]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/mm/fault.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473 6#include <linux/sched.h> /* test_thread_flag(), ... */
68db0cf1 7#include <linux/sched/task_stack.h> /* task_stack_*(), ... */
a2bcd473 8#include <linux/kdebug.h> /* oops_begin/end, ... */
4cdf8dbe 9#include <linux/extable.h> /* search_exception_tables */
a2bcd473 10#include <linux/bootmem.h> /* max_low_pfn */
9326638c 11#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
a2bcd473 12#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 13#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 14#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 15#include <linux/prefetch.h> /* prefetchw */
56dd9470 16#include <linux/context_tracking.h> /* exception_enter(), ... */
70ffdb93 17#include <linux/uaccess.h> /* faulthandler_disabled() */
2d4a7167 18
019132ff 19#include <asm/cpufeature.h> /* boot_cpu_has, ... */
a2bcd473
IM
20#include <asm/traps.h> /* dotraplinkage, ... */
21#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 22#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
f40c3300
AL
23#include <asm/fixmap.h> /* VSYSCALL_ADDR */
24#include <asm/vsyscall.h> /* emulate_vsyscall */
ba3e127e 25#include <asm/vm86.h> /* struct vm86 */
019132ff 26#include <asm/mmu_context.h> /* vma_pkey() */
1da177e4 27
d34603b0
SA
28#define CREATE_TRACE_POINTS
29#include <asm/trace/exceptions.h>
30
33cb5243 31/*
2d4a7167
IM
32 * Page fault error code bits:
33 *
34 * bit 0 == 0: no page found 1: protection fault
35 * bit 1 == 0: read access 1: write access
36 * bit 2 == 0: kernel-mode access 1: user-mode access
37 * bit 3 == 1: use of reserved bit detected
38 * bit 4 == 1: fault was an instruction fetch
b3ecd515 39 * bit 5 == 1: protection keys block access
33cb5243 40 */
2d4a7167
IM
41enum x86_pf_error_code {
42
43 PF_PROT = 1 << 0,
44 PF_WRITE = 1 << 1,
45 PF_USER = 1 << 2,
46 PF_RSVD = 1 << 3,
47 PF_INSTR = 1 << 4,
b3ecd515 48 PF_PK = 1 << 5,
2d4a7167 49};
66c58156 50
b814d41f 51/*
b319eed0
IM
52 * Returns 0 if mmiotrace is disabled, or if the fault is not
53 * handled by mmiotrace:
b814d41f 54 */
9326638c 55static nokprobe_inline int
62c9295f 56kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 57{
0fd0e3da
PP
58 if (unlikely(is_kmmio_active()))
59 if (kmmio_handler(regs, addr) == 1)
60 return -1;
0fd0e3da 61 return 0;
86069782
PP
62}
63
9326638c 64static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
1bd858a5 65{
74a0b576
CH
66 int ret = 0;
67
68 /* kprobe_running() needs smp_processor_id() */
f39b6f0e 69 if (kprobes_built_in() && !user_mode(regs)) {
74a0b576
CH
70 preempt_disable();
71 if (kprobe_running() && kprobe_fault_handler(regs, 14))
72 ret = 1;
73 preempt_enable();
74 }
1bd858a5 75
74a0b576 76 return ret;
33cb5243 77}
1bd858a5 78
1dc85be0 79/*
2d4a7167
IM
80 * Prefetch quirks:
81 *
82 * 32-bit mode:
83 *
84 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
85 * Check that here and ignore it.
1dc85be0 86 *
2d4a7167 87 * 64-bit mode:
1dc85be0 88 *
2d4a7167
IM
89 * Sometimes the CPU reports invalid exceptions on prefetch.
90 * Check that here and ignore it.
91 *
92 * Opcode checker based on code by Richard Brunner.
1dc85be0 93 */
107a0367
IM
94static inline int
95check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
96 unsigned char opcode, int *prefetch)
97{
98 unsigned char instr_hi = opcode & 0xf0;
99 unsigned char instr_lo = opcode & 0x0f;
100
101 switch (instr_hi) {
102 case 0x20:
103 case 0x30:
104 /*
105 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
106 * In X86_64 long mode, the CPU will signal invalid
107 * opcode if some of these prefixes are present so
108 * X86_64 will never get here anyway
109 */
110 return ((instr_lo & 7) == 0x6);
111#ifdef CONFIG_X86_64
112 case 0x40:
113 /*
114 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
115 * Need to figure out under what instruction mode the
116 * instruction was issued. Could check the LDT for lm,
117 * but for now it's good enough to assume that long
118 * mode only uses well known segments or kernel.
119 */
318f5a2a 120 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
121#endif
122 case 0x60:
123 /* 0x64 thru 0x67 are valid prefixes in all modes. */
124 return (instr_lo & 0xC) == 0x4;
125 case 0xF0:
126 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
127 return !instr_lo || (instr_lo>>1) == 1;
128 case 0x00:
129 /* Prefetch instruction is 0x0F0D or 0x0F18 */
130 if (probe_kernel_address(instr, opcode))
131 return 0;
132
133 *prefetch = (instr_lo == 0xF) &&
134 (opcode == 0x0D || opcode == 0x18);
135 return 0;
136 default:
137 return 0;
138 }
139}
140
2d4a7167
IM
141static int
142is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 143{
2d4a7167 144 unsigned char *max_instr;
ab2bf0c1 145 unsigned char *instr;
33cb5243 146 int prefetch = 0;
1da177e4 147
3085354d
IM
148 /*
149 * If it was a exec (instruction fetch) fault on NX page, then
150 * do not ignore the fault:
151 */
66c58156 152 if (error_code & PF_INSTR)
1da177e4 153 return 0;
1dc85be0 154
107a0367 155 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 156 max_instr = instr + 15;
1da177e4 157
d31bf07f 158 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
1da177e4
LT
159 return 0;
160
107a0367 161 while (instr < max_instr) {
2d4a7167 162 unsigned char opcode;
1da177e4 163
ab2bf0c1 164 if (probe_kernel_address(instr, opcode))
33cb5243 165 break;
1da177e4 166
1da177e4
LT
167 instr++;
168
107a0367 169 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 170 break;
1da177e4
LT
171 }
172 return prefetch;
173}
174
019132ff
DH
175/*
176 * A protection key fault means that the PKRU value did not allow
177 * access to some PTE. Userspace can figure out what PKRU was
178 * from the XSAVE state, and this function fills out a field in
179 * siginfo so userspace can discover which protection key was set
180 * on the PTE.
181 *
182 * If we get here, we know that the hardware signaled a PF_PK
183 * fault and that there was a VMA once we got in the fault
184 * handler. It does *not* guarantee that the VMA we find here
185 * was the one that we faulted on.
186 *
187 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
188 * 2. T1 : set PKRU to deny access to pkey=4, touches page
189 * 3. T1 : faults...
190 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
191 * 5. T1 : enters fault handler, takes mmap_sem, etc...
192 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
193 * faulted on a pte with its pkey=4.
194 */
195static void fill_sig_info_pkey(int si_code, siginfo_t *info,
196 struct vm_area_struct *vma)
197{
198 /* This is effectively an #ifdef */
199 if (!boot_cpu_has(X86_FEATURE_OSPKE))
200 return;
201
202 /* Fault not from Protection Keys: nothing to do */
203 if (si_code != SEGV_PKUERR)
204 return;
205 /*
206 * force_sig_info_fault() is called from a number of
207 * contexts, some of which have a VMA and some of which
208 * do not. The PF_PK handing happens after we have a
209 * valid VMA, so we should never reach this without a
210 * valid VMA.
211 */
212 if (!vma) {
213 WARN_ONCE(1, "PKU fault with no VMA passed in");
214 info->si_pkey = 0;
215 return;
216 }
217 /*
218 * si_pkey should be thought of as a strong hint, but not
219 * absolutely guranteed to be 100% accurate because of
220 * the race explained above.
221 */
222 info->si_pkey = vma_pkey(vma);
223}
224
2d4a7167
IM
225static void
226force_sig_info_fault(int si_signo, int si_code, unsigned long address,
7b2d0dba
DH
227 struct task_struct *tsk, struct vm_area_struct *vma,
228 int fault)
c4aba4a8 229{
f672b49b 230 unsigned lsb = 0;
c4aba4a8
HH
231 siginfo_t info;
232
2d4a7167
IM
233 info.si_signo = si_signo;
234 info.si_errno = 0;
235 info.si_code = si_code;
236 info.si_addr = (void __user *)address;
f672b49b
AK
237 if (fault & VM_FAULT_HWPOISON_LARGE)
238 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
239 if (fault & VM_FAULT_HWPOISON)
240 lsb = PAGE_SHIFT;
241 info.si_addr_lsb = lsb;
2d4a7167 242
019132ff
DH
243 fill_sig_info_pkey(si_code, &info, vma);
244
c4aba4a8
HH
245 force_sig_info(si_signo, &info, tsk);
246}
247
f2f13a85
IM
248DEFINE_SPINLOCK(pgd_lock);
249LIST_HEAD(pgd_list);
250
251#ifdef CONFIG_X86_32
252static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 253{
f2f13a85
IM
254 unsigned index = pgd_index(address);
255 pgd_t *pgd_k;
256 pud_t *pud, *pud_k;
257 pmd_t *pmd, *pmd_k;
2d4a7167 258
f2f13a85
IM
259 pgd += index;
260 pgd_k = init_mm.pgd + index;
261
262 if (!pgd_present(*pgd_k))
263 return NULL;
264
265 /*
266 * set_pgd(pgd, *pgd_k); here would be useless on PAE
267 * and redundant with the set_pmd() on non-PAE. As would
268 * set_pud.
269 */
270 pud = pud_offset(pgd, address);
271 pud_k = pud_offset(pgd_k, address);
272 if (!pud_present(*pud_k))
273 return NULL;
274
275 pmd = pmd_offset(pud, address);
276 pmd_k = pmd_offset(pud_k, address);
277 if (!pmd_present(*pmd_k))
278 return NULL;
279
b8bcfe99 280 if (!pmd_present(*pmd))
f2f13a85 281 set_pmd(pmd, *pmd_k);
b8bcfe99 282 else
f2f13a85 283 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
284
285 return pmd_k;
286}
287
288void vmalloc_sync_all(void)
289{
290 unsigned long address;
291
292 if (SHARED_KERNEL_PMD)
293 return;
294
295 for (address = VMALLOC_START & PMD_MASK;
dc4fac84 296 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
f2f13a85 297 address += PMD_SIZE) {
f2f13a85
IM
298 struct page *page;
299
a79e53d8 300 spin_lock(&pgd_lock);
f2f13a85 301 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 302 spinlock_t *pgt_lock;
f01f7c56 303 pmd_t *ret;
617d34d9 304
a79e53d8 305 /* the pgt_lock only for Xen */
617d34d9
JF
306 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
307
308 spin_lock(pgt_lock);
309 ret = vmalloc_sync_one(page_address(page), address);
310 spin_unlock(pgt_lock);
311
312 if (!ret)
f2f13a85
IM
313 break;
314 }
a79e53d8 315 spin_unlock(&pgd_lock);
f2f13a85
IM
316 }
317}
318
319/*
320 * 32-bit:
321 *
322 * Handle a fault on the vmalloc or module mapping area
323 */
9326638c 324static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
325{
326 unsigned long pgd_paddr;
327 pmd_t *pmd_k;
328 pte_t *pte_k;
329
330 /* Make sure we are in vmalloc area: */
331 if (!(address >= VMALLOC_START && address < VMALLOC_END))
332 return -1;
333
ebc8827f
FW
334 WARN_ON_ONCE(in_nmi());
335
f2f13a85
IM
336 /*
337 * Synchronize this task's top level page-table
338 * with the 'reference' page table.
339 *
340 * Do _not_ use "current" here. We might be inside
341 * an interrupt in the middle of a task switch..
342 */
343 pgd_paddr = read_cr3();
344 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
345 if (!pmd_k)
346 return -1;
347
f4eafd8b
TK
348 if (pmd_huge(*pmd_k))
349 return 0;
350
f2f13a85
IM
351 pte_k = pte_offset_kernel(pmd_k, address);
352 if (!pte_present(*pte_k))
353 return -1;
354
355 return 0;
356}
9326638c 357NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85
IM
358
359/*
360 * Did it hit the DOS screen memory VA from vm86 mode?
361 */
362static inline void
363check_v8086_mode(struct pt_regs *regs, unsigned long address,
364 struct task_struct *tsk)
365{
9fda6a06 366#ifdef CONFIG_VM86
f2f13a85
IM
367 unsigned long bit;
368
9fda6a06 369 if (!v8086_mode(regs) || !tsk->thread.vm86)
f2f13a85
IM
370 return;
371
372 bit = (address - 0xA0000) >> PAGE_SHIFT;
373 if (bit < 32)
9fda6a06
BG
374 tsk->thread.vm86->screen_bitmap |= 1 << bit;
375#endif
33cb5243 376}
1da177e4 377
087975b0 378static bool low_pfn(unsigned long pfn)
1da177e4 379{
087975b0
AM
380 return pfn < max_low_pfn;
381}
1156e098 382
087975b0
AM
383static void dump_pagetable(unsigned long address)
384{
385 pgd_t *base = __va(read_cr3());
386 pgd_t *pgd = &base[pgd_index(address)];
387 pmd_t *pmd;
388 pte_t *pte;
2d4a7167 389
1156e098 390#ifdef CONFIG_X86_PAE
087975b0
AM
391 printk("*pdpt = %016Lx ", pgd_val(*pgd));
392 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
393 goto out;
1156e098 394#endif
087975b0
AM
395 pmd = pmd_offset(pud_offset(pgd, address), address);
396 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
1156e098
HH
397
398 /*
399 * We must not directly access the pte in the highpte
400 * case if the page table is located in highmem.
401 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 402 * it's allocated already:
1156e098 403 */
087975b0
AM
404 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
405 goto out;
1156e098 406
087975b0
AM
407 pte = pte_offset_kernel(pmd, address);
408 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
409out:
1156e098 410 printk("\n");
f2f13a85
IM
411}
412
413#else /* CONFIG_X86_64: */
414
415void vmalloc_sync_all(void)
416{
5372e155 417 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
f2f13a85
IM
418}
419
420/*
421 * 64-bit:
422 *
423 * Handle a fault on the vmalloc area
f2f13a85 424 */
9326638c 425static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
426{
427 pgd_t *pgd, *pgd_ref;
428 pud_t *pud, *pud_ref;
429 pmd_t *pmd, *pmd_ref;
430 pte_t *pte, *pte_ref;
431
432 /* Make sure we are in vmalloc area: */
433 if (!(address >= VMALLOC_START && address < VMALLOC_END))
434 return -1;
435
ebc8827f
FW
436 WARN_ON_ONCE(in_nmi());
437
f2f13a85
IM
438 /*
439 * Copy kernel mappings over when needed. This can also
440 * happen within a race in page table update. In the later
441 * case just flush:
442 */
46aea387 443 pgd = (pgd_t *)__va(read_cr3()) + pgd_index(address);
f2f13a85
IM
444 pgd_ref = pgd_offset_k(address);
445 if (pgd_none(*pgd_ref))
446 return -1;
447
1160c277 448 if (pgd_none(*pgd)) {
f2f13a85 449 set_pgd(pgd, *pgd_ref);
1160c277
SK
450 arch_flush_lazy_mmu_mode();
451 } else {
f2f13a85 452 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1160c277 453 }
f2f13a85
IM
454
455 /*
456 * Below here mismatches are bugs because these lower tables
457 * are shared:
458 */
459
460 pud = pud_offset(pgd, address);
461 pud_ref = pud_offset(pgd_ref, address);
462 if (pud_none(*pud_ref))
463 return -1;
464
f4eafd8b 465 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
f2f13a85
IM
466 BUG();
467
f4eafd8b
TK
468 if (pud_huge(*pud))
469 return 0;
470
f2f13a85
IM
471 pmd = pmd_offset(pud, address);
472 pmd_ref = pmd_offset(pud_ref, address);
473 if (pmd_none(*pmd_ref))
474 return -1;
475
f4eafd8b 476 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
f2f13a85
IM
477 BUG();
478
f4eafd8b
TK
479 if (pmd_huge(*pmd))
480 return 0;
481
f2f13a85
IM
482 pte_ref = pte_offset_kernel(pmd_ref, address);
483 if (!pte_present(*pte_ref))
484 return -1;
485
486 pte = pte_offset_kernel(pmd, address);
487
488 /*
489 * Don't use pte_page here, because the mappings can point
490 * outside mem_map, and the NUMA hash lookup cannot handle
491 * that:
492 */
493 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
494 BUG();
495
496 return 0;
497}
9326638c 498NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85 499
e05139f2 500#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 501static const char errata93_warning[] =
ad361c98
JP
502KERN_ERR
503"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
504"******* Working around it, but it may cause SEGVs or burn power.\n"
505"******* Please consider a BIOS update.\n"
506"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 507#endif
f2f13a85
IM
508
509/*
510 * No vm86 mode in 64-bit mode:
511 */
512static inline void
513check_v8086_mode(struct pt_regs *regs, unsigned long address,
514 struct task_struct *tsk)
515{
516}
517
518static int bad_address(void *p)
519{
520 unsigned long dummy;
521
522 return probe_kernel_address((unsigned long *)p, dummy);
523}
524
525static void dump_pagetable(unsigned long address)
526{
087975b0
AM
527 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
528 pgd_t *pgd = base + pgd_index(address);
1da177e4
LT
529 pud_t *pud;
530 pmd_t *pmd;
531 pte_t *pte;
532
2d4a7167
IM
533 if (bad_address(pgd))
534 goto bad;
535
d646bce4 536 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
537
538 if (!pgd_present(*pgd))
539 goto out;
1da177e4 540
d2ae5b5f 541 pud = pud_offset(pgd, address);
2d4a7167
IM
542 if (bad_address(pud))
543 goto bad;
544
1da177e4 545 printk("PUD %lx ", pud_val(*pud));
b5360222 546 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 547 goto out;
1da177e4
LT
548
549 pmd = pmd_offset(pud, address);
2d4a7167
IM
550 if (bad_address(pmd))
551 goto bad;
552
1da177e4 553 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
554 if (!pmd_present(*pmd) || pmd_large(*pmd))
555 goto out;
1da177e4
LT
556
557 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
558 if (bad_address(pte))
559 goto bad;
560
33cb5243 561 printk("PTE %lx", pte_val(*pte));
2d4a7167 562out:
1da177e4
LT
563 printk("\n");
564 return;
565bad:
566 printk("BAD\n");
8c938f9f
IM
567}
568
f2f13a85 569#endif /* CONFIG_X86_64 */
1da177e4 570
2d4a7167
IM
571/*
572 * Workaround for K8 erratum #93 & buggy BIOS.
573 *
574 * BIOS SMM functions are required to use a specific workaround
575 * to avoid corruption of the 64bit RIP register on C stepping K8.
576 *
577 * A lot of BIOS that didn't get tested properly miss this.
578 *
579 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
580 * Try to work around it here.
581 *
582 * Note we only handle faults in kernel here.
583 * Does nothing on 32-bit.
fdfe8aa8 584 */
33cb5243 585static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 586{
e05139f2
JB
587#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
588 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
589 || boot_cpu_data.x86 != 0xf)
590 return 0;
591
65ea5b03 592 if (address != regs->ip)
1da177e4 593 return 0;
2d4a7167 594
33cb5243 595 if ((address >> 32) != 0)
1da177e4 596 return 0;
2d4a7167 597
1da177e4 598 address |= 0xffffffffUL << 32;
33cb5243
HH
599 if ((address >= (u64)_stext && address <= (u64)_etext) ||
600 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 601 printk_once(errata93_warning);
65ea5b03 602 regs->ip = address;
1da177e4
LT
603 return 1;
604 }
fdfe8aa8 605#endif
1da177e4 606 return 0;
33cb5243 607}
1da177e4 608
35f3266f 609/*
2d4a7167
IM
610 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
611 * to illegal addresses >4GB.
612 *
613 * We catch this in the page fault handler because these addresses
614 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
615 * segment in LDT is compatibility mode.
616 */
617static int is_errata100(struct pt_regs *regs, unsigned long address)
618{
619#ifdef CONFIG_X86_64
2d4a7167 620 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
621 return 1;
622#endif
623 return 0;
624}
625
29caf2f9
HH
626static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
627{
628#ifdef CONFIG_X86_F00F_BUG
629 unsigned long nr;
2d4a7167 630
29caf2f9 631 /*
2d4a7167 632 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9 633 */
e2604b49 634 if (boot_cpu_has_bug(X86_BUG_F00F)) {
29caf2f9
HH
635 nr = (address - idt_descr.address) >> 3;
636
637 if (nr == 6) {
638 do_invalid_op(regs, 0);
639 return 1;
640 }
641 }
642#endif
643 return 0;
644}
645
8f766149
IM
646static const char nx_warning[] = KERN_CRIT
647"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
eff50c34
JK
648static const char smep_warning[] = KERN_CRIT
649"unable to execute userspace code (SMEP?) (uid: %d)\n";
8f766149 650
2d4a7167
IM
651static void
652show_fault_oops(struct pt_regs *regs, unsigned long error_code,
653 unsigned long address)
b3279c7f 654{
1156e098
HH
655 if (!oops_may_print())
656 return;
657
1156e098 658 if (error_code & PF_INSTR) {
93809be8 659 unsigned int level;
426e34cc
MF
660 pgd_t *pgd;
661 pte_t *pte;
2d4a7167 662
426e34cc
MF
663 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
664 pgd += pgd_index(address);
665
666 pte = lookup_address_in_pgd(pgd, address, &level);
1156e098 667
8f766149 668 if (pte && pte_present(*pte) && !pte_exec(*pte))
078de5f7 669 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
eff50c34
JK
670 if (pte && pte_present(*pte) && pte_exec(*pte) &&
671 (pgd_flags(*pgd) & _PAGE_USER) &&
1e02ce4c 672 (__read_cr4() & X86_CR4_SMEP))
eff50c34 673 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
1156e098 674 }
1156e098 675
19f0dda9 676 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 677 if (address < PAGE_SIZE)
19f0dda9 678 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 679 else
19f0dda9 680 printk(KERN_CONT "paging request");
2d4a7167 681
f294a8ce 682 printk(KERN_CONT " at %p\n", (void *) address);
bb5e5ce5 683 printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
2d4a7167 684
b3279c7f
HH
685 dump_pagetable(address);
686}
687
2d4a7167
IM
688static noinline void
689pgtable_bad(struct pt_regs *regs, unsigned long error_code,
690 unsigned long address)
1da177e4 691{
2d4a7167
IM
692 struct task_struct *tsk;
693 unsigned long flags;
694 int sig;
695
696 flags = oops_begin();
697 tsk = current;
698 sig = SIGKILL;
1209140c 699
1da177e4 700 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 701 tsk->comm, address);
1da177e4 702 dump_pagetable(address);
2d4a7167
IM
703
704 tsk->thread.cr2 = address;
51e7dc70 705 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167
IM
706 tsk->thread.error_code = error_code;
707
22f5991c 708 if (__die("Bad pagetable", regs, error_code))
874d93d1 709 sig = 0;
2d4a7167 710
874d93d1 711 oops_end(flags, regs, sig);
1da177e4
LT
712}
713
2d4a7167
IM
714static noinline void
715no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 716 unsigned long address, int signal, int si_code)
92181f19
NP
717{
718 struct task_struct *tsk = current;
92181f19
NP
719 unsigned long flags;
720 int sig;
7b2d0dba
DH
721 /* No context means no VMA to pass down */
722 struct vm_area_struct *vma = NULL;
92181f19 723
2d4a7167 724 /* Are we prepared to handle this kernel fault? */
548acf19 725 if (fixup_exception(regs, X86_TRAP_PF)) {
c026b359
PZ
726 /*
727 * Any interrupt that takes a fault gets the fixup. This makes
728 * the below recursive fault logic only apply to a faults from
729 * task context.
730 */
731 if (in_interrupt())
732 return;
733
734 /*
735 * Per the above we're !in_interrupt(), aka. task context.
736 *
737 * In this case we need to make sure we're not recursively
738 * faulting through the emulate_vsyscall() logic.
739 */
2a53ccbc 740 if (current->thread.sig_on_uaccess_err && signal) {
51e7dc70 741 tsk->thread.trap_nr = X86_TRAP_PF;
4fc34901
AL
742 tsk->thread.error_code = error_code | PF_USER;
743 tsk->thread.cr2 = address;
744
745 /* XXX: hwpoison faults will set the wrong code. */
7b2d0dba
DH
746 force_sig_info_fault(signal, si_code, address,
747 tsk, vma, 0);
4fc34901 748 }
c026b359
PZ
749
750 /*
751 * Barring that, we can do the fixup and be happy.
752 */
92181f19 753 return;
4fc34901 754 }
92181f19 755
6271cfdf
AL
756#ifdef CONFIG_VMAP_STACK
757 /*
758 * Stack overflow? During boot, we can fault near the initial
759 * stack in the direct map, but that's not an overflow -- check
760 * that we're in vmalloc space to avoid this.
761 */
762 if (is_vmalloc_addr((void *)address) &&
763 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
764 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
765 register void *__sp asm("rsp");
766 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
767 /*
768 * We're likely to be running with very little stack space
769 * left. It's plausible that we'd hit this condition but
770 * double-fault even before we get this far, in which case
771 * we're fine: the double-fault handler will deal with it.
772 *
773 * We don't want to make it all the way into the oops code
774 * and then double-fault, though, because we're likely to
775 * break the console driver and lose most of the stack dump.
776 */
777 asm volatile ("movq %[stack], %%rsp\n\t"
778 "call handle_stack_overflow\n\t"
779 "1: jmp 1b"
780 : "+r" (__sp)
781 : "D" ("kernel stack overflow (page fault)"),
782 "S" (regs), "d" (address),
783 [stack] "rm" (stack));
784 unreachable();
785 }
786#endif
787
92181f19 788 /*
2d4a7167
IM
789 * 32-bit:
790 *
791 * Valid to do another page fault here, because if this fault
792 * had been triggered by is_prefetch fixup_exception would have
793 * handled it.
794 *
795 * 64-bit:
92181f19 796 *
2d4a7167 797 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
798 */
799 if (is_prefetch(regs, error_code, address))
800 return;
801
802 if (is_errata93(regs, address))
803 return;
804
805 /*
806 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 807 * terminate things with extreme prejudice:
92181f19 808 */
92181f19 809 flags = oops_begin();
92181f19
NP
810
811 show_fault_oops(regs, error_code, address);
812
a70857e4 813 if (task_stack_end_corrupted(tsk))
b0f4c4b3 814 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 815
1cc99544 816 tsk->thread.cr2 = address;
51e7dc70 817 tsk->thread.trap_nr = X86_TRAP_PF;
1cc99544 818 tsk->thread.error_code = error_code;
92181f19 819
92181f19
NP
820 sig = SIGKILL;
821 if (__die("Oops", regs, error_code))
822 sig = 0;
2d4a7167 823
92181f19 824 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 825 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 826
92181f19 827 oops_end(flags, regs, sig);
92181f19
NP
828}
829
2d4a7167
IM
830/*
831 * Print out info about fatal segfaults, if the show_unhandled_signals
832 * sysctl is set:
833 */
834static inline void
835show_signal_msg(struct pt_regs *regs, unsigned long error_code,
836 unsigned long address, struct task_struct *tsk)
837{
838 if (!unhandled_signal(tsk, SIGSEGV))
839 return;
840
841 if (!printk_ratelimit())
842 return;
843
a1a08d1c 844 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
845 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
846 tsk->comm, task_pid_nr(tsk), address,
847 (void *)regs->ip, (void *)regs->sp, error_code);
848
849 print_vma_addr(KERN_CONT " in ", regs->ip);
850
851 printk(KERN_CONT "\n");
852}
853
854static void
855__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
7b2d0dba
DH
856 unsigned long address, struct vm_area_struct *vma,
857 int si_code)
92181f19
NP
858{
859 struct task_struct *tsk = current;
860
861 /* User mode accesses just cause a SIGSEGV */
862 if (error_code & PF_USER) {
863 /*
2d4a7167 864 * It's possible to have interrupts off here:
92181f19
NP
865 */
866 local_irq_enable();
867
868 /*
869 * Valid to do another page fault here because this one came
2d4a7167 870 * from user space:
92181f19
NP
871 */
872 if (is_prefetch(regs, error_code, address))
873 return;
874
875 if (is_errata100(regs, address))
876 return;
877
3ae36655
AL
878#ifdef CONFIG_X86_64
879 /*
880 * Instruction fetch faults in the vsyscall page might need
881 * emulation.
882 */
883 if (unlikely((error_code & PF_INSTR) &&
f40c3300 884 ((address & ~0xfff) == VSYSCALL_ADDR))) {
3ae36655
AL
885 if (emulate_vsyscall(regs, address))
886 return;
887 }
888#endif
dc4fac84
AL
889
890 /*
891 * To avoid leaking information about the kernel page table
892 * layout, pretend that user-mode accesses to kernel addresses
893 * are always protection faults.
894 */
895 if (address >= TASK_SIZE_MAX)
e575a86f 896 error_code |= PF_PROT;
3ae36655 897
e575a86f 898 if (likely(show_unhandled_signals))
2d4a7167
IM
899 show_signal_msg(regs, error_code, address, tsk);
900
2d4a7167 901 tsk->thread.cr2 = address;
e575a86f 902 tsk->thread.error_code = error_code;
51e7dc70 903 tsk->thread.trap_nr = X86_TRAP_PF;
92181f19 904
7b2d0dba 905 force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
2d4a7167 906
92181f19
NP
907 return;
908 }
909
910 if (is_f00f_bug(regs, address))
911 return;
912
4fc34901 913 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
914}
915
2d4a7167
IM
916static noinline void
917bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 918 unsigned long address, struct vm_area_struct *vma)
92181f19 919{
7b2d0dba 920 __bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
92181f19
NP
921}
922
2d4a7167
IM
923static void
924__bad_area(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 925 unsigned long address, struct vm_area_struct *vma, int si_code)
92181f19
NP
926{
927 struct mm_struct *mm = current->mm;
928
929 /*
930 * Something tried to access memory that isn't in our memory map..
931 * Fix it, but check if it's kernel or user first..
932 */
933 up_read(&mm->mmap_sem);
934
7b2d0dba 935 __bad_area_nosemaphore(regs, error_code, address, vma, si_code);
92181f19
NP
936}
937
2d4a7167
IM
938static noinline void
939bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19 940{
7b2d0dba 941 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
92181f19
NP
942}
943
33a709b2
DH
944static inline bool bad_area_access_from_pkeys(unsigned long error_code,
945 struct vm_area_struct *vma)
946{
07f146f5
DH
947 /* This code is always called on the current mm */
948 bool foreign = false;
949
33a709b2
DH
950 if (!boot_cpu_has(X86_FEATURE_OSPKE))
951 return false;
952 if (error_code & PF_PK)
953 return true;
07f146f5 954 /* this checks permission keys on the VMA: */
d61172b4
DH
955 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
956 (error_code & PF_INSTR), foreign))
07f146f5 957 return true;
33a709b2 958 return false;
92181f19
NP
959}
960
2d4a7167
IM
961static noinline void
962bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 963 unsigned long address, struct vm_area_struct *vma)
92181f19 964{
019132ff
DH
965 /*
966 * This OSPKE check is not strictly necessary at runtime.
967 * But, doing it this way allows compiler optimizations
968 * if pkeys are compiled out.
969 */
33a709b2 970 if (bad_area_access_from_pkeys(error_code, vma))
019132ff
DH
971 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
972 else
973 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
92181f19
NP
974}
975
2d4a7167 976static void
a6e04aa9 977do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
7b2d0dba 978 struct vm_area_struct *vma, unsigned int fault)
92181f19
NP
979{
980 struct task_struct *tsk = current;
a6e04aa9 981 int code = BUS_ADRERR;
92181f19 982
2d4a7167 983 /* Kernel mode? Handle exceptions or die: */
96054569 984 if (!(error_code & PF_USER)) {
4fc34901 985 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
986 return;
987 }
2d4a7167 988
cd1b68f0 989 /* User-space => ok to do another page fault: */
92181f19
NP
990 if (is_prefetch(regs, error_code, address))
991 return;
2d4a7167
IM
992
993 tsk->thread.cr2 = address;
994 tsk->thread.error_code = error_code;
51e7dc70 995 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167 996
a6e04aa9 997#ifdef CONFIG_MEMORY_FAILURE
f672b49b 998 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
999 printk(KERN_ERR
1000 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1001 tsk->comm, tsk->pid, address);
1002 code = BUS_MCEERR_AR;
1003 }
1004#endif
7b2d0dba 1005 force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
92181f19
NP
1006}
1007
3a13c4d7 1008static noinline void
2d4a7167 1009mm_fault_error(struct pt_regs *regs, unsigned long error_code,
7b2d0dba
DH
1010 unsigned long address, struct vm_area_struct *vma,
1011 unsigned int fault)
92181f19 1012{
3a13c4d7 1013 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
3a13c4d7
JW
1014 no_context(regs, error_code, address, 0, 0);
1015 return;
b80ef10e 1016 }
b80ef10e 1017
2d4a7167 1018 if (fault & VM_FAULT_OOM) {
f8626854
AV
1019 /* Kernel mode? Handle exceptions or die: */
1020 if (!(error_code & PF_USER)) {
4fc34901
AL
1021 no_context(regs, error_code, address,
1022 SIGSEGV, SEGV_MAPERR);
3a13c4d7 1023 return;
f8626854
AV
1024 }
1025
c2d23f91
DR
1026 /*
1027 * We ran out of memory, call the OOM killer, and return the
1028 * userspace (which will retry the fault, or kill us if we got
1029 * oom-killed):
1030 */
1031 pagefault_out_of_memory();
2d4a7167 1032 } else {
f672b49b
AK
1033 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1034 VM_FAULT_HWPOISON_LARGE))
7b2d0dba 1035 do_sigbus(regs, error_code, address, vma, fault);
33692f27 1036 else if (fault & VM_FAULT_SIGSEGV)
7b2d0dba 1037 bad_area_nosemaphore(regs, error_code, address, vma);
2d4a7167
IM
1038 else
1039 BUG();
1040 }
92181f19
NP
1041}
1042
d8b57bb7
TG
1043static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1044{
1045 if ((error_code & PF_WRITE) && !pte_write(*pte))
1046 return 0;
2d4a7167 1047
d8b57bb7
TG
1048 if ((error_code & PF_INSTR) && !pte_exec(*pte))
1049 return 0;
b3ecd515
DH
1050 /*
1051 * Note: We do not do lazy flushing on protection key
1052 * changes, so no spurious fault will ever set PF_PK.
1053 */
1054 if ((error_code & PF_PK))
1055 return 1;
d8b57bb7
TG
1056
1057 return 1;
1058}
1059
5b727a3b 1060/*
2d4a7167
IM
1061 * Handle a spurious fault caused by a stale TLB entry.
1062 *
1063 * This allows us to lazily refresh the TLB when increasing the
1064 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1065 * eagerly is very expensive since that implies doing a full
1066 * cross-processor TLB flush, even if no stale TLB entries exist
1067 * on other processors.
1068 *
31668511
DV
1069 * Spurious faults may only occur if the TLB contains an entry with
1070 * fewer permission than the page table entry. Non-present (P = 0)
1071 * and reserved bit (R = 1) faults are never spurious.
1072 *
5b727a3b
JF
1073 * There are no security implications to leaving a stale TLB when
1074 * increasing the permissions on a page.
31668511
DV
1075 *
1076 * Returns non-zero if a spurious fault was handled, zero otherwise.
1077 *
1078 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1079 * (Optional Invalidation).
5b727a3b 1080 */
9326638c 1081static noinline int
2d4a7167 1082spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
1083{
1084 pgd_t *pgd;
1085 pud_t *pud;
1086 pmd_t *pmd;
1087 pte_t *pte;
3c3e5694 1088 int ret;
5b727a3b 1089
31668511
DV
1090 /*
1091 * Only writes to RO or instruction fetches from NX may cause
1092 * spurious faults.
1093 *
1094 * These could be from user or supervisor accesses but the TLB
1095 * is only lazily flushed after a kernel mapping protection
1096 * change, so user accesses are not expected to cause spurious
1097 * faults.
1098 */
1099 if (error_code != (PF_WRITE | PF_PROT)
1100 && error_code != (PF_INSTR | PF_PROT))
5b727a3b
JF
1101 return 0;
1102
1103 pgd = init_mm.pgd + pgd_index(address);
1104 if (!pgd_present(*pgd))
1105 return 0;
1106
1107 pud = pud_offset(pgd, address);
1108 if (!pud_present(*pud))
1109 return 0;
1110
d8b57bb7
TG
1111 if (pud_large(*pud))
1112 return spurious_fault_check(error_code, (pte_t *) pud);
1113
5b727a3b
JF
1114 pmd = pmd_offset(pud, address);
1115 if (!pmd_present(*pmd))
1116 return 0;
1117
d8b57bb7
TG
1118 if (pmd_large(*pmd))
1119 return spurious_fault_check(error_code, (pte_t *) pmd);
1120
5b727a3b 1121 pte = pte_offset_kernel(pmd, address);
954f8571 1122 if (!pte_present(*pte))
5b727a3b
JF
1123 return 0;
1124
3c3e5694
SR
1125 ret = spurious_fault_check(error_code, pte);
1126 if (!ret)
1127 return 0;
1128
1129 /*
2d4a7167
IM
1130 * Make sure we have permissions in PMD.
1131 * If not, then there's a bug in the page tables:
3c3e5694
SR
1132 */
1133 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1134 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 1135
3c3e5694 1136 return ret;
5b727a3b 1137}
9326638c 1138NOKPROBE_SYMBOL(spurious_fault);
5b727a3b 1139
abd4f750 1140int show_unhandled_signals = 1;
1da177e4 1141
2d4a7167 1142static inline int
68da336a 1143access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 1144{
07f146f5
DH
1145 /* This is only called for the current mm, so: */
1146 bool foreign = false;
e8c6226d
DH
1147
1148 /*
1149 * Read or write was blocked by protection keys. This is
1150 * always an unconditional error and can never result in
1151 * a follow-up action to resolve the fault, like a COW.
1152 */
1153 if (error_code & PF_PK)
1154 return 1;
1155
07f146f5
DH
1156 /*
1157 * Make sure to check the VMA so that we do not perform
1158 * faults just to hit a PF_PK as soon as we fill in a
1159 * page.
1160 */
d61172b4
DH
1161 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1162 (error_code & PF_INSTR), foreign))
07f146f5 1163 return 1;
33a709b2 1164
68da336a 1165 if (error_code & PF_WRITE) {
2d4a7167 1166 /* write, present and write, not present: */
92181f19
NP
1167 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1168 return 1;
2d4a7167 1169 return 0;
92181f19
NP
1170 }
1171
2d4a7167
IM
1172 /* read, present: */
1173 if (unlikely(error_code & PF_PROT))
1174 return 1;
1175
1176 /* read, not present: */
1177 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1178 return 1;
1179
92181f19
NP
1180 return 0;
1181}
1182
0973a06c
HS
1183static int fault_in_kernel_space(unsigned long address)
1184{
d9517346 1185 return address >= TASK_SIZE_MAX;
0973a06c
HS
1186}
1187
40d3cd66
PA
1188static inline bool smap_violation(int error_code, struct pt_regs *regs)
1189{
4640c7ee
PA
1190 if (!IS_ENABLED(CONFIG_X86_SMAP))
1191 return false;
1192
1193 if (!static_cpu_has(X86_FEATURE_SMAP))
1194 return false;
1195
40d3cd66
PA
1196 if (error_code & PF_USER)
1197 return false;
1198
f39b6f0e 1199 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
40d3cd66
PA
1200 return false;
1201
1202 return true;
1203}
1204
1da177e4
LT
1205/*
1206 * This routine handles page faults. It determines the address,
1207 * and the problem, and then passes it off to one of the appropriate
1208 * routines.
d4078e23
PZ
1209 *
1210 * This function must have noinline because both callers
1211 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1212 * guarantees there's a function trace entry.
1da177e4 1213 */
9326638c 1214static noinline void
0ac09f9f
JO
1215__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1216 unsigned long address)
1da177e4 1217{
2d4a7167 1218 struct vm_area_struct *vma;
1da177e4
LT
1219 struct task_struct *tsk;
1220 struct mm_struct *mm;
26178ec1 1221 int fault, major = 0;
759496ba 1222 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1da177e4 1223
a9ba9a3b
AV
1224 tsk = current;
1225 mm = tsk->mm;
2d4a7167 1226
f8561296
VN
1227 /*
1228 * Detect and handle instructions that would cause a page fault for
1229 * both a tracked kernel page and a userspace page.
1230 */
1231 if (kmemcheck_active(regs))
1232 kmemcheck_hide(regs);
5dfaf90f 1233 prefetchw(&mm->mmap_sem);
f8561296 1234
0fd0e3da 1235 if (unlikely(kmmio_fault(regs, address)))
86069782 1236 return;
1da177e4
LT
1237
1238 /*
1239 * We fault-in kernel-space virtual memory on-demand. The
1240 * 'reference' page table is init_mm.pgd.
1241 *
1242 * NOTE! We MUST NOT take any locks for this case. We may
1243 * be in an interrupt or a critical region, and should
1244 * only copy the information from the master page table,
1245 * nothing more.
1246 *
1247 * This verifies that the fault happens in kernel space
1248 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1249 * protection error (error_code & 9) == 0.
1da177e4 1250 */
0973a06c 1251 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
1252 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1253 if (vmalloc_fault(address) >= 0)
1254 return;
1255
1256 if (kmemcheck_fault(regs, address, error_code))
1257 return;
1258 }
5b727a3b 1259
2d4a7167 1260 /* Can handle a stale RO->RW TLB: */
92181f19 1261 if (spurious_fault(error_code, address))
5b727a3b
JF
1262 return;
1263
2d4a7167 1264 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1265 if (kprobes_fault(regs))
9be260a6 1266 return;
f8c2ee22
HH
1267 /*
1268 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1269 * fault we could otherwise deadlock:
f8c2ee22 1270 */
7b2d0dba 1271 bad_area_nosemaphore(regs, error_code, address, NULL);
2d4a7167 1272
92181f19 1273 return;
f8c2ee22
HH
1274 }
1275
2d4a7167 1276 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1277 if (unlikely(kprobes_fault(regs)))
9be260a6 1278 return;
8c914cb7 1279
66c58156 1280 if (unlikely(error_code & PF_RSVD))
92181f19 1281 pgtable_bad(regs, error_code, address);
1da177e4 1282
4640c7ee 1283 if (unlikely(smap_violation(error_code, regs))) {
7b2d0dba 1284 bad_area_nosemaphore(regs, error_code, address, NULL);
4640c7ee 1285 return;
40d3cd66
PA
1286 }
1287
1da177e4 1288 /*
2d4a7167 1289 * If we're in an interrupt, have no user context or are running
70ffdb93 1290 * in a region with pagefaults disabled then we must not take the fault
1da177e4 1291 */
70ffdb93 1292 if (unlikely(faulthandler_disabled() || !mm)) {
7b2d0dba 1293 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1294 return;
1295 }
1da177e4 1296
e00b12e6
PZ
1297 /*
1298 * It's safe to allow irq's after cr2 has been saved and the
1299 * vmalloc fault has been handled.
1300 *
1301 * User-mode registers count as a user access even for any
1302 * potential system fault or CPU buglet:
1303 */
f39b6f0e 1304 if (user_mode(regs)) {
e00b12e6
PZ
1305 local_irq_enable();
1306 error_code |= PF_USER;
1307 flags |= FAULT_FLAG_USER;
1308 } else {
1309 if (regs->flags & X86_EFLAGS_IF)
1310 local_irq_enable();
1311 }
1312
1313 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1314
759496ba
JW
1315 if (error_code & PF_WRITE)
1316 flags |= FAULT_FLAG_WRITE;
d61172b4
DH
1317 if (error_code & PF_INSTR)
1318 flags |= FAULT_FLAG_INSTRUCTION;
759496ba 1319
3a1dfe6e
IM
1320 /*
1321 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1322 * addresses in user space. All other faults represent errors in
1323 * the kernel and should generate an OOPS. Unfortunately, in the
1324 * case of an erroneous fault occurring in a code path which already
1325 * holds mmap_sem we will deadlock attempting to validate the fault
1326 * against the address space. Luckily the kernel only validly
1327 * references user space from well defined areas of code, which are
1328 * listed in the exceptions table.
1da177e4
LT
1329 *
1330 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1331 * the source reference check when there is a possibility of a
1332 * deadlock. Attempt to lock the address space, if we cannot we then
1333 * validate the source. If this is invalid we can skip the address
1334 * space check, thus avoiding the deadlock:
1da177e4 1335 */
92181f19 1336 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1337 if ((error_code & PF_USER) == 0 &&
92181f19 1338 !search_exception_tables(regs->ip)) {
7b2d0dba 1339 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1340 return;
1341 }
d065bd81 1342retry:
1da177e4 1343 down_read(&mm->mmap_sem);
01006074
PZ
1344 } else {
1345 /*
2d4a7167
IM
1346 * The above down_read_trylock() might have succeeded in
1347 * which case we'll have missed the might_sleep() from
1348 * down_read():
01006074
PZ
1349 */
1350 might_sleep();
1da177e4
LT
1351 }
1352
1353 vma = find_vma(mm, address);
92181f19
NP
1354 if (unlikely(!vma)) {
1355 bad_area(regs, error_code, address);
1356 return;
1357 }
1358 if (likely(vma->vm_start <= address))
1da177e4 1359 goto good_area;
92181f19
NP
1360 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1361 bad_area(regs, error_code, address);
1362 return;
1363 }
33cb5243 1364 if (error_code & PF_USER) {
6f4d368e
HH
1365 /*
1366 * Accessing the stack below %sp is always a bug.
1367 * The large cushion allows instructions like enter
2d4a7167 1368 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1369 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1370 */
92181f19
NP
1371 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1372 bad_area(regs, error_code, address);
1373 return;
1374 }
1da177e4 1375 }
92181f19
NP
1376 if (unlikely(expand_stack(vma, address))) {
1377 bad_area(regs, error_code, address);
1378 return;
1379 }
1380
1381 /*
1382 * Ok, we have a good vm_area for this memory access, so
1383 * we can handle it..
1384 */
1da177e4 1385good_area:
68da336a 1386 if (unlikely(access_error(error_code, vma))) {
7b2d0dba 1387 bad_area_access_error(regs, error_code, address, vma);
92181f19 1388 return;
1da177e4
LT
1389 }
1390
1391 /*
1392 * If for any reason at all we couldn't handle the fault,
1393 * make sure we exit gracefully rather than endlessly redo
9a95f3cf
PC
1394 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1395 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1da177e4 1396 */
dcddffd4 1397 fault = handle_mm_fault(vma, address, flags);
26178ec1 1398 major |= fault & VM_FAULT_MAJOR;
2d4a7167 1399
3a13c4d7 1400 /*
26178ec1
LT
1401 * If we need to retry the mmap_sem has already been released,
1402 * and if there is a fatal signal pending there is no guarantee
1403 * that we made any progress. Handle this case first.
3a13c4d7 1404 */
26178ec1
LT
1405 if (unlikely(fault & VM_FAULT_RETRY)) {
1406 /* Retry at most once */
1407 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1408 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1409 flags |= FAULT_FLAG_TRIED;
1410 if (!fatal_signal_pending(tsk))
1411 goto retry;
1412 }
1413
1414 /* User mode? Just return to handle the fatal exception */
cf3c0a15 1415 if (flags & FAULT_FLAG_USER)
26178ec1
LT
1416 return;
1417
1418 /* Not returning to user mode? Handle exceptions or die: */
1419 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
3a13c4d7 1420 return;
26178ec1 1421 }
3a13c4d7 1422
26178ec1 1423 up_read(&mm->mmap_sem);
3a13c4d7 1424 if (unlikely(fault & VM_FAULT_ERROR)) {
7b2d0dba 1425 mm_fault_error(regs, error_code, address, vma, fault);
3a13c4d7 1426 return;
37b23e05
KM
1427 }
1428
d065bd81 1429 /*
26178ec1
LT
1430 * Major/minor page fault accounting. If any of the events
1431 * returned VM_FAULT_MAJOR, we account it as a major fault.
d065bd81 1432 */
26178ec1
LT
1433 if (major) {
1434 tsk->maj_flt++;
1435 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1436 } else {
1437 tsk->min_flt++;
1438 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
ac17dc8e 1439 }
d729ab35 1440
8c938f9f 1441 check_v8086_mode(regs, address, tsk);
1da177e4 1442}
9326638c 1443NOKPROBE_SYMBOL(__do_page_fault);
6ba3c97a 1444
9326638c 1445dotraplinkage void notrace
6ba3c97a
FW
1446do_page_fault(struct pt_regs *regs, unsigned long error_code)
1447{
d4078e23 1448 unsigned long address = read_cr2(); /* Get the faulting address */
6c1e0256 1449 enum ctx_state prev_state;
d4078e23
PZ
1450
1451 /*
1452 * We must have this function tagged with __kprobes, notrace and call
1453 * read_cr2() before calling anything else. To avoid calling any kind
1454 * of tracing machinery before we've observed the CR2 value.
1455 *
1456 * exception_{enter,exit}() contain all sorts of tracepoints.
1457 */
6c1e0256
FW
1458
1459 prev_state = exception_enter();
0ac09f9f 1460 __do_page_fault(regs, error_code, address);
6c1e0256 1461 exception_exit(prev_state);
6ba3c97a 1462}
9326638c 1463NOKPROBE_SYMBOL(do_page_fault);
25c74b10 1464
d4078e23 1465#ifdef CONFIG_TRACING
9326638c
MH
1466static nokprobe_inline void
1467trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1468 unsigned long error_code)
d34603b0
SA
1469{
1470 if (user_mode(regs))
d4078e23 1471 trace_page_fault_user(address, regs, error_code);
d34603b0 1472 else
d4078e23 1473 trace_page_fault_kernel(address, regs, error_code);
d34603b0
SA
1474}
1475
9326638c 1476dotraplinkage void notrace
25c74b10
SA
1477trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1478{
0ac09f9f
JO
1479 /*
1480 * The exception_enter and tracepoint processing could
1481 * trigger another page faults (user space callchain
1482 * reading) and destroy the original cr2 value, so read
1483 * the faulting address now.
1484 */
1485 unsigned long address = read_cr2();
d4078e23 1486 enum ctx_state prev_state;
25c74b10
SA
1487
1488 prev_state = exception_enter();
d4078e23 1489 trace_page_fault_entries(address, regs, error_code);
0ac09f9f 1490 __do_page_fault(regs, error_code, address);
25c74b10
SA
1491 exception_exit(prev_state);
1492}
9326638c 1493NOKPROBE_SYMBOL(trace_do_page_fault);
d4078e23 1494#endif /* CONFIG_TRACING */