]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/mm/fault.c
Merge tag 'perf-urgent-for-mingo-4.14-20170928' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473 6#include <linux/sched.h> /* test_thread_flag(), ... */
68db0cf1 7#include <linux/sched/task_stack.h> /* task_stack_*(), ... */
a2bcd473 8#include <linux/kdebug.h> /* oops_begin/end, ... */
4cdf8dbe 9#include <linux/extable.h> /* search_exception_tables */
a2bcd473 10#include <linux/bootmem.h> /* max_low_pfn */
9326638c 11#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
a2bcd473 12#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 13#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 14#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 15#include <linux/prefetch.h> /* prefetchw */
56dd9470 16#include <linux/context_tracking.h> /* exception_enter(), ... */
70ffdb93 17#include <linux/uaccess.h> /* faulthandler_disabled() */
2d4a7167 18
019132ff 19#include <asm/cpufeature.h> /* boot_cpu_has, ... */
a2bcd473
IM
20#include <asm/traps.h> /* dotraplinkage, ... */
21#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 22#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
f40c3300
AL
23#include <asm/fixmap.h> /* VSYSCALL_ADDR */
24#include <asm/vsyscall.h> /* emulate_vsyscall */
ba3e127e 25#include <asm/vm86.h> /* struct vm86 */
019132ff 26#include <asm/mmu_context.h> /* vma_pkey() */
1da177e4 27
d34603b0
SA
28#define CREATE_TRACE_POINTS
29#include <asm/trace/exceptions.h>
30
33cb5243 31/*
2d4a7167
IM
32 * Page fault error code bits:
33 *
34 * bit 0 == 0: no page found 1: protection fault
35 * bit 1 == 0: read access 1: write access
36 * bit 2 == 0: kernel-mode access 1: user-mode access
37 * bit 3 == 1: use of reserved bit detected
38 * bit 4 == 1: fault was an instruction fetch
b3ecd515 39 * bit 5 == 1: protection keys block access
33cb5243 40 */
2d4a7167
IM
41enum x86_pf_error_code {
42
43 PF_PROT = 1 << 0,
44 PF_WRITE = 1 << 1,
45 PF_USER = 1 << 2,
46 PF_RSVD = 1 << 3,
47 PF_INSTR = 1 << 4,
b3ecd515 48 PF_PK = 1 << 5,
2d4a7167 49};
66c58156 50
b814d41f 51/*
b319eed0
IM
52 * Returns 0 if mmiotrace is disabled, or if the fault is not
53 * handled by mmiotrace:
b814d41f 54 */
9326638c 55static nokprobe_inline int
62c9295f 56kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 57{
0fd0e3da
PP
58 if (unlikely(is_kmmio_active()))
59 if (kmmio_handler(regs, addr) == 1)
60 return -1;
0fd0e3da 61 return 0;
86069782
PP
62}
63
9326638c 64static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
1bd858a5 65{
74a0b576
CH
66 int ret = 0;
67
68 /* kprobe_running() needs smp_processor_id() */
f39b6f0e 69 if (kprobes_built_in() && !user_mode(regs)) {
74a0b576
CH
70 preempt_disable();
71 if (kprobe_running() && kprobe_fault_handler(regs, 14))
72 ret = 1;
73 preempt_enable();
74 }
1bd858a5 75
74a0b576 76 return ret;
33cb5243 77}
1bd858a5 78
1dc85be0 79/*
2d4a7167
IM
80 * Prefetch quirks:
81 *
82 * 32-bit mode:
83 *
84 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
85 * Check that here and ignore it.
1dc85be0 86 *
2d4a7167 87 * 64-bit mode:
1dc85be0 88 *
2d4a7167
IM
89 * Sometimes the CPU reports invalid exceptions on prefetch.
90 * Check that here and ignore it.
91 *
92 * Opcode checker based on code by Richard Brunner.
1dc85be0 93 */
107a0367
IM
94static inline int
95check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
96 unsigned char opcode, int *prefetch)
97{
98 unsigned char instr_hi = opcode & 0xf0;
99 unsigned char instr_lo = opcode & 0x0f;
100
101 switch (instr_hi) {
102 case 0x20:
103 case 0x30:
104 /*
105 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
106 * In X86_64 long mode, the CPU will signal invalid
107 * opcode if some of these prefixes are present so
108 * X86_64 will never get here anyway
109 */
110 return ((instr_lo & 7) == 0x6);
111#ifdef CONFIG_X86_64
112 case 0x40:
113 /*
114 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
115 * Need to figure out under what instruction mode the
116 * instruction was issued. Could check the LDT for lm,
117 * but for now it's good enough to assume that long
118 * mode only uses well known segments or kernel.
119 */
318f5a2a 120 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
121#endif
122 case 0x60:
123 /* 0x64 thru 0x67 are valid prefixes in all modes. */
124 return (instr_lo & 0xC) == 0x4;
125 case 0xF0:
126 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
127 return !instr_lo || (instr_lo>>1) == 1;
128 case 0x00:
129 /* Prefetch instruction is 0x0F0D or 0x0F18 */
130 if (probe_kernel_address(instr, opcode))
131 return 0;
132
133 *prefetch = (instr_lo == 0xF) &&
134 (opcode == 0x0D || opcode == 0x18);
135 return 0;
136 default:
137 return 0;
138 }
139}
140
2d4a7167
IM
141static int
142is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 143{
2d4a7167 144 unsigned char *max_instr;
ab2bf0c1 145 unsigned char *instr;
33cb5243 146 int prefetch = 0;
1da177e4 147
3085354d
IM
148 /*
149 * If it was a exec (instruction fetch) fault on NX page, then
150 * do not ignore the fault:
151 */
66c58156 152 if (error_code & PF_INSTR)
1da177e4 153 return 0;
1dc85be0 154
107a0367 155 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 156 max_instr = instr + 15;
1da177e4 157
d31bf07f 158 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
1da177e4
LT
159 return 0;
160
107a0367 161 while (instr < max_instr) {
2d4a7167 162 unsigned char opcode;
1da177e4 163
ab2bf0c1 164 if (probe_kernel_address(instr, opcode))
33cb5243 165 break;
1da177e4 166
1da177e4
LT
167 instr++;
168
107a0367 169 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 170 break;
1da177e4
LT
171 }
172 return prefetch;
173}
174
019132ff
DH
175/*
176 * A protection key fault means that the PKRU value did not allow
177 * access to some PTE. Userspace can figure out what PKRU was
178 * from the XSAVE state, and this function fills out a field in
179 * siginfo so userspace can discover which protection key was set
180 * on the PTE.
181 *
182 * If we get here, we know that the hardware signaled a PF_PK
183 * fault and that there was a VMA once we got in the fault
184 * handler. It does *not* guarantee that the VMA we find here
185 * was the one that we faulted on.
186 *
187 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
188 * 2. T1 : set PKRU to deny access to pkey=4, touches page
189 * 3. T1 : faults...
190 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
191 * 5. T1 : enters fault handler, takes mmap_sem, etc...
192 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
193 * faulted on a pte with its pkey=4.
194 */
195static void fill_sig_info_pkey(int si_code, siginfo_t *info,
196 struct vm_area_struct *vma)
197{
198 /* This is effectively an #ifdef */
199 if (!boot_cpu_has(X86_FEATURE_OSPKE))
200 return;
201
202 /* Fault not from Protection Keys: nothing to do */
203 if (si_code != SEGV_PKUERR)
204 return;
205 /*
206 * force_sig_info_fault() is called from a number of
207 * contexts, some of which have a VMA and some of which
208 * do not. The PF_PK handing happens after we have a
209 * valid VMA, so we should never reach this without a
210 * valid VMA.
211 */
212 if (!vma) {
213 WARN_ONCE(1, "PKU fault with no VMA passed in");
214 info->si_pkey = 0;
215 return;
216 }
217 /*
218 * si_pkey should be thought of as a strong hint, but not
219 * absolutely guranteed to be 100% accurate because of
220 * the race explained above.
221 */
222 info->si_pkey = vma_pkey(vma);
223}
224
2d4a7167
IM
225static void
226force_sig_info_fault(int si_signo, int si_code, unsigned long address,
7b2d0dba
DH
227 struct task_struct *tsk, struct vm_area_struct *vma,
228 int fault)
c4aba4a8 229{
f672b49b 230 unsigned lsb = 0;
c4aba4a8
HH
231 siginfo_t info;
232
2d4a7167
IM
233 info.si_signo = si_signo;
234 info.si_errno = 0;
235 info.si_code = si_code;
236 info.si_addr = (void __user *)address;
f672b49b
AK
237 if (fault & VM_FAULT_HWPOISON_LARGE)
238 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
239 if (fault & VM_FAULT_HWPOISON)
240 lsb = PAGE_SHIFT;
241 info.si_addr_lsb = lsb;
2d4a7167 242
019132ff
DH
243 fill_sig_info_pkey(si_code, &info, vma);
244
c4aba4a8
HH
245 force_sig_info(si_signo, &info, tsk);
246}
247
f2f13a85
IM
248DEFINE_SPINLOCK(pgd_lock);
249LIST_HEAD(pgd_list);
250
251#ifdef CONFIG_X86_32
252static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 253{
f2f13a85
IM
254 unsigned index = pgd_index(address);
255 pgd_t *pgd_k;
e0c4f675 256 p4d_t *p4d, *p4d_k;
f2f13a85
IM
257 pud_t *pud, *pud_k;
258 pmd_t *pmd, *pmd_k;
2d4a7167 259
f2f13a85
IM
260 pgd += index;
261 pgd_k = init_mm.pgd + index;
262
263 if (!pgd_present(*pgd_k))
264 return NULL;
265
266 /*
267 * set_pgd(pgd, *pgd_k); here would be useless on PAE
268 * and redundant with the set_pmd() on non-PAE. As would
e0c4f675 269 * set_p4d/set_pud.
f2f13a85 270 */
e0c4f675
KS
271 p4d = p4d_offset(pgd, address);
272 p4d_k = p4d_offset(pgd_k, address);
273 if (!p4d_present(*p4d_k))
274 return NULL;
275
276 pud = pud_offset(p4d, address);
277 pud_k = pud_offset(p4d_k, address);
f2f13a85
IM
278 if (!pud_present(*pud_k))
279 return NULL;
280
281 pmd = pmd_offset(pud, address);
282 pmd_k = pmd_offset(pud_k, address);
283 if (!pmd_present(*pmd_k))
284 return NULL;
285
b8bcfe99 286 if (!pmd_present(*pmd))
f2f13a85 287 set_pmd(pmd, *pmd_k);
b8bcfe99 288 else
f2f13a85 289 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
290
291 return pmd_k;
292}
293
294void vmalloc_sync_all(void)
295{
296 unsigned long address;
297
298 if (SHARED_KERNEL_PMD)
299 return;
300
301 for (address = VMALLOC_START & PMD_MASK;
dc4fac84 302 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
f2f13a85 303 address += PMD_SIZE) {
f2f13a85
IM
304 struct page *page;
305
a79e53d8 306 spin_lock(&pgd_lock);
f2f13a85 307 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 308 spinlock_t *pgt_lock;
f01f7c56 309 pmd_t *ret;
617d34d9 310
a79e53d8 311 /* the pgt_lock only for Xen */
617d34d9
JF
312 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
313
314 spin_lock(pgt_lock);
315 ret = vmalloc_sync_one(page_address(page), address);
316 spin_unlock(pgt_lock);
317
318 if (!ret)
f2f13a85
IM
319 break;
320 }
a79e53d8 321 spin_unlock(&pgd_lock);
f2f13a85
IM
322 }
323}
324
325/*
326 * 32-bit:
327 *
328 * Handle a fault on the vmalloc or module mapping area
329 */
9326638c 330static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
331{
332 unsigned long pgd_paddr;
333 pmd_t *pmd_k;
334 pte_t *pte_k;
335
336 /* Make sure we are in vmalloc area: */
337 if (!(address >= VMALLOC_START && address < VMALLOC_END))
338 return -1;
339
ebc8827f
FW
340 WARN_ON_ONCE(in_nmi());
341
f2f13a85
IM
342 /*
343 * Synchronize this task's top level page-table
344 * with the 'reference' page table.
345 *
346 * Do _not_ use "current" here. We might be inside
347 * an interrupt in the middle of a task switch..
348 */
6c690ee1 349 pgd_paddr = read_cr3_pa();
f2f13a85
IM
350 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
351 if (!pmd_k)
352 return -1;
353
f4eafd8b
TK
354 if (pmd_huge(*pmd_k))
355 return 0;
356
f2f13a85
IM
357 pte_k = pte_offset_kernel(pmd_k, address);
358 if (!pte_present(*pte_k))
359 return -1;
360
361 return 0;
362}
9326638c 363NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85
IM
364
365/*
366 * Did it hit the DOS screen memory VA from vm86 mode?
367 */
368static inline void
369check_v8086_mode(struct pt_regs *regs, unsigned long address,
370 struct task_struct *tsk)
371{
9fda6a06 372#ifdef CONFIG_VM86
f2f13a85
IM
373 unsigned long bit;
374
9fda6a06 375 if (!v8086_mode(regs) || !tsk->thread.vm86)
f2f13a85
IM
376 return;
377
378 bit = (address - 0xA0000) >> PAGE_SHIFT;
379 if (bit < 32)
9fda6a06
BG
380 tsk->thread.vm86->screen_bitmap |= 1 << bit;
381#endif
33cb5243 382}
1da177e4 383
087975b0 384static bool low_pfn(unsigned long pfn)
1da177e4 385{
087975b0
AM
386 return pfn < max_low_pfn;
387}
1156e098 388
087975b0
AM
389static void dump_pagetable(unsigned long address)
390{
6c690ee1 391 pgd_t *base = __va(read_cr3_pa());
087975b0 392 pgd_t *pgd = &base[pgd_index(address)];
e0c4f675
KS
393 p4d_t *p4d;
394 pud_t *pud;
087975b0
AM
395 pmd_t *pmd;
396 pte_t *pte;
2d4a7167 397
1156e098 398#ifdef CONFIG_X86_PAE
39e48d9b 399 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
087975b0
AM
400 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
401 goto out;
39e48d9b
JB
402#define pr_pde pr_cont
403#else
404#define pr_pde pr_info
1156e098 405#endif
e0c4f675
KS
406 p4d = p4d_offset(pgd, address);
407 pud = pud_offset(p4d, address);
408 pmd = pmd_offset(pud, address);
39e48d9b
JB
409 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
410#undef pr_pde
1156e098
HH
411
412 /*
413 * We must not directly access the pte in the highpte
414 * case if the page table is located in highmem.
415 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 416 * it's allocated already:
1156e098 417 */
087975b0
AM
418 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
419 goto out;
1156e098 420
087975b0 421 pte = pte_offset_kernel(pmd, address);
39e48d9b 422 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
087975b0 423out:
39e48d9b 424 pr_cont("\n");
f2f13a85
IM
425}
426
427#else /* CONFIG_X86_64: */
428
429void vmalloc_sync_all(void)
430{
5372e155 431 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
f2f13a85
IM
432}
433
434/*
435 * 64-bit:
436 *
437 * Handle a fault on the vmalloc area
f2f13a85 438 */
9326638c 439static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
440{
441 pgd_t *pgd, *pgd_ref;
b50858ce 442 p4d_t *p4d, *p4d_ref;
f2f13a85
IM
443 pud_t *pud, *pud_ref;
444 pmd_t *pmd, *pmd_ref;
445 pte_t *pte, *pte_ref;
446
447 /* Make sure we are in vmalloc area: */
448 if (!(address >= VMALLOC_START && address < VMALLOC_END))
449 return -1;
450
ebc8827f
FW
451 WARN_ON_ONCE(in_nmi());
452
f2f13a85
IM
453 /*
454 * Copy kernel mappings over when needed. This can also
455 * happen within a race in page table update. In the later
456 * case just flush:
457 */
6c690ee1 458 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
f2f13a85
IM
459 pgd_ref = pgd_offset_k(address);
460 if (pgd_none(*pgd_ref))
461 return -1;
462
1160c277 463 if (pgd_none(*pgd)) {
f2f13a85 464 set_pgd(pgd, *pgd_ref);
1160c277 465 arch_flush_lazy_mmu_mode();
b50858ce
KS
466 } else if (CONFIG_PGTABLE_LEVELS > 4) {
467 /*
468 * With folded p4d, pgd_none() is always false, so the pgd may
469 * point to an empty page table entry and pgd_page_vaddr()
470 * will return garbage.
471 *
472 * We will do the correct sanity check on the p4d level.
473 */
f2f13a85 474 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1160c277 475 }
f2f13a85 476
b50858ce
KS
477 /* With 4-level paging, copying happens on the p4d level. */
478 p4d = p4d_offset(pgd, address);
479 p4d_ref = p4d_offset(pgd_ref, address);
480 if (p4d_none(*p4d_ref))
481 return -1;
482
483 if (p4d_none(*p4d)) {
484 set_p4d(p4d, *p4d_ref);
485 arch_flush_lazy_mmu_mode();
486 } else {
487 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref));
488 }
489
f2f13a85
IM
490 /*
491 * Below here mismatches are bugs because these lower tables
492 * are shared:
493 */
494
b50858ce
KS
495 pud = pud_offset(p4d, address);
496 pud_ref = pud_offset(p4d_ref, address);
f2f13a85
IM
497 if (pud_none(*pud_ref))
498 return -1;
499
f4eafd8b 500 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
f2f13a85
IM
501 BUG();
502
f4eafd8b
TK
503 if (pud_huge(*pud))
504 return 0;
505
f2f13a85
IM
506 pmd = pmd_offset(pud, address);
507 pmd_ref = pmd_offset(pud_ref, address);
508 if (pmd_none(*pmd_ref))
509 return -1;
510
f4eafd8b 511 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
f2f13a85
IM
512 BUG();
513
f4eafd8b
TK
514 if (pmd_huge(*pmd))
515 return 0;
516
f2f13a85
IM
517 pte_ref = pte_offset_kernel(pmd_ref, address);
518 if (!pte_present(*pte_ref))
519 return -1;
520
521 pte = pte_offset_kernel(pmd, address);
522
523 /*
524 * Don't use pte_page here, because the mappings can point
525 * outside mem_map, and the NUMA hash lookup cannot handle
526 * that:
527 */
528 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
529 BUG();
530
531 return 0;
532}
9326638c 533NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85 534
e05139f2 535#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 536static const char errata93_warning[] =
ad361c98
JP
537KERN_ERR
538"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
539"******* Working around it, but it may cause SEGVs or burn power.\n"
540"******* Please consider a BIOS update.\n"
541"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 542#endif
f2f13a85
IM
543
544/*
545 * No vm86 mode in 64-bit mode:
546 */
547static inline void
548check_v8086_mode(struct pt_regs *regs, unsigned long address,
549 struct task_struct *tsk)
550{
551}
552
553static int bad_address(void *p)
554{
555 unsigned long dummy;
556
557 return probe_kernel_address((unsigned long *)p, dummy);
558}
559
560static void dump_pagetable(unsigned long address)
561{
6c690ee1 562 pgd_t *base = __va(read_cr3_pa());
087975b0 563 pgd_t *pgd = base + pgd_index(address);
e0c4f675 564 p4d_t *p4d;
1da177e4
LT
565 pud_t *pud;
566 pmd_t *pmd;
567 pte_t *pte;
568
2d4a7167
IM
569 if (bad_address(pgd))
570 goto bad;
571
39e48d9b 572 pr_info("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
573
574 if (!pgd_present(*pgd))
575 goto out;
1da177e4 576
e0c4f675
KS
577 p4d = p4d_offset(pgd, address);
578 if (bad_address(p4d))
579 goto bad;
580
39e48d9b 581 pr_cont("P4D %lx ", p4d_val(*p4d));
e0c4f675
KS
582 if (!p4d_present(*p4d) || p4d_large(*p4d))
583 goto out;
584
585 pud = pud_offset(p4d, address);
2d4a7167
IM
586 if (bad_address(pud))
587 goto bad;
588
39e48d9b 589 pr_cont("PUD %lx ", pud_val(*pud));
b5360222 590 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 591 goto out;
1da177e4
LT
592
593 pmd = pmd_offset(pud, address);
2d4a7167
IM
594 if (bad_address(pmd))
595 goto bad;
596
39e48d9b 597 pr_cont("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
598 if (!pmd_present(*pmd) || pmd_large(*pmd))
599 goto out;
1da177e4
LT
600
601 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
602 if (bad_address(pte))
603 goto bad;
604
39e48d9b 605 pr_cont("PTE %lx", pte_val(*pte));
2d4a7167 606out:
39e48d9b 607 pr_cont("\n");
1da177e4
LT
608 return;
609bad:
39e48d9b 610 pr_info("BAD\n");
8c938f9f
IM
611}
612
f2f13a85 613#endif /* CONFIG_X86_64 */
1da177e4 614
2d4a7167
IM
615/*
616 * Workaround for K8 erratum #93 & buggy BIOS.
617 *
618 * BIOS SMM functions are required to use a specific workaround
619 * to avoid corruption of the 64bit RIP register on C stepping K8.
620 *
621 * A lot of BIOS that didn't get tested properly miss this.
622 *
623 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
624 * Try to work around it here.
625 *
626 * Note we only handle faults in kernel here.
627 * Does nothing on 32-bit.
fdfe8aa8 628 */
33cb5243 629static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 630{
e05139f2
JB
631#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
632 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
633 || boot_cpu_data.x86 != 0xf)
634 return 0;
635
65ea5b03 636 if (address != regs->ip)
1da177e4 637 return 0;
2d4a7167 638
33cb5243 639 if ((address >> 32) != 0)
1da177e4 640 return 0;
2d4a7167 641
1da177e4 642 address |= 0xffffffffUL << 32;
33cb5243
HH
643 if ((address >= (u64)_stext && address <= (u64)_etext) ||
644 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 645 printk_once(errata93_warning);
65ea5b03 646 regs->ip = address;
1da177e4
LT
647 return 1;
648 }
fdfe8aa8 649#endif
1da177e4 650 return 0;
33cb5243 651}
1da177e4 652
35f3266f 653/*
2d4a7167
IM
654 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
655 * to illegal addresses >4GB.
656 *
657 * We catch this in the page fault handler because these addresses
658 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
659 * segment in LDT is compatibility mode.
660 */
661static int is_errata100(struct pt_regs *regs, unsigned long address)
662{
663#ifdef CONFIG_X86_64
2d4a7167 664 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
665 return 1;
666#endif
667 return 0;
668}
669
29caf2f9
HH
670static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
671{
672#ifdef CONFIG_X86_F00F_BUG
673 unsigned long nr;
2d4a7167 674
29caf2f9 675 /*
2d4a7167 676 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9 677 */
e2604b49 678 if (boot_cpu_has_bug(X86_BUG_F00F)) {
29caf2f9
HH
679 nr = (address - idt_descr.address) >> 3;
680
681 if (nr == 6) {
682 do_invalid_op(regs, 0);
683 return 1;
684 }
685 }
686#endif
687 return 0;
688}
689
8f766149
IM
690static const char nx_warning[] = KERN_CRIT
691"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
eff50c34
JK
692static const char smep_warning[] = KERN_CRIT
693"unable to execute userspace code (SMEP?) (uid: %d)\n";
8f766149 694
2d4a7167
IM
695static void
696show_fault_oops(struct pt_regs *regs, unsigned long error_code,
697 unsigned long address)
b3279c7f 698{
1156e098
HH
699 if (!oops_may_print())
700 return;
701
1156e098 702 if (error_code & PF_INSTR) {
93809be8 703 unsigned int level;
426e34cc
MF
704 pgd_t *pgd;
705 pte_t *pte;
2d4a7167 706
6c690ee1 707 pgd = __va(read_cr3_pa());
426e34cc
MF
708 pgd += pgd_index(address);
709
710 pte = lookup_address_in_pgd(pgd, address, &level);
1156e098 711
8f766149 712 if (pte && pte_present(*pte) && !pte_exec(*pte))
078de5f7 713 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
eff50c34
JK
714 if (pte && pte_present(*pte) && pte_exec(*pte) &&
715 (pgd_flags(*pgd) & _PAGE_USER) &&
1e02ce4c 716 (__read_cr4() & X86_CR4_SMEP))
eff50c34 717 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
1156e098 718 }
1156e098 719
19f0dda9 720 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 721 if (address < PAGE_SIZE)
19f0dda9 722 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 723 else
19f0dda9 724 printk(KERN_CONT "paging request");
2d4a7167 725
f294a8ce 726 printk(KERN_CONT " at %p\n", (void *) address);
bb5e5ce5 727 printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
2d4a7167 728
b3279c7f
HH
729 dump_pagetable(address);
730}
731
2d4a7167
IM
732static noinline void
733pgtable_bad(struct pt_regs *regs, unsigned long error_code,
734 unsigned long address)
1da177e4 735{
2d4a7167
IM
736 struct task_struct *tsk;
737 unsigned long flags;
738 int sig;
739
740 flags = oops_begin();
741 tsk = current;
742 sig = SIGKILL;
1209140c 743
1da177e4 744 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 745 tsk->comm, address);
1da177e4 746 dump_pagetable(address);
2d4a7167
IM
747
748 tsk->thread.cr2 = address;
51e7dc70 749 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167
IM
750 tsk->thread.error_code = error_code;
751
22f5991c 752 if (__die("Bad pagetable", regs, error_code))
874d93d1 753 sig = 0;
2d4a7167 754
874d93d1 755 oops_end(flags, regs, sig);
1da177e4
LT
756}
757
2d4a7167
IM
758static noinline void
759no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 760 unsigned long address, int signal, int si_code)
92181f19
NP
761{
762 struct task_struct *tsk = current;
92181f19
NP
763 unsigned long flags;
764 int sig;
7b2d0dba
DH
765 /* No context means no VMA to pass down */
766 struct vm_area_struct *vma = NULL;
92181f19 767
2d4a7167 768 /* Are we prepared to handle this kernel fault? */
548acf19 769 if (fixup_exception(regs, X86_TRAP_PF)) {
c026b359
PZ
770 /*
771 * Any interrupt that takes a fault gets the fixup. This makes
772 * the below recursive fault logic only apply to a faults from
773 * task context.
774 */
775 if (in_interrupt())
776 return;
777
778 /*
779 * Per the above we're !in_interrupt(), aka. task context.
780 *
781 * In this case we need to make sure we're not recursively
782 * faulting through the emulate_vsyscall() logic.
783 */
2a53ccbc 784 if (current->thread.sig_on_uaccess_err && signal) {
51e7dc70 785 tsk->thread.trap_nr = X86_TRAP_PF;
4fc34901
AL
786 tsk->thread.error_code = error_code | PF_USER;
787 tsk->thread.cr2 = address;
788
789 /* XXX: hwpoison faults will set the wrong code. */
7b2d0dba
DH
790 force_sig_info_fault(signal, si_code, address,
791 tsk, vma, 0);
4fc34901 792 }
c026b359
PZ
793
794 /*
795 * Barring that, we can do the fixup and be happy.
796 */
92181f19 797 return;
4fc34901 798 }
92181f19 799
6271cfdf
AL
800#ifdef CONFIG_VMAP_STACK
801 /*
802 * Stack overflow? During boot, we can fault near the initial
803 * stack in the direct map, but that's not an overflow -- check
804 * that we're in vmalloc space to avoid this.
805 */
806 if (is_vmalloc_addr((void *)address) &&
807 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
808 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
6271cfdf
AL
809 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
810 /*
811 * We're likely to be running with very little stack space
812 * left. It's plausible that we'd hit this condition but
813 * double-fault even before we get this far, in which case
814 * we're fine: the double-fault handler will deal with it.
815 *
816 * We don't want to make it all the way into the oops code
817 * and then double-fault, though, because we're likely to
818 * break the console driver and lose most of the stack dump.
819 */
820 asm volatile ("movq %[stack], %%rsp\n\t"
821 "call handle_stack_overflow\n\t"
822 "1: jmp 1b"
f5caf621 823 : ASM_CALL_CONSTRAINT
6271cfdf
AL
824 : "D" ("kernel stack overflow (page fault)"),
825 "S" (regs), "d" (address),
826 [stack] "rm" (stack));
827 unreachable();
828 }
829#endif
830
92181f19 831 /*
2d4a7167
IM
832 * 32-bit:
833 *
834 * Valid to do another page fault here, because if this fault
835 * had been triggered by is_prefetch fixup_exception would have
836 * handled it.
837 *
838 * 64-bit:
92181f19 839 *
2d4a7167 840 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
841 */
842 if (is_prefetch(regs, error_code, address))
843 return;
844
845 if (is_errata93(regs, address))
846 return;
847
848 /*
849 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 850 * terminate things with extreme prejudice:
92181f19 851 */
92181f19 852 flags = oops_begin();
92181f19
NP
853
854 show_fault_oops(regs, error_code, address);
855
a70857e4 856 if (task_stack_end_corrupted(tsk))
b0f4c4b3 857 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 858
1cc99544 859 tsk->thread.cr2 = address;
51e7dc70 860 tsk->thread.trap_nr = X86_TRAP_PF;
1cc99544 861 tsk->thread.error_code = error_code;
92181f19 862
92181f19
NP
863 sig = SIGKILL;
864 if (__die("Oops", regs, error_code))
865 sig = 0;
2d4a7167 866
92181f19 867 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 868 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 869
92181f19 870 oops_end(flags, regs, sig);
92181f19
NP
871}
872
2d4a7167
IM
873/*
874 * Print out info about fatal segfaults, if the show_unhandled_signals
875 * sysctl is set:
876 */
877static inline void
878show_signal_msg(struct pt_regs *regs, unsigned long error_code,
879 unsigned long address, struct task_struct *tsk)
880{
881 if (!unhandled_signal(tsk, SIGSEGV))
882 return;
883
884 if (!printk_ratelimit())
885 return;
886
a1a08d1c 887 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
888 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
889 tsk->comm, task_pid_nr(tsk), address,
890 (void *)regs->ip, (void *)regs->sp, error_code);
891
892 print_vma_addr(KERN_CONT " in ", regs->ip);
893
894 printk(KERN_CONT "\n");
895}
896
897static void
898__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
7b2d0dba
DH
899 unsigned long address, struct vm_area_struct *vma,
900 int si_code)
92181f19
NP
901{
902 struct task_struct *tsk = current;
903
904 /* User mode accesses just cause a SIGSEGV */
905 if (error_code & PF_USER) {
906 /*
2d4a7167 907 * It's possible to have interrupts off here:
92181f19
NP
908 */
909 local_irq_enable();
910
911 /*
912 * Valid to do another page fault here because this one came
2d4a7167 913 * from user space:
92181f19
NP
914 */
915 if (is_prefetch(regs, error_code, address))
916 return;
917
918 if (is_errata100(regs, address))
919 return;
920
3ae36655
AL
921#ifdef CONFIG_X86_64
922 /*
923 * Instruction fetch faults in the vsyscall page might need
924 * emulation.
925 */
926 if (unlikely((error_code & PF_INSTR) &&
f40c3300 927 ((address & ~0xfff) == VSYSCALL_ADDR))) {
3ae36655
AL
928 if (emulate_vsyscall(regs, address))
929 return;
930 }
931#endif
dc4fac84
AL
932
933 /*
934 * To avoid leaking information about the kernel page table
935 * layout, pretend that user-mode accesses to kernel addresses
936 * are always protection faults.
937 */
938 if (address >= TASK_SIZE_MAX)
e575a86f 939 error_code |= PF_PROT;
3ae36655 940
e575a86f 941 if (likely(show_unhandled_signals))
2d4a7167
IM
942 show_signal_msg(regs, error_code, address, tsk);
943
2d4a7167 944 tsk->thread.cr2 = address;
e575a86f 945 tsk->thread.error_code = error_code;
51e7dc70 946 tsk->thread.trap_nr = X86_TRAP_PF;
92181f19 947
7b2d0dba 948 force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
2d4a7167 949
92181f19
NP
950 return;
951 }
952
953 if (is_f00f_bug(regs, address))
954 return;
955
4fc34901 956 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
957}
958
2d4a7167
IM
959static noinline void
960bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 961 unsigned long address, struct vm_area_struct *vma)
92181f19 962{
7b2d0dba 963 __bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
92181f19
NP
964}
965
2d4a7167
IM
966static void
967__bad_area(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 968 unsigned long address, struct vm_area_struct *vma, int si_code)
92181f19
NP
969{
970 struct mm_struct *mm = current->mm;
971
972 /*
973 * Something tried to access memory that isn't in our memory map..
974 * Fix it, but check if it's kernel or user first..
975 */
976 up_read(&mm->mmap_sem);
977
7b2d0dba 978 __bad_area_nosemaphore(regs, error_code, address, vma, si_code);
92181f19
NP
979}
980
2d4a7167
IM
981static noinline void
982bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19 983{
7b2d0dba 984 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
92181f19
NP
985}
986
33a709b2
DH
987static inline bool bad_area_access_from_pkeys(unsigned long error_code,
988 struct vm_area_struct *vma)
989{
07f146f5
DH
990 /* This code is always called on the current mm */
991 bool foreign = false;
992
33a709b2
DH
993 if (!boot_cpu_has(X86_FEATURE_OSPKE))
994 return false;
995 if (error_code & PF_PK)
996 return true;
07f146f5 997 /* this checks permission keys on the VMA: */
d61172b4
DH
998 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
999 (error_code & PF_INSTR), foreign))
07f146f5 1000 return true;
33a709b2 1001 return false;
92181f19
NP
1002}
1003
2d4a7167
IM
1004static noinline void
1005bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 1006 unsigned long address, struct vm_area_struct *vma)
92181f19 1007{
019132ff
DH
1008 /*
1009 * This OSPKE check is not strictly necessary at runtime.
1010 * But, doing it this way allows compiler optimizations
1011 * if pkeys are compiled out.
1012 */
33a709b2 1013 if (bad_area_access_from_pkeys(error_code, vma))
019132ff
DH
1014 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
1015 else
1016 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
92181f19
NP
1017}
1018
2d4a7167 1019static void
a6e04aa9 1020do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
7b2d0dba 1021 struct vm_area_struct *vma, unsigned int fault)
92181f19
NP
1022{
1023 struct task_struct *tsk = current;
a6e04aa9 1024 int code = BUS_ADRERR;
92181f19 1025
2d4a7167 1026 /* Kernel mode? Handle exceptions or die: */
96054569 1027 if (!(error_code & PF_USER)) {
4fc34901 1028 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
1029 return;
1030 }
2d4a7167 1031
cd1b68f0 1032 /* User-space => ok to do another page fault: */
92181f19
NP
1033 if (is_prefetch(regs, error_code, address))
1034 return;
2d4a7167
IM
1035
1036 tsk->thread.cr2 = address;
1037 tsk->thread.error_code = error_code;
51e7dc70 1038 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167 1039
a6e04aa9 1040#ifdef CONFIG_MEMORY_FAILURE
f672b49b 1041 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
1042 printk(KERN_ERR
1043 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1044 tsk->comm, tsk->pid, address);
1045 code = BUS_MCEERR_AR;
1046 }
1047#endif
7b2d0dba 1048 force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
92181f19
NP
1049}
1050
3a13c4d7 1051static noinline void
2d4a7167 1052mm_fault_error(struct pt_regs *regs, unsigned long error_code,
7b2d0dba
DH
1053 unsigned long address, struct vm_area_struct *vma,
1054 unsigned int fault)
92181f19 1055{
3a13c4d7 1056 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
3a13c4d7
JW
1057 no_context(regs, error_code, address, 0, 0);
1058 return;
b80ef10e 1059 }
b80ef10e 1060
2d4a7167 1061 if (fault & VM_FAULT_OOM) {
f8626854
AV
1062 /* Kernel mode? Handle exceptions or die: */
1063 if (!(error_code & PF_USER)) {
4fc34901
AL
1064 no_context(regs, error_code, address,
1065 SIGSEGV, SEGV_MAPERR);
3a13c4d7 1066 return;
f8626854
AV
1067 }
1068
c2d23f91
DR
1069 /*
1070 * We ran out of memory, call the OOM killer, and return the
1071 * userspace (which will retry the fault, or kill us if we got
1072 * oom-killed):
1073 */
1074 pagefault_out_of_memory();
2d4a7167 1075 } else {
f672b49b
AK
1076 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1077 VM_FAULT_HWPOISON_LARGE))
7b2d0dba 1078 do_sigbus(regs, error_code, address, vma, fault);
33692f27 1079 else if (fault & VM_FAULT_SIGSEGV)
7b2d0dba 1080 bad_area_nosemaphore(regs, error_code, address, vma);
2d4a7167
IM
1081 else
1082 BUG();
1083 }
92181f19
NP
1084}
1085
d8b57bb7
TG
1086static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1087{
1088 if ((error_code & PF_WRITE) && !pte_write(*pte))
1089 return 0;
2d4a7167 1090
d8b57bb7
TG
1091 if ((error_code & PF_INSTR) && !pte_exec(*pte))
1092 return 0;
b3ecd515
DH
1093 /*
1094 * Note: We do not do lazy flushing on protection key
1095 * changes, so no spurious fault will ever set PF_PK.
1096 */
1097 if ((error_code & PF_PK))
1098 return 1;
d8b57bb7
TG
1099
1100 return 1;
1101}
1102
5b727a3b 1103/*
2d4a7167
IM
1104 * Handle a spurious fault caused by a stale TLB entry.
1105 *
1106 * This allows us to lazily refresh the TLB when increasing the
1107 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1108 * eagerly is very expensive since that implies doing a full
1109 * cross-processor TLB flush, even if no stale TLB entries exist
1110 * on other processors.
1111 *
31668511
DV
1112 * Spurious faults may only occur if the TLB contains an entry with
1113 * fewer permission than the page table entry. Non-present (P = 0)
1114 * and reserved bit (R = 1) faults are never spurious.
1115 *
5b727a3b
JF
1116 * There are no security implications to leaving a stale TLB when
1117 * increasing the permissions on a page.
31668511
DV
1118 *
1119 * Returns non-zero if a spurious fault was handled, zero otherwise.
1120 *
1121 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1122 * (Optional Invalidation).
5b727a3b 1123 */
9326638c 1124static noinline int
2d4a7167 1125spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
1126{
1127 pgd_t *pgd;
e0c4f675 1128 p4d_t *p4d;
5b727a3b
JF
1129 pud_t *pud;
1130 pmd_t *pmd;
1131 pte_t *pte;
3c3e5694 1132 int ret;
5b727a3b 1133
31668511
DV
1134 /*
1135 * Only writes to RO or instruction fetches from NX may cause
1136 * spurious faults.
1137 *
1138 * These could be from user or supervisor accesses but the TLB
1139 * is only lazily flushed after a kernel mapping protection
1140 * change, so user accesses are not expected to cause spurious
1141 * faults.
1142 */
1143 if (error_code != (PF_WRITE | PF_PROT)
1144 && error_code != (PF_INSTR | PF_PROT))
5b727a3b
JF
1145 return 0;
1146
1147 pgd = init_mm.pgd + pgd_index(address);
1148 if (!pgd_present(*pgd))
1149 return 0;
1150
e0c4f675
KS
1151 p4d = p4d_offset(pgd, address);
1152 if (!p4d_present(*p4d))
1153 return 0;
1154
1155 if (p4d_large(*p4d))
1156 return spurious_fault_check(error_code, (pte_t *) p4d);
1157
1158 pud = pud_offset(p4d, address);
5b727a3b
JF
1159 if (!pud_present(*pud))
1160 return 0;
1161
d8b57bb7
TG
1162 if (pud_large(*pud))
1163 return spurious_fault_check(error_code, (pte_t *) pud);
1164
5b727a3b
JF
1165 pmd = pmd_offset(pud, address);
1166 if (!pmd_present(*pmd))
1167 return 0;
1168
d8b57bb7
TG
1169 if (pmd_large(*pmd))
1170 return spurious_fault_check(error_code, (pte_t *) pmd);
1171
5b727a3b 1172 pte = pte_offset_kernel(pmd, address);
954f8571 1173 if (!pte_present(*pte))
5b727a3b
JF
1174 return 0;
1175
3c3e5694
SR
1176 ret = spurious_fault_check(error_code, pte);
1177 if (!ret)
1178 return 0;
1179
1180 /*
2d4a7167
IM
1181 * Make sure we have permissions in PMD.
1182 * If not, then there's a bug in the page tables:
3c3e5694
SR
1183 */
1184 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1185 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 1186
3c3e5694 1187 return ret;
5b727a3b 1188}
9326638c 1189NOKPROBE_SYMBOL(spurious_fault);
5b727a3b 1190
abd4f750 1191int show_unhandled_signals = 1;
1da177e4 1192
2d4a7167 1193static inline int
68da336a 1194access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 1195{
07f146f5
DH
1196 /* This is only called for the current mm, so: */
1197 bool foreign = false;
e8c6226d
DH
1198
1199 /*
1200 * Read or write was blocked by protection keys. This is
1201 * always an unconditional error and can never result in
1202 * a follow-up action to resolve the fault, like a COW.
1203 */
1204 if (error_code & PF_PK)
1205 return 1;
1206
07f146f5
DH
1207 /*
1208 * Make sure to check the VMA so that we do not perform
1209 * faults just to hit a PF_PK as soon as we fill in a
1210 * page.
1211 */
d61172b4
DH
1212 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1213 (error_code & PF_INSTR), foreign))
07f146f5 1214 return 1;
33a709b2 1215
68da336a 1216 if (error_code & PF_WRITE) {
2d4a7167 1217 /* write, present and write, not present: */
92181f19
NP
1218 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1219 return 1;
2d4a7167 1220 return 0;
92181f19
NP
1221 }
1222
2d4a7167
IM
1223 /* read, present: */
1224 if (unlikely(error_code & PF_PROT))
1225 return 1;
1226
1227 /* read, not present: */
1228 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1229 return 1;
1230
92181f19
NP
1231 return 0;
1232}
1233
0973a06c
HS
1234static int fault_in_kernel_space(unsigned long address)
1235{
d9517346 1236 return address >= TASK_SIZE_MAX;
0973a06c
HS
1237}
1238
40d3cd66
PA
1239static inline bool smap_violation(int error_code, struct pt_regs *regs)
1240{
4640c7ee
PA
1241 if (!IS_ENABLED(CONFIG_X86_SMAP))
1242 return false;
1243
1244 if (!static_cpu_has(X86_FEATURE_SMAP))
1245 return false;
1246
40d3cd66
PA
1247 if (error_code & PF_USER)
1248 return false;
1249
f39b6f0e 1250 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
40d3cd66
PA
1251 return false;
1252
1253 return true;
1254}
1255
1da177e4
LT
1256/*
1257 * This routine handles page faults. It determines the address,
1258 * and the problem, and then passes it off to one of the appropriate
1259 * routines.
1da177e4 1260 */
9326638c 1261static noinline void
0ac09f9f
JO
1262__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1263 unsigned long address)
1da177e4 1264{
2d4a7167 1265 struct vm_area_struct *vma;
1da177e4
LT
1266 struct task_struct *tsk;
1267 struct mm_struct *mm;
26178ec1 1268 int fault, major = 0;
759496ba 1269 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1da177e4 1270
a9ba9a3b
AV
1271 tsk = current;
1272 mm = tsk->mm;
2d4a7167 1273
f8561296
VN
1274 /*
1275 * Detect and handle instructions that would cause a page fault for
1276 * both a tracked kernel page and a userspace page.
1277 */
1278 if (kmemcheck_active(regs))
1279 kmemcheck_hide(regs);
5dfaf90f 1280 prefetchw(&mm->mmap_sem);
f8561296 1281
0fd0e3da 1282 if (unlikely(kmmio_fault(regs, address)))
86069782 1283 return;
1da177e4
LT
1284
1285 /*
1286 * We fault-in kernel-space virtual memory on-demand. The
1287 * 'reference' page table is init_mm.pgd.
1288 *
1289 * NOTE! We MUST NOT take any locks for this case. We may
1290 * be in an interrupt or a critical region, and should
1291 * only copy the information from the master page table,
1292 * nothing more.
1293 *
1294 * This verifies that the fault happens in kernel space
1295 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1296 * protection error (error_code & 9) == 0.
1da177e4 1297 */
0973a06c 1298 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
1299 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1300 if (vmalloc_fault(address) >= 0)
1301 return;
1302
1303 if (kmemcheck_fault(regs, address, error_code))
1304 return;
1305 }
5b727a3b 1306
2d4a7167 1307 /* Can handle a stale RO->RW TLB: */
92181f19 1308 if (spurious_fault(error_code, address))
5b727a3b
JF
1309 return;
1310
2d4a7167 1311 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1312 if (kprobes_fault(regs))
9be260a6 1313 return;
f8c2ee22
HH
1314 /*
1315 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1316 * fault we could otherwise deadlock:
f8c2ee22 1317 */
7b2d0dba 1318 bad_area_nosemaphore(regs, error_code, address, NULL);
2d4a7167 1319
92181f19 1320 return;
f8c2ee22
HH
1321 }
1322
2d4a7167 1323 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1324 if (unlikely(kprobes_fault(regs)))
9be260a6 1325 return;
8c914cb7 1326
66c58156 1327 if (unlikely(error_code & PF_RSVD))
92181f19 1328 pgtable_bad(regs, error_code, address);
1da177e4 1329
4640c7ee 1330 if (unlikely(smap_violation(error_code, regs))) {
7b2d0dba 1331 bad_area_nosemaphore(regs, error_code, address, NULL);
4640c7ee 1332 return;
40d3cd66
PA
1333 }
1334
1da177e4 1335 /*
2d4a7167 1336 * If we're in an interrupt, have no user context or are running
70ffdb93 1337 * in a region with pagefaults disabled then we must not take the fault
1da177e4 1338 */
70ffdb93 1339 if (unlikely(faulthandler_disabled() || !mm)) {
7b2d0dba 1340 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1341 return;
1342 }
1da177e4 1343
e00b12e6
PZ
1344 /*
1345 * It's safe to allow irq's after cr2 has been saved and the
1346 * vmalloc fault has been handled.
1347 *
1348 * User-mode registers count as a user access even for any
1349 * potential system fault or CPU buglet:
1350 */
f39b6f0e 1351 if (user_mode(regs)) {
e00b12e6
PZ
1352 local_irq_enable();
1353 error_code |= PF_USER;
1354 flags |= FAULT_FLAG_USER;
1355 } else {
1356 if (regs->flags & X86_EFLAGS_IF)
1357 local_irq_enable();
1358 }
1359
1360 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1361
759496ba
JW
1362 if (error_code & PF_WRITE)
1363 flags |= FAULT_FLAG_WRITE;
d61172b4
DH
1364 if (error_code & PF_INSTR)
1365 flags |= FAULT_FLAG_INSTRUCTION;
759496ba 1366
3a1dfe6e
IM
1367 /*
1368 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1369 * addresses in user space. All other faults represent errors in
1370 * the kernel and should generate an OOPS. Unfortunately, in the
1371 * case of an erroneous fault occurring in a code path which already
1372 * holds mmap_sem we will deadlock attempting to validate the fault
1373 * against the address space. Luckily the kernel only validly
1374 * references user space from well defined areas of code, which are
1375 * listed in the exceptions table.
1da177e4
LT
1376 *
1377 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1378 * the source reference check when there is a possibility of a
1379 * deadlock. Attempt to lock the address space, if we cannot we then
1380 * validate the source. If this is invalid we can skip the address
1381 * space check, thus avoiding the deadlock:
1da177e4 1382 */
92181f19 1383 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1384 if ((error_code & PF_USER) == 0 &&
92181f19 1385 !search_exception_tables(regs->ip)) {
7b2d0dba 1386 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1387 return;
1388 }
d065bd81 1389retry:
1da177e4 1390 down_read(&mm->mmap_sem);
01006074
PZ
1391 } else {
1392 /*
2d4a7167
IM
1393 * The above down_read_trylock() might have succeeded in
1394 * which case we'll have missed the might_sleep() from
1395 * down_read():
01006074
PZ
1396 */
1397 might_sleep();
1da177e4
LT
1398 }
1399
1400 vma = find_vma(mm, address);
92181f19
NP
1401 if (unlikely(!vma)) {
1402 bad_area(regs, error_code, address);
1403 return;
1404 }
1405 if (likely(vma->vm_start <= address))
1da177e4 1406 goto good_area;
92181f19
NP
1407 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1408 bad_area(regs, error_code, address);
1409 return;
1410 }
33cb5243 1411 if (error_code & PF_USER) {
6f4d368e
HH
1412 /*
1413 * Accessing the stack below %sp is always a bug.
1414 * The large cushion allows instructions like enter
2d4a7167 1415 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1416 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1417 */
92181f19
NP
1418 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1419 bad_area(regs, error_code, address);
1420 return;
1421 }
1da177e4 1422 }
92181f19
NP
1423 if (unlikely(expand_stack(vma, address))) {
1424 bad_area(regs, error_code, address);
1425 return;
1426 }
1427
1428 /*
1429 * Ok, we have a good vm_area for this memory access, so
1430 * we can handle it..
1431 */
1da177e4 1432good_area:
68da336a 1433 if (unlikely(access_error(error_code, vma))) {
7b2d0dba 1434 bad_area_access_error(regs, error_code, address, vma);
92181f19 1435 return;
1da177e4
LT
1436 }
1437
1438 /*
1439 * If for any reason at all we couldn't handle the fault,
1440 * make sure we exit gracefully rather than endlessly redo
9a95f3cf
PC
1441 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1442 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1da177e4 1443 */
dcddffd4 1444 fault = handle_mm_fault(vma, address, flags);
26178ec1 1445 major |= fault & VM_FAULT_MAJOR;
2d4a7167 1446
3a13c4d7 1447 /*
26178ec1
LT
1448 * If we need to retry the mmap_sem has already been released,
1449 * and if there is a fatal signal pending there is no guarantee
1450 * that we made any progress. Handle this case first.
3a13c4d7 1451 */
26178ec1
LT
1452 if (unlikely(fault & VM_FAULT_RETRY)) {
1453 /* Retry at most once */
1454 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1455 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1456 flags |= FAULT_FLAG_TRIED;
1457 if (!fatal_signal_pending(tsk))
1458 goto retry;
1459 }
1460
1461 /* User mode? Just return to handle the fatal exception */
cf3c0a15 1462 if (flags & FAULT_FLAG_USER)
26178ec1
LT
1463 return;
1464
1465 /* Not returning to user mode? Handle exceptions or die: */
1466 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
3a13c4d7 1467 return;
26178ec1 1468 }
3a13c4d7 1469
26178ec1 1470 up_read(&mm->mmap_sem);
3a13c4d7 1471 if (unlikely(fault & VM_FAULT_ERROR)) {
7b2d0dba 1472 mm_fault_error(regs, error_code, address, vma, fault);
3a13c4d7 1473 return;
37b23e05
KM
1474 }
1475
d065bd81 1476 /*
26178ec1
LT
1477 * Major/minor page fault accounting. If any of the events
1478 * returned VM_FAULT_MAJOR, we account it as a major fault.
d065bd81 1479 */
26178ec1
LT
1480 if (major) {
1481 tsk->maj_flt++;
1482 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1483 } else {
1484 tsk->min_flt++;
1485 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
ac17dc8e 1486 }
d729ab35 1487
8c938f9f 1488 check_v8086_mode(regs, address, tsk);
1da177e4 1489}
9326638c 1490NOKPROBE_SYMBOL(__do_page_fault);
6ba3c97a 1491
9326638c
MH
1492static nokprobe_inline void
1493trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1494 unsigned long error_code)
d34603b0
SA
1495{
1496 if (user_mode(regs))
d4078e23 1497 trace_page_fault_user(address, regs, error_code);
d34603b0 1498 else
d4078e23 1499 trace_page_fault_kernel(address, regs, error_code);
d34603b0
SA
1500}
1501
11a7ffb0
TG
1502/*
1503 * We must have this function blacklisted from kprobes, tagged with notrace
1504 * and call read_cr2() before calling anything else. To avoid calling any
1505 * kind of tracing machinery before we've observed the CR2 value.
1506 *
1507 * exception_{enter,exit}() contains all sorts of tracepoints.
1508 */
9326638c 1509dotraplinkage void notrace
11a7ffb0 1510do_page_fault(struct pt_regs *regs, unsigned long error_code)
25c74b10 1511{
11a7ffb0 1512 unsigned long address = read_cr2(); /* Get the faulting address */
d4078e23 1513 enum ctx_state prev_state;
25c74b10
SA
1514
1515 prev_state = exception_enter();
80954747 1516 if (trace_pagefault_enabled())
11a7ffb0
TG
1517 trace_page_fault_entries(address, regs, error_code);
1518
0ac09f9f 1519 __do_page_fault(regs, error_code, address);
25c74b10
SA
1520 exception_exit(prev_state);
1521}
11a7ffb0 1522NOKPROBE_SYMBOL(do_page_fault);