]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/x86/mm/fault.c
x86, mm: fault.c, enable PF_RSVD checks on 32-bit too
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
1da177e4 4 */
1da177e4 5#include <linux/interrupt.h>
2d4a7167
IM
6#include <linux/mmiotrace.h>
7#include <linux/bootmem.h>
1da177e4 8#include <linux/compiler.h>
c61e211d 9#include <linux/highmem.h>
0f2fbdcb 10#include <linux/kprobes.h>
ab2bf0c1 11#include <linux/uaccess.h>
2d4a7167
IM
12#include <linux/vmalloc.h>
13#include <linux/vt_kern.h>
14#include <linux/signal.h>
15#include <linux/kernel.h>
16#include <linux/ptrace.h>
17#include <linux/string.h>
18#include <linux/module.h>
1eeb66a1 19#include <linux/kdebug.h>
2d4a7167 20#include <linux/errno.h>
7c9f8861 21#include <linux/magic.h>
2d4a7167
IM
22#include <linux/sched.h>
23#include <linux/types.h>
24#include <linux/init.h>
25#include <linux/mman.h>
26#include <linux/tty.h>
27#include <linux/smp.h>
28#include <linux/mm.h>
29
30#include <asm-generic/sections.h>
1da177e4 31
1da177e4 32#include <asm/tlbflush.h>
2d4a7167
IM
33#include <asm/pgalloc.h>
34#include <asm/segment.h>
35#include <asm/system.h>
1da177e4 36#include <asm/proto.h>
70ef5641 37#include <asm/traps.h>
2d4a7167 38#include <asm/desc.h>
1da177e4 39
33cb5243 40/*
2d4a7167
IM
41 * Page fault error code bits:
42 *
43 * bit 0 == 0: no page found 1: protection fault
44 * bit 1 == 0: read access 1: write access
45 * bit 2 == 0: kernel-mode access 1: user-mode access
46 * bit 3 == 1: use of reserved bit detected
47 * bit 4 == 1: fault was an instruction fetch
33cb5243 48 */
2d4a7167
IM
49enum x86_pf_error_code {
50
51 PF_PROT = 1 << 0,
52 PF_WRITE = 1 << 1,
53 PF_USER = 1 << 2,
54 PF_RSVD = 1 << 3,
55 PF_INSTR = 1 << 4,
56};
66c58156 57
0fd0e3da 58static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 59{
fd3fdf11 60#ifdef CONFIG_MMIOTRACE
0fd0e3da
PP
61 if (unlikely(is_kmmio_active()))
62 if (kmmio_handler(regs, addr) == 1)
63 return -1;
86069782 64#endif
0fd0e3da 65 return 0;
86069782
PP
66}
67
74a0b576 68static inline int notify_page_fault(struct pt_regs *regs)
1bd858a5 69{
33cb5243 70#ifdef CONFIG_KPROBES
74a0b576
CH
71 int ret = 0;
72
73 /* kprobe_running() needs smp_processor_id() */
f8c2ee22 74 if (!user_mode_vm(regs)) {
74a0b576
CH
75 preempt_disable();
76 if (kprobe_running() && kprobe_fault_handler(regs, 14))
77 ret = 1;
78 preempt_enable();
79 }
1bd858a5 80
74a0b576 81 return ret;
74a0b576 82#else
74a0b576 83 return 0;
74a0b576 84#endif
33cb5243 85}
1bd858a5 86
1dc85be0 87/*
2d4a7167
IM
88 * Prefetch quirks:
89 *
90 * 32-bit mode:
91 *
92 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
93 * Check that here and ignore it.
1dc85be0 94 *
2d4a7167 95 * 64-bit mode:
1dc85be0 96 *
2d4a7167
IM
97 * Sometimes the CPU reports invalid exceptions on prefetch.
98 * Check that here and ignore it.
99 *
100 * Opcode checker based on code by Richard Brunner.
1dc85be0 101 */
107a0367
IM
102static inline int
103check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
104 unsigned char opcode, int *prefetch)
105{
106 unsigned char instr_hi = opcode & 0xf0;
107 unsigned char instr_lo = opcode & 0x0f;
108
109 switch (instr_hi) {
110 case 0x20:
111 case 0x30:
112 /*
113 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
114 * In X86_64 long mode, the CPU will signal invalid
115 * opcode if some of these prefixes are present so
116 * X86_64 will never get here anyway
117 */
118 return ((instr_lo & 7) == 0x6);
119#ifdef CONFIG_X86_64
120 case 0x40:
121 /*
122 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
123 * Need to figure out under what instruction mode the
124 * instruction was issued. Could check the LDT for lm,
125 * but for now it's good enough to assume that long
126 * mode only uses well known segments or kernel.
127 */
128 return (!user_mode(regs)) || (regs->cs == __USER_CS);
129#endif
130 case 0x60:
131 /* 0x64 thru 0x67 are valid prefixes in all modes. */
132 return (instr_lo & 0xC) == 0x4;
133 case 0xF0:
134 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
135 return !instr_lo || (instr_lo>>1) == 1;
136 case 0x00:
137 /* Prefetch instruction is 0x0F0D or 0x0F18 */
138 if (probe_kernel_address(instr, opcode))
139 return 0;
140
141 *prefetch = (instr_lo == 0xF) &&
142 (opcode == 0x0D || opcode == 0x18);
143 return 0;
144 default:
145 return 0;
146 }
147}
148
2d4a7167
IM
149static int
150is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 151{
2d4a7167 152 unsigned char *max_instr;
ab2bf0c1 153 unsigned char *instr;
33cb5243 154 int prefetch = 0;
1da177e4 155
3085354d
IM
156 /*
157 * If it was a exec (instruction fetch) fault on NX page, then
158 * do not ignore the fault:
159 */
66c58156 160 if (error_code & PF_INSTR)
1da177e4 161 return 0;
1dc85be0 162
107a0367 163 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 164 max_instr = instr + 15;
1da177e4 165
76381fee 166 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
1da177e4
LT
167 return 0;
168
107a0367 169 while (instr < max_instr) {
2d4a7167 170 unsigned char opcode;
1da177e4 171
ab2bf0c1 172 if (probe_kernel_address(instr, opcode))
33cb5243 173 break;
1da177e4 174
1da177e4
LT
175 instr++;
176
107a0367 177 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 178 break;
1da177e4
LT
179 }
180 return prefetch;
181}
182
2d4a7167
IM
183static void
184force_sig_info_fault(int si_signo, int si_code, unsigned long address,
185 struct task_struct *tsk)
c4aba4a8
HH
186{
187 siginfo_t info;
188
2d4a7167
IM
189 info.si_signo = si_signo;
190 info.si_errno = 0;
191 info.si_code = si_code;
192 info.si_addr = (void __user *)address;
193
c4aba4a8
HH
194 force_sig_info(si_signo, &info, tsk);
195}
196
1156e098 197#ifdef CONFIG_X86_64
33cb5243
HH
198static int bad_address(void *p)
199{
1da177e4 200 unsigned long dummy;
2d4a7167 201
ab2bf0c1 202 return probe_kernel_address((unsigned long *)p, dummy);
33cb5243 203}
1156e098 204#endif
1da177e4 205
cae30f82 206static void dump_pagetable(unsigned long address)
1da177e4 207{
1156e098
HH
208#ifdef CONFIG_X86_32
209 __typeof__(pte_val(__pte(0))) page;
210
211 page = read_cr3();
212 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
2d4a7167 213
1156e098
HH
214#ifdef CONFIG_X86_PAE
215 printk("*pdpt = %016Lx ", page);
216 if ((page >> PAGE_SHIFT) < max_low_pfn
217 && page & _PAGE_PRESENT) {
218 page &= PAGE_MASK;
219 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
2d4a7167 220 & (PTRS_PER_PMD - 1)];
1156e098
HH
221 printk(KERN_CONT "*pde = %016Lx ", page);
222 page &= ~_PAGE_NX;
223 }
224#else
225 printk("*pde = %08lx ", page);
226#endif
227
228 /*
229 * We must not directly access the pte in the highpte
230 * case if the page table is located in highmem.
231 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 232 * it's allocated already:
1156e098
HH
233 */
234 if ((page >> PAGE_SHIFT) < max_low_pfn
235 && (page & _PAGE_PRESENT)
236 && !(page & _PAGE_PSE)) {
2d4a7167 237
1156e098
HH
238 page &= PAGE_MASK;
239 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
2d4a7167 240 & (PTRS_PER_PTE - 1)];
1156e098
HH
241 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
242 }
243
244 printk("\n");
245#else /* CONFIG_X86_64 */
1da177e4
LT
246 pgd_t *pgd;
247 pud_t *pud;
248 pmd_t *pmd;
249 pte_t *pte;
250
f51c9452 251 pgd = (pgd_t *)read_cr3();
1da177e4 252
33cb5243 253 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
2d4a7167 254
1da177e4 255 pgd += pgd_index(address);
2d4a7167
IM
256 if (bad_address(pgd))
257 goto bad;
258
d646bce4 259 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
260
261 if (!pgd_present(*pgd))
262 goto out;
1da177e4 263
d2ae5b5f 264 pud = pud_offset(pgd, address);
2d4a7167
IM
265 if (bad_address(pud))
266 goto bad;
267
1da177e4 268 printk("PUD %lx ", pud_val(*pud));
b5360222 269 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 270 goto out;
1da177e4
LT
271
272 pmd = pmd_offset(pud, address);
2d4a7167
IM
273 if (bad_address(pmd))
274 goto bad;
275
1da177e4 276 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
277 if (!pmd_present(*pmd) || pmd_large(*pmd))
278 goto out;
1da177e4
LT
279
280 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
281 if (bad_address(pte))
282 goto bad;
283
33cb5243 284 printk("PTE %lx", pte_val(*pte));
2d4a7167 285out:
1da177e4
LT
286 printk("\n");
287 return;
288bad:
289 printk("BAD\n");
1156e098
HH
290#endif
291}
292
293#ifdef CONFIG_X86_32
294static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
295{
296 unsigned index = pgd_index(address);
297 pgd_t *pgd_k;
298 pud_t *pud, *pud_k;
299 pmd_t *pmd, *pmd_k;
300
301 pgd += index;
302 pgd_k = init_mm.pgd + index;
303
304 if (!pgd_present(*pgd_k))
305 return NULL;
306
307 /*
308 * set_pgd(pgd, *pgd_k); here would be useless on PAE
309 * and redundant with the set_pmd() on non-PAE. As would
310 * set_pud.
311 */
1156e098
HH
312 pud = pud_offset(pgd, address);
313 pud_k = pud_offset(pgd_k, address);
314 if (!pud_present(*pud_k))
315 return NULL;
316
317 pmd = pmd_offset(pud, address);
318 pmd_k = pmd_offset(pud_k, address);
319 if (!pmd_present(*pmd_k))
320 return NULL;
2d4a7167 321
1156e098
HH
322 if (!pmd_present(*pmd)) {
323 set_pmd(pmd, *pmd_k);
324 arch_flush_lazy_mmu_mode();
2d4a7167 325 } else {
1156e098 326 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
2d4a7167
IM
327 }
328
1156e098 329 return pmd_k;
1da177e4
LT
330}
331
8c938f9f
IM
332/*
333 * Did it hit the DOS screen memory VA from vm86 mode?
334 */
335static inline void
336check_v8086_mode(struct pt_regs *regs, unsigned long address,
337 struct task_struct *tsk)
338{
339 unsigned long bit;
340
341 if (!v8086_mode(regs))
342 return;
343
344 bit = (address - 0xA0000) >> PAGE_SHIFT;
345 if (bit < 32)
346 tsk->thread.screen_bitmap |= 1 << bit;
347}
348
349#else /* CONFIG_X86_64: */
350
33cb5243 351static const char errata93_warning[] =
1da177e4
LT
352KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
353KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
354KERN_ERR "******* Please consider a BIOS update.\n"
355KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
8c938f9f
IM
356
357/*
358 * No vm86 mode in 64-bit mode:
359 */
360static inline void
361check_v8086_mode(struct pt_regs *regs, unsigned long address,
362 struct task_struct *tsk)
363{
364}
365
fdfe8aa8 366#endif
1da177e4 367
2d4a7167
IM
368/*
369 * Workaround for K8 erratum #93 & buggy BIOS.
370 *
371 * BIOS SMM functions are required to use a specific workaround
372 * to avoid corruption of the 64bit RIP register on C stepping K8.
373 *
374 * A lot of BIOS that didn't get tested properly miss this.
375 *
376 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
377 * Try to work around it here.
378 *
379 * Note we only handle faults in kernel here.
380 * Does nothing on 32-bit.
fdfe8aa8 381 */
33cb5243 382static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 383{
fdfe8aa8 384#ifdef CONFIG_X86_64
2d4a7167
IM
385 static int once;
386
65ea5b03 387 if (address != regs->ip)
1da177e4 388 return 0;
2d4a7167 389
33cb5243 390 if ((address >> 32) != 0)
1da177e4 391 return 0;
2d4a7167 392
1da177e4 393 address |= 0xffffffffUL << 32;
33cb5243
HH
394 if ((address >= (u64)_stext && address <= (u64)_etext) ||
395 (address >= MODULES_VADDR && address <= MODULES_END)) {
2d4a7167 396 if (!once) {
33cb5243 397 printk(errata93_warning);
2d4a7167 398 once = 1;
1da177e4 399 }
65ea5b03 400 regs->ip = address;
1da177e4
LT
401 return 1;
402 }
fdfe8aa8 403#endif
1da177e4 404 return 0;
33cb5243 405}
1da177e4 406
35f3266f 407/*
2d4a7167
IM
408 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
409 * to illegal addresses >4GB.
410 *
411 * We catch this in the page fault handler because these addresses
412 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
413 * segment in LDT is compatibility mode.
414 */
415static int is_errata100(struct pt_regs *regs, unsigned long address)
416{
417#ifdef CONFIG_X86_64
2d4a7167 418 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
419 return 1;
420#endif
421 return 0;
422}
423
29caf2f9
HH
424static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
425{
426#ifdef CONFIG_X86_F00F_BUG
427 unsigned long nr;
2d4a7167 428
29caf2f9 429 /*
2d4a7167 430 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9
HH
431 */
432 if (boot_cpu_data.f00f_bug) {
433 nr = (address - idt_descr.address) >> 3;
434
435 if (nr == 6) {
436 do_invalid_op(regs, 0);
437 return 1;
438 }
439 }
440#endif
441 return 0;
442}
443
2d4a7167
IM
444static void
445show_fault_oops(struct pt_regs *regs, unsigned long error_code,
446 unsigned long address)
b3279c7f 447{
1156e098
HH
448#ifdef CONFIG_X86_32
449 if (!oops_may_print())
450 return;
fd40d6e3 451#endif
1156e098
HH
452
453#ifdef CONFIG_X86_PAE
454 if (error_code & PF_INSTR) {
93809be8 455 unsigned int level;
2d4a7167 456
1156e098
HH
457 pte_t *pte = lookup_address(address, &level);
458
2d4a7167 459 if (pte && pte_present(*pte) && !pte_exec(*pte)) {
1156e098
HH
460 printk(KERN_CRIT "kernel tried to execute "
461 "NX-protected page - exploit attempt? "
350b4da7 462 "(uid: %d)\n", current_uid());
2d4a7167 463 }
1156e098
HH
464 }
465#endif
1156e098 466
19f0dda9 467 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 468 if (address < PAGE_SIZE)
19f0dda9 469 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 470 else
19f0dda9 471 printk(KERN_CONT "paging request");
2d4a7167 472
f294a8ce 473 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 474 printk(KERN_ALERT "IP:");
b3279c7f 475 printk_address(regs->ip, 1);
2d4a7167 476
b3279c7f
HH
477 dump_pagetable(address);
478}
479
2d4a7167
IM
480static noinline void
481pgtable_bad(struct pt_regs *regs, unsigned long error_code,
482 unsigned long address)
1da177e4 483{
2d4a7167
IM
484 struct task_struct *tsk;
485 unsigned long flags;
486 int sig;
487
488 flags = oops_begin();
489 tsk = current;
490 sig = SIGKILL;
1209140c 491
1da177e4 492 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 493 tsk->comm, address);
1da177e4 494 dump_pagetable(address);
2d4a7167
IM
495
496 tsk->thread.cr2 = address;
497 tsk->thread.trap_no = 14;
498 tsk->thread.error_code = error_code;
499
22f5991c 500 if (__die("Bad pagetable", regs, error_code))
874d93d1 501 sig = 0;
2d4a7167 502
874d93d1 503 oops_end(flags, regs, sig);
1da177e4
LT
504}
505
2d4a7167
IM
506static noinline void
507no_context(struct pt_regs *regs, unsigned long error_code,
508 unsigned long address)
92181f19
NP
509{
510 struct task_struct *tsk = current;
19803078
IM
511 unsigned long *stackend;
512
92181f19
NP
513#ifdef CONFIG_X86_64
514 unsigned long flags;
515 int sig;
516#endif
517
2d4a7167 518 /* Are we prepared to handle this kernel fault? */
92181f19
NP
519 if (fixup_exception(regs))
520 return;
521
522 /*
2d4a7167
IM
523 * 32-bit:
524 *
525 * Valid to do another page fault here, because if this fault
526 * had been triggered by is_prefetch fixup_exception would have
527 * handled it.
528 *
529 * 64-bit:
92181f19 530 *
2d4a7167 531 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
532 */
533 if (is_prefetch(regs, error_code, address))
534 return;
535
536 if (is_errata93(regs, address))
537 return;
538
539 /*
540 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 541 * terminate things with extreme prejudice:
92181f19
NP
542 */
543#ifdef CONFIG_X86_32
544 bust_spinlocks(1);
545#else
546 flags = oops_begin();
547#endif
548
549 show_fault_oops(regs, error_code, address);
550
2d4a7167 551 stackend = end_of_stack(tsk);
19803078
IM
552 if (*stackend != STACK_END_MAGIC)
553 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
554
92181f19
NP
555 tsk->thread.cr2 = address;
556 tsk->thread.trap_no = 14;
557 tsk->thread.error_code = error_code;
558
559#ifdef CONFIG_X86_32
560 die("Oops", regs, error_code);
561 bust_spinlocks(0);
562 do_exit(SIGKILL);
563#else
564 sig = SIGKILL;
565 if (__die("Oops", regs, error_code))
566 sig = 0;
2d4a7167 567
92181f19
NP
568 /* Executive summary in case the body of the oops scrolled away */
569 printk(KERN_EMERG "CR2: %016lx\n", address);
2d4a7167 570
92181f19
NP
571 oops_end(flags, regs, sig);
572#endif
573}
574
2d4a7167
IM
575/*
576 * Print out info about fatal segfaults, if the show_unhandled_signals
577 * sysctl is set:
578 */
579static inline void
580show_signal_msg(struct pt_regs *regs, unsigned long error_code,
581 unsigned long address, struct task_struct *tsk)
582{
583 if (!unhandled_signal(tsk, SIGSEGV))
584 return;
585
586 if (!printk_ratelimit())
587 return;
588
589 printk(KERN_CONT "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
590 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
591 tsk->comm, task_pid_nr(tsk), address,
592 (void *)regs->ip, (void *)regs->sp, error_code);
593
594 print_vma_addr(KERN_CONT " in ", regs->ip);
595
596 printk(KERN_CONT "\n");
597}
598
599static void
600__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
601 unsigned long address, int si_code)
92181f19
NP
602{
603 struct task_struct *tsk = current;
604
605 /* User mode accesses just cause a SIGSEGV */
606 if (error_code & PF_USER) {
607 /*
2d4a7167 608 * It's possible to have interrupts off here:
92181f19
NP
609 */
610 local_irq_enable();
611
612 /*
613 * Valid to do another page fault here because this one came
2d4a7167 614 * from user space:
92181f19
NP
615 */
616 if (is_prefetch(regs, error_code, address))
617 return;
618
619 if (is_errata100(regs, address))
620 return;
621
2d4a7167
IM
622 if (unlikely(show_unhandled_signals))
623 show_signal_msg(regs, error_code, address, tsk);
624
625 /* Kernel addresses are always protection faults: */
626 tsk->thread.cr2 = address;
627 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
628 tsk->thread.trap_no = 14;
92181f19 629
92181f19 630 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
2d4a7167 631
92181f19
NP
632 return;
633 }
634
635 if (is_f00f_bug(regs, address))
636 return;
637
638 no_context(regs, error_code, address);
639}
640
2d4a7167
IM
641static noinline void
642bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
643 unsigned long address)
92181f19
NP
644{
645 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
646}
647
2d4a7167
IM
648static void
649__bad_area(struct pt_regs *regs, unsigned long error_code,
650 unsigned long address, int si_code)
92181f19
NP
651{
652 struct mm_struct *mm = current->mm;
653
654 /*
655 * Something tried to access memory that isn't in our memory map..
656 * Fix it, but check if it's kernel or user first..
657 */
658 up_read(&mm->mmap_sem);
659
660 __bad_area_nosemaphore(regs, error_code, address, si_code);
661}
662
2d4a7167
IM
663static noinline void
664bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
665{
666 __bad_area(regs, error_code, address, SEGV_MAPERR);
667}
668
2d4a7167
IM
669static noinline void
670bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
671 unsigned long address)
92181f19
NP
672{
673 __bad_area(regs, error_code, address, SEGV_ACCERR);
674}
675
676/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
2d4a7167
IM
677static void
678out_of_memory(struct pt_regs *regs, unsigned long error_code,
679 unsigned long address)
92181f19
NP
680{
681 /*
682 * We ran out of memory, call the OOM killer, and return the userspace
2d4a7167 683 * (which will retry the fault, or kill us if we got oom-killed):
92181f19
NP
684 */
685 up_read(&current->mm->mmap_sem);
2d4a7167 686
92181f19
NP
687 pagefault_out_of_memory();
688}
689
2d4a7167
IM
690static void
691do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
692{
693 struct task_struct *tsk = current;
694 struct mm_struct *mm = tsk->mm;
695
696 up_read(&mm->mmap_sem);
697
2d4a7167 698 /* Kernel mode? Handle exceptions or die: */
92181f19
NP
699 if (!(error_code & PF_USER))
700 no_context(regs, error_code, address);
2d4a7167 701
92181f19 702#ifdef CONFIG_X86_32
2d4a7167 703 /* User space => ok to do another page fault: */
92181f19
NP
704 if (is_prefetch(regs, error_code, address))
705 return;
706#endif
2d4a7167
IM
707
708 tsk->thread.cr2 = address;
709 tsk->thread.error_code = error_code;
710 tsk->thread.trap_no = 14;
711
92181f19
NP
712 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
713}
714
2d4a7167
IM
715static noinline void
716mm_fault_error(struct pt_regs *regs, unsigned long error_code,
717 unsigned long address, unsigned int fault)
92181f19 718{
2d4a7167 719 if (fault & VM_FAULT_OOM) {
92181f19 720 out_of_memory(regs, error_code, address);
2d4a7167
IM
721 } else {
722 if (fault & VM_FAULT_SIGBUS)
723 do_sigbus(regs, error_code, address);
724 else
725 BUG();
726 }
92181f19
NP
727}
728
d8b57bb7
TG
729static int spurious_fault_check(unsigned long error_code, pte_t *pte)
730{
731 if ((error_code & PF_WRITE) && !pte_write(*pte))
732 return 0;
2d4a7167 733
d8b57bb7
TG
734 if ((error_code & PF_INSTR) && !pte_exec(*pte))
735 return 0;
736
737 return 1;
738}
739
5b727a3b 740/*
2d4a7167
IM
741 * Handle a spurious fault caused by a stale TLB entry.
742 *
743 * This allows us to lazily refresh the TLB when increasing the
744 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
745 * eagerly is very expensive since that implies doing a full
746 * cross-processor TLB flush, even if no stale TLB entries exist
747 * on other processors.
748 *
5b727a3b
JF
749 * There are no security implications to leaving a stale TLB when
750 * increasing the permissions on a page.
751 */
2d4a7167
IM
752static noinline int
753spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
754{
755 pgd_t *pgd;
756 pud_t *pud;
757 pmd_t *pmd;
758 pte_t *pte;
3c3e5694 759 int ret;
5b727a3b
JF
760
761 /* Reserved-bit violation or user access to kernel space? */
762 if (error_code & (PF_USER | PF_RSVD))
763 return 0;
764
765 pgd = init_mm.pgd + pgd_index(address);
766 if (!pgd_present(*pgd))
767 return 0;
768
769 pud = pud_offset(pgd, address);
770 if (!pud_present(*pud))
771 return 0;
772
d8b57bb7
TG
773 if (pud_large(*pud))
774 return spurious_fault_check(error_code, (pte_t *) pud);
775
5b727a3b
JF
776 pmd = pmd_offset(pud, address);
777 if (!pmd_present(*pmd))
778 return 0;
779
d8b57bb7
TG
780 if (pmd_large(*pmd))
781 return spurious_fault_check(error_code, (pte_t *) pmd);
782
5b727a3b
JF
783 pte = pte_offset_kernel(pmd, address);
784 if (!pte_present(*pte))
785 return 0;
786
3c3e5694
SR
787 ret = spurious_fault_check(error_code, pte);
788 if (!ret)
789 return 0;
790
791 /*
2d4a7167
IM
792 * Make sure we have permissions in PMD.
793 * If not, then there's a bug in the page tables:
3c3e5694
SR
794 */
795 ret = spurious_fault_check(error_code, (pte_t *) pmd);
796 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 797
3c3e5694 798 return ret;
5b727a3b
JF
799}
800
1da177e4 801/*
2d4a7167
IM
802 * 32-bit:
803 *
804 * Handle a fault on the vmalloc or module mapping area
f8c2ee22 805 *
2d4a7167
IM
806 * 64-bit:
807 *
808 * Handle a fault on the vmalloc area
3b9ba4d5
AK
809 *
810 * This assumes no large pages in there.
1da177e4 811 */
92181f19 812static noinline int vmalloc_fault(unsigned long address)
1da177e4 813{
fdfe8aa8
HH
814#ifdef CONFIG_X86_32
815 unsigned long pgd_paddr;
816 pmd_t *pmd_k;
817 pte_t *pte_k;
b29c701d 818
2d4a7167 819 /* Make sure we are in vmalloc area: */
b29c701d
HN
820 if (!(address >= VMALLOC_START && address < VMALLOC_END))
821 return -1;
822
fdfe8aa8
HH
823 /*
824 * Synchronize this task's top level page-table
825 * with the 'reference' page table.
826 *
827 * Do _not_ use "current" here. We might be inside
828 * an interrupt in the middle of a task switch..
829 */
830 pgd_paddr = read_cr3();
831 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
832 if (!pmd_k)
833 return -1;
2d4a7167 834
fdfe8aa8
HH
835 pte_k = pte_offset_kernel(pmd_k, address);
836 if (!pte_present(*pte_k))
837 return -1;
2d4a7167 838
fdfe8aa8
HH
839 return 0;
840#else
1da177e4
LT
841 pgd_t *pgd, *pgd_ref;
842 pud_t *pud, *pud_ref;
843 pmd_t *pmd, *pmd_ref;
844 pte_t *pte, *pte_ref;
845
2d4a7167 846 /* Make sure we are in vmalloc area: */
cf89ec92
HH
847 if (!(address >= VMALLOC_START && address < VMALLOC_END))
848 return -1;
849
2d4a7167
IM
850 /*
851 * Copy kernel mappings over when needed. This can also
852 * happen within a race in page table update. In the later
853 * case just flush:
854 */
f313e123 855 pgd = pgd_offset(current->active_mm, address);
1da177e4
LT
856 pgd_ref = pgd_offset_k(address);
857 if (pgd_none(*pgd_ref))
858 return -1;
2d4a7167 859
1da177e4
LT
860 if (pgd_none(*pgd))
861 set_pgd(pgd, *pgd_ref);
8c914cb7 862 else
46a82b2d 863 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1da177e4 864
2d4a7167
IM
865 /*
866 * Below here mismatches are bugs because these lower tables
867 * are shared:
868 */
1da177e4
LT
869
870 pud = pud_offset(pgd, address);
871 pud_ref = pud_offset(pgd_ref, address);
872 if (pud_none(*pud_ref))
873 return -1;
2d4a7167 874
46a82b2d 875 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
1da177e4 876 BUG();
2d4a7167 877
1da177e4
LT
878 pmd = pmd_offset(pud, address);
879 pmd_ref = pmd_offset(pud_ref, address);
880 if (pmd_none(*pmd_ref))
881 return -1;
2d4a7167 882
1da177e4
LT
883 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
884 BUG();
2d4a7167 885
1da177e4
LT
886 pte_ref = pte_offset_kernel(pmd_ref, address);
887 if (!pte_present(*pte_ref))
888 return -1;
2d4a7167 889
1da177e4 890 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
891
892 /*
893 * Don't use pte_page here, because the mappings can point
894 * outside mem_map, and the NUMA hash lookup cannot handle
895 * that:
896 */
3b9ba4d5 897 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
1da177e4 898 BUG();
2d4a7167 899
1da177e4 900 return 0;
fdfe8aa8 901#endif
1da177e4
LT
902}
903
abd4f750 904int show_unhandled_signals = 1;
1da177e4 905
2d4a7167
IM
906static inline int
907access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
92181f19
NP
908{
909 if (write) {
2d4a7167 910 /* write, present and write, not present: */
92181f19
NP
911 if (unlikely(!(vma->vm_flags & VM_WRITE)))
912 return 1;
2d4a7167 913 return 0;
92181f19
NP
914 }
915
2d4a7167
IM
916 /* read, present: */
917 if (unlikely(error_code & PF_PROT))
918 return 1;
919
920 /* read, not present: */
921 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
922 return 1;
923
92181f19
NP
924 return 0;
925}
926
0973a06c
HS
927static int fault_in_kernel_space(unsigned long address)
928{
929#ifdef CONFIG_X86_32
930 return address >= TASK_SIZE;
2d4a7167 931#else
0973a06c 932 return address >= TASK_SIZE64;
2d4a7167 933#endif
0973a06c
HS
934}
935
1da177e4
LT
936/*
937 * This routine handles page faults. It determines the address,
938 * and the problem, and then passes it off to one of the appropriate
939 * routines.
1da177e4 940 */
f8c2ee22
HH
941#ifdef CONFIG_X86_64
942asmlinkage
943#endif
944void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
1da177e4 945{
2d4a7167 946 struct vm_area_struct *vma;
1da177e4 947 struct task_struct *tsk;
2d4a7167 948 unsigned long address;
1da177e4 949 struct mm_struct *mm;
92181f19 950 int write;
f8c2ee22 951 int fault;
1da177e4 952
a9ba9a3b
AV
953 tsk = current;
954 mm = tsk->mm;
2d4a7167 955
a9ba9a3b
AV
956 prefetchw(&mm->mmap_sem);
957
2d4a7167 958 /* Get the faulting address: */
f51c9452 959 address = read_cr2();
1da177e4 960
0fd0e3da 961 if (unlikely(kmmio_fault(regs, address)))
86069782 962 return;
1da177e4
LT
963
964 /*
965 * We fault-in kernel-space virtual memory on-demand. The
966 * 'reference' page table is init_mm.pgd.
967 *
968 * NOTE! We MUST NOT take any locks for this case. We may
969 * be in an interrupt or a critical region, and should
970 * only copy the information from the master page table,
971 * nothing more.
972 *
973 * This verifies that the fault happens in kernel space
974 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 975 * protection error (error_code & 9) == 0.
1da177e4 976 */
0973a06c 977 if (unlikely(fault_in_kernel_space(address))) {
f8c2ee22
HH
978 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
979 vmalloc_fault(address) >= 0)
980 return;
5b727a3b 981
2d4a7167 982 /* Can handle a stale RO->RW TLB: */
92181f19 983 if (spurious_fault(error_code, address))
5b727a3b
JF
984 return;
985
2d4a7167 986 /* kprobes don't want to hook the spurious faults: */
9be260a6
MH
987 if (notify_page_fault(regs))
988 return;
f8c2ee22
HH
989 /*
990 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 991 * fault we could otherwise deadlock:
f8c2ee22 992 */
92181f19 993 bad_area_nosemaphore(regs, error_code, address);
2d4a7167 994
92181f19 995 return;
f8c2ee22
HH
996 }
997
2d4a7167 998 /* kprobes don't want to hook the spurious faults: */
f8a6b2b9 999 if (unlikely(notify_page_fault(regs)))
9be260a6 1000 return;
f8c2ee22 1001 /*
891cffbd
LT
1002 * It's safe to allow irq's after cr2 has been saved and the
1003 * vmalloc fault has been handled.
1004 *
1005 * User-mode registers count as a user access even for any
2d4a7167 1006 * potential system fault or CPU buglet:
f8c2ee22 1007 */
891cffbd
LT
1008 if (user_mode_vm(regs)) {
1009 local_irq_enable();
1010 error_code |= PF_USER;
2d4a7167
IM
1011 } else {
1012 if (regs->flags & X86_EFLAGS_IF)
1013 local_irq_enable();
1014 }
8c914cb7 1015
66c58156 1016 if (unlikely(error_code & PF_RSVD))
92181f19 1017 pgtable_bad(regs, error_code, address);
1da177e4
LT
1018
1019 /*
2d4a7167
IM
1020 * If we're in an interrupt, have no user context or are running
1021 * in an atomic region then we must not take the fault:
1da177e4 1022 */
92181f19
NP
1023 if (unlikely(in_atomic() || !mm)) {
1024 bad_area_nosemaphore(regs, error_code, address);
1025 return;
1026 }
1da177e4 1027
3a1dfe6e
IM
1028 /*
1029 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1030 * addresses in user space. All other faults represent errors in
1031 * the kernel and should generate an OOPS. Unfortunately, in the
1032 * case of an erroneous fault occurring in a code path which already
1033 * holds mmap_sem we will deadlock attempting to validate the fault
1034 * against the address space. Luckily the kernel only validly
1035 * references user space from well defined areas of code, which are
1036 * listed in the exceptions table.
1da177e4
LT
1037 *
1038 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1039 * the source reference check when there is a possibility of a
1040 * deadlock. Attempt to lock the address space, if we cannot we then
1041 * validate the source. If this is invalid we can skip the address
1042 * space check, thus avoiding the deadlock:
1da177e4 1043 */
92181f19 1044 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1045 if ((error_code & PF_USER) == 0 &&
92181f19
NP
1046 !search_exception_tables(regs->ip)) {
1047 bad_area_nosemaphore(regs, error_code, address);
1048 return;
1049 }
1da177e4 1050 down_read(&mm->mmap_sem);
01006074
PZ
1051 } else {
1052 /*
2d4a7167
IM
1053 * The above down_read_trylock() might have succeeded in
1054 * which case we'll have missed the might_sleep() from
1055 * down_read():
01006074
PZ
1056 */
1057 might_sleep();
1da177e4
LT
1058 }
1059
1060 vma = find_vma(mm, address);
92181f19
NP
1061 if (unlikely(!vma)) {
1062 bad_area(regs, error_code, address);
1063 return;
1064 }
1065 if (likely(vma->vm_start <= address))
1da177e4 1066 goto good_area;
92181f19
NP
1067 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1068 bad_area(regs, error_code, address);
1069 return;
1070 }
33cb5243 1071 if (error_code & PF_USER) {
6f4d368e
HH
1072 /*
1073 * Accessing the stack below %sp is always a bug.
1074 * The large cushion allows instructions like enter
2d4a7167 1075 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1076 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1077 */
92181f19
NP
1078 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1079 bad_area(regs, error_code, address);
1080 return;
1081 }
1da177e4 1082 }
92181f19
NP
1083 if (unlikely(expand_stack(vma, address))) {
1084 bad_area(regs, error_code, address);
1085 return;
1086 }
1087
1088 /*
1089 * Ok, we have a good vm_area for this memory access, so
1090 * we can handle it..
1091 */
1da177e4 1092good_area:
92181f19 1093 write = error_code & PF_WRITE;
2d4a7167 1094
92181f19
NP
1095 if (unlikely(access_error(error_code, write, vma))) {
1096 bad_area_access_error(regs, error_code, address);
1097 return;
1da177e4
LT
1098 }
1099
1100 /*
1101 * If for any reason at all we couldn't handle the fault,
1102 * make sure we exit gracefully rather than endlessly redo
2d4a7167 1103 * the fault:
1da177e4 1104 */
83c54070 1105 fault = handle_mm_fault(mm, vma, address, write);
2d4a7167 1106
83c54070 1107 if (unlikely(fault & VM_FAULT_ERROR)) {
92181f19
NP
1108 mm_fault_error(regs, error_code, address, fault);
1109 return;
1da177e4 1110 }
2d4a7167 1111
83c54070
NP
1112 if (fault & VM_FAULT_MAJOR)
1113 tsk->maj_flt++;
1114 else
1115 tsk->min_flt++;
d729ab35 1116
8c938f9f
IM
1117 check_v8086_mode(regs, address, tsk);
1118
1da177e4 1119 up_read(&mm->mmap_sem);
1da177e4 1120}
9e43e1b7 1121
8c914cb7 1122DEFINE_SPINLOCK(pgd_lock);
2bff7383 1123LIST_HEAD(pgd_list);
8c914cb7
JB
1124
1125void vmalloc_sync_all(void)
1126{
1156e098
HH
1127 unsigned long address;
1128
cc643d46 1129#ifdef CONFIG_X86_32
1156e098
HH
1130 if (SHARED_KERNEL_PMD)
1131 return;
1132
cc643d46
JB
1133 for (address = VMALLOC_START & PMD_MASK;
1134 address >= TASK_SIZE && address < FIXADDR_TOP;
1135 address += PMD_SIZE) {
2d4a7167 1136
67350a5c
JF
1137 unsigned long flags;
1138 struct page *page;
1139
1140 spin_lock_irqsave(&pgd_lock, flags);
1141 list_for_each_entry(page, &pgd_list, lru) {
2d4a7167 1142 if (!vmalloc_sync_one(page_address(page), address))
67350a5c 1143 break;
1156e098 1144 }
67350a5c 1145 spin_unlock_irqrestore(&pgd_lock, flags);
1156e098
HH
1146 }
1147#else /* CONFIG_X86_64 */
cc643d46
JB
1148 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
1149 address += PGDIR_SIZE) {
2d4a7167 1150
67350a5c
JF
1151 const pgd_t *pgd_ref = pgd_offset_k(address);
1152 unsigned long flags;
1153 struct page *page;
1154
1155 if (pgd_none(*pgd_ref))
1156 continue;
2d4a7167 1157
67350a5c
JF
1158 spin_lock_irqsave(&pgd_lock, flags);
1159 list_for_each_entry(page, &pgd_list, lru) {
1160 pgd_t *pgd;
1161 pgd = (pgd_t *)page_address(page) + pgd_index(address);
1162 if (pgd_none(*pgd))
1163 set_pgd(pgd, *pgd_ref);
1164 else
1165 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
8c914cb7 1166 }
67350a5c 1167 spin_unlock_irqrestore(&pgd_lock, flags);
8c914cb7 1168 }
1156e098 1169#endif
8c914cb7 1170}