]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/mm/fault.c
Merge tag 'char-misc-4.15-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / fault.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4 3 * Copyright (C) 1995 Linus Torvalds
2d4a7167 4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 6 */
a2bcd473 7#include <linux/sched.h> /* test_thread_flag(), ... */
68db0cf1 8#include <linux/sched/task_stack.h> /* task_stack_*(), ... */
a2bcd473 9#include <linux/kdebug.h> /* oops_begin/end, ... */
4cdf8dbe 10#include <linux/extable.h> /* search_exception_tables */
a2bcd473 11#include <linux/bootmem.h> /* max_low_pfn */
9326638c 12#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
a2bcd473 13#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 14#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 15#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 16#include <linux/prefetch.h> /* prefetchw */
56dd9470 17#include <linux/context_tracking.h> /* exception_enter(), ... */
70ffdb93 18#include <linux/uaccess.h> /* faulthandler_disabled() */
2d4a7167 19
019132ff 20#include <asm/cpufeature.h> /* boot_cpu_has, ... */
a2bcd473
IM
21#include <asm/traps.h> /* dotraplinkage, ... */
22#include <asm/pgalloc.h> /* pgd_*(), ... */
f40c3300
AL
23#include <asm/fixmap.h> /* VSYSCALL_ADDR */
24#include <asm/vsyscall.h> /* emulate_vsyscall */
ba3e127e 25#include <asm/vm86.h> /* struct vm86 */
019132ff 26#include <asm/mmu_context.h> /* vma_pkey() */
1da177e4 27
d34603b0
SA
28#define CREATE_TRACE_POINTS
29#include <asm/trace/exceptions.h>
30
b814d41f 31/*
b319eed0
IM
32 * Returns 0 if mmiotrace is disabled, or if the fault is not
33 * handled by mmiotrace:
b814d41f 34 */
9326638c 35static nokprobe_inline int
62c9295f 36kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 37{
0fd0e3da
PP
38 if (unlikely(is_kmmio_active()))
39 if (kmmio_handler(regs, addr) == 1)
40 return -1;
0fd0e3da 41 return 0;
86069782
PP
42}
43
9326638c 44static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
1bd858a5 45{
74a0b576
CH
46 int ret = 0;
47
48 /* kprobe_running() needs smp_processor_id() */
f39b6f0e 49 if (kprobes_built_in() && !user_mode(regs)) {
74a0b576
CH
50 preempt_disable();
51 if (kprobe_running() && kprobe_fault_handler(regs, 14))
52 ret = 1;
53 preempt_enable();
54 }
1bd858a5 55
74a0b576 56 return ret;
33cb5243 57}
1bd858a5 58
1dc85be0 59/*
2d4a7167
IM
60 * Prefetch quirks:
61 *
62 * 32-bit mode:
63 *
64 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
65 * Check that here and ignore it.
1dc85be0 66 *
2d4a7167 67 * 64-bit mode:
1dc85be0 68 *
2d4a7167
IM
69 * Sometimes the CPU reports invalid exceptions on prefetch.
70 * Check that here and ignore it.
71 *
72 * Opcode checker based on code by Richard Brunner.
1dc85be0 73 */
107a0367
IM
74static inline int
75check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
76 unsigned char opcode, int *prefetch)
77{
78 unsigned char instr_hi = opcode & 0xf0;
79 unsigned char instr_lo = opcode & 0x0f;
80
81 switch (instr_hi) {
82 case 0x20:
83 case 0x30:
84 /*
85 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
86 * In X86_64 long mode, the CPU will signal invalid
87 * opcode if some of these prefixes are present so
88 * X86_64 will never get here anyway
89 */
90 return ((instr_lo & 7) == 0x6);
91#ifdef CONFIG_X86_64
92 case 0x40:
93 /*
94 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
95 * Need to figure out under what instruction mode the
96 * instruction was issued. Could check the LDT for lm,
97 * but for now it's good enough to assume that long
98 * mode only uses well known segments or kernel.
99 */
318f5a2a 100 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
101#endif
102 case 0x60:
103 /* 0x64 thru 0x67 are valid prefixes in all modes. */
104 return (instr_lo & 0xC) == 0x4;
105 case 0xF0:
106 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
107 return !instr_lo || (instr_lo>>1) == 1;
108 case 0x00:
109 /* Prefetch instruction is 0x0F0D or 0x0F18 */
110 if (probe_kernel_address(instr, opcode))
111 return 0;
112
113 *prefetch = (instr_lo == 0xF) &&
114 (opcode == 0x0D || opcode == 0x18);
115 return 0;
116 default:
117 return 0;
118 }
119}
120
2d4a7167
IM
121static int
122is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 123{
2d4a7167 124 unsigned char *max_instr;
ab2bf0c1 125 unsigned char *instr;
33cb5243 126 int prefetch = 0;
1da177e4 127
3085354d
IM
128 /*
129 * If it was a exec (instruction fetch) fault on NX page, then
130 * do not ignore the fault:
131 */
1067f030 132 if (error_code & X86_PF_INSTR)
1da177e4 133 return 0;
1dc85be0 134
107a0367 135 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 136 max_instr = instr + 15;
1da177e4 137
d31bf07f 138 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
1da177e4
LT
139 return 0;
140
107a0367 141 while (instr < max_instr) {
2d4a7167 142 unsigned char opcode;
1da177e4 143
ab2bf0c1 144 if (probe_kernel_address(instr, opcode))
33cb5243 145 break;
1da177e4 146
1da177e4
LT
147 instr++;
148
107a0367 149 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 150 break;
1da177e4
LT
151 }
152 return prefetch;
153}
154
019132ff
DH
155/*
156 * A protection key fault means that the PKRU value did not allow
157 * access to some PTE. Userspace can figure out what PKRU was
158 * from the XSAVE state, and this function fills out a field in
159 * siginfo so userspace can discover which protection key was set
160 * on the PTE.
161 *
1067f030 162 * If we get here, we know that the hardware signaled a X86_PF_PK
019132ff
DH
163 * fault and that there was a VMA once we got in the fault
164 * handler. It does *not* guarantee that the VMA we find here
165 * was the one that we faulted on.
166 *
167 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
168 * 2. T1 : set PKRU to deny access to pkey=4, touches page
169 * 3. T1 : faults...
170 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
171 * 5. T1 : enters fault handler, takes mmap_sem, etc...
172 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
173 * faulted on a pte with its pkey=4.
174 */
a3c4fb7c 175static void fill_sig_info_pkey(int si_code, siginfo_t *info, u32 *pkey)
019132ff
DH
176{
177 /* This is effectively an #ifdef */
178 if (!boot_cpu_has(X86_FEATURE_OSPKE))
179 return;
180
181 /* Fault not from Protection Keys: nothing to do */
182 if (si_code != SEGV_PKUERR)
183 return;
184 /*
185 * force_sig_info_fault() is called from a number of
186 * contexts, some of which have a VMA and some of which
1067f030 187 * do not. The X86_PF_PK handing happens after we have a
019132ff
DH
188 * valid VMA, so we should never reach this without a
189 * valid VMA.
190 */
a3c4fb7c 191 if (!pkey) {
019132ff
DH
192 WARN_ONCE(1, "PKU fault with no VMA passed in");
193 info->si_pkey = 0;
194 return;
195 }
196 /*
197 * si_pkey should be thought of as a strong hint, but not
198 * absolutely guranteed to be 100% accurate because of
199 * the race explained above.
200 */
a3c4fb7c 201 info->si_pkey = *pkey;
019132ff
DH
202}
203
2d4a7167
IM
204static void
205force_sig_info_fault(int si_signo, int si_code, unsigned long address,
a3c4fb7c 206 struct task_struct *tsk, u32 *pkey, int fault)
c4aba4a8 207{
f672b49b 208 unsigned lsb = 0;
c4aba4a8
HH
209 siginfo_t info;
210
2d4a7167
IM
211 info.si_signo = si_signo;
212 info.si_errno = 0;
213 info.si_code = si_code;
214 info.si_addr = (void __user *)address;
f672b49b
AK
215 if (fault & VM_FAULT_HWPOISON_LARGE)
216 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
217 if (fault & VM_FAULT_HWPOISON)
218 lsb = PAGE_SHIFT;
219 info.si_addr_lsb = lsb;
2d4a7167 220
a3c4fb7c 221 fill_sig_info_pkey(si_code, &info, pkey);
019132ff 222
c4aba4a8
HH
223 force_sig_info(si_signo, &info, tsk);
224}
225
f2f13a85
IM
226DEFINE_SPINLOCK(pgd_lock);
227LIST_HEAD(pgd_list);
228
229#ifdef CONFIG_X86_32
230static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 231{
f2f13a85
IM
232 unsigned index = pgd_index(address);
233 pgd_t *pgd_k;
e0c4f675 234 p4d_t *p4d, *p4d_k;
f2f13a85
IM
235 pud_t *pud, *pud_k;
236 pmd_t *pmd, *pmd_k;
2d4a7167 237
f2f13a85
IM
238 pgd += index;
239 pgd_k = init_mm.pgd + index;
240
241 if (!pgd_present(*pgd_k))
242 return NULL;
243
244 /*
245 * set_pgd(pgd, *pgd_k); here would be useless on PAE
246 * and redundant with the set_pmd() on non-PAE. As would
e0c4f675 247 * set_p4d/set_pud.
f2f13a85 248 */
e0c4f675
KS
249 p4d = p4d_offset(pgd, address);
250 p4d_k = p4d_offset(pgd_k, address);
251 if (!p4d_present(*p4d_k))
252 return NULL;
253
254 pud = pud_offset(p4d, address);
255 pud_k = pud_offset(p4d_k, address);
f2f13a85
IM
256 if (!pud_present(*pud_k))
257 return NULL;
258
259 pmd = pmd_offset(pud, address);
260 pmd_k = pmd_offset(pud_k, address);
261 if (!pmd_present(*pmd_k))
262 return NULL;
263
b8bcfe99 264 if (!pmd_present(*pmd))
f2f13a85 265 set_pmd(pmd, *pmd_k);
b8bcfe99 266 else
f2f13a85 267 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
268
269 return pmd_k;
270}
271
272void vmalloc_sync_all(void)
273{
274 unsigned long address;
275
276 if (SHARED_KERNEL_PMD)
277 return;
278
279 for (address = VMALLOC_START & PMD_MASK;
dc4fac84 280 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
f2f13a85 281 address += PMD_SIZE) {
f2f13a85
IM
282 struct page *page;
283
a79e53d8 284 spin_lock(&pgd_lock);
f2f13a85 285 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 286 spinlock_t *pgt_lock;
f01f7c56 287 pmd_t *ret;
617d34d9 288
a79e53d8 289 /* the pgt_lock only for Xen */
617d34d9
JF
290 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
291
292 spin_lock(pgt_lock);
293 ret = vmalloc_sync_one(page_address(page), address);
294 spin_unlock(pgt_lock);
295
296 if (!ret)
f2f13a85
IM
297 break;
298 }
a79e53d8 299 spin_unlock(&pgd_lock);
f2f13a85
IM
300 }
301}
302
303/*
304 * 32-bit:
305 *
306 * Handle a fault on the vmalloc or module mapping area
307 */
9326638c 308static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
309{
310 unsigned long pgd_paddr;
311 pmd_t *pmd_k;
312 pte_t *pte_k;
313
314 /* Make sure we are in vmalloc area: */
315 if (!(address >= VMALLOC_START && address < VMALLOC_END))
316 return -1;
317
ebc8827f
FW
318 WARN_ON_ONCE(in_nmi());
319
f2f13a85
IM
320 /*
321 * Synchronize this task's top level page-table
322 * with the 'reference' page table.
323 *
324 * Do _not_ use "current" here. We might be inside
325 * an interrupt in the middle of a task switch..
326 */
6c690ee1 327 pgd_paddr = read_cr3_pa();
f2f13a85
IM
328 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
329 if (!pmd_k)
330 return -1;
331
f4eafd8b
TK
332 if (pmd_huge(*pmd_k))
333 return 0;
334
f2f13a85
IM
335 pte_k = pte_offset_kernel(pmd_k, address);
336 if (!pte_present(*pte_k))
337 return -1;
338
339 return 0;
340}
9326638c 341NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85
IM
342
343/*
344 * Did it hit the DOS screen memory VA from vm86 mode?
345 */
346static inline void
347check_v8086_mode(struct pt_regs *regs, unsigned long address,
348 struct task_struct *tsk)
349{
9fda6a06 350#ifdef CONFIG_VM86
f2f13a85
IM
351 unsigned long bit;
352
9fda6a06 353 if (!v8086_mode(regs) || !tsk->thread.vm86)
f2f13a85
IM
354 return;
355
356 bit = (address - 0xA0000) >> PAGE_SHIFT;
357 if (bit < 32)
9fda6a06
BG
358 tsk->thread.vm86->screen_bitmap |= 1 << bit;
359#endif
33cb5243 360}
1da177e4 361
087975b0 362static bool low_pfn(unsigned long pfn)
1da177e4 363{
087975b0
AM
364 return pfn < max_low_pfn;
365}
1156e098 366
087975b0
AM
367static void dump_pagetable(unsigned long address)
368{
6c690ee1 369 pgd_t *base = __va(read_cr3_pa());
087975b0 370 pgd_t *pgd = &base[pgd_index(address)];
e0c4f675
KS
371 p4d_t *p4d;
372 pud_t *pud;
087975b0
AM
373 pmd_t *pmd;
374 pte_t *pte;
2d4a7167 375
1156e098 376#ifdef CONFIG_X86_PAE
39e48d9b 377 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
087975b0
AM
378 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
379 goto out;
39e48d9b
JB
380#define pr_pde pr_cont
381#else
382#define pr_pde pr_info
1156e098 383#endif
e0c4f675
KS
384 p4d = p4d_offset(pgd, address);
385 pud = pud_offset(p4d, address);
386 pmd = pmd_offset(pud, address);
39e48d9b
JB
387 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
388#undef pr_pde
1156e098
HH
389
390 /*
391 * We must not directly access the pte in the highpte
392 * case if the page table is located in highmem.
393 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 394 * it's allocated already:
1156e098 395 */
087975b0
AM
396 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
397 goto out;
1156e098 398
087975b0 399 pte = pte_offset_kernel(pmd, address);
39e48d9b 400 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
087975b0 401out:
39e48d9b 402 pr_cont("\n");
f2f13a85
IM
403}
404
405#else /* CONFIG_X86_64: */
406
407void vmalloc_sync_all(void)
408{
5372e155 409 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
f2f13a85
IM
410}
411
412/*
413 * 64-bit:
414 *
415 * Handle a fault on the vmalloc area
f2f13a85 416 */
9326638c 417static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
418{
419 pgd_t *pgd, *pgd_ref;
b50858ce 420 p4d_t *p4d, *p4d_ref;
f2f13a85
IM
421 pud_t *pud, *pud_ref;
422 pmd_t *pmd, *pmd_ref;
423 pte_t *pte, *pte_ref;
424
425 /* Make sure we are in vmalloc area: */
426 if (!(address >= VMALLOC_START && address < VMALLOC_END))
427 return -1;
428
ebc8827f
FW
429 WARN_ON_ONCE(in_nmi());
430
f2f13a85
IM
431 /*
432 * Copy kernel mappings over when needed. This can also
433 * happen within a race in page table update. In the later
434 * case just flush:
435 */
6c690ee1 436 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
f2f13a85
IM
437 pgd_ref = pgd_offset_k(address);
438 if (pgd_none(*pgd_ref))
439 return -1;
440
1160c277 441 if (pgd_none(*pgd)) {
f2f13a85 442 set_pgd(pgd, *pgd_ref);
1160c277 443 arch_flush_lazy_mmu_mode();
b50858ce
KS
444 } else if (CONFIG_PGTABLE_LEVELS > 4) {
445 /*
446 * With folded p4d, pgd_none() is always false, so the pgd may
447 * point to an empty page table entry and pgd_page_vaddr()
448 * will return garbage.
449 *
450 * We will do the correct sanity check on the p4d level.
451 */
f2f13a85 452 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1160c277 453 }
f2f13a85 454
b50858ce
KS
455 /* With 4-level paging, copying happens on the p4d level. */
456 p4d = p4d_offset(pgd, address);
457 p4d_ref = p4d_offset(pgd_ref, address);
458 if (p4d_none(*p4d_ref))
459 return -1;
460
461 if (p4d_none(*p4d)) {
462 set_p4d(p4d, *p4d_ref);
463 arch_flush_lazy_mmu_mode();
464 } else {
465 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref));
466 }
467
f2f13a85
IM
468 /*
469 * Below here mismatches are bugs because these lower tables
470 * are shared:
471 */
472
b50858ce
KS
473 pud = pud_offset(p4d, address);
474 pud_ref = pud_offset(p4d_ref, address);
f2f13a85
IM
475 if (pud_none(*pud_ref))
476 return -1;
477
f4eafd8b 478 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
f2f13a85
IM
479 BUG();
480
f4eafd8b
TK
481 if (pud_huge(*pud))
482 return 0;
483
f2f13a85
IM
484 pmd = pmd_offset(pud, address);
485 pmd_ref = pmd_offset(pud_ref, address);
486 if (pmd_none(*pmd_ref))
487 return -1;
488
f4eafd8b 489 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
f2f13a85
IM
490 BUG();
491
f4eafd8b
TK
492 if (pmd_huge(*pmd))
493 return 0;
494
f2f13a85
IM
495 pte_ref = pte_offset_kernel(pmd_ref, address);
496 if (!pte_present(*pte_ref))
497 return -1;
498
499 pte = pte_offset_kernel(pmd, address);
500
501 /*
502 * Don't use pte_page here, because the mappings can point
503 * outside mem_map, and the NUMA hash lookup cannot handle
504 * that:
505 */
506 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
507 BUG();
508
509 return 0;
510}
9326638c 511NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85 512
e05139f2 513#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 514static const char errata93_warning[] =
ad361c98
JP
515KERN_ERR
516"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
517"******* Working around it, but it may cause SEGVs or burn power.\n"
518"******* Please consider a BIOS update.\n"
519"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 520#endif
f2f13a85
IM
521
522/*
523 * No vm86 mode in 64-bit mode:
524 */
525static inline void
526check_v8086_mode(struct pt_regs *regs, unsigned long address,
527 struct task_struct *tsk)
528{
529}
530
531static int bad_address(void *p)
532{
533 unsigned long dummy;
534
535 return probe_kernel_address((unsigned long *)p, dummy);
536}
537
538static void dump_pagetable(unsigned long address)
539{
6c690ee1 540 pgd_t *base = __va(read_cr3_pa());
087975b0 541 pgd_t *pgd = base + pgd_index(address);
e0c4f675 542 p4d_t *p4d;
1da177e4
LT
543 pud_t *pud;
544 pmd_t *pmd;
545 pte_t *pte;
546
2d4a7167
IM
547 if (bad_address(pgd))
548 goto bad;
549
39e48d9b 550 pr_info("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
551
552 if (!pgd_present(*pgd))
553 goto out;
1da177e4 554
e0c4f675
KS
555 p4d = p4d_offset(pgd, address);
556 if (bad_address(p4d))
557 goto bad;
558
39e48d9b 559 pr_cont("P4D %lx ", p4d_val(*p4d));
e0c4f675
KS
560 if (!p4d_present(*p4d) || p4d_large(*p4d))
561 goto out;
562
563 pud = pud_offset(p4d, address);
2d4a7167
IM
564 if (bad_address(pud))
565 goto bad;
566
39e48d9b 567 pr_cont("PUD %lx ", pud_val(*pud));
b5360222 568 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 569 goto out;
1da177e4
LT
570
571 pmd = pmd_offset(pud, address);
2d4a7167
IM
572 if (bad_address(pmd))
573 goto bad;
574
39e48d9b 575 pr_cont("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
576 if (!pmd_present(*pmd) || pmd_large(*pmd))
577 goto out;
1da177e4
LT
578
579 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
580 if (bad_address(pte))
581 goto bad;
582
39e48d9b 583 pr_cont("PTE %lx", pte_val(*pte));
2d4a7167 584out:
39e48d9b 585 pr_cont("\n");
1da177e4
LT
586 return;
587bad:
39e48d9b 588 pr_info("BAD\n");
8c938f9f
IM
589}
590
f2f13a85 591#endif /* CONFIG_X86_64 */
1da177e4 592
2d4a7167
IM
593/*
594 * Workaround for K8 erratum #93 & buggy BIOS.
595 *
596 * BIOS SMM functions are required to use a specific workaround
597 * to avoid corruption of the 64bit RIP register on C stepping K8.
598 *
599 * A lot of BIOS that didn't get tested properly miss this.
600 *
601 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
602 * Try to work around it here.
603 *
604 * Note we only handle faults in kernel here.
605 * Does nothing on 32-bit.
fdfe8aa8 606 */
33cb5243 607static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 608{
e05139f2
JB
609#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
610 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
611 || boot_cpu_data.x86 != 0xf)
612 return 0;
613
65ea5b03 614 if (address != regs->ip)
1da177e4 615 return 0;
2d4a7167 616
33cb5243 617 if ((address >> 32) != 0)
1da177e4 618 return 0;
2d4a7167 619
1da177e4 620 address |= 0xffffffffUL << 32;
33cb5243
HH
621 if ((address >= (u64)_stext && address <= (u64)_etext) ||
622 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 623 printk_once(errata93_warning);
65ea5b03 624 regs->ip = address;
1da177e4
LT
625 return 1;
626 }
fdfe8aa8 627#endif
1da177e4 628 return 0;
33cb5243 629}
1da177e4 630
35f3266f 631/*
2d4a7167
IM
632 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
633 * to illegal addresses >4GB.
634 *
635 * We catch this in the page fault handler because these addresses
636 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
637 * segment in LDT is compatibility mode.
638 */
639static int is_errata100(struct pt_regs *regs, unsigned long address)
640{
641#ifdef CONFIG_X86_64
2d4a7167 642 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
643 return 1;
644#endif
645 return 0;
646}
647
29caf2f9
HH
648static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
649{
650#ifdef CONFIG_X86_F00F_BUG
651 unsigned long nr;
2d4a7167 652
29caf2f9 653 /*
2d4a7167 654 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9 655 */
e2604b49 656 if (boot_cpu_has_bug(X86_BUG_F00F)) {
29caf2f9
HH
657 nr = (address - idt_descr.address) >> 3;
658
659 if (nr == 6) {
660 do_invalid_op(regs, 0);
661 return 1;
662 }
663 }
664#endif
665 return 0;
666}
667
8f766149
IM
668static const char nx_warning[] = KERN_CRIT
669"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
eff50c34
JK
670static const char smep_warning[] = KERN_CRIT
671"unable to execute userspace code (SMEP?) (uid: %d)\n";
8f766149 672
2d4a7167
IM
673static void
674show_fault_oops(struct pt_regs *regs, unsigned long error_code,
675 unsigned long address)
b3279c7f 676{
1156e098
HH
677 if (!oops_may_print())
678 return;
679
1067f030 680 if (error_code & X86_PF_INSTR) {
93809be8 681 unsigned int level;
426e34cc
MF
682 pgd_t *pgd;
683 pte_t *pte;
2d4a7167 684
6c690ee1 685 pgd = __va(read_cr3_pa());
426e34cc
MF
686 pgd += pgd_index(address);
687
688 pte = lookup_address_in_pgd(pgd, address, &level);
1156e098 689
8f766149 690 if (pte && pte_present(*pte) && !pte_exec(*pte))
078de5f7 691 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
eff50c34
JK
692 if (pte && pte_present(*pte) && pte_exec(*pte) &&
693 (pgd_flags(*pgd) & _PAGE_USER) &&
1e02ce4c 694 (__read_cr4() & X86_CR4_SMEP))
eff50c34 695 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
1156e098 696 }
1156e098 697
19f0dda9 698 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 699 if (address < PAGE_SIZE)
19f0dda9 700 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 701 else
19f0dda9 702 printk(KERN_CONT "paging request");
2d4a7167 703
328b4ed9 704 printk(KERN_CONT " at %px\n", (void *) address);
bb5e5ce5 705 printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
2d4a7167 706
b3279c7f
HH
707 dump_pagetable(address);
708}
709
2d4a7167
IM
710static noinline void
711pgtable_bad(struct pt_regs *regs, unsigned long error_code,
712 unsigned long address)
1da177e4 713{
2d4a7167
IM
714 struct task_struct *tsk;
715 unsigned long flags;
716 int sig;
717
718 flags = oops_begin();
719 tsk = current;
720 sig = SIGKILL;
1209140c 721
1da177e4 722 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 723 tsk->comm, address);
1da177e4 724 dump_pagetable(address);
2d4a7167
IM
725
726 tsk->thread.cr2 = address;
51e7dc70 727 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167
IM
728 tsk->thread.error_code = error_code;
729
22f5991c 730 if (__die("Bad pagetable", regs, error_code))
874d93d1 731 sig = 0;
2d4a7167 732
874d93d1 733 oops_end(flags, regs, sig);
1da177e4
LT
734}
735
2d4a7167
IM
736static noinline void
737no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 738 unsigned long address, int signal, int si_code)
92181f19
NP
739{
740 struct task_struct *tsk = current;
92181f19
NP
741 unsigned long flags;
742 int sig;
92181f19 743
2d4a7167 744 /* Are we prepared to handle this kernel fault? */
548acf19 745 if (fixup_exception(regs, X86_TRAP_PF)) {
c026b359
PZ
746 /*
747 * Any interrupt that takes a fault gets the fixup. This makes
748 * the below recursive fault logic only apply to a faults from
749 * task context.
750 */
751 if (in_interrupt())
752 return;
753
754 /*
755 * Per the above we're !in_interrupt(), aka. task context.
756 *
757 * In this case we need to make sure we're not recursively
758 * faulting through the emulate_vsyscall() logic.
759 */
2a53ccbc 760 if (current->thread.sig_on_uaccess_err && signal) {
51e7dc70 761 tsk->thread.trap_nr = X86_TRAP_PF;
1067f030 762 tsk->thread.error_code = error_code | X86_PF_USER;
4fc34901
AL
763 tsk->thread.cr2 = address;
764
765 /* XXX: hwpoison faults will set the wrong code. */
7b2d0dba 766 force_sig_info_fault(signal, si_code, address,
a3c4fb7c 767 tsk, NULL, 0);
4fc34901 768 }
c026b359
PZ
769
770 /*
771 * Barring that, we can do the fixup and be happy.
772 */
92181f19 773 return;
4fc34901 774 }
92181f19 775
6271cfdf
AL
776#ifdef CONFIG_VMAP_STACK
777 /*
778 * Stack overflow? During boot, we can fault near the initial
779 * stack in the direct map, but that's not an overflow -- check
780 * that we're in vmalloc space to avoid this.
781 */
782 if (is_vmalloc_addr((void *)address) &&
783 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
784 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
6271cfdf
AL
785 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
786 /*
787 * We're likely to be running with very little stack space
788 * left. It's plausible that we'd hit this condition but
789 * double-fault even before we get this far, in which case
790 * we're fine: the double-fault handler will deal with it.
791 *
792 * We don't want to make it all the way into the oops code
793 * and then double-fault, though, because we're likely to
794 * break the console driver and lose most of the stack dump.
795 */
796 asm volatile ("movq %[stack], %%rsp\n\t"
797 "call handle_stack_overflow\n\t"
798 "1: jmp 1b"
f5caf621 799 : ASM_CALL_CONSTRAINT
6271cfdf
AL
800 : "D" ("kernel stack overflow (page fault)"),
801 "S" (regs), "d" (address),
802 [stack] "rm" (stack));
803 unreachable();
804 }
805#endif
806
92181f19 807 /*
2d4a7167
IM
808 * 32-bit:
809 *
810 * Valid to do another page fault here, because if this fault
811 * had been triggered by is_prefetch fixup_exception would have
812 * handled it.
813 *
814 * 64-bit:
92181f19 815 *
2d4a7167 816 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
817 */
818 if (is_prefetch(regs, error_code, address))
819 return;
820
821 if (is_errata93(regs, address))
822 return;
823
824 /*
825 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 826 * terminate things with extreme prejudice:
92181f19 827 */
92181f19 828 flags = oops_begin();
92181f19
NP
829
830 show_fault_oops(regs, error_code, address);
831
a70857e4 832 if (task_stack_end_corrupted(tsk))
b0f4c4b3 833 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 834
1cc99544 835 tsk->thread.cr2 = address;
51e7dc70 836 tsk->thread.trap_nr = X86_TRAP_PF;
1cc99544 837 tsk->thread.error_code = error_code;
92181f19 838
92181f19
NP
839 sig = SIGKILL;
840 if (__die("Oops", regs, error_code))
841 sig = 0;
2d4a7167 842
92181f19 843 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 844 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 845
92181f19 846 oops_end(flags, regs, sig);
92181f19
NP
847}
848
2d4a7167
IM
849/*
850 * Print out info about fatal segfaults, if the show_unhandled_signals
851 * sysctl is set:
852 */
853static inline void
854show_signal_msg(struct pt_regs *regs, unsigned long error_code,
855 unsigned long address, struct task_struct *tsk)
856{
857 if (!unhandled_signal(tsk, SIGSEGV))
858 return;
859
860 if (!printk_ratelimit())
861 return;
862
10a7e9d8 863 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
2d4a7167
IM
864 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
865 tsk->comm, task_pid_nr(tsk), address,
866 (void *)regs->ip, (void *)regs->sp, error_code);
867
868 print_vma_addr(KERN_CONT " in ", regs->ip);
869
870 printk(KERN_CONT "\n");
871}
872
873static void
874__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
a3c4fb7c 875 unsigned long address, u32 *pkey, int si_code)
92181f19
NP
876{
877 struct task_struct *tsk = current;
878
879 /* User mode accesses just cause a SIGSEGV */
1067f030 880 if (error_code & X86_PF_USER) {
92181f19 881 /*
2d4a7167 882 * It's possible to have interrupts off here:
92181f19
NP
883 */
884 local_irq_enable();
885
886 /*
887 * Valid to do another page fault here because this one came
2d4a7167 888 * from user space:
92181f19
NP
889 */
890 if (is_prefetch(regs, error_code, address))
891 return;
892
893 if (is_errata100(regs, address))
894 return;
895
3ae36655
AL
896#ifdef CONFIG_X86_64
897 /*
898 * Instruction fetch faults in the vsyscall page might need
899 * emulation.
900 */
1067f030 901 if (unlikely((error_code & X86_PF_INSTR) &&
f40c3300 902 ((address & ~0xfff) == VSYSCALL_ADDR))) {
3ae36655
AL
903 if (emulate_vsyscall(regs, address))
904 return;
905 }
906#endif
dc4fac84
AL
907
908 /*
909 * To avoid leaking information about the kernel page table
910 * layout, pretend that user-mode accesses to kernel addresses
911 * are always protection faults.
912 */
913 if (address >= TASK_SIZE_MAX)
1067f030 914 error_code |= X86_PF_PROT;
3ae36655 915
e575a86f 916 if (likely(show_unhandled_signals))
2d4a7167
IM
917 show_signal_msg(regs, error_code, address, tsk);
918
2d4a7167 919 tsk->thread.cr2 = address;
e575a86f 920 tsk->thread.error_code = error_code;
51e7dc70 921 tsk->thread.trap_nr = X86_TRAP_PF;
92181f19 922
a3c4fb7c 923 force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
2d4a7167 924
92181f19
NP
925 return;
926 }
927
928 if (is_f00f_bug(regs, address))
929 return;
930
4fc34901 931 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
932}
933
2d4a7167
IM
934static noinline void
935bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
a3c4fb7c 936 unsigned long address, u32 *pkey)
92181f19 937{
a3c4fb7c 938 __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
92181f19
NP
939}
940
2d4a7167
IM
941static void
942__bad_area(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 943 unsigned long address, struct vm_area_struct *vma, int si_code)
92181f19
NP
944{
945 struct mm_struct *mm = current->mm;
a3c4fb7c
LD
946 u32 pkey;
947
948 if (vma)
949 pkey = vma_pkey(vma);
92181f19
NP
950
951 /*
952 * Something tried to access memory that isn't in our memory map..
953 * Fix it, but check if it's kernel or user first..
954 */
955 up_read(&mm->mmap_sem);
956
a3c4fb7c
LD
957 __bad_area_nosemaphore(regs, error_code, address,
958 (vma) ? &pkey : NULL, si_code);
92181f19
NP
959}
960
2d4a7167
IM
961static noinline void
962bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19 963{
7b2d0dba 964 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
92181f19
NP
965}
966
33a709b2
DH
967static inline bool bad_area_access_from_pkeys(unsigned long error_code,
968 struct vm_area_struct *vma)
969{
07f146f5
DH
970 /* This code is always called on the current mm */
971 bool foreign = false;
972
33a709b2
DH
973 if (!boot_cpu_has(X86_FEATURE_OSPKE))
974 return false;
1067f030 975 if (error_code & X86_PF_PK)
33a709b2 976 return true;
07f146f5 977 /* this checks permission keys on the VMA: */
1067f030
RN
978 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
979 (error_code & X86_PF_INSTR), foreign))
07f146f5 980 return true;
33a709b2 981 return false;
92181f19
NP
982}
983
2d4a7167
IM
984static noinline void
985bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 986 unsigned long address, struct vm_area_struct *vma)
92181f19 987{
019132ff
DH
988 /*
989 * This OSPKE check is not strictly necessary at runtime.
990 * But, doing it this way allows compiler optimizations
991 * if pkeys are compiled out.
992 */
33a709b2 993 if (bad_area_access_from_pkeys(error_code, vma))
019132ff
DH
994 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
995 else
996 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
92181f19
NP
997}
998
2d4a7167 999static void
a6e04aa9 1000do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
a3c4fb7c 1001 u32 *pkey, unsigned int fault)
92181f19
NP
1002{
1003 struct task_struct *tsk = current;
a6e04aa9 1004 int code = BUS_ADRERR;
92181f19 1005
2d4a7167 1006 /* Kernel mode? Handle exceptions or die: */
1067f030 1007 if (!(error_code & X86_PF_USER)) {
4fc34901 1008 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
1009 return;
1010 }
2d4a7167 1011
cd1b68f0 1012 /* User-space => ok to do another page fault: */
92181f19
NP
1013 if (is_prefetch(regs, error_code, address))
1014 return;
2d4a7167
IM
1015
1016 tsk->thread.cr2 = address;
1017 tsk->thread.error_code = error_code;
51e7dc70 1018 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167 1019
a6e04aa9 1020#ifdef CONFIG_MEMORY_FAILURE
f672b49b 1021 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
1022 printk(KERN_ERR
1023 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1024 tsk->comm, tsk->pid, address);
1025 code = BUS_MCEERR_AR;
1026 }
1027#endif
a3c4fb7c 1028 force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
92181f19
NP
1029}
1030
3a13c4d7 1031static noinline void
2d4a7167 1032mm_fault_error(struct pt_regs *regs, unsigned long error_code,
a3c4fb7c 1033 unsigned long address, u32 *pkey, unsigned int fault)
92181f19 1034{
1067f030 1035 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
3a13c4d7
JW
1036 no_context(regs, error_code, address, 0, 0);
1037 return;
b80ef10e 1038 }
b80ef10e 1039
2d4a7167 1040 if (fault & VM_FAULT_OOM) {
f8626854 1041 /* Kernel mode? Handle exceptions or die: */
1067f030 1042 if (!(error_code & X86_PF_USER)) {
4fc34901
AL
1043 no_context(regs, error_code, address,
1044 SIGSEGV, SEGV_MAPERR);
3a13c4d7 1045 return;
f8626854
AV
1046 }
1047
c2d23f91
DR
1048 /*
1049 * We ran out of memory, call the OOM killer, and return the
1050 * userspace (which will retry the fault, or kill us if we got
1051 * oom-killed):
1052 */
1053 pagefault_out_of_memory();
2d4a7167 1054 } else {
f672b49b
AK
1055 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1056 VM_FAULT_HWPOISON_LARGE))
a3c4fb7c 1057 do_sigbus(regs, error_code, address, pkey, fault);
33692f27 1058 else if (fault & VM_FAULT_SIGSEGV)
a3c4fb7c 1059 bad_area_nosemaphore(regs, error_code, address, pkey);
2d4a7167
IM
1060 else
1061 BUG();
1062 }
92181f19
NP
1063}
1064
d8b57bb7
TG
1065static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1066{
1067f030 1067 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
d8b57bb7 1068 return 0;
2d4a7167 1069
1067f030 1070 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
d8b57bb7 1071 return 0;
b3ecd515
DH
1072 /*
1073 * Note: We do not do lazy flushing on protection key
1067f030 1074 * changes, so no spurious fault will ever set X86_PF_PK.
b3ecd515 1075 */
1067f030 1076 if ((error_code & X86_PF_PK))
b3ecd515 1077 return 1;
d8b57bb7
TG
1078
1079 return 1;
1080}
1081
5b727a3b 1082/*
2d4a7167
IM
1083 * Handle a spurious fault caused by a stale TLB entry.
1084 *
1085 * This allows us to lazily refresh the TLB when increasing the
1086 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1087 * eagerly is very expensive since that implies doing a full
1088 * cross-processor TLB flush, even if no stale TLB entries exist
1089 * on other processors.
1090 *
31668511
DV
1091 * Spurious faults may only occur if the TLB contains an entry with
1092 * fewer permission than the page table entry. Non-present (P = 0)
1093 * and reserved bit (R = 1) faults are never spurious.
1094 *
5b727a3b
JF
1095 * There are no security implications to leaving a stale TLB when
1096 * increasing the permissions on a page.
31668511
DV
1097 *
1098 * Returns non-zero if a spurious fault was handled, zero otherwise.
1099 *
1100 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1101 * (Optional Invalidation).
5b727a3b 1102 */
9326638c 1103static noinline int
2d4a7167 1104spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
1105{
1106 pgd_t *pgd;
e0c4f675 1107 p4d_t *p4d;
5b727a3b
JF
1108 pud_t *pud;
1109 pmd_t *pmd;
1110 pte_t *pte;
3c3e5694 1111 int ret;
5b727a3b 1112
31668511
DV
1113 /*
1114 * Only writes to RO or instruction fetches from NX may cause
1115 * spurious faults.
1116 *
1117 * These could be from user or supervisor accesses but the TLB
1118 * is only lazily flushed after a kernel mapping protection
1119 * change, so user accesses are not expected to cause spurious
1120 * faults.
1121 */
1067f030
RN
1122 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1123 error_code != (X86_PF_INSTR | X86_PF_PROT))
5b727a3b
JF
1124 return 0;
1125
1126 pgd = init_mm.pgd + pgd_index(address);
1127 if (!pgd_present(*pgd))
1128 return 0;
1129
e0c4f675
KS
1130 p4d = p4d_offset(pgd, address);
1131 if (!p4d_present(*p4d))
1132 return 0;
1133
1134 if (p4d_large(*p4d))
1135 return spurious_fault_check(error_code, (pte_t *) p4d);
1136
1137 pud = pud_offset(p4d, address);
5b727a3b
JF
1138 if (!pud_present(*pud))
1139 return 0;
1140
d8b57bb7
TG
1141 if (pud_large(*pud))
1142 return spurious_fault_check(error_code, (pte_t *) pud);
1143
5b727a3b
JF
1144 pmd = pmd_offset(pud, address);
1145 if (!pmd_present(*pmd))
1146 return 0;
1147
d8b57bb7
TG
1148 if (pmd_large(*pmd))
1149 return spurious_fault_check(error_code, (pte_t *) pmd);
1150
5b727a3b 1151 pte = pte_offset_kernel(pmd, address);
954f8571 1152 if (!pte_present(*pte))
5b727a3b
JF
1153 return 0;
1154
3c3e5694
SR
1155 ret = spurious_fault_check(error_code, pte);
1156 if (!ret)
1157 return 0;
1158
1159 /*
2d4a7167
IM
1160 * Make sure we have permissions in PMD.
1161 * If not, then there's a bug in the page tables:
3c3e5694
SR
1162 */
1163 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1164 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 1165
3c3e5694 1166 return ret;
5b727a3b 1167}
9326638c 1168NOKPROBE_SYMBOL(spurious_fault);
5b727a3b 1169
abd4f750 1170int show_unhandled_signals = 1;
1da177e4 1171
2d4a7167 1172static inline int
68da336a 1173access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 1174{
07f146f5
DH
1175 /* This is only called for the current mm, so: */
1176 bool foreign = false;
e8c6226d
DH
1177
1178 /*
1179 * Read or write was blocked by protection keys. This is
1180 * always an unconditional error and can never result in
1181 * a follow-up action to resolve the fault, like a COW.
1182 */
1067f030 1183 if (error_code & X86_PF_PK)
e8c6226d
DH
1184 return 1;
1185
07f146f5
DH
1186 /*
1187 * Make sure to check the VMA so that we do not perform
1067f030 1188 * faults just to hit a X86_PF_PK as soon as we fill in a
07f146f5
DH
1189 * page.
1190 */
1067f030
RN
1191 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1192 (error_code & X86_PF_INSTR), foreign))
07f146f5 1193 return 1;
33a709b2 1194
1067f030 1195 if (error_code & X86_PF_WRITE) {
2d4a7167 1196 /* write, present and write, not present: */
92181f19
NP
1197 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1198 return 1;
2d4a7167 1199 return 0;
92181f19
NP
1200 }
1201
2d4a7167 1202 /* read, present: */
1067f030 1203 if (unlikely(error_code & X86_PF_PROT))
2d4a7167
IM
1204 return 1;
1205
1206 /* read, not present: */
1207 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1208 return 1;
1209
92181f19
NP
1210 return 0;
1211}
1212
0973a06c
HS
1213static int fault_in_kernel_space(unsigned long address)
1214{
d9517346 1215 return address >= TASK_SIZE_MAX;
0973a06c
HS
1216}
1217
40d3cd66
PA
1218static inline bool smap_violation(int error_code, struct pt_regs *regs)
1219{
4640c7ee
PA
1220 if (!IS_ENABLED(CONFIG_X86_SMAP))
1221 return false;
1222
1223 if (!static_cpu_has(X86_FEATURE_SMAP))
1224 return false;
1225
1067f030 1226 if (error_code & X86_PF_USER)
40d3cd66
PA
1227 return false;
1228
f39b6f0e 1229 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
40d3cd66
PA
1230 return false;
1231
1232 return true;
1233}
1234
1da177e4
LT
1235/*
1236 * This routine handles page faults. It determines the address,
1237 * and the problem, and then passes it off to one of the appropriate
1238 * routines.
1da177e4 1239 */
9326638c 1240static noinline void
0ac09f9f
JO
1241__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1242 unsigned long address)
1da177e4 1243{
2d4a7167 1244 struct vm_area_struct *vma;
1da177e4
LT
1245 struct task_struct *tsk;
1246 struct mm_struct *mm;
26178ec1 1247 int fault, major = 0;
759496ba 1248 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
a3c4fb7c 1249 u32 pkey;
1da177e4 1250
a9ba9a3b
AV
1251 tsk = current;
1252 mm = tsk->mm;
2d4a7167 1253
f8561296
VN
1254 /*
1255 * Detect and handle instructions that would cause a page fault for
1256 * both a tracked kernel page and a userspace page.
1257 */
5dfaf90f 1258 prefetchw(&mm->mmap_sem);
f8561296 1259
0fd0e3da 1260 if (unlikely(kmmio_fault(regs, address)))
86069782 1261 return;
1da177e4
LT
1262
1263 /*
1264 * We fault-in kernel-space virtual memory on-demand. The
1265 * 'reference' page table is init_mm.pgd.
1266 *
1267 * NOTE! We MUST NOT take any locks for this case. We may
1268 * be in an interrupt or a critical region, and should
1269 * only copy the information from the master page table,
1270 * nothing more.
1271 *
1272 * This verifies that the fault happens in kernel space
1273 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1274 * protection error (error_code & 9) == 0.
1da177e4 1275 */
0973a06c 1276 if (unlikely(fault_in_kernel_space(address))) {
1067f030 1277 if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
f8561296
VN
1278 if (vmalloc_fault(address) >= 0)
1279 return;
f8561296 1280 }
5b727a3b 1281
2d4a7167 1282 /* Can handle a stale RO->RW TLB: */
92181f19 1283 if (spurious_fault(error_code, address))
5b727a3b
JF
1284 return;
1285
2d4a7167 1286 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1287 if (kprobes_fault(regs))
9be260a6 1288 return;
f8c2ee22
HH
1289 /*
1290 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1291 * fault we could otherwise deadlock:
f8c2ee22 1292 */
7b2d0dba 1293 bad_area_nosemaphore(regs, error_code, address, NULL);
2d4a7167 1294
92181f19 1295 return;
f8c2ee22
HH
1296 }
1297
2d4a7167 1298 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1299 if (unlikely(kprobes_fault(regs)))
9be260a6 1300 return;
8c914cb7 1301
1067f030 1302 if (unlikely(error_code & X86_PF_RSVD))
92181f19 1303 pgtable_bad(regs, error_code, address);
1da177e4 1304
4640c7ee 1305 if (unlikely(smap_violation(error_code, regs))) {
7b2d0dba 1306 bad_area_nosemaphore(regs, error_code, address, NULL);
4640c7ee 1307 return;
40d3cd66
PA
1308 }
1309
1da177e4 1310 /*
2d4a7167 1311 * If we're in an interrupt, have no user context or are running
70ffdb93 1312 * in a region with pagefaults disabled then we must not take the fault
1da177e4 1313 */
70ffdb93 1314 if (unlikely(faulthandler_disabled() || !mm)) {
7b2d0dba 1315 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1316 return;
1317 }
1da177e4 1318
e00b12e6
PZ
1319 /*
1320 * It's safe to allow irq's after cr2 has been saved and the
1321 * vmalloc fault has been handled.
1322 *
1323 * User-mode registers count as a user access even for any
1324 * potential system fault or CPU buglet:
1325 */
f39b6f0e 1326 if (user_mode(regs)) {
e00b12e6 1327 local_irq_enable();
1067f030 1328 error_code |= X86_PF_USER;
e00b12e6
PZ
1329 flags |= FAULT_FLAG_USER;
1330 } else {
1331 if (regs->flags & X86_EFLAGS_IF)
1332 local_irq_enable();
1333 }
1334
1335 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1336
1067f030 1337 if (error_code & X86_PF_WRITE)
759496ba 1338 flags |= FAULT_FLAG_WRITE;
1067f030 1339 if (error_code & X86_PF_INSTR)
d61172b4 1340 flags |= FAULT_FLAG_INSTRUCTION;
759496ba 1341
3a1dfe6e
IM
1342 /*
1343 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1344 * addresses in user space. All other faults represent errors in
1345 * the kernel and should generate an OOPS. Unfortunately, in the
1346 * case of an erroneous fault occurring in a code path which already
1347 * holds mmap_sem we will deadlock attempting to validate the fault
1348 * against the address space. Luckily the kernel only validly
1349 * references user space from well defined areas of code, which are
1350 * listed in the exceptions table.
1da177e4
LT
1351 *
1352 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1353 * the source reference check when there is a possibility of a
1354 * deadlock. Attempt to lock the address space, if we cannot we then
1355 * validate the source. If this is invalid we can skip the address
1356 * space check, thus avoiding the deadlock:
1da177e4 1357 */
92181f19 1358 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1067f030 1359 if (!(error_code & X86_PF_USER) &&
92181f19 1360 !search_exception_tables(regs->ip)) {
7b2d0dba 1361 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1362 return;
1363 }
d065bd81 1364retry:
1da177e4 1365 down_read(&mm->mmap_sem);
01006074
PZ
1366 } else {
1367 /*
2d4a7167
IM
1368 * The above down_read_trylock() might have succeeded in
1369 * which case we'll have missed the might_sleep() from
1370 * down_read():
01006074
PZ
1371 */
1372 might_sleep();
1da177e4
LT
1373 }
1374
1375 vma = find_vma(mm, address);
92181f19
NP
1376 if (unlikely(!vma)) {
1377 bad_area(regs, error_code, address);
1378 return;
1379 }
1380 if (likely(vma->vm_start <= address))
1da177e4 1381 goto good_area;
92181f19
NP
1382 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1383 bad_area(regs, error_code, address);
1384 return;
1385 }
1067f030 1386 if (error_code & X86_PF_USER) {
6f4d368e
HH
1387 /*
1388 * Accessing the stack below %sp is always a bug.
1389 * The large cushion allows instructions like enter
2d4a7167 1390 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1391 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1392 */
92181f19
NP
1393 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1394 bad_area(regs, error_code, address);
1395 return;
1396 }
1da177e4 1397 }
92181f19
NP
1398 if (unlikely(expand_stack(vma, address))) {
1399 bad_area(regs, error_code, address);
1400 return;
1401 }
1402
1403 /*
1404 * Ok, we have a good vm_area for this memory access, so
1405 * we can handle it..
1406 */
1da177e4 1407good_area:
68da336a 1408 if (unlikely(access_error(error_code, vma))) {
7b2d0dba 1409 bad_area_access_error(regs, error_code, address, vma);
92181f19 1410 return;
1da177e4
LT
1411 }
1412
1413 /*
1414 * If for any reason at all we couldn't handle the fault,
1415 * make sure we exit gracefully rather than endlessly redo
9a95f3cf
PC
1416 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1417 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
cb0631fd
VB
1418 *
1419 * Note that handle_userfault() may also release and reacquire mmap_sem
1420 * (and not return with VM_FAULT_RETRY), when returning to userland to
1421 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1422 * (potentially after handling any pending signal during the return to
1423 * userland). The return to userland is identified whenever
1424 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1425 * Thus we have to be careful about not touching vma after handling the
1426 * fault, so we read the pkey beforehand.
1da177e4 1427 */
cb0631fd 1428 pkey = vma_pkey(vma);
dcddffd4 1429 fault = handle_mm_fault(vma, address, flags);
26178ec1 1430 major |= fault & VM_FAULT_MAJOR;
2d4a7167 1431
3a13c4d7 1432 /*
26178ec1
LT
1433 * If we need to retry the mmap_sem has already been released,
1434 * and if there is a fatal signal pending there is no guarantee
1435 * that we made any progress. Handle this case first.
3a13c4d7 1436 */
26178ec1
LT
1437 if (unlikely(fault & VM_FAULT_RETRY)) {
1438 /* Retry at most once */
1439 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1440 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1441 flags |= FAULT_FLAG_TRIED;
1442 if (!fatal_signal_pending(tsk))
1443 goto retry;
1444 }
1445
1446 /* User mode? Just return to handle the fatal exception */
cf3c0a15 1447 if (flags & FAULT_FLAG_USER)
26178ec1
LT
1448 return;
1449
1450 /* Not returning to user mode? Handle exceptions or die: */
1451 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
3a13c4d7 1452 return;
26178ec1 1453 }
3a13c4d7 1454
26178ec1 1455 up_read(&mm->mmap_sem);
3a13c4d7 1456 if (unlikely(fault & VM_FAULT_ERROR)) {
a3c4fb7c 1457 mm_fault_error(regs, error_code, address, &pkey, fault);
3a13c4d7 1458 return;
37b23e05
KM
1459 }
1460
d065bd81 1461 /*
26178ec1
LT
1462 * Major/minor page fault accounting. If any of the events
1463 * returned VM_FAULT_MAJOR, we account it as a major fault.
d065bd81 1464 */
26178ec1
LT
1465 if (major) {
1466 tsk->maj_flt++;
1467 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1468 } else {
1469 tsk->min_flt++;
1470 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
ac17dc8e 1471 }
d729ab35 1472
8c938f9f 1473 check_v8086_mode(regs, address, tsk);
1da177e4 1474}
9326638c 1475NOKPROBE_SYMBOL(__do_page_fault);
6ba3c97a 1476
9326638c
MH
1477static nokprobe_inline void
1478trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1479 unsigned long error_code)
d34603b0
SA
1480{
1481 if (user_mode(regs))
d4078e23 1482 trace_page_fault_user(address, regs, error_code);
d34603b0 1483 else
d4078e23 1484 trace_page_fault_kernel(address, regs, error_code);
d34603b0
SA
1485}
1486
11a7ffb0
TG
1487/*
1488 * We must have this function blacklisted from kprobes, tagged with notrace
1489 * and call read_cr2() before calling anything else. To avoid calling any
1490 * kind of tracing machinery before we've observed the CR2 value.
1491 *
1492 * exception_{enter,exit}() contains all sorts of tracepoints.
1493 */
9326638c 1494dotraplinkage void notrace
11a7ffb0 1495do_page_fault(struct pt_regs *regs, unsigned long error_code)
25c74b10 1496{
11a7ffb0 1497 unsigned long address = read_cr2(); /* Get the faulting address */
d4078e23 1498 enum ctx_state prev_state;
25c74b10
SA
1499
1500 prev_state = exception_enter();
80954747 1501 if (trace_pagefault_enabled())
11a7ffb0
TG
1502 trace_page_fault_entries(address, regs, error_code);
1503
0ac09f9f 1504 __do_page_fault(regs, error_code, address);
25c74b10
SA
1505 exception_exit(prev_state);
1506}
11a7ffb0 1507NOKPROBE_SYMBOL(do_page_fault);