d;
6193 var.s = desc->s;
6194 var.l = desc->l;
6195 var.g = desc->g;
6196 var.avl = desc->avl;
6197 var.present = desc->p;
6198 var.unusable = !var.present;
6199 var.padding = 0;
6200
6201 kvm_set_segment(vcpu, &var, seg);
6202 return;
6203}
6204
717746e3
AK
6205static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6206 u32 msr_index, u64 *pdata)
6207{
f20935d8 6208 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
717746e3
AK
6209}
6210
6211static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6212 u32 msr_index, u64 data)
6213{
f20935d8 6214 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
717746e3
AK
6215}
6216
64d60670
PB
6217static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6218{
6219 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6220
6221 return vcpu->arch.smbase;
6222}
6223
6224static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6225{
6226 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6227
6228 vcpu->arch.smbase = smbase;
6229}
6230
67f4d428
NA
6231static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6232 u32 pmc)
6233{
98ff80f5 6234 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
67f4d428
NA
6235}
6236
222d21aa
AK
6237static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6238 u32 pmc, u64 *pdata)
6239{
c6702c9d 6240 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
222d21aa
AK
6241}
6242
6c3287f7
AK
6243static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6244{
6245 emul_to_vcpu(ctxt)->arch.halt_request = 1;
6246}
6247
2953538e 6248static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8a76d7f2 6249 struct x86_instruction_info *info,
c4f035c6
AK
6250 enum x86_intercept_stage stage)
6251{
afaf0b2f 6252 return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
21f1b8f2 6253 &ctxt->exception);
c4f035c6
AK
6254}
6255
e911eb3b 6256static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
f91af517
SC
6257 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6258 bool exact_only)
bdb42f5a 6259{
f91af517 6260 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
bdb42f5a
SB
6261}
6262
5ae78e95
SC
6263static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6264{
6265 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6266}
6267
6268static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6269{
6270 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6271}
6272
6273static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6274{
6275 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6276}
6277
dd856efa
AK
6278static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6279{
6280 return kvm_register_read(emul_to_vcpu(ctxt), reg);
6281}
6282
6283static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6284{
6285 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6286}
6287
801806d9
NA
6288static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6289{
afaf0b2f 6290 kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
801806d9
NA
6291}
6292
6ed071f0
LP
6293static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6294{
6295 return emul_to_vcpu(ctxt)->arch.hflags;
6296}
6297
6298static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6299{
c5833c7a 6300 emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6ed071f0
LP
6301}
6302
ed19321f
SC
6303static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6304 const char *smstate)
0234bf88 6305{
afaf0b2f 6306 return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
0234bf88
LP
6307}
6308
c5833c7a
SC
6309static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6310{
6311 kvm_smm_changed(emul_to_vcpu(ctxt));
6312}
6313
02d4160f
VK
6314static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6315{
6316 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6317}
6318
0225fb50 6319static const struct x86_emulate_ops emulate_ops = {
dd856efa
AK
6320 .read_gpr = emulator_read_gpr,
6321 .write_gpr = emulator_write_gpr,
ce14e868
PB
6322 .read_std = emulator_read_std,
6323 .write_std = emulator_write_std,
7a036a6f 6324 .read_phys = kvm_read_guest_phys_system,
1871c602 6325 .fetch = kvm_fetch_guest_virt,
bbd9b64e
CO
6326 .read_emulated = emulator_read_emulated,
6327 .write_emulated = emulator_write_emulated,
6328 .cmpxchg_emulated = emulator_cmpxchg_emulated,
3cb16fe7 6329 .invlpg = emulator_invlpg,
cf8f70bf
GN
6330 .pio_in_emulated = emulator_pio_in_emulated,
6331 .pio_out_emulated = emulator_pio_out_emulated,
1aa36616
AK
6332 .get_segment = emulator_get_segment,
6333 .set_segment = emulator_set_segment,
5951c442 6334 .get_cached_segment_base = emulator_get_cached_segment_base,
2dafc6c2 6335 .get_gdt = emulator_get_gdt,
160ce1f1 6336 .get_idt = emulator_get_idt,
1ac9d0cf
AK
6337 .set_gdt = emulator_set_gdt,
6338 .set_idt = emulator_set_idt,
52a46617
GN
6339 .get_cr = emulator_get_cr,
6340 .set_cr = emulator_set_cr,
9c537244 6341 .cpl = emulator_get_cpl,
35aa5375
GN
6342 .get_dr = emulator_get_dr,
6343 .set_dr = emulator_set_dr,
64d60670
PB
6344 .get_smbase = emulator_get_smbase,
6345 .set_smbase = emulator_set_smbase,
717746e3
AK
6346 .set_msr = emulator_set_msr,
6347 .get_msr = emulator_get_msr,
67f4d428 6348 .check_pmc = emulator_check_pmc,
222d21aa 6349 .read_pmc = emulator_read_pmc,
6c3287f7 6350 .halt = emulator_halt,
bcaf5cc5 6351 .wbinvd = emulator_wbinvd,
d6aa1000 6352 .fix_hypercall = emulator_fix_hypercall,
c4f035c6 6353 .intercept = emulator_intercept,
bdb42f5a 6354 .get_cpuid = emulator_get_cpuid,
5ae78e95
SC
6355 .guest_has_long_mode = emulator_guest_has_long_mode,
6356 .guest_has_movbe = emulator_guest_has_movbe,
6357 .guest_has_fxsr = emulator_guest_has_fxsr,
801806d9 6358 .set_nmi_mask = emulator_set_nmi_mask,
6ed071f0
LP
6359 .get_hflags = emulator_get_hflags,
6360 .set_hflags = emulator_set_hflags,
0234bf88 6361 .pre_leave_smm = emulator_pre_leave_smm,
c5833c7a 6362 .post_leave_smm = emulator_post_leave_smm,
02d4160f 6363 .set_xcr = emulator_set_xcr,
bbd9b64e
CO
6364};
6365
95cb2295
GN
6366static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6367{
afaf0b2f 6368 u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
95cb2295
GN
6369 /*
6370 * an sti; sti; sequence only disable interrupts for the first
6371 * instruction. So, if the last instruction, be it emulated or
6372 * not, left the system with the INT_STI flag enabled, it
6373 * means that the last instruction is an sti. We should not
6374 * leave the flag on in this case. The same goes for mov ss
6375 */
37ccdcbe
PB
6376 if (int_shadow & mask)
6377 mask = 0;
6addfc42 6378 if (unlikely(int_shadow || mask)) {
afaf0b2f 6379 kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6addfc42
PB
6380 if (!mask)
6381 kvm_make_request(KVM_REQ_EVENT, vcpu);
6382 }
95cb2295
GN
6383}
6384
ef54bcfe 6385static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
54b8486f 6386{
c9b8b07c 6387 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
da9cb575 6388 if (ctxt->exception.vector == PF_VECTOR)
ef54bcfe
PB
6389 return kvm_propagate_fault(vcpu, &ctxt->exception);
6390
6391 if (ctxt->exception.error_code_valid)
da9cb575
AK
6392 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6393 ctxt->exception.error_code);
54b8486f 6394 else
da9cb575 6395 kvm_queue_exception(vcpu, ctxt->exception.vector);
ef54bcfe 6396 return false;
54b8486f
GN
6397}
6398
c9b8b07c
SC
6399static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6400{
6401 struct x86_emulate_ctxt *ctxt;
6402
6403 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6404 if (!ctxt) {
6405 pr_err("kvm: failed to allocate vcpu's emulator\n");
6406 return NULL;
6407 }
6408
6409 ctxt->vcpu = vcpu;
6410 ctxt->ops = &emulate_ops;
6411 vcpu->arch.emulate_ctxt = ctxt;
6412
6413 return ctxt;
6414}
6415
8ec4722d
MG
6416static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6417{
c9b8b07c 6418 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8ec4722d
MG
6419 int cs_db, cs_l;
6420
afaf0b2f 6421 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
8ec4722d 6422
744e699c 6423 ctxt->gpa_available = false;
adf52235 6424 ctxt->eflags = kvm_get_rflags(vcpu);
c8401dda
PB
6425 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6426
adf52235
TY
6427 ctxt->eip = kvm_rip_read(vcpu);
6428 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
6429 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
42bf549f 6430 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
adf52235
TY
6431 cs_db ? X86EMUL_MODE_PROT32 :
6432 X86EMUL_MODE_PROT16;
a584539b 6433 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
64d60670
PB
6434 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6435 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
adf52235 6436
dd856efa 6437 init_decode_cache(ctxt);
7ae441ea 6438 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8ec4722d
MG
6439}
6440
9497e1f2 6441void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
63995653 6442{
c9b8b07c 6443 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
63995653
MG
6444 int ret;
6445
6446 init_emulate_ctxt(vcpu);
6447
9dac77fa
AK
6448 ctxt->op_bytes = 2;
6449 ctxt->ad_bytes = 2;
6450 ctxt->_eip = ctxt->eip + inc_eip;
9d74191a 6451 ret = emulate_int_real(ctxt, irq);
63995653 6452
9497e1f2
SC
6453 if (ret != X86EMUL_CONTINUE) {
6454 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6455 } else {
6456 ctxt->eip = ctxt->_eip;
6457 kvm_rip_write(vcpu, ctxt->eip);
6458 kvm_set_rflags(vcpu, ctxt->eflags);
6459 }
63995653
MG
6460}
6461EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6462
e2366171 6463static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6d77dbfc 6464{
6d77dbfc
GN
6465 ++vcpu->stat.insn_emulation_fail;
6466 trace_kvm_emulate_insn_failed(vcpu);
e2366171 6467
42cbf068
SC
6468 if (emulation_type & EMULTYPE_VMWARE_GP) {
6469 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
60fc3d02 6470 return 1;
42cbf068 6471 }
e2366171 6472
738fece4
SC
6473 if (emulation_type & EMULTYPE_SKIP) {
6474 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6475 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6476 vcpu->run->internal.ndata = 0;
60fc3d02 6477 return 0;
738fece4
SC
6478 }
6479
22da61c9
SC
6480 kvm_queue_exception(vcpu, UD_VECTOR);
6481
afaf0b2f 6482 if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
fc3a9157
JR
6483 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6484 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6485 vcpu->run->internal.ndata = 0;
60fc3d02 6486 return 0;
fc3a9157 6487 }
e2366171 6488
60fc3d02 6489 return 1;
6d77dbfc
GN
6490}
6491
736c291c 6492static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
991eebf9
GN
6493 bool write_fault_to_shadow_pgtable,
6494 int emulation_type)
a6f177ef 6495{
736c291c 6496 gpa_t gpa = cr2_or_gpa;
ba049e93 6497 kvm_pfn_t pfn;
a6f177ef 6498
92daa48b 6499 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
991eebf9
GN
6500 return false;
6501
92daa48b
SC
6502 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6503 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6c3dfeb6
SC
6504 return false;
6505
44dd3ffa 6506 if (!vcpu->arch.mmu->direct_map) {
95b3cf69
XG
6507 /*
6508 * Write permission should be allowed since only
6509 * write access need to be emulated.
6510 */
736c291c 6511 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
a6f177ef 6512
95b3cf69
XG
6513 /*
6514 * If the mapping is invalid in guest, let cpu retry
6515 * it to generate fault.
6516 */
6517 if (gpa == UNMAPPED_GVA)
6518 return true;
6519 }
a6f177ef 6520
8e3d9d06
XG
6521 /*
6522 * Do not retry the unhandleable instruction if it faults on the
6523 * readonly host memory, otherwise it will goto a infinite loop:
6524 * retry instruction -> write #PF -> emulation fail -> retry
6525 * instruction -> ...
6526 */
6527 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
95b3cf69
XG
6528
6529 /*
6530 * If the instruction failed on the error pfn, it can not be fixed,
6531 * report the error to userspace.
6532 */
6533 if (is_error_noslot_pfn(pfn))
6534 return false;
6535
6536 kvm_release_pfn_clean(pfn);
6537
6538 /* The instructions are well-emulated on direct mmu. */
44dd3ffa 6539 if (vcpu->arch.mmu->direct_map) {
95b3cf69
XG
6540 unsigned int indirect_shadow_pages;
6541
6542 spin_lock(&vcpu->kvm->mmu_lock);
6543 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6544 spin_unlock(&vcpu->kvm->mmu_lock);
6545
6546 if (indirect_shadow_pages)
6547 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6548
a6f177ef 6549 return true;
8e3d9d06 6550 }
a6f177ef 6551
95b3cf69
XG
6552 /*
6553 * if emulation was due to access to shadowed page table
6554 * and it failed try to unshadow page and re-enter the
6555 * guest to let CPU execute the instruction.
6556 */
6557 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
93c05d3e
XG
6558
6559 /*
6560 * If the access faults on its page table, it can not
6561 * be fixed by unprotecting shadow page and it should
6562 * be reported to userspace.
6563 */
6564 return !write_fault_to_shadow_pgtable;
a6f177ef
GN
6565}
6566
1cb3f3ae 6567static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
736c291c 6568 gpa_t cr2_or_gpa, int emulation_type)
1cb3f3ae
XG
6569{
6570 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
736c291c 6571 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
1cb3f3ae
XG
6572
6573 last_retry_eip = vcpu->arch.last_retry_eip;
6574 last_retry_addr = vcpu->arch.last_retry_addr;
6575
6576 /*
6577 * If the emulation is caused by #PF and it is non-page_table
6578 * writing instruction, it means the VM-EXIT is caused by shadow
6579 * page protected, we can zap the shadow page and retry this
6580 * instruction directly.
6581 *
6582 * Note: if the guest uses a non-page-table modifying instruction
6583 * on the PDE that points to the instruction, then we will unmap
6584 * the instruction and go to an infinite loop. So, we cache the
6585 * last retried eip and the last fault address, if we meet the eip
6586 * and the address again, we can break out of the potential infinite
6587 * loop.
6588 */
6589 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6590
92daa48b 6591 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
1cb3f3ae
XG
6592 return false;
6593
92daa48b
SC
6594 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
6595 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6c3dfeb6
SC
6596 return false;
6597
1cb3f3ae
XG
6598 if (x86_page_table_writing_insn(ctxt))
6599 return false;
6600
736c291c 6601 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
1cb3f3ae
XG
6602 return false;
6603
6604 vcpu->arch.last_retry_eip = ctxt->eip;
736c291c 6605 vcpu->arch.last_retry_addr = cr2_or_gpa;
1cb3f3ae 6606
44dd3ffa 6607 if (!vcpu->arch.mmu->direct_map)
736c291c 6608 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
1cb3f3ae 6609
22368028 6610 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
1cb3f3ae
XG
6611
6612 return true;
6613}
6614
716d51ab
GN
6615static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6616static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6617
64d60670 6618static void kvm_smm_changed(struct kvm_vcpu *vcpu)
a584539b 6619{
64d60670 6620 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
660a5d51
PB
6621 /* This is a good place to trace that we are exiting SMM. */
6622 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6623
c43203ca
PB
6624 /* Process a latched INIT or SMI, if any. */
6625 kvm_make_request(KVM_REQ_EVENT, vcpu);
64d60670 6626 }
699023e2
PB
6627
6628 kvm_mmu_reset_context(vcpu);
64d60670
PB
6629}
6630
4a1e10d5
PB
6631static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6632 unsigned long *db)
6633{
6634 u32 dr6 = 0;
6635 int i;
6636 u32 enable, rwlen;
6637
6638 enable = dr7;
6639 rwlen = dr7 >> 16;
6640 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6641 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6642 dr6 |= (1 << i);
6643 return dr6;
6644}
6645
120c2c4f 6646static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
663f4c61
PB
6647{
6648 struct kvm_run *kvm_run = vcpu->run;
6649
c8401dda
PB
6650 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6651 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
d5d260c5 6652 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
c8401dda
PB
6653 kvm_run->debug.arch.exception = DB_VECTOR;
6654 kvm_run->exit_reason = KVM_EXIT_DEBUG;
60fc3d02 6655 return 0;
663f4c61 6656 }
120c2c4f 6657 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
60fc3d02 6658 return 1;
663f4c61
PB
6659}
6660
6affcbed
KH
6661int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6662{
afaf0b2f 6663 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
f8ea7c60 6664 int r;
6affcbed 6665
afaf0b2f 6666 r = kvm_x86_ops.skip_emulated_instruction(vcpu);
60fc3d02 6667 if (unlikely(!r))
f8ea7c60 6668 return 0;
c8401dda
PB
6669
6670 /*
6671 * rflags is the old, "raw" value of the flags. The new value has
6672 * not been saved yet.
6673 *
6674 * This is correct even for TF set by the guest, because "the
6675 * processor will not generate this exception after the instruction
6676 * that sets the TF flag".
6677 */
6678 if (unlikely(rflags & X86_EFLAGS_TF))
120c2c4f 6679 r = kvm_vcpu_do_singlestep(vcpu);
60fc3d02 6680 return r;
6affcbed
KH
6681}
6682EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6683
4a1e10d5
PB
6684static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6685{
4a1e10d5
PB
6686 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6687 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
82b32774
NA
6688 struct kvm_run *kvm_run = vcpu->run;
6689 unsigned long eip = kvm_get_linear_rip(vcpu);
6690 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
4a1e10d5
PB
6691 vcpu->arch.guest_debug_dr7,
6692 vcpu->arch.eff_db);
6693
6694 if (dr6 != 0) {
6f43ed01 6695 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
82b32774 6696 kvm_run->debug.arch.pc = eip;
4a1e10d5
PB
6697 kvm_run->debug.arch.exception = DB_VECTOR;
6698 kvm_run->exit_reason = KVM_EXIT_DEBUG;
60fc3d02 6699 *r = 0;
4a1e10d5
PB
6700 return true;
6701 }
6702 }
6703
4161a569
NA
6704 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6705 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
82b32774
NA
6706 unsigned long eip = kvm_get_linear_rip(vcpu);
6707 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
4a1e10d5
PB
6708 vcpu->arch.dr7,
6709 vcpu->arch.db);
6710
6711 if (dr6 != 0) {
4d5523cf 6712 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
60fc3d02 6713 *r = 1;
4a1e10d5
PB
6714 return true;
6715 }
6716 }
6717
6718 return false;
6719}
6720
04789b66
LA
6721static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6722{
2d7921c4
AM
6723 switch (ctxt->opcode_len) {
6724 case 1:
6725 switch (ctxt->b) {
6726 case 0xe4: /* IN */
6727 case 0xe5:
6728 case 0xec:
6729 case 0xed:
6730 case 0xe6: /* OUT */
6731 case 0xe7:
6732 case 0xee:
6733 case 0xef:
6734 case 0x6c: /* INS */
6735 case 0x6d:
6736 case 0x6e: /* OUTS */
6737 case 0x6f:
6738 return true;
6739 }
6740 break;
6741 case 2:
6742 switch (ctxt->b) {
6743 case 0x33: /* RDPMC */
6744 return true;
6745 }
6746 break;
04789b66
LA
6747 }
6748
6749 return false;
6750}
6751
736c291c
SC
6752int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6753 int emulation_type, void *insn, int insn_len)
bbd9b64e 6754{
95cb2295 6755 int r;
c9b8b07c 6756 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7ae441ea 6757 bool writeback = true;
93c05d3e 6758 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
bbd9b64e 6759
c595ceee
PB
6760 vcpu->arch.l1tf_flush_l1d = true;
6761
93c05d3e
XG
6762 /*
6763 * Clear write_fault_to_shadow_pgtable here to ensure it is
6764 * never reused.
6765 */
6766 vcpu->arch.write_fault_to_shadow_pgtable = false;
26eef70c 6767 kvm_clear_exception_queue(vcpu);
8d7d8102 6768
571008da 6769 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8ec4722d 6770 init_emulate_ctxt(vcpu);
4a1e10d5
PB
6771
6772 /*
6773 * We will reenter on the same instruction since
6774 * we do not set complete_userspace_io. This does not
6775 * handle watchpoints yet, those would be handled in
6776 * the emulate_ops.
6777 */
d391f120
VK
6778 if (!(emulation_type & EMULTYPE_SKIP) &&
6779 kvm_vcpu_check_breakpoint(vcpu, &r))
4a1e10d5
PB
6780 return r;
6781
9d74191a
TY
6782 ctxt->interruptibility = 0;
6783 ctxt->have_exception = false;
e0ad0b47 6784 ctxt->exception.vector = -1;
9d74191a 6785 ctxt->perm_ok = false;
bbd9b64e 6786
b51e974f 6787 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
4005996e 6788
9d74191a 6789 r = x86_decode_insn(ctxt, insn, insn_len);
bbd9b64e 6790
e46479f8 6791 trace_kvm_emulate_insn_start(vcpu);
f2b5756b 6792 ++vcpu->stat.insn_emulation;
1d2887e2 6793 if (r != EMULATION_OK) {
b4000606 6794 if ((emulation_type & EMULTYPE_TRAP_UD) ||
c83fad65
SC
6795 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6796 kvm_queue_exception(vcpu, UD_VECTOR);
60fc3d02 6797 return 1;
c83fad65 6798 }
736c291c
SC
6799 if (reexecute_instruction(vcpu, cr2_or_gpa,
6800 write_fault_to_spt,
6801 emulation_type))
60fc3d02 6802 return 1;
8530a79c 6803 if (ctxt->have_exception) {
c8848cee
JD
6804 /*
6805 * #UD should result in just EMULATION_FAILED, and trap-like
6806 * exception should not be encountered during decode.
6807 */
6808 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6809 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8530a79c 6810 inject_emulated_exception(vcpu);
60fc3d02 6811 return 1;
8530a79c 6812 }
e2366171 6813 return handle_emulation_failure(vcpu, emulation_type);
bbd9b64e
CO
6814 }
6815 }
6816
42cbf068
SC
6817 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6818 !is_vmware_backdoor_opcode(ctxt)) {
6819 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
60fc3d02 6820 return 1;
42cbf068 6821 }
04789b66 6822
1957aa63
SC
6823 /*
6824 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6825 * for kvm_skip_emulated_instruction(). The caller is responsible for
6826 * updating interruptibility state and injecting single-step #DBs.
6827 */
ba8afb6b 6828 if (emulation_type & EMULTYPE_SKIP) {
9dac77fa 6829 kvm_rip_write(vcpu, ctxt->_eip);
bb663c7a
NA
6830 if (ctxt->eflags & X86_EFLAGS_RF)
6831 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
60fc3d02 6832 return 1;
ba8afb6b
GN
6833 }
6834
736c291c 6835 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
60fc3d02 6836 return 1;
1cb3f3ae 6837
7ae441ea 6838 /* this is needed for vmware backdoor interface to work since it
4d2179e1 6839 changes registers values during IO operation */
7ae441ea
GN
6840 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6841 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
dd856efa 6842 emulator_invalidate_register_cache(ctxt);
7ae441ea 6843 }
4d2179e1 6844
5cd21917 6845restart:
92daa48b
SC
6846 if (emulation_type & EMULTYPE_PF) {
6847 /* Save the faulting GPA (cr2) in the address field */
6848 ctxt->exception.address = cr2_or_gpa;
6849
6850 /* With shadow page tables, cr2 contains a GVA or nGPA. */
6851 if (vcpu->arch.mmu->direct_map) {
744e699c
SC
6852 ctxt->gpa_available = true;
6853 ctxt->gpa_val = cr2_or_gpa;
92daa48b
SC
6854 }
6855 } else {
6856 /* Sanitize the address out of an abundance of paranoia. */
6857 ctxt->exception.address = 0;
6858 }
0f89b207 6859
9d74191a 6860 r = x86_emulate_insn(ctxt);
bbd9b64e 6861
775fde86 6862 if (r == EMULATION_INTERCEPTED)
60fc3d02 6863 return 1;
775fde86 6864
d2ddd1c4 6865 if (r == EMULATION_FAILED) {
736c291c 6866 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
991eebf9 6867 emulation_type))
60fc3d02 6868 return 1;
c3cd7ffa 6869
e2366171 6870 return handle_emulation_failure(vcpu, emulation_type);
bbd9b64e
CO
6871 }
6872
9d74191a 6873 if (ctxt->have_exception) {
60fc3d02 6874 r = 1;
ef54bcfe
PB
6875 if (inject_emulated_exception(vcpu))
6876 return r;
d2ddd1c4 6877 } else if (vcpu->arch.pio.count) {
0912c977
PB
6878 if (!vcpu->arch.pio.in) {
6879 /* FIXME: return into emulator if single-stepping. */
3457e419 6880 vcpu->arch.pio.count = 0;
0912c977 6881 } else {
7ae441ea 6882 writeback = false;
716d51ab
GN
6883 vcpu->arch.complete_userspace_io = complete_emulated_pio;
6884 }
60fc3d02 6885 r = 0;
7ae441ea 6886 } else if (vcpu->mmio_needed) {
bc8a0aaf
SC
6887 ++vcpu->stat.mmio_exits;
6888
7ae441ea
GN
6889 if (!vcpu->mmio_is_write)
6890 writeback = false;
60fc3d02 6891 r = 0;
716d51ab 6892 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7ae441ea 6893 } else if (r == EMULATION_RESTART)
5cd21917 6894 goto restart;
d2ddd1c4 6895 else
60fc3d02 6896 r = 1;
f850e2e6 6897
7ae441ea 6898 if (writeback) {
afaf0b2f 6899 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
9d74191a 6900 toggle_interruptibility(vcpu, ctxt->interruptibility);
7ae441ea 6901 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
38827dbd 6902 if (!ctxt->have_exception ||
75ee23b3
SC
6903 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6904 kvm_rip_write(vcpu, ctxt->eip);
60fc3d02 6905 if (r && ctxt->tf)
120c2c4f 6906 r = kvm_vcpu_do_singlestep(vcpu);
afaf0b2f
SC
6907 if (kvm_x86_ops.update_emulated_instruction)
6908 kvm_x86_ops.update_emulated_instruction(vcpu);
38827dbd 6909 __kvm_set_rflags(vcpu, ctxt->eflags);
75ee23b3 6910 }
6addfc42
PB
6911
6912 /*
6913 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6914 * do nothing, and it will be requested again as soon as
6915 * the shadow expires. But we still need to check here,
6916 * because POPF has no interrupt shadow.
6917 */
6918 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6919 kvm_make_request(KVM_REQ_EVENT, vcpu);
7ae441ea
GN
6920 } else
6921 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
e85d28f8
GN
6922
6923 return r;
de7d789a 6924}
c60658d1
SC
6925
6926int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6927{
6928 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6929}
6930EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6931
6932int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6933 void *insn, int insn_len)
6934{
6935 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6936}
6937EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
de7d789a 6938
8764ed55
SC
6939static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6940{
6941 vcpu->arch.pio.count = 0;
6942 return 1;
6943}
6944
45def77e
SC
6945static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6946{
6947 vcpu->arch.pio.count = 0;
6948
6949 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6950 return 1;
6951
6952 return kvm_skip_emulated_instruction(vcpu);
6953}
6954
dca7f128
SC
6955static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6956 unsigned short port)
de7d789a 6957{
de3cd117 6958 unsigned long val = kvm_rax_read(vcpu);
2e3bb4d8
SC
6959 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
6960
8764ed55
SC
6961 if (ret)
6962 return ret;
45def77e 6963
8764ed55
SC
6964 /*
6965 * Workaround userspace that relies on old KVM behavior of %rip being
6966 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6967 */
6968 if (port == 0x7e &&
6969 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6970 vcpu->arch.complete_userspace_io =
6971 complete_fast_pio_out_port_0x7e;
6972 kvm_skip_emulated_instruction(vcpu);
6973 } else {
45def77e
SC
6974 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6975 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6976 }
8764ed55 6977 return 0;
de7d789a 6978}
de7d789a 6979
8370c3d0
TL
6980static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6981{
6982 unsigned long val;
6983
6984 /* We should only ever be called with arch.pio.count equal to 1 */
6985 BUG_ON(vcpu->arch.pio.count != 1);
6986
45def77e
SC
6987 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6988 vcpu->arch.pio.count = 0;
6989 return 1;
6990 }
6991
8370c3d0 6992 /* For size less than 4 we merge, else we zero extend */
de3cd117 6993 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8370c3d0
TL
6994
6995 /*
2e3bb4d8 6996 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8370c3d0
TL
6997 * the copy and tracing
6998 */
2e3bb4d8 6999 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
de3cd117 7000 kvm_rax_write(vcpu, val);
8370c3d0 7001
45def77e 7002 return kvm_skip_emulated_instruction(vcpu);
8370c3d0
TL
7003}
7004
dca7f128
SC
7005static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7006 unsigned short port)
8370c3d0
TL
7007{
7008 unsigned long val;
7009 int ret;
7010
7011 /* For size less than 4 we merge, else we zero extend */
de3cd117 7012 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8370c3d0 7013
2e3bb4d8 7014 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8370c3d0 7015 if (ret) {
de3cd117 7016 kvm_rax_write(vcpu, val);
8370c3d0
TL
7017 return ret;
7018 }
7019
45def77e 7020 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8370c3d0
TL
7021 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7022
7023 return 0;
7024}
dca7f128
SC
7025
7026int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7027{
45def77e 7028 int ret;
dca7f128 7029
dca7f128 7030 if (in)
45def77e 7031 ret = kvm_fast_pio_in(vcpu, size, port);
dca7f128 7032 else
45def77e
SC
7033 ret = kvm_fast_pio_out(vcpu, size, port);
7034 return ret && kvm_skip_emulated_instruction(vcpu);
dca7f128
SC
7035}
7036EXPORT_SYMBOL_GPL(kvm_fast_pio);
8370c3d0 7037
251a5fd6 7038static int kvmclock_cpu_down_prep(unsigned int cpu)
8cfdc000 7039{
0a3aee0d 7040 __this_cpu_write(cpu_tsc_khz, 0);
251a5fd6 7041 return 0;
8cfdc000
ZA
7042}
7043
7044static void tsc_khz_changed(void *data)
c8076604 7045{
8cfdc000
ZA
7046 struct cpufreq_freqs *freq = data;
7047 unsigned long khz = 0;
7048
7049 if (data)
7050 khz = freq->new;
7051 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7052 khz = cpufreq_quick_get(raw_smp_processor_id());
7053 if (!khz)
7054 khz = tsc_khz;
0a3aee0d 7055 __this_cpu_write(cpu_tsc_khz, khz);
c8076604
GH
7056}
7057
5fa4ec9c 7058#ifdef CONFIG_X86_64
0092e434
VK
7059static void kvm_hyperv_tsc_notifier(void)
7060{
0092e434
VK
7061 struct kvm *kvm;
7062 struct kvm_vcpu *vcpu;
7063 int cpu;
7064
0d9ce162 7065 mutex_lock(&kvm_lock);
0092e434
VK
7066 list_for_each_entry(kvm, &vm_list, vm_list)
7067 kvm_make_mclock_inprogress_request(kvm);
7068
7069 hyperv_stop_tsc_emulation();
7070
7071 /* TSC frequency always matches when on Hyper-V */
7072 for_each_present_cpu(cpu)
7073 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7074 kvm_max_guest_tsc_khz = tsc_khz;
7075
7076 list_for_each_entry(kvm, &vm_list, vm_list) {
7077 struct kvm_arch *ka = &kvm->arch;
7078
7079 spin_lock(&ka->pvclock_gtod_sync_lock);
7080
7081 pvclock_update_vm_gtod_copy(kvm);
7082
7083 kvm_for_each_vcpu(cpu, vcpu, kvm)
7084 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7085
7086 kvm_for_each_vcpu(cpu, vcpu, kvm)
7087 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7088
7089 spin_unlock(&ka->pvclock_gtod_sync_lock);
7090 }
0d9ce162 7091 mutex_unlock(&kvm_lock);
0092e434 7092}
5fa4ec9c 7093#endif
0092e434 7094
df24014a 7095static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
c8076604 7096{
c8076604
GH
7097 struct kvm *kvm;
7098 struct kvm_vcpu *vcpu;
7099 int i, send_ipi = 0;
7100
8cfdc000
ZA
7101 /*
7102 * We allow guests to temporarily run on slowing clocks,
7103 * provided we notify them after, or to run on accelerating
7104 * clocks, provided we notify them before. Thus time never
7105 * goes backwards.
7106 *
7107 * However, we have a problem. We can't atomically update
7108 * the frequency of a given CPU from this function; it is
7109 * merely a notifier, which can be called from any CPU.
7110 * Changing the TSC frequency at arbitrary points in time
7111 * requires a recomputation of local variables related to
7112 * the TSC for each VCPU. We must flag these local variables
7113 * to be updated and be sure the update takes place with the
7114 * new frequency before any guests proceed.
7115 *
7116 * Unfortunately, the combination of hotplug CPU and frequency
7117 * change creates an intractable locking scenario; the order
7118 * of when these callouts happen is undefined with respect to
7119 * CPU hotplug, and they can race with each other. As such,
7120 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7121 * undefined; you can actually have a CPU frequency change take
7122 * place in between the computation of X and the setting of the
7123 * variable. To protect against this problem, all updates of
7124 * the per_cpu tsc_khz variable are done in an interrupt
7125 * protected IPI, and all callers wishing to update the value
7126 * must wait for a synchronous IPI to complete (which is trivial
7127 * if the caller is on the CPU already). This establishes the
7128 * necessary total order on variable updates.
7129 *
7130 * Note that because a guest time update may take place
7131 * anytime after the setting of the VCPU's request bit, the
7132 * correct TSC value must be set before the request. However,
7133 * to ensure the update actually makes it to any guest which
7134 * starts running in hardware virtualization between the set
7135 * and the acquisition of the spinlock, we must also ping the
7136 * CPU after setting the request bit.
7137 *
7138 */
7139
df24014a 7140 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
c8076604 7141
0d9ce162 7142 mutex_lock(&kvm_lock);
c8076604 7143 list_for_each_entry(kvm, &vm_list, vm_list) {
988a2cae 7144 kvm_for_each_vcpu(i, vcpu, kvm) {
df24014a 7145 if (vcpu->cpu != cpu)
c8076604 7146 continue;
c285545f 7147 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
0d9ce162 7148 if (vcpu->cpu != raw_smp_processor_id())
8cfdc000 7149 send_ipi = 1;
c8076604
GH
7150 }
7151 }
0d9ce162 7152 mutex_unlock(&kvm_lock);
c8076604
GH
7153
7154 if (freq->old < freq->new && send_ipi) {
7155 /*
7156 * We upscale the frequency. Must make the guest
7157 * doesn't see old kvmclock values while running with
7158 * the new frequency, otherwise we risk the guest sees
7159 * time go backwards.
7160 *
7161 * In case we update the frequency for another cpu
7162 * (which might be in guest context) send an interrupt
7163 * to kick the cpu out of guest context. Next time
7164 * guest context is entered kvmclock will be updated,
7165 * so the guest will not see stale values.
7166 */
df24014a 7167 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
c8076604 7168 }
df24014a
VK
7169}
7170
7171static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7172 void *data)
7173{
7174 struct cpufreq_freqs *freq = data;
7175 int cpu;
7176
7177 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7178 return 0;
7179 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7180 return 0;
7181
7182 for_each_cpu(cpu, freq->policy->cpus)
7183 __kvmclock_cpufreq_notifier(freq, cpu);
7184
c8076604
GH
7185 return 0;
7186}
7187
7188static struct notifier_block kvmclock_cpufreq_notifier_block = {
8cfdc000
ZA
7189 .notifier_call = kvmclock_cpufreq_notifier
7190};
7191
251a5fd6 7192static int kvmclock_cpu_online(unsigned int cpu)
8cfdc000 7193{
251a5fd6
SAS
7194 tsc_khz_changed(NULL);
7195 return 0;
8cfdc000
ZA
7196}
7197
b820cc0c
ZA
7198static void kvm_timer_init(void)
7199{
c285545f 7200 max_tsc_khz = tsc_khz;
460dd42e 7201
b820cc0c 7202 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
c285545f 7203#ifdef CONFIG_CPU_FREQ
aaec7c03 7204 struct cpufreq_policy *policy;
758f588d
BP
7205 int cpu;
7206
3e26f230 7207 cpu = get_cpu();
aaec7c03 7208 policy = cpufreq_cpu_get(cpu);
9a11997e
WL
7209 if (policy) {
7210 if (policy->cpuinfo.max_freq)
7211 max_tsc_khz = policy->cpuinfo.max_freq;
7212 cpufreq_cpu_put(policy);
7213 }
3e26f230 7214 put_cpu();
c285545f 7215#endif
b820cc0c
ZA
7216 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7217 CPUFREQ_TRANSITION_NOTIFIER);
7218 }
460dd42e 7219
73c1b41e 7220 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
251a5fd6 7221 kvmclock_cpu_online, kvmclock_cpu_down_prep);
b820cc0c
ZA
7222}
7223
dd60d217
AK
7224DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7225EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
ff9d07a0 7226
f5132b01 7227int kvm_is_in_guest(void)
ff9d07a0 7228{
086c9855 7229 return __this_cpu_read(current_vcpu) != NULL;
ff9d07a0
ZY
7230}
7231
7232static int kvm_is_user_mode(void)
7233{
7234 int user_mode = 3;
dcf46b94 7235
086c9855 7236 if (__this_cpu_read(current_vcpu))
afaf0b2f 7237 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
dcf46b94 7238
ff9d07a0
ZY
7239 return user_mode != 0;
7240}
7241
7242static unsigned long kvm_get_guest_ip(void)
7243{
7244 unsigned long ip = 0;
dcf46b94 7245
086c9855
AS
7246 if (__this_cpu_read(current_vcpu))
7247 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
dcf46b94 7248
ff9d07a0
ZY
7249 return ip;
7250}
7251
8479e04e
LK
7252static void kvm_handle_intel_pt_intr(void)
7253{
7254 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7255
7256 kvm_make_request(KVM_REQ_PMI, vcpu);
7257 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7258 (unsigned long *)&vcpu->arch.pmu.global_status);
7259}
7260
ff9d07a0
ZY
7261static struct perf_guest_info_callbacks kvm_guest_cbs = {
7262 .is_in_guest = kvm_is_in_guest,
7263 .is_user_mode = kvm_is_user_mode,
7264 .get_guest_ip = kvm_get_guest_ip,
8479e04e 7265 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
ff9d07a0
ZY
7266};
7267
16e8d74d
MT
7268#ifdef CONFIG_X86_64
7269static void pvclock_gtod_update_fn(struct work_struct *work)
7270{
d828199e
MT
7271 struct kvm *kvm;
7272
7273 struct kvm_vcpu *vcpu;
7274 int i;
7275
0d9ce162 7276 mutex_lock(&kvm_lock);
d828199e
MT
7277 list_for_each_entry(kvm, &vm_list, vm_list)
7278 kvm_for_each_vcpu(i, vcpu, kvm)
105b21bb 7279 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
d828199e 7280 atomic_set(&kvm_guest_has_master_clock, 0);
0d9ce162 7281 mutex_unlock(&kvm_lock);
16e8d74d
MT
7282}
7283
7284static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7285
7286/*
7287 * Notification about pvclock gtod data update.
7288 */
7289static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7290 void *priv)
7291{
7292 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7293 struct timekeeper *tk = priv;
7294
7295 update_pvclock_gtod(tk);
7296
7297 /* disable master clock if host does not trust, or does not
b0c39dc6 7298 * use, TSC based clocksource.
16e8d74d 7299 */
b0c39dc6 7300 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
16e8d74d
MT
7301 atomic_read(&kvm_guest_has_master_clock) != 0)
7302 queue_work(system_long_wq, &pvclock_gtod_work);
7303
7304 return 0;
7305}
7306
7307static struct notifier_block pvclock_gtod_notifier = {
7308 .notifier_call = pvclock_gtod_notify,
7309};
7310#endif
7311
f8c16bba 7312int kvm_arch_init(void *opaque)
043405e1 7313{
d008dfdb 7314 struct kvm_x86_init_ops *ops = opaque;
b820cc0c 7315 int r;
f8c16bba 7316
afaf0b2f 7317 if (kvm_x86_ops.hardware_enable) {
f8c16bba 7318 printk(KERN_ERR "kvm: already loaded the other module\n");
56c6d28a
ZX
7319 r = -EEXIST;
7320 goto out;
f8c16bba
ZX
7321 }
7322
7323 if (!ops->cpu_has_kvm_support()) {
ef935c25 7324 pr_err_ratelimited("kvm: no hardware support\n");
56c6d28a
ZX
7325 r = -EOPNOTSUPP;
7326 goto out;
f8c16bba
ZX
7327 }
7328 if (ops->disabled_by_bios()) {
ef935c25 7329 pr_err_ratelimited("kvm: disabled by bios\n");
56c6d28a
ZX
7330 r = -EOPNOTSUPP;
7331 goto out;
f8c16bba
ZX
7332 }
7333
b666a4b6
MO
7334 /*
7335 * KVM explicitly assumes that the guest has an FPU and
7336 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7337 * vCPU's FPU state as a fxregs_state struct.
7338 */
7339 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7340 printk(KERN_ERR "kvm: inadequate fpu\n");
7341 r = -EOPNOTSUPP;
7342 goto out;
7343 }
7344
013f6a5d 7345 r = -ENOMEM;
ed8e4812 7346 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
b666a4b6
MO
7347 __alignof__(struct fpu), SLAB_ACCOUNT,
7348 NULL);
7349 if (!x86_fpu_cache) {
7350 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7351 goto out;
7352 }
7353
c9b8b07c
SC
7354 x86_emulator_cache = kvm_alloc_emulator_cache();
7355 if (!x86_emulator_cache) {
7356 pr_err("kvm: failed to allocate cache for x86 emulator\n");
7357 goto out_free_x86_fpu_cache;
7358 }
7359
013f6a5d
MT
7360 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7361 if (!shared_msrs) {
7362 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
c9b8b07c 7363 goto out_free_x86_emulator_cache;
013f6a5d
MT
7364 }
7365
97db56ce
AK
7366 r = kvm_mmu_module_init();
7367 if (r)
013f6a5d 7368 goto out_free_percpu;
97db56ce 7369
7b52345e 7370 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
ffb128c8 7371 PT_DIRTY_MASK, PT64_NX_MASK, 0,
d0ec49d4 7372 PT_PRESENT_MASK, 0, sme_me_mask);
b820cc0c 7373 kvm_timer_init();
c8076604 7374
ff9d07a0
ZY
7375 perf_register_guest_info_callbacks(&kvm_guest_cbs);
7376
cfc48181 7377 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
2acf923e 7378 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
cfc48181
SC
7379 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7380 }
2acf923e 7381
c5cc421b 7382 kvm_lapic_init();
0c5f81da
WL
7383 if (pi_inject_timer == -1)
7384 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
16e8d74d
MT
7385#ifdef CONFIG_X86_64
7386 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
0092e434 7387
5fa4ec9c 7388 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
0092e434 7389 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
16e8d74d
MT
7390#endif
7391
f8c16bba 7392 return 0;
56c6d28a 7393
013f6a5d
MT
7394out_free_percpu:
7395 free_percpu(shared_msrs);
c9b8b07c
SC
7396out_free_x86_emulator_cache:
7397 kmem_cache_destroy(x86_emulator_cache);
b666a4b6
MO
7398out_free_x86_fpu_cache:
7399 kmem_cache_destroy(x86_fpu_cache);
56c6d28a 7400out:
56c6d28a 7401 return r;
043405e1 7402}
8776e519 7403
f8c16bba
ZX
7404void kvm_arch_exit(void)
7405{
0092e434 7406#ifdef CONFIG_X86_64
5fa4ec9c 7407 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
0092e434
VK
7408 clear_hv_tscchange_cb();
7409#endif
cef84c30 7410 kvm_lapic_exit();
ff9d07a0
ZY
7411 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7412
888d256e
JK
7413 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7414 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7415 CPUFREQ_TRANSITION_NOTIFIER);
251a5fd6 7416 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
16e8d74d
MT
7417#ifdef CONFIG_X86_64
7418 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7419#endif
afaf0b2f 7420 kvm_x86_ops.hardware_enable = NULL;
56c6d28a 7421 kvm_mmu_module_exit();
013f6a5d 7422 free_percpu(shared_msrs);
b666a4b6 7423 kmem_cache_destroy(x86_fpu_cache);
56c6d28a 7424}
f8c16bba 7425
5cb56059 7426int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8776e519
HB
7427{
7428 ++vcpu->stat.halt_exits;
35754c98 7429 if (lapic_in_kernel(vcpu)) {
a4535290 7430 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
8776e519
HB
7431 return 1;
7432 } else {
7433 vcpu->run->exit_reason = KVM_EXIT_HLT;
7434 return 0;
7435 }
7436}
5cb56059
JS
7437EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7438
7439int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7440{
6affcbed
KH
7441 int ret = kvm_skip_emulated_instruction(vcpu);
7442 /*
7443 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7444 * KVM_EXIT_DEBUG here.
7445 */
7446 return kvm_vcpu_halt(vcpu) && ret;
5cb56059 7447}
8776e519
HB
7448EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7449
8ef81a9a 7450#ifdef CONFIG_X86_64
55dd00a7
MT
7451static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7452 unsigned long clock_type)
7453{
7454 struct kvm_clock_pairing clock_pairing;
899a31f5 7455 struct timespec64 ts;
80fbd89c 7456 u64 cycle;
55dd00a7
MT
7457 int ret;
7458
7459 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7460 return -KVM_EOPNOTSUPP;
7461
7462 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7463 return -KVM_EOPNOTSUPP;
7464
7465 clock_pairing.sec = ts.tv_sec;
7466 clock_pairing.nsec = ts.tv_nsec;
7467 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7468 clock_pairing.flags = 0;
bcbfbd8e 7469 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
55dd00a7
MT
7470
7471 ret = 0;
7472 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7473 sizeof(struct kvm_clock_pairing)))
7474 ret = -KVM_EFAULT;
7475
7476 return ret;
7477}
8ef81a9a 7478#endif
55dd00a7 7479
6aef266c
SV
7480/*
7481 * kvm_pv_kick_cpu_op: Kick a vcpu.
7482 *
7483 * @apicid - apicid of vcpu to be kicked.
7484 */
7485static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7486{
24d2166b 7487 struct kvm_lapic_irq lapic_irq;
6aef266c 7488
150a84fe 7489 lapic_irq.shorthand = APIC_DEST_NOSHORT;
c96001c5 7490 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
ebd28fcb 7491 lapic_irq.level = 0;
24d2166b 7492 lapic_irq.dest_id = apicid;
93bbf0b8 7493 lapic_irq.msi_redir_hint = false;
6aef266c 7494
24d2166b 7495 lapic_irq.delivery_mode = APIC_DM_REMRD;
795a149e 7496 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6aef266c
SV
7497}
7498
4e19c36f
SS
7499bool kvm_apicv_activated(struct kvm *kvm)
7500{
7501 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
7502}
7503EXPORT_SYMBOL_GPL(kvm_apicv_activated);
7504
7505void kvm_apicv_init(struct kvm *kvm, bool enable)
7506{
7507 if (enable)
7508 clear_bit(APICV_INHIBIT_REASON_DISABLE,
7509 &kvm->arch.apicv_inhibit_reasons);
7510 else
7511 set_bit(APICV_INHIBIT_REASON_DISABLE,
7512 &kvm->arch.apicv_inhibit_reasons);
7513}
7514EXPORT_SYMBOL_GPL(kvm_apicv_init);
7515
71506297
WL
7516static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7517{
7518 struct kvm_vcpu *target = NULL;
7519 struct kvm_apic_map *map;
7520
7521 rcu_read_lock();
7522 map = rcu_dereference(kvm->arch.apic_map);
7523
7524 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7525 target = map->phys_map[dest_id]->vcpu;
7526
7527 rcu_read_unlock();
7528
266e85a5 7529 if (target && READ_ONCE(target->ready))
71506297
WL
7530 kvm_vcpu_yield_to(target);
7531}
7532
8776e519
HB
7533int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7534{
7535 unsigned long nr, a0, a1, a2, a3, ret;
6356ee0c 7536 int op_64_bit;
8776e519 7537
696ca779
RK
7538 if (kvm_hv_hypercall_enabled(vcpu->kvm))
7539 return kvm_hv_hypercall(vcpu);
55cd8e5a 7540
de3cd117
SC
7541 nr = kvm_rax_read(vcpu);
7542 a0 = kvm_rbx_read(vcpu);
7543 a1 = kvm_rcx_read(vcpu);
7544 a2 = kvm_rdx_read(vcpu);
7545 a3 = kvm_rsi_read(vcpu);
8776e519 7546
229456fc 7547 trace_kvm_hypercall(nr, a0, a1, a2, a3);
2714d1d3 7548
a449c7aa
NA
7549 op_64_bit = is_64_bit_mode(vcpu);
7550 if (!op_64_bit) {
8776e519
HB
7551 nr &= 0xFFFFFFFF;
7552 a0 &= 0xFFFFFFFF;
7553 a1 &= 0xFFFFFFFF;
7554 a2 &= 0xFFFFFFFF;
7555 a3 &= 0xFFFFFFFF;
7556 }
7557
afaf0b2f 7558 if (kvm_x86_ops.get_cpl(vcpu) != 0) {
07708c4a 7559 ret = -KVM_EPERM;
696ca779 7560 goto out;
07708c4a
JK
7561 }
7562
8776e519 7563 switch (nr) {
b93463aa
AK
7564 case KVM_HC_VAPIC_POLL_IRQ:
7565 ret = 0;
7566 break;
6aef266c
SV
7567 case KVM_HC_KICK_CPU:
7568 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
266e85a5 7569 kvm_sched_yield(vcpu->kvm, a1);
6aef266c
SV
7570 ret = 0;
7571 break;
8ef81a9a 7572#ifdef CONFIG_X86_64
55dd00a7
MT
7573 case KVM_HC_CLOCK_PAIRING:
7574 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7575 break;
1ed199a4 7576#endif
4180bf1b
WL
7577 case KVM_HC_SEND_IPI:
7578 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7579 break;
71506297
WL
7580 case KVM_HC_SCHED_YIELD:
7581 kvm_sched_yield(vcpu->kvm, a0);
7582 ret = 0;
7583 break;
8776e519
HB
7584 default:
7585 ret = -KVM_ENOSYS;
7586 break;
7587 }
696ca779 7588out:
a449c7aa
NA
7589 if (!op_64_bit)
7590 ret = (u32)ret;
de3cd117 7591 kvm_rax_write(vcpu, ret);
6356ee0c 7592
f11c3a8d 7593 ++vcpu->stat.hypercalls;
6356ee0c 7594 return kvm_skip_emulated_instruction(vcpu);
8776e519
HB
7595}
7596EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7597
b6785def 7598static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8776e519 7599{
d6aa1000 7600 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8776e519 7601 char instruction[3];
5fdbf976 7602 unsigned long rip = kvm_rip_read(vcpu);
8776e519 7603
afaf0b2f 7604 kvm_x86_ops.patch_hypercall(vcpu, instruction);
8776e519 7605
ce2e852e
DV
7606 return emulator_write_emulated(ctxt, rip, instruction, 3,
7607 &ctxt->exception);
8776e519
HB
7608}
7609
851ba692 7610static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
b6c7a5dc 7611{
782d422b
MG
7612 return vcpu->run->request_interrupt_window &&
7613 likely(!pic_in_kernel(vcpu->kvm));
b6c7a5dc
HB
7614}
7615
851ba692 7616static void post_kvm_run_save(struct kvm_vcpu *vcpu)
b6c7a5dc 7617{
851ba692
AK
7618 struct kvm_run *kvm_run = vcpu->run;
7619
91586a3b 7620 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
f077825a 7621 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
2d3ad1f4 7622 kvm_run->cr8 = kvm_get_cr8(vcpu);
b6c7a5dc 7623 kvm_run->apic_base = kvm_get_apic_base(vcpu);
127a457a
MG
7624 kvm_run->ready_for_interrupt_injection =
7625 pic_in_kernel(vcpu->kvm) ||
782d422b 7626 kvm_vcpu_ready_for_interrupt_injection(vcpu);
b6c7a5dc
HB
7627}
7628
95ba8273
GN
7629static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7630{
7631 int max_irr, tpr;
7632
afaf0b2f 7633 if (!kvm_x86_ops.update_cr8_intercept)
95ba8273
GN
7634 return;
7635
bce87cce 7636 if (!lapic_in_kernel(vcpu))
88c808fd
AK
7637 return;
7638
d62caabb
AS
7639 if (vcpu->arch.apicv_active)
7640 return;
7641
8db3baa2
GN
7642 if (!vcpu->arch.apic->vapic_addr)
7643 max_irr = kvm_lapic_find_highest_irr(vcpu);
7644 else
7645 max_irr = -1;
95ba8273
GN
7646
7647 if (max_irr != -1)
7648 max_irr >>= 4;
7649
7650 tpr = kvm_lapic_get_cr8(vcpu);
7651
afaf0b2f 7652 kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
95ba8273
GN
7653}
7654
a1c77abb 7655static int inject_pending_event(struct kvm_vcpu *vcpu)
95ba8273 7656{
b6b8a145
JK
7657 int r;
7658
95ba8273 7659 /* try to reinject previous events if any */
664f8e26 7660
1a680e35 7661 if (vcpu->arch.exception.injected)
afaf0b2f 7662 kvm_x86_ops.queue_exception(vcpu);
664f8e26 7663 /*
a042c26f
LA
7664 * Do not inject an NMI or interrupt if there is a pending
7665 * exception. Exceptions and interrupts are recognized at
7666 * instruction boundaries, i.e. the start of an instruction.
7667 * Trap-like exceptions, e.g. #DB, have higher priority than
7668 * NMIs and interrupts, i.e. traps are recognized before an
7669 * NMI/interrupt that's pending on the same instruction.
7670 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7671 * priority, but are only generated (pended) during instruction
7672 * execution, i.e. a pending fault-like exception means the
7673 * fault occurred on the *previous* instruction and must be
7674 * serviced prior to recognizing any new events in order to
7675 * fully complete the previous instruction.
664f8e26 7676 */
1a680e35
LA
7677 else if (!vcpu->arch.exception.pending) {
7678 if (vcpu->arch.nmi_injected)
afaf0b2f 7679 kvm_x86_ops.set_nmi(vcpu);
1a680e35 7680 else if (vcpu->arch.interrupt.injected)
afaf0b2f 7681 kvm_x86_ops.set_irq(vcpu);
664f8e26
WL
7682 }
7683
1a680e35
LA
7684 /*
7685 * Call check_nested_events() even if we reinjected a previous event
7686 * in order for caller to determine if it should require immediate-exit
7687 * from L2 to L1 due to pending L1 events which require exit
7688 * from L2 to L1.
7689 */
afaf0b2f
SC
7690 if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events) {
7691 r = kvm_x86_ops.check_nested_events(vcpu);
664f8e26
WL
7692 if (r != 0)
7693 return r;
7694 }
7695
7696 /* try to inject new event if pending */
b59bb7bd 7697 if (vcpu->arch.exception.pending) {
5c1c85d0
AK
7698 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7699 vcpu->arch.exception.has_error_code,
7700 vcpu->arch.exception.error_code);
d6e8c854 7701
1a680e35 7702 WARN_ON_ONCE(vcpu->arch.exception.injected);
664f8e26
WL
7703 vcpu->arch.exception.pending = false;
7704 vcpu->arch.exception.injected = true;
7705
d6e8c854
NA
7706 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7707 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7708 X86_EFLAGS_RF);
7709
f10c729f
JM
7710 if (vcpu->arch.exception.nr == DB_VECTOR) {
7711 /*
7712 * This code assumes that nSVM doesn't use
7713 * check_nested_events(). If it does, the
7714 * DR6/DR7 changes should happen before L1
7715 * gets a #VMEXIT for an intercepted #DB in
7716 * L2. (Under VMX, on the other hand, the
7717 * DR6/DR7 changes should not happen in the
7718 * event of a VM-exit to L1 for an intercepted
7719 * #DB in L2.)
7720 */
7721 kvm_deliver_exception_payload(vcpu);
7722 if (vcpu->arch.dr7 & DR7_GD) {
7723 vcpu->arch.dr7 &= ~DR7_GD;
7724 kvm_update_dr7(vcpu);
7725 }
6bdf0662
NA
7726 }
7727
afaf0b2f 7728 kvm_x86_ops.queue_exception(vcpu);
1a680e35
LA
7729 }
7730
7731 /* Don't consider new event if we re-injected an event */
7732 if (kvm_event_needs_reinjection(vcpu))
7733 return 0;
7734
7735 if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
afaf0b2f 7736 kvm_x86_ops.smi_allowed(vcpu)) {
c43203ca 7737 vcpu->arch.smi_pending = false;
52797bf9 7738 ++vcpu->arch.smi_count;
ee2cd4b7 7739 enter_smm(vcpu);
afaf0b2f 7740 } else if (vcpu->arch.nmi_pending && kvm_x86_ops.nmi_allowed(vcpu)) {
321c5658
YS
7741 --vcpu->arch.nmi_pending;
7742 vcpu->arch.nmi_injected = true;
afaf0b2f 7743 kvm_x86_ops.set_nmi(vcpu);
c7c9c56c 7744 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
9242b5b6
BD
7745 /*
7746 * Because interrupts can be injected asynchronously, we are
7747 * calling check_nested_events again here to avoid a race condition.
7748 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7749 * proposal and current concerns. Perhaps we should be setting
7750 * KVM_REQ_EVENT only on certain events and not unconditionally?
7751 */
afaf0b2f
SC
7752 if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events) {
7753 r = kvm_x86_ops.check_nested_events(vcpu);
9242b5b6
BD
7754 if (r != 0)
7755 return r;
7756 }
afaf0b2f 7757 if (kvm_x86_ops.interrupt_allowed(vcpu)) {
66fd3f7f
GN
7758 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7759 false);
afaf0b2f 7760 kvm_x86_ops.set_irq(vcpu);
95ba8273
GN
7761 }
7762 }
ee2cd4b7 7763
b6b8a145 7764 return 0;
95ba8273
GN
7765}
7766
7460fb4a
AK
7767static void process_nmi(struct kvm_vcpu *vcpu)
7768{
7769 unsigned limit = 2;
7770
7771 /*
7772 * x86 is limited to one NMI running, and one NMI pending after it.
7773 * If an NMI is already in progress, limit further NMIs to just one.
7774 * Otherwise, allow two (and we'll inject the first one immediately).
7775 */
afaf0b2f 7776 if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7460fb4a
AK
7777 limit = 1;
7778
7779 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7780 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7781 kvm_make_request(KVM_REQ_EVENT, vcpu);
7782}
7783
ee2cd4b7 7784static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
660a5d51
PB
7785{
7786 u32 flags = 0;
7787 flags |= seg->g << 23;
7788 flags |= seg->db << 22;
7789 flags |= seg->l << 21;
7790 flags |= seg->avl << 20;
7791 flags |= seg->present << 15;
7792 flags |= seg->dpl << 13;
7793 flags |= seg->s << 12;
7794 flags |= seg->type << 8;
7795 return flags;
7796}
7797
ee2cd4b7 7798static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
660a5d51
PB
7799{
7800 struct kvm_segment seg;
7801 int offset;
7802
7803 kvm_get_segment(vcpu, &seg, n);
7804 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7805
7806 if (n < 3)
7807 offset = 0x7f84 + n * 12;
7808 else
7809 offset = 0x7f2c + (n - 3) * 12;
7810
7811 put_smstate(u32, buf, offset + 8, seg.base);
7812 put_smstate(u32, buf, offset + 4, seg.limit);
ee2cd4b7 7813 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
660a5d51
PB
7814}
7815
efbb288a 7816#ifdef CONFIG_X86_64
ee2cd4b7 7817static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
660a5d51
PB
7818{
7819 struct kvm_segment seg;
7820 int offset;
7821 u16 flags;
7822
7823 kvm_get_segment(vcpu, &seg, n);
7824 offset = 0x7e00 + n * 16;
7825
ee2cd4b7 7826 flags = enter_smm_get_segment_flags(&seg) >> 8;
660a5d51
PB
7827 put_smstate(u16, buf, offset, seg.selector);
7828 put_smstate(u16, buf, offset + 2, flags);
7829 put_smstate(u32, buf, offset + 4, seg.limit);
7830 put_smstate(u64, buf, offset + 8, seg.base);
7831}
efbb288a 7832#endif
660a5d51 7833
ee2cd4b7 7834static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
660a5d51
PB
7835{
7836 struct desc_ptr dt;
7837 struct kvm_segment seg;
7838 unsigned long val;
7839 int i;
7840
7841 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7842 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7843 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7844 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7845
7846 for (i = 0; i < 8; i++)
7847 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7848
7849 kvm_get_dr(vcpu, 6, &val);
7850 put_smstate(u32, buf, 0x7fcc, (u32)val);
7851 kvm_get_dr(vcpu, 7, &val);
7852 put_smstate(u32, buf, 0x7fc8, (u32)val);
7853
7854 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7855 put_smstate(u32, buf, 0x7fc4, seg.selector);
7856 put_smstate(u32, buf, 0x7f64, seg.base);
7857 put_smstate(u32, buf, 0x7f60, seg.limit);
ee2cd4b7 7858 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
660a5d51
PB
7859
7860 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7861 put_smstate(u32, buf, 0x7fc0, seg.selector);
7862 put_smstate(u32, buf, 0x7f80, seg.base);
7863 put_smstate(u32, buf, 0x7f7c, seg.limit);
ee2cd4b7 7864 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
660a5d51 7865
afaf0b2f 7866 kvm_x86_ops.get_gdt(vcpu, &dt);
660a5d51
PB
7867 put_smstate(u32, buf, 0x7f74, dt.address);
7868 put_smstate(u32, buf, 0x7f70, dt.size);
7869
afaf0b2f 7870 kvm_x86_ops.get_idt(vcpu, &dt);
660a5d51
PB
7871 put_smstate(u32, buf, 0x7f58, dt.address);
7872 put_smstate(u32, buf, 0x7f54, dt.size);
7873
7874 for (i = 0; i < 6; i++)
ee2cd4b7 7875 enter_smm_save_seg_32(vcpu, buf, i);
660a5d51
PB
7876
7877 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7878
7879 /* revision id */
7880 put_smstate(u32, buf, 0x7efc, 0x00020000);
7881 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7882}
7883
b68f3cc7 7884#ifdef CONFIG_X86_64
ee2cd4b7 7885static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
660a5d51 7886{
660a5d51
PB
7887 struct desc_ptr dt;
7888 struct kvm_segment seg;
7889 unsigned long val;
7890 int i;
7891
7892 for (i = 0; i < 16; i++)
7893 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7894
7895 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7896 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7897
7898 kvm_get_dr(vcpu, 6, &val);
7899 put_smstate(u64, buf, 0x7f68, val);
7900 kvm_get_dr(vcpu, 7, &val);
7901 put_smstate(u64, buf, 0x7f60, val);
7902
7903 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7904 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7905 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7906
7907 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7908
7909 /* revision id */
7910 put_smstate(u32, buf, 0x7efc, 0x00020064);
7911
7912 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7913
7914 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7915 put_smstate(u16, buf, 0x7e90, seg.selector);
ee2cd4b7 7916 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
660a5d51
PB
7917 put_smstate(u32, buf, 0x7e94, seg.limit);
7918 put_smstate(u64, buf, 0x7e98, seg.base);
7919
afaf0b2f 7920 kvm_x86_ops.get_idt(vcpu, &dt);
660a5d51
PB
7921 put_smstate(u32, buf, 0x7e84, dt.size);
7922 put_smstate(u64, buf, 0x7e88, dt.address);
7923
7924 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7925 put_smstate(u16, buf, 0x7e70, seg.selector);
ee2cd4b7 7926 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
660a5d51
PB
7927 put_smstate(u32, buf, 0x7e74, seg.limit);
7928 put_smstate(u64, buf, 0x7e78, seg.base);
7929
afaf0b2f 7930 kvm_x86_ops.get_gdt(vcpu, &dt);
660a5d51
PB
7931 put_smstate(u32, buf, 0x7e64, dt.size);
7932 put_smstate(u64, buf, 0x7e68, dt.address);
7933
7934 for (i = 0; i < 6; i++)
ee2cd4b7 7935 enter_smm_save_seg_64(vcpu, buf, i);
660a5d51 7936}
b68f3cc7 7937#endif
660a5d51 7938
ee2cd4b7 7939static void enter_smm(struct kvm_vcpu *vcpu)
64d60670 7940{
660a5d51 7941 struct kvm_segment cs, ds;
18c3626e 7942 struct desc_ptr dt;
660a5d51
PB
7943 char buf[512];
7944 u32 cr0;
7945
660a5d51 7946 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
660a5d51 7947 memset(buf, 0, 512);
b68f3cc7 7948#ifdef CONFIG_X86_64
d6321d49 7949 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
ee2cd4b7 7950 enter_smm_save_state_64(vcpu, buf);
660a5d51 7951 else
b68f3cc7 7952#endif
ee2cd4b7 7953 enter_smm_save_state_32(vcpu, buf);
660a5d51 7954
0234bf88
LP
7955 /*
7956 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7957 * vCPU state (e.g. leave guest mode) after we've saved the state into
7958 * the SMM state-save area.
7959 */
afaf0b2f 7960 kvm_x86_ops.pre_enter_smm(vcpu, buf);
0234bf88
LP
7961
7962 vcpu->arch.hflags |= HF_SMM_MASK;
54bf36aa 7963 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
660a5d51 7964
afaf0b2f 7965 if (kvm_x86_ops.get_nmi_mask(vcpu))
660a5d51
PB
7966 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7967 else
afaf0b2f 7968 kvm_x86_ops.set_nmi_mask(vcpu, true);
660a5d51
PB
7969
7970 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7971 kvm_rip_write(vcpu, 0x8000);
7972
7973 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
afaf0b2f 7974 kvm_x86_ops.set_cr0(vcpu, cr0);
660a5d51
PB
7975 vcpu->arch.cr0 = cr0;
7976
afaf0b2f 7977 kvm_x86_ops.set_cr4(vcpu, 0);
660a5d51 7978
18c3626e
PB
7979 /* Undocumented: IDT limit is set to zero on entry to SMM. */
7980 dt.address = dt.size = 0;
afaf0b2f 7981 kvm_x86_ops.set_idt(vcpu, &dt);
18c3626e 7982
660a5d51
PB
7983 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7984
7985 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7986 cs.base = vcpu->arch.smbase;
7987
7988 ds.selector = 0;
7989 ds.base = 0;
7990
7991 cs.limit = ds.limit = 0xffffffff;
7992 cs.type = ds.type = 0x3;
7993 cs.dpl = ds.dpl = 0;
7994 cs.db = ds.db = 0;
7995 cs.s = ds.s = 1;
7996 cs.l = ds.l = 0;
7997 cs.g = ds.g = 1;
7998 cs.avl = ds.avl = 0;
7999 cs.present = ds.present = 1;
8000 cs.unusable = ds.unusable = 0;
8001 cs.padding = ds.padding = 0;
8002
8003 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8004 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8005 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8006 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8007 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8008 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8009
b68f3cc7 8010#ifdef CONFIG_X86_64
d6321d49 8011 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
afaf0b2f 8012 kvm_x86_ops.set_efer(vcpu, 0);
b68f3cc7 8013#endif
660a5d51
PB
8014
8015 kvm_update_cpuid(vcpu);
8016 kvm_mmu_reset_context(vcpu);
64d60670
PB
8017}
8018
ee2cd4b7 8019static void process_smi(struct kvm_vcpu *vcpu)
c43203ca
PB
8020{
8021 vcpu->arch.smi_pending = true;
8022 kvm_make_request(KVM_REQ_EVENT, vcpu);
8023}
8024
7ee30bc1
NNL
8025void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8026 unsigned long *vcpu_bitmap)
8027{
8028 cpumask_var_t cpus;
7ee30bc1
NNL
8029
8030 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8031
db5a95ec 8032 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
54163a34 8033 NULL, vcpu_bitmap, cpus);
7ee30bc1
NNL
8034
8035 free_cpumask_var(cpus);
8036}
8037
2860c4b1
PB
8038void kvm_make_scan_ioapic_request(struct kvm *kvm)
8039{
8040 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8041}
8042
8df14af4
SS
8043void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8044{
8045 if (!lapic_in_kernel(vcpu))
8046 return;
8047
8048 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8049 kvm_apic_update_apicv(vcpu);
afaf0b2f 8050 kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8df14af4
SS
8051}
8052EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8053
8054/*
8055 * NOTE: Do not hold any lock prior to calling this.
8056 *
8057 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8058 * locked, because it calls __x86_set_memory_region() which does
8059 * synchronize_srcu(&kvm->srcu).
8060 */
8061void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8062{
8e205a6b
PB
8063 unsigned long old, new, expected;
8064
afaf0b2f
SC
8065 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8066 !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
ef8efd7a
SS
8067 return;
8068
8e205a6b
PB
8069 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8070 do {
8071 expected = new = old;
8072 if (activate)
8073 __clear_bit(bit, &new);
8074 else
8075 __set_bit(bit, &new);
8076 if (new == old)
8077 break;
8078 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8079 } while (old != expected);
8080
8081 if (!!old == !!new)
8082 return;
8df14af4 8083
24bbf74c 8084 trace_kvm_apicv_update_request(activate, bit);
afaf0b2f
SC
8085 if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8086 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
8df14af4
SS
8087 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
8088}
8089EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8090
3d81bc7e 8091static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
c7c9c56c 8092{
dcbd3e49 8093 if (!kvm_apic_present(vcpu))
3d81bc7e 8094 return;
c7c9c56c 8095
6308630b 8096 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
c7c9c56c 8097
b053b2ae 8098 if (irqchip_split(vcpu->kvm))
6308630b 8099 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
db2bdcbb 8100 else {
fa59cc00 8101 if (vcpu->arch.apicv_active)
afaf0b2f 8102 kvm_x86_ops.sync_pir_to_irr(vcpu);
e97f852f
WL
8103 if (ioapic_in_kernel(vcpu->kvm))
8104 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
db2bdcbb 8105 }
e40ff1d6
LA
8106
8107 if (is_guest_mode(vcpu))
8108 vcpu->arch.load_eoi_exitmap_pending = true;
8109 else
8110 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8111}
8112
8113static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8114{
8115 u64 eoi_exit_bitmap[4];
8116
8117 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8118 return;
8119
5c919412
AS
8120 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8121 vcpu_to_synic(vcpu)->vec_bitmap, 256);
afaf0b2f 8122 kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
c7c9c56c
YZ
8123}
8124
93065ac7
MH
8125int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8126 unsigned long start, unsigned long end,
8127 bool blockable)
b1394e74
RK
8128{
8129 unsigned long apic_address;
8130
8131 /*
8132 * The physical address of apic access page is stored in the VMCS.
8133 * Update it when it becomes invalid.
8134 */
8135 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8136 if (start <= apic_address && apic_address < end)
8137 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
93065ac7
MH
8138
8139 return 0;
b1394e74
RK
8140}
8141
4256f43f
TC
8142void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8143{
c24ae0dc
TC
8144 struct page *page = NULL;
8145
35754c98 8146 if (!lapic_in_kernel(vcpu))
f439ed27
PB
8147 return;
8148
afaf0b2f 8149 if (!kvm_x86_ops.set_apic_access_page_addr)
4256f43f
TC
8150 return;
8151
c24ae0dc 8152 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
e8fd5e9e
AA
8153 if (is_error_page(page))
8154 return;
afaf0b2f 8155 kvm_x86_ops.set_apic_access_page_addr(vcpu, page_to_phys(page));
c24ae0dc
TC
8156
8157 /*
8158 * Do not pin apic access page in memory, the MMU notifier
8159 * will call us again if it is migrated or swapped out.
8160 */
8161 put_page(page);
4256f43f 8162}
4256f43f 8163
d264ee0c
SC
8164void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8165{
8166 smp_send_reschedule(vcpu->cpu);
8167}
8168EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8169
9357d939 8170/*
362c698f 8171 * Returns 1 to let vcpu_run() continue the guest execution loop without
9357d939
TY
8172 * exiting to the userspace. Otherwise, the value will be returned to the
8173 * userspace.
8174 */
851ba692 8175static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
b6c7a5dc
HB
8176{
8177 int r;
62a193ed
MG
8178 bool req_int_win =
8179 dm_request_for_irq_injection(vcpu) &&
8180 kvm_cpu_accept_dm_intr(vcpu);
1e9e2622 8181 enum exit_fastpath_completion exit_fastpath = EXIT_FASTPATH_NONE;
62a193ed 8182
730dca42 8183 bool req_immediate_exit = false;
b6c7a5dc 8184
2fa6e1e1 8185 if (kvm_request_pending(vcpu)) {
671ddc70 8186 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
afaf0b2f 8187 if (unlikely(!kvm_x86_ops.get_vmcs12_pages(vcpu))) {
671ddc70
JM
8188 r = 0;
8189 goto out;
8190 }
8191 }
a8eeb04a 8192 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
2e53d63a 8193 kvm_mmu_unload(vcpu);
a8eeb04a 8194 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
2f599714 8195 __kvm_migrate_timers(vcpu);
d828199e
MT
8196 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8197 kvm_gen_update_masterclock(vcpu->kvm);
0061d53d
MT
8198 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8199 kvm_gen_kvmclock_update(vcpu);
34c238a1
ZA
8200 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8201 r = kvm_guest_time_update(vcpu);
8cfdc000
ZA
8202 if (unlikely(r))
8203 goto out;
8204 }
a8eeb04a 8205 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
4731d4c7 8206 kvm_mmu_sync_roots(vcpu);
727a7e27
PB
8207 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8208 kvm_mmu_load_pgd(vcpu);
a8eeb04a 8209 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
c2ba05cc 8210 kvm_vcpu_flush_tlb(vcpu, true);
a8eeb04a 8211 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
851ba692 8212 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
b93463aa
AK
8213 r = 0;
8214 goto out;
8215 }
a8eeb04a 8216 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
851ba692 8217 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
bbeac283 8218 vcpu->mmio_needed = 0;
71c4dfaf
JR
8219 r = 0;
8220 goto out;
8221 }
af585b92
GN
8222 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8223 /* Page is swapped out. Do synthetic halt */
8224 vcpu->arch.apf.halted = true;
8225 r = 1;
8226 goto out;
8227 }
c9aaa895
GC
8228 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8229 record_steal_time(vcpu);
64d60670
PB
8230 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8231 process_smi(vcpu);
7460fb4a
AK
8232 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8233 process_nmi(vcpu);
f5132b01 8234 if (kvm_check_request(KVM_REQ_PMU, vcpu))
c6702c9d 8235 kvm_pmu_handle_event(vcpu);
f5132b01 8236 if (kvm_check_request(KVM_REQ_PMI, vcpu))
c6702c9d 8237 kvm_pmu_deliver_pmi(vcpu);
7543a635
SR
8238 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8239 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8240 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6308630b 8241 vcpu->arch.ioapic_handled_vectors)) {
7543a635
SR
8242 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8243 vcpu->run->eoi.vector =
8244 vcpu->arch.pending_ioapic_eoi;
8245 r = 0;
8246 goto out;
8247 }
8248 }
3d81bc7e
YZ
8249 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8250 vcpu_scan_ioapic(vcpu);
e40ff1d6
LA
8251 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8252 vcpu_load_eoi_exitmap(vcpu);
4256f43f
TC
8253 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8254 kvm_vcpu_reload_apic_access_page(vcpu);
2ce79189
AS
8255 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8256 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8257 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8258 r = 0;
8259 goto out;
8260 }
e516cebb
AS
8261 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8262 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8263 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8264 r = 0;
8265 goto out;
8266 }
db397571
AS
8267 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8268 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8269 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8270 r = 0;
8271 goto out;
8272 }
f3b138c5
AS
8273
8274 /*
8275 * KVM_REQ_HV_STIMER has to be processed after
8276 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8277 * depend on the guest clock being up-to-date
8278 */
1f4b34f8
AS
8279 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8280 kvm_hv_process_stimers(vcpu);
8df14af4
SS
8281 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8282 kvm_vcpu_update_apicv(vcpu);
2f52d58c 8283 }
b93463aa 8284
b463a6f7 8285 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
0f1e261e 8286 ++vcpu->stat.req_event;
66450a21
JK
8287 kvm_apic_accept_events(vcpu);
8288 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8289 r = 1;
8290 goto out;
8291 }
8292
a1c77abb 8293 if (inject_pending_event(vcpu) != 0)
b6b8a145 8294 req_immediate_exit = true;
321c5658 8295 else {
cc3d967f 8296 /* Enable SMI/NMI/IRQ window open exits if needed.
c43203ca 8297 *
cc3d967f
LP
8298 * SMIs have three cases:
8299 * 1) They can be nested, and then there is nothing to
8300 * do here because RSM will cause a vmexit anyway.
8301 * 2) There is an ISA-specific reason why SMI cannot be
8302 * injected, and the moment when this changes can be
8303 * intercepted.
8304 * 3) Or the SMI can be pending because
8305 * inject_pending_event has completed the injection
8306 * of an IRQ or NMI from the previous vmexit, and
8307 * then we request an immediate exit to inject the
8308 * SMI.
c43203ca
PB
8309 */
8310 if (vcpu->arch.smi_pending && !is_smm(vcpu))
afaf0b2f 8311 if (!kvm_x86_ops.enable_smi_window(vcpu))
cc3d967f 8312 req_immediate_exit = true;
321c5658 8313 if (vcpu->arch.nmi_pending)
afaf0b2f 8314 kvm_x86_ops.enable_nmi_window(vcpu);
321c5658 8315 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
afaf0b2f 8316 kvm_x86_ops.enable_irq_window(vcpu);
664f8e26 8317 WARN_ON(vcpu->arch.exception.pending);
321c5658 8318 }
b463a6f7
AK
8319
8320 if (kvm_lapic_enabled(vcpu)) {
8321 update_cr8_intercept(vcpu);
8322 kvm_lapic_sync_to_vapic(vcpu);
8323 }
8324 }
8325
d8368af8
AK
8326 r = kvm_mmu_reload(vcpu);
8327 if (unlikely(r)) {
d905c069 8328 goto cancel_injection;
d8368af8
AK
8329 }
8330
b6c7a5dc
HB
8331 preempt_disable();
8332
afaf0b2f 8333 kvm_x86_ops.prepare_guest_switch(vcpu);
b95234c8
PB
8334
8335 /*
8336 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
8337 * IPI are then delayed after guest entry, which ensures that they
8338 * result in virtual interrupt delivery.
8339 */
8340 local_irq_disable();
6b7e2d09
XG
8341 vcpu->mode = IN_GUEST_MODE;
8342
01b71917
MT
8343 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8344
0f127d12 8345 /*
b95234c8 8346 * 1) We should set ->mode before checking ->requests. Please see
cde9af6e 8347 * the comment in kvm_vcpu_exiting_guest_mode().
b95234c8 8348 *
81b01667 8349 * 2) For APICv, we should set ->mode before checking PID.ON. This
b95234c8
PB
8350 * pairs with the memory barrier implicit in pi_test_and_set_on
8351 * (see vmx_deliver_posted_interrupt).
8352 *
8353 * 3) This also orders the write to mode from any reads to the page
8354 * tables done while the VCPU is running. Please see the comment
8355 * in kvm_flush_remote_tlbs.
6b7e2d09 8356 */
01b71917 8357 smp_mb__after_srcu_read_unlock();
b6c7a5dc 8358
b95234c8
PB
8359 /*
8360 * This handles the case where a posted interrupt was
8361 * notified with kvm_vcpu_kick.
8362 */
fa59cc00 8363 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
afaf0b2f 8364 kvm_x86_ops.sync_pir_to_irr(vcpu);
32f88400 8365
2fa6e1e1 8366 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
d94e1dc9 8367 || need_resched() || signal_pending(current)) {
6b7e2d09 8368 vcpu->mode = OUTSIDE_GUEST_MODE;
d94e1dc9 8369 smp_wmb();
6c142801
AK
8370 local_irq_enable();
8371 preempt_enable();
01b71917 8372 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6c142801 8373 r = 1;
d905c069 8374 goto cancel_injection;
6c142801
AK
8375 }
8376
c43203ca
PB
8377 if (req_immediate_exit) {
8378 kvm_make_request(KVM_REQ_EVENT, vcpu);
afaf0b2f 8379 kvm_x86_ops.request_immediate_exit(vcpu);
c43203ca 8380 }
d6185f20 8381
8b89fe1f 8382 trace_kvm_entry(vcpu->vcpu_id);
6edaa530 8383 guest_enter_irqoff();
b6c7a5dc 8384
2620fe26
SC
8385 fpregs_assert_state_consistent();
8386 if (test_thread_flag(TIF_NEED_FPU_LOAD))
8387 switch_fpu_return();
5f409e20 8388
42dbaa5a 8389 if (unlikely(vcpu->arch.switch_db_regs)) {
42dbaa5a
JK
8390 set_debugreg(0, 7);
8391 set_debugreg(vcpu->arch.eff_db[0], 0);
8392 set_debugreg(vcpu->arch.eff_db[1], 1);
8393 set_debugreg(vcpu->arch.eff_db[2], 2);
8394 set_debugreg(vcpu->arch.eff_db[3], 3);
c77fb5fe 8395 set_debugreg(vcpu->arch.dr6, 6);
ae561ede 8396 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
42dbaa5a 8397 }
b6c7a5dc 8398
afaf0b2f 8399 kvm_x86_ops.run(vcpu);
b6c7a5dc 8400
c77fb5fe
PB
8401 /*
8402 * Do this here before restoring debug registers on the host. And
8403 * since we do this before handling the vmexit, a DR access vmexit
8404 * can (a) read the correct value of the debug registers, (b) set
8405 * KVM_DEBUGREG_WONT_EXIT again.
8406 */
8407 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
c77fb5fe 8408 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
afaf0b2f 8409 kvm_x86_ops.sync_dirty_debug_regs(vcpu);
70e4da7a 8410 kvm_update_dr0123(vcpu);
70e4da7a
PB
8411 kvm_update_dr7(vcpu);
8412 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
c77fb5fe
PB
8413 }
8414
24f1e32c
FW
8415 /*
8416 * If the guest has used debug registers, at least dr7
8417 * will be disabled while returning to the host.
8418 * If we don't have active breakpoints in the host, we don't
8419 * care about the messed up debug address registers. But if
8420 * we have some of them active, restore the old state.
8421 */
59d8eb53 8422 if (hw_breakpoint_active())
24f1e32c 8423 hw_breakpoint_restore();
42dbaa5a 8424
4ba76538 8425 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1d5f066e 8426
6b7e2d09 8427 vcpu->mode = OUTSIDE_GUEST_MODE;
d94e1dc9 8428 smp_wmb();
a547c6db 8429
afaf0b2f 8430 kvm_x86_ops.handle_exit_irqoff(vcpu, &exit_fastpath);
b6c7a5dc 8431
d7a08882
SC
8432 /*
8433 * Consume any pending interrupts, including the possible source of
8434 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8435 * An instruction is required after local_irq_enable() to fully unblock
8436 * interrupts on processors that implement an interrupt shadow, the
8437 * stat.exits increment will do nicely.
8438 */
8439 kvm_before_interrupt(vcpu);
8440 local_irq_enable();
b6c7a5dc 8441 ++vcpu->stat.exits;
d7a08882
SC
8442 local_irq_disable();
8443 kvm_after_interrupt(vcpu);
b6c7a5dc 8444
f2485b3e 8445 guest_exit_irqoff();
ec0671d5
WL
8446 if (lapic_in_kernel(vcpu)) {
8447 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8448 if (delta != S64_MIN) {
8449 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8450 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8451 }
8452 }
b6c7a5dc 8453
f2485b3e 8454 local_irq_enable();
b6c7a5dc
HB
8455 preempt_enable();
8456
f656ce01 8457 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3200f405 8458
b6c7a5dc
HB
8459 /*
8460 * Profile KVM exit RIPs:
8461 */
8462 if (unlikely(prof_on == KVM_PROFILING)) {
5fdbf976
MT
8463 unsigned long rip = kvm_rip_read(vcpu);
8464 profile_hit(KVM_PROFILING, (void *)rip);
b6c7a5dc
HB
8465 }
8466
cc578287
ZA
8467 if (unlikely(vcpu->arch.tsc_always_catchup))
8468 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
298101da 8469
5cfb1d5a
MT
8470 if (vcpu->arch.apic_attention)
8471 kvm_lapic_sync_from_vapic(vcpu);
b93463aa 8472
afaf0b2f 8473 r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
d905c069
MT
8474 return r;
8475
8476cancel_injection:
afaf0b2f 8477 kvm_x86_ops.cancel_injection(vcpu);
ae7a2a3f
MT
8478 if (unlikely(vcpu->arch.apic_attention))
8479 kvm_lapic_sync_from_vapic(vcpu);
d7690175
MT
8480out:
8481 return r;
8482}
b6c7a5dc 8483
362c698f
PB
8484static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8485{
bf9f6ac8 8486 if (!kvm_arch_vcpu_runnable(vcpu) &&
afaf0b2f 8487 (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9c8fd1ba
PB
8488 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8489 kvm_vcpu_block(vcpu);
8490 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
bf9f6ac8 8491
afaf0b2f
SC
8492 if (kvm_x86_ops.post_block)
8493 kvm_x86_ops.post_block(vcpu);
bf9f6ac8 8494
9c8fd1ba
PB
8495 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8496 return 1;
8497 }
362c698f
PB
8498
8499 kvm_apic_accept_events(vcpu);
8500 switch(vcpu->arch.mp_state) {
8501 case KVM_MP_STATE_HALTED:
8502 vcpu->arch.pv.pv_unhalted = false;
8503 vcpu->arch.mp_state =
8504 KVM_MP_STATE_RUNNABLE;
b2869f28 8505 /* fall through */
362c698f
PB
8506 case KVM_MP_STATE_RUNNABLE:
8507 vcpu->arch.apf.halted = false;
8508 break;
8509 case KVM_MP_STATE_INIT_RECEIVED:
8510 break;
8511 default:
8512 return -EINTR;
362c698f
PB
8513 }
8514 return 1;
8515}
09cec754 8516
5d9bc648
PB
8517static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8518{
afaf0b2f
SC
8519 if (is_guest_mode(vcpu) && kvm_x86_ops.check_nested_events)
8520 kvm_x86_ops.check_nested_events(vcpu);
0ad3bed6 8521
5d9bc648
PB
8522 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8523 !vcpu->arch.apf.halted);
8524}
8525
362c698f 8526static int vcpu_run(struct kvm_vcpu *vcpu)
d7690175
MT
8527{
8528 int r;
f656ce01 8529 struct kvm *kvm = vcpu->kvm;
d7690175 8530
f656ce01 8531 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
c595ceee 8532 vcpu->arch.l1tf_flush_l1d = true;
d7690175 8533
362c698f 8534 for (;;) {
58f800d5 8535 if (kvm_vcpu_running(vcpu)) {
851ba692 8536 r = vcpu_enter_guest(vcpu);
bf9f6ac8 8537 } else {
362c698f 8538 r = vcpu_block(kvm, vcpu);
bf9f6ac8
FW
8539 }
8540
09cec754
GN
8541 if (r <= 0)
8542 break;
8543
72875d8a 8544 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
09cec754
GN
8545 if (kvm_cpu_has_pending_timer(vcpu))
8546 kvm_inject_pending_timer_irqs(vcpu);
8547
782d422b
MG
8548 if (dm_request_for_irq_injection(vcpu) &&
8549 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
4ca7dd8c
PB
8550 r = 0;
8551 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
09cec754 8552 ++vcpu->stat.request_irq_exits;
362c698f 8553 break;
09cec754 8554 }
af585b92
GN
8555
8556 kvm_check_async_pf_completion(vcpu);
8557
09cec754
GN
8558 if (signal_pending(current)) {
8559 r = -EINTR;
851ba692 8560 vcpu->run->exit_reason = KVM_EXIT_INTR;
09cec754 8561 ++vcpu->stat.signal_exits;
362c698f 8562 break;
09cec754
GN
8563 }
8564 if (need_resched()) {
f656ce01 8565 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
c08ac06a 8566 cond_resched();
f656ce01 8567 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
d7690175 8568 }
b6c7a5dc
HB
8569 }
8570
f656ce01 8571 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
b6c7a5dc
HB
8572
8573 return r;
8574}
8575
716d51ab
GN
8576static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8577{
8578 int r;
60fc3d02 8579
716d51ab 8580 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
0ce97a2b 8581 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
716d51ab 8582 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
60fc3d02 8583 return r;
716d51ab
GN
8584}
8585
8586static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8587{
8588 BUG_ON(!vcpu->arch.pio.count);
8589
8590 return complete_emulated_io(vcpu);
8591}
8592
f78146b0
AK
8593/*
8594 * Implements the following, as a state machine:
8595 *
8596 * read:
8597 * for each fragment
87da7e66
XG
8598 * for each mmio piece in the fragment
8599 * write gpa, len
8600 * exit
8601 * copy data
f78146b0
AK
8602 * execute insn
8603 *
8604 * write:
8605 * for each fragment
87da7e66
XG
8606 * for each mmio piece in the fragment
8607 * write gpa, len
8608 * copy data
8609 * exit
f78146b0 8610 */
716d51ab 8611static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5287f194
AK
8612{
8613 struct kvm_run *run = vcpu->run;
f78146b0 8614 struct kvm_mmio_fragment *frag;
87da7e66 8615 unsigned len;
5287f194 8616
716d51ab 8617 BUG_ON(!vcpu->mmio_needed);
5287f194 8618
716d51ab 8619 /* Complete previous fragment */
87da7e66
XG
8620 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8621 len = min(8u, frag->len);
716d51ab 8622 if (!vcpu->mmio_is_write)
87da7e66
XG
8623 memcpy(frag->data, run->mmio.data, len);
8624
8625 if (frag->len <= 8) {
8626 /* Switch to the next fragment. */
8627 frag++;
8628 vcpu->mmio_cur_fragment++;
8629 } else {
8630 /* Go forward to the next mmio piece. */
8631 frag->data += len;
8632 frag->gpa += len;
8633 frag->len -= len;
8634 }
8635
a08d3b3b 8636 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
716d51ab 8637 vcpu->mmio_needed = 0;
0912c977
PB
8638
8639 /* FIXME: return into emulator if single-stepping. */
cef4dea0 8640 if (vcpu->mmio_is_write)
716d51ab
GN
8641 return 1;
8642 vcpu->mmio_read_completed = 1;
8643 return complete_emulated_io(vcpu);
8644 }
87da7e66 8645
716d51ab
GN
8646 run->exit_reason = KVM_EXIT_MMIO;
8647 run->mmio.phys_addr = frag->gpa;
8648 if (vcpu->mmio_is_write)
87da7e66
XG
8649 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8650 run->mmio.len = min(8u, frag->len);
716d51ab
GN
8651 run->mmio.is_write = vcpu->mmio_is_write;
8652 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8653 return 0;
5287f194
AK
8654}
8655
c9aef3b8
SC
8656static void kvm_save_current_fpu(struct fpu *fpu)
8657{
8658 /*
8659 * If the target FPU state is not resident in the CPU registers, just
8660 * memcpy() from current, else save CPU state directly to the target.
8661 */
8662 if (test_thread_flag(TIF_NEED_FPU_LOAD))
8663 memcpy(&fpu->state, &current->thread.fpu.state,
8664 fpu_kernel_xstate_size);
8665 else
8666 copy_fpregs_to_fpstate(fpu);
8667}
8668
822f312d
SAS
8669/* Swap (qemu) user FPU context for the guest FPU context. */
8670static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8671{
5f409e20
RR
8672 fpregs_lock();
8673
c9aef3b8
SC
8674 kvm_save_current_fpu(vcpu->arch.user_fpu);
8675
afaf0b2f 8676 /* PKRU is separately restored in kvm_x86_ops.run. */
b666a4b6 8677 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
822f312d 8678 ~XFEATURE_MASK_PKRU);
5f409e20
RR
8679
8680 fpregs_mark_activate();
8681 fpregs_unlock();
8682
822f312d
SAS
8683 trace_kvm_fpu(1);
8684}
8685
8686/* When vcpu_run ends, restore user space FPU context. */
8687static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8688{
5f409e20
RR
8689 fpregs_lock();
8690
c9aef3b8
SC
8691 kvm_save_current_fpu(vcpu->arch.guest_fpu);
8692
d9a710e5 8693 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
5f409e20
RR
8694
8695 fpregs_mark_activate();
8696 fpregs_unlock();
8697
822f312d
SAS
8698 ++vcpu->stat.fpu_reload;
8699 trace_kvm_fpu(0);
8700}
8701
b6c7a5dc
HB
8702int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8703{
8704 int r;
b6c7a5dc 8705
accb757d 8706 vcpu_load(vcpu);
20b7035c 8707 kvm_sigset_activate(vcpu);
5663d8f9
PX
8708 kvm_load_guest_fpu(vcpu);
8709
a4535290 8710 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
2f173d26
JS
8711 if (kvm_run->immediate_exit) {
8712 r = -EINTR;
8713 goto out;
8714 }
b6c7a5dc 8715 kvm_vcpu_block(vcpu);
66450a21 8716 kvm_apic_accept_events(vcpu);
72875d8a 8717 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
ac9f6dc0 8718 r = -EAGAIN;
a0595000
JS
8719 if (signal_pending(current)) {
8720 r = -EINTR;
8721 vcpu->run->exit_reason = KVM_EXIT_INTR;
8722 ++vcpu->stat.signal_exits;
8723 }
ac9f6dc0 8724 goto out;
b6c7a5dc
HB
8725 }
8726
01643c51
KH
8727 if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8728 r = -EINVAL;
8729 goto out;
8730 }
8731
8732 if (vcpu->run->kvm_dirty_regs) {
8733 r = sync_regs(vcpu);
8734 if (r != 0)
8735 goto out;
8736 }
8737
b6c7a5dc 8738 /* re-sync apic's tpr */
35754c98 8739 if (!lapic_in_kernel(vcpu)) {
eea1cff9
AP
8740 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8741 r = -EINVAL;
8742 goto out;
8743 }
8744 }
b6c7a5dc 8745
716d51ab
GN
8746 if (unlikely(vcpu->arch.complete_userspace_io)) {
8747 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8748 vcpu->arch.complete_userspace_io = NULL;
8749 r = cui(vcpu);
8750 if (r <= 0)
5663d8f9 8751 goto out;
716d51ab
GN
8752 } else
8753 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
5287f194 8754
460df4c1
PB
8755 if (kvm_run->immediate_exit)
8756 r = -EINTR;
8757 else
8758 r = vcpu_run(vcpu);
b6c7a5dc
HB
8759
8760out:
5663d8f9 8761 kvm_put_guest_fpu(vcpu);
01643c51
KH
8762 if (vcpu->run->kvm_valid_regs)
8763 store_regs(vcpu);
f1d86e46 8764 post_kvm_run_save(vcpu);
20b7035c 8765 kvm_sigset_deactivate(vcpu);
b6c7a5dc 8766
accb757d 8767 vcpu_put(vcpu);
b6c7a5dc
HB
8768 return r;
8769}
8770
01643c51 8771static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
b6c7a5dc 8772{
7ae441ea
GN
8773 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8774 /*
8775 * We are here if userspace calls get_regs() in the middle of
8776 * instruction emulation. Registers state needs to be copied
4a969980 8777 * back from emulation context to vcpu. Userspace shouldn't do
7ae441ea
GN
8778 * that usually, but some bad designed PV devices (vmware
8779 * backdoor interface) need this to work
8780 */
c9b8b07c 8781 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
7ae441ea
GN
8782 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8783 }
de3cd117
SC
8784 regs->rax = kvm_rax_read(vcpu);
8785 regs->rbx = kvm_rbx_read(vcpu);
8786 regs->rcx = kvm_rcx_read(vcpu);
8787 regs->rdx = kvm_rdx_read(vcpu);
8788 regs->rsi = kvm_rsi_read(vcpu);
8789 regs->rdi = kvm_rdi_read(vcpu);
e9c16c78 8790 regs->rsp = kvm_rsp_read(vcpu);
de3cd117 8791 regs->rbp = kvm_rbp_read(vcpu);
b6c7a5dc 8792#ifdef CONFIG_X86_64
de3cd117
SC
8793 regs->r8 = kvm_r8_read(vcpu);
8794 regs->r9 = kvm_r9_read(vcpu);
8795 regs->r10 = kvm_r10_read(vcpu);
8796 regs->r11 = kvm_r11_read(vcpu);
8797 regs->r12 = kvm_r12_read(vcpu);
8798 regs->r13 = kvm_r13_read(vcpu);
8799 regs->r14 = kvm_r14_read(vcpu);
8800 regs->r15 = kvm_r15_read(vcpu);
b6c7a5dc
HB
8801#endif
8802
5fdbf976 8803 regs->rip = kvm_rip_read(vcpu);
91586a3b 8804 regs->rflags = kvm_get_rflags(vcpu);
01643c51 8805}
b6c7a5dc 8806
01643c51
KH
8807int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8808{
8809 vcpu_load(vcpu);
8810 __get_regs(vcpu, regs);
1fc9b76b 8811 vcpu_put(vcpu);
b6c7a5dc
HB
8812 return 0;
8813}
8814
01643c51 8815static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
b6c7a5dc 8816{
7ae441ea
GN
8817 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8818 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8819
de3cd117
SC
8820 kvm_rax_write(vcpu, regs->rax);
8821 kvm_rbx_write(vcpu, regs->rbx);
8822 kvm_rcx_write(vcpu, regs->rcx);
8823 kvm_rdx_write(vcpu, regs->rdx);
8824 kvm_rsi_write(vcpu, regs->rsi);
8825 kvm_rdi_write(vcpu, regs->rdi);
e9c16c78 8826 kvm_rsp_write(vcpu, regs->rsp);
de3cd117 8827 kvm_rbp_write(vcpu, regs->rbp);
b6c7a5dc 8828#ifdef CONFIG_X86_64
de3cd117
SC
8829 kvm_r8_write(vcpu, regs->r8);
8830 kvm_r9_write(vcpu, regs->r9);
8831 kvm_r10_write(vcpu, regs->r10);
8832 kvm_r11_write(vcpu, regs->r11);
8833 kvm_r12_write(vcpu, regs->r12);
8834 kvm_r13_write(vcpu, regs->r13);
8835 kvm_r14_write(vcpu, regs->r14);
8836 kvm_r15_write(vcpu, regs->r15);
b6c7a5dc
HB
8837#endif
8838
5fdbf976 8839 kvm_rip_write(vcpu, regs->rip);
d73235d1 8840 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
b6c7a5dc 8841
b4f14abd
JK
8842 vcpu->arch.exception.pending = false;
8843
3842d135 8844 kvm_make_request(KVM_REQ_EVENT, vcpu);
01643c51 8845}
3842d135 8846
01643c51
KH
8847int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8848{
8849 vcpu_load(vcpu);
8850 __set_regs(vcpu, regs);
875656fe 8851 vcpu_put(vcpu);
b6c7a5dc
HB
8852 return 0;
8853}
8854
b6c7a5dc
HB
8855void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8856{
8857 struct kvm_segment cs;
8858
3e6e0aab 8859 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
b6c7a5dc
HB
8860 *db = cs.db;
8861 *l = cs.l;
8862}
8863EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8864
01643c51 8865static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
b6c7a5dc 8866{
89a27f4d 8867 struct desc_ptr dt;
b6c7a5dc 8868
3e6e0aab
GT
8869 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8870 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8871 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8872 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8873 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8874 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
b6c7a5dc 8875
3e6e0aab
GT
8876 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8877 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
b6c7a5dc 8878
afaf0b2f 8879 kvm_x86_ops.get_idt(vcpu, &dt);
89a27f4d
GN
8880 sregs->idt.limit = dt.size;
8881 sregs->idt.base = dt.address;
afaf0b2f 8882 kvm_x86_ops.get_gdt(vcpu, &dt);
89a27f4d
GN
8883 sregs->gdt.limit = dt.size;
8884 sregs->gdt.base = dt.address;
b6c7a5dc 8885
4d4ec087 8886 sregs->cr0 = kvm_read_cr0(vcpu);
ad312c7c 8887 sregs->cr2 = vcpu->arch.cr2;
9f8fe504 8888 sregs->cr3 = kvm_read_cr3(vcpu);
fc78f519 8889 sregs->cr4 = kvm_read_cr4(vcpu);
2d3ad1f4 8890 sregs->cr8 = kvm_get_cr8(vcpu);
f6801dff 8891 sregs->efer = vcpu->arch.efer;
b6c7a5dc
HB
8892 sregs->apic_base = kvm_get_apic_base(vcpu);
8893
0e96f31e 8894 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
b6c7a5dc 8895
04140b41 8896 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
14d0bc1f
GN
8897 set_bit(vcpu->arch.interrupt.nr,
8898 (unsigned long *)sregs->interrupt_bitmap);
01643c51 8899}
16d7a191 8900
01643c51
KH
8901int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8902 struct kvm_sregs *sregs)
8903{
8904 vcpu_load(vcpu);
8905 __get_sregs(vcpu, sregs);
bcdec41c 8906 vcpu_put(vcpu);
b6c7a5dc
HB
8907 return 0;
8908}
8909
62d9f0db
MT
8910int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8911 struct kvm_mp_state *mp_state)
8912{
fd232561 8913 vcpu_load(vcpu);
f958bd23
SC
8914 if (kvm_mpx_supported())
8915 kvm_load_guest_fpu(vcpu);
fd232561 8916
66450a21 8917 kvm_apic_accept_events(vcpu);
6aef266c
SV
8918 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8919 vcpu->arch.pv.pv_unhalted)
8920 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8921 else
8922 mp_state->mp_state = vcpu->arch.mp_state;
8923
f958bd23
SC
8924 if (kvm_mpx_supported())
8925 kvm_put_guest_fpu(vcpu);
fd232561 8926 vcpu_put(vcpu);
62d9f0db
MT
8927 return 0;
8928}
8929
8930int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8931 struct kvm_mp_state *mp_state)
8932{
e83dff5e
CD
8933 int ret = -EINVAL;
8934
8935 vcpu_load(vcpu);
8936
bce87cce 8937 if (!lapic_in_kernel(vcpu) &&
66450a21 8938 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
e83dff5e 8939 goto out;
66450a21 8940
27cbe7d6
LA
8941 /*
8942 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
8943 * INIT state; latched init should be reported using
8944 * KVM_SET_VCPU_EVENTS, so reject it here.
8945 */
8946 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
28bf2888
DH
8947 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8948 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
e83dff5e 8949 goto out;
28bf2888 8950
66450a21
JK
8951 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8952 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8953 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8954 } else
8955 vcpu->arch.mp_state = mp_state->mp_state;
3842d135 8956 kvm_make_request(KVM_REQ_EVENT, vcpu);
e83dff5e
CD
8957
8958 ret = 0;
8959out:
8960 vcpu_put(vcpu);
8961 return ret;
62d9f0db
MT
8962}
8963
7f3d35fd
KW
8964int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8965 int reason, bool has_error_code, u32 error_code)
b6c7a5dc 8966{
c9b8b07c 8967 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8ec4722d 8968 int ret;
e01c2426 8969
8ec4722d 8970 init_emulate_ctxt(vcpu);
c697518a 8971
7f3d35fd 8972 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9d74191a 8973 has_error_code, error_code);
1051778f
SC
8974 if (ret) {
8975 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8976 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
8977 vcpu->run->internal.ndata = 0;
60fc3d02 8978 return 0;
1051778f 8979 }
37817f29 8980
9d74191a
TY
8981 kvm_rip_write(vcpu, ctxt->eip);
8982 kvm_set_rflags(vcpu, ctxt->eflags);
60fc3d02 8983 return 1;
37817f29
IE
8984}
8985EXPORT_SYMBOL_GPL(kvm_task_switch);
8986
3140c156 8987static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
f2981033 8988{
37b95951 8989 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
f2981033
LT
8990 /*
8991 * When EFER.LME and CR0.PG are set, the processor is in
8992 * 64-bit mode (though maybe in a 32-bit code segment).
8993 * CR4.PAE and EFER.LMA must be set.
8994 */
37b95951 8995 if (!(sregs->cr4 & X86_CR4_PAE)
f2981033
LT
8996 || !(sregs->efer & EFER_LMA))
8997 return -EINVAL;
8998 } else {
8999 /*
9000 * Not in 64-bit mode: EFER.LMA is clear and the code
9001 * segment cannot be 64-bit.
9002 */
9003 if (sregs->efer & EFER_LMA || sregs->cs.l)
9004 return -EINVAL;
9005 }
9006
3ca94192 9007 return kvm_valid_cr4(vcpu, sregs->cr4);
f2981033
LT
9008}
9009
01643c51 9010static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
b6c7a5dc 9011{
58cb628d 9012 struct msr_data apic_base_msr;
b6c7a5dc 9013 int mmu_reset_needed = 0;
c4d21882 9014 int cpuid_update_needed = 0;
63f42e02 9015 int pending_vec, max_bits, idx;
89a27f4d 9016 struct desc_ptr dt;
b4ef9d4e
CD
9017 int ret = -EINVAL;
9018
f2981033 9019 if (kvm_valid_sregs(vcpu, sregs))
8dbfb2bf 9020 goto out;
f2981033 9021
d3802286
JM
9022 apic_base_msr.data = sregs->apic_base;
9023 apic_base_msr.host_initiated = true;
9024 if (kvm_set_apic_base(vcpu, &apic_base_msr))
b4ef9d4e 9025 goto out;
6d1068b3 9026
89a27f4d
GN
9027 dt.size = sregs->idt.limit;
9028 dt.address = sregs->idt.base;
afaf0b2f 9029 kvm_x86_ops.set_idt(vcpu, &dt);
89a27f4d
GN
9030 dt.size = sregs->gdt.limit;
9031 dt.address = sregs->gdt.base;
afaf0b2f 9032 kvm_x86_ops.set_gdt(vcpu, &dt);
b6c7a5dc 9033
ad312c7c 9034 vcpu->arch.cr2 = sregs->cr2;
9f8fe504 9035 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
dc7e795e 9036 vcpu->arch.cr3 = sregs->cr3;
cb3c1e2f 9037 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
b6c7a5dc 9038
2d3ad1f4 9039 kvm_set_cr8(vcpu, sregs->cr8);
b6c7a5dc 9040
f6801dff 9041 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
afaf0b2f 9042 kvm_x86_ops.set_efer(vcpu, sregs->efer);
b6c7a5dc 9043
4d4ec087 9044 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
afaf0b2f 9045 kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
d7306163 9046 vcpu->arch.cr0 = sregs->cr0;
b6c7a5dc 9047
fc78f519 9048 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
c4d21882
WH
9049 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
9050 (X86_CR4_OSXSAVE | X86_CR4_PKE));
afaf0b2f 9051 kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
c4d21882 9052 if (cpuid_update_needed)
00b27a3e 9053 kvm_update_cpuid(vcpu);
63f42e02
XG
9054
9055 idx = srcu_read_lock(&vcpu->kvm->srcu);
bf03d4f9 9056 if (is_pae_paging(vcpu)) {
9f8fe504 9057 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7c93be44
MT
9058 mmu_reset_needed = 1;
9059 }
63f42e02 9060 srcu_read_unlock(&vcpu->kvm->srcu, idx);
b6c7a5dc
HB
9061
9062 if (mmu_reset_needed)
9063 kvm_mmu_reset_context(vcpu);
9064
a50abc3b 9065 max_bits = KVM_NR_INTERRUPTS;
923c61bb
GN
9066 pending_vec = find_first_bit(
9067 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9068 if (pending_vec < max_bits) {
66fd3f7f 9069 kvm_queue_interrupt(vcpu, pending_vec, false);
923c61bb 9070 pr_debug("Set back pending irq %d\n", pending_vec);
b6c7a5dc
HB
9071 }
9072
3e6e0aab
GT
9073 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9074 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9075 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9076 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9077 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9078 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
b6c7a5dc 9079
3e6e0aab
GT
9080 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9081 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
b6c7a5dc 9082
5f0269f5
ME
9083 update_cr8_intercept(vcpu);
9084
9c3e4aab 9085 /* Older userspace won't unhalt the vcpu on reset. */
c5af89b6 9086 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9c3e4aab 9087 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
3eeb3288 9088 !is_protmode(vcpu))
9c3e4aab
MT
9089 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9090
3842d135
AK
9091 kvm_make_request(KVM_REQ_EVENT, vcpu);
9092
b4ef9d4e
CD
9093 ret = 0;
9094out:
01643c51
KH
9095 return ret;
9096}
9097
9098int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9099 struct kvm_sregs *sregs)
9100{
9101 int ret;
9102
9103 vcpu_load(vcpu);
9104 ret = __set_sregs(vcpu, sregs);
b4ef9d4e
CD
9105 vcpu_put(vcpu);
9106 return ret;
b6c7a5dc
HB
9107}
9108
d0bfb940
JK
9109int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9110 struct kvm_guest_debug *dbg)
b6c7a5dc 9111{
355be0b9 9112 unsigned long rflags;
ae675ef0 9113 int i, r;
b6c7a5dc 9114
66b56562
CD
9115 vcpu_load(vcpu);
9116
4f926bf2
JK
9117 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9118 r = -EBUSY;
9119 if (vcpu->arch.exception.pending)
2122ff5e 9120 goto out;
4f926bf2
JK
9121 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9122 kvm_queue_exception(vcpu, DB_VECTOR);
9123 else
9124 kvm_queue_exception(vcpu, BP_VECTOR);
9125 }
9126
91586a3b
JK
9127 /*
9128 * Read rflags as long as potentially injected trace flags are still
9129 * filtered out.
9130 */
9131 rflags = kvm_get_rflags(vcpu);
355be0b9
JK
9132
9133 vcpu->guest_debug = dbg->control;
9134 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9135 vcpu->guest_debug = 0;
9136
9137 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
ae675ef0
JK
9138 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9139 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
c8639010 9140 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
ae675ef0
JK
9141 } else {
9142 for (i = 0; i < KVM_NR_DB_REGS; i++)
9143 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
ae675ef0 9144 }
c8639010 9145 kvm_update_dr7(vcpu);
ae675ef0 9146
f92653ee
JK
9147 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9148 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9149 get_segment_base(vcpu, VCPU_SREG_CS);
94fe45da 9150
91586a3b
JK
9151 /*
9152 * Trigger an rflags update that will inject or remove the trace
9153 * flags.
9154 */
9155 kvm_set_rflags(vcpu, rflags);
b6c7a5dc 9156
afaf0b2f 9157 kvm_x86_ops.update_bp_intercept(vcpu);
b6c7a5dc 9158
4f926bf2 9159 r = 0;
d0bfb940 9160
2122ff5e 9161out:
66b56562 9162 vcpu_put(vcpu);
b6c7a5dc
HB
9163 return r;
9164}
9165
8b006791
ZX
9166/*
9167 * Translate a guest virtual address to a guest physical address.
9168 */
9169int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9170 struct kvm_translation *tr)
9171{
9172 unsigned long vaddr = tr->linear_address;
9173 gpa_t gpa;
f656ce01 9174 int idx;
8b006791 9175
1da5b61d
CD
9176 vcpu_load(vcpu);
9177
f656ce01 9178 idx = srcu_read_lock(&vcpu->kvm->srcu);
1871c602 9179 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
f656ce01 9180 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8b006791
ZX
9181 tr->physical_address = gpa;
9182 tr->valid = gpa != UNMAPPED_GVA;
9183 tr->writeable = 1;
9184 tr->usermode = 0;
8b006791 9185
1da5b61d 9186 vcpu_put(vcpu);
8b006791
ZX
9187 return 0;
9188}
9189
d0752060
HB
9190int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9191{
1393123e 9192 struct fxregs_state *fxsave;
d0752060 9193
1393123e 9194 vcpu_load(vcpu);
d0752060 9195
b666a4b6 9196 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
d0752060
HB
9197 memcpy(fpu->fpr, fxsave->st_space, 128);
9198 fpu->fcw = fxsave->cwd;
9199 fpu->fsw = fxsave->swd;
9200 fpu->ftwx = fxsave->twd;
9201 fpu->last_opcode = fxsave->fop;
9202 fpu->last_ip = fxsave->rip;
9203 fpu->last_dp = fxsave->rdp;
0e96f31e 9204 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
d0752060 9205
1393123e 9206 vcpu_put(vcpu);
d0752060
HB
9207 return 0;
9208}
9209
9210int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9211{
6a96bc7f
CD
9212 struct fxregs_state *fxsave;
9213
9214 vcpu_load(vcpu);
9215
b666a4b6 9216 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
d0752060 9217
d0752060
HB
9218 memcpy(fxsave->st_space, fpu->fpr, 128);
9219 fxsave->cwd = fpu->fcw;
9220 fxsave->swd = fpu->fsw;
9221 fxsave->twd = fpu->ftwx;
9222 fxsave->fop = fpu->last_opcode;
9223 fxsave->rip = fpu->last_ip;
9224 fxsave->rdp = fpu->last_dp;
0e96f31e 9225 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
d0752060 9226
6a96bc7f 9227 vcpu_put(vcpu);
d0752060
HB
9228 return 0;
9229}
9230
01643c51
KH
9231static void store_regs(struct kvm_vcpu *vcpu)
9232{
9233 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9234
9235 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9236 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9237
9238 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9239 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9240
9241 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9242 kvm_vcpu_ioctl_x86_get_vcpu_events(
9243 vcpu, &vcpu->run->s.regs.events);
9244}
9245
9246static int sync_regs(struct kvm_vcpu *vcpu)
9247{
9248 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9249 return -EINVAL;
9250
9251 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9252 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9253 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9254 }
9255 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9256 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9257 return -EINVAL;
9258 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9259 }
9260 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9261 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9262 vcpu, &vcpu->run->s.regs.events))
9263 return -EINVAL;
9264 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9265 }
9266
9267 return 0;
9268}
9269
0ee6a517 9270static void fx_init(struct kvm_vcpu *vcpu)
d0752060 9271{
b666a4b6 9272 fpstate_init(&vcpu->arch.guest_fpu->state);
782511b0 9273 if (boot_cpu_has(X86_FEATURE_XSAVES))
b666a4b6 9274 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
df1daba7 9275 host_xcr0 | XSTATE_COMPACTION_ENABLED;
d0752060 9276
2acf923e
DC
9277 /*
9278 * Ensure guest xcr0 is valid for loading
9279 */
d91cab78 9280 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
2acf923e 9281
ad312c7c 9282 vcpu->arch.cr0 |= X86_CR0_ET;
d0752060 9283}
d0752060 9284
897cc38e 9285int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
e9b11c17 9286{
897cc38e
SC
9287 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9288 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9289 "guest TSC will not be reliable\n");
7f1ea208 9290
897cc38e 9291 return 0;
e9b11c17
ZX
9292}
9293
e529ef66 9294int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
e9b11c17 9295{
95a0d01e
SC
9296 struct page *page;
9297 int r;
c447e76b 9298
95a0d01e
SC
9299 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9300 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9301 else
9302 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
c447e76b 9303
95a0d01e 9304 kvm_set_tsc_khz(vcpu, max_tsc_khz);
c447e76b 9305
95a0d01e
SC
9306 r = kvm_mmu_create(vcpu);
9307 if (r < 0)
9308 return r;
9309
9310 if (irqchip_in_kernel(vcpu->kvm)) {
95a0d01e
SC
9311 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9312 if (r < 0)
9313 goto fail_mmu_destroy;
4e19c36f
SS
9314 if (kvm_apicv_activated(vcpu->kvm))
9315 vcpu->arch.apicv_active = true;
95a0d01e
SC
9316 } else
9317 static_key_slow_inc(&kvm_no_apic_vcpu);
9318
9319 r = -ENOMEM;
9320
9321 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9322 if (!page)
9323 goto fail_free_lapic;
9324 vcpu->arch.pio_data = page_address(page);
9325
9326 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9327 GFP_KERNEL_ACCOUNT);
9328 if (!vcpu->arch.mce_banks)
9329 goto fail_free_pio_data;
9330 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9331
9332 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9333 GFP_KERNEL_ACCOUNT))
9334 goto fail_free_mce_banks;
9335
c9b8b07c
SC
9336 if (!alloc_emulate_ctxt(vcpu))
9337 goto free_wbinvd_dirty_mask;
9338
95a0d01e
SC
9339 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9340 GFP_KERNEL_ACCOUNT);
9341 if (!vcpu->arch.user_fpu) {
9342 pr_err("kvm: failed to allocate userspace's fpu\n");
c9b8b07c 9343 goto free_emulate_ctxt;
95a0d01e
SC
9344 }
9345
9346 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9347 GFP_KERNEL_ACCOUNT);
9348 if (!vcpu->arch.guest_fpu) {
9349 pr_err("kvm: failed to allocate vcpu's fpu\n");
9350 goto free_user_fpu;
9351 }
9352 fx_init(vcpu);
9353
9354 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9355
9356 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9357
9358 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9359
9360 kvm_async_pf_hash_reset(vcpu);
9361 kvm_pmu_init(vcpu);
9362
9363 vcpu->arch.pending_external_vector = -1;
9364 vcpu->arch.preempted_in_kernel = false;
9365
9366 kvm_hv_vcpu_init(vcpu);
9367
afaf0b2f 9368 r = kvm_x86_ops.vcpu_create(vcpu);
95a0d01e
SC
9369 if (r)
9370 goto free_guest_fpu;
e9b11c17 9371
0cf9135b 9372 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
e53d88af 9373 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
19efffa2 9374 kvm_vcpu_mtrr_init(vcpu);
ec7660cc 9375 vcpu_load(vcpu);
d28bc9dd 9376 kvm_vcpu_reset(vcpu, false);
e1732991 9377 kvm_init_mmu(vcpu, false);
e9b11c17 9378 vcpu_put(vcpu);
ec7660cc 9379 return 0;
95a0d01e
SC
9380
9381free_guest_fpu:
9382 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9383free_user_fpu:
9384 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
c9b8b07c
SC
9385free_emulate_ctxt:
9386 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
95a0d01e
SC
9387free_wbinvd_dirty_mask:
9388 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9389fail_free_mce_banks:
9390 kfree(vcpu->arch.mce_banks);
9391fail_free_pio_data:
9392 free_page((unsigned long)vcpu->arch.pio_data);
9393fail_free_lapic:
9394 kvm_free_lapic(vcpu);
9395fail_mmu_destroy:
9396 kvm_mmu_destroy(vcpu);
9397 return r;
e9b11c17
ZX
9398}
9399
31928aa5 9400void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
42897d86 9401{
8fe8ab46 9402 struct msr_data msr;
332967a3 9403 struct kvm *kvm = vcpu->kvm;
42897d86 9404
d3457c87
RK
9405 kvm_hv_vcpu_postcreate(vcpu);
9406
ec7660cc 9407 if (mutex_lock_killable(&vcpu->mutex))
31928aa5 9408 return;
ec7660cc 9409 vcpu_load(vcpu);
8fe8ab46
WA
9410 msr.data = 0x0;
9411 msr.index = MSR_IA32_TSC;
9412 msr.host_initiated = true;
9413 kvm_write_tsc(vcpu, &msr);
42897d86 9414 vcpu_put(vcpu);
2d5ba19b
MT
9415
9416 /* poll control enabled by default */
9417 vcpu->arch.msr_kvm_poll_control = 1;
9418
ec7660cc 9419 mutex_unlock(&vcpu->mutex);
42897d86 9420
b34de572
WL
9421 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9422 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9423 KVMCLOCK_SYNC_PERIOD);
42897d86
MT
9424}
9425
d40ccc62 9426void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
e9b11c17 9427{
4cbc418a 9428 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
95a0d01e 9429 int idx;
344d9588 9430
4cbc418a
PB
9431 kvm_release_pfn(cache->pfn, cache->dirty, cache);
9432
50b143e1 9433 kvmclock_reset(vcpu);
e9b11c17 9434
afaf0b2f 9435 kvm_x86_ops.vcpu_free(vcpu);
50b143e1 9436
c9b8b07c 9437 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
50b143e1
SC
9438 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9439 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9440 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
95a0d01e
SC
9441
9442 kvm_hv_vcpu_uninit(vcpu);
9443 kvm_pmu_destroy(vcpu);
9444 kfree(vcpu->arch.mce_banks);
9445 kvm_free_lapic(vcpu);
9446 idx = srcu_read_lock(&vcpu->kvm->srcu);
9447 kvm_mmu_destroy(vcpu);
9448 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9449 free_page((unsigned long)vcpu->arch.pio_data);
9450 if (!lapic_in_kernel(vcpu))
9451 static_key_slow_dec(&kvm_no_apic_vcpu);
e9b11c17
ZX
9452}
9453
d28bc9dd 9454void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e9b11c17 9455{
b7e31be3
RK
9456 kvm_lapic_reset(vcpu, init_event);
9457
e69fab5d
PB
9458 vcpu->arch.hflags = 0;
9459
c43203ca 9460 vcpu->arch.smi_pending = 0;
52797bf9 9461 vcpu->arch.smi_count = 0;
7460fb4a
AK
9462 atomic_set(&vcpu->arch.nmi_queued, 0);
9463 vcpu->arch.nmi_pending = 0;
448fa4a9 9464 vcpu->arch.nmi_injected = false;
5f7552d4
NA
9465 kvm_clear_interrupt_queue(vcpu);
9466 kvm_clear_exception_queue(vcpu);
448fa4a9 9467
42dbaa5a 9468 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
ae561ede 9469 kvm_update_dr0123(vcpu);
6f43ed01 9470 vcpu->arch.dr6 = DR6_INIT;
42dbaa5a 9471 vcpu->arch.dr7 = DR7_FIXED_1;
c8639010 9472 kvm_update_dr7(vcpu);
42dbaa5a 9473
1119022c
NA
9474 vcpu->arch.cr2 = 0;
9475
3842d135 9476 kvm_make_request(KVM_REQ_EVENT, vcpu);
344d9588 9477 vcpu->arch.apf.msr_val = 0;
c9aaa895 9478 vcpu->arch.st.msr_val = 0;
3842d135 9479
12f9a48f
GC
9480 kvmclock_reset(vcpu);
9481
af585b92
GN
9482 kvm_clear_async_pf_completion_queue(vcpu);
9483 kvm_async_pf_hash_reset(vcpu);
9484 vcpu->arch.apf.halted = false;
3842d135 9485
a554d207
WL
9486 if (kvm_mpx_supported()) {
9487 void *mpx_state_buffer;
9488
9489 /*
9490 * To avoid have the INIT path from kvm_apic_has_events() that be
9491 * called with loaded FPU and does not let userspace fix the state.
9492 */
f775b13e
RR
9493 if (init_event)
9494 kvm_put_guest_fpu(vcpu);
b666a4b6 9495 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
abd16d68 9496 XFEATURE_BNDREGS);
a554d207
WL
9497 if (mpx_state_buffer)
9498 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
b666a4b6 9499 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
abd16d68 9500 XFEATURE_BNDCSR);
a554d207
WL
9501 if (mpx_state_buffer)
9502 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
f775b13e
RR
9503 if (init_event)
9504 kvm_load_guest_fpu(vcpu);
a554d207
WL
9505 }
9506
64d60670 9507 if (!init_event) {
d28bc9dd 9508 kvm_pmu_reset(vcpu);
64d60670 9509 vcpu->arch.smbase = 0x30000;
db2336a8 9510
db2336a8 9511 vcpu->arch.msr_misc_features_enables = 0;
a554d207
WL
9512
9513 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
64d60670 9514 }
f5132b01 9515
66f7b72e
JS
9516 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9517 vcpu->arch.regs_avail = ~0;
9518 vcpu->arch.regs_dirty = ~0;
9519
a554d207
WL
9520 vcpu->arch.ia32_xss = 0;
9521
afaf0b2f 9522 kvm_x86_ops.vcpu_reset(vcpu, init_event);
e9b11c17
ZX
9523}
9524
2b4a273b 9525void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
66450a21
JK
9526{
9527 struct kvm_segment cs;
9528
9529 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9530 cs.selector = vector << 8;
9531 cs.base = vector << 12;
9532 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9533 kvm_rip_write(vcpu, 0);
e9b11c17
ZX
9534}
9535
13a34e06 9536int kvm_arch_hardware_enable(void)
e9b11c17 9537{
ca84d1a2
ZA
9538 struct kvm *kvm;
9539 struct kvm_vcpu *vcpu;
9540 int i;
0dd6a6ed
ZA
9541 int ret;
9542 u64 local_tsc;
9543 u64 max_tsc = 0;
9544 bool stable, backwards_tsc = false;
18863bdd
AK
9545
9546 kvm_shared_msr_cpu_online();
afaf0b2f 9547 ret = kvm_x86_ops.hardware_enable();
0dd6a6ed
ZA
9548 if (ret != 0)
9549 return ret;
9550
4ea1636b 9551 local_tsc = rdtsc();
b0c39dc6 9552 stable = !kvm_check_tsc_unstable();
0dd6a6ed
ZA
9553 list_for_each_entry(kvm, &vm_list, vm_list) {
9554 kvm_for_each_vcpu(i, vcpu, kvm) {
9555 if (!stable && vcpu->cpu == smp_processor_id())
105b21bb 9556 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
0dd6a6ed
ZA
9557 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9558 backwards_tsc = true;
9559 if (vcpu->arch.last_host_tsc > max_tsc)
9560 max_tsc = vcpu->arch.last_host_tsc;
9561 }
9562 }
9563 }
9564
9565 /*
9566 * Sometimes, even reliable TSCs go backwards. This happens on
9567 * platforms that reset TSC during suspend or hibernate actions, but
9568 * maintain synchronization. We must compensate. Fortunately, we can
9569 * detect that condition here, which happens early in CPU bringup,
9570 * before any KVM threads can be running. Unfortunately, we can't
9571 * bring the TSCs fully up to date with real time, as we aren't yet far
9572 * enough into CPU bringup that we know how much real time has actually
9285ec4c 9573 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
0dd6a6ed
ZA
9574 * variables that haven't been updated yet.
9575 *
9576 * So we simply find the maximum observed TSC above, then record the
9577 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
9578 * the adjustment will be applied. Note that we accumulate
9579 * adjustments, in case multiple suspend cycles happen before some VCPU
9580 * gets a chance to run again. In the event that no KVM threads get a
9581 * chance to run, we will miss the entire elapsed period, as we'll have
9582 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9583 * loose cycle time. This isn't too big a deal, since the loss will be
9584 * uniform across all VCPUs (not to mention the scenario is extremely
9585 * unlikely). It is possible that a second hibernate recovery happens
9586 * much faster than a first, causing the observed TSC here to be
9587 * smaller; this would require additional padding adjustment, which is
9588 * why we set last_host_tsc to the local tsc observed here.
9589 *
9590 * N.B. - this code below runs only on platforms with reliable TSC,
9591 * as that is the only way backwards_tsc is set above. Also note
9592 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9593 * have the same delta_cyc adjustment applied if backwards_tsc
9594 * is detected. Note further, this adjustment is only done once,
9595 * as we reset last_host_tsc on all VCPUs to stop this from being
9596 * called multiple times (one for each physical CPU bringup).
9597 *
4a969980 9598 * Platforms with unreliable TSCs don't have to deal with this, they
0dd6a6ed
ZA
9599 * will be compensated by the logic in vcpu_load, which sets the TSC to
9600 * catchup mode. This will catchup all VCPUs to real time, but cannot
9601 * guarantee that they stay in perfect synchronization.
9602 */
9603 if (backwards_tsc) {
9604 u64 delta_cyc = max_tsc - local_tsc;
9605 list_for_each_entry(kvm, &vm_list, vm_list) {
a826faf1 9606 kvm->arch.backwards_tsc_observed = true;
0dd6a6ed
ZA
9607 kvm_for_each_vcpu(i, vcpu, kvm) {
9608 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9609 vcpu->arch.last_host_tsc = local_tsc;
105b21bb 9610 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
0dd6a6ed
ZA
9611 }
9612
9613 /*
9614 * We have to disable TSC offset matching.. if you were
9615 * booting a VM while issuing an S4 host suspend....
9616 * you may have some problem. Solving this issue is
9617 * left as an exercise to the reader.
9618 */
9619 kvm->arch.last_tsc_nsec = 0;
9620 kvm->arch.last_tsc_write = 0;
9621 }
9622
9623 }
9624 return 0;
e9b11c17
ZX
9625}
9626
13a34e06 9627void kvm_arch_hardware_disable(void)
e9b11c17 9628{
afaf0b2f 9629 kvm_x86_ops.hardware_disable();
13a34e06 9630 drop_user_return_notifiers();
e9b11c17
ZX
9631}
9632
b9904085 9633int kvm_arch_hardware_setup(void *opaque)
e9b11c17 9634{
d008dfdb 9635 struct kvm_x86_init_ops *ops = opaque;
9e9c3fe4
NA
9636 int r;
9637
91661989
SC
9638 rdmsrl_safe(MSR_EFER, &host_efer);
9639
408e9a31
PB
9640 if (boot_cpu_has(X86_FEATURE_XSAVES))
9641 rdmsrl(MSR_IA32_XSS, host_xss);
9642
d008dfdb 9643 r = ops->hardware_setup();
9e9c3fe4
NA
9644 if (r != 0)
9645 return r;
9646
afaf0b2f 9647 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
69c6f69a 9648
408e9a31
PB
9649 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9650 supported_xss = 0;
9651
139f7425
PB
9652#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9653 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9654#undef __kvm_cpu_cap_has
b11306b5 9655
35181e86
HZ
9656 if (kvm_has_tsc_control) {
9657 /*
9658 * Make sure the user can only configure tsc_khz values that
9659 * fit into a signed integer.
273ba457 9660 * A min value is not calculated because it will always
35181e86
HZ
9661 * be 1 on all machines.
9662 */
9663 u64 max = min(0x7fffffffULL,
9664 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9665 kvm_max_guest_tsc_khz = max;
9666
ad721883 9667 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
35181e86 9668 }
ad721883 9669
9e9c3fe4
NA
9670 kvm_init_msr_list();
9671 return 0;
e9b11c17
ZX
9672}
9673
9674void kvm_arch_hardware_unsetup(void)
9675{
afaf0b2f 9676 kvm_x86_ops.hardware_unsetup();
e9b11c17
ZX
9677}
9678
b9904085 9679int kvm_arch_check_processor_compat(void *opaque)
e9b11c17 9680{
f1cdecf5 9681 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
d008dfdb 9682 struct kvm_x86_init_ops *ops = opaque;
f1cdecf5
SC
9683
9684 WARN_ON(!irqs_disabled());
9685
139f7425
PB
9686 if (__cr4_reserved_bits(cpu_has, c) !=
9687 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
f1cdecf5
SC
9688 return -EIO;
9689
d008dfdb 9690 return ops->check_processor_compatibility();
d71ba788
PB
9691}
9692
9693bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9694{
9695 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9696}
9697EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9698
9699bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9700{
9701 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
e9b11c17
ZX
9702}
9703
54e9818f 9704struct static_key kvm_no_apic_vcpu __read_mostly;
bce87cce 9705EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
54e9818f 9706
e790d9ef
RK
9707void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9708{
b35e5548
LX
9709 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9710
c595ceee 9711 vcpu->arch.l1tf_flush_l1d = true;
b35e5548
LX
9712 if (pmu->version && unlikely(pmu->event_count)) {
9713 pmu->need_cleanup = true;
9714 kvm_make_request(KVM_REQ_PMU, vcpu);
9715 }
afaf0b2f 9716 kvm_x86_ops.sched_in(vcpu, cpu);
e790d9ef
RK
9717}
9718
562b6b08
SC
9719void kvm_arch_free_vm(struct kvm *kvm)
9720{
9721 kfree(kvm->arch.hyperv.hv_pa_pg);
9722 vfree(kvm);
e790d9ef
RK
9723}
9724
562b6b08 9725
e08b9637 9726int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
d19a9cd2 9727{
e08b9637
CO
9728 if (type)
9729 return -EINVAL;
9730
6ef768fa 9731 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
f05e70ac 9732 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10605204 9733 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
1aa9b957 9734 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
4d5c5d0f 9735 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
e0f0bbc5 9736 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
d19a9cd2 9737
5550af4d
SY
9738 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9739 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7a84428a
AW
9740 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9741 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9742 &kvm->arch.irq_sources_bitmap);
5550af4d 9743
038f8c11 9744 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
1e08ec4a 9745 mutex_init(&kvm->arch.apic_map_lock);
d828199e
MT
9746 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9747
8171cd68 9748 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
d828199e 9749 pvclock_update_vm_gtod_copy(kvm);
53f658b3 9750
6fbbde9a
DS
9751 kvm->arch.guest_can_read_msr_platform_info = true;
9752
7e44e449 9753 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
332967a3 9754 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7e44e449 9755
cbc0236a 9756 kvm_hv_init_vm(kvm);
0eb05bf2 9757 kvm_page_track_init(kvm);
13d268ca 9758 kvm_mmu_init_vm(kvm);
0eb05bf2 9759
afaf0b2f 9760 return kvm_x86_ops.vm_init(kvm);
d19a9cd2
ZX
9761}
9762
1aa9b957
JS
9763int kvm_arch_post_init_vm(struct kvm *kvm)
9764{
9765 return kvm_mmu_post_init_vm(kvm);
9766}
9767
d19a9cd2
ZX
9768static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9769{
ec7660cc 9770 vcpu_load(vcpu);
d19a9cd2
ZX
9771 kvm_mmu_unload(vcpu);
9772 vcpu_put(vcpu);
9773}
9774
9775static void kvm_free_vcpus(struct kvm *kvm)
9776{
9777 unsigned int i;
988a2cae 9778 struct kvm_vcpu *vcpu;
d19a9cd2
ZX
9779
9780 /*
9781 * Unpin any mmu pages first.
9782 */
af585b92
GN
9783 kvm_for_each_vcpu(i, vcpu, kvm) {
9784 kvm_clear_async_pf_completion_queue(vcpu);
988a2cae 9785 kvm_unload_vcpu_mmu(vcpu);
af585b92 9786 }
988a2cae 9787 kvm_for_each_vcpu(i, vcpu, kvm)
4543bdc0 9788 kvm_vcpu_destroy(vcpu);
988a2cae
GN
9789
9790 mutex_lock(&kvm->lock);
9791 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9792 kvm->vcpus[i] = NULL;
d19a9cd2 9793
988a2cae
GN
9794 atomic_set(&kvm->online_vcpus, 0);
9795 mutex_unlock(&kvm->lock);
d19a9cd2
ZX
9796}
9797
ad8ba2cd
SY
9798void kvm_arch_sync_events(struct kvm *kvm)
9799{
332967a3 9800 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7e44e449 9801 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
aea924f6 9802 kvm_free_pit(kvm);
ad8ba2cd
SY
9803}
9804
1d8007bd 9805int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9da0e4d5
PB
9806{
9807 int i, r;
0577d1ab 9808 unsigned long hva, uninitialized_var(old_npages);
f0d648bd 9809 struct kvm_memslots *slots = kvm_memslots(kvm);
0577d1ab 9810 struct kvm_memory_slot *slot;
9da0e4d5
PB
9811
9812 /* Called with kvm->slots_lock held. */
1d8007bd
PB
9813 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9814 return -EINVAL;
9da0e4d5 9815
f0d648bd
PB
9816 slot = id_to_memslot(slots, id);
9817 if (size) {
0577d1ab 9818 if (slot && slot->npages)
f0d648bd
PB
9819 return -EEXIST;
9820
9821 /*
9822 * MAP_SHARED to prevent internal slot pages from being moved
9823 * by fork()/COW.
9824 */
9825 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9826 MAP_SHARED | MAP_ANONYMOUS, 0);
9827 if (IS_ERR((void *)hva))
9828 return PTR_ERR((void *)hva);
9829 } else {
0577d1ab 9830 if (!slot || !slot->npages)
f0d648bd
PB
9831 return 0;
9832
abbed4fa
SC
9833 /*
9834 * Stuff a non-canonical value to catch use-after-delete. This
9835 * ends up being 0 on 32-bit KVM, but there's no better
9836 * alternative.
9837 */
9838 hva = (unsigned long)(0xdeadull << 48);
0577d1ab 9839 old_npages = slot->npages;
f0d648bd
PB
9840 }
9841
9da0e4d5 9842 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1d8007bd 9843 struct kvm_userspace_memory_region m;
9da0e4d5 9844
1d8007bd
PB
9845 m.slot = id | (i << 16);
9846 m.flags = 0;
9847 m.guest_phys_addr = gpa;
f0d648bd 9848 m.userspace_addr = hva;
1d8007bd 9849 m.memory_size = size;
9da0e4d5
PB
9850 r = __kvm_set_memory_region(kvm, &m);
9851 if (r < 0)
9852 return r;
9853 }
9854
103c763c 9855 if (!size)
0577d1ab 9856 vm_munmap(hva, old_npages * PAGE_SIZE);
f0d648bd 9857
9da0e4d5
PB
9858 return 0;
9859}
9860EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9861
1aa9b957
JS
9862void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9863{
9864 kvm_mmu_pre_destroy_vm(kvm);
9865}
9866
d19a9cd2
ZX
9867void kvm_arch_destroy_vm(struct kvm *kvm)
9868{
27469d29
AH
9869 if (current->mm == kvm->mm) {
9870 /*
9871 * Free memory regions allocated on behalf of userspace,
9872 * unless the the memory map has changed due to process exit
9873 * or fd copying.
9874 */
6a3c623b
PX
9875 mutex_lock(&kvm->slots_lock);
9876 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
9877 0, 0);
9878 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
9879 0, 0);
9880 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9881 mutex_unlock(&kvm->slots_lock);
27469d29 9882 }
afaf0b2f
SC
9883 if (kvm_x86_ops.vm_destroy)
9884 kvm_x86_ops.vm_destroy(kvm);
c761159c
PX
9885 kvm_pic_destroy(kvm);
9886 kvm_ioapic_destroy(kvm);
d19a9cd2 9887 kvm_free_vcpus(kvm);
af1bae54 9888 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
66bb8a06 9889 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
13d268ca 9890 kvm_mmu_uninit_vm(kvm);
2beb6dad 9891 kvm_page_track_cleanup(kvm);
cbc0236a 9892 kvm_hv_destroy_vm(kvm);
d19a9cd2 9893}
0de10343 9894
e96c81ee 9895void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
db3fe4eb
TY
9896{
9897 int i;
9898
d89cc617 9899 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
e96c81ee
SC
9900 kvfree(slot->arch.rmap[i]);
9901 slot->arch.rmap[i] = NULL;
9902
d89cc617
TY
9903 if (i == 0)
9904 continue;
9905
e96c81ee
SC
9906 kvfree(slot->arch.lpage_info[i - 1]);
9907 slot->arch.lpage_info[i - 1] = NULL;
db3fe4eb 9908 }
21ebbeda 9909
e96c81ee 9910 kvm_page_track_free_memslot(slot);
db3fe4eb
TY
9911}
9912
0dab98b7
SC
9913static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
9914 unsigned long npages)
db3fe4eb
TY
9915{
9916 int i;
9917
edd4fa37
SC
9918 /*
9919 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
9920 * old arrays will be freed by __kvm_set_memory_region() if installing
9921 * the new memslot is successful.
9922 */
9923 memset(&slot->arch, 0, sizeof(slot->arch));
9924
d89cc617 9925 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
92f94f1e 9926 struct kvm_lpage_info *linfo;
db3fe4eb
TY
9927 unsigned long ugfn;
9928 int lpages;
d89cc617 9929 int level = i + 1;
db3fe4eb
TY
9930
9931 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9932 slot->base_gfn, level) + 1;
9933
d89cc617 9934 slot->arch.rmap[i] =
778e1cdd 9935 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
254272ce 9936 GFP_KERNEL_ACCOUNT);
d89cc617 9937 if (!slot->arch.rmap[i])
77d11309 9938 goto out_free;
d89cc617
TY
9939 if (i == 0)
9940 continue;
77d11309 9941
254272ce 9942 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
92f94f1e 9943 if (!linfo)
db3fe4eb
TY
9944 goto out_free;
9945
92f94f1e
XG
9946 slot->arch.lpage_info[i - 1] = linfo;
9947
db3fe4eb 9948 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
92f94f1e 9949 linfo[0].disallow_lpage = 1;
db3fe4eb 9950 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
92f94f1e 9951 linfo[lpages - 1].disallow_lpage = 1;
db3fe4eb
TY
9952 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9953 /*
9954 * If the gfn and userspace address are not aligned wrt each
600087b6 9955 * other, disable large page support for this slot.
db3fe4eb 9956 */
600087b6 9957 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
db3fe4eb
TY
9958 unsigned long j;
9959
9960 for (j = 0; j < lpages; ++j)
92f94f1e 9961 linfo[j].disallow_lpage = 1;
db3fe4eb
TY
9962 }
9963 }
9964
21ebbeda
XG
9965 if (kvm_page_track_create_memslot(slot, npages))
9966 goto out_free;
9967
db3fe4eb
TY
9968 return 0;
9969
9970out_free:
d89cc617 9971 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
548ef284 9972 kvfree(slot->arch.rmap[i]);
d89cc617
TY
9973 slot->arch.rmap[i] = NULL;
9974 if (i == 0)
9975 continue;
9976
548ef284 9977 kvfree(slot->arch.lpage_info[i - 1]);
d89cc617 9978 slot->arch.lpage_info[i - 1] = NULL;
db3fe4eb
TY
9979 }
9980 return -ENOMEM;
9981}
9982
15248258 9983void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
e59dbe09 9984{
91724814
BO
9985 struct kvm_vcpu *vcpu;
9986 int i;
9987
e6dff7d1
TY
9988 /*
9989 * memslots->generation has been incremented.
9990 * mmio generation may have reached its maximum value.
9991 */
15248258 9992 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
91724814
BO
9993
9994 /* Force re-initialization of steal_time cache */
9995 kvm_for_each_vcpu(i, vcpu, kvm)
9996 kvm_vcpu_kick(vcpu);
e59dbe09
TY
9997}
9998
f7784b8e
MT
9999int kvm_arch_prepare_memory_region(struct kvm *kvm,
10000 struct kvm_memory_slot *memslot,
09170a49 10001 const struct kvm_userspace_memory_region *mem,
7b6195a9 10002 enum kvm_mr_change change)
0de10343 10003{
0dab98b7
SC
10004 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10005 return kvm_alloc_memslot_metadata(memslot,
10006 mem->memory_size >> PAGE_SHIFT);
f7784b8e
MT
10007 return 0;
10008}
10009
88178fd4
KH
10010static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
10011 struct kvm_memory_slot *new)
10012{
10013 /* Still write protect RO slot */
10014 if (new->flags & KVM_MEM_READONLY) {
3c9bd400 10015 kvm_mmu_slot_remove_write_access(kvm, new, PT_PAGE_TABLE_LEVEL);
88178fd4
KH
10016 return;
10017 }
10018
10019 /*
10020 * Call kvm_x86_ops dirty logging hooks when they are valid.
10021 *
afaf0b2f 10022 * kvm_x86_ops.slot_disable_log_dirty is called when:
88178fd4
KH
10023 *
10024 * - KVM_MR_CREATE with dirty logging is disabled
10025 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
10026 *
10027 * The reason is, in case of PML, we need to set D-bit for any slots
10028 * with dirty logging disabled in order to eliminate unnecessary GPA
0a03cbda 10029 * logging in PML buffer (and potential PML buffer full VMEXIT). This
88178fd4 10030 * guarantees leaving PML enabled during guest's lifetime won't have
bdd303cb 10031 * any additional overhead from PML when guest is running with dirty
88178fd4
KH
10032 * logging disabled for memory slots.
10033 *
afaf0b2f 10034 * kvm_x86_ops.slot_enable_log_dirty is called when switching new slot
88178fd4
KH
10035 * to dirty logging mode.
10036 *
10037 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
10038 *
10039 * In case of write protect:
10040 *
10041 * Write protect all pages for dirty logging.
10042 *
10043 * All the sptes including the large sptes which point to this
10044 * slot are set to readonly. We can not create any new large
10045 * spte on this slot until the end of the logging.
10046 *
10047 * See the comments in fast_page_fault().
10048 */
10049 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
afaf0b2f
SC
10050 if (kvm_x86_ops.slot_enable_log_dirty) {
10051 kvm_x86_ops.slot_enable_log_dirty(kvm, new);
3c9bd400
JZ
10052 } else {
10053 int level =
10054 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
10055 PT_DIRECTORY_LEVEL : PT_PAGE_TABLE_LEVEL;
10056
10057 /*
10058 * If we're with initial-all-set, we don't need
10059 * to write protect any small page because
10060 * they're reported as dirty already. However
10061 * we still need to write-protect huge pages
10062 * so that the page split can happen lazily on
10063 * the first write to the huge page.
10064 */
10065 kvm_mmu_slot_remove_write_access(kvm, new, level);
10066 }
88178fd4 10067 } else {
afaf0b2f
SC
10068 if (kvm_x86_ops.slot_disable_log_dirty)
10069 kvm_x86_ops.slot_disable_log_dirty(kvm, new);
88178fd4
KH
10070 }
10071}
10072
f7784b8e 10073void kvm_arch_commit_memory_region(struct kvm *kvm,
09170a49 10074 const struct kvm_userspace_memory_region *mem,
9d4c197c 10075 struct kvm_memory_slot *old,
f36f3f28 10076 const struct kvm_memory_slot *new,
8482644a 10077 enum kvm_mr_change change)
f7784b8e 10078{
48c0e4e9 10079 if (!kvm->arch.n_requested_mmu_pages)
4d66623c
WY
10080 kvm_mmu_change_mmu_pages(kvm,
10081 kvm_mmu_calculate_default_mmu_pages(kvm));
1c91cad4 10082
3ea3b7fa
WL
10083 /*
10084 * Dirty logging tracks sptes in 4k granularity, meaning that large
10085 * sptes have to be split. If live migration is successful, the guest
10086 * in the source machine will be destroyed and large sptes will be
10087 * created in the destination. However, if the guest continues to run
10088 * in the source machine (for example if live migration fails), small
10089 * sptes will remain around and cause bad performance.
10090 *
10091 * Scan sptes if dirty logging has been stopped, dropping those
10092 * which can be collapsed into a single large-page spte. Later
10093 * page faults will create the large-page sptes.
319109a2
SC
10094 *
10095 * There is no need to do this in any of the following cases:
10096 * CREATE: No dirty mappings will already exist.
10097 * MOVE/DELETE: The old mappings will already have been cleaned up by
10098 * kvm_arch_flush_shadow_memslot()
3ea3b7fa 10099 */
319109a2 10100 if (change == KVM_MR_FLAGS_ONLY &&
3ea3b7fa
WL
10101 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10102 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10103 kvm_mmu_zap_collapsible_sptes(kvm, new);
10104
c972f3b1 10105 /*
88178fd4 10106 * Set up write protection and/or dirty logging for the new slot.
c126d94f 10107 *
88178fd4
KH
10108 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
10109 * been zapped so no dirty logging staff is needed for old slot. For
10110 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
10111 * new and it's also covered when dealing with the new slot.
f36f3f28
PB
10112 *
10113 * FIXME: const-ify all uses of struct kvm_memory_slot.
c972f3b1 10114 */
88178fd4 10115 if (change != KVM_MR_DELETE)
f36f3f28 10116 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
21198846
SC
10117
10118 /* Free the arrays associated with the old memslot. */
10119 if (change == KVM_MR_MOVE)
e96c81ee 10120 kvm_arch_free_memslot(kvm, old);
0de10343 10121}
1d737c8a 10122
2df72e9b 10123void kvm_arch_flush_shadow_all(struct kvm *kvm)
34d4cb8f 10124{
7390de1e 10125 kvm_mmu_zap_all(kvm);
34d4cb8f
MT
10126}
10127
2df72e9b
MT
10128void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10129 struct kvm_memory_slot *slot)
10130{
ae7cd873 10131 kvm_page_track_flush_slot(kvm, slot);
2df72e9b
MT
10132}
10133
e6c67d8c
LA
10134static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10135{
10136 return (is_guest_mode(vcpu) &&
afaf0b2f
SC
10137 kvm_x86_ops.guest_apic_has_interrupt &&
10138 kvm_x86_ops.guest_apic_has_interrupt(vcpu));
e6c67d8c
LA
10139}
10140
5d9bc648
PB
10141static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10142{
10143 if (!list_empty_careful(&vcpu->async_pf.done))
10144 return true;
10145
10146 if (kvm_apic_has_events(vcpu))
10147 return true;
10148
10149 if (vcpu->arch.pv.pv_unhalted)
10150 return true;
10151
a5f01f8e
WL
10152 if (vcpu->arch.exception.pending)
10153 return true;
10154
47a66eed
Z
10155 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10156 (vcpu->arch.nmi_pending &&
afaf0b2f 10157 kvm_x86_ops.nmi_allowed(vcpu)))
5d9bc648
PB
10158 return true;
10159
47a66eed
Z
10160 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10161 (vcpu->arch.smi_pending && !is_smm(vcpu)))
73917739
PB
10162 return true;
10163
5d9bc648 10164 if (kvm_arch_interrupt_allowed(vcpu) &&
e6c67d8c
LA
10165 (kvm_cpu_has_interrupt(vcpu) ||
10166 kvm_guest_apic_has_interrupt(vcpu)))
5d9bc648
PB
10167 return true;
10168
1f4b34f8
AS
10169 if (kvm_hv_has_stimer_pending(vcpu))
10170 return true;
10171
5d9bc648
PB
10172 return false;
10173}
10174
1d737c8a
ZX
10175int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10176{
5d9bc648 10177 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
1d737c8a 10178}
5736199a 10179
17e433b5
WL
10180bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10181{
10182 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10183 return true;
10184
10185 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10186 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10187 kvm_test_request(KVM_REQ_EVENT, vcpu))
10188 return true;
10189
afaf0b2f 10190 if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
17e433b5
WL
10191 return true;
10192
10193 return false;
10194}
10195
199b5763
LM
10196bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10197{
de63ad4c 10198 return vcpu->arch.preempted_in_kernel;
199b5763
LM
10199}
10200
b6d33834 10201int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
5736199a 10202{
b6d33834 10203 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
5736199a 10204}
78646121
GN
10205
10206int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10207{
afaf0b2f 10208 return kvm_x86_ops.interrupt_allowed(vcpu);
78646121 10209}
229456fc 10210
82b32774 10211unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
f92653ee 10212{
82b32774
NA
10213 if (is_64_bit_mode(vcpu))
10214 return kvm_rip_read(vcpu);
10215 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10216 kvm_rip_read(vcpu));
10217}
10218EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
f92653ee 10219
82b32774
NA
10220bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10221{
10222 return kvm_get_linear_rip(vcpu) == linear_rip;
f92653ee
JK
10223}
10224EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10225
94fe45da
JK
10226unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10227{
10228 unsigned long rflags;
10229
afaf0b2f 10230 rflags = kvm_x86_ops.get_rflags(vcpu);
94fe45da 10231 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
c310bac5 10232 rflags &= ~X86_EFLAGS_TF;
94fe45da
JK
10233 return rflags;
10234}
10235EXPORT_SYMBOL_GPL(kvm_get_rflags);
10236
6addfc42 10237static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
94fe45da
JK
10238{
10239 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
f92653ee 10240 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
c310bac5 10241 rflags |= X86_EFLAGS_TF;
afaf0b2f 10242 kvm_x86_ops.set_rflags(vcpu, rflags);
6addfc42
PB
10243}
10244
10245void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10246{
10247 __kvm_set_rflags(vcpu, rflags);
3842d135 10248 kvm_make_request(KVM_REQ_EVENT, vcpu);
94fe45da
JK
10249}
10250EXPORT_SYMBOL_GPL(kvm_set_rflags);
10251
56028d08
GN
10252void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10253{
10254 int r;
10255
44dd3ffa 10256 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
f2e10669 10257 work->wakeup_all)
56028d08
GN
10258 return;
10259
10260 r = kvm_mmu_reload(vcpu);
10261 if (unlikely(r))
10262 return;
10263
44dd3ffa 10264 if (!vcpu->arch.mmu->direct_map &&
d8dd54e0 10265 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
fb67e14f
XG
10266 return;
10267
7a02674d 10268 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
56028d08
GN
10269}
10270
af585b92
GN
10271static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10272{
10273 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10274}
10275
10276static inline u32 kvm_async_pf_next_probe(u32 key)
10277{
10278 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
10279}
10280
10281static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10282{
10283 u32 key = kvm_async_pf_hash_fn(gfn);
10284
10285 while (vcpu->arch.apf.gfns[key] != ~0)
10286 key = kvm_async_pf_next_probe(key);
10287
10288 vcpu->arch.apf.gfns[key] = gfn;
10289}
10290
10291static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10292{
10293 int i;
10294 u32 key = kvm_async_pf_hash_fn(gfn);
10295
10296 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
c7d28c24
XG
10297 (vcpu->arch.apf.gfns[key] != gfn &&
10298 vcpu->arch.apf.gfns[key] != ~0); i++)
af585b92
GN
10299 key = kvm_async_pf_next_probe(key);
10300
10301 return key;
10302}
10303
10304bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10305{
10306 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10307}
10308
10309static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10310{
10311 u32 i, j, k;
10312
10313 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10314 while (true) {
10315 vcpu->arch.apf.gfns[i] = ~0;
10316 do {
10317 j = kvm_async_pf_next_probe(j);
10318 if (vcpu->arch.apf.gfns[j] == ~0)
10319 return;
10320 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10321 /*
10322 * k lies cyclically in ]i,j]
10323 * | i.k.j |
10324 * |....j i.k.| or |.k..j i...|
10325 */
10326 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10327 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10328 i = j;
10329 }
10330}
10331
7c90705b
GN
10332static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
10333{
4e335d9e
PB
10334
10335 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
10336 sizeof(val));
7c90705b
GN
10337}
10338
9a6e7c39
WL
10339static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10340{
10341
10342 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10343 sizeof(u32));
10344}
10345
1dfdb45e
PB
10346static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10347{
10348 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10349 return false;
10350
10351 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10352 (vcpu->arch.apf.send_user_only &&
afaf0b2f 10353 kvm_x86_ops.get_cpl(vcpu) == 0))
1dfdb45e
PB
10354 return false;
10355
10356 return true;
10357}
10358
10359bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10360{
10361 if (unlikely(!lapic_in_kernel(vcpu) ||
10362 kvm_event_needs_reinjection(vcpu) ||
10363 vcpu->arch.exception.pending))
10364 return false;
10365
10366 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10367 return false;
10368
10369 /*
10370 * If interrupts are off we cannot even use an artificial
10371 * halt state.
10372 */
afaf0b2f 10373 return kvm_x86_ops.interrupt_allowed(vcpu);
1dfdb45e
PB
10374}
10375
af585b92
GN
10376void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10377 struct kvm_async_pf *work)
10378{
6389ee94
AK
10379 struct x86_exception fault;
10380
736c291c 10381 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
af585b92 10382 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7c90705b 10383
1dfdb45e
PB
10384 if (kvm_can_deliver_async_pf(vcpu) &&
10385 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6389ee94
AK
10386 fault.vector = PF_VECTOR;
10387 fault.error_code_valid = true;
10388 fault.error_code = 0;
10389 fault.nested_page_fault = false;
10390 fault.address = work->arch.token;
adfe20fb 10391 fault.async_page_fault = true;
6389ee94 10392 kvm_inject_page_fault(vcpu, &fault);
1dfdb45e
PB
10393 } else {
10394 /*
10395 * It is not possible to deliver a paravirtualized asynchronous
10396 * page fault, but putting the guest in an artificial halt state
10397 * can be beneficial nevertheless: if an interrupt arrives, we
10398 * can deliver it timely and perhaps the guest will schedule
10399 * another process. When the instruction that triggered a page
10400 * fault is retried, hopefully the page will be ready in the host.
10401 */
10402 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7c90705b 10403 }
af585b92
GN
10404}
10405
10406void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10407 struct kvm_async_pf *work)
10408{
6389ee94 10409 struct x86_exception fault;
9a6e7c39 10410 u32 val;
6389ee94 10411
f2e10669 10412 if (work->wakeup_all)
7c90705b
GN
10413 work->arch.token = ~0; /* broadcast wakeup */
10414 else
10415 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
736c291c 10416 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
7c90705b 10417
9a6e7c39
WL
10418 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10419 !apf_get_user(vcpu, &val)) {
10420 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10421 vcpu->arch.exception.pending &&
10422 vcpu->arch.exception.nr == PF_VECTOR &&
10423 !apf_put_user(vcpu, 0)) {
10424 vcpu->arch.exception.injected = false;
10425 vcpu->arch.exception.pending = false;
10426 vcpu->arch.exception.nr = 0;
10427 vcpu->arch.exception.has_error_code = false;
10428 vcpu->arch.exception.error_code = 0;
c851436a
JM
10429 vcpu->arch.exception.has_payload = false;
10430 vcpu->arch.exception.payload = 0;
9a6e7c39
WL
10431 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10432 fault.vector = PF_VECTOR;
10433 fault.error_code_valid = true;
10434 fault.error_code = 0;
10435 fault.nested_page_fault = false;
10436 fault.address = work->arch.token;
10437 fault.async_page_fault = true;
10438 kvm_inject_page_fault(vcpu, &fault);
10439 }
7c90705b 10440 }
e6d53e3b 10441 vcpu->arch.apf.halted = false;
a4fa1635 10442 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7c90705b
GN
10443}
10444
10445bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10446{
10447 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10448 return true;
10449 else
9bc1f09f 10450 return kvm_can_do_async_pf(vcpu);
af585b92
GN
10451}
10452
5544eb9b
PB
10453void kvm_arch_start_assignment(struct kvm *kvm)
10454{
10455 atomic_inc(&kvm->arch.assigned_device_count);
10456}
10457EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10458
10459void kvm_arch_end_assignment(struct kvm *kvm)
10460{
10461 atomic_dec(&kvm->arch.assigned_device_count);
10462}
10463EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10464
10465bool kvm_arch_has_assigned_device(struct kvm *kvm)
10466{
10467 return atomic_read(&kvm->arch.assigned_device_count);
10468}
10469EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10470
e0f0bbc5
AW
10471void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10472{
10473 atomic_inc(&kvm->arch.noncoherent_dma_count);
10474}
10475EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10476
10477void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10478{
10479 atomic_dec(&kvm->arch.noncoherent_dma_count);
10480}
10481EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10482
10483bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10484{
10485 return atomic_read(&kvm->arch.noncoherent_dma_count);
10486}
10487EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10488
14717e20
AW
10489bool kvm_arch_has_irq_bypass(void)
10490{
92735b1b 10491 return true;
14717e20
AW
10492}
10493
87276880
FW
10494int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10495 struct irq_bypass_producer *prod)
10496{
10497 struct kvm_kernel_irqfd *irqfd =
10498 container_of(cons, struct kvm_kernel_irqfd, consumer);
10499
14717e20 10500 irqfd->producer = prod;
87276880 10501
afaf0b2f 10502 return kvm_x86_ops.update_pi_irte(irqfd->kvm,
14717e20 10503 prod->irq, irqfd->gsi, 1);
87276880
FW
10504}
10505
10506void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10507 struct irq_bypass_producer *prod)
10508{
10509 int ret;
10510 struct kvm_kernel_irqfd *irqfd =
10511 container_of(cons, struct kvm_kernel_irqfd, consumer);
10512
87276880
FW
10513 WARN_ON(irqfd->producer != prod);
10514 irqfd->producer = NULL;
10515
10516 /*
10517 * When producer of consumer is unregistered, we change back to
10518 * remapped mode, so we can re-use the current implementation
bb3541f1 10519 * when the irq is masked/disabled or the consumer side (KVM
87276880
FW
10520 * int this case doesn't want to receive the interrupts.
10521 */
afaf0b2f 10522 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
87276880
FW
10523 if (ret)
10524 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10525 " fails: %d\n", irqfd->consumer.token, ret);
10526}
10527
10528int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10529 uint32_t guest_irq, bool set)
10530{
afaf0b2f 10531 return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
87276880
FW
10532}
10533
52004014
FW
10534bool kvm_vector_hashing_enabled(void)
10535{
10536 return vector_hashing;
10537}
52004014 10538
2d5ba19b
MT
10539bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10540{
10541 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10542}
10543EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10544
6441fa61
PB
10545u64 kvm_spec_ctrl_valid_bits(struct kvm_vcpu *vcpu)
10546{
10547 uint64_t bits = SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD;
10548
10549 /* The STIBP bit doesn't fault even if it's not advertised */
10550 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
10551 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS))
10552 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10553 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
10554 !boot_cpu_has(X86_FEATURE_AMD_IBRS))
10555 bits &= ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP);
10556
10557 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL_SSBD) &&
10558 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
10559 bits &= ~SPEC_CTRL_SSBD;
10560 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
10561 !boot_cpu_has(X86_FEATURE_AMD_SSBD))
10562 bits &= ~SPEC_CTRL_SSBD;
10563
10564 return bits;
10565}
10566EXPORT_SYMBOL_GPL(kvm_spec_ctrl_valid_bits);
2d5ba19b 10567
229456fc 10568EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
931c33b1 10569EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
229456fc
MT
10570EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10571EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10572EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10573EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
0ac406de 10574EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
d8cabddf 10575EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
17897f36 10576EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
236649de 10577EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5497b955 10578EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
ec1ff790 10579EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
532a46b9 10580EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
2e554e8d 10581EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
489223ed 10582EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
4f75bcc3 10583EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
843e4330 10584EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
efc64404 10585EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
18f40c53
SS
10586EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10587EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
ab56f8e6 10588EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
24bbf74c 10589EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);