]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/lguest/boot.c
tools/lguest: don't start devices until DRIVER_OK status set.
[mirror_ubuntu-artful-kernel.git] / arch / x86 / lguest / boot.c
CommitLineData
f938d2c8
RR
1/*P:010
2 * A hypervisor allows multiple Operating Systems to run on a single machine.
3 * To quote David Wheeler: "Any problem in computer science can be solved with
4 * another layer of indirection."
5 *
6 * We keep things simple in two ways. First, we start with a normal Linux
7 * kernel and insert a module (lg.ko) which allows us to run other Linux
8 * kernels the same way we'd run processes. We call the first kernel the Host,
9 * and the others the Guests. The program which sets up and configures Guests
b21e332d 10 * (such as the example in tools/lguest/lguest.c) is called the Launcher.
f938d2c8 11 *
a6bd8e13
RR
12 * Secondly, we only run specially modified Guests, not normal kernels: setting
13 * CONFIG_LGUEST_GUEST to "y" compiles this file into the kernel so it knows
14 * how to be a Guest at boot time. This means that you can use the same kernel
15 * you boot normally (ie. as a Host) as a Guest.
07ad157f 16 *
f938d2c8
RR
17 * These Guests know that they cannot do privileged operations, such as disable
18 * interrupts, and that they have to ask the Host to do such things explicitly.
19 * This file consists of all the replacements for such low-level native
20 * hardware operations: these special Guest versions call the Host.
21 *
a6bd8e13
RR
22 * So how does the kernel know it's a Guest? We'll see that later, but let's
23 * just say that we end up here where we replace the native functions various
2e04ef76
RR
24 * "paravirt" structures with our Guest versions, then boot like normal.
25:*/
f938d2c8
RR
26
27/*
07ad157f
RR
28 * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
29 *
30 * This program is free software; you can redistribute it and/or modify
31 * it under the terms of the GNU General Public License as published by
32 * the Free Software Foundation; either version 2 of the License, or
33 * (at your option) any later version.
34 *
35 * This program is distributed in the hope that it will be useful, but
36 * WITHOUT ANY WARRANTY; without even the implied warranty of
37 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
38 * NON INFRINGEMENT. See the GNU General Public License for more
39 * details.
40 *
41 * You should have received a copy of the GNU General Public License
42 * along with this program; if not, write to the Free Software
43 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
44 */
45#include <linux/kernel.h>
46#include <linux/start_kernel.h>
47#include <linux/string.h>
48#include <linux/console.h>
49#include <linux/screen_info.h>
50#include <linux/irq.h>
51#include <linux/interrupt.h>
d7e28ffe
RR
52#include <linux/clocksource.h>
53#include <linux/clockchips.h>
07ad157f
RR
54#include <linux/lguest.h>
55#include <linux/lguest_launcher.h>
19f1537b 56#include <linux/virtio_console.h>
4cfe6c3c 57#include <linux/pm.h>
39a0e33d 58#include <linux/export.h>
e1b83e27 59#include <linux/pci.h>
a561adfa 60#include <linux/virtio_pci.h>
ee72576c 61#include <asm/acpi.h>
7b6aa335 62#include <asm/apic.h>
cbc34973 63#include <asm/lguest.h>
07ad157f
RR
64#include <asm/paravirt.h>
65#include <asm/param.h>
66#include <asm/page.h>
67#include <asm/pgtable.h>
68#include <asm/desc.h>
69#include <asm/setup.h>
70#include <asm/e820.h>
71#include <asm/mce.h>
72#include <asm/io.h>
625efab1 73#include <asm/i387.h>
2cb7878a 74#include <asm/stackprotector.h>
ec04b13f 75#include <asm/reboot.h> /* for struct machine_ops */
89cfc991 76#include <asm/kvm_para.h>
e1b83e27 77#include <asm/pci_x86.h>
a561adfa 78#include <asm/pci-direct.h>
07ad157f 79
9f54288d
RR
80/*G:010
81 * Welcome to the Guest!
b2b47c21
RR
82 *
83 * The Guest in our tale is a simple creature: identical to the Host but
84 * behaving in simplified but equivalent ways. In particular, the Guest is the
2e04ef76
RR
85 * same kernel as the Host (or at least, built from the same source code).
86:*/
b2b47c21 87
07ad157f
RR
88struct lguest_data lguest_data = {
89 .hcall_status = { [0 ... LHCALL_RING_SIZE-1] = 0xFF },
90 .noirq_start = (u32)lguest_noirq_start,
91 .noirq_end = (u32)lguest_noirq_end,
47436aa4 92 .kernel_address = PAGE_OFFSET,
07ad157f 93 .blocked_interrupts = { 1 }, /* Block timer interrupts */
c18acd73 94 .syscall_vec = SYSCALL_VECTOR,
07ad157f 95};
07ad157f 96
2e04ef76
RR
97/*G:037
98 * async_hcall() is pretty simple: I'm quite proud of it really. We have a
b2b47c21 99 * ring buffer of stored hypercalls which the Host will run though next time we
cefcad17 100 * do a normal hypercall. Each entry in the ring has 5 slots for the hypercall
b2b47c21
RR
101 * arguments, and a "hcall_status" word which is 0 if the call is ready to go,
102 * and 255 once the Host has finished with it.
103 *
104 * If we come around to a slot which hasn't been finished, then the table is
105 * full and we just make the hypercall directly. This has the nice side
106 * effect of causing the Host to run all the stored calls in the ring buffer
2e04ef76
RR
107 * which empties it for next time!
108 */
9b56fdb4 109static void async_hcall(unsigned long call, unsigned long arg1,
cefcad17
MZ
110 unsigned long arg2, unsigned long arg3,
111 unsigned long arg4)
07ad157f
RR
112{
113 /* Note: This code assumes we're uniprocessor. */
114 static unsigned int next_call;
115 unsigned long flags;
116
2e04ef76
RR
117 /*
118 * Disable interrupts if not already disabled: we don't want an
b2b47c21 119 * interrupt handler making a hypercall while we're already doing
2e04ef76
RR
120 * one!
121 */
07ad157f
RR
122 local_irq_save(flags);
123 if (lguest_data.hcall_status[next_call] != 0xFF) {
124 /* Table full, so do normal hcall which will flush table. */
091ebf07 125 hcall(call, arg1, arg2, arg3, arg4);
07ad157f 126 } else {
b410e7b1
JS
127 lguest_data.hcalls[next_call].arg0 = call;
128 lguest_data.hcalls[next_call].arg1 = arg1;
129 lguest_data.hcalls[next_call].arg2 = arg2;
130 lguest_data.hcalls[next_call].arg3 = arg3;
cefcad17 131 lguest_data.hcalls[next_call].arg4 = arg4;
b2b47c21 132 /* Arguments must all be written before we mark it to go */
07ad157f
RR
133 wmb();
134 lguest_data.hcall_status[next_call] = 0;
135 if (++next_call == LHCALL_RING_SIZE)
136 next_call = 0;
137 }
138 local_irq_restore(flags);
139}
9b56fdb4 140
2e04ef76
RR
141/*G:035
142 * Notice the lazy_hcall() above, rather than hcall(). This is our first real
143 * optimization trick!
633872b9
RR
144 *
145 * When lazy_mode is set, it means we're allowed to defer all hypercalls and do
146 * them as a batch when lazy_mode is eventually turned off. Because hypercalls
147 * are reasonably expensive, batching them up makes sense. For example, a
148 * large munmap might update dozens of page table entries: that code calls
149 * paravirt_enter_lazy_mmu(), does the dozen updates, then calls
150 * lguest_leave_lazy_mode().
151 *
152 * So, when we're in lazy mode, we call async_hcall() to store the call for
2e04ef76
RR
153 * future processing:
154 */
091ebf07 155static void lazy_hcall1(unsigned long call, unsigned long arg1)
4cd8b5e2
MZ
156{
157 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
091ebf07 158 hcall(call, arg1, 0, 0, 0);
4cd8b5e2 159 else
cefcad17 160 async_hcall(call, arg1, 0, 0, 0);
4cd8b5e2
MZ
161}
162
a91d74a3 163/* You can imagine what lazy_hcall2, 3 and 4 look like. :*/
4cd8b5e2 164static void lazy_hcall2(unsigned long call,
091ebf07
RR
165 unsigned long arg1,
166 unsigned long arg2)
4cd8b5e2
MZ
167{
168 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
091ebf07 169 hcall(call, arg1, arg2, 0, 0);
4cd8b5e2 170 else
cefcad17 171 async_hcall(call, arg1, arg2, 0, 0);
4cd8b5e2
MZ
172}
173
174static void lazy_hcall3(unsigned long call,
091ebf07
RR
175 unsigned long arg1,
176 unsigned long arg2,
177 unsigned long arg3)
9b56fdb4
AB
178{
179 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
091ebf07 180 hcall(call, arg1, arg2, arg3, 0);
9b56fdb4 181 else
cefcad17
MZ
182 async_hcall(call, arg1, arg2, arg3, 0);
183}
184
acdd0b62 185#ifdef CONFIG_X86_PAE
cefcad17 186static void lazy_hcall4(unsigned long call,
091ebf07
RR
187 unsigned long arg1,
188 unsigned long arg2,
189 unsigned long arg3,
190 unsigned long arg4)
cefcad17
MZ
191{
192 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
091ebf07 193 hcall(call, arg1, arg2, arg3, arg4);
cefcad17
MZ
194 else
195 async_hcall(call, arg1, arg2, arg3, arg4);
9b56fdb4 196}
acdd0b62 197#endif
633872b9 198
a91d74a3 199/*G:036
9f54288d
RR
200 * When lazy mode is turned off, we issue the do-nothing hypercall to
201 * flush any stored calls, and call the generic helper to reset the
202 * per-cpu lazy mode variable.
203 */
b407fc57 204static void lguest_leave_lazy_mmu_mode(void)
633872b9 205{
091ebf07 206 hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
b407fc57
JF
207 paravirt_leave_lazy_mmu();
208}
209
9f54288d
RR
210/*
211 * We also catch the end of context switch; we enter lazy mode for much of
212 * that too, so again we need to flush here.
213 *
214 * (Technically, this is lazy CPU mode, and normally we're in lazy MMU
215 * mode, but unlike Xen, lguest doesn't care about the difference).
216 */
224101ed 217static void lguest_end_context_switch(struct task_struct *next)
b407fc57 218{
091ebf07 219 hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
224101ed 220 paravirt_end_context_switch(next);
633872b9 221}
07ad157f 222
61f4bc83 223/*G:032
e1e72965
RR
224 * After that diversion we return to our first native-instruction
225 * replacements: four functions for interrupt control.
b2b47c21
RR
226 *
227 * The simplest way of implementing these would be to have "turn interrupts
228 * off" and "turn interrupts on" hypercalls. Unfortunately, this is too slow:
229 * these are by far the most commonly called functions of those we override.
230 *
231 * So instead we keep an "irq_enabled" field inside our "struct lguest_data",
232 * which the Guest can update with a single instruction. The Host knows to
a6bd8e13 233 * check there before it tries to deliver an interrupt.
b2b47c21
RR
234 */
235
2e04ef76
RR
236/*
237 * save_flags() is expected to return the processor state (ie. "flags"). The
65ea5b03 238 * flags word contains all kind of stuff, but in practice Linux only cares
2e04ef76
RR
239 * about the interrupt flag. Our "save_flags()" just returns that.
240 */
2605fc21 241asmlinkage __visible unsigned long lguest_save_fl(void)
07ad157f
RR
242{
243 return lguest_data.irq_enabled;
244}
07ad157f 245
b2b47c21 246/* Interrupts go off... */
2605fc21 247asmlinkage __visible void lguest_irq_disable(void)
07ad157f
RR
248{
249 lguest_data.irq_enabled = 0;
250}
251
2e04ef76
RR
252/*
253 * Let's pause a moment. Remember how I said these are called so often?
61f4bc83
RR
254 * Jeremy Fitzhardinge optimized them so hard early in 2009 that he had to
255 * break some rules. In particular, these functions are assumed to save their
256 * own registers if they need to: normal C functions assume they can trash the
257 * eax register. To use normal C functions, we use
258 * PV_CALLEE_SAVE_REGS_THUNK(), which pushes %eax onto the stack, calls the
2e04ef76
RR
259 * C function, then restores it.
260 */
9549b9b3
AK
261PV_CALLEE_SAVE_REGS_THUNK(lguest_save_fl);
262PV_CALLEE_SAVE_REGS_THUNK(lguest_irq_disable);
61f4bc83 263/*:*/
a32a8813 264
61f4bc83
RR
265/* These are in i386_head.S */
266extern void lg_irq_enable(void);
267extern void lg_restore_fl(unsigned long flags);
ecb93d1c 268
2e04ef76 269/*M:003
a91d74a3
RR
270 * We could be more efficient in our checking of outstanding interrupts, rather
271 * than using a branch. One way would be to put the "irq_enabled" field in a
272 * page by itself, and have the Host write-protect it when an interrupt comes
273 * in when irqs are disabled. There will then be a page fault as soon as
274 * interrupts are re-enabled.
a6bd8e13
RR
275 *
276 * A better method is to implement soft interrupt disable generally for x86:
277 * instead of disabling interrupts, we set a flag. If an interrupt does come
278 * in, we then disable them for real. This is uncommon, so we could simply use
2e04ef76
RR
279 * a hypercall for interrupt control and not worry about efficiency.
280:*/
07ad157f 281
b2b47c21
RR
282/*G:034
283 * The Interrupt Descriptor Table (IDT).
284 *
285 * The IDT tells the processor what to do when an interrupt comes in. Each
286 * entry in the table is a 64-bit descriptor: this holds the privilege level,
287 * address of the handler, and... well, who cares? The Guest just asks the
288 * Host to make the change anyway, because the Host controls the real IDT.
289 */
8d947344
GOC
290static void lguest_write_idt_entry(gate_desc *dt,
291 int entrynum, const gate_desc *g)
07ad157f 292{
2e04ef76
RR
293 /*
294 * The gate_desc structure is 8 bytes long: we hand it to the Host in
a6bd8e13
RR
295 * two 32-bit chunks. The whole 32-bit kernel used to hand descriptors
296 * around like this; typesafety wasn't a big concern in Linux's early
2e04ef76
RR
297 * years.
298 */
8d947344 299 u32 *desc = (u32 *)g;
b2b47c21 300 /* Keep the local copy up to date. */
8d947344 301 native_write_idt_entry(dt, entrynum, g);
b2b47c21 302 /* Tell Host about this new entry. */
091ebf07 303 hcall(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1], 0);
07ad157f
RR
304}
305
2e04ef76
RR
306/*
307 * Changing to a different IDT is very rare: we keep the IDT up-to-date every
b2b47c21 308 * time it is written, so we can simply loop through all entries and tell the
2e04ef76
RR
309 * Host about them.
310 */
6b68f01b 311static void lguest_load_idt(const struct desc_ptr *desc)
07ad157f
RR
312{
313 unsigned int i;
314 struct desc_struct *idt = (void *)desc->address;
315
316 for (i = 0; i < (desc->size+1)/8; i++)
091ebf07 317 hcall(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b, 0);
07ad157f
RR
318}
319
b2b47c21
RR
320/*
321 * The Global Descriptor Table.
322 *
323 * The Intel architecture defines another table, called the Global Descriptor
324 * Table (GDT). You tell the CPU where it is (and its size) using the "lgdt"
325 * instruction, and then several other instructions refer to entries in the
326 * table. There are three entries which the Switcher needs, so the Host simply
327 * controls the entire thing and the Guest asks it to make changes using the
328 * LOAD_GDT hypercall.
329 *
a489f0b5 330 * This is the exactly like the IDT code.
b2b47c21 331 */
6b68f01b 332static void lguest_load_gdt(const struct desc_ptr *desc)
07ad157f 333{
a489f0b5
RR
334 unsigned int i;
335 struct desc_struct *gdt = (void *)desc->address;
336
337 for (i = 0; i < (desc->size+1)/8; i++)
091ebf07 338 hcall(LHCALL_LOAD_GDT_ENTRY, i, gdt[i].a, gdt[i].b, 0);
07ad157f
RR
339}
340
2e04ef76 341/*
9b6efcd2
RR
342 * For a single GDT entry which changes, we simply change our copy and
343 * then tell the host about it.
2e04ef76 344 */
014b15be
GOC
345static void lguest_write_gdt_entry(struct desc_struct *dt, int entrynum,
346 const void *desc, int type)
07ad157f 347{
014b15be 348 native_write_gdt_entry(dt, entrynum, desc, type);
a489f0b5 349 /* Tell Host about this new entry. */
091ebf07
RR
350 hcall(LHCALL_LOAD_GDT_ENTRY, entrynum,
351 dt[entrynum].a, dt[entrynum].b, 0);
07ad157f
RR
352}
353
2e04ef76 354/*
9b6efcd2 355 * There are three "thread local storage" GDT entries which change
b2b47c21 356 * on every context switch (these three entries are how glibc implements
9b6efcd2
RR
357 * __thread variables). As an optimization, we have a hypercall
358 * specifically for this case.
359 *
360 * Wouldn't it be nicer to have a general LOAD_GDT_ENTRIES hypercall
361 * which took a range of entries?
2e04ef76 362 */
07ad157f
RR
363static void lguest_load_tls(struct thread_struct *t, unsigned int cpu)
364{
2e04ef76
RR
365 /*
366 * There's one problem which normal hardware doesn't have: the Host
0d027c01 367 * can't handle us removing entries we're currently using. So we clear
2e04ef76
RR
368 * the GS register here: if it's needed it'll be reloaded anyway.
369 */
ccbeed3a 370 lazy_load_gs(0);
4cd8b5e2 371 lazy_hcall2(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu);
07ad157f
RR
372}
373
2e04ef76
RR
374/*G:038
375 * That's enough excitement for now, back to ploughing through each of the
376 * different pv_ops structures (we're about 1/3 of the way through).
b2b47c21
RR
377 *
378 * This is the Local Descriptor Table, another weird Intel thingy. Linux only
379 * uses this for some strange applications like Wine. We don't do anything
2e04ef76
RR
380 * here, so they'll get an informative and friendly Segmentation Fault.
381 */
07ad157f
RR
382static void lguest_set_ldt(const void *addr, unsigned entries)
383{
384}
385
2e04ef76
RR
386/*
387 * This loads a GDT entry into the "Task Register": that entry points to a
b2b47c21
RR
388 * structure called the Task State Segment. Some comments scattered though the
389 * kernel code indicate that this used for task switching in ages past, along
390 * with blood sacrifice and astrology.
391 *
392 * Now there's nothing interesting in here that we don't get told elsewhere.
393 * But the native version uses the "ltr" instruction, which makes the Host
394 * complain to the Guest about a Segmentation Fault and it'll oops. So we
2e04ef76
RR
395 * override the native version with a do-nothing version.
396 */
07ad157f
RR
397static void lguest_load_tr_desc(void)
398{
399}
400
2e04ef76
RR
401/*
402 * The "cpuid" instruction is a way of querying both the CPU identity
b2b47c21 403 * (manufacturer, model, etc) and its features. It was introduced before the
a6bd8e13
RR
404 * Pentium in 1993 and keeps getting extended by both Intel, AMD and others.
405 * As you might imagine, after a decade and a half this treatment, it is now a
406 * giant ball of hair. Its entry in the current Intel manual runs to 28 pages.
b2b47c21
RR
407 *
408 * This instruction even it has its own Wikipedia entry. The Wikipedia entry
8d431f41 409 * has been translated into 6 languages. I am not making this up!
b2b47c21
RR
410 *
411 * We could get funky here and identify ourselves as "GenuineLguest", but
412 * instead we just use the real "cpuid" instruction. Then I pretty much turned
413 * off feature bits until the Guest booted. (Don't say that: you'll damage
414 * lguest sales!) Shut up, inner voice! (Hey, just pointing out that this is
0d2eb44f 415 * hardly future proof.) No one's listening! They don't like you anyway,
b2b47c21
RR
416 * parenthetic weirdo!
417 *
418 * Replacing the cpuid so we can turn features off is great for the kernel, but
419 * anyone (including userspace) can just use the raw "cpuid" instruction and
420 * the Host won't even notice since it isn't privileged. So we try not to get
2e04ef76
RR
421 * too worked up about it.
422 */
65ea5b03
PA
423static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
424 unsigned int *cx, unsigned int *dx)
07ad157f 425{
65ea5b03 426 int function = *ax;
07ad157f 427
65ea5b03 428 native_cpuid(ax, bx, cx, dx);
07ad157f 429 switch (function) {
2e04ef76
RR
430 /*
431 * CPUID 0 gives the highest legal CPUID number (and the ID string).
432 * We futureproof our code a little by sticking to known CPUID values.
433 */
434 case 0:
7a504920
RR
435 if (*ax > 5)
436 *ax = 5;
437 break;
2e04ef76
RR
438
439 /*
440 * CPUID 1 is a basic feature request.
441 *
442 * CX: we only allow kernel to see SSE3, CMPXCHG16B and SSSE3
443 * DX: SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU and PAE.
444 */
445 case 1:
65ea5b03 446 *cx &= 0x00002201;
acdd0b62 447 *dx &= 0x07808151;
2e04ef76
RR
448 /*
449 * The Host can do a nice optimization if it knows that the
b2b47c21
RR
450 * kernel mappings (addresses above 0xC0000000 or whatever
451 * PAGE_OFFSET is set to) haven't changed. But Linux calls
452 * flush_tlb_user() for both user and kernel mappings unless
2e04ef76
RR
453 * the Page Global Enable (PGE) feature bit is set.
454 */
65ea5b03 455 *dx |= 0x00002000;
2e04ef76
RR
456 /*
457 * We also lie, and say we're family id 5. 6 or greater
cbd88c8e 458 * leads to a rdmsr in early_init_intel which we can't handle.
2e04ef76
RR
459 * Family ID is returned as bits 8-12 in ax.
460 */
cbd88c8e
RR
461 *ax &= 0xFFFFF0FF;
462 *ax |= 0x00000500;
07ad157f 463 break;
89cfc991
RR
464
465 /*
466 * This is used to detect if we're running under KVM. We might be,
467 * but that's a Host matter, not us. So say we're not.
468 */
469 case KVM_CPUID_SIGNATURE:
470 *bx = *cx = *dx = 0;
471 break;
472
2e04ef76
RR
473 /*
474 * 0x80000000 returns the highest Extended Function, so we futureproof
475 * like we do above by limiting it to known fields.
476 */
07ad157f 477 case 0x80000000:
65ea5b03
PA
478 if (*ax > 0x80000008)
479 *ax = 0x80000008;
07ad157f 480 break;
2e04ef76
RR
481
482 /*
483 * PAE systems can mark pages as non-executable. Linux calls this the
484 * NX bit. Intel calls it XD (eXecute Disable), AMD EVP (Enhanced
64be1158 485 * Virus Protection). We just switch it off here, since we don't
2e04ef76
RR
486 * support it.
487 */
acdd0b62 488 case 0x80000001:
acdd0b62
MZ
489 *dx &= ~(1 << 20);
490 break;
07ad157f
RR
491 }
492}
493
2e04ef76
RR
494/*
495 * Intel has four control registers, imaginatively named cr0, cr2, cr3 and cr4.
b2b47c21
RR
496 * I assume there's a cr1, but it hasn't bothered us yet, so we'll not bother
497 * it. The Host needs to know when the Guest wants to change them, so we have
498 * a whole series of functions like read_cr0() and write_cr0().
499 *
e1e72965 500 * We start with cr0. cr0 allows you to turn on and off all kinds of basic
b2b47c21
RR
501 * features, but Linux only really cares about one: the horrifically-named Task
502 * Switched (TS) bit at bit 3 (ie. 8)
503 *
504 * What does the TS bit do? Well, it causes the CPU to trap (interrupt 7) if
505 * the floating point unit is used. Which allows us to restore FPU state
506 * lazily after a task switch, and Linux uses that gratefully, but wouldn't a
507 * name like "FPUTRAP bit" be a little less cryptic?
508 *
ad5173ff 509 * We store cr0 locally because the Host never changes it. The Guest sometimes
2e04ef76
RR
510 * wants to read it and we'd prefer not to bother the Host unnecessarily.
511 */
ad5173ff 512static unsigned long current_cr0;
07ad157f
RR
513static void lguest_write_cr0(unsigned long val)
514{
4cd8b5e2 515 lazy_hcall1(LHCALL_TS, val & X86_CR0_TS);
07ad157f
RR
516 current_cr0 = val;
517}
518
519static unsigned long lguest_read_cr0(void)
520{
521 return current_cr0;
522}
523
2e04ef76
RR
524/*
525 * Intel provided a special instruction to clear the TS bit for people too cool
b2b47c21 526 * to use write_cr0() to do it. This "clts" instruction is faster, because all
2e04ef76
RR
527 * the vowels have been optimized out.
528 */
07ad157f
RR
529static void lguest_clts(void)
530{
4cd8b5e2 531 lazy_hcall1(LHCALL_TS, 0);
25c47bb3 532 current_cr0 &= ~X86_CR0_TS;
07ad157f
RR
533}
534
2e04ef76
RR
535/*
536 * cr2 is the virtual address of the last page fault, which the Guest only ever
b2b47c21 537 * reads. The Host kindly writes this into our "struct lguest_data", so we
2e04ef76
RR
538 * just read it out of there.
539 */
07ad157f
RR
540static unsigned long lguest_read_cr2(void)
541{
542 return lguest_data.cr2;
543}
544
ad5173ff
RR
545/* See lguest_set_pte() below. */
546static bool cr3_changed = false;
5dea1c88 547static unsigned long current_cr3;
ad5173ff 548
2e04ef76
RR
549/*
550 * cr3 is the current toplevel pagetable page: the principle is the same as
5dea1c88 551 * cr0. Keep a local copy, and tell the Host when it changes.
2e04ef76 552 */
07ad157f
RR
553static void lguest_write_cr3(unsigned long cr3)
554{
4cd8b5e2 555 lazy_hcall1(LHCALL_NEW_PGTABLE, cr3);
5dea1c88 556 current_cr3 = cr3;
bb4093de
RR
557
558 /* These two page tables are simple, linear, and used during boot */
6a3956bd
AD
559 if (cr3 != __pa_symbol(swapper_pg_dir) &&
560 cr3 != __pa_symbol(initial_page_table))
bb4093de 561 cr3_changed = true;
07ad157f
RR
562}
563
564static unsigned long lguest_read_cr3(void)
565{
5dea1c88 566 return current_cr3;
07ad157f
RR
567}
568
e1e72965 569/* cr4 is used to enable and disable PGE, but we don't care. */
07ad157f
RR
570static unsigned long lguest_read_cr4(void)
571{
572 return 0;
573}
574
575static void lguest_write_cr4(unsigned long val)
576{
577}
578
b2b47c21
RR
579/*
580 * Page Table Handling.
581 *
582 * Now would be a good time to take a rest and grab a coffee or similarly
583 * relaxing stimulant. The easy parts are behind us, and the trek gradually
584 * winds uphill from here.
585 *
586 * Quick refresher: memory is divided into "pages" of 4096 bytes each. The CPU
587 * maps virtual addresses to physical addresses using "page tables". We could
588 * use one huge index of 1 million entries: each address is 4 bytes, so that's
589 * 1024 pages just to hold the page tables. But since most virtual addresses
e1e72965 590 * are unused, we use a two level index which saves space. The cr3 register
b2b47c21
RR
591 * contains the physical address of the top level "page directory" page, which
592 * contains physical addresses of up to 1024 second-level pages. Each of these
593 * second level pages contains up to 1024 physical addresses of actual pages,
594 * or Page Table Entries (PTEs).
595 *
596 * Here's a diagram, where arrows indicate physical addresses:
597 *
e1e72965 598 * cr3 ---> +---------+
b2b47c21
RR
599 * | --------->+---------+
600 * | | | PADDR1 |
a91d74a3 601 * Mid-level | | PADDR2 |
b2b47c21
RR
602 * (PMD) page | | |
603 * | | Lower-level |
604 * | | (PTE) page |
605 * | | | |
606 * .... ....
607 *
608 * So to convert a virtual address to a physical address, we look up the top
609 * level, which points us to the second level, which gives us the physical
610 * address of that page. If the top level entry was not present, or the second
611 * level entry was not present, then the virtual address is invalid (we
612 * say "the page was not mapped").
613 *
614 * Put another way, a 32-bit virtual address is divided up like so:
615 *
616 * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
617 * |<---- 10 bits ---->|<---- 10 bits ---->|<------ 12 bits ------>|
618 * Index into top Index into second Offset within page
619 * page directory page pagetable page
620 *
a91d74a3
RR
621 * Now, unfortunately, this isn't the whole story: Intel added Physical Address
622 * Extension (PAE) to allow 32 bit systems to use 64GB of memory (ie. 36 bits).
623 * These are held in 64-bit page table entries, so we can now only fit 512
624 * entries in a page, and the neat three-level tree breaks down.
625 *
626 * The result is a four level page table:
627 *
628 * cr3 --> [ 4 Upper ]
629 * [ Level ]
630 * [ Entries ]
631 * [(PUD Page)]---> +---------+
632 * | --------->+---------+
633 * | | | PADDR1 |
634 * Mid-level | | PADDR2 |
635 * (PMD) page | | |
636 * | | Lower-level |
637 * | | (PTE) page |
638 * | | | |
639 * .... ....
640 *
641 *
642 * And the virtual address is decoded as:
643 *
644 * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
645 * |<-2->|<--- 9 bits ---->|<---- 9 bits --->|<------ 12 bits ------>|
646 * Index into Index into mid Index into lower Offset within page
647 * top entries directory page pagetable page
648 *
649 * It's too hard to switch between these two formats at runtime, so Linux only
650 * supports one or the other depending on whether CONFIG_X86_PAE is set. Many
651 * distributions turn it on, and not just for people with silly amounts of
652 * memory: the larger PTE entries allow room for the NX bit, which lets the
653 * kernel disable execution of pages and increase security.
654 *
655 * This was a problem for lguest, which couldn't run on these distributions;
656 * then Matias Zabaljauregui figured it all out and implemented it, and only a
657 * handful of puppies were crushed in the process!
658 *
659 * Back to our point: the kernel spends a lot of time changing both the
660 * top-level page directory and lower-level pagetable pages. The Guest doesn't
661 * know physical addresses, so while it maintains these page tables exactly
662 * like normal, it also needs to keep the Host informed whenever it makes a
663 * change: the Host will create the real page tables based on the Guests'.
b2b47c21
RR
664 */
665
2e04ef76 666/*
a91d74a3 667 * The Guest calls this after it has set a second-level entry (pte), ie. to map
9f54288d 668 * a page into a process' address space. We tell the Host the toplevel and
a91d74a3
RR
669 * address this corresponds to. The Guest uses one pagetable per process, so
670 * we need to tell the Host which one we're changing (mm->pgd).
2e04ef76 671 */
b7ff99ea
RR
672static void lguest_pte_update(struct mm_struct *mm, unsigned long addr,
673 pte_t *ptep)
674{
acdd0b62 675#ifdef CONFIG_X86_PAE
a91d74a3 676 /* PAE needs to hand a 64 bit page table entry, so it uses two args. */
acdd0b62
MZ
677 lazy_hcall4(LHCALL_SET_PTE, __pa(mm->pgd), addr,
678 ptep->pte_low, ptep->pte_high);
679#else
4cd8b5e2 680 lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low);
acdd0b62 681#endif
b7ff99ea
RR
682}
683
a91d74a3 684/* This is the "set and update" combo-meal-deal version. */
07ad157f
RR
685static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
686 pte_t *ptep, pte_t pteval)
687{
90603d15 688 native_set_pte(ptep, pteval);
b7ff99ea 689 lguest_pte_update(mm, addr, ptep);
07ad157f
RR
690}
691
2e04ef76
RR
692/*
693 * The Guest calls lguest_set_pud to set a top-level entry and lguest_set_pmd
acdd0b62 694 * to set a middle-level entry when PAE is activated.
2e04ef76 695 *
acdd0b62 696 * Again, we set the entry then tell the Host which page we changed,
2e04ef76
RR
697 * and the index of the entry we changed.
698 */
acdd0b62
MZ
699#ifdef CONFIG_X86_PAE
700static void lguest_set_pud(pud_t *pudp, pud_t pudval)
701{
702 native_set_pud(pudp, pudval);
703
704 /* 32 bytes aligned pdpt address and the index. */
705 lazy_hcall2(LHCALL_SET_PGD, __pa(pudp) & 0xFFFFFFE0,
706 (__pa(pudp) & 0x1F) / sizeof(pud_t));
707}
708
709static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
710{
711 native_set_pmd(pmdp, pmdval);
712 lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
713 (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
714}
715#else
716
2e04ef76 717/* The Guest calls lguest_set_pmd to set a top-level entry when !PAE. */
07ad157f
RR
718static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
719{
90603d15 720 native_set_pmd(pmdp, pmdval);
ebe0ba84 721 lazy_hcall2(LHCALL_SET_PGD, __pa(pmdp) & PAGE_MASK,
90603d15 722 (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
07ad157f 723}
acdd0b62 724#endif
07ad157f 725
2e04ef76
RR
726/*
727 * There are a couple of legacy places where the kernel sets a PTE, but we
b2b47c21
RR
728 * don't know the top level any more. This is useless for us, since we don't
729 * know which pagetable is changing or what address, so we just tell the Host
730 * to forget all of them. Fortunately, this is very rare.
731 *
732 * ... except in early boot when the kernel sets up the initial pagetables,
bb4093de
RR
733 * which makes booting astonishingly slow: 48 seconds! So we don't even tell
734 * the Host anything changed until we've done the first real page table switch,
735 * which brings boot back to 4.3 seconds.
2e04ef76 736 */
07ad157f
RR
737static void lguest_set_pte(pte_t *ptep, pte_t pteval)
738{
90603d15 739 native_set_pte(ptep, pteval);
ad5173ff 740 if (cr3_changed)
4cd8b5e2 741 lazy_hcall1(LHCALL_FLUSH_TLB, 1);
07ad157f
RR
742}
743
acdd0b62 744#ifdef CONFIG_X86_PAE
a91d74a3
RR
745/*
746 * With 64-bit PTE values, we need to be careful setting them: if we set 32
747 * bits at a time, the hardware could see a weird half-set entry. These
748 * versions ensure we update all 64 bits at once.
749 */
acdd0b62
MZ
750static void lguest_set_pte_atomic(pte_t *ptep, pte_t pte)
751{
752 native_set_pte_atomic(ptep, pte);
753 if (cr3_changed)
754 lazy_hcall1(LHCALL_FLUSH_TLB, 1);
755}
756
a91d74a3
RR
757static void lguest_pte_clear(struct mm_struct *mm, unsigned long addr,
758 pte_t *ptep)
acdd0b62
MZ
759{
760 native_pte_clear(mm, addr, ptep);
761 lguest_pte_update(mm, addr, ptep);
762}
763
a91d74a3 764static void lguest_pmd_clear(pmd_t *pmdp)
acdd0b62
MZ
765{
766 lguest_set_pmd(pmdp, __pmd(0));
767}
768#endif
769
2e04ef76
RR
770/*
771 * Unfortunately for Lguest, the pv_mmu_ops for page tables were based on
b2b47c21
RR
772 * native page table operations. On native hardware you can set a new page
773 * table entry whenever you want, but if you want to remove one you have to do
774 * a TLB flush (a TLB is a little cache of page table entries kept by the CPU).
775 *
776 * So the lguest_set_pte_at() and lguest_set_pmd() functions above are only
777 * called when a valid entry is written, not when it's removed (ie. marked not
778 * present). Instead, this is where we come when the Guest wants to remove a
779 * page table entry: we tell the Host to set that entry to 0 (ie. the present
2e04ef76
RR
780 * bit is zero).
781 */
07ad157f
RR
782static void lguest_flush_tlb_single(unsigned long addr)
783{
b2b47c21 784 /* Simply set it to zero: if it was not, it will fault back in. */
5dea1c88 785 lazy_hcall3(LHCALL_SET_PTE, current_cr3, addr, 0);
07ad157f
RR
786}
787
2e04ef76
RR
788/*
789 * This is what happens after the Guest has removed a large number of entries.
b2b47c21 790 * This tells the Host that any of the page table entries for userspace might
2e04ef76
RR
791 * have changed, ie. virtual addresses below PAGE_OFFSET.
792 */
07ad157f
RR
793static void lguest_flush_tlb_user(void)
794{
4cd8b5e2 795 lazy_hcall1(LHCALL_FLUSH_TLB, 0);
07ad157f
RR
796}
797
2e04ef76
RR
798/*
799 * This is called when the kernel page tables have changed. That's not very
b2b47c21 800 * common (unless the Guest is using highmem, which makes the Guest extremely
2e04ef76
RR
801 * slow), so it's worth separating this from the user flushing above.
802 */
07ad157f
RR
803static void lguest_flush_tlb_kernel(void)
804{
4cd8b5e2 805 lazy_hcall1(LHCALL_FLUSH_TLB, 1);
07ad157f
RR
806}
807
b2b47c21
RR
808/*
809 * The Unadvanced Programmable Interrupt Controller.
810 *
811 * This is an attempt to implement the simplest possible interrupt controller.
812 * I spent some time looking though routines like set_irq_chip_and_handler,
813 * set_irq_chip_and_handler_name, set_irq_chip_data and set_phasers_to_stun and
814 * I *think* this is as simple as it gets.
815 *
816 * We can tell the Host what interrupts we want blocked ready for using the
817 * lguest_data.interrupts bitmap, so disabling (aka "masking") them is as
818 * simple as setting a bit. We don't actually "ack" interrupts as such, we
819 * just mask and unmask them. I wonder if we should be cleverer?
820 */
fe25c7fc 821static void disable_lguest_irq(struct irq_data *data)
07ad157f 822{
fe25c7fc 823 set_bit(data->irq, lguest_data.blocked_interrupts);
07ad157f
RR
824}
825
fe25c7fc 826static void enable_lguest_irq(struct irq_data *data)
07ad157f 827{
fe25c7fc 828 clear_bit(data->irq, lguest_data.blocked_interrupts);
07ad157f
RR
829}
830
b2b47c21 831/* This structure describes the lguest IRQ controller. */
07ad157f
RR
832static struct irq_chip lguest_irq_controller = {
833 .name = "lguest",
fe25c7fc
TG
834 .irq_mask = disable_lguest_irq,
835 .irq_mask_ack = disable_lguest_irq,
836 .irq_unmask = enable_lguest_irq,
07ad157f
RR
837};
838
e1b83e27
RR
839static int lguest_enable_irq(struct pci_dev *dev)
840{
841 u8 line = 0;
842
843 /* We literally use the PCI interrupt line as the irq number. */
844 pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &line);
845 irq_set_chip_and_handler_name(line, &lguest_irq_controller,
846 handle_level_irq, "level");
847 dev->irq = line;
848 return 0;
849}
850
851/* We don't do hotplug PCI, so this shouldn't be called. */
852static void lguest_disable_irq(struct pci_dev *dev)
853{
854 WARN_ON(1);
855}
856
2e04ef76
RR
857/*
858 * This sets up the Interrupt Descriptor Table (IDT) entry for each hardware
b2b47c21
RR
859 * interrupt (except 128, which is used for system calls), and then tells the
860 * Linux infrastructure that each interrupt is controlled by our level-based
2e04ef76
RR
861 * lguest interrupt controller.
862 */
07ad157f
RR
863static void __init lguest_init_IRQ(void)
864{
865 unsigned int i;
866
2414e021 867 for (i = FIRST_EXTERNAL_VECTOR; i < FIRST_SYSTEM_VECTOR; i++) {
2e04ef76 868 /* Some systems map "vectors" to interrupts weirdly. Not us! */
ced05dd7 869 __this_cpu_write(vector_irq[i], i - FIRST_EXTERNAL_VECTOR);
1028375e
RR
870 if (i != SYSCALL_VECTOR)
871 set_intr_gate(i, interrupt[i - FIRST_EXTERNAL_VECTOR]);
07ad157f 872 }
2e04ef76
RR
873
874 /*
875 * This call is required to set up for 4k stacks, where we have
876 * separate stacks for hard and soft interrupts.
877 */
07ad157f
RR
878 irq_ctx_init(smp_processor_id());
879}
880
a91d74a3 881/*
b6c96c02
SP
882 * Interrupt descriptors are allocated as-needed, but low-numbered ones are
883 * reserved by the generic x86 code. So we ignore irq_alloc_desc_at if it
884 * tells us the irq is already used: other errors (ie. ENOMEM) we take
885 * seriously.
a91d74a3 886 */
b6c96c02 887int lguest_setup_irq(unsigned int irq)
6db6a5f3 888{
b6c96c02
SP
889 int err;
890
891 /* Returns -ve error or vector number. */
892 err = irq_alloc_desc_at(irq, 0);
893 if (err < 0 && err != -EEXIST)
894 return err;
895
2c778651 896 irq_set_chip_and_handler_name(irq, &lguest_irq_controller,
6db6a5f3 897 handle_level_irq, "level");
b6c96c02 898 return 0;
6db6a5f3
RR
899}
900
b2b47c21
RR
901/*
902 * Time.
903 *
904 * It would be far better for everyone if the Guest had its own clock, but
6c8dca5d 905 * until then the Host gives us the time on every interrupt.
b2b47c21 906 */
3565184e 907static void lguest_get_wallclock(struct timespec *now)
07ad157f 908{
3565184e 909 *now = lguest_data.time;
07ad157f
RR
910}
911
2e04ef76
RR
912/*
913 * The TSC is an Intel thing called the Time Stamp Counter. The Host tells us
a6bd8e13
RR
914 * what speed it runs at, or 0 if it's unusable as a reliable clock source.
915 * This matches what we want here: if we return 0 from this function, the x86
2e04ef76
RR
916 * TSC clock will give up and not register itself.
917 */
e93ef949 918static unsigned long lguest_tsc_khz(void)
3fabc55f
RR
919{
920 return lguest_data.tsc_khz;
921}
922
2e04ef76
RR
923/*
924 * If we can't use the TSC, the kernel falls back to our lower-priority
925 * "lguest_clock", where we read the time value given to us by the Host.
926 */
8e19608e 927static cycle_t lguest_clock_read(struct clocksource *cs)
d7e28ffe 928{
6c8dca5d
RR
929 unsigned long sec, nsec;
930
2e04ef76
RR
931 /*
932 * Since the time is in two parts (seconds and nanoseconds), we risk
3fabc55f
RR
933 * reading it just as it's changing from 99 & 0.999999999 to 100 and 0,
934 * and getting 99 and 0. As Linux tends to come apart under the stress
2e04ef76
RR
935 * of time travel, we must be careful:
936 */
6c8dca5d
RR
937 do {
938 /* First we read the seconds part. */
939 sec = lguest_data.time.tv_sec;
2e04ef76
RR
940 /*
941 * This read memory barrier tells the compiler and the CPU that
6c8dca5d 942 * this can't be reordered: we have to complete the above
2e04ef76
RR
943 * before going on.
944 */
6c8dca5d
RR
945 rmb();
946 /* Now we read the nanoseconds part. */
947 nsec = lguest_data.time.tv_nsec;
948 /* Make sure we've done that. */
949 rmb();
950 /* Now if the seconds part has changed, try again. */
951 } while (unlikely(lguest_data.time.tv_sec != sec));
952
3fabc55f 953 /* Our lguest clock is in real nanoseconds. */
6c8dca5d 954 return sec*1000000000ULL + nsec;
d7e28ffe
RR
955}
956
3fabc55f 957/* This is the fallback clocksource: lower priority than the TSC clocksource. */
d7e28ffe
RR
958static struct clocksource lguest_clock = {
959 .name = "lguest",
3fabc55f 960 .rating = 200,
d7e28ffe 961 .read = lguest_clock_read,
6c8dca5d 962 .mask = CLOCKSOURCE_MASK(64),
05aa026a 963 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
d7e28ffe
RR
964};
965
2e04ef76
RR
966/*
967 * We also need a "struct clock_event_device": Linux asks us to set it to go
d7e28ffe 968 * off some time in the future. Actually, James Morris figured all this out, I
2e04ef76
RR
969 * just applied the patch.
970 */
d7e28ffe
RR
971static int lguest_clockevent_set_next_event(unsigned long delta,
972 struct clock_event_device *evt)
973{
a6bd8e13
RR
974 /* FIXME: I don't think this can ever happen, but James tells me he had
975 * to put this code in. Maybe we should remove it now. Anyone? */
d7e28ffe
RR
976 if (delta < LG_CLOCK_MIN_DELTA) {
977 if (printk_ratelimit())
978 printk(KERN_DEBUG "%s: small delta %lu ns\n",
77bf90ed 979 __func__, delta);
d7e28ffe
RR
980 return -ETIME;
981 }
a6bd8e13
RR
982
983 /* Please wake us this far in the future. */
091ebf07 984 hcall(LHCALL_SET_CLOCKEVENT, delta, 0, 0, 0);
d7e28ffe
RR
985 return 0;
986}
987
988static void lguest_clockevent_set_mode(enum clock_event_mode mode,
989 struct clock_event_device *evt)
990{
991 switch (mode) {
992 case CLOCK_EVT_MODE_UNUSED:
993 case CLOCK_EVT_MODE_SHUTDOWN:
994 /* A 0 argument shuts the clock down. */
091ebf07 995 hcall(LHCALL_SET_CLOCKEVENT, 0, 0, 0, 0);
d7e28ffe
RR
996 break;
997 case CLOCK_EVT_MODE_ONESHOT:
998 /* This is what we expect. */
999 break;
1000 case CLOCK_EVT_MODE_PERIODIC:
1001 BUG();
18de5bc4
TG
1002 case CLOCK_EVT_MODE_RESUME:
1003 break;
d7e28ffe
RR
1004 }
1005}
1006
1007/* This describes our primitive timer chip. */
1008static struct clock_event_device lguest_clockevent = {
1009 .name = "lguest",
1010 .features = CLOCK_EVT_FEAT_ONESHOT,
1011 .set_next_event = lguest_clockevent_set_next_event,
1012 .set_mode = lguest_clockevent_set_mode,
1013 .rating = INT_MAX,
1014 .mult = 1,
1015 .shift = 0,
1016 .min_delta_ns = LG_CLOCK_MIN_DELTA,
1017 .max_delta_ns = LG_CLOCK_MAX_DELTA,
1018};
1019
2e04ef76
RR
1020/*
1021 * This is the Guest timer interrupt handler (hardware interrupt 0). We just
1022 * call the clockevent infrastructure and it does whatever needs doing.
1023 */
07ad157f
RR
1024static void lguest_time_irq(unsigned int irq, struct irq_desc *desc)
1025{
d7e28ffe
RR
1026 unsigned long flags;
1027
1028 /* Don't interrupt us while this is running. */
1029 local_irq_save(flags);
1030 lguest_clockevent.event_handler(&lguest_clockevent);
1031 local_irq_restore(flags);
07ad157f
RR
1032}
1033
2e04ef76
RR
1034/*
1035 * At some point in the boot process, we get asked to set up our timing
b2b47c21
RR
1036 * infrastructure. The kernel doesn't expect timer interrupts before this, but
1037 * we cleverly initialized the "blocked_interrupts" field of "struct
2e04ef76
RR
1038 * lguest_data" so that timer interrupts were blocked until now.
1039 */
07ad157f
RR
1040static void lguest_time_init(void)
1041{
b2b47c21 1042 /* Set up the timer interrupt (0) to go to our simple timer routine */
15517f7c 1043 lguest_setup_irq(0);
2c778651 1044 irq_set_handler(0, lguest_time_irq);
07ad157f 1045
b01cc1b0 1046 clocksource_register_hz(&lguest_clock, NSEC_PER_SEC);
d7e28ffe 1047
b2b47c21
RR
1048 /* We can't set cpumask in the initializer: damn C limitations! Set it
1049 * here and register our timer device. */
320ab2b0 1050 lguest_clockevent.cpumask = cpumask_of(0);
d7e28ffe
RR
1051 clockevents_register_device(&lguest_clockevent);
1052
b2b47c21 1053 /* Finally, we unblock the timer interrupt. */
bb6f1d9a 1054 clear_bit(0, lguest_data.blocked_interrupts);
07ad157f
RR
1055}
1056
b2b47c21
RR
1057/*
1058 * Miscellaneous bits and pieces.
1059 *
1060 * Here is an oddball collection of functions which the Guest needs for things
1061 * to work. They're pretty simple.
1062 */
1063
2e04ef76
RR
1064/*
1065 * The Guest needs to tell the Host what stack it expects traps to use. For
b2b47c21
RR
1066 * native hardware, this is part of the Task State Segment mentioned above in
1067 * lguest_load_tr_desc(), but to help hypervisors there's this special call.
1068 *
1069 * We tell the Host the segment we want to use (__KERNEL_DS is the kernel data
1070 * segment), the privilege level (we're privilege level 1, the Host is 0 and
1071 * will not tolerate us trying to use that), the stack pointer, and the number
2e04ef76
RR
1072 * of pages in the stack.
1073 */
faca6227 1074static void lguest_load_sp0(struct tss_struct *tss,
a6bd8e13 1075 struct thread_struct *thread)
07ad157f 1076{
4cd8b5e2
MZ
1077 lazy_hcall3(LHCALL_SET_STACK, __KERNEL_DS | 0x1, thread->sp0,
1078 THREAD_SIZE / PAGE_SIZE);
07ad157f
RR
1079}
1080
b2b47c21 1081/* Let's just say, I wouldn't do debugging under a Guest. */
aa96a3c6
RR
1082static unsigned long lguest_get_debugreg(int regno)
1083{
1084 /* FIXME: Implement */
1085 return 0;
1086}
1087
07ad157f
RR
1088static void lguest_set_debugreg(int regno, unsigned long value)
1089{
1090 /* FIXME: Implement */
1091}
1092
2e04ef76
RR
1093/*
1094 * There are times when the kernel wants to make sure that no memory writes are
b2b47c21
RR
1095 * caught in the cache (that they've all reached real hardware devices). This
1096 * doesn't matter for the Guest which has virtual hardware.
1097 *
1098 * On the Pentium 4 and above, cpuid() indicates that the Cache Line Flush
1099 * (clflush) instruction is available and the kernel uses that. Otherwise, it
1100 * uses the older "Write Back and Invalidate Cache" (wbinvd) instruction.
1101 * Unlike clflush, wbinvd can only be run at privilege level 0. So we can
1102 * ignore clflush, but replace wbinvd.
1103 */
07ad157f
RR
1104static void lguest_wbinvd(void)
1105{
1106}
1107
2e04ef76
RR
1108/*
1109 * If the Guest expects to have an Advanced Programmable Interrupt Controller,
b2b47c21
RR
1110 * we play dumb by ignoring writes and returning 0 for reads. So it's no
1111 * longer Programmable nor Controlling anything, and I don't think 8 lines of
1112 * code qualifies for Advanced. It will also never interrupt anything. It
2e04ef76
RR
1113 * does, however, allow us to get through the Linux boot code.
1114 */
07ad157f 1115#ifdef CONFIG_X86_LOCAL_APIC
ad66dd34 1116static void lguest_apic_write(u32 reg, u32 v)
07ad157f
RR
1117{
1118}
1119
ad66dd34 1120static u32 lguest_apic_read(u32 reg)
07ad157f
RR
1121{
1122 return 0;
1123}
511d9d34
SS
1124
1125static u64 lguest_apic_icr_read(void)
1126{
1127 return 0;
1128}
1129
1130static void lguest_apic_icr_write(u32 low, u32 id)
1131{
1132 /* Warn to see if there's any stray references */
1133 WARN_ON(1);
1134}
1135
1136static void lguest_apic_wait_icr_idle(void)
1137{
1138 return;
1139}
1140
1141static u32 lguest_apic_safe_wait_icr_idle(void)
1142{
1143 return 0;
1144}
1145
c1eeb2de
YL
1146static void set_lguest_basic_apic_ops(void)
1147{
1148 apic->read = lguest_apic_read;
1149 apic->write = lguest_apic_write;
1150 apic->icr_read = lguest_apic_icr_read;
1151 apic->icr_write = lguest_apic_icr_write;
1152 apic->wait_icr_idle = lguest_apic_wait_icr_idle;
1153 apic->safe_wait_icr_idle = lguest_apic_safe_wait_icr_idle;
511d9d34 1154};
07ad157f
RR
1155#endif
1156
b2b47c21 1157/* STOP! Until an interrupt comes in. */
07ad157f
RR
1158static void lguest_safe_halt(void)
1159{
091ebf07 1160 hcall(LHCALL_HALT, 0, 0, 0, 0);
07ad157f
RR
1161}
1162
2e04ef76
RR
1163/*
1164 * The SHUTDOWN hypercall takes a string to describe what's happening, and
a6bd8e13 1165 * an argument which says whether this to restart (reboot) the Guest or not.
b2b47c21
RR
1166 *
1167 * Note that the Host always prefers that the Guest speak in physical addresses
2e04ef76
RR
1168 * rather than virtual addresses, so we use __pa() here.
1169 */
07ad157f
RR
1170static void lguest_power_off(void)
1171{
091ebf07
RR
1172 hcall(LHCALL_SHUTDOWN, __pa("Power down"),
1173 LGUEST_SHUTDOWN_POWEROFF, 0, 0);
07ad157f
RR
1174}
1175
b2b47c21
RR
1176/*
1177 * Panicing.
1178 *
1179 * Don't. But if you did, this is what happens.
1180 */
07ad157f
RR
1181static int lguest_panic(struct notifier_block *nb, unsigned long l, void *p)
1182{
091ebf07 1183 hcall(LHCALL_SHUTDOWN, __pa(p), LGUEST_SHUTDOWN_POWEROFF, 0, 0);
b2b47c21 1184 /* The hcall won't return, but to keep gcc happy, we're "done". */
07ad157f
RR
1185 return NOTIFY_DONE;
1186}
1187
1188static struct notifier_block paniced = {
1189 .notifier_call = lguest_panic
1190};
1191
b2b47c21 1192/* Setting up memory is fairly easy. */
07ad157f
RR
1193static __init char *lguest_memory_setup(void)
1194{
2e04ef76 1195 /*
9f54288d 1196 * The Linux bootloader header contains an "e820" memory map: the
2e04ef76
RR
1197 * Launcher populated the first entry with our memory limit.
1198 */
d0be6bde 1199 e820_add_region(boot_params.e820_map[0].addr,
30c82645
PA
1200 boot_params.e820_map[0].size,
1201 boot_params.e820_map[0].type);
b2b47c21
RR
1202
1203 /* This string is for the boot messages. */
07ad157f
RR
1204 return "LGUEST";
1205}
1206
a561adfa
RR
1207/* Offset within PCI config space of BAR access capability. */
1208static int console_cfg_offset = 0;
1209static int console_access_cap;
1210
1211/* Set up so that we access off in bar0 (on bus 0, device 1, function 0) */
1212static void set_cfg_window(u32 cfg_offset, u32 off)
1213{
1214 write_pci_config_byte(0, 1, 0,
1215 cfg_offset + offsetof(struct virtio_pci_cap, bar),
1216 0);
1217 write_pci_config(0, 1, 0,
1218 cfg_offset + offsetof(struct virtio_pci_cap, length),
1219 4);
1220 write_pci_config(0, 1, 0,
1221 cfg_offset + offsetof(struct virtio_pci_cap, offset),
1222 off);
1223}
1224
1225static u32 read_bar_via_cfg(u32 cfg_offset, u32 off)
1226{
1227 set_cfg_window(cfg_offset, off);
1228 return read_pci_config(0, 1, 0,
1229 cfg_offset + sizeof(struct virtio_pci_cap));
1230}
1231
1232static void write_bar_via_cfg(u32 cfg_offset, u32 off, u32 val)
1233{
1234 set_cfg_window(cfg_offset, off);
1235 write_pci_config(0, 1, 0,
1236 cfg_offset + sizeof(struct virtio_pci_cap), val);
1237}
1238
1239static void probe_pci_console(void)
1240{
1241 u8 cap, common_cap = 0, device_cap = 0;
1242 /* Offsets within BAR0 */
1243 u32 common_offset, device_offset;
1244
1245 /* Avoid recursive printk into here. */
1246 console_cfg_offset = -1;
1247
1248 if (!early_pci_allowed()) {
1249 printk(KERN_ERR "lguest: early PCI access not allowed!\n");
1250 return;
1251 }
1252
1253 /* We expect a console PCI device at BUS0, slot 1. */
1254 if (read_pci_config(0, 1, 0, 0) != 0x10431AF4) {
1255 printk(KERN_ERR "lguest: PCI device is %#x!\n",
1256 read_pci_config(0, 1, 0, 0));
1257 return;
1258 }
1259
1260 /* Find the capabilities we need (must be in bar0) */
1261 cap = read_pci_config_byte(0, 1, 0, PCI_CAPABILITY_LIST);
1262 while (cap) {
1263 u8 vndr = read_pci_config_byte(0, 1, 0, cap);
1264 if (vndr == PCI_CAP_ID_VNDR) {
1265 u8 type, bar;
1266 u32 offset;
1267
1268 type = read_pci_config_byte(0, 1, 0,
1269 cap + offsetof(struct virtio_pci_cap, cfg_type));
1270 bar = read_pci_config_byte(0, 1, 0,
1271 cap + offsetof(struct virtio_pci_cap, bar));
1272 offset = read_pci_config(0, 1, 0,
1273 cap + offsetof(struct virtio_pci_cap, offset));
1274
1275 switch (type) {
1276 case VIRTIO_PCI_CAP_COMMON_CFG:
1277 if (bar == 0) {
1278 common_cap = cap;
1279 common_offset = offset;
1280 }
1281 break;
1282 case VIRTIO_PCI_CAP_DEVICE_CFG:
1283 if (bar == 0) {
1284 device_cap = cap;
1285 device_offset = offset;
1286 }
1287 break;
1288 case VIRTIO_PCI_CAP_PCI_CFG:
1289 console_access_cap = cap;
1290 break;
1291 }
1292 }
1293 cap = read_pci_config_byte(0, 1, 0, cap + PCI_CAP_LIST_NEXT);
1294 }
1295 if (!common_cap || !device_cap || !console_access_cap) {
1296 printk(KERN_ERR "lguest: No caps (%u/%u/%u) in console!\n",
1297 common_cap, device_cap, console_access_cap);
1298 return;
1299 }
1300
1301
1302#define write_common_config(reg, val) \
1303 write_bar_via_cfg(console_access_cap, \
1304 common_offset+offsetof(struct virtio_pci_common_cfg,reg),\
1305 val)
1306
1307#define read_common_config(reg) \
1308 read_bar_via_cfg(console_access_cap, \
1309 common_offset+offsetof(struct virtio_pci_common_cfg,reg))
1310
1311 /* Check features: they must offer EMERG_WRITE */
1312 write_common_config(device_feature_select, 0);
1313
1314 if (!(read_common_config(device_feature)
1315 & (1 << VIRTIO_CONSOLE_F_EMERG_WRITE))) {
1316 printk(KERN_ERR "lguest: console missing EMERG_WRITE\n");
1317 return;
1318 }
1319
1320 console_cfg_offset = device_offset;
1321}
1322
2e04ef76
RR
1323/*
1324 * We will eventually use the virtio console device to produce console output,
a561adfa
RR
1325 * but before that is set up we use the virtio PCI console's backdoor mmio
1326 * access and the "emergency" write facility (which is legal even before the
1327 * device is configured).
2e04ef76 1328 */
19f1537b
RR
1329static __init int early_put_chars(u32 vtermno, const char *buf, int count)
1330{
a561adfa
RR
1331 /* If we couldn't find PCI console, forget it. */
1332 if (console_cfg_offset < 0)
1333 return count;
19f1537b 1334
a561adfa
RR
1335 if (unlikely(!console_cfg_offset)) {
1336 probe_pci_console();
1337 if (console_cfg_offset < 0)
1338 return count;
1339 }
19f1537b 1340
a561adfa
RR
1341 write_bar_via_cfg(console_access_cap,
1342 console_cfg_offset
1343 + offsetof(struct virtio_console_config, emerg_wr),
1344 buf[0]);
1345 return 1;
19f1537b
RR
1346}
1347
2e04ef76
RR
1348/*
1349 * Rebooting also tells the Host we're finished, but the RESTART flag tells the
1350 * Launcher to reboot us.
1351 */
a6bd8e13
RR
1352static void lguest_restart(char *reason)
1353{
091ebf07 1354 hcall(LHCALL_SHUTDOWN, __pa(reason), LGUEST_SHUTDOWN_RESTART, 0, 0);
a6bd8e13
RR
1355}
1356
b2b47c21
RR
1357/*G:050
1358 * Patching (Powerfully Placating Performance Pedants)
1359 *
a6bd8e13
RR
1360 * We have already seen that pv_ops structures let us replace simple native
1361 * instructions with calls to the appropriate back end all throughout the
1362 * kernel. This allows the same kernel to run as a Guest and as a native
b2b47c21
RR
1363 * kernel, but it's slow because of all the indirect branches.
1364 *
1365 * Remember that David Wheeler quote about "Any problem in computer science can
1366 * be solved with another layer of indirection"? The rest of that quote is
1367 * "... But that usually will create another problem." This is the first of
1368 * those problems.
1369 *
1370 * Our current solution is to allow the paravirt back end to optionally patch
1371 * over the indirect calls to replace them with something more efficient. We
a32a8813
RR
1372 * patch two of the simplest of the most commonly called functions: disable
1373 * interrupts and save interrupts. We usually have 6 or 10 bytes to patch
1374 * into: the Guest versions of these operations are small enough that we can
1375 * fit comfortably.
b2b47c21
RR
1376 *
1377 * First we need assembly templates of each of the patchable Guest operations,
2e04ef76
RR
1378 * and these are in i386_head.S.
1379 */
b2b47c21
RR
1380
1381/*G:060 We construct a table from the assembler templates: */
07ad157f
RR
1382static const struct lguest_insns
1383{
1384 const char *start, *end;
1385} lguest_insns[] = {
93b1eab3 1386 [PARAVIRT_PATCH(pv_irq_ops.irq_disable)] = { lgstart_cli, lgend_cli },
93b1eab3 1387 [PARAVIRT_PATCH(pv_irq_ops.save_fl)] = { lgstart_pushf, lgend_pushf },
07ad157f 1388};
b2b47c21 1389
2e04ef76
RR
1390/*
1391 * Now our patch routine is fairly simple (based on the native one in
b2b47c21 1392 * paravirt.c). If we have a replacement, we copy it in and return how much of
2e04ef76
RR
1393 * the available space we used.
1394 */
ab144f5e
AK
1395static unsigned lguest_patch(u8 type, u16 clobber, void *ibuf,
1396 unsigned long addr, unsigned len)
07ad157f
RR
1397{
1398 unsigned int insn_len;
1399
b2b47c21 1400 /* Don't do anything special if we don't have a replacement */
07ad157f 1401 if (type >= ARRAY_SIZE(lguest_insns) || !lguest_insns[type].start)
ab144f5e 1402 return paravirt_patch_default(type, clobber, ibuf, addr, len);
07ad157f
RR
1403
1404 insn_len = lguest_insns[type].end - lguest_insns[type].start;
1405
2e04ef76 1406 /* Similarly if it can't fit (doesn't happen, but let's be thorough). */
07ad157f 1407 if (len < insn_len)
ab144f5e 1408 return paravirt_patch_default(type, clobber, ibuf, addr, len);
07ad157f 1409
b2b47c21 1410 /* Copy in our instructions. */
ab144f5e 1411 memcpy(ibuf, lguest_insns[type].start, insn_len);
07ad157f
RR
1412 return insn_len;
1413}
1414
2e04ef76
RR
1415/*G:029
1416 * Once we get to lguest_init(), we know we're a Guest. The various
a6bd8e13 1417 * pv_ops structures in the kernel provide points for (almost) every routine we
2e04ef76
RR
1418 * have to override to avoid privileged instructions.
1419 */
814a0e5c 1420__init void lguest_init(void)
07ad157f 1421{
2e04ef76 1422 /* We're under lguest. */
93b1eab3 1423 pv_info.name = "lguest";
2e04ef76 1424 /* Paravirt is enabled. */
93b1eab3 1425 pv_info.paravirt_enabled = 1;
2e04ef76 1426 /* We're running at privilege level 1, not 0 as normal. */
93b1eab3 1427 pv_info.kernel_rpl = 1;
2e04ef76 1428 /* Everyone except Xen runs with this set. */
acdd0b62 1429 pv_info.shared_kernel_pmd = 1;
07ad157f 1430
2e04ef76
RR
1431 /*
1432 * We set up all the lguest overrides for sensitive operations. These
1433 * are detailed with the operations themselves.
1434 */
93b1eab3 1435
2e04ef76 1436 /* Interrupt-related operations */
9549b9b3 1437 pv_irq_ops.save_fl = PV_CALLEE_SAVE(lguest_save_fl);
61f4bc83 1438 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(lg_restore_fl);
9549b9b3 1439 pv_irq_ops.irq_disable = PV_CALLEE_SAVE(lguest_irq_disable);
61f4bc83 1440 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(lg_irq_enable);
93b1eab3
JF
1441 pv_irq_ops.safe_halt = lguest_safe_halt;
1442
2e04ef76 1443 /* Setup operations */
93b1eab3
JF
1444 pv_init_ops.patch = lguest_patch;
1445
2e04ef76 1446 /* Intercepts of various CPU instructions */
93b1eab3
JF
1447 pv_cpu_ops.load_gdt = lguest_load_gdt;
1448 pv_cpu_ops.cpuid = lguest_cpuid;
1449 pv_cpu_ops.load_idt = lguest_load_idt;
1450 pv_cpu_ops.iret = lguest_iret;
faca6227 1451 pv_cpu_ops.load_sp0 = lguest_load_sp0;
93b1eab3
JF
1452 pv_cpu_ops.load_tr_desc = lguest_load_tr_desc;
1453 pv_cpu_ops.set_ldt = lguest_set_ldt;
1454 pv_cpu_ops.load_tls = lguest_load_tls;
aa96a3c6 1455 pv_cpu_ops.get_debugreg = lguest_get_debugreg;
93b1eab3
JF
1456 pv_cpu_ops.set_debugreg = lguest_set_debugreg;
1457 pv_cpu_ops.clts = lguest_clts;
1458 pv_cpu_ops.read_cr0 = lguest_read_cr0;
1459 pv_cpu_ops.write_cr0 = lguest_write_cr0;
1460 pv_cpu_ops.read_cr4 = lguest_read_cr4;
1461 pv_cpu_ops.write_cr4 = lguest_write_cr4;
1462 pv_cpu_ops.write_gdt_entry = lguest_write_gdt_entry;
1463 pv_cpu_ops.write_idt_entry = lguest_write_idt_entry;
1464 pv_cpu_ops.wbinvd = lguest_wbinvd;
224101ed
JF
1465 pv_cpu_ops.start_context_switch = paravirt_start_context_switch;
1466 pv_cpu_ops.end_context_switch = lguest_end_context_switch;
93b1eab3 1467
2e04ef76 1468 /* Pagetable management */
93b1eab3
JF
1469 pv_mmu_ops.write_cr3 = lguest_write_cr3;
1470 pv_mmu_ops.flush_tlb_user = lguest_flush_tlb_user;
1471 pv_mmu_ops.flush_tlb_single = lguest_flush_tlb_single;
1472 pv_mmu_ops.flush_tlb_kernel = lguest_flush_tlb_kernel;
1473 pv_mmu_ops.set_pte = lguest_set_pte;
1474 pv_mmu_ops.set_pte_at = lguest_set_pte_at;
1475 pv_mmu_ops.set_pmd = lguest_set_pmd;
acdd0b62
MZ
1476#ifdef CONFIG_X86_PAE
1477 pv_mmu_ops.set_pte_atomic = lguest_set_pte_atomic;
1478 pv_mmu_ops.pte_clear = lguest_pte_clear;
1479 pv_mmu_ops.pmd_clear = lguest_pmd_clear;
1480 pv_mmu_ops.set_pud = lguest_set_pud;
1481#endif
93b1eab3
JF
1482 pv_mmu_ops.read_cr2 = lguest_read_cr2;
1483 pv_mmu_ops.read_cr3 = lguest_read_cr3;
8965c1c0 1484 pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu;
b407fc57 1485 pv_mmu_ops.lazy_mode.leave = lguest_leave_lazy_mmu_mode;
511ba86e 1486 pv_mmu_ops.lazy_mode.flush = paravirt_flush_lazy_mmu;
b7ff99ea
RR
1487 pv_mmu_ops.pte_update = lguest_pte_update;
1488 pv_mmu_ops.pte_update_defer = lguest_pte_update;
93b1eab3 1489
07ad157f 1490#ifdef CONFIG_X86_LOCAL_APIC
2e04ef76 1491 /* APIC read/write intercepts */
c1eeb2de 1492 set_lguest_basic_apic_ops();
07ad157f 1493#endif
93b1eab3 1494
6b18ae3e 1495 x86_init.resources.memory_setup = lguest_memory_setup;
66bcaf0b 1496 x86_init.irqs.intr_init = lguest_init_IRQ;
845b3944 1497 x86_init.timers.timer_init = lguest_time_init;
2d826404 1498 x86_platform.calibrate_tsc = lguest_tsc_khz;
7bd867df 1499 x86_platform.get_wallclock = lguest_get_wallclock;
6b18ae3e 1500
2e04ef76
RR
1501 /*
1502 * Now is a good time to look at the implementations of these functions
1503 * before returning to the rest of lguest_init().
1504 */
b2b47c21 1505
2e04ef76
RR
1506 /*G:070
1507 * Now we've seen all the paravirt_ops, we return to
b2b47c21 1508 * lguest_init() where the rest of the fairly chaotic boot setup
2e04ef76
RR
1509 * occurs.
1510 */
07ad157f 1511
2e04ef76
RR
1512 /*
1513 * The stack protector is a weird thing where gcc places a canary
2cb7878a
RR
1514 * value on the stack and then checks it on return. This file is
1515 * compiled with -fno-stack-protector it, so we got this far without
1516 * problems. The value of the canary is kept at offset 20 from the
1517 * %gs register, so we need to set that up before calling C functions
2e04ef76
RR
1518 * in other files.
1519 */
2cb7878a 1520 setup_stack_canary_segment(0);
2e04ef76
RR
1521
1522 /*
1523 * We could just call load_stack_canary_segment(), but we might as well
1524 * call switch_to_new_gdt() which loads the whole table and sets up the
1525 * per-cpu segment descriptor register %fs as well.
1526 */
2cb7878a
RR
1527 switch_to_new_gdt(0);
1528
2e04ef76
RR
1529 /*
1530 * The Host<->Guest Switcher lives at the top of our address space, and
a6bd8e13 1531 * the Host told us how big it is when we made LGUEST_INIT hypercall:
2e04ef76
RR
1532 * it put the answer in lguest_data.reserve_mem
1533 */
07ad157f
RR
1534 reserve_top_address(lguest_data.reserve_mem);
1535
2e04ef76
RR
1536 /*
1537 * If we don't initialize the lock dependency checker now, it crashes
cdae0ad5 1538 * atomic_notifier_chain_register, then paravirt_disable_iospace.
2e04ef76 1539 */
07ad157f
RR
1540 lockdep_init();
1541
cdae0ad5
RR
1542 /* Hook in our special panic hypercall code. */
1543 atomic_notifier_chain_register(&panic_notifier_list, &paniced);
1544
2e04ef76
RR
1545 /*
1546 * This is messy CPU setup stuff which the native boot code does before
1547 * start_kernel, so we have to do, too:
1548 */
07ad157f
RR
1549 cpu_detect(&new_cpu_data);
1550 /* head.S usually sets up the first capability word, so do it here. */
1551 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1552
1553 /* Math is always hard! */
60e019eb 1554 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
07ad157f 1555
a6bd8e13 1556 /* We don't have features. We have puppies! Puppies! */
07ad157f 1557#ifdef CONFIG_X86_MCE
1462594b 1558 mca_cfg.disabled = true;
07ad157f 1559#endif
07ad157f
RR
1560#ifdef CONFIG_ACPI
1561 acpi_disabled = 1;
07ad157f
RR
1562#endif
1563
2e04ef76
RR
1564 /*
1565 * We set the preferred console to "hvc". This is the "hypervisor
b2b47c21 1566 * virtual console" driver written by the PowerPC people, which we also
2e04ef76
RR
1567 * adapted for lguest's use.
1568 */
07ad157f
RR
1569 add_preferred_console("hvc", 0, NULL);
1570
19f1537b
RR
1571 /* Register our very early console. */
1572 virtio_cons_early_init(early_put_chars);
1573
ee72576c
RR
1574 /* Don't let ACPI try to control our PCI interrupts. */
1575 disable_acpi();
1576
e1b83e27
RR
1577 /* We control them ourselves, by overriding these two hooks. */
1578 pcibios_enable_irq = lguest_enable_irq;
1579 pcibios_disable_irq = lguest_disable_irq;
1580
2e04ef76
RR
1581 /*
1582 * Last of all, we set the power management poweroff hook to point to
a6bd8e13 1583 * the Guest routine to power off, and the reboot hook to our restart
2e04ef76
RR
1584 * routine.
1585 */
07ad157f 1586 pm_power_off = lguest_power_off;
ec04b13f 1587 machine_ops.restart = lguest_restart;
a6bd8e13 1588
2e04ef76
RR
1589 /*
1590 * Now we're set up, call i386_start_kernel() in head32.c and we proceed
1591 * to boot as normal. It never returns.
1592 */
f0d43100 1593 i386_start_kernel();
07ad157f 1594}
b2b47c21
RR
1595/*
1596 * This marks the end of stage II of our journey, The Guest.
1597 *
e1e72965
RR
1598 * It is now time for us to explore the layer of virtual drivers and complete
1599 * our understanding of the Guest in "make Drivers".
b2b47c21 1600 */