]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/x86/mm/fault.c
x86/mm/tlb: Make lazy TLB mode lazier
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / mm / fault.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4 3 * Copyright (C) 1995 Linus Torvalds
2d4a7167 4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 6 */
a2bcd473 7#include <linux/sched.h> /* test_thread_flag(), ... */
68db0cf1 8#include <linux/sched/task_stack.h> /* task_stack_*(), ... */
a2bcd473 9#include <linux/kdebug.h> /* oops_begin/end, ... */
4cdf8dbe 10#include <linux/extable.h> /* search_exception_tables */
a2bcd473 11#include <linux/bootmem.h> /* max_low_pfn */
9326638c 12#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
a2bcd473 13#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 14#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 15#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 16#include <linux/prefetch.h> /* prefetchw */
56dd9470 17#include <linux/context_tracking.h> /* exception_enter(), ... */
70ffdb93 18#include <linux/uaccess.h> /* faulthandler_disabled() */
50a7ca3c 19#include <linux/mm_types.h>
2d4a7167 20
019132ff 21#include <asm/cpufeature.h> /* boot_cpu_has, ... */
a2bcd473
IM
22#include <asm/traps.h> /* dotraplinkage, ... */
23#include <asm/pgalloc.h> /* pgd_*(), ... */
f40c3300
AL
24#include <asm/fixmap.h> /* VSYSCALL_ADDR */
25#include <asm/vsyscall.h> /* emulate_vsyscall */
ba3e127e 26#include <asm/vm86.h> /* struct vm86 */
019132ff 27#include <asm/mmu_context.h> /* vma_pkey() */
1da177e4 28
d34603b0
SA
29#define CREATE_TRACE_POINTS
30#include <asm/trace/exceptions.h>
31
b814d41f 32/*
b319eed0
IM
33 * Returns 0 if mmiotrace is disabled, or if the fault is not
34 * handled by mmiotrace:
b814d41f 35 */
9326638c 36static nokprobe_inline int
62c9295f 37kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 38{
0fd0e3da
PP
39 if (unlikely(is_kmmio_active()))
40 if (kmmio_handler(regs, addr) == 1)
41 return -1;
0fd0e3da 42 return 0;
86069782
PP
43}
44
9326638c 45static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
1bd858a5 46{
74a0b576
CH
47 int ret = 0;
48
49 /* kprobe_running() needs smp_processor_id() */
f39b6f0e 50 if (kprobes_built_in() && !user_mode(regs)) {
74a0b576
CH
51 preempt_disable();
52 if (kprobe_running() && kprobe_fault_handler(regs, 14))
53 ret = 1;
54 preempt_enable();
55 }
1bd858a5 56
74a0b576 57 return ret;
33cb5243 58}
1bd858a5 59
1dc85be0 60/*
2d4a7167
IM
61 * Prefetch quirks:
62 *
63 * 32-bit mode:
64 *
65 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
66 * Check that here and ignore it.
1dc85be0 67 *
2d4a7167 68 * 64-bit mode:
1dc85be0 69 *
2d4a7167
IM
70 * Sometimes the CPU reports invalid exceptions on prefetch.
71 * Check that here and ignore it.
72 *
73 * Opcode checker based on code by Richard Brunner.
1dc85be0 74 */
107a0367
IM
75static inline int
76check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
77 unsigned char opcode, int *prefetch)
78{
79 unsigned char instr_hi = opcode & 0xf0;
80 unsigned char instr_lo = opcode & 0x0f;
81
82 switch (instr_hi) {
83 case 0x20:
84 case 0x30:
85 /*
86 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
87 * In X86_64 long mode, the CPU will signal invalid
88 * opcode if some of these prefixes are present so
89 * X86_64 will never get here anyway
90 */
91 return ((instr_lo & 7) == 0x6);
92#ifdef CONFIG_X86_64
93 case 0x40:
94 /*
95 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
96 * Need to figure out under what instruction mode the
97 * instruction was issued. Could check the LDT for lm,
98 * but for now it's good enough to assume that long
99 * mode only uses well known segments or kernel.
100 */
318f5a2a 101 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
102#endif
103 case 0x60:
104 /* 0x64 thru 0x67 are valid prefixes in all modes. */
105 return (instr_lo & 0xC) == 0x4;
106 case 0xF0:
107 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
108 return !instr_lo || (instr_lo>>1) == 1;
109 case 0x00:
110 /* Prefetch instruction is 0x0F0D or 0x0F18 */
111 if (probe_kernel_address(instr, opcode))
112 return 0;
113
114 *prefetch = (instr_lo == 0xF) &&
115 (opcode == 0x0D || opcode == 0x18);
116 return 0;
117 default:
118 return 0;
119 }
120}
121
2d4a7167
IM
122static int
123is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 124{
2d4a7167 125 unsigned char *max_instr;
ab2bf0c1 126 unsigned char *instr;
33cb5243 127 int prefetch = 0;
1da177e4 128
3085354d
IM
129 /*
130 * If it was a exec (instruction fetch) fault on NX page, then
131 * do not ignore the fault:
132 */
1067f030 133 if (error_code & X86_PF_INSTR)
1da177e4 134 return 0;
1dc85be0 135
107a0367 136 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 137 max_instr = instr + 15;
1da177e4 138
d31bf07f 139 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
1da177e4
LT
140 return 0;
141
107a0367 142 while (instr < max_instr) {
2d4a7167 143 unsigned char opcode;
1da177e4 144
ab2bf0c1 145 if (probe_kernel_address(instr, opcode))
33cb5243 146 break;
1da177e4 147
1da177e4
LT
148 instr++;
149
107a0367 150 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 151 break;
1da177e4
LT
152 }
153 return prefetch;
154}
155
019132ff
DH
156/*
157 * A protection key fault means that the PKRU value did not allow
158 * access to some PTE. Userspace can figure out what PKRU was
159 * from the XSAVE state, and this function fills out a field in
160 * siginfo so userspace can discover which protection key was set
161 * on the PTE.
162 *
1067f030 163 * If we get here, we know that the hardware signaled a X86_PF_PK
019132ff
DH
164 * fault and that there was a VMA once we got in the fault
165 * handler. It does *not* guarantee that the VMA we find here
166 * was the one that we faulted on.
167 *
168 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
169 * 2. T1 : set PKRU to deny access to pkey=4, touches page
170 * 3. T1 : faults...
171 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
172 * 5. T1 : enters fault handler, takes mmap_sem, etc...
173 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
174 * faulted on a pte with its pkey=4.
175 */
beacd6f7
EB
176static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
177 u32 *pkey)
019132ff
DH
178{
179 /* This is effectively an #ifdef */
180 if (!boot_cpu_has(X86_FEATURE_OSPKE))
181 return;
182
183 /* Fault not from Protection Keys: nothing to do */
beacd6f7 184 if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
019132ff
DH
185 return;
186 /*
187 * force_sig_info_fault() is called from a number of
188 * contexts, some of which have a VMA and some of which
1067f030 189 * do not. The X86_PF_PK handing happens after we have a
019132ff
DH
190 * valid VMA, so we should never reach this without a
191 * valid VMA.
192 */
a3c4fb7c 193 if (!pkey) {
019132ff
DH
194 WARN_ONCE(1, "PKU fault with no VMA passed in");
195 info->si_pkey = 0;
196 return;
197 }
198 /*
199 * si_pkey should be thought of as a strong hint, but not
200 * absolutely guranteed to be 100% accurate because of
201 * the race explained above.
202 */
a3c4fb7c 203 info->si_pkey = *pkey;
019132ff
DH
204}
205
2d4a7167
IM
206static void
207force_sig_info_fault(int si_signo, int si_code, unsigned long address,
a3c4fb7c 208 struct task_struct *tsk, u32 *pkey, int fault)
c4aba4a8 209{
f672b49b 210 unsigned lsb = 0;
c4aba4a8
HH
211 siginfo_t info;
212
3eb0f519 213 clear_siginfo(&info);
2d4a7167
IM
214 info.si_signo = si_signo;
215 info.si_errno = 0;
216 info.si_code = si_code;
217 info.si_addr = (void __user *)address;
f672b49b
AK
218 if (fault & VM_FAULT_HWPOISON_LARGE)
219 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
220 if (fault & VM_FAULT_HWPOISON)
221 lsb = PAGE_SHIFT;
222 info.si_addr_lsb = lsb;
2d4a7167 223
beacd6f7 224 fill_sig_info_pkey(si_signo, si_code, &info, pkey);
019132ff 225
c4aba4a8
HH
226 force_sig_info(si_signo, &info, tsk);
227}
228
f2f13a85
IM
229DEFINE_SPINLOCK(pgd_lock);
230LIST_HEAD(pgd_list);
231
232#ifdef CONFIG_X86_32
233static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 234{
f2f13a85
IM
235 unsigned index = pgd_index(address);
236 pgd_t *pgd_k;
e0c4f675 237 p4d_t *p4d, *p4d_k;
f2f13a85
IM
238 pud_t *pud, *pud_k;
239 pmd_t *pmd, *pmd_k;
2d4a7167 240
f2f13a85
IM
241 pgd += index;
242 pgd_k = init_mm.pgd + index;
243
244 if (!pgd_present(*pgd_k))
245 return NULL;
246
247 /*
248 * set_pgd(pgd, *pgd_k); here would be useless on PAE
249 * and redundant with the set_pmd() on non-PAE. As would
e0c4f675 250 * set_p4d/set_pud.
f2f13a85 251 */
e0c4f675
KS
252 p4d = p4d_offset(pgd, address);
253 p4d_k = p4d_offset(pgd_k, address);
254 if (!p4d_present(*p4d_k))
255 return NULL;
256
257 pud = pud_offset(p4d, address);
258 pud_k = pud_offset(p4d_k, address);
f2f13a85
IM
259 if (!pud_present(*pud_k))
260 return NULL;
261
262 pmd = pmd_offset(pud, address);
263 pmd_k = pmd_offset(pud_k, address);
264 if (!pmd_present(*pmd_k))
265 return NULL;
266
b8bcfe99 267 if (!pmd_present(*pmd))
f2f13a85 268 set_pmd(pmd, *pmd_k);
b8bcfe99 269 else
f2f13a85 270 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
271
272 return pmd_k;
273}
274
275void vmalloc_sync_all(void)
276{
277 unsigned long address;
278
279 if (SHARED_KERNEL_PMD)
280 return;
281
282 for (address = VMALLOC_START & PMD_MASK;
dc4fac84 283 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
f2f13a85 284 address += PMD_SIZE) {
f2f13a85
IM
285 struct page *page;
286
a79e53d8 287 spin_lock(&pgd_lock);
f2f13a85 288 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 289 spinlock_t *pgt_lock;
f01f7c56 290 pmd_t *ret;
617d34d9 291
a79e53d8 292 /* the pgt_lock only for Xen */
617d34d9
JF
293 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
294
295 spin_lock(pgt_lock);
296 ret = vmalloc_sync_one(page_address(page), address);
297 spin_unlock(pgt_lock);
298
299 if (!ret)
f2f13a85
IM
300 break;
301 }
a79e53d8 302 spin_unlock(&pgd_lock);
f2f13a85
IM
303 }
304}
305
306/*
307 * 32-bit:
308 *
309 * Handle a fault on the vmalloc or module mapping area
310 */
9326638c 311static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
312{
313 unsigned long pgd_paddr;
314 pmd_t *pmd_k;
315 pte_t *pte_k;
316
317 /* Make sure we are in vmalloc area: */
318 if (!(address >= VMALLOC_START && address < VMALLOC_END))
319 return -1;
320
321 /*
322 * Synchronize this task's top level page-table
323 * with the 'reference' page table.
324 *
325 * Do _not_ use "current" here. We might be inside
326 * an interrupt in the middle of a task switch..
327 */
6c690ee1 328 pgd_paddr = read_cr3_pa();
f2f13a85
IM
329 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
330 if (!pmd_k)
331 return -1;
332
18a95521 333 if (pmd_large(*pmd_k))
f4eafd8b
TK
334 return 0;
335
f2f13a85
IM
336 pte_k = pte_offset_kernel(pmd_k, address);
337 if (!pte_present(*pte_k))
338 return -1;
339
340 return 0;
341}
9326638c 342NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85
IM
343
344/*
345 * Did it hit the DOS screen memory VA from vm86 mode?
346 */
347static inline void
348check_v8086_mode(struct pt_regs *regs, unsigned long address,
349 struct task_struct *tsk)
350{
9fda6a06 351#ifdef CONFIG_VM86
f2f13a85
IM
352 unsigned long bit;
353
9fda6a06 354 if (!v8086_mode(regs) || !tsk->thread.vm86)
f2f13a85
IM
355 return;
356
357 bit = (address - 0xA0000) >> PAGE_SHIFT;
358 if (bit < 32)
9fda6a06
BG
359 tsk->thread.vm86->screen_bitmap |= 1 << bit;
360#endif
33cb5243 361}
1da177e4 362
087975b0 363static bool low_pfn(unsigned long pfn)
1da177e4 364{
087975b0
AM
365 return pfn < max_low_pfn;
366}
1156e098 367
087975b0
AM
368static void dump_pagetable(unsigned long address)
369{
6c690ee1 370 pgd_t *base = __va(read_cr3_pa());
087975b0 371 pgd_t *pgd = &base[pgd_index(address)];
e0c4f675
KS
372 p4d_t *p4d;
373 pud_t *pud;
087975b0
AM
374 pmd_t *pmd;
375 pte_t *pte;
2d4a7167 376
1156e098 377#ifdef CONFIG_X86_PAE
39e48d9b 378 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
087975b0
AM
379 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
380 goto out;
39e48d9b
JB
381#define pr_pde pr_cont
382#else
383#define pr_pde pr_info
1156e098 384#endif
e0c4f675
KS
385 p4d = p4d_offset(pgd, address);
386 pud = pud_offset(p4d, address);
387 pmd = pmd_offset(pud, address);
39e48d9b
JB
388 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
389#undef pr_pde
1156e098
HH
390
391 /*
392 * We must not directly access the pte in the highpte
393 * case if the page table is located in highmem.
394 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 395 * it's allocated already:
1156e098 396 */
087975b0
AM
397 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
398 goto out;
1156e098 399
087975b0 400 pte = pte_offset_kernel(pmd, address);
39e48d9b 401 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
087975b0 402out:
39e48d9b 403 pr_cont("\n");
f2f13a85
IM
404}
405
406#else /* CONFIG_X86_64: */
407
408void vmalloc_sync_all(void)
409{
5372e155 410 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
f2f13a85
IM
411}
412
413/*
414 * 64-bit:
415 *
416 * Handle a fault on the vmalloc area
f2f13a85 417 */
9326638c 418static noinline int vmalloc_fault(unsigned long address)
f2f13a85 419{
565977a3
TK
420 pgd_t *pgd, *pgd_k;
421 p4d_t *p4d, *p4d_k;
422 pud_t *pud;
423 pmd_t *pmd;
424 pte_t *pte;
f2f13a85
IM
425
426 /* Make sure we are in vmalloc area: */
427 if (!(address >= VMALLOC_START && address < VMALLOC_END))
428 return -1;
429
ebc8827f
FW
430 WARN_ON_ONCE(in_nmi());
431
f2f13a85
IM
432 /*
433 * Copy kernel mappings over when needed. This can also
434 * happen within a race in page table update. In the later
435 * case just flush:
436 */
6c690ee1 437 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
565977a3
TK
438 pgd_k = pgd_offset_k(address);
439 if (pgd_none(*pgd_k))
f2f13a85
IM
440 return -1;
441
ed7588d5 442 if (pgtable_l5_enabled()) {
36b3a772 443 if (pgd_none(*pgd)) {
565977a3 444 set_pgd(pgd, *pgd_k);
36b3a772
AL
445 arch_flush_lazy_mmu_mode();
446 } else {
565977a3 447 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
36b3a772 448 }
1160c277 449 }
f2f13a85 450
b50858ce
KS
451 /* With 4-level paging, copying happens on the p4d level. */
452 p4d = p4d_offset(pgd, address);
565977a3
TK
453 p4d_k = p4d_offset(pgd_k, address);
454 if (p4d_none(*p4d_k))
b50858ce
KS
455 return -1;
456
ed7588d5 457 if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
565977a3 458 set_p4d(p4d, *p4d_k);
b50858ce
KS
459 arch_flush_lazy_mmu_mode();
460 } else {
565977a3 461 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
b50858ce
KS
462 }
463
36b3a772 464 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
f2f13a85 465
b50858ce 466 pud = pud_offset(p4d, address);
565977a3 467 if (pud_none(*pud))
f2f13a85
IM
468 return -1;
469
18a95521 470 if (pud_large(*pud))
f4eafd8b
TK
471 return 0;
472
f2f13a85 473 pmd = pmd_offset(pud, address);
565977a3 474 if (pmd_none(*pmd))
f2f13a85
IM
475 return -1;
476
18a95521 477 if (pmd_large(*pmd))
f4eafd8b
TK
478 return 0;
479
f2f13a85 480 pte = pte_offset_kernel(pmd, address);
565977a3
TK
481 if (!pte_present(*pte))
482 return -1;
f2f13a85
IM
483
484 return 0;
485}
9326638c 486NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85 487
e05139f2 488#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 489static const char errata93_warning[] =
ad361c98
JP
490KERN_ERR
491"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
492"******* Working around it, but it may cause SEGVs or burn power.\n"
493"******* Please consider a BIOS update.\n"
494"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 495#endif
f2f13a85
IM
496
497/*
498 * No vm86 mode in 64-bit mode:
499 */
500static inline void
501check_v8086_mode(struct pt_regs *regs, unsigned long address,
502 struct task_struct *tsk)
503{
504}
505
506static int bad_address(void *p)
507{
508 unsigned long dummy;
509
510 return probe_kernel_address((unsigned long *)p, dummy);
511}
512
513static void dump_pagetable(unsigned long address)
514{
6c690ee1 515 pgd_t *base = __va(read_cr3_pa());
087975b0 516 pgd_t *pgd = base + pgd_index(address);
e0c4f675 517 p4d_t *p4d;
1da177e4
LT
518 pud_t *pud;
519 pmd_t *pmd;
520 pte_t *pte;
521
2d4a7167
IM
522 if (bad_address(pgd))
523 goto bad;
524
39e48d9b 525 pr_info("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
526
527 if (!pgd_present(*pgd))
528 goto out;
1da177e4 529
e0c4f675
KS
530 p4d = p4d_offset(pgd, address);
531 if (bad_address(p4d))
532 goto bad;
533
39e48d9b 534 pr_cont("P4D %lx ", p4d_val(*p4d));
e0c4f675
KS
535 if (!p4d_present(*p4d) || p4d_large(*p4d))
536 goto out;
537
538 pud = pud_offset(p4d, address);
2d4a7167
IM
539 if (bad_address(pud))
540 goto bad;
541
39e48d9b 542 pr_cont("PUD %lx ", pud_val(*pud));
b5360222 543 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 544 goto out;
1da177e4
LT
545
546 pmd = pmd_offset(pud, address);
2d4a7167
IM
547 if (bad_address(pmd))
548 goto bad;
549
39e48d9b 550 pr_cont("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
551 if (!pmd_present(*pmd) || pmd_large(*pmd))
552 goto out;
1da177e4
LT
553
554 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
555 if (bad_address(pte))
556 goto bad;
557
39e48d9b 558 pr_cont("PTE %lx", pte_val(*pte));
2d4a7167 559out:
39e48d9b 560 pr_cont("\n");
1da177e4
LT
561 return;
562bad:
39e48d9b 563 pr_info("BAD\n");
8c938f9f
IM
564}
565
f2f13a85 566#endif /* CONFIG_X86_64 */
1da177e4 567
2d4a7167
IM
568/*
569 * Workaround for K8 erratum #93 & buggy BIOS.
570 *
571 * BIOS SMM functions are required to use a specific workaround
572 * to avoid corruption of the 64bit RIP register on C stepping K8.
573 *
574 * A lot of BIOS that didn't get tested properly miss this.
575 *
576 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
577 * Try to work around it here.
578 *
579 * Note we only handle faults in kernel here.
580 * Does nothing on 32-bit.
fdfe8aa8 581 */
33cb5243 582static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 583{
e05139f2
JB
584#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
585 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
586 || boot_cpu_data.x86 != 0xf)
587 return 0;
588
65ea5b03 589 if (address != regs->ip)
1da177e4 590 return 0;
2d4a7167 591
33cb5243 592 if ((address >> 32) != 0)
1da177e4 593 return 0;
2d4a7167 594
1da177e4 595 address |= 0xffffffffUL << 32;
33cb5243
HH
596 if ((address >= (u64)_stext && address <= (u64)_etext) ||
597 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 598 printk_once(errata93_warning);
65ea5b03 599 regs->ip = address;
1da177e4
LT
600 return 1;
601 }
fdfe8aa8 602#endif
1da177e4 603 return 0;
33cb5243 604}
1da177e4 605
35f3266f 606/*
2d4a7167
IM
607 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
608 * to illegal addresses >4GB.
609 *
610 * We catch this in the page fault handler because these addresses
611 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
612 * segment in LDT is compatibility mode.
613 */
614static int is_errata100(struct pt_regs *regs, unsigned long address)
615{
616#ifdef CONFIG_X86_64
2d4a7167 617 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
618 return 1;
619#endif
620 return 0;
621}
622
29caf2f9
HH
623static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
624{
625#ifdef CONFIG_X86_F00F_BUG
626 unsigned long nr;
2d4a7167 627
29caf2f9 628 /*
2d4a7167 629 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9 630 */
e2604b49 631 if (boot_cpu_has_bug(X86_BUG_F00F)) {
29caf2f9
HH
632 nr = (address - idt_descr.address) >> 3;
633
634 if (nr == 6) {
635 do_invalid_op(regs, 0);
636 return 1;
637 }
638 }
639#endif
640 return 0;
641}
642
2d4a7167
IM
643static void
644show_fault_oops(struct pt_regs *regs, unsigned long error_code,
645 unsigned long address)
b3279c7f 646{
1156e098
HH
647 if (!oops_may_print())
648 return;
649
1067f030 650 if (error_code & X86_PF_INSTR) {
93809be8 651 unsigned int level;
426e34cc
MF
652 pgd_t *pgd;
653 pte_t *pte;
2d4a7167 654
6c690ee1 655 pgd = __va(read_cr3_pa());
426e34cc
MF
656 pgd += pgd_index(address);
657
658 pte = lookup_address_in_pgd(pgd, address, &level);
1156e098 659
8f766149 660 if (pte && pte_present(*pte) && !pte_exec(*pte))
d79d0d8a
DV
661 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
662 from_kuid(&init_user_ns, current_uid()));
eff50c34
JK
663 if (pte && pte_present(*pte) && pte_exec(*pte) &&
664 (pgd_flags(*pgd) & _PAGE_USER) &&
1e02ce4c 665 (__read_cr4() & X86_CR4_SMEP))
d79d0d8a
DV
666 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
667 from_kuid(&init_user_ns, current_uid()));
1156e098 668 }
1156e098 669
4188f063
DV
670 pr_alert("BUG: unable to handle kernel %s at %px\n",
671 address < PAGE_SIZE ? "NULL pointer dereference" : "paging request",
672 (void *)address);
2d4a7167 673
b3279c7f
HH
674 dump_pagetable(address);
675}
676
2d4a7167
IM
677static noinline void
678pgtable_bad(struct pt_regs *regs, unsigned long error_code,
679 unsigned long address)
1da177e4 680{
2d4a7167
IM
681 struct task_struct *tsk;
682 unsigned long flags;
683 int sig;
684
685 flags = oops_begin();
686 tsk = current;
687 sig = SIGKILL;
1209140c 688
1da177e4 689 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 690 tsk->comm, address);
1da177e4 691 dump_pagetable(address);
2d4a7167
IM
692
693 tsk->thread.cr2 = address;
51e7dc70 694 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167
IM
695 tsk->thread.error_code = error_code;
696
22f5991c 697 if (__die("Bad pagetable", regs, error_code))
874d93d1 698 sig = 0;
2d4a7167 699
874d93d1 700 oops_end(flags, regs, sig);
1da177e4
LT
701}
702
2d4a7167
IM
703static noinline void
704no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 705 unsigned long address, int signal, int si_code)
92181f19
NP
706{
707 struct task_struct *tsk = current;
92181f19
NP
708 unsigned long flags;
709 int sig;
92181f19 710
2d4a7167 711 /* Are we prepared to handle this kernel fault? */
548acf19 712 if (fixup_exception(regs, X86_TRAP_PF)) {
c026b359
PZ
713 /*
714 * Any interrupt that takes a fault gets the fixup. This makes
715 * the below recursive fault logic only apply to a faults from
716 * task context.
717 */
718 if (in_interrupt())
719 return;
720
721 /*
722 * Per the above we're !in_interrupt(), aka. task context.
723 *
724 * In this case we need to make sure we're not recursively
725 * faulting through the emulate_vsyscall() logic.
726 */
2a53ccbc 727 if (current->thread.sig_on_uaccess_err && signal) {
51e7dc70 728 tsk->thread.trap_nr = X86_TRAP_PF;
1067f030 729 tsk->thread.error_code = error_code | X86_PF_USER;
4fc34901
AL
730 tsk->thread.cr2 = address;
731
732 /* XXX: hwpoison faults will set the wrong code. */
7b2d0dba 733 force_sig_info_fault(signal, si_code, address,
a3c4fb7c 734 tsk, NULL, 0);
4fc34901 735 }
c026b359
PZ
736
737 /*
738 * Barring that, we can do the fixup and be happy.
739 */
92181f19 740 return;
4fc34901 741 }
92181f19 742
6271cfdf
AL
743#ifdef CONFIG_VMAP_STACK
744 /*
745 * Stack overflow? During boot, we can fault near the initial
746 * stack in the direct map, but that's not an overflow -- check
747 * that we're in vmalloc space to avoid this.
748 */
749 if (is_vmalloc_addr((void *)address) &&
750 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
751 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
6271cfdf
AL
752 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
753 /*
754 * We're likely to be running with very little stack space
755 * left. It's plausible that we'd hit this condition but
756 * double-fault even before we get this far, in which case
757 * we're fine: the double-fault handler will deal with it.
758 *
759 * We don't want to make it all the way into the oops code
760 * and then double-fault, though, because we're likely to
761 * break the console driver and lose most of the stack dump.
762 */
763 asm volatile ("movq %[stack], %%rsp\n\t"
764 "call handle_stack_overflow\n\t"
765 "1: jmp 1b"
f5caf621 766 : ASM_CALL_CONSTRAINT
6271cfdf
AL
767 : "D" ("kernel stack overflow (page fault)"),
768 "S" (regs), "d" (address),
769 [stack] "rm" (stack));
770 unreachable();
771 }
772#endif
773
92181f19 774 /*
2d4a7167
IM
775 * 32-bit:
776 *
777 * Valid to do another page fault here, because if this fault
778 * had been triggered by is_prefetch fixup_exception would have
779 * handled it.
780 *
781 * 64-bit:
92181f19 782 *
2d4a7167 783 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
784 */
785 if (is_prefetch(regs, error_code, address))
786 return;
787
788 if (is_errata93(regs, address))
789 return;
790
791 /*
792 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 793 * terminate things with extreme prejudice:
92181f19 794 */
92181f19 795 flags = oops_begin();
92181f19
NP
796
797 show_fault_oops(regs, error_code, address);
798
a70857e4 799 if (task_stack_end_corrupted(tsk))
b0f4c4b3 800 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 801
1cc99544 802 tsk->thread.cr2 = address;
51e7dc70 803 tsk->thread.trap_nr = X86_TRAP_PF;
1cc99544 804 tsk->thread.error_code = error_code;
92181f19 805
92181f19
NP
806 sig = SIGKILL;
807 if (__die("Oops", regs, error_code))
808 sig = 0;
2d4a7167 809
92181f19 810 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 811 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 812
92181f19 813 oops_end(flags, regs, sig);
92181f19
NP
814}
815
2d4a7167
IM
816/*
817 * Print out info about fatal segfaults, if the show_unhandled_signals
818 * sysctl is set:
819 */
820static inline void
821show_signal_msg(struct pt_regs *regs, unsigned long error_code,
822 unsigned long address, struct task_struct *tsk)
823{
ba54d856
BP
824 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
825
2d4a7167
IM
826 if (!unhandled_signal(tsk, SIGSEGV))
827 return;
828
829 if (!printk_ratelimit())
830 return;
831
10a7e9d8 832 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
ba54d856 833 loglvl, tsk->comm, task_pid_nr(tsk), address,
2d4a7167
IM
834 (void *)regs->ip, (void *)regs->sp, error_code);
835
836 print_vma_addr(KERN_CONT " in ", regs->ip);
837
838 printk(KERN_CONT "\n");
ba54d856 839
342db04a 840 show_opcodes(regs, loglvl);
2d4a7167
IM
841}
842
843static void
844__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
a3c4fb7c 845 unsigned long address, u32 *pkey, int si_code)
92181f19
NP
846{
847 struct task_struct *tsk = current;
848
849 /* User mode accesses just cause a SIGSEGV */
1067f030 850 if (error_code & X86_PF_USER) {
92181f19 851 /*
2d4a7167 852 * It's possible to have interrupts off here:
92181f19
NP
853 */
854 local_irq_enable();
855
856 /*
857 * Valid to do another page fault here because this one came
2d4a7167 858 * from user space:
92181f19
NP
859 */
860 if (is_prefetch(regs, error_code, address))
861 return;
862
863 if (is_errata100(regs, address))
864 return;
865
3ae36655
AL
866#ifdef CONFIG_X86_64
867 /*
868 * Instruction fetch faults in the vsyscall page might need
869 * emulation.
870 */
1067f030 871 if (unlikely((error_code & X86_PF_INSTR) &&
f40c3300 872 ((address & ~0xfff) == VSYSCALL_ADDR))) {
3ae36655
AL
873 if (emulate_vsyscall(regs, address))
874 return;
875 }
876#endif
dc4fac84
AL
877
878 /*
879 * To avoid leaking information about the kernel page table
880 * layout, pretend that user-mode accesses to kernel addresses
881 * are always protection faults.
882 */
883 if (address >= TASK_SIZE_MAX)
1067f030 884 error_code |= X86_PF_PROT;
3ae36655 885
e575a86f 886 if (likely(show_unhandled_signals))
2d4a7167
IM
887 show_signal_msg(regs, error_code, address, tsk);
888
2d4a7167 889 tsk->thread.cr2 = address;
e575a86f 890 tsk->thread.error_code = error_code;
51e7dc70 891 tsk->thread.trap_nr = X86_TRAP_PF;
92181f19 892
a3c4fb7c 893 force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
2d4a7167 894
92181f19
NP
895 return;
896 }
897
898 if (is_f00f_bug(regs, address))
899 return;
900
4fc34901 901 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
902}
903
2d4a7167
IM
904static noinline void
905bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
a3c4fb7c 906 unsigned long address, u32 *pkey)
92181f19 907{
a3c4fb7c 908 __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
92181f19
NP
909}
910
2d4a7167
IM
911static void
912__bad_area(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 913 unsigned long address, struct vm_area_struct *vma, int si_code)
92181f19
NP
914{
915 struct mm_struct *mm = current->mm;
a3c4fb7c
LD
916 u32 pkey;
917
918 if (vma)
919 pkey = vma_pkey(vma);
92181f19
NP
920
921 /*
922 * Something tried to access memory that isn't in our memory map..
923 * Fix it, but check if it's kernel or user first..
924 */
925 up_read(&mm->mmap_sem);
926
a3c4fb7c
LD
927 __bad_area_nosemaphore(regs, error_code, address,
928 (vma) ? &pkey : NULL, si_code);
92181f19
NP
929}
930
2d4a7167
IM
931static noinline void
932bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19 933{
7b2d0dba 934 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
92181f19
NP
935}
936
33a709b2
DH
937static inline bool bad_area_access_from_pkeys(unsigned long error_code,
938 struct vm_area_struct *vma)
939{
07f146f5
DH
940 /* This code is always called on the current mm */
941 bool foreign = false;
942
33a709b2
DH
943 if (!boot_cpu_has(X86_FEATURE_OSPKE))
944 return false;
1067f030 945 if (error_code & X86_PF_PK)
33a709b2 946 return true;
07f146f5 947 /* this checks permission keys on the VMA: */
1067f030
RN
948 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
949 (error_code & X86_PF_INSTR), foreign))
07f146f5 950 return true;
33a709b2 951 return false;
92181f19
NP
952}
953
2d4a7167
IM
954static noinline void
955bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 956 unsigned long address, struct vm_area_struct *vma)
92181f19 957{
019132ff
DH
958 /*
959 * This OSPKE check is not strictly necessary at runtime.
960 * But, doing it this way allows compiler optimizations
961 * if pkeys are compiled out.
962 */
33a709b2 963 if (bad_area_access_from_pkeys(error_code, vma))
019132ff
DH
964 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
965 else
966 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
92181f19
NP
967}
968
2d4a7167 969static void
a6e04aa9 970do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
a3c4fb7c 971 u32 *pkey, unsigned int fault)
92181f19
NP
972{
973 struct task_struct *tsk = current;
a6e04aa9 974 int code = BUS_ADRERR;
92181f19 975
2d4a7167 976 /* Kernel mode? Handle exceptions or die: */
1067f030 977 if (!(error_code & X86_PF_USER)) {
4fc34901 978 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
979 return;
980 }
2d4a7167 981
cd1b68f0 982 /* User-space => ok to do another page fault: */
92181f19
NP
983 if (is_prefetch(regs, error_code, address))
984 return;
2d4a7167
IM
985
986 tsk->thread.cr2 = address;
987 tsk->thread.error_code = error_code;
51e7dc70 988 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167 989
a6e04aa9 990#ifdef CONFIG_MEMORY_FAILURE
f672b49b 991 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
992 printk(KERN_ERR
993 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
994 tsk->comm, tsk->pid, address);
995 code = BUS_MCEERR_AR;
996 }
997#endif
a3c4fb7c 998 force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
92181f19
NP
999}
1000
3a13c4d7 1001static noinline void
2d4a7167 1002mm_fault_error(struct pt_regs *regs, unsigned long error_code,
50a7ca3c 1003 unsigned long address, u32 *pkey, vm_fault_t fault)
92181f19 1004{
1067f030 1005 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
3a13c4d7
JW
1006 no_context(regs, error_code, address, 0, 0);
1007 return;
b80ef10e 1008 }
b80ef10e 1009
2d4a7167 1010 if (fault & VM_FAULT_OOM) {
f8626854 1011 /* Kernel mode? Handle exceptions or die: */
1067f030 1012 if (!(error_code & X86_PF_USER)) {
4fc34901
AL
1013 no_context(regs, error_code, address,
1014 SIGSEGV, SEGV_MAPERR);
3a13c4d7 1015 return;
f8626854
AV
1016 }
1017
c2d23f91
DR
1018 /*
1019 * We ran out of memory, call the OOM killer, and return the
1020 * userspace (which will retry the fault, or kill us if we got
1021 * oom-killed):
1022 */
1023 pagefault_out_of_memory();
2d4a7167 1024 } else {
f672b49b
AK
1025 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1026 VM_FAULT_HWPOISON_LARGE))
a3c4fb7c 1027 do_sigbus(regs, error_code, address, pkey, fault);
33692f27 1028 else if (fault & VM_FAULT_SIGSEGV)
a3c4fb7c 1029 bad_area_nosemaphore(regs, error_code, address, pkey);
2d4a7167
IM
1030 else
1031 BUG();
1032 }
92181f19
NP
1033}
1034
d8b57bb7
TG
1035static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1036{
1067f030 1037 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
d8b57bb7 1038 return 0;
2d4a7167 1039
1067f030 1040 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
d8b57bb7 1041 return 0;
b3ecd515
DH
1042 /*
1043 * Note: We do not do lazy flushing on protection key
1067f030 1044 * changes, so no spurious fault will ever set X86_PF_PK.
b3ecd515 1045 */
1067f030 1046 if ((error_code & X86_PF_PK))
b3ecd515 1047 return 1;
d8b57bb7
TG
1048
1049 return 1;
1050}
1051
5b727a3b 1052/*
2d4a7167
IM
1053 * Handle a spurious fault caused by a stale TLB entry.
1054 *
1055 * This allows us to lazily refresh the TLB when increasing the
1056 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1057 * eagerly is very expensive since that implies doing a full
1058 * cross-processor TLB flush, even if no stale TLB entries exist
1059 * on other processors.
1060 *
31668511
DV
1061 * Spurious faults may only occur if the TLB contains an entry with
1062 * fewer permission than the page table entry. Non-present (P = 0)
1063 * and reserved bit (R = 1) faults are never spurious.
1064 *
5b727a3b
JF
1065 * There are no security implications to leaving a stale TLB when
1066 * increasing the permissions on a page.
31668511
DV
1067 *
1068 * Returns non-zero if a spurious fault was handled, zero otherwise.
1069 *
1070 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1071 * (Optional Invalidation).
5b727a3b 1072 */
9326638c 1073static noinline int
2d4a7167 1074spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
1075{
1076 pgd_t *pgd;
e0c4f675 1077 p4d_t *p4d;
5b727a3b
JF
1078 pud_t *pud;
1079 pmd_t *pmd;
1080 pte_t *pte;
3c3e5694 1081 int ret;
5b727a3b 1082
31668511
DV
1083 /*
1084 * Only writes to RO or instruction fetches from NX may cause
1085 * spurious faults.
1086 *
1087 * These could be from user or supervisor accesses but the TLB
1088 * is only lazily flushed after a kernel mapping protection
1089 * change, so user accesses are not expected to cause spurious
1090 * faults.
1091 */
1067f030
RN
1092 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1093 error_code != (X86_PF_INSTR | X86_PF_PROT))
5b727a3b
JF
1094 return 0;
1095
1096 pgd = init_mm.pgd + pgd_index(address);
1097 if (!pgd_present(*pgd))
1098 return 0;
1099
e0c4f675
KS
1100 p4d = p4d_offset(pgd, address);
1101 if (!p4d_present(*p4d))
1102 return 0;
1103
1104 if (p4d_large(*p4d))
1105 return spurious_fault_check(error_code, (pte_t *) p4d);
1106
1107 pud = pud_offset(p4d, address);
5b727a3b
JF
1108 if (!pud_present(*pud))
1109 return 0;
1110
d8b57bb7
TG
1111 if (pud_large(*pud))
1112 return spurious_fault_check(error_code, (pte_t *) pud);
1113
5b727a3b
JF
1114 pmd = pmd_offset(pud, address);
1115 if (!pmd_present(*pmd))
1116 return 0;
1117
d8b57bb7
TG
1118 if (pmd_large(*pmd))
1119 return spurious_fault_check(error_code, (pte_t *) pmd);
1120
5b727a3b 1121 pte = pte_offset_kernel(pmd, address);
954f8571 1122 if (!pte_present(*pte))
5b727a3b
JF
1123 return 0;
1124
3c3e5694
SR
1125 ret = spurious_fault_check(error_code, pte);
1126 if (!ret)
1127 return 0;
1128
1129 /*
2d4a7167
IM
1130 * Make sure we have permissions in PMD.
1131 * If not, then there's a bug in the page tables:
3c3e5694
SR
1132 */
1133 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1134 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 1135
3c3e5694 1136 return ret;
5b727a3b 1137}
9326638c 1138NOKPROBE_SYMBOL(spurious_fault);
5b727a3b 1139
abd4f750 1140int show_unhandled_signals = 1;
1da177e4 1141
2d4a7167 1142static inline int
68da336a 1143access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 1144{
07f146f5
DH
1145 /* This is only called for the current mm, so: */
1146 bool foreign = false;
e8c6226d
DH
1147
1148 /*
1149 * Read or write was blocked by protection keys. This is
1150 * always an unconditional error and can never result in
1151 * a follow-up action to resolve the fault, like a COW.
1152 */
1067f030 1153 if (error_code & X86_PF_PK)
e8c6226d
DH
1154 return 1;
1155
07f146f5
DH
1156 /*
1157 * Make sure to check the VMA so that we do not perform
1067f030 1158 * faults just to hit a X86_PF_PK as soon as we fill in a
07f146f5
DH
1159 * page.
1160 */
1067f030
RN
1161 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1162 (error_code & X86_PF_INSTR), foreign))
07f146f5 1163 return 1;
33a709b2 1164
1067f030 1165 if (error_code & X86_PF_WRITE) {
2d4a7167 1166 /* write, present and write, not present: */
92181f19
NP
1167 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1168 return 1;
2d4a7167 1169 return 0;
92181f19
NP
1170 }
1171
2d4a7167 1172 /* read, present: */
1067f030 1173 if (unlikely(error_code & X86_PF_PROT))
2d4a7167
IM
1174 return 1;
1175
1176 /* read, not present: */
1177 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1178 return 1;
1179
92181f19
NP
1180 return 0;
1181}
1182
0973a06c
HS
1183static int fault_in_kernel_space(unsigned long address)
1184{
d9517346 1185 return address >= TASK_SIZE_MAX;
0973a06c
HS
1186}
1187
40d3cd66
PA
1188static inline bool smap_violation(int error_code, struct pt_regs *regs)
1189{
4640c7ee
PA
1190 if (!IS_ENABLED(CONFIG_X86_SMAP))
1191 return false;
1192
1193 if (!static_cpu_has(X86_FEATURE_SMAP))
1194 return false;
1195
1067f030 1196 if (error_code & X86_PF_USER)
40d3cd66
PA
1197 return false;
1198
f39b6f0e 1199 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
40d3cd66
PA
1200 return false;
1201
1202 return true;
1203}
1204
1da177e4
LT
1205/*
1206 * This routine handles page faults. It determines the address,
1207 * and the problem, and then passes it off to one of the appropriate
1208 * routines.
1da177e4 1209 */
9326638c 1210static noinline void
0ac09f9f
JO
1211__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1212 unsigned long address)
1da177e4 1213{
2d4a7167 1214 struct vm_area_struct *vma;
1da177e4
LT
1215 struct task_struct *tsk;
1216 struct mm_struct *mm;
50a7ca3c 1217 vm_fault_t fault, major = 0;
759496ba 1218 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
a3c4fb7c 1219 u32 pkey;
1da177e4 1220
a9ba9a3b
AV
1221 tsk = current;
1222 mm = tsk->mm;
2d4a7167 1223
5dfaf90f 1224 prefetchw(&mm->mmap_sem);
f8561296 1225
0fd0e3da 1226 if (unlikely(kmmio_fault(regs, address)))
86069782 1227 return;
1da177e4
LT
1228
1229 /*
1230 * We fault-in kernel-space virtual memory on-demand. The
1231 * 'reference' page table is init_mm.pgd.
1232 *
1233 * NOTE! We MUST NOT take any locks for this case. We may
1234 * be in an interrupt or a critical region, and should
1235 * only copy the information from the master page table,
1236 * nothing more.
1237 *
1238 * This verifies that the fault happens in kernel space
1239 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1240 * protection error (error_code & 9) == 0.
1da177e4 1241 */
0973a06c 1242 if (unlikely(fault_in_kernel_space(address))) {
1067f030 1243 if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
f8561296
VN
1244 if (vmalloc_fault(address) >= 0)
1245 return;
f8561296 1246 }
5b727a3b 1247
2d4a7167 1248 /* Can handle a stale RO->RW TLB: */
92181f19 1249 if (spurious_fault(error_code, address))
5b727a3b
JF
1250 return;
1251
2d4a7167 1252 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1253 if (kprobes_fault(regs))
9be260a6 1254 return;
f8c2ee22
HH
1255 /*
1256 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1257 * fault we could otherwise deadlock:
f8c2ee22 1258 */
7b2d0dba 1259 bad_area_nosemaphore(regs, error_code, address, NULL);
2d4a7167 1260
92181f19 1261 return;
f8c2ee22
HH
1262 }
1263
2d4a7167 1264 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1265 if (unlikely(kprobes_fault(regs)))
9be260a6 1266 return;
8c914cb7 1267
1067f030 1268 if (unlikely(error_code & X86_PF_RSVD))
92181f19 1269 pgtable_bad(regs, error_code, address);
1da177e4 1270
4640c7ee 1271 if (unlikely(smap_violation(error_code, regs))) {
7b2d0dba 1272 bad_area_nosemaphore(regs, error_code, address, NULL);
4640c7ee 1273 return;
40d3cd66
PA
1274 }
1275
1da177e4 1276 /*
2d4a7167 1277 * If we're in an interrupt, have no user context or are running
70ffdb93 1278 * in a region with pagefaults disabled then we must not take the fault
1da177e4 1279 */
70ffdb93 1280 if (unlikely(faulthandler_disabled() || !mm)) {
7b2d0dba 1281 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1282 return;
1283 }
1da177e4 1284
e00b12e6
PZ
1285 /*
1286 * It's safe to allow irq's after cr2 has been saved and the
1287 * vmalloc fault has been handled.
1288 *
1289 * User-mode registers count as a user access even for any
1290 * potential system fault or CPU buglet:
1291 */
f39b6f0e 1292 if (user_mode(regs)) {
e00b12e6 1293 local_irq_enable();
1067f030 1294 error_code |= X86_PF_USER;
e00b12e6
PZ
1295 flags |= FAULT_FLAG_USER;
1296 } else {
1297 if (regs->flags & X86_EFLAGS_IF)
1298 local_irq_enable();
1299 }
1300
1301 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1302
1067f030 1303 if (error_code & X86_PF_WRITE)
759496ba 1304 flags |= FAULT_FLAG_WRITE;
1067f030 1305 if (error_code & X86_PF_INSTR)
d61172b4 1306 flags |= FAULT_FLAG_INSTRUCTION;
759496ba 1307
3a1dfe6e
IM
1308 /*
1309 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1310 * addresses in user space. All other faults represent errors in
1311 * the kernel and should generate an OOPS. Unfortunately, in the
1312 * case of an erroneous fault occurring in a code path which already
1313 * holds mmap_sem we will deadlock attempting to validate the fault
1314 * against the address space. Luckily the kernel only validly
1315 * references user space from well defined areas of code, which are
1316 * listed in the exceptions table.
1da177e4
LT
1317 *
1318 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1319 * the source reference check when there is a possibility of a
1320 * deadlock. Attempt to lock the address space, if we cannot we then
1321 * validate the source. If this is invalid we can skip the address
1322 * space check, thus avoiding the deadlock:
1da177e4 1323 */
92181f19 1324 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1067f030 1325 if (!(error_code & X86_PF_USER) &&
92181f19 1326 !search_exception_tables(regs->ip)) {
7b2d0dba 1327 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1328 return;
1329 }
d065bd81 1330retry:
1da177e4 1331 down_read(&mm->mmap_sem);
01006074
PZ
1332 } else {
1333 /*
2d4a7167
IM
1334 * The above down_read_trylock() might have succeeded in
1335 * which case we'll have missed the might_sleep() from
1336 * down_read():
01006074
PZ
1337 */
1338 might_sleep();
1da177e4
LT
1339 }
1340
1341 vma = find_vma(mm, address);
92181f19
NP
1342 if (unlikely(!vma)) {
1343 bad_area(regs, error_code, address);
1344 return;
1345 }
1346 if (likely(vma->vm_start <= address))
1da177e4 1347 goto good_area;
92181f19
NP
1348 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1349 bad_area(regs, error_code, address);
1350 return;
1351 }
1067f030 1352 if (error_code & X86_PF_USER) {
6f4d368e
HH
1353 /*
1354 * Accessing the stack below %sp is always a bug.
1355 * The large cushion allows instructions like enter
2d4a7167 1356 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1357 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1358 */
92181f19
NP
1359 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1360 bad_area(regs, error_code, address);
1361 return;
1362 }
1da177e4 1363 }
92181f19
NP
1364 if (unlikely(expand_stack(vma, address))) {
1365 bad_area(regs, error_code, address);
1366 return;
1367 }
1368
1369 /*
1370 * Ok, we have a good vm_area for this memory access, so
1371 * we can handle it..
1372 */
1da177e4 1373good_area:
68da336a 1374 if (unlikely(access_error(error_code, vma))) {
7b2d0dba 1375 bad_area_access_error(regs, error_code, address, vma);
92181f19 1376 return;
1da177e4
LT
1377 }
1378
1379 /*
1380 * If for any reason at all we couldn't handle the fault,
1381 * make sure we exit gracefully rather than endlessly redo
9a95f3cf
PC
1382 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1383 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
cb0631fd
VB
1384 *
1385 * Note that handle_userfault() may also release and reacquire mmap_sem
1386 * (and not return with VM_FAULT_RETRY), when returning to userland to
1387 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1388 * (potentially after handling any pending signal during the return to
1389 * userland). The return to userland is identified whenever
1390 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1391 * Thus we have to be careful about not touching vma after handling the
1392 * fault, so we read the pkey beforehand.
1da177e4 1393 */
cb0631fd 1394 pkey = vma_pkey(vma);
dcddffd4 1395 fault = handle_mm_fault(vma, address, flags);
26178ec1 1396 major |= fault & VM_FAULT_MAJOR;
2d4a7167 1397
3a13c4d7 1398 /*
26178ec1
LT
1399 * If we need to retry the mmap_sem has already been released,
1400 * and if there is a fatal signal pending there is no guarantee
1401 * that we made any progress. Handle this case first.
3a13c4d7 1402 */
26178ec1
LT
1403 if (unlikely(fault & VM_FAULT_RETRY)) {
1404 /* Retry at most once */
1405 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1406 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1407 flags |= FAULT_FLAG_TRIED;
1408 if (!fatal_signal_pending(tsk))
1409 goto retry;
1410 }
1411
1412 /* User mode? Just return to handle the fatal exception */
cf3c0a15 1413 if (flags & FAULT_FLAG_USER)
26178ec1
LT
1414 return;
1415
1416 /* Not returning to user mode? Handle exceptions or die: */
1417 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
3a13c4d7 1418 return;
26178ec1 1419 }
3a13c4d7 1420
26178ec1 1421 up_read(&mm->mmap_sem);
3a13c4d7 1422 if (unlikely(fault & VM_FAULT_ERROR)) {
a3c4fb7c 1423 mm_fault_error(regs, error_code, address, &pkey, fault);
3a13c4d7 1424 return;
37b23e05
KM
1425 }
1426
d065bd81 1427 /*
26178ec1
LT
1428 * Major/minor page fault accounting. If any of the events
1429 * returned VM_FAULT_MAJOR, we account it as a major fault.
d065bd81 1430 */
26178ec1
LT
1431 if (major) {
1432 tsk->maj_flt++;
1433 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1434 } else {
1435 tsk->min_flt++;
1436 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
ac17dc8e 1437 }
d729ab35 1438
8c938f9f 1439 check_v8086_mode(regs, address, tsk);
1da177e4 1440}
9326638c 1441NOKPROBE_SYMBOL(__do_page_fault);
6ba3c97a 1442
9326638c
MH
1443static nokprobe_inline void
1444trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1445 unsigned long error_code)
d34603b0
SA
1446{
1447 if (user_mode(regs))
d4078e23 1448 trace_page_fault_user(address, regs, error_code);
d34603b0 1449 else
d4078e23 1450 trace_page_fault_kernel(address, regs, error_code);
d34603b0
SA
1451}
1452
11a7ffb0
TG
1453/*
1454 * We must have this function blacklisted from kprobes, tagged with notrace
1455 * and call read_cr2() before calling anything else. To avoid calling any
1456 * kind of tracing machinery before we've observed the CR2 value.
1457 *
1458 * exception_{enter,exit}() contains all sorts of tracepoints.
1459 */
9326638c 1460dotraplinkage void notrace
11a7ffb0 1461do_page_fault(struct pt_regs *regs, unsigned long error_code)
25c74b10 1462{
11a7ffb0 1463 unsigned long address = read_cr2(); /* Get the faulting address */
d4078e23 1464 enum ctx_state prev_state;
25c74b10
SA
1465
1466 prev_state = exception_enter();
80954747 1467 if (trace_pagefault_enabled())
11a7ffb0
TG
1468 trace_page_fault_entries(address, regs, error_code);
1469
0ac09f9f 1470 __do_page_fault(regs, error_code, address);
25c74b10
SA
1471 exception_exit(prev_state);
1472}
11a7ffb0 1473NOKPROBE_SYMBOL(do_page_fault);