]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/x86/mm/fault.c
x86/vsyscall: Show something useful on a read fault
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / mm / fault.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4 3 * Copyright (C) 1995 Linus Torvalds
2d4a7167 4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 6 */
a2bcd473 7#include <linux/sched.h> /* test_thread_flag(), ... */
68db0cf1 8#include <linux/sched/task_stack.h> /* task_stack_*(), ... */
a2bcd473 9#include <linux/kdebug.h> /* oops_begin/end, ... */
4cdf8dbe 10#include <linux/extable.h> /* search_exception_tables */
57c8a661 11#include <linux/memblock.h> /* max_low_pfn */
9326638c 12#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
a2bcd473 13#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 14#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 15#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 16#include <linux/prefetch.h> /* prefetchw */
56dd9470 17#include <linux/context_tracking.h> /* exception_enter(), ... */
70ffdb93 18#include <linux/uaccess.h> /* faulthandler_disabled() */
3425d934 19#include <linux/efi.h> /* efi_recover_from_page_fault()*/
50a7ca3c 20#include <linux/mm_types.h>
2d4a7167 21
019132ff 22#include <asm/cpufeature.h> /* boot_cpu_has, ... */
a2bcd473
IM
23#include <asm/traps.h> /* dotraplinkage, ... */
24#include <asm/pgalloc.h> /* pgd_*(), ... */
f40c3300
AL
25#include <asm/fixmap.h> /* VSYSCALL_ADDR */
26#include <asm/vsyscall.h> /* emulate_vsyscall */
ba3e127e 27#include <asm/vm86.h> /* struct vm86 */
019132ff 28#include <asm/mmu_context.h> /* vma_pkey() */
3425d934 29#include <asm/efi.h> /* efi_recover_from_page_fault()*/
a1a371c4 30#include <asm/desc.h> /* store_idt(), ... */
d876b673 31#include <asm/cpu_entry_area.h> /* exception stack */
1da177e4 32
d34603b0
SA
33#define CREATE_TRACE_POINTS
34#include <asm/trace/exceptions.h>
35
b814d41f 36/*
b319eed0
IM
37 * Returns 0 if mmiotrace is disabled, or if the fault is not
38 * handled by mmiotrace:
b814d41f 39 */
9326638c 40static nokprobe_inline int
62c9295f 41kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 42{
0fd0e3da
PP
43 if (unlikely(is_kmmio_active()))
44 if (kmmio_handler(regs, addr) == 1)
45 return -1;
0fd0e3da 46 return 0;
86069782
PP
47}
48
9326638c 49static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
1bd858a5 50{
a980c0ef
JH
51 if (!kprobes_built_in())
52 return 0;
53 if (user_mode(regs))
54 return 0;
55 /*
56 * To be potentially processing a kprobe fault and to be allowed to call
57 * kprobe_running(), we have to be non-preemptible.
58 */
59 if (preemptible())
60 return 0;
61 if (!kprobe_running())
62 return 0;
63 return kprobe_fault_handler(regs, X86_TRAP_PF);
33cb5243 64}
1bd858a5 65
1dc85be0 66/*
2d4a7167
IM
67 * Prefetch quirks:
68 *
69 * 32-bit mode:
70 *
71 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
72 * Check that here and ignore it.
1dc85be0 73 *
2d4a7167 74 * 64-bit mode:
1dc85be0 75 *
2d4a7167
IM
76 * Sometimes the CPU reports invalid exceptions on prefetch.
77 * Check that here and ignore it.
78 *
79 * Opcode checker based on code by Richard Brunner.
1dc85be0 80 */
107a0367
IM
81static inline int
82check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
83 unsigned char opcode, int *prefetch)
84{
85 unsigned char instr_hi = opcode & 0xf0;
86 unsigned char instr_lo = opcode & 0x0f;
87
88 switch (instr_hi) {
89 case 0x20:
90 case 0x30:
91 /*
92 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
93 * In X86_64 long mode, the CPU will signal invalid
94 * opcode if some of these prefixes are present so
95 * X86_64 will never get here anyway
96 */
97 return ((instr_lo & 7) == 0x6);
98#ifdef CONFIG_X86_64
99 case 0x40:
100 /*
101 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
102 * Need to figure out under what instruction mode the
103 * instruction was issued. Could check the LDT for lm,
104 * but for now it's good enough to assume that long
105 * mode only uses well known segments or kernel.
106 */
318f5a2a 107 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
108#endif
109 case 0x60:
110 /* 0x64 thru 0x67 are valid prefixes in all modes. */
111 return (instr_lo & 0xC) == 0x4;
112 case 0xF0:
113 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
114 return !instr_lo || (instr_lo>>1) == 1;
115 case 0x00:
116 /* Prefetch instruction is 0x0F0D or 0x0F18 */
117 if (probe_kernel_address(instr, opcode))
118 return 0;
119
120 *prefetch = (instr_lo == 0xF) &&
121 (opcode == 0x0D || opcode == 0x18);
122 return 0;
123 default:
124 return 0;
125 }
126}
127
2d4a7167
IM
128static int
129is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 130{
2d4a7167 131 unsigned char *max_instr;
ab2bf0c1 132 unsigned char *instr;
33cb5243 133 int prefetch = 0;
1da177e4 134
3085354d
IM
135 /*
136 * If it was a exec (instruction fetch) fault on NX page, then
137 * do not ignore the fault:
138 */
1067f030 139 if (error_code & X86_PF_INSTR)
1da177e4 140 return 0;
1dc85be0 141
107a0367 142 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 143 max_instr = instr + 15;
1da177e4 144
d31bf07f 145 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
1da177e4
LT
146 return 0;
147
107a0367 148 while (instr < max_instr) {
2d4a7167 149 unsigned char opcode;
1da177e4 150
ab2bf0c1 151 if (probe_kernel_address(instr, opcode))
33cb5243 152 break;
1da177e4 153
1da177e4
LT
154 instr++;
155
107a0367 156 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 157 break;
1da177e4
LT
158 }
159 return prefetch;
160}
161
f2f13a85
IM
162DEFINE_SPINLOCK(pgd_lock);
163LIST_HEAD(pgd_list);
164
165#ifdef CONFIG_X86_32
166static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 167{
f2f13a85
IM
168 unsigned index = pgd_index(address);
169 pgd_t *pgd_k;
e0c4f675 170 p4d_t *p4d, *p4d_k;
f2f13a85
IM
171 pud_t *pud, *pud_k;
172 pmd_t *pmd, *pmd_k;
2d4a7167 173
f2f13a85
IM
174 pgd += index;
175 pgd_k = init_mm.pgd + index;
176
177 if (!pgd_present(*pgd_k))
178 return NULL;
179
180 /*
181 * set_pgd(pgd, *pgd_k); here would be useless on PAE
182 * and redundant with the set_pmd() on non-PAE. As would
e0c4f675 183 * set_p4d/set_pud.
f2f13a85 184 */
e0c4f675
KS
185 p4d = p4d_offset(pgd, address);
186 p4d_k = p4d_offset(pgd_k, address);
187 if (!p4d_present(*p4d_k))
188 return NULL;
189
190 pud = pud_offset(p4d, address);
191 pud_k = pud_offset(p4d_k, address);
f2f13a85
IM
192 if (!pud_present(*pud_k))
193 return NULL;
194
195 pmd = pmd_offset(pud, address);
196 pmd_k = pmd_offset(pud_k, address);
197 if (!pmd_present(*pmd_k))
198 return NULL;
199
b8bcfe99 200 if (!pmd_present(*pmd))
f2f13a85 201 set_pmd(pmd, *pmd_k);
b8bcfe99 202 else
f2f13a85 203 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
204
205 return pmd_k;
206}
207
208void vmalloc_sync_all(void)
209{
210 unsigned long address;
211
212 if (SHARED_KERNEL_PMD)
213 return;
214
215 for (address = VMALLOC_START & PMD_MASK;
dc4fac84 216 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
f2f13a85 217 address += PMD_SIZE) {
f2f13a85
IM
218 struct page *page;
219
a79e53d8 220 spin_lock(&pgd_lock);
f2f13a85 221 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 222 spinlock_t *pgt_lock;
f01f7c56 223 pmd_t *ret;
617d34d9 224
a79e53d8 225 /* the pgt_lock only for Xen */
617d34d9
JF
226 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
227
228 spin_lock(pgt_lock);
229 ret = vmalloc_sync_one(page_address(page), address);
230 spin_unlock(pgt_lock);
231
232 if (!ret)
f2f13a85
IM
233 break;
234 }
a79e53d8 235 spin_unlock(&pgd_lock);
f2f13a85
IM
236 }
237}
238
239/*
240 * 32-bit:
241 *
242 * Handle a fault on the vmalloc or module mapping area
243 */
9326638c 244static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
245{
246 unsigned long pgd_paddr;
247 pmd_t *pmd_k;
248 pte_t *pte_k;
249
250 /* Make sure we are in vmalloc area: */
251 if (!(address >= VMALLOC_START && address < VMALLOC_END))
252 return -1;
253
254 /*
255 * Synchronize this task's top level page-table
256 * with the 'reference' page table.
257 *
258 * Do _not_ use "current" here. We might be inside
259 * an interrupt in the middle of a task switch..
260 */
6c690ee1 261 pgd_paddr = read_cr3_pa();
f2f13a85
IM
262 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
263 if (!pmd_k)
264 return -1;
265
18a95521 266 if (pmd_large(*pmd_k))
f4eafd8b
TK
267 return 0;
268
f2f13a85
IM
269 pte_k = pte_offset_kernel(pmd_k, address);
270 if (!pte_present(*pte_k))
271 return -1;
272
273 return 0;
274}
9326638c 275NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85
IM
276
277/*
278 * Did it hit the DOS screen memory VA from vm86 mode?
279 */
280static inline void
281check_v8086_mode(struct pt_regs *regs, unsigned long address,
282 struct task_struct *tsk)
283{
9fda6a06 284#ifdef CONFIG_VM86
f2f13a85
IM
285 unsigned long bit;
286
9fda6a06 287 if (!v8086_mode(regs) || !tsk->thread.vm86)
f2f13a85
IM
288 return;
289
290 bit = (address - 0xA0000) >> PAGE_SHIFT;
291 if (bit < 32)
9fda6a06
BG
292 tsk->thread.vm86->screen_bitmap |= 1 << bit;
293#endif
33cb5243 294}
1da177e4 295
087975b0 296static bool low_pfn(unsigned long pfn)
1da177e4 297{
087975b0
AM
298 return pfn < max_low_pfn;
299}
1156e098 300
087975b0
AM
301static void dump_pagetable(unsigned long address)
302{
6c690ee1 303 pgd_t *base = __va(read_cr3_pa());
087975b0 304 pgd_t *pgd = &base[pgd_index(address)];
e0c4f675
KS
305 p4d_t *p4d;
306 pud_t *pud;
087975b0
AM
307 pmd_t *pmd;
308 pte_t *pte;
2d4a7167 309
1156e098 310#ifdef CONFIG_X86_PAE
39e48d9b 311 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
087975b0
AM
312 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
313 goto out;
39e48d9b
JB
314#define pr_pde pr_cont
315#else
316#define pr_pde pr_info
1156e098 317#endif
e0c4f675
KS
318 p4d = p4d_offset(pgd, address);
319 pud = pud_offset(p4d, address);
320 pmd = pmd_offset(pud, address);
39e48d9b
JB
321 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
322#undef pr_pde
1156e098
HH
323
324 /*
325 * We must not directly access the pte in the highpte
326 * case if the page table is located in highmem.
327 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 328 * it's allocated already:
1156e098 329 */
087975b0
AM
330 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
331 goto out;
1156e098 332
087975b0 333 pte = pte_offset_kernel(pmd, address);
39e48d9b 334 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
087975b0 335out:
39e48d9b 336 pr_cont("\n");
f2f13a85
IM
337}
338
339#else /* CONFIG_X86_64: */
340
341void vmalloc_sync_all(void)
342{
5372e155 343 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
f2f13a85
IM
344}
345
346/*
347 * 64-bit:
348 *
349 * Handle a fault on the vmalloc area
f2f13a85 350 */
9326638c 351static noinline int vmalloc_fault(unsigned long address)
f2f13a85 352{
565977a3
TK
353 pgd_t *pgd, *pgd_k;
354 p4d_t *p4d, *p4d_k;
355 pud_t *pud;
356 pmd_t *pmd;
357 pte_t *pte;
f2f13a85
IM
358
359 /* Make sure we are in vmalloc area: */
360 if (!(address >= VMALLOC_START && address < VMALLOC_END))
361 return -1;
362
363 /*
364 * Copy kernel mappings over when needed. This can also
365 * happen within a race in page table update. In the later
366 * case just flush:
367 */
6c690ee1 368 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
565977a3
TK
369 pgd_k = pgd_offset_k(address);
370 if (pgd_none(*pgd_k))
f2f13a85
IM
371 return -1;
372
ed7588d5 373 if (pgtable_l5_enabled()) {
36b3a772 374 if (pgd_none(*pgd)) {
565977a3 375 set_pgd(pgd, *pgd_k);
36b3a772
AL
376 arch_flush_lazy_mmu_mode();
377 } else {
565977a3 378 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
36b3a772 379 }
1160c277 380 }
f2f13a85 381
b50858ce
KS
382 /* With 4-level paging, copying happens on the p4d level. */
383 p4d = p4d_offset(pgd, address);
565977a3
TK
384 p4d_k = p4d_offset(pgd_k, address);
385 if (p4d_none(*p4d_k))
b50858ce
KS
386 return -1;
387
ed7588d5 388 if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
565977a3 389 set_p4d(p4d, *p4d_k);
b50858ce
KS
390 arch_flush_lazy_mmu_mode();
391 } else {
565977a3 392 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
b50858ce
KS
393 }
394
36b3a772 395 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
f2f13a85 396
b50858ce 397 pud = pud_offset(p4d, address);
565977a3 398 if (pud_none(*pud))
f2f13a85
IM
399 return -1;
400
18a95521 401 if (pud_large(*pud))
f4eafd8b
TK
402 return 0;
403
f2f13a85 404 pmd = pmd_offset(pud, address);
565977a3 405 if (pmd_none(*pmd))
f2f13a85
IM
406 return -1;
407
18a95521 408 if (pmd_large(*pmd))
f4eafd8b
TK
409 return 0;
410
f2f13a85 411 pte = pte_offset_kernel(pmd, address);
565977a3
TK
412 if (!pte_present(*pte))
413 return -1;
f2f13a85
IM
414
415 return 0;
416}
9326638c 417NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85 418
e05139f2 419#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 420static const char errata93_warning[] =
ad361c98
JP
421KERN_ERR
422"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
423"******* Working around it, but it may cause SEGVs or burn power.\n"
424"******* Please consider a BIOS update.\n"
425"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 426#endif
f2f13a85
IM
427
428/*
429 * No vm86 mode in 64-bit mode:
430 */
431static inline void
432check_v8086_mode(struct pt_regs *regs, unsigned long address,
433 struct task_struct *tsk)
434{
435}
436
437static int bad_address(void *p)
438{
439 unsigned long dummy;
440
441 return probe_kernel_address((unsigned long *)p, dummy);
442}
443
444static void dump_pagetable(unsigned long address)
445{
6c690ee1 446 pgd_t *base = __va(read_cr3_pa());
087975b0 447 pgd_t *pgd = base + pgd_index(address);
e0c4f675 448 p4d_t *p4d;
1da177e4
LT
449 pud_t *pud;
450 pmd_t *pmd;
451 pte_t *pte;
452
2d4a7167
IM
453 if (bad_address(pgd))
454 goto bad;
455
39e48d9b 456 pr_info("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
457
458 if (!pgd_present(*pgd))
459 goto out;
1da177e4 460
e0c4f675
KS
461 p4d = p4d_offset(pgd, address);
462 if (bad_address(p4d))
463 goto bad;
464
39e48d9b 465 pr_cont("P4D %lx ", p4d_val(*p4d));
e0c4f675
KS
466 if (!p4d_present(*p4d) || p4d_large(*p4d))
467 goto out;
468
469 pud = pud_offset(p4d, address);
2d4a7167
IM
470 if (bad_address(pud))
471 goto bad;
472
39e48d9b 473 pr_cont("PUD %lx ", pud_val(*pud));
b5360222 474 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 475 goto out;
1da177e4
LT
476
477 pmd = pmd_offset(pud, address);
2d4a7167
IM
478 if (bad_address(pmd))
479 goto bad;
480
39e48d9b 481 pr_cont("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
482 if (!pmd_present(*pmd) || pmd_large(*pmd))
483 goto out;
1da177e4
LT
484
485 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
486 if (bad_address(pte))
487 goto bad;
488
39e48d9b 489 pr_cont("PTE %lx", pte_val(*pte));
2d4a7167 490out:
39e48d9b 491 pr_cont("\n");
1da177e4
LT
492 return;
493bad:
39e48d9b 494 pr_info("BAD\n");
8c938f9f
IM
495}
496
f2f13a85 497#endif /* CONFIG_X86_64 */
1da177e4 498
2d4a7167
IM
499/*
500 * Workaround for K8 erratum #93 & buggy BIOS.
501 *
502 * BIOS SMM functions are required to use a specific workaround
503 * to avoid corruption of the 64bit RIP register on C stepping K8.
504 *
505 * A lot of BIOS that didn't get tested properly miss this.
506 *
507 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
508 * Try to work around it here.
509 *
510 * Note we only handle faults in kernel here.
511 * Does nothing on 32-bit.
fdfe8aa8 512 */
33cb5243 513static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 514{
e05139f2
JB
515#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
516 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
517 || boot_cpu_data.x86 != 0xf)
518 return 0;
519
65ea5b03 520 if (address != regs->ip)
1da177e4 521 return 0;
2d4a7167 522
33cb5243 523 if ((address >> 32) != 0)
1da177e4 524 return 0;
2d4a7167 525
1da177e4 526 address |= 0xffffffffUL << 32;
33cb5243
HH
527 if ((address >= (u64)_stext && address <= (u64)_etext) ||
528 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 529 printk_once(errata93_warning);
65ea5b03 530 regs->ip = address;
1da177e4
LT
531 return 1;
532 }
fdfe8aa8 533#endif
1da177e4 534 return 0;
33cb5243 535}
1da177e4 536
35f3266f 537/*
2d4a7167
IM
538 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
539 * to illegal addresses >4GB.
540 *
541 * We catch this in the page fault handler because these addresses
542 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
543 * segment in LDT is compatibility mode.
544 */
545static int is_errata100(struct pt_regs *regs, unsigned long address)
546{
547#ifdef CONFIG_X86_64
2d4a7167 548 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
549 return 1;
550#endif
551 return 0;
552}
553
29caf2f9
HH
554static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
555{
556#ifdef CONFIG_X86_F00F_BUG
557 unsigned long nr;
2d4a7167 558
29caf2f9 559 /*
2d4a7167 560 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9 561 */
e2604b49 562 if (boot_cpu_has_bug(X86_BUG_F00F)) {
29caf2f9
HH
563 nr = (address - idt_descr.address) >> 3;
564
565 if (nr == 6) {
566 do_invalid_op(regs, 0);
567 return 1;
568 }
569 }
570#endif
571 return 0;
572}
573
a1a371c4
AL
574static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
575{
576 u32 offset = (index >> 3) * sizeof(struct desc_struct);
577 unsigned long addr;
578 struct ldttss_desc desc;
579
580 if (index == 0) {
581 pr_alert("%s: NULL\n", name);
582 return;
583 }
584
585 if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
586 pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
587 return;
588 }
589
590 if (probe_kernel_read(&desc, (void *)(gdt->address + offset),
591 sizeof(struct ldttss_desc))) {
592 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
593 name, index);
594 return;
595 }
596
5ccd3528 597 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
a1a371c4
AL
598#ifdef CONFIG_X86_64
599 addr |= ((u64)desc.base3 << 32);
600#endif
601 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
602 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
603}
604
2d4a7167 605static void
a2aa52ab 606show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
b3279c7f 607{
1156e098
HH
608 if (!oops_may_print())
609 return;
610
1067f030 611 if (error_code & X86_PF_INSTR) {
93809be8 612 unsigned int level;
426e34cc
MF
613 pgd_t *pgd;
614 pte_t *pte;
2d4a7167 615
6c690ee1 616 pgd = __va(read_cr3_pa());
426e34cc
MF
617 pgd += pgd_index(address);
618
619 pte = lookup_address_in_pgd(pgd, address, &level);
1156e098 620
8f766149 621 if (pte && pte_present(*pte) && !pte_exec(*pte))
d79d0d8a
DV
622 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
623 from_kuid(&init_user_ns, current_uid()));
eff50c34
JK
624 if (pte && pte_present(*pte) && pte_exec(*pte) &&
625 (pgd_flags(*pgd) & _PAGE_USER) &&
1e02ce4c 626 (__read_cr4() & X86_CR4_SMEP))
d79d0d8a
DV
627 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
628 from_kuid(&init_user_ns, current_uid()));
1156e098 629 }
1156e098 630
f28b11a2 631 if (address < PAGE_SIZE && !user_mode(regs))
ea2f8d60 632 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
f28b11a2
SC
633 (void *)address);
634 else
ea2f8d60 635 pr_alert("BUG: unable to handle page fault for address: %px\n",
f28b11a2 636 (void *)address);
2d4a7167 637
ea2f8d60 638 pr_alert("#PF: %s %s in %s mode\n",
18ea35c5
SC
639 (error_code & X86_PF_USER) ? "user" : "supervisor",
640 (error_code & X86_PF_INSTR) ? "instruction fetch" :
641 (error_code & X86_PF_WRITE) ? "write access" :
642 "read access",
643 user_mode(regs) ? "user" : "kernel");
644 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
645 !(error_code & X86_PF_PROT) ? "not-present page" :
646 (error_code & X86_PF_RSVD) ? "reserved bit violation" :
647 (error_code & X86_PF_PK) ? "protection keys violation" :
648 "permissions violation");
a2aa52ab 649
a1a371c4
AL
650 if (!(error_code & X86_PF_USER) && user_mode(regs)) {
651 struct desc_ptr idt, gdt;
652 u16 ldtr, tr;
653
a1a371c4
AL
654 /*
655 * This can happen for quite a few reasons. The more obvious
656 * ones are faults accessing the GDT, or LDT. Perhaps
657 * surprisingly, if the CPU tries to deliver a benign or
658 * contributory exception from user code and gets a page fault
659 * during delivery, the page fault can be delivered as though
660 * it originated directly from user code. This could happen
661 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
662 * kernel or IST stack.
663 */
664 store_idt(&idt);
665
666 /* Usable even on Xen PV -- it's just slow. */
667 native_store_gdt(&gdt);
668
669 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
670 idt.address, idt.size, gdt.address, gdt.size);
671
672 store_ldt(ldtr);
673 show_ldttss(&gdt, "LDTR", ldtr);
674
675 store_tr(tr);
676 show_ldttss(&gdt, "TR", tr);
677 }
678
b3279c7f
HH
679 dump_pagetable(address);
680}
681
2d4a7167
IM
682static noinline void
683pgtable_bad(struct pt_regs *regs, unsigned long error_code,
684 unsigned long address)
1da177e4 685{
2d4a7167
IM
686 struct task_struct *tsk;
687 unsigned long flags;
688 int sig;
689
690 flags = oops_begin();
691 tsk = current;
692 sig = SIGKILL;
1209140c 693
1da177e4 694 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 695 tsk->comm, address);
1da177e4 696 dump_pagetable(address);
2d4a7167 697
22f5991c 698 if (__die("Bad pagetable", regs, error_code))
874d93d1 699 sig = 0;
2d4a7167 700
874d93d1 701 oops_end(flags, regs, sig);
1da177e4
LT
702}
703
e49d3cbe
AL
704static void set_signal_archinfo(unsigned long address,
705 unsigned long error_code)
706{
707 struct task_struct *tsk = current;
708
709 /*
710 * To avoid leaking information about the kernel page
711 * table layout, pretend that user-mode accesses to
712 * kernel addresses are always protection faults.
713 */
714 if (address >= TASK_SIZE_MAX)
715 error_code |= X86_PF_PROT;
716
717 tsk->thread.trap_nr = X86_TRAP_PF;
718 tsk->thread.error_code = error_code | X86_PF_USER;
719 tsk->thread.cr2 = address;
720}
721
2d4a7167
IM
722static noinline void
723no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 724 unsigned long address, int signal, int si_code)
92181f19
NP
725{
726 struct task_struct *tsk = current;
92181f19
NP
727 unsigned long flags;
728 int sig;
92181f19 729
ebb53e25
AL
730 if (user_mode(regs)) {
731 /*
732 * This is an implicit supervisor-mode access from user
733 * mode. Bypass all the kernel-mode recovery code and just
734 * OOPS.
735 */
736 goto oops;
737 }
738
2d4a7167 739 /* Are we prepared to handle this kernel fault? */
81fd9c18 740 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
c026b359
PZ
741 /*
742 * Any interrupt that takes a fault gets the fixup. This makes
743 * the below recursive fault logic only apply to a faults from
744 * task context.
745 */
746 if (in_interrupt())
747 return;
748
749 /*
750 * Per the above we're !in_interrupt(), aka. task context.
751 *
752 * In this case we need to make sure we're not recursively
753 * faulting through the emulate_vsyscall() logic.
754 */
2a53ccbc 755 if (current->thread.sig_on_uaccess_err && signal) {
e49d3cbe 756 set_signal_archinfo(address, error_code);
4fc34901
AL
757
758 /* XXX: hwpoison faults will set the wrong code. */
b4fd52f2
EB
759 force_sig_fault(signal, si_code, (void __user *)address,
760 tsk);
4fc34901 761 }
c026b359
PZ
762
763 /*
764 * Barring that, we can do the fixup and be happy.
765 */
92181f19 766 return;
4fc34901 767 }
92181f19 768
6271cfdf
AL
769#ifdef CONFIG_VMAP_STACK
770 /*
771 * Stack overflow? During boot, we can fault near the initial
772 * stack in the direct map, but that's not an overflow -- check
773 * that we're in vmalloc space to avoid this.
774 */
775 if (is_vmalloc_addr((void *)address) &&
776 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
777 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
d876b673 778 unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
6271cfdf
AL
779 /*
780 * We're likely to be running with very little stack space
781 * left. It's plausible that we'd hit this condition but
782 * double-fault even before we get this far, in which case
783 * we're fine: the double-fault handler will deal with it.
784 *
785 * We don't want to make it all the way into the oops code
786 * and then double-fault, though, because we're likely to
787 * break the console driver and lose most of the stack dump.
788 */
789 asm volatile ("movq %[stack], %%rsp\n\t"
790 "call handle_stack_overflow\n\t"
791 "1: jmp 1b"
f5caf621 792 : ASM_CALL_CONSTRAINT
6271cfdf
AL
793 : "D" ("kernel stack overflow (page fault)"),
794 "S" (regs), "d" (address),
795 [stack] "rm" (stack));
796 unreachable();
797 }
798#endif
799
92181f19 800 /*
2d4a7167
IM
801 * 32-bit:
802 *
803 * Valid to do another page fault here, because if this fault
804 * had been triggered by is_prefetch fixup_exception would have
805 * handled it.
806 *
807 * 64-bit:
92181f19 808 *
2d4a7167 809 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
810 */
811 if (is_prefetch(regs, error_code, address))
812 return;
813
814 if (is_errata93(regs, address))
815 return;
816
3425d934
SP
817 /*
818 * Buggy firmware could access regions which might page fault, try to
819 * recover from such faults.
820 */
821 if (IS_ENABLED(CONFIG_EFI))
822 efi_recover_from_page_fault(address);
823
ebb53e25 824oops:
92181f19
NP
825 /*
826 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 827 * terminate things with extreme prejudice:
92181f19 828 */
92181f19 829 flags = oops_begin();
92181f19
NP
830
831 show_fault_oops(regs, error_code, address);
832
a70857e4 833 if (task_stack_end_corrupted(tsk))
b0f4c4b3 834 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 835
92181f19
NP
836 sig = SIGKILL;
837 if (__die("Oops", regs, error_code))
838 sig = 0;
2d4a7167 839
92181f19 840 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 841 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 842
92181f19 843 oops_end(flags, regs, sig);
92181f19
NP
844}
845
2d4a7167
IM
846/*
847 * Print out info about fatal segfaults, if the show_unhandled_signals
848 * sysctl is set:
849 */
850static inline void
851show_signal_msg(struct pt_regs *regs, unsigned long error_code,
852 unsigned long address, struct task_struct *tsk)
853{
ba54d856
BP
854 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
855
2d4a7167
IM
856 if (!unhandled_signal(tsk, SIGSEGV))
857 return;
858
859 if (!printk_ratelimit())
860 return;
861
10a7e9d8 862 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
ba54d856 863 loglvl, tsk->comm, task_pid_nr(tsk), address,
2d4a7167
IM
864 (void *)regs->ip, (void *)regs->sp, error_code);
865
866 print_vma_addr(KERN_CONT " in ", regs->ip);
867
868 printk(KERN_CONT "\n");
ba54d856 869
342db04a 870 show_opcodes(regs, loglvl);
2d4a7167
IM
871}
872
02e983b7
DH
873/*
874 * The (legacy) vsyscall page is the long page in the kernel portion
875 * of the address space that has user-accessible permissions.
876 */
877static bool is_vsyscall_vaddr(unsigned long vaddr)
878{
3ae0ad92 879 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
02e983b7
DH
880}
881
2d4a7167
IM
882static void
883__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
419ceeb1 884 unsigned long address, u32 pkey, int si_code)
92181f19
NP
885{
886 struct task_struct *tsk = current;
887
888 /* User mode accesses just cause a SIGSEGV */
6ea59b07 889 if (user_mode(regs) && (error_code & X86_PF_USER)) {
92181f19 890 /*
2d4a7167 891 * It's possible to have interrupts off here:
92181f19
NP
892 */
893 local_irq_enable();
894
895 /*
896 * Valid to do another page fault here because this one came
2d4a7167 897 * from user space:
92181f19
NP
898 */
899 if (is_prefetch(regs, error_code, address))
900 return;
901
902 if (is_errata100(regs, address))
903 return;
904
dc4fac84
AL
905 /*
906 * To avoid leaking information about the kernel page table
907 * layout, pretend that user-mode accesses to kernel addresses
908 * are always protection faults.
909 */
910 if (address >= TASK_SIZE_MAX)
1067f030 911 error_code |= X86_PF_PROT;
3ae36655 912
e575a86f 913 if (likely(show_unhandled_signals))
2d4a7167
IM
914 show_signal_msg(regs, error_code, address, tsk);
915
e49d3cbe 916 set_signal_archinfo(address, error_code);
92181f19 917
9db812db 918 if (si_code == SEGV_PKUERR)
419ceeb1 919 force_sig_pkuerr((void __user *)address, pkey);
9db812db 920
b4fd52f2 921 force_sig_fault(SIGSEGV, si_code, (void __user *)address, tsk);
2d4a7167 922
92181f19
NP
923 return;
924 }
925
926 if (is_f00f_bug(regs, address))
927 return;
928
4fc34901 929 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
930}
931
2d4a7167
IM
932static noinline void
933bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
768fd9c6 934 unsigned long address)
92181f19 935{
419ceeb1 936 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
92181f19
NP
937}
938
2d4a7167
IM
939static void
940__bad_area(struct pt_regs *regs, unsigned long error_code,
419ceeb1 941 unsigned long address, u32 pkey, int si_code)
92181f19
NP
942{
943 struct mm_struct *mm = current->mm;
92181f19
NP
944 /*
945 * Something tried to access memory that isn't in our memory map..
946 * Fix it, but check if it's kernel or user first..
947 */
948 up_read(&mm->mmap_sem);
949
aba1ecd3 950 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
92181f19
NP
951}
952
2d4a7167
IM
953static noinline void
954bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19 955{
419ceeb1 956 __bad_area(regs, error_code, address, 0, SEGV_MAPERR);
92181f19
NP
957}
958
33a709b2
DH
959static inline bool bad_area_access_from_pkeys(unsigned long error_code,
960 struct vm_area_struct *vma)
961{
07f146f5
DH
962 /* This code is always called on the current mm */
963 bool foreign = false;
964
33a709b2
DH
965 if (!boot_cpu_has(X86_FEATURE_OSPKE))
966 return false;
1067f030 967 if (error_code & X86_PF_PK)
33a709b2 968 return true;
07f146f5 969 /* this checks permission keys on the VMA: */
1067f030
RN
970 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
971 (error_code & X86_PF_INSTR), foreign))
07f146f5 972 return true;
33a709b2 973 return false;
92181f19
NP
974}
975
2d4a7167
IM
976static noinline void
977bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 978 unsigned long address, struct vm_area_struct *vma)
92181f19 979{
019132ff
DH
980 /*
981 * This OSPKE check is not strictly necessary at runtime.
982 * But, doing it this way allows compiler optimizations
983 * if pkeys are compiled out.
984 */
aba1ecd3 985 if (bad_area_access_from_pkeys(error_code, vma)) {
9db812db
EB
986 /*
987 * A protection key fault means that the PKRU value did not allow
988 * access to some PTE. Userspace can figure out what PKRU was
989 * from the XSAVE state. This function captures the pkey from
990 * the vma and passes it to userspace so userspace can discover
991 * which protection key was set on the PTE.
992 *
993 * If we get here, we know that the hardware signaled a X86_PF_PK
994 * fault and that there was a VMA once we got in the fault
995 * handler. It does *not* guarantee that the VMA we find here
996 * was the one that we faulted on.
997 *
998 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
999 * 2. T1 : set PKRU to deny access to pkey=4, touches page
1000 * 3. T1 : faults...
1001 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
1002 * 5. T1 : enters fault handler, takes mmap_sem, etc...
1003 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
1004 * faulted on a pte with its pkey=4.
1005 */
aba1ecd3 1006 u32 pkey = vma_pkey(vma);
9db812db 1007
419ceeb1 1008 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
aba1ecd3 1009 } else {
419ceeb1 1010 __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
aba1ecd3 1011 }
92181f19
NP
1012}
1013
2d4a7167 1014static void
a6e04aa9 1015do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
3d353901 1016 vm_fault_t fault)
92181f19
NP
1017{
1018 struct task_struct *tsk = current;
92181f19 1019
2d4a7167 1020 /* Kernel mode? Handle exceptions or die: */
1067f030 1021 if (!(error_code & X86_PF_USER)) {
4fc34901 1022 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
1023 return;
1024 }
2d4a7167 1025
cd1b68f0 1026 /* User-space => ok to do another page fault: */
92181f19
NP
1027 if (is_prefetch(regs, error_code, address))
1028 return;
2d4a7167 1029
e49d3cbe 1030 set_signal_archinfo(address, error_code);
2d4a7167 1031
a6e04aa9 1032#ifdef CONFIG_MEMORY_FAILURE
f672b49b 1033 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
40e55394
EB
1034 unsigned lsb = 0;
1035
1036 pr_err(
a6e04aa9
AK
1037 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1038 tsk->comm, tsk->pid, address);
40e55394
EB
1039 if (fault & VM_FAULT_HWPOISON_LARGE)
1040 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
1041 if (fault & VM_FAULT_HWPOISON)
1042 lsb = PAGE_SHIFT;
1043 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, tsk);
1044 return;
a6e04aa9
AK
1045 }
1046#endif
b4fd52f2 1047 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address, tsk);
92181f19
NP
1048}
1049
3a13c4d7 1050static noinline void
2d4a7167 1051mm_fault_error(struct pt_regs *regs, unsigned long error_code,
25c102d8 1052 unsigned long address, vm_fault_t fault)
92181f19 1053{
1067f030 1054 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
3a13c4d7
JW
1055 no_context(regs, error_code, address, 0, 0);
1056 return;
b80ef10e 1057 }
b80ef10e 1058
2d4a7167 1059 if (fault & VM_FAULT_OOM) {
f8626854 1060 /* Kernel mode? Handle exceptions or die: */
1067f030 1061 if (!(error_code & X86_PF_USER)) {
4fc34901
AL
1062 no_context(regs, error_code, address,
1063 SIGSEGV, SEGV_MAPERR);
3a13c4d7 1064 return;
f8626854
AV
1065 }
1066
c2d23f91
DR
1067 /*
1068 * We ran out of memory, call the OOM killer, and return the
1069 * userspace (which will retry the fault, or kill us if we got
1070 * oom-killed):
1071 */
1072 pagefault_out_of_memory();
2d4a7167 1073 } else {
f672b49b
AK
1074 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1075 VM_FAULT_HWPOISON_LARGE))
27274f73 1076 do_sigbus(regs, error_code, address, fault);
33692f27 1077 else if (fault & VM_FAULT_SIGSEGV)
768fd9c6 1078 bad_area_nosemaphore(regs, error_code, address);
2d4a7167
IM
1079 else
1080 BUG();
1081 }
92181f19
NP
1082}
1083
8fed6200 1084static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
d8b57bb7 1085{
1067f030 1086 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
d8b57bb7 1087 return 0;
2d4a7167 1088
1067f030 1089 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
d8b57bb7
TG
1090 return 0;
1091
1092 return 1;
1093}
1094
5b727a3b 1095/*
2d4a7167
IM
1096 * Handle a spurious fault caused by a stale TLB entry.
1097 *
1098 * This allows us to lazily refresh the TLB when increasing the
1099 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1100 * eagerly is very expensive since that implies doing a full
1101 * cross-processor TLB flush, even if no stale TLB entries exist
1102 * on other processors.
1103 *
31668511
DV
1104 * Spurious faults may only occur if the TLB contains an entry with
1105 * fewer permission than the page table entry. Non-present (P = 0)
1106 * and reserved bit (R = 1) faults are never spurious.
1107 *
5b727a3b
JF
1108 * There are no security implications to leaving a stale TLB when
1109 * increasing the permissions on a page.
31668511
DV
1110 *
1111 * Returns non-zero if a spurious fault was handled, zero otherwise.
1112 *
1113 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1114 * (Optional Invalidation).
5b727a3b 1115 */
9326638c 1116static noinline int
8fed6200 1117spurious_kernel_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
1118{
1119 pgd_t *pgd;
e0c4f675 1120 p4d_t *p4d;
5b727a3b
JF
1121 pud_t *pud;
1122 pmd_t *pmd;
1123 pte_t *pte;
3c3e5694 1124 int ret;
5b727a3b 1125
31668511
DV
1126 /*
1127 * Only writes to RO or instruction fetches from NX may cause
1128 * spurious faults.
1129 *
1130 * These could be from user or supervisor accesses but the TLB
1131 * is only lazily flushed after a kernel mapping protection
1132 * change, so user accesses are not expected to cause spurious
1133 * faults.
1134 */
1067f030
RN
1135 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1136 error_code != (X86_PF_INSTR | X86_PF_PROT))
5b727a3b
JF
1137 return 0;
1138
1139 pgd = init_mm.pgd + pgd_index(address);
1140 if (!pgd_present(*pgd))
1141 return 0;
1142
e0c4f675
KS
1143 p4d = p4d_offset(pgd, address);
1144 if (!p4d_present(*p4d))
1145 return 0;
1146
1147 if (p4d_large(*p4d))
8fed6200 1148 return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
e0c4f675
KS
1149
1150 pud = pud_offset(p4d, address);
5b727a3b
JF
1151 if (!pud_present(*pud))
1152 return 0;
1153
d8b57bb7 1154 if (pud_large(*pud))
8fed6200 1155 return spurious_kernel_fault_check(error_code, (pte_t *) pud);
d8b57bb7 1156
5b727a3b
JF
1157 pmd = pmd_offset(pud, address);
1158 if (!pmd_present(*pmd))
1159 return 0;
1160
d8b57bb7 1161 if (pmd_large(*pmd))
8fed6200 1162 return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
d8b57bb7 1163
5b727a3b 1164 pte = pte_offset_kernel(pmd, address);
954f8571 1165 if (!pte_present(*pte))
5b727a3b
JF
1166 return 0;
1167
8fed6200 1168 ret = spurious_kernel_fault_check(error_code, pte);
3c3e5694
SR
1169 if (!ret)
1170 return 0;
1171
1172 /*
2d4a7167
IM
1173 * Make sure we have permissions in PMD.
1174 * If not, then there's a bug in the page tables:
3c3e5694 1175 */
8fed6200 1176 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
3c3e5694 1177 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 1178
3c3e5694 1179 return ret;
5b727a3b 1180}
8fed6200 1181NOKPROBE_SYMBOL(spurious_kernel_fault);
5b727a3b 1182
abd4f750 1183int show_unhandled_signals = 1;
1da177e4 1184
2d4a7167 1185static inline int
68da336a 1186access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 1187{
07f146f5
DH
1188 /* This is only called for the current mm, so: */
1189 bool foreign = false;
e8c6226d
DH
1190
1191 /*
1192 * Read or write was blocked by protection keys. This is
1193 * always an unconditional error and can never result in
1194 * a follow-up action to resolve the fault, like a COW.
1195 */
1067f030 1196 if (error_code & X86_PF_PK)
e8c6226d
DH
1197 return 1;
1198
07f146f5
DH
1199 /*
1200 * Make sure to check the VMA so that we do not perform
1067f030 1201 * faults just to hit a X86_PF_PK as soon as we fill in a
07f146f5
DH
1202 * page.
1203 */
1067f030
RN
1204 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1205 (error_code & X86_PF_INSTR), foreign))
07f146f5 1206 return 1;
33a709b2 1207
1067f030 1208 if (error_code & X86_PF_WRITE) {
2d4a7167 1209 /* write, present and write, not present: */
92181f19
NP
1210 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1211 return 1;
2d4a7167 1212 return 0;
92181f19
NP
1213 }
1214
2d4a7167 1215 /* read, present: */
1067f030 1216 if (unlikely(error_code & X86_PF_PROT))
2d4a7167
IM
1217 return 1;
1218
1219 /* read, not present: */
1220 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1221 return 1;
1222
92181f19
NP
1223 return 0;
1224}
1225
0973a06c
HS
1226static int fault_in_kernel_space(unsigned long address)
1227{
3ae0ad92
DH
1228 /*
1229 * On 64-bit systems, the vsyscall page is at an address above
1230 * TASK_SIZE_MAX, but is not considered part of the kernel
1231 * address space.
1232 */
1233 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1234 return false;
1235
d9517346 1236 return address >= TASK_SIZE_MAX;
0973a06c
HS
1237}
1238
1da177e4 1239/*
8fed6200
DH
1240 * Called for all faults where 'address' is part of the kernel address
1241 * space. Might get called for faults that originate from *code* that
1242 * ran in userspace or the kernel.
1da177e4 1243 */
8fed6200
DH
1244static void
1245do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1246 unsigned long address)
1da177e4 1247{
367e3f1d
DH
1248 /*
1249 * Protection keys exceptions only happen on user pages. We
1250 * have no user pages in the kernel portion of the address
1251 * space, so do not expect them here.
1252 */
1253 WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1da177e4
LT
1254
1255 /*
8fed6200 1256 * We can fault-in kernel-space virtual memory on-demand. The
1da177e4
LT
1257 * 'reference' page table is init_mm.pgd.
1258 *
1259 * NOTE! We MUST NOT take any locks for this case. We may
1260 * be in an interrupt or a critical region, and should
1261 * only copy the information from the master page table,
1262 * nothing more.
1263 *
8fed6200
DH
1264 * Before doing this on-demand faulting, ensure that the
1265 * fault is not any of the following:
1266 * 1. A fault on a PTE with a reserved bit set.
1267 * 2. A fault caused by a user-mode access. (Do not demand-
1268 * fault kernel memory due to user-mode accesses).
1269 * 3. A fault caused by a page-level protection violation.
1270 * (A demand fault would be on a non-present page which
1271 * would have X86_PF_PROT==0).
1da177e4 1272 */
8fed6200
DH
1273 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1274 if (vmalloc_fault(address) >= 0)
5b727a3b 1275 return;
8fed6200 1276 }
5b727a3b 1277
8fed6200
DH
1278 /* Was the fault spurious, caused by lazy TLB invalidation? */
1279 if (spurious_kernel_fault(hw_error_code, address))
1280 return;
2d4a7167 1281
8fed6200
DH
1282 /* kprobes don't want to hook the spurious faults: */
1283 if (kprobes_fault(regs))
92181f19 1284 return;
8fed6200
DH
1285
1286 /*
1287 * Note, despite being a "bad area", there are quite a few
1288 * acceptable reasons to get here, such as erratum fixups
1289 * and handling kernel code that can fault, like get_user().
1290 *
1291 * Don't take the mm semaphore here. If we fixup a prefetch
1292 * fault we could otherwise deadlock:
1293 */
ba9f6f89 1294 bad_area_nosemaphore(regs, hw_error_code, address);
8fed6200
DH
1295}
1296NOKPROBE_SYMBOL(do_kern_addr_fault);
1297
aa37c51b
DH
1298/* Handle faults in the user portion of the address space */
1299static inline
1300void do_user_addr_fault(struct pt_regs *regs,
1301 unsigned long hw_error_code,
1302 unsigned long address)
1da177e4 1303{
2d4a7167 1304 struct vm_area_struct *vma;
1da177e4
LT
1305 struct task_struct *tsk;
1306 struct mm_struct *mm;
50a7ca3c 1307 vm_fault_t fault, major = 0;
759496ba 1308 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1da177e4 1309
a9ba9a3b
AV
1310 tsk = current;
1311 mm = tsk->mm;
f8c2ee22 1312
2d4a7167 1313 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1314 if (unlikely(kprobes_fault(regs)))
9be260a6 1315 return;
8c914cb7 1316
5b0c2cac
DH
1317 /*
1318 * Reserved bits are never expected to be set on
1319 * entries in the user portion of the page tables.
1320 */
164477c2
DH
1321 if (unlikely(hw_error_code & X86_PF_RSVD))
1322 pgtable_bad(regs, hw_error_code, address);
1da177e4 1323
5b0c2cac 1324 /*
e50928d7
AL
1325 * If SMAP is on, check for invalid kernel (supervisor) access to user
1326 * pages in the user address space. The odd case here is WRUSS,
1327 * which, according to the preliminary documentation, does not respect
1328 * SMAP and will have the USER bit set so, in all cases, SMAP
1329 * enforcement appears to be consistent with the USER bit.
5b0c2cac 1330 */
a15781b5
AL
1331 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1332 !(hw_error_code & X86_PF_USER) &&
e50928d7 1333 !(regs->flags & X86_EFLAGS_AC)))
a15781b5 1334 {
ba9f6f89 1335 bad_area_nosemaphore(regs, hw_error_code, address);
4640c7ee 1336 return;
40d3cd66
PA
1337 }
1338
1da177e4 1339 /*
2d4a7167 1340 * If we're in an interrupt, have no user context or are running
70ffdb93 1341 * in a region with pagefaults disabled then we must not take the fault
1da177e4 1342 */
70ffdb93 1343 if (unlikely(faulthandler_disabled() || !mm)) {
ba9f6f89 1344 bad_area_nosemaphore(regs, hw_error_code, address);
92181f19
NP
1345 return;
1346 }
1da177e4 1347
e00b12e6
PZ
1348 /*
1349 * It's safe to allow irq's after cr2 has been saved and the
1350 * vmalloc fault has been handled.
1351 *
1352 * User-mode registers count as a user access even for any
1353 * potential system fault or CPU buglet:
1354 */
f39b6f0e 1355 if (user_mode(regs)) {
e00b12e6 1356 local_irq_enable();
e00b12e6
PZ
1357 flags |= FAULT_FLAG_USER;
1358 } else {
1359 if (regs->flags & X86_EFLAGS_IF)
1360 local_irq_enable();
1361 }
1362
1363 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1364
0ed32f1a 1365 if (hw_error_code & X86_PF_WRITE)
759496ba 1366 flags |= FAULT_FLAG_WRITE;
0ed32f1a 1367 if (hw_error_code & X86_PF_INSTR)
d61172b4 1368 flags |= FAULT_FLAG_INSTRUCTION;
759496ba 1369
3ae0ad92 1370#ifdef CONFIG_X86_64
3a1dfe6e 1371 /*
918ce325
AL
1372 * Faults in the vsyscall page might need emulation. The
1373 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1374 * considered to be part of the user address space.
1da177e4 1375 *
3ae0ad92
DH
1376 * The vsyscall page does not have a "real" VMA, so do this
1377 * emulation before we go searching for VMAs.
1378 */
918ce325
AL
1379 if (is_vsyscall_vaddr(address)) {
1380 if (emulate_vsyscall(hw_error_code, regs, address))
3ae0ad92
DH
1381 return;
1382 }
1383#endif
1384
3a1dfe6e 1385 /*
88259744
DH
1386 * Kernel-mode access to the user address space should only occur
1387 * on well-defined single instructions listed in the exception
1388 * tables. But, an erroneous kernel fault occurring outside one of
1389 * those areas which also holds mmap_sem might deadlock attempting
1390 * to validate the fault against the address space.
1da177e4 1391 *
88259744
DH
1392 * Only do the expensive exception table search when we might be at
1393 * risk of a deadlock. This happens if we
1394 * 1. Failed to acquire mmap_sem, and
6344be60 1395 * 2. The access did not originate in userspace.
1da177e4 1396 */
92181f19 1397 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6344be60 1398 if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
88259744
DH
1399 /*
1400 * Fault from code in kernel from
1401 * which we do not expect faults.
1402 */
0ed32f1a 1403 bad_area_nosemaphore(regs, hw_error_code, address);
92181f19
NP
1404 return;
1405 }
d065bd81 1406retry:
1da177e4 1407 down_read(&mm->mmap_sem);
01006074
PZ
1408 } else {
1409 /*
2d4a7167
IM
1410 * The above down_read_trylock() might have succeeded in
1411 * which case we'll have missed the might_sleep() from
1412 * down_read():
01006074
PZ
1413 */
1414 might_sleep();
1da177e4
LT
1415 }
1416
1417 vma = find_vma(mm, address);
92181f19 1418 if (unlikely(!vma)) {
0ed32f1a 1419 bad_area(regs, hw_error_code, address);
92181f19
NP
1420 return;
1421 }
1422 if (likely(vma->vm_start <= address))
1da177e4 1423 goto good_area;
92181f19 1424 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
0ed32f1a 1425 bad_area(regs, hw_error_code, address);
92181f19
NP
1426 return;
1427 }
92181f19 1428 if (unlikely(expand_stack(vma, address))) {
0ed32f1a 1429 bad_area(regs, hw_error_code, address);
92181f19
NP
1430 return;
1431 }
1432
1433 /*
1434 * Ok, we have a good vm_area for this memory access, so
1435 * we can handle it..
1436 */
1da177e4 1437good_area:
0ed32f1a
AL
1438 if (unlikely(access_error(hw_error_code, vma))) {
1439 bad_area_access_error(regs, hw_error_code, address, vma);
92181f19 1440 return;
1da177e4
LT
1441 }
1442
1443 /*
1444 * If for any reason at all we couldn't handle the fault,
1445 * make sure we exit gracefully rather than endlessly redo
9a95f3cf
PC
1446 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1447 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
cb0631fd
VB
1448 *
1449 * Note that handle_userfault() may also release and reacquire mmap_sem
1450 * (and not return with VM_FAULT_RETRY), when returning to userland to
1451 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1452 * (potentially after handling any pending signal during the return to
1453 * userland). The return to userland is identified whenever
1454 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1da177e4 1455 */
dcddffd4 1456 fault = handle_mm_fault(vma, address, flags);
26178ec1 1457 major |= fault & VM_FAULT_MAJOR;
2d4a7167 1458
3a13c4d7 1459 /*
26178ec1
LT
1460 * If we need to retry the mmap_sem has already been released,
1461 * and if there is a fatal signal pending there is no guarantee
1462 * that we made any progress. Handle this case first.
3a13c4d7 1463 */
26178ec1
LT
1464 if (unlikely(fault & VM_FAULT_RETRY)) {
1465 /* Retry at most once */
1466 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1467 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1468 flags |= FAULT_FLAG_TRIED;
1469 if (!fatal_signal_pending(tsk))
1470 goto retry;
1471 }
1472
1473 /* User mode? Just return to handle the fatal exception */
cf3c0a15 1474 if (flags & FAULT_FLAG_USER)
26178ec1
LT
1475 return;
1476
1477 /* Not returning to user mode? Handle exceptions or die: */
0ed32f1a 1478 no_context(regs, hw_error_code, address, SIGBUS, BUS_ADRERR);
3a13c4d7 1479 return;
26178ec1 1480 }
3a13c4d7 1481
26178ec1 1482 up_read(&mm->mmap_sem);
3a13c4d7 1483 if (unlikely(fault & VM_FAULT_ERROR)) {
0ed32f1a 1484 mm_fault_error(regs, hw_error_code, address, fault);
3a13c4d7 1485 return;
37b23e05
KM
1486 }
1487
d065bd81 1488 /*
26178ec1
LT
1489 * Major/minor page fault accounting. If any of the events
1490 * returned VM_FAULT_MAJOR, we account it as a major fault.
d065bd81 1491 */
26178ec1
LT
1492 if (major) {
1493 tsk->maj_flt++;
1494 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1495 } else {
1496 tsk->min_flt++;
1497 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
ac17dc8e 1498 }
d729ab35 1499
8c938f9f 1500 check_v8086_mode(regs, address, tsk);
1da177e4 1501}
aa37c51b
DH
1502NOKPROBE_SYMBOL(do_user_addr_fault);
1503
1504/*
1505 * This routine handles page faults. It determines the address,
1506 * and the problem, and then passes it off to one of the appropriate
1507 * routines.
1508 */
1509static noinline void
1510__do_page_fault(struct pt_regs *regs, unsigned long hw_error_code,
1511 unsigned long address)
1512{
1513 prefetchw(&current->mm->mmap_sem);
1514
1515 if (unlikely(kmmio_fault(regs, address)))
1516 return;
1517
1518 /* Was the fault on kernel-controlled part of the address space? */
1519 if (unlikely(fault_in_kernel_space(address)))
1520 do_kern_addr_fault(regs, hw_error_code, address);
1521 else
1522 do_user_addr_fault(regs, hw_error_code, address);
1523}
9326638c 1524NOKPROBE_SYMBOL(__do_page_fault);
6ba3c97a 1525
9326638c
MH
1526static nokprobe_inline void
1527trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1528 unsigned long error_code)
d34603b0
SA
1529{
1530 if (user_mode(regs))
d4078e23 1531 trace_page_fault_user(address, regs, error_code);
d34603b0 1532 else
d4078e23 1533 trace_page_fault_kernel(address, regs, error_code);
d34603b0
SA
1534}
1535
11a7ffb0
TG
1536/*
1537 * We must have this function blacklisted from kprobes, tagged with notrace
1538 * and call read_cr2() before calling anything else. To avoid calling any
1539 * kind of tracing machinery before we've observed the CR2 value.
1540 *
1541 * exception_{enter,exit}() contains all sorts of tracepoints.
1542 */
9326638c 1543dotraplinkage void notrace
11a7ffb0 1544do_page_fault(struct pt_regs *regs, unsigned long error_code)
25c74b10 1545{
11a7ffb0 1546 unsigned long address = read_cr2(); /* Get the faulting address */
d4078e23 1547 enum ctx_state prev_state;
25c74b10
SA
1548
1549 prev_state = exception_enter();
80954747 1550 if (trace_pagefault_enabled())
11a7ffb0
TG
1551 trace_page_fault_entries(address, regs, error_code);
1552
0ac09f9f 1553 __do_page_fault(regs, error_code, address);
25c74b10
SA
1554 exception_exit(prev_state);
1555}
11a7ffb0 1556NOKPROBE_SYMBOL(do_page_fault);