]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/x86/mm/fault.c
selinux: avoid unnecessary avc cache stat hit count
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473
IM
6#include <linux/magic.h> /* STACK_END_MAGIC */
7#include <linux/sched.h> /* test_thread_flag(), ... */
8#include <linux/kdebug.h> /* oops_begin/end, ... */
9#include <linux/module.h> /* search_exception_table */
10#include <linux/bootmem.h> /* max_low_pfn */
11#include <linux/kprobes.h> /* __kprobes, ... */
12#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 13#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 14#include <linux/hugetlb.h> /* hstate_index_to_shift */
2d4a7167 15
a2bcd473
IM
16#include <asm/traps.h> /* dotraplinkage, ... */
17#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 18#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
1da177e4 19
33cb5243 20/*
2d4a7167
IM
21 * Page fault error code bits:
22 *
23 * bit 0 == 0: no page found 1: protection fault
24 * bit 1 == 0: read access 1: write access
25 * bit 2 == 0: kernel-mode access 1: user-mode access
26 * bit 3 == 1: use of reserved bit detected
27 * bit 4 == 1: fault was an instruction fetch
33cb5243 28 */
2d4a7167
IM
29enum x86_pf_error_code {
30
31 PF_PROT = 1 << 0,
32 PF_WRITE = 1 << 1,
33 PF_USER = 1 << 2,
34 PF_RSVD = 1 << 3,
35 PF_INSTR = 1 << 4,
36};
66c58156 37
b814d41f 38/*
b319eed0
IM
39 * Returns 0 if mmiotrace is disabled, or if the fault is not
40 * handled by mmiotrace:
b814d41f 41 */
62c9295f
MH
42static inline int __kprobes
43kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 44{
0fd0e3da
PP
45 if (unlikely(is_kmmio_active()))
46 if (kmmio_handler(regs, addr) == 1)
47 return -1;
0fd0e3da 48 return 0;
86069782
PP
49}
50
62c9295f 51static inline int __kprobes notify_page_fault(struct pt_regs *regs)
1bd858a5 52{
74a0b576
CH
53 int ret = 0;
54
55 /* kprobe_running() needs smp_processor_id() */
b1801812 56 if (kprobes_built_in() && !user_mode_vm(regs)) {
74a0b576
CH
57 preempt_disable();
58 if (kprobe_running() && kprobe_fault_handler(regs, 14))
59 ret = 1;
60 preempt_enable();
61 }
1bd858a5 62
74a0b576 63 return ret;
33cb5243 64}
1bd858a5 65
1dc85be0 66/*
2d4a7167
IM
67 * Prefetch quirks:
68 *
69 * 32-bit mode:
70 *
71 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
72 * Check that here and ignore it.
1dc85be0 73 *
2d4a7167 74 * 64-bit mode:
1dc85be0 75 *
2d4a7167
IM
76 * Sometimes the CPU reports invalid exceptions on prefetch.
77 * Check that here and ignore it.
78 *
79 * Opcode checker based on code by Richard Brunner.
1dc85be0 80 */
107a0367
IM
81static inline int
82check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
83 unsigned char opcode, int *prefetch)
84{
85 unsigned char instr_hi = opcode & 0xf0;
86 unsigned char instr_lo = opcode & 0x0f;
87
88 switch (instr_hi) {
89 case 0x20:
90 case 0x30:
91 /*
92 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
93 * In X86_64 long mode, the CPU will signal invalid
94 * opcode if some of these prefixes are present so
95 * X86_64 will never get here anyway
96 */
97 return ((instr_lo & 7) == 0x6);
98#ifdef CONFIG_X86_64
99 case 0x40:
100 /*
101 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
102 * Need to figure out under what instruction mode the
103 * instruction was issued. Could check the LDT for lm,
104 * but for now it's good enough to assume that long
105 * mode only uses well known segments or kernel.
106 */
107 return (!user_mode(regs)) || (regs->cs == __USER_CS);
108#endif
109 case 0x60:
110 /* 0x64 thru 0x67 are valid prefixes in all modes. */
111 return (instr_lo & 0xC) == 0x4;
112 case 0xF0:
113 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
114 return !instr_lo || (instr_lo>>1) == 1;
115 case 0x00:
116 /* Prefetch instruction is 0x0F0D or 0x0F18 */
117 if (probe_kernel_address(instr, opcode))
118 return 0;
119
120 *prefetch = (instr_lo == 0xF) &&
121 (opcode == 0x0D || opcode == 0x18);
122 return 0;
123 default:
124 return 0;
125 }
126}
127
2d4a7167
IM
128static int
129is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 130{
2d4a7167 131 unsigned char *max_instr;
ab2bf0c1 132 unsigned char *instr;
33cb5243 133 int prefetch = 0;
1da177e4 134
3085354d
IM
135 /*
136 * If it was a exec (instruction fetch) fault on NX page, then
137 * do not ignore the fault:
138 */
66c58156 139 if (error_code & PF_INSTR)
1da177e4 140 return 0;
1dc85be0 141
107a0367 142 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 143 max_instr = instr + 15;
1da177e4 144
76381fee 145 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
1da177e4
LT
146 return 0;
147
107a0367 148 while (instr < max_instr) {
2d4a7167 149 unsigned char opcode;
1da177e4 150
ab2bf0c1 151 if (probe_kernel_address(instr, opcode))
33cb5243 152 break;
1da177e4 153
1da177e4
LT
154 instr++;
155
107a0367 156 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 157 break;
1da177e4
LT
158 }
159 return prefetch;
160}
161
2d4a7167
IM
162static void
163force_sig_info_fault(int si_signo, int si_code, unsigned long address,
f672b49b 164 struct task_struct *tsk, int fault)
c4aba4a8 165{
f672b49b 166 unsigned lsb = 0;
c4aba4a8
HH
167 siginfo_t info;
168
2d4a7167
IM
169 info.si_signo = si_signo;
170 info.si_errno = 0;
171 info.si_code = si_code;
172 info.si_addr = (void __user *)address;
f672b49b
AK
173 if (fault & VM_FAULT_HWPOISON_LARGE)
174 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
175 if (fault & VM_FAULT_HWPOISON)
176 lsb = PAGE_SHIFT;
177 info.si_addr_lsb = lsb;
2d4a7167 178
c4aba4a8
HH
179 force_sig_info(si_signo, &info, tsk);
180}
181
f2f13a85
IM
182DEFINE_SPINLOCK(pgd_lock);
183LIST_HEAD(pgd_list);
184
185#ifdef CONFIG_X86_32
186static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 187{
f2f13a85
IM
188 unsigned index = pgd_index(address);
189 pgd_t *pgd_k;
190 pud_t *pud, *pud_k;
191 pmd_t *pmd, *pmd_k;
2d4a7167 192
f2f13a85
IM
193 pgd += index;
194 pgd_k = init_mm.pgd + index;
195
196 if (!pgd_present(*pgd_k))
197 return NULL;
198
199 /*
200 * set_pgd(pgd, *pgd_k); here would be useless on PAE
201 * and redundant with the set_pmd() on non-PAE. As would
202 * set_pud.
203 */
204 pud = pud_offset(pgd, address);
205 pud_k = pud_offset(pgd_k, address);
206 if (!pud_present(*pud_k))
207 return NULL;
208
209 pmd = pmd_offset(pud, address);
210 pmd_k = pmd_offset(pud_k, address);
211 if (!pmd_present(*pmd_k))
212 return NULL;
213
b8bcfe99 214 if (!pmd_present(*pmd))
f2f13a85 215 set_pmd(pmd, *pmd_k);
b8bcfe99 216 else
f2f13a85 217 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
218
219 return pmd_k;
220}
221
222void vmalloc_sync_all(void)
223{
224 unsigned long address;
225
226 if (SHARED_KERNEL_PMD)
227 return;
228
229 for (address = VMALLOC_START & PMD_MASK;
230 address >= TASK_SIZE && address < FIXADDR_TOP;
231 address += PMD_SIZE) {
f2f13a85
IM
232 struct page *page;
233
a79e53d8 234 spin_lock(&pgd_lock);
f2f13a85 235 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 236 spinlock_t *pgt_lock;
f01f7c56 237 pmd_t *ret;
617d34d9 238
a79e53d8 239 /* the pgt_lock only for Xen */
617d34d9
JF
240 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
241
242 spin_lock(pgt_lock);
243 ret = vmalloc_sync_one(page_address(page), address);
244 spin_unlock(pgt_lock);
245
246 if (!ret)
f2f13a85
IM
247 break;
248 }
a79e53d8 249 spin_unlock(&pgd_lock);
f2f13a85
IM
250 }
251}
252
253/*
254 * 32-bit:
255 *
256 * Handle a fault on the vmalloc or module mapping area
257 */
62c9295f 258static noinline __kprobes int vmalloc_fault(unsigned long address)
f2f13a85
IM
259{
260 unsigned long pgd_paddr;
261 pmd_t *pmd_k;
262 pte_t *pte_k;
263
264 /* Make sure we are in vmalloc area: */
265 if (!(address >= VMALLOC_START && address < VMALLOC_END))
266 return -1;
267
ebc8827f
FW
268 WARN_ON_ONCE(in_nmi());
269
f2f13a85
IM
270 /*
271 * Synchronize this task's top level page-table
272 * with the 'reference' page table.
273 *
274 * Do _not_ use "current" here. We might be inside
275 * an interrupt in the middle of a task switch..
276 */
277 pgd_paddr = read_cr3();
278 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
279 if (!pmd_k)
280 return -1;
281
282 pte_k = pte_offset_kernel(pmd_k, address);
283 if (!pte_present(*pte_k))
284 return -1;
285
286 return 0;
287}
288
289/*
290 * Did it hit the DOS screen memory VA from vm86 mode?
291 */
292static inline void
293check_v8086_mode(struct pt_regs *regs, unsigned long address,
294 struct task_struct *tsk)
295{
296 unsigned long bit;
297
298 if (!v8086_mode(regs))
299 return;
300
301 bit = (address - 0xA0000) >> PAGE_SHIFT;
302 if (bit < 32)
303 tsk->thread.screen_bitmap |= 1 << bit;
33cb5243 304}
1da177e4 305
087975b0 306static bool low_pfn(unsigned long pfn)
1da177e4 307{
087975b0
AM
308 return pfn < max_low_pfn;
309}
1156e098 310
087975b0
AM
311static void dump_pagetable(unsigned long address)
312{
313 pgd_t *base = __va(read_cr3());
314 pgd_t *pgd = &base[pgd_index(address)];
315 pmd_t *pmd;
316 pte_t *pte;
2d4a7167 317
1156e098 318#ifdef CONFIG_X86_PAE
087975b0
AM
319 printk("*pdpt = %016Lx ", pgd_val(*pgd));
320 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
321 goto out;
1156e098 322#endif
087975b0
AM
323 pmd = pmd_offset(pud_offset(pgd, address), address);
324 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
1156e098
HH
325
326 /*
327 * We must not directly access the pte in the highpte
328 * case if the page table is located in highmem.
329 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 330 * it's allocated already:
1156e098 331 */
087975b0
AM
332 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
333 goto out;
1156e098 334
087975b0
AM
335 pte = pte_offset_kernel(pmd, address);
336 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
337out:
1156e098 338 printk("\n");
f2f13a85
IM
339}
340
341#else /* CONFIG_X86_64: */
342
343void vmalloc_sync_all(void)
344{
6afb5157 345 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
f2f13a85
IM
346}
347
348/*
349 * 64-bit:
350 *
351 * Handle a fault on the vmalloc area
352 *
353 * This assumes no large pages in there.
354 */
62c9295f 355static noinline __kprobes int vmalloc_fault(unsigned long address)
f2f13a85
IM
356{
357 pgd_t *pgd, *pgd_ref;
358 pud_t *pud, *pud_ref;
359 pmd_t *pmd, *pmd_ref;
360 pte_t *pte, *pte_ref;
361
362 /* Make sure we are in vmalloc area: */
363 if (!(address >= VMALLOC_START && address < VMALLOC_END))
364 return -1;
365
ebc8827f
FW
366 WARN_ON_ONCE(in_nmi());
367
f2f13a85
IM
368 /*
369 * Copy kernel mappings over when needed. This can also
370 * happen within a race in page table update. In the later
371 * case just flush:
372 */
373 pgd = pgd_offset(current->active_mm, address);
374 pgd_ref = pgd_offset_k(address);
375 if (pgd_none(*pgd_ref))
376 return -1;
377
378 if (pgd_none(*pgd))
379 set_pgd(pgd, *pgd_ref);
380 else
381 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
382
383 /*
384 * Below here mismatches are bugs because these lower tables
385 * are shared:
386 */
387
388 pud = pud_offset(pgd, address);
389 pud_ref = pud_offset(pgd_ref, address);
390 if (pud_none(*pud_ref))
391 return -1;
392
393 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
394 BUG();
395
396 pmd = pmd_offset(pud, address);
397 pmd_ref = pmd_offset(pud_ref, address);
398 if (pmd_none(*pmd_ref))
399 return -1;
400
401 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
402 BUG();
403
404 pte_ref = pte_offset_kernel(pmd_ref, address);
405 if (!pte_present(*pte_ref))
406 return -1;
407
408 pte = pte_offset_kernel(pmd, address);
409
410 /*
411 * Don't use pte_page here, because the mappings can point
412 * outside mem_map, and the NUMA hash lookup cannot handle
413 * that:
414 */
415 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
416 BUG();
417
418 return 0;
419}
420
421static const char errata93_warning[] =
ad361c98
JP
422KERN_ERR
423"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
424"******* Working around it, but it may cause SEGVs or burn power.\n"
425"******* Please consider a BIOS update.\n"
426"******* Disabling USB legacy in the BIOS may also help.\n";
f2f13a85
IM
427
428/*
429 * No vm86 mode in 64-bit mode:
430 */
431static inline void
432check_v8086_mode(struct pt_regs *regs, unsigned long address,
433 struct task_struct *tsk)
434{
435}
436
437static int bad_address(void *p)
438{
439 unsigned long dummy;
440
441 return probe_kernel_address((unsigned long *)p, dummy);
442}
443
444static void dump_pagetable(unsigned long address)
445{
087975b0
AM
446 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
447 pgd_t *pgd = base + pgd_index(address);
1da177e4
LT
448 pud_t *pud;
449 pmd_t *pmd;
450 pte_t *pte;
451
2d4a7167
IM
452 if (bad_address(pgd))
453 goto bad;
454
d646bce4 455 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
456
457 if (!pgd_present(*pgd))
458 goto out;
1da177e4 459
d2ae5b5f 460 pud = pud_offset(pgd, address);
2d4a7167
IM
461 if (bad_address(pud))
462 goto bad;
463
1da177e4 464 printk("PUD %lx ", pud_val(*pud));
b5360222 465 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 466 goto out;
1da177e4
LT
467
468 pmd = pmd_offset(pud, address);
2d4a7167
IM
469 if (bad_address(pmd))
470 goto bad;
471
1da177e4 472 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
473 if (!pmd_present(*pmd) || pmd_large(*pmd))
474 goto out;
1da177e4
LT
475
476 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
477 if (bad_address(pte))
478 goto bad;
479
33cb5243 480 printk("PTE %lx", pte_val(*pte));
2d4a7167 481out:
1da177e4
LT
482 printk("\n");
483 return;
484bad:
485 printk("BAD\n");
8c938f9f
IM
486}
487
f2f13a85 488#endif /* CONFIG_X86_64 */
1da177e4 489
2d4a7167
IM
490/*
491 * Workaround for K8 erratum #93 & buggy BIOS.
492 *
493 * BIOS SMM functions are required to use a specific workaround
494 * to avoid corruption of the 64bit RIP register on C stepping K8.
495 *
496 * A lot of BIOS that didn't get tested properly miss this.
497 *
498 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
499 * Try to work around it here.
500 *
501 * Note we only handle faults in kernel here.
502 * Does nothing on 32-bit.
fdfe8aa8 503 */
33cb5243 504static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 505{
fdfe8aa8 506#ifdef CONFIG_X86_64
65ea5b03 507 if (address != regs->ip)
1da177e4 508 return 0;
2d4a7167 509
33cb5243 510 if ((address >> 32) != 0)
1da177e4 511 return 0;
2d4a7167 512
1da177e4 513 address |= 0xffffffffUL << 32;
33cb5243
HH
514 if ((address >= (u64)_stext && address <= (u64)_etext) ||
515 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 516 printk_once(errata93_warning);
65ea5b03 517 regs->ip = address;
1da177e4
LT
518 return 1;
519 }
fdfe8aa8 520#endif
1da177e4 521 return 0;
33cb5243 522}
1da177e4 523
35f3266f 524/*
2d4a7167
IM
525 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
526 * to illegal addresses >4GB.
527 *
528 * We catch this in the page fault handler because these addresses
529 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
530 * segment in LDT is compatibility mode.
531 */
532static int is_errata100(struct pt_regs *regs, unsigned long address)
533{
534#ifdef CONFIG_X86_64
2d4a7167 535 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
536 return 1;
537#endif
538 return 0;
539}
540
29caf2f9
HH
541static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
542{
543#ifdef CONFIG_X86_F00F_BUG
544 unsigned long nr;
2d4a7167 545
29caf2f9 546 /*
2d4a7167 547 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9
HH
548 */
549 if (boot_cpu_data.f00f_bug) {
550 nr = (address - idt_descr.address) >> 3;
551
552 if (nr == 6) {
553 do_invalid_op(regs, 0);
554 return 1;
555 }
556 }
557#endif
558 return 0;
559}
560
8f766149
IM
561static const char nx_warning[] = KERN_CRIT
562"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
563
2d4a7167
IM
564static void
565show_fault_oops(struct pt_regs *regs, unsigned long error_code,
566 unsigned long address)
b3279c7f 567{
1156e098
HH
568 if (!oops_may_print())
569 return;
570
1156e098 571 if (error_code & PF_INSTR) {
93809be8 572 unsigned int level;
2d4a7167 573
1156e098
HH
574 pte_t *pte = lookup_address(address, &level);
575
8f766149
IM
576 if (pte && pte_present(*pte) && !pte_exec(*pte))
577 printk(nx_warning, current_uid());
1156e098 578 }
1156e098 579
19f0dda9 580 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 581 if (address < PAGE_SIZE)
19f0dda9 582 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 583 else
19f0dda9 584 printk(KERN_CONT "paging request");
2d4a7167 585
f294a8ce 586 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 587 printk(KERN_ALERT "IP:");
b3279c7f 588 printk_address(regs->ip, 1);
2d4a7167 589
b3279c7f
HH
590 dump_pagetable(address);
591}
592
2d4a7167
IM
593static noinline void
594pgtable_bad(struct pt_regs *regs, unsigned long error_code,
595 unsigned long address)
1da177e4 596{
2d4a7167
IM
597 struct task_struct *tsk;
598 unsigned long flags;
599 int sig;
600
601 flags = oops_begin();
602 tsk = current;
603 sig = SIGKILL;
1209140c 604
1da177e4 605 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 606 tsk->comm, address);
1da177e4 607 dump_pagetable(address);
2d4a7167
IM
608
609 tsk->thread.cr2 = address;
610 tsk->thread.trap_no = 14;
611 tsk->thread.error_code = error_code;
612
22f5991c 613 if (__die("Bad pagetable", regs, error_code))
874d93d1 614 sig = 0;
2d4a7167 615
874d93d1 616 oops_end(flags, regs, sig);
1da177e4
LT
617}
618
2d4a7167
IM
619static noinline void
620no_context(struct pt_regs *regs, unsigned long error_code,
621 unsigned long address)
92181f19
NP
622{
623 struct task_struct *tsk = current;
19803078 624 unsigned long *stackend;
92181f19
NP
625 unsigned long flags;
626 int sig;
92181f19 627
2d4a7167 628 /* Are we prepared to handle this kernel fault? */
92181f19
NP
629 if (fixup_exception(regs))
630 return;
631
632 /*
2d4a7167
IM
633 * 32-bit:
634 *
635 * Valid to do another page fault here, because if this fault
636 * had been triggered by is_prefetch fixup_exception would have
637 * handled it.
638 *
639 * 64-bit:
92181f19 640 *
2d4a7167 641 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
642 */
643 if (is_prefetch(regs, error_code, address))
644 return;
645
646 if (is_errata93(regs, address))
647 return;
648
649 /*
650 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 651 * terminate things with extreme prejudice:
92181f19 652 */
92181f19 653 flags = oops_begin();
92181f19
NP
654
655 show_fault_oops(regs, error_code, address);
656
2d4a7167 657 stackend = end_of_stack(tsk);
0e7810be 658 if (tsk != &init_task && *stackend != STACK_END_MAGIC)
19803078
IM
659 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
660
1cc99544
IM
661 tsk->thread.cr2 = address;
662 tsk->thread.trap_no = 14;
663 tsk->thread.error_code = error_code;
92181f19 664
92181f19
NP
665 sig = SIGKILL;
666 if (__die("Oops", regs, error_code))
667 sig = 0;
2d4a7167 668
92181f19
NP
669 /* Executive summary in case the body of the oops scrolled away */
670 printk(KERN_EMERG "CR2: %016lx\n", address);
2d4a7167 671
92181f19 672 oops_end(flags, regs, sig);
92181f19
NP
673}
674
2d4a7167
IM
675/*
676 * Print out info about fatal segfaults, if the show_unhandled_signals
677 * sysctl is set:
678 */
679static inline void
680show_signal_msg(struct pt_regs *regs, unsigned long error_code,
681 unsigned long address, struct task_struct *tsk)
682{
683 if (!unhandled_signal(tsk, SIGSEGV))
684 return;
685
686 if (!printk_ratelimit())
687 return;
688
a1a08d1c 689 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
690 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
691 tsk->comm, task_pid_nr(tsk), address,
692 (void *)regs->ip, (void *)regs->sp, error_code);
693
694 print_vma_addr(KERN_CONT " in ", regs->ip);
695
696 printk(KERN_CONT "\n");
697}
698
699static void
700__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
701 unsigned long address, int si_code)
92181f19
NP
702{
703 struct task_struct *tsk = current;
704
705 /* User mode accesses just cause a SIGSEGV */
706 if (error_code & PF_USER) {
707 /*
2d4a7167 708 * It's possible to have interrupts off here:
92181f19
NP
709 */
710 local_irq_enable();
711
712 /*
713 * Valid to do another page fault here because this one came
2d4a7167 714 * from user space:
92181f19
NP
715 */
716 if (is_prefetch(regs, error_code, address))
717 return;
718
719 if (is_errata100(regs, address))
720 return;
721
2d4a7167
IM
722 if (unlikely(show_unhandled_signals))
723 show_signal_msg(regs, error_code, address, tsk);
724
725 /* Kernel addresses are always protection faults: */
726 tsk->thread.cr2 = address;
727 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
728 tsk->thread.trap_no = 14;
92181f19 729
f672b49b 730 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
2d4a7167 731
92181f19
NP
732 return;
733 }
734
735 if (is_f00f_bug(regs, address))
736 return;
737
738 no_context(regs, error_code, address);
739}
740
2d4a7167
IM
741static noinline void
742bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
743 unsigned long address)
92181f19
NP
744{
745 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
746}
747
2d4a7167
IM
748static void
749__bad_area(struct pt_regs *regs, unsigned long error_code,
750 unsigned long address, int si_code)
92181f19
NP
751{
752 struct mm_struct *mm = current->mm;
753
754 /*
755 * Something tried to access memory that isn't in our memory map..
756 * Fix it, but check if it's kernel or user first..
757 */
758 up_read(&mm->mmap_sem);
759
760 __bad_area_nosemaphore(regs, error_code, address, si_code);
761}
762
2d4a7167
IM
763static noinline void
764bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
765{
766 __bad_area(regs, error_code, address, SEGV_MAPERR);
767}
768
2d4a7167
IM
769static noinline void
770bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
771 unsigned long address)
92181f19
NP
772{
773 __bad_area(regs, error_code, address, SEGV_ACCERR);
774}
775
776/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
2d4a7167
IM
777static void
778out_of_memory(struct pt_regs *regs, unsigned long error_code,
779 unsigned long address)
92181f19
NP
780{
781 /*
782 * We ran out of memory, call the OOM killer, and return the userspace
2d4a7167 783 * (which will retry the fault, or kill us if we got oom-killed):
92181f19
NP
784 */
785 up_read(&current->mm->mmap_sem);
2d4a7167 786
92181f19
NP
787 pagefault_out_of_memory();
788}
789
2d4a7167 790static void
a6e04aa9
AK
791do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
792 unsigned int fault)
92181f19
NP
793{
794 struct task_struct *tsk = current;
795 struct mm_struct *mm = tsk->mm;
a6e04aa9 796 int code = BUS_ADRERR;
92181f19
NP
797
798 up_read(&mm->mmap_sem);
799
2d4a7167 800 /* Kernel mode? Handle exceptions or die: */
96054569 801 if (!(error_code & PF_USER)) {
92181f19 802 no_context(regs, error_code, address);
96054569
LT
803 return;
804 }
2d4a7167 805
cd1b68f0 806 /* User-space => ok to do another page fault: */
92181f19
NP
807 if (is_prefetch(regs, error_code, address))
808 return;
2d4a7167
IM
809
810 tsk->thread.cr2 = address;
811 tsk->thread.error_code = error_code;
812 tsk->thread.trap_no = 14;
813
a6e04aa9 814#ifdef CONFIG_MEMORY_FAILURE
f672b49b 815 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
816 printk(KERN_ERR
817 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
818 tsk->comm, tsk->pid, address);
819 code = BUS_MCEERR_AR;
820 }
821#endif
f672b49b 822 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
92181f19
NP
823}
824
2d4a7167
IM
825static noinline void
826mm_fault_error(struct pt_regs *regs, unsigned long error_code,
827 unsigned long address, unsigned int fault)
92181f19 828{
2d4a7167 829 if (fault & VM_FAULT_OOM) {
f8626854
AV
830 /* Kernel mode? Handle exceptions or die: */
831 if (!(error_code & PF_USER)) {
832 up_read(&current->mm->mmap_sem);
833 no_context(regs, error_code, address);
834 return;
835 }
836
92181f19 837 out_of_memory(regs, error_code, address);
2d4a7167 838 } else {
f672b49b
AK
839 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
840 VM_FAULT_HWPOISON_LARGE))
a6e04aa9 841 do_sigbus(regs, error_code, address, fault);
2d4a7167
IM
842 else
843 BUG();
844 }
92181f19
NP
845}
846
d8b57bb7
TG
847static int spurious_fault_check(unsigned long error_code, pte_t *pte)
848{
849 if ((error_code & PF_WRITE) && !pte_write(*pte))
850 return 0;
2d4a7167 851
d8b57bb7
TG
852 if ((error_code & PF_INSTR) && !pte_exec(*pte))
853 return 0;
854
855 return 1;
856}
857
5b727a3b 858/*
2d4a7167
IM
859 * Handle a spurious fault caused by a stale TLB entry.
860 *
861 * This allows us to lazily refresh the TLB when increasing the
862 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
863 * eagerly is very expensive since that implies doing a full
864 * cross-processor TLB flush, even if no stale TLB entries exist
865 * on other processors.
866 *
5b727a3b
JF
867 * There are no security implications to leaving a stale TLB when
868 * increasing the permissions on a page.
869 */
62c9295f 870static noinline __kprobes int
2d4a7167 871spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
872{
873 pgd_t *pgd;
874 pud_t *pud;
875 pmd_t *pmd;
876 pte_t *pte;
3c3e5694 877 int ret;
5b727a3b
JF
878
879 /* Reserved-bit violation or user access to kernel space? */
880 if (error_code & (PF_USER | PF_RSVD))
881 return 0;
882
883 pgd = init_mm.pgd + pgd_index(address);
884 if (!pgd_present(*pgd))
885 return 0;
886
887 pud = pud_offset(pgd, address);
888 if (!pud_present(*pud))
889 return 0;
890
d8b57bb7
TG
891 if (pud_large(*pud))
892 return spurious_fault_check(error_code, (pte_t *) pud);
893
5b727a3b
JF
894 pmd = pmd_offset(pud, address);
895 if (!pmd_present(*pmd))
896 return 0;
897
d8b57bb7
TG
898 if (pmd_large(*pmd))
899 return spurious_fault_check(error_code, (pte_t *) pmd);
900
660a293e
SL
901 /*
902 * Note: don't use pte_present() here, since it returns true
903 * if the _PAGE_PROTNONE bit is set. However, this aliases the
904 * _PAGE_GLOBAL bit, which for kernel pages give false positives
905 * when CONFIG_DEBUG_PAGEALLOC is used.
906 */
5b727a3b 907 pte = pte_offset_kernel(pmd, address);
660a293e 908 if (!(pte_flags(*pte) & _PAGE_PRESENT))
5b727a3b
JF
909 return 0;
910
3c3e5694
SR
911 ret = spurious_fault_check(error_code, pte);
912 if (!ret)
913 return 0;
914
915 /*
2d4a7167
IM
916 * Make sure we have permissions in PMD.
917 * If not, then there's a bug in the page tables:
3c3e5694
SR
918 */
919 ret = spurious_fault_check(error_code, (pte_t *) pmd);
920 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 921
3c3e5694 922 return ret;
5b727a3b
JF
923}
924
abd4f750 925int show_unhandled_signals = 1;
1da177e4 926
2d4a7167 927static inline int
68da336a 928access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 929{
68da336a 930 if (error_code & PF_WRITE) {
2d4a7167 931 /* write, present and write, not present: */
92181f19
NP
932 if (unlikely(!(vma->vm_flags & VM_WRITE)))
933 return 1;
2d4a7167 934 return 0;
92181f19
NP
935 }
936
2d4a7167
IM
937 /* read, present: */
938 if (unlikely(error_code & PF_PROT))
939 return 1;
940
941 /* read, not present: */
942 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
943 return 1;
944
92181f19
NP
945 return 0;
946}
947
0973a06c
HS
948static int fault_in_kernel_space(unsigned long address)
949{
d9517346 950 return address >= TASK_SIZE_MAX;
0973a06c
HS
951}
952
1da177e4
LT
953/*
954 * This routine handles page faults. It determines the address,
955 * and the problem, and then passes it off to one of the appropriate
956 * routines.
1da177e4 957 */
c3731c68
IM
958dotraplinkage void __kprobes
959do_page_fault(struct pt_regs *regs, unsigned long error_code)
1da177e4 960{
2d4a7167 961 struct vm_area_struct *vma;
1da177e4 962 struct task_struct *tsk;
2d4a7167 963 unsigned long address;
1da177e4 964 struct mm_struct *mm;
f8c2ee22 965 int fault;
d065bd81
ML
966 int write = error_code & PF_WRITE;
967 unsigned int flags = FAULT_FLAG_ALLOW_RETRY |
968 (write ? FAULT_FLAG_WRITE : 0);
1da177e4 969
a9ba9a3b
AV
970 tsk = current;
971 mm = tsk->mm;
2d4a7167 972
2d4a7167 973 /* Get the faulting address: */
f51c9452 974 address = read_cr2();
1da177e4 975
f8561296
VN
976 /*
977 * Detect and handle instructions that would cause a page fault for
978 * both a tracked kernel page and a userspace page.
979 */
980 if (kmemcheck_active(regs))
981 kmemcheck_hide(regs);
5dfaf90f 982 prefetchw(&mm->mmap_sem);
f8561296 983
0fd0e3da 984 if (unlikely(kmmio_fault(regs, address)))
86069782 985 return;
1da177e4
LT
986
987 /*
988 * We fault-in kernel-space virtual memory on-demand. The
989 * 'reference' page table is init_mm.pgd.
990 *
991 * NOTE! We MUST NOT take any locks for this case. We may
992 * be in an interrupt or a critical region, and should
993 * only copy the information from the master page table,
994 * nothing more.
995 *
996 * This verifies that the fault happens in kernel space
997 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 998 * protection error (error_code & 9) == 0.
1da177e4 999 */
0973a06c 1000 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
1001 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1002 if (vmalloc_fault(address) >= 0)
1003 return;
1004
1005 if (kmemcheck_fault(regs, address, error_code))
1006 return;
1007 }
5b727a3b 1008
2d4a7167 1009 /* Can handle a stale RO->RW TLB: */
92181f19 1010 if (spurious_fault(error_code, address))
5b727a3b
JF
1011 return;
1012
2d4a7167 1013 /* kprobes don't want to hook the spurious faults: */
9be260a6
MH
1014 if (notify_page_fault(regs))
1015 return;
f8c2ee22
HH
1016 /*
1017 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1018 * fault we could otherwise deadlock:
f8c2ee22 1019 */
92181f19 1020 bad_area_nosemaphore(regs, error_code, address);
2d4a7167 1021
92181f19 1022 return;
f8c2ee22
HH
1023 }
1024
2d4a7167 1025 /* kprobes don't want to hook the spurious faults: */
f8a6b2b9 1026 if (unlikely(notify_page_fault(regs)))
9be260a6 1027 return;
f8c2ee22 1028 /*
891cffbd
LT
1029 * It's safe to allow irq's after cr2 has been saved and the
1030 * vmalloc fault has been handled.
1031 *
1032 * User-mode registers count as a user access even for any
2d4a7167 1033 * potential system fault or CPU buglet:
f8c2ee22 1034 */
891cffbd
LT
1035 if (user_mode_vm(regs)) {
1036 local_irq_enable();
1037 error_code |= PF_USER;
2d4a7167
IM
1038 } else {
1039 if (regs->flags & X86_EFLAGS_IF)
1040 local_irq_enable();
1041 }
8c914cb7 1042
66c58156 1043 if (unlikely(error_code & PF_RSVD))
92181f19 1044 pgtable_bad(regs, error_code, address);
1da177e4 1045
cdd6c482 1046 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
7dd1fcc2 1047
1da177e4 1048 /*
2d4a7167
IM
1049 * If we're in an interrupt, have no user context or are running
1050 * in an atomic region then we must not take the fault:
1da177e4 1051 */
92181f19
NP
1052 if (unlikely(in_atomic() || !mm)) {
1053 bad_area_nosemaphore(regs, error_code, address);
1054 return;
1055 }
1da177e4 1056
3a1dfe6e
IM
1057 /*
1058 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1059 * addresses in user space. All other faults represent errors in
1060 * the kernel and should generate an OOPS. Unfortunately, in the
1061 * case of an erroneous fault occurring in a code path which already
1062 * holds mmap_sem we will deadlock attempting to validate the fault
1063 * against the address space. Luckily the kernel only validly
1064 * references user space from well defined areas of code, which are
1065 * listed in the exceptions table.
1da177e4
LT
1066 *
1067 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1068 * the source reference check when there is a possibility of a
1069 * deadlock. Attempt to lock the address space, if we cannot we then
1070 * validate the source. If this is invalid we can skip the address
1071 * space check, thus avoiding the deadlock:
1da177e4 1072 */
92181f19 1073 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1074 if ((error_code & PF_USER) == 0 &&
92181f19
NP
1075 !search_exception_tables(regs->ip)) {
1076 bad_area_nosemaphore(regs, error_code, address);
1077 return;
1078 }
d065bd81 1079retry:
1da177e4 1080 down_read(&mm->mmap_sem);
01006074
PZ
1081 } else {
1082 /*
2d4a7167
IM
1083 * The above down_read_trylock() might have succeeded in
1084 * which case we'll have missed the might_sleep() from
1085 * down_read():
01006074
PZ
1086 */
1087 might_sleep();
1da177e4
LT
1088 }
1089
1090 vma = find_vma(mm, address);
92181f19
NP
1091 if (unlikely(!vma)) {
1092 bad_area(regs, error_code, address);
1093 return;
1094 }
1095 if (likely(vma->vm_start <= address))
1da177e4 1096 goto good_area;
92181f19
NP
1097 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1098 bad_area(regs, error_code, address);
1099 return;
1100 }
33cb5243 1101 if (error_code & PF_USER) {
6f4d368e
HH
1102 /*
1103 * Accessing the stack below %sp is always a bug.
1104 * The large cushion allows instructions like enter
2d4a7167 1105 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1106 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1107 */
92181f19
NP
1108 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1109 bad_area(regs, error_code, address);
1110 return;
1111 }
1da177e4 1112 }
92181f19
NP
1113 if (unlikely(expand_stack(vma, address))) {
1114 bad_area(regs, error_code, address);
1115 return;
1116 }
1117
1118 /*
1119 * Ok, we have a good vm_area for this memory access, so
1120 * we can handle it..
1121 */
1da177e4 1122good_area:
68da336a 1123 if (unlikely(access_error(error_code, vma))) {
92181f19
NP
1124 bad_area_access_error(regs, error_code, address);
1125 return;
1da177e4
LT
1126 }
1127
1128 /*
1129 * If for any reason at all we couldn't handle the fault,
1130 * make sure we exit gracefully rather than endlessly redo
2d4a7167 1131 * the fault:
1da177e4 1132 */
d065bd81 1133 fault = handle_mm_fault(mm, vma, address, flags);
2d4a7167 1134
83c54070 1135 if (unlikely(fault & VM_FAULT_ERROR)) {
92181f19
NP
1136 mm_fault_error(regs, error_code, address, fault);
1137 return;
1da177e4 1138 }
2d4a7167 1139
d065bd81
ML
1140 /*
1141 * Major/minor page fault accounting is only done on the
1142 * initial attempt. If we go through a retry, it is extremely
1143 * likely that the page will be found in page cache at that point.
1144 */
1145 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1146 if (fault & VM_FAULT_MAJOR) {
1147 tsk->maj_flt++;
1148 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
1149 regs, address);
1150 } else {
1151 tsk->min_flt++;
1152 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
1153 regs, address);
1154 }
1155 if (fault & VM_FAULT_RETRY) {
1156 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1157 * of starvation. */
1158 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1159 goto retry;
1160 }
ac17dc8e 1161 }
d729ab35 1162
8c938f9f
IM
1163 check_v8086_mode(regs, address, tsk);
1164
1da177e4 1165 up_read(&mm->mmap_sem);
1da177e4 1166}