]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/x86/mm/fault.c
x86, mm: Hold mm->page_table_lock while doing vmalloc_sync
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473
IM
6#include <linux/magic.h> /* STACK_END_MAGIC */
7#include <linux/sched.h> /* test_thread_flag(), ... */
8#include <linux/kdebug.h> /* oops_begin/end, ... */
9#include <linux/module.h> /* search_exception_table */
10#include <linux/bootmem.h> /* max_low_pfn */
11#include <linux/kprobes.h> /* __kprobes, ... */
12#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 13#include <linux/perf_event.h> /* perf_sw_event */
2d4a7167 14
a2bcd473
IM
15#include <asm/traps.h> /* dotraplinkage, ... */
16#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 17#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
1da177e4 18
33cb5243 19/*
2d4a7167
IM
20 * Page fault error code bits:
21 *
22 * bit 0 == 0: no page found 1: protection fault
23 * bit 1 == 0: read access 1: write access
24 * bit 2 == 0: kernel-mode access 1: user-mode access
25 * bit 3 == 1: use of reserved bit detected
26 * bit 4 == 1: fault was an instruction fetch
33cb5243 27 */
2d4a7167
IM
28enum x86_pf_error_code {
29
30 PF_PROT = 1 << 0,
31 PF_WRITE = 1 << 1,
32 PF_USER = 1 << 2,
33 PF_RSVD = 1 << 3,
34 PF_INSTR = 1 << 4,
35};
66c58156 36
b814d41f 37/*
b319eed0
IM
38 * Returns 0 if mmiotrace is disabled, or if the fault is not
39 * handled by mmiotrace:
b814d41f 40 */
62c9295f
MH
41static inline int __kprobes
42kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 43{
0fd0e3da
PP
44 if (unlikely(is_kmmio_active()))
45 if (kmmio_handler(regs, addr) == 1)
46 return -1;
0fd0e3da 47 return 0;
86069782
PP
48}
49
62c9295f 50static inline int __kprobes notify_page_fault(struct pt_regs *regs)
1bd858a5 51{
74a0b576
CH
52 int ret = 0;
53
54 /* kprobe_running() needs smp_processor_id() */
b1801812 55 if (kprobes_built_in() && !user_mode_vm(regs)) {
74a0b576
CH
56 preempt_disable();
57 if (kprobe_running() && kprobe_fault_handler(regs, 14))
58 ret = 1;
59 preempt_enable();
60 }
1bd858a5 61
74a0b576 62 return ret;
33cb5243 63}
1bd858a5 64
1dc85be0 65/*
2d4a7167
IM
66 * Prefetch quirks:
67 *
68 * 32-bit mode:
69 *
70 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
71 * Check that here and ignore it.
1dc85be0 72 *
2d4a7167 73 * 64-bit mode:
1dc85be0 74 *
2d4a7167
IM
75 * Sometimes the CPU reports invalid exceptions on prefetch.
76 * Check that here and ignore it.
77 *
78 * Opcode checker based on code by Richard Brunner.
1dc85be0 79 */
107a0367
IM
80static inline int
81check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
82 unsigned char opcode, int *prefetch)
83{
84 unsigned char instr_hi = opcode & 0xf0;
85 unsigned char instr_lo = opcode & 0x0f;
86
87 switch (instr_hi) {
88 case 0x20:
89 case 0x30:
90 /*
91 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
92 * In X86_64 long mode, the CPU will signal invalid
93 * opcode if some of these prefixes are present so
94 * X86_64 will never get here anyway
95 */
96 return ((instr_lo & 7) == 0x6);
97#ifdef CONFIG_X86_64
98 case 0x40:
99 /*
100 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
101 * Need to figure out under what instruction mode the
102 * instruction was issued. Could check the LDT for lm,
103 * but for now it's good enough to assume that long
104 * mode only uses well known segments or kernel.
105 */
106 return (!user_mode(regs)) || (regs->cs == __USER_CS);
107#endif
108 case 0x60:
109 /* 0x64 thru 0x67 are valid prefixes in all modes. */
110 return (instr_lo & 0xC) == 0x4;
111 case 0xF0:
112 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
113 return !instr_lo || (instr_lo>>1) == 1;
114 case 0x00:
115 /* Prefetch instruction is 0x0F0D or 0x0F18 */
116 if (probe_kernel_address(instr, opcode))
117 return 0;
118
119 *prefetch = (instr_lo == 0xF) &&
120 (opcode == 0x0D || opcode == 0x18);
121 return 0;
122 default:
123 return 0;
124 }
125}
126
2d4a7167
IM
127static int
128is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 129{
2d4a7167 130 unsigned char *max_instr;
ab2bf0c1 131 unsigned char *instr;
33cb5243 132 int prefetch = 0;
1da177e4 133
3085354d
IM
134 /*
135 * If it was a exec (instruction fetch) fault on NX page, then
136 * do not ignore the fault:
137 */
66c58156 138 if (error_code & PF_INSTR)
1da177e4 139 return 0;
1dc85be0 140
107a0367 141 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 142 max_instr = instr + 15;
1da177e4 143
76381fee 144 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
1da177e4
LT
145 return 0;
146
107a0367 147 while (instr < max_instr) {
2d4a7167 148 unsigned char opcode;
1da177e4 149
ab2bf0c1 150 if (probe_kernel_address(instr, opcode))
33cb5243 151 break;
1da177e4 152
1da177e4
LT
153 instr++;
154
107a0367 155 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 156 break;
1da177e4
LT
157 }
158 return prefetch;
159}
160
2d4a7167
IM
161static void
162force_sig_info_fault(int si_signo, int si_code, unsigned long address,
163 struct task_struct *tsk)
c4aba4a8
HH
164{
165 siginfo_t info;
166
2d4a7167
IM
167 info.si_signo = si_signo;
168 info.si_errno = 0;
169 info.si_code = si_code;
170 info.si_addr = (void __user *)address;
a6e04aa9 171 info.si_addr_lsb = si_code == BUS_MCEERR_AR ? PAGE_SHIFT : 0;
2d4a7167 172
c4aba4a8
HH
173 force_sig_info(si_signo, &info, tsk);
174}
175
f2f13a85
IM
176DEFINE_SPINLOCK(pgd_lock);
177LIST_HEAD(pgd_list);
178
179#ifdef CONFIG_X86_32
180static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 181{
f2f13a85
IM
182 unsigned index = pgd_index(address);
183 pgd_t *pgd_k;
184 pud_t *pud, *pud_k;
185 pmd_t *pmd, *pmd_k;
2d4a7167 186
f2f13a85
IM
187 pgd += index;
188 pgd_k = init_mm.pgd + index;
189
190 if (!pgd_present(*pgd_k))
191 return NULL;
192
193 /*
194 * set_pgd(pgd, *pgd_k); here would be useless on PAE
195 * and redundant with the set_pmd() on non-PAE. As would
196 * set_pud.
197 */
198 pud = pud_offset(pgd, address);
199 pud_k = pud_offset(pgd_k, address);
200 if (!pud_present(*pud_k))
201 return NULL;
202
203 pmd = pmd_offset(pud, address);
204 pmd_k = pmd_offset(pud_k, address);
205 if (!pmd_present(*pmd_k))
206 return NULL;
207
b8bcfe99 208 if (!pmd_present(*pmd))
f2f13a85 209 set_pmd(pmd, *pmd_k);
b8bcfe99 210 else
f2f13a85 211 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
212
213 return pmd_k;
214}
215
216void vmalloc_sync_all(void)
217{
218 unsigned long address;
219
220 if (SHARED_KERNEL_PMD)
221 return;
222
223 for (address = VMALLOC_START & PMD_MASK;
224 address >= TASK_SIZE && address < FIXADDR_TOP;
225 address += PMD_SIZE) {
226
227 unsigned long flags;
228 struct page *page;
229
230 spin_lock_irqsave(&pgd_lock, flags);
231 list_for_each_entry(page, &pgd_list, lru) {
617d34d9
JF
232 spinlock_t *pgt_lock;
233 int ret;
234
235 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
236
237 spin_lock(pgt_lock);
238 ret = vmalloc_sync_one(page_address(page), address);
239 spin_unlock(pgt_lock);
240
241 if (!ret)
f2f13a85
IM
242 break;
243 }
244 spin_unlock_irqrestore(&pgd_lock, flags);
245 }
246}
247
248/*
249 * 32-bit:
250 *
251 * Handle a fault on the vmalloc or module mapping area
252 */
62c9295f 253static noinline __kprobes int vmalloc_fault(unsigned long address)
f2f13a85
IM
254{
255 unsigned long pgd_paddr;
256 pmd_t *pmd_k;
257 pte_t *pte_k;
258
259 /* Make sure we are in vmalloc area: */
260 if (!(address >= VMALLOC_START && address < VMALLOC_END))
261 return -1;
262
263 /*
264 * Synchronize this task's top level page-table
265 * with the 'reference' page table.
266 *
267 * Do _not_ use "current" here. We might be inside
268 * an interrupt in the middle of a task switch..
269 */
270 pgd_paddr = read_cr3();
271 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
272 if (!pmd_k)
273 return -1;
274
275 pte_k = pte_offset_kernel(pmd_k, address);
276 if (!pte_present(*pte_k))
277 return -1;
278
279 return 0;
280}
281
282/*
283 * Did it hit the DOS screen memory VA from vm86 mode?
284 */
285static inline void
286check_v8086_mode(struct pt_regs *regs, unsigned long address,
287 struct task_struct *tsk)
288{
289 unsigned long bit;
290
291 if (!v8086_mode(regs))
292 return;
293
294 bit = (address - 0xA0000) >> PAGE_SHIFT;
295 if (bit < 32)
296 tsk->thread.screen_bitmap |= 1 << bit;
33cb5243 297}
1da177e4 298
087975b0 299static bool low_pfn(unsigned long pfn)
1da177e4 300{
087975b0
AM
301 return pfn < max_low_pfn;
302}
1156e098 303
087975b0
AM
304static void dump_pagetable(unsigned long address)
305{
306 pgd_t *base = __va(read_cr3());
307 pgd_t *pgd = &base[pgd_index(address)];
308 pmd_t *pmd;
309 pte_t *pte;
2d4a7167 310
1156e098 311#ifdef CONFIG_X86_PAE
087975b0
AM
312 printk("*pdpt = %016Lx ", pgd_val(*pgd));
313 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
314 goto out;
1156e098 315#endif
087975b0
AM
316 pmd = pmd_offset(pud_offset(pgd, address), address);
317 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
1156e098
HH
318
319 /*
320 * We must not directly access the pte in the highpte
321 * case if the page table is located in highmem.
322 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 323 * it's allocated already:
1156e098 324 */
087975b0
AM
325 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
326 goto out;
1156e098 327
087975b0
AM
328 pte = pte_offset_kernel(pmd, address);
329 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
330out:
1156e098 331 printk("\n");
f2f13a85
IM
332}
333
334#else /* CONFIG_X86_64: */
335
336void vmalloc_sync_all(void)
337{
6afb5157 338 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
f2f13a85
IM
339}
340
341/*
342 * 64-bit:
343 *
344 * Handle a fault on the vmalloc area
345 *
346 * This assumes no large pages in there.
347 */
62c9295f 348static noinline __kprobes int vmalloc_fault(unsigned long address)
f2f13a85
IM
349{
350 pgd_t *pgd, *pgd_ref;
351 pud_t *pud, *pud_ref;
352 pmd_t *pmd, *pmd_ref;
353 pte_t *pte, *pte_ref;
354
355 /* Make sure we are in vmalloc area: */
356 if (!(address >= VMALLOC_START && address < VMALLOC_END))
357 return -1;
358
359 /*
360 * Copy kernel mappings over when needed. This can also
361 * happen within a race in page table update. In the later
362 * case just flush:
363 */
364 pgd = pgd_offset(current->active_mm, address);
365 pgd_ref = pgd_offset_k(address);
366 if (pgd_none(*pgd_ref))
367 return -1;
368
369 if (pgd_none(*pgd))
370 set_pgd(pgd, *pgd_ref);
371 else
372 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
373
374 /*
375 * Below here mismatches are bugs because these lower tables
376 * are shared:
377 */
378
379 pud = pud_offset(pgd, address);
380 pud_ref = pud_offset(pgd_ref, address);
381 if (pud_none(*pud_ref))
382 return -1;
383
384 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
385 BUG();
386
387 pmd = pmd_offset(pud, address);
388 pmd_ref = pmd_offset(pud_ref, address);
389 if (pmd_none(*pmd_ref))
390 return -1;
391
392 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
393 BUG();
394
395 pte_ref = pte_offset_kernel(pmd_ref, address);
396 if (!pte_present(*pte_ref))
397 return -1;
398
399 pte = pte_offset_kernel(pmd, address);
400
401 /*
402 * Don't use pte_page here, because the mappings can point
403 * outside mem_map, and the NUMA hash lookup cannot handle
404 * that:
405 */
406 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
407 BUG();
408
409 return 0;
410}
411
412static const char errata93_warning[] =
ad361c98
JP
413KERN_ERR
414"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
415"******* Working around it, but it may cause SEGVs or burn power.\n"
416"******* Please consider a BIOS update.\n"
417"******* Disabling USB legacy in the BIOS may also help.\n";
f2f13a85
IM
418
419/*
420 * No vm86 mode in 64-bit mode:
421 */
422static inline void
423check_v8086_mode(struct pt_regs *regs, unsigned long address,
424 struct task_struct *tsk)
425{
426}
427
428static int bad_address(void *p)
429{
430 unsigned long dummy;
431
432 return probe_kernel_address((unsigned long *)p, dummy);
433}
434
435static void dump_pagetable(unsigned long address)
436{
087975b0
AM
437 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
438 pgd_t *pgd = base + pgd_index(address);
1da177e4
LT
439 pud_t *pud;
440 pmd_t *pmd;
441 pte_t *pte;
442
2d4a7167
IM
443 if (bad_address(pgd))
444 goto bad;
445
d646bce4 446 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
447
448 if (!pgd_present(*pgd))
449 goto out;
1da177e4 450
d2ae5b5f 451 pud = pud_offset(pgd, address);
2d4a7167
IM
452 if (bad_address(pud))
453 goto bad;
454
1da177e4 455 printk("PUD %lx ", pud_val(*pud));
b5360222 456 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 457 goto out;
1da177e4
LT
458
459 pmd = pmd_offset(pud, address);
2d4a7167
IM
460 if (bad_address(pmd))
461 goto bad;
462
1da177e4 463 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
464 if (!pmd_present(*pmd) || pmd_large(*pmd))
465 goto out;
1da177e4
LT
466
467 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
468 if (bad_address(pte))
469 goto bad;
470
33cb5243 471 printk("PTE %lx", pte_val(*pte));
2d4a7167 472out:
1da177e4
LT
473 printk("\n");
474 return;
475bad:
476 printk("BAD\n");
8c938f9f
IM
477}
478
f2f13a85 479#endif /* CONFIG_X86_64 */
1da177e4 480
2d4a7167
IM
481/*
482 * Workaround for K8 erratum #93 & buggy BIOS.
483 *
484 * BIOS SMM functions are required to use a specific workaround
485 * to avoid corruption of the 64bit RIP register on C stepping K8.
486 *
487 * A lot of BIOS that didn't get tested properly miss this.
488 *
489 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
490 * Try to work around it here.
491 *
492 * Note we only handle faults in kernel here.
493 * Does nothing on 32-bit.
fdfe8aa8 494 */
33cb5243 495static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 496{
fdfe8aa8 497#ifdef CONFIG_X86_64
65ea5b03 498 if (address != regs->ip)
1da177e4 499 return 0;
2d4a7167 500
33cb5243 501 if ((address >> 32) != 0)
1da177e4 502 return 0;
2d4a7167 503
1da177e4 504 address |= 0xffffffffUL << 32;
33cb5243
HH
505 if ((address >= (u64)_stext && address <= (u64)_etext) ||
506 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 507 printk_once(errata93_warning);
65ea5b03 508 regs->ip = address;
1da177e4
LT
509 return 1;
510 }
fdfe8aa8 511#endif
1da177e4 512 return 0;
33cb5243 513}
1da177e4 514
35f3266f 515/*
2d4a7167
IM
516 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
517 * to illegal addresses >4GB.
518 *
519 * We catch this in the page fault handler because these addresses
520 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
521 * segment in LDT is compatibility mode.
522 */
523static int is_errata100(struct pt_regs *regs, unsigned long address)
524{
525#ifdef CONFIG_X86_64
2d4a7167 526 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
527 return 1;
528#endif
529 return 0;
530}
531
29caf2f9
HH
532static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
533{
534#ifdef CONFIG_X86_F00F_BUG
535 unsigned long nr;
2d4a7167 536
29caf2f9 537 /*
2d4a7167 538 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9
HH
539 */
540 if (boot_cpu_data.f00f_bug) {
541 nr = (address - idt_descr.address) >> 3;
542
543 if (nr == 6) {
544 do_invalid_op(regs, 0);
545 return 1;
546 }
547 }
548#endif
549 return 0;
550}
551
8f766149
IM
552static const char nx_warning[] = KERN_CRIT
553"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
554
2d4a7167
IM
555static void
556show_fault_oops(struct pt_regs *regs, unsigned long error_code,
557 unsigned long address)
b3279c7f 558{
1156e098
HH
559 if (!oops_may_print())
560 return;
561
1156e098 562 if (error_code & PF_INSTR) {
93809be8 563 unsigned int level;
2d4a7167 564
1156e098
HH
565 pte_t *pte = lookup_address(address, &level);
566
8f766149
IM
567 if (pte && pte_present(*pte) && !pte_exec(*pte))
568 printk(nx_warning, current_uid());
1156e098 569 }
1156e098 570
19f0dda9 571 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 572 if (address < PAGE_SIZE)
19f0dda9 573 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 574 else
19f0dda9 575 printk(KERN_CONT "paging request");
2d4a7167 576
f294a8ce 577 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 578 printk(KERN_ALERT "IP:");
b3279c7f 579 printk_address(regs->ip, 1);
2d4a7167 580
b3279c7f
HH
581 dump_pagetable(address);
582}
583
2d4a7167
IM
584static noinline void
585pgtable_bad(struct pt_regs *regs, unsigned long error_code,
586 unsigned long address)
1da177e4 587{
2d4a7167
IM
588 struct task_struct *tsk;
589 unsigned long flags;
590 int sig;
591
592 flags = oops_begin();
593 tsk = current;
594 sig = SIGKILL;
1209140c 595
1da177e4 596 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 597 tsk->comm, address);
1da177e4 598 dump_pagetable(address);
2d4a7167
IM
599
600 tsk->thread.cr2 = address;
601 tsk->thread.trap_no = 14;
602 tsk->thread.error_code = error_code;
603
22f5991c 604 if (__die("Bad pagetable", regs, error_code))
874d93d1 605 sig = 0;
2d4a7167 606
874d93d1 607 oops_end(flags, regs, sig);
1da177e4
LT
608}
609
2d4a7167
IM
610static noinline void
611no_context(struct pt_regs *regs, unsigned long error_code,
612 unsigned long address)
92181f19
NP
613{
614 struct task_struct *tsk = current;
19803078 615 unsigned long *stackend;
92181f19
NP
616 unsigned long flags;
617 int sig;
92181f19 618
2d4a7167 619 /* Are we prepared to handle this kernel fault? */
92181f19
NP
620 if (fixup_exception(regs))
621 return;
622
623 /*
2d4a7167
IM
624 * 32-bit:
625 *
626 * Valid to do another page fault here, because if this fault
627 * had been triggered by is_prefetch fixup_exception would have
628 * handled it.
629 *
630 * 64-bit:
92181f19 631 *
2d4a7167 632 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
633 */
634 if (is_prefetch(regs, error_code, address))
635 return;
636
637 if (is_errata93(regs, address))
638 return;
639
640 /*
641 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 642 * terminate things with extreme prejudice:
92181f19 643 */
92181f19 644 flags = oops_begin();
92181f19
NP
645
646 show_fault_oops(regs, error_code, address);
647
2d4a7167 648 stackend = end_of_stack(tsk);
0e7810be 649 if (tsk != &init_task && *stackend != STACK_END_MAGIC)
19803078
IM
650 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
651
1cc99544
IM
652 tsk->thread.cr2 = address;
653 tsk->thread.trap_no = 14;
654 tsk->thread.error_code = error_code;
92181f19 655
92181f19
NP
656 sig = SIGKILL;
657 if (__die("Oops", regs, error_code))
658 sig = 0;
2d4a7167 659
92181f19
NP
660 /* Executive summary in case the body of the oops scrolled away */
661 printk(KERN_EMERG "CR2: %016lx\n", address);
2d4a7167 662
92181f19 663 oops_end(flags, regs, sig);
92181f19
NP
664}
665
2d4a7167
IM
666/*
667 * Print out info about fatal segfaults, if the show_unhandled_signals
668 * sysctl is set:
669 */
670static inline void
671show_signal_msg(struct pt_regs *regs, unsigned long error_code,
672 unsigned long address, struct task_struct *tsk)
673{
674 if (!unhandled_signal(tsk, SIGSEGV))
675 return;
676
677 if (!printk_ratelimit())
678 return;
679
a1a08d1c 680 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
681 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
682 tsk->comm, task_pid_nr(tsk), address,
683 (void *)regs->ip, (void *)regs->sp, error_code);
684
685 print_vma_addr(KERN_CONT " in ", regs->ip);
686
687 printk(KERN_CONT "\n");
688}
689
690static void
691__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
692 unsigned long address, int si_code)
92181f19
NP
693{
694 struct task_struct *tsk = current;
695
696 /* User mode accesses just cause a SIGSEGV */
697 if (error_code & PF_USER) {
698 /*
2d4a7167 699 * It's possible to have interrupts off here:
92181f19
NP
700 */
701 local_irq_enable();
702
703 /*
704 * Valid to do another page fault here because this one came
2d4a7167 705 * from user space:
92181f19
NP
706 */
707 if (is_prefetch(regs, error_code, address))
708 return;
709
710 if (is_errata100(regs, address))
711 return;
712
2d4a7167
IM
713 if (unlikely(show_unhandled_signals))
714 show_signal_msg(regs, error_code, address, tsk);
715
716 /* Kernel addresses are always protection faults: */
717 tsk->thread.cr2 = address;
718 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
719 tsk->thread.trap_no = 14;
92181f19 720
92181f19 721 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
2d4a7167 722
92181f19
NP
723 return;
724 }
725
726 if (is_f00f_bug(regs, address))
727 return;
728
729 no_context(regs, error_code, address);
730}
731
2d4a7167
IM
732static noinline void
733bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
734 unsigned long address)
92181f19
NP
735{
736 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
737}
738
2d4a7167
IM
739static void
740__bad_area(struct pt_regs *regs, unsigned long error_code,
741 unsigned long address, int si_code)
92181f19
NP
742{
743 struct mm_struct *mm = current->mm;
744
745 /*
746 * Something tried to access memory that isn't in our memory map..
747 * Fix it, but check if it's kernel or user first..
748 */
749 up_read(&mm->mmap_sem);
750
751 __bad_area_nosemaphore(regs, error_code, address, si_code);
752}
753
2d4a7167
IM
754static noinline void
755bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
756{
757 __bad_area(regs, error_code, address, SEGV_MAPERR);
758}
759
2d4a7167
IM
760static noinline void
761bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
762 unsigned long address)
92181f19
NP
763{
764 __bad_area(regs, error_code, address, SEGV_ACCERR);
765}
766
767/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
2d4a7167
IM
768static void
769out_of_memory(struct pt_regs *regs, unsigned long error_code,
770 unsigned long address)
92181f19
NP
771{
772 /*
773 * We ran out of memory, call the OOM killer, and return the userspace
2d4a7167 774 * (which will retry the fault, or kill us if we got oom-killed):
92181f19
NP
775 */
776 up_read(&current->mm->mmap_sem);
2d4a7167 777
92181f19
NP
778 pagefault_out_of_memory();
779}
780
2d4a7167 781static void
a6e04aa9
AK
782do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
783 unsigned int fault)
92181f19
NP
784{
785 struct task_struct *tsk = current;
786 struct mm_struct *mm = tsk->mm;
a6e04aa9 787 int code = BUS_ADRERR;
92181f19
NP
788
789 up_read(&mm->mmap_sem);
790
2d4a7167 791 /* Kernel mode? Handle exceptions or die: */
96054569 792 if (!(error_code & PF_USER)) {
92181f19 793 no_context(regs, error_code, address);
96054569
LT
794 return;
795 }
2d4a7167 796
cd1b68f0 797 /* User-space => ok to do another page fault: */
92181f19
NP
798 if (is_prefetch(regs, error_code, address))
799 return;
2d4a7167
IM
800
801 tsk->thread.cr2 = address;
802 tsk->thread.error_code = error_code;
803 tsk->thread.trap_no = 14;
804
a6e04aa9
AK
805#ifdef CONFIG_MEMORY_FAILURE
806 if (fault & VM_FAULT_HWPOISON) {
807 printk(KERN_ERR
808 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
809 tsk->comm, tsk->pid, address);
810 code = BUS_MCEERR_AR;
811 }
812#endif
813 force_sig_info_fault(SIGBUS, code, address, tsk);
92181f19
NP
814}
815
2d4a7167
IM
816static noinline void
817mm_fault_error(struct pt_regs *regs, unsigned long error_code,
818 unsigned long address, unsigned int fault)
92181f19 819{
2d4a7167 820 if (fault & VM_FAULT_OOM) {
92181f19 821 out_of_memory(regs, error_code, address);
2d4a7167 822 } else {
a6e04aa9
AK
823 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON))
824 do_sigbus(regs, error_code, address, fault);
2d4a7167
IM
825 else
826 BUG();
827 }
92181f19
NP
828}
829
d8b57bb7
TG
830static int spurious_fault_check(unsigned long error_code, pte_t *pte)
831{
832 if ((error_code & PF_WRITE) && !pte_write(*pte))
833 return 0;
2d4a7167 834
d8b57bb7
TG
835 if ((error_code & PF_INSTR) && !pte_exec(*pte))
836 return 0;
837
838 return 1;
839}
840
5b727a3b 841/*
2d4a7167
IM
842 * Handle a spurious fault caused by a stale TLB entry.
843 *
844 * This allows us to lazily refresh the TLB when increasing the
845 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
846 * eagerly is very expensive since that implies doing a full
847 * cross-processor TLB flush, even if no stale TLB entries exist
848 * on other processors.
849 *
5b727a3b
JF
850 * There are no security implications to leaving a stale TLB when
851 * increasing the permissions on a page.
852 */
62c9295f 853static noinline __kprobes int
2d4a7167 854spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
855{
856 pgd_t *pgd;
857 pud_t *pud;
858 pmd_t *pmd;
859 pte_t *pte;
3c3e5694 860 int ret;
5b727a3b
JF
861
862 /* Reserved-bit violation or user access to kernel space? */
863 if (error_code & (PF_USER | PF_RSVD))
864 return 0;
865
866 pgd = init_mm.pgd + pgd_index(address);
867 if (!pgd_present(*pgd))
868 return 0;
869
870 pud = pud_offset(pgd, address);
871 if (!pud_present(*pud))
872 return 0;
873
d8b57bb7
TG
874 if (pud_large(*pud))
875 return spurious_fault_check(error_code, (pte_t *) pud);
876
5b727a3b
JF
877 pmd = pmd_offset(pud, address);
878 if (!pmd_present(*pmd))
879 return 0;
880
d8b57bb7
TG
881 if (pmd_large(*pmd))
882 return spurious_fault_check(error_code, (pte_t *) pmd);
883
660a293e
SL
884 /*
885 * Note: don't use pte_present() here, since it returns true
886 * if the _PAGE_PROTNONE bit is set. However, this aliases the
887 * _PAGE_GLOBAL bit, which for kernel pages give false positives
888 * when CONFIG_DEBUG_PAGEALLOC is used.
889 */
5b727a3b 890 pte = pte_offset_kernel(pmd, address);
660a293e 891 if (!(pte_flags(*pte) & _PAGE_PRESENT))
5b727a3b
JF
892 return 0;
893
3c3e5694
SR
894 ret = spurious_fault_check(error_code, pte);
895 if (!ret)
896 return 0;
897
898 /*
2d4a7167
IM
899 * Make sure we have permissions in PMD.
900 * If not, then there's a bug in the page tables:
3c3e5694
SR
901 */
902 ret = spurious_fault_check(error_code, (pte_t *) pmd);
903 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 904
3c3e5694 905 return ret;
5b727a3b
JF
906}
907
abd4f750 908int show_unhandled_signals = 1;
1da177e4 909
2d4a7167
IM
910static inline int
911access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
92181f19
NP
912{
913 if (write) {
2d4a7167 914 /* write, present and write, not present: */
92181f19
NP
915 if (unlikely(!(vma->vm_flags & VM_WRITE)))
916 return 1;
2d4a7167 917 return 0;
92181f19
NP
918 }
919
2d4a7167
IM
920 /* read, present: */
921 if (unlikely(error_code & PF_PROT))
922 return 1;
923
924 /* read, not present: */
925 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
926 return 1;
927
92181f19
NP
928 return 0;
929}
930
0973a06c
HS
931static int fault_in_kernel_space(unsigned long address)
932{
d9517346 933 return address >= TASK_SIZE_MAX;
0973a06c
HS
934}
935
1da177e4
LT
936/*
937 * This routine handles page faults. It determines the address,
938 * and the problem, and then passes it off to one of the appropriate
939 * routines.
1da177e4 940 */
c3731c68
IM
941dotraplinkage void __kprobes
942do_page_fault(struct pt_regs *regs, unsigned long error_code)
1da177e4 943{
2d4a7167 944 struct vm_area_struct *vma;
1da177e4 945 struct task_struct *tsk;
2d4a7167 946 unsigned long address;
1da177e4 947 struct mm_struct *mm;
92181f19 948 int write;
f8c2ee22 949 int fault;
1da177e4 950
a9ba9a3b
AV
951 tsk = current;
952 mm = tsk->mm;
2d4a7167 953
2d4a7167 954 /* Get the faulting address: */
f51c9452 955 address = read_cr2();
1da177e4 956
f8561296
VN
957 /*
958 * Detect and handle instructions that would cause a page fault for
959 * both a tracked kernel page and a userspace page.
960 */
961 if (kmemcheck_active(regs))
962 kmemcheck_hide(regs);
5dfaf90f 963 prefetchw(&mm->mmap_sem);
f8561296 964
0fd0e3da 965 if (unlikely(kmmio_fault(regs, address)))
86069782 966 return;
1da177e4
LT
967
968 /*
969 * We fault-in kernel-space virtual memory on-demand. The
970 * 'reference' page table is init_mm.pgd.
971 *
972 * NOTE! We MUST NOT take any locks for this case. We may
973 * be in an interrupt or a critical region, and should
974 * only copy the information from the master page table,
975 * nothing more.
976 *
977 * This verifies that the fault happens in kernel space
978 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 979 * protection error (error_code & 9) == 0.
1da177e4 980 */
0973a06c 981 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
982 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
983 if (vmalloc_fault(address) >= 0)
984 return;
985
986 if (kmemcheck_fault(regs, address, error_code))
987 return;
988 }
5b727a3b 989
2d4a7167 990 /* Can handle a stale RO->RW TLB: */
92181f19 991 if (spurious_fault(error_code, address))
5b727a3b
JF
992 return;
993
2d4a7167 994 /* kprobes don't want to hook the spurious faults: */
9be260a6
MH
995 if (notify_page_fault(regs))
996 return;
f8c2ee22
HH
997 /*
998 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 999 * fault we could otherwise deadlock:
f8c2ee22 1000 */
92181f19 1001 bad_area_nosemaphore(regs, error_code, address);
2d4a7167 1002
92181f19 1003 return;
f8c2ee22
HH
1004 }
1005
2d4a7167 1006 /* kprobes don't want to hook the spurious faults: */
f8a6b2b9 1007 if (unlikely(notify_page_fault(regs)))
9be260a6 1008 return;
f8c2ee22 1009 /*
891cffbd
LT
1010 * It's safe to allow irq's after cr2 has been saved and the
1011 * vmalloc fault has been handled.
1012 *
1013 * User-mode registers count as a user access even for any
2d4a7167 1014 * potential system fault or CPU buglet:
f8c2ee22 1015 */
891cffbd
LT
1016 if (user_mode_vm(regs)) {
1017 local_irq_enable();
1018 error_code |= PF_USER;
2d4a7167
IM
1019 } else {
1020 if (regs->flags & X86_EFLAGS_IF)
1021 local_irq_enable();
1022 }
8c914cb7 1023
66c58156 1024 if (unlikely(error_code & PF_RSVD))
92181f19 1025 pgtable_bad(regs, error_code, address);
1da177e4 1026
cdd6c482 1027 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
7dd1fcc2 1028
1da177e4 1029 /*
2d4a7167
IM
1030 * If we're in an interrupt, have no user context or are running
1031 * in an atomic region then we must not take the fault:
1da177e4 1032 */
92181f19
NP
1033 if (unlikely(in_atomic() || !mm)) {
1034 bad_area_nosemaphore(regs, error_code, address);
1035 return;
1036 }
1da177e4 1037
3a1dfe6e
IM
1038 /*
1039 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1040 * addresses in user space. All other faults represent errors in
1041 * the kernel and should generate an OOPS. Unfortunately, in the
1042 * case of an erroneous fault occurring in a code path which already
1043 * holds mmap_sem we will deadlock attempting to validate the fault
1044 * against the address space. Luckily the kernel only validly
1045 * references user space from well defined areas of code, which are
1046 * listed in the exceptions table.
1da177e4
LT
1047 *
1048 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1049 * the source reference check when there is a possibility of a
1050 * deadlock. Attempt to lock the address space, if we cannot we then
1051 * validate the source. If this is invalid we can skip the address
1052 * space check, thus avoiding the deadlock:
1da177e4 1053 */
92181f19 1054 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1055 if ((error_code & PF_USER) == 0 &&
92181f19
NP
1056 !search_exception_tables(regs->ip)) {
1057 bad_area_nosemaphore(regs, error_code, address);
1058 return;
1059 }
1da177e4 1060 down_read(&mm->mmap_sem);
01006074
PZ
1061 } else {
1062 /*
2d4a7167
IM
1063 * The above down_read_trylock() might have succeeded in
1064 * which case we'll have missed the might_sleep() from
1065 * down_read():
01006074
PZ
1066 */
1067 might_sleep();
1da177e4
LT
1068 }
1069
1070 vma = find_vma(mm, address);
92181f19
NP
1071 if (unlikely(!vma)) {
1072 bad_area(regs, error_code, address);
1073 return;
1074 }
1075 if (likely(vma->vm_start <= address))
1da177e4 1076 goto good_area;
92181f19
NP
1077 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1078 bad_area(regs, error_code, address);
1079 return;
1080 }
33cb5243 1081 if (error_code & PF_USER) {
6f4d368e
HH
1082 /*
1083 * Accessing the stack below %sp is always a bug.
1084 * The large cushion allows instructions like enter
2d4a7167 1085 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1086 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1087 */
92181f19
NP
1088 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1089 bad_area(regs, error_code, address);
1090 return;
1091 }
1da177e4 1092 }
92181f19
NP
1093 if (unlikely(expand_stack(vma, address))) {
1094 bad_area(regs, error_code, address);
1095 return;
1096 }
1097
1098 /*
1099 * Ok, we have a good vm_area for this memory access, so
1100 * we can handle it..
1101 */
1da177e4 1102good_area:
92181f19 1103 write = error_code & PF_WRITE;
2d4a7167 1104
92181f19
NP
1105 if (unlikely(access_error(error_code, write, vma))) {
1106 bad_area_access_error(regs, error_code, address);
1107 return;
1da177e4
LT
1108 }
1109
1110 /*
1111 * If for any reason at all we couldn't handle the fault,
1112 * make sure we exit gracefully rather than endlessly redo
2d4a7167 1113 * the fault:
1da177e4 1114 */
d06063cc 1115 fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0);
2d4a7167 1116
83c54070 1117 if (unlikely(fault & VM_FAULT_ERROR)) {
92181f19
NP
1118 mm_fault_error(regs, error_code, address, fault);
1119 return;
1da177e4 1120 }
2d4a7167 1121
ac17dc8e 1122 if (fault & VM_FAULT_MAJOR) {
83c54070 1123 tsk->maj_flt++;
cdd6c482 1124 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
78f13e95 1125 regs, address);
ac17dc8e 1126 } else {
83c54070 1127 tsk->min_flt++;
cdd6c482 1128 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
78f13e95 1129 regs, address);
ac17dc8e 1130 }
d729ab35 1131
8c938f9f
IM
1132 check_v8086_mode(regs, address, tsk);
1133
1da177e4 1134 up_read(&mm->mmap_sem);
1da177e4 1135}