]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/x86/mm/fault.c
x86, tools: Consolidate #ifdef code
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473
IM
6#include <linux/magic.h> /* STACK_END_MAGIC */
7#include <linux/sched.h> /* test_thread_flag(), ... */
8#include <linux/kdebug.h> /* oops_begin/end, ... */
9#include <linux/module.h> /* search_exception_table */
10#include <linux/bootmem.h> /* max_low_pfn */
11#include <linux/kprobes.h> /* __kprobes, ... */
12#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 13#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 14#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 15#include <linux/prefetch.h> /* prefetchw */
56dd9470 16#include <linux/context_tracking.h> /* exception_enter(), ... */
2d4a7167 17
a2bcd473
IM
18#include <asm/traps.h> /* dotraplinkage, ... */
19#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 20#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
fab1167c 21#include <asm/fixmap.h> /* VSYSCALL_START */
1da177e4 22
d34603b0
SA
23#define CREATE_TRACE_POINTS
24#include <asm/trace/exceptions.h>
25
33cb5243 26/*
2d4a7167
IM
27 * Page fault error code bits:
28 *
29 * bit 0 == 0: no page found 1: protection fault
30 * bit 1 == 0: read access 1: write access
31 * bit 2 == 0: kernel-mode access 1: user-mode access
32 * bit 3 == 1: use of reserved bit detected
33 * bit 4 == 1: fault was an instruction fetch
33cb5243 34 */
2d4a7167
IM
35enum x86_pf_error_code {
36
37 PF_PROT = 1 << 0,
38 PF_WRITE = 1 << 1,
39 PF_USER = 1 << 2,
40 PF_RSVD = 1 << 3,
41 PF_INSTR = 1 << 4,
42};
66c58156 43
b814d41f 44/*
b319eed0
IM
45 * Returns 0 if mmiotrace is disabled, or if the fault is not
46 * handled by mmiotrace:
b814d41f 47 */
62c9295f
MH
48static inline int __kprobes
49kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 50{
0fd0e3da
PP
51 if (unlikely(is_kmmio_active()))
52 if (kmmio_handler(regs, addr) == 1)
53 return -1;
0fd0e3da 54 return 0;
86069782
PP
55}
56
e00b12e6 57static inline int __kprobes kprobes_fault(struct pt_regs *regs)
1bd858a5 58{
74a0b576
CH
59 int ret = 0;
60
61 /* kprobe_running() needs smp_processor_id() */
b1801812 62 if (kprobes_built_in() && !user_mode_vm(regs)) {
74a0b576
CH
63 preempt_disable();
64 if (kprobe_running() && kprobe_fault_handler(regs, 14))
65 ret = 1;
66 preempt_enable();
67 }
1bd858a5 68
74a0b576 69 return ret;
33cb5243 70}
1bd858a5 71
1dc85be0 72/*
2d4a7167
IM
73 * Prefetch quirks:
74 *
75 * 32-bit mode:
76 *
77 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
78 * Check that here and ignore it.
1dc85be0 79 *
2d4a7167 80 * 64-bit mode:
1dc85be0 81 *
2d4a7167
IM
82 * Sometimes the CPU reports invalid exceptions on prefetch.
83 * Check that here and ignore it.
84 *
85 * Opcode checker based on code by Richard Brunner.
1dc85be0 86 */
107a0367
IM
87static inline int
88check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
89 unsigned char opcode, int *prefetch)
90{
91 unsigned char instr_hi = opcode & 0xf0;
92 unsigned char instr_lo = opcode & 0x0f;
93
94 switch (instr_hi) {
95 case 0x20:
96 case 0x30:
97 /*
98 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
99 * In X86_64 long mode, the CPU will signal invalid
100 * opcode if some of these prefixes are present so
101 * X86_64 will never get here anyway
102 */
103 return ((instr_lo & 7) == 0x6);
104#ifdef CONFIG_X86_64
105 case 0x40:
106 /*
107 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
108 * Need to figure out under what instruction mode the
109 * instruction was issued. Could check the LDT for lm,
110 * but for now it's good enough to assume that long
111 * mode only uses well known segments or kernel.
112 */
318f5a2a 113 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
114#endif
115 case 0x60:
116 /* 0x64 thru 0x67 are valid prefixes in all modes. */
117 return (instr_lo & 0xC) == 0x4;
118 case 0xF0:
119 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
120 return !instr_lo || (instr_lo>>1) == 1;
121 case 0x00:
122 /* Prefetch instruction is 0x0F0D or 0x0F18 */
123 if (probe_kernel_address(instr, opcode))
124 return 0;
125
126 *prefetch = (instr_lo == 0xF) &&
127 (opcode == 0x0D || opcode == 0x18);
128 return 0;
129 default:
130 return 0;
131 }
132}
133
2d4a7167
IM
134static int
135is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 136{
2d4a7167 137 unsigned char *max_instr;
ab2bf0c1 138 unsigned char *instr;
33cb5243 139 int prefetch = 0;
1da177e4 140
3085354d
IM
141 /*
142 * If it was a exec (instruction fetch) fault on NX page, then
143 * do not ignore the fault:
144 */
66c58156 145 if (error_code & PF_INSTR)
1da177e4 146 return 0;
1dc85be0 147
107a0367 148 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 149 max_instr = instr + 15;
1da177e4 150
76381fee 151 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
1da177e4
LT
152 return 0;
153
107a0367 154 while (instr < max_instr) {
2d4a7167 155 unsigned char opcode;
1da177e4 156
ab2bf0c1 157 if (probe_kernel_address(instr, opcode))
33cb5243 158 break;
1da177e4 159
1da177e4
LT
160 instr++;
161
107a0367 162 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 163 break;
1da177e4
LT
164 }
165 return prefetch;
166}
167
2d4a7167
IM
168static void
169force_sig_info_fault(int si_signo, int si_code, unsigned long address,
f672b49b 170 struct task_struct *tsk, int fault)
c4aba4a8 171{
f672b49b 172 unsigned lsb = 0;
c4aba4a8
HH
173 siginfo_t info;
174
2d4a7167
IM
175 info.si_signo = si_signo;
176 info.si_errno = 0;
177 info.si_code = si_code;
178 info.si_addr = (void __user *)address;
f672b49b
AK
179 if (fault & VM_FAULT_HWPOISON_LARGE)
180 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
181 if (fault & VM_FAULT_HWPOISON)
182 lsb = PAGE_SHIFT;
183 info.si_addr_lsb = lsb;
2d4a7167 184
c4aba4a8
HH
185 force_sig_info(si_signo, &info, tsk);
186}
187
f2f13a85
IM
188DEFINE_SPINLOCK(pgd_lock);
189LIST_HEAD(pgd_list);
190
191#ifdef CONFIG_X86_32
192static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 193{
f2f13a85
IM
194 unsigned index = pgd_index(address);
195 pgd_t *pgd_k;
196 pud_t *pud, *pud_k;
197 pmd_t *pmd, *pmd_k;
2d4a7167 198
f2f13a85
IM
199 pgd += index;
200 pgd_k = init_mm.pgd + index;
201
202 if (!pgd_present(*pgd_k))
203 return NULL;
204
205 /*
206 * set_pgd(pgd, *pgd_k); here would be useless on PAE
207 * and redundant with the set_pmd() on non-PAE. As would
208 * set_pud.
209 */
210 pud = pud_offset(pgd, address);
211 pud_k = pud_offset(pgd_k, address);
212 if (!pud_present(*pud_k))
213 return NULL;
214
215 pmd = pmd_offset(pud, address);
216 pmd_k = pmd_offset(pud_k, address);
217 if (!pmd_present(*pmd_k))
218 return NULL;
219
b8bcfe99 220 if (!pmd_present(*pmd))
f2f13a85 221 set_pmd(pmd, *pmd_k);
b8bcfe99 222 else
f2f13a85 223 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
224
225 return pmd_k;
226}
227
228void vmalloc_sync_all(void)
229{
230 unsigned long address;
231
232 if (SHARED_KERNEL_PMD)
233 return;
234
235 for (address = VMALLOC_START & PMD_MASK;
236 address >= TASK_SIZE && address < FIXADDR_TOP;
237 address += PMD_SIZE) {
f2f13a85
IM
238 struct page *page;
239
a79e53d8 240 spin_lock(&pgd_lock);
f2f13a85 241 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 242 spinlock_t *pgt_lock;
f01f7c56 243 pmd_t *ret;
617d34d9 244
a79e53d8 245 /* the pgt_lock only for Xen */
617d34d9
JF
246 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
247
248 spin_lock(pgt_lock);
249 ret = vmalloc_sync_one(page_address(page), address);
250 spin_unlock(pgt_lock);
251
252 if (!ret)
f2f13a85
IM
253 break;
254 }
a79e53d8 255 spin_unlock(&pgd_lock);
f2f13a85
IM
256 }
257}
258
259/*
260 * 32-bit:
261 *
262 * Handle a fault on the vmalloc or module mapping area
263 */
62c9295f 264static noinline __kprobes int vmalloc_fault(unsigned long address)
f2f13a85
IM
265{
266 unsigned long pgd_paddr;
267 pmd_t *pmd_k;
268 pte_t *pte_k;
269
270 /* Make sure we are in vmalloc area: */
271 if (!(address >= VMALLOC_START && address < VMALLOC_END))
272 return -1;
273
ebc8827f
FW
274 WARN_ON_ONCE(in_nmi());
275
f2f13a85
IM
276 /*
277 * Synchronize this task's top level page-table
278 * with the 'reference' page table.
279 *
280 * Do _not_ use "current" here. We might be inside
281 * an interrupt in the middle of a task switch..
282 */
283 pgd_paddr = read_cr3();
284 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
285 if (!pmd_k)
286 return -1;
287
288 pte_k = pte_offset_kernel(pmd_k, address);
289 if (!pte_present(*pte_k))
290 return -1;
291
292 return 0;
293}
294
295/*
296 * Did it hit the DOS screen memory VA from vm86 mode?
297 */
298static inline void
299check_v8086_mode(struct pt_regs *regs, unsigned long address,
300 struct task_struct *tsk)
301{
302 unsigned long bit;
303
304 if (!v8086_mode(regs))
305 return;
306
307 bit = (address - 0xA0000) >> PAGE_SHIFT;
308 if (bit < 32)
309 tsk->thread.screen_bitmap |= 1 << bit;
33cb5243 310}
1da177e4 311
087975b0 312static bool low_pfn(unsigned long pfn)
1da177e4 313{
087975b0
AM
314 return pfn < max_low_pfn;
315}
1156e098 316
087975b0
AM
317static void dump_pagetable(unsigned long address)
318{
319 pgd_t *base = __va(read_cr3());
320 pgd_t *pgd = &base[pgd_index(address)];
321 pmd_t *pmd;
322 pte_t *pte;
2d4a7167 323
1156e098 324#ifdef CONFIG_X86_PAE
087975b0
AM
325 printk("*pdpt = %016Lx ", pgd_val(*pgd));
326 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
327 goto out;
1156e098 328#endif
087975b0
AM
329 pmd = pmd_offset(pud_offset(pgd, address), address);
330 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
1156e098
HH
331
332 /*
333 * We must not directly access the pte in the highpte
334 * case if the page table is located in highmem.
335 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 336 * it's allocated already:
1156e098 337 */
087975b0
AM
338 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
339 goto out;
1156e098 340
087975b0
AM
341 pte = pte_offset_kernel(pmd, address);
342 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
343out:
1156e098 344 printk("\n");
f2f13a85
IM
345}
346
347#else /* CONFIG_X86_64: */
348
349void vmalloc_sync_all(void)
350{
6afb5157 351 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
f2f13a85
IM
352}
353
354/*
355 * 64-bit:
356 *
357 * Handle a fault on the vmalloc area
358 *
359 * This assumes no large pages in there.
360 */
62c9295f 361static noinline __kprobes int vmalloc_fault(unsigned long address)
f2f13a85
IM
362{
363 pgd_t *pgd, *pgd_ref;
364 pud_t *pud, *pud_ref;
365 pmd_t *pmd, *pmd_ref;
366 pte_t *pte, *pte_ref;
367
368 /* Make sure we are in vmalloc area: */
369 if (!(address >= VMALLOC_START && address < VMALLOC_END))
370 return -1;
371
ebc8827f
FW
372 WARN_ON_ONCE(in_nmi());
373
f2f13a85
IM
374 /*
375 * Copy kernel mappings over when needed. This can also
376 * happen within a race in page table update. In the later
377 * case just flush:
378 */
379 pgd = pgd_offset(current->active_mm, address);
380 pgd_ref = pgd_offset_k(address);
381 if (pgd_none(*pgd_ref))
382 return -1;
383
1160c277 384 if (pgd_none(*pgd)) {
f2f13a85 385 set_pgd(pgd, *pgd_ref);
1160c277
SK
386 arch_flush_lazy_mmu_mode();
387 } else {
f2f13a85 388 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1160c277 389 }
f2f13a85
IM
390
391 /*
392 * Below here mismatches are bugs because these lower tables
393 * are shared:
394 */
395
396 pud = pud_offset(pgd, address);
397 pud_ref = pud_offset(pgd_ref, address);
398 if (pud_none(*pud_ref))
399 return -1;
400
401 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
402 BUG();
403
404 pmd = pmd_offset(pud, address);
405 pmd_ref = pmd_offset(pud_ref, address);
406 if (pmd_none(*pmd_ref))
407 return -1;
408
409 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
410 BUG();
411
412 pte_ref = pte_offset_kernel(pmd_ref, address);
413 if (!pte_present(*pte_ref))
414 return -1;
415
416 pte = pte_offset_kernel(pmd, address);
417
418 /*
419 * Don't use pte_page here, because the mappings can point
420 * outside mem_map, and the NUMA hash lookup cannot handle
421 * that:
422 */
423 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
424 BUG();
425
426 return 0;
427}
428
e05139f2 429#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 430static const char errata93_warning[] =
ad361c98
JP
431KERN_ERR
432"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
433"******* Working around it, but it may cause SEGVs or burn power.\n"
434"******* Please consider a BIOS update.\n"
435"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 436#endif
f2f13a85
IM
437
438/*
439 * No vm86 mode in 64-bit mode:
440 */
441static inline void
442check_v8086_mode(struct pt_regs *regs, unsigned long address,
443 struct task_struct *tsk)
444{
445}
446
447static int bad_address(void *p)
448{
449 unsigned long dummy;
450
451 return probe_kernel_address((unsigned long *)p, dummy);
452}
453
454static void dump_pagetable(unsigned long address)
455{
087975b0
AM
456 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
457 pgd_t *pgd = base + pgd_index(address);
1da177e4
LT
458 pud_t *pud;
459 pmd_t *pmd;
460 pte_t *pte;
461
2d4a7167
IM
462 if (bad_address(pgd))
463 goto bad;
464
d646bce4 465 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
466
467 if (!pgd_present(*pgd))
468 goto out;
1da177e4 469
d2ae5b5f 470 pud = pud_offset(pgd, address);
2d4a7167
IM
471 if (bad_address(pud))
472 goto bad;
473
1da177e4 474 printk("PUD %lx ", pud_val(*pud));
b5360222 475 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 476 goto out;
1da177e4
LT
477
478 pmd = pmd_offset(pud, address);
2d4a7167
IM
479 if (bad_address(pmd))
480 goto bad;
481
1da177e4 482 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
483 if (!pmd_present(*pmd) || pmd_large(*pmd))
484 goto out;
1da177e4
LT
485
486 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
487 if (bad_address(pte))
488 goto bad;
489
33cb5243 490 printk("PTE %lx", pte_val(*pte));
2d4a7167 491out:
1da177e4
LT
492 printk("\n");
493 return;
494bad:
495 printk("BAD\n");
8c938f9f
IM
496}
497
f2f13a85 498#endif /* CONFIG_X86_64 */
1da177e4 499
2d4a7167
IM
500/*
501 * Workaround for K8 erratum #93 & buggy BIOS.
502 *
503 * BIOS SMM functions are required to use a specific workaround
504 * to avoid corruption of the 64bit RIP register on C stepping K8.
505 *
506 * A lot of BIOS that didn't get tested properly miss this.
507 *
508 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
509 * Try to work around it here.
510 *
511 * Note we only handle faults in kernel here.
512 * Does nothing on 32-bit.
fdfe8aa8 513 */
33cb5243 514static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 515{
e05139f2
JB
516#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
517 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
518 || boot_cpu_data.x86 != 0xf)
519 return 0;
520
65ea5b03 521 if (address != regs->ip)
1da177e4 522 return 0;
2d4a7167 523
33cb5243 524 if ((address >> 32) != 0)
1da177e4 525 return 0;
2d4a7167 526
1da177e4 527 address |= 0xffffffffUL << 32;
33cb5243
HH
528 if ((address >= (u64)_stext && address <= (u64)_etext) ||
529 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 530 printk_once(errata93_warning);
65ea5b03 531 regs->ip = address;
1da177e4
LT
532 return 1;
533 }
fdfe8aa8 534#endif
1da177e4 535 return 0;
33cb5243 536}
1da177e4 537
35f3266f 538/*
2d4a7167
IM
539 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
540 * to illegal addresses >4GB.
541 *
542 * We catch this in the page fault handler because these addresses
543 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
544 * segment in LDT is compatibility mode.
545 */
546static int is_errata100(struct pt_regs *regs, unsigned long address)
547{
548#ifdef CONFIG_X86_64
2d4a7167 549 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
550 return 1;
551#endif
552 return 0;
553}
554
29caf2f9
HH
555static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
556{
557#ifdef CONFIG_X86_F00F_BUG
558 unsigned long nr;
2d4a7167 559
29caf2f9 560 /*
2d4a7167 561 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9 562 */
e2604b49 563 if (boot_cpu_has_bug(X86_BUG_F00F)) {
29caf2f9
HH
564 nr = (address - idt_descr.address) >> 3;
565
566 if (nr == 6) {
567 do_invalid_op(regs, 0);
568 return 1;
569 }
570 }
571#endif
572 return 0;
573}
574
8f766149
IM
575static const char nx_warning[] = KERN_CRIT
576"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
577
2d4a7167
IM
578static void
579show_fault_oops(struct pt_regs *regs, unsigned long error_code,
580 unsigned long address)
b3279c7f 581{
1156e098
HH
582 if (!oops_may_print())
583 return;
584
1156e098 585 if (error_code & PF_INSTR) {
93809be8 586 unsigned int level;
2d4a7167 587
1156e098
HH
588 pte_t *pte = lookup_address(address, &level);
589
8f766149 590 if (pte && pte_present(*pte) && !pte_exec(*pte))
078de5f7 591 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
1156e098 592 }
1156e098 593
19f0dda9 594 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 595 if (address < PAGE_SIZE)
19f0dda9 596 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 597 else
19f0dda9 598 printk(KERN_CONT "paging request");
2d4a7167 599
f294a8ce 600 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 601 printk(KERN_ALERT "IP:");
5f01c988 602 printk_address(regs->ip);
2d4a7167 603
b3279c7f
HH
604 dump_pagetable(address);
605}
606
2d4a7167
IM
607static noinline void
608pgtable_bad(struct pt_regs *regs, unsigned long error_code,
609 unsigned long address)
1da177e4 610{
2d4a7167
IM
611 struct task_struct *tsk;
612 unsigned long flags;
613 int sig;
614
615 flags = oops_begin();
616 tsk = current;
617 sig = SIGKILL;
1209140c 618
1da177e4 619 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 620 tsk->comm, address);
1da177e4 621 dump_pagetable(address);
2d4a7167
IM
622
623 tsk->thread.cr2 = address;
51e7dc70 624 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167
IM
625 tsk->thread.error_code = error_code;
626
22f5991c 627 if (__die("Bad pagetable", regs, error_code))
874d93d1 628 sig = 0;
2d4a7167 629
874d93d1 630 oops_end(flags, regs, sig);
1da177e4
LT
631}
632
2d4a7167
IM
633static noinline void
634no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 635 unsigned long address, int signal, int si_code)
92181f19
NP
636{
637 struct task_struct *tsk = current;
19803078 638 unsigned long *stackend;
92181f19
NP
639 unsigned long flags;
640 int sig;
92181f19 641
2d4a7167 642 /* Are we prepared to handle this kernel fault? */
4fc34901 643 if (fixup_exception(regs)) {
c026b359
PZ
644 /*
645 * Any interrupt that takes a fault gets the fixup. This makes
646 * the below recursive fault logic only apply to a faults from
647 * task context.
648 */
649 if (in_interrupt())
650 return;
651
652 /*
653 * Per the above we're !in_interrupt(), aka. task context.
654 *
655 * In this case we need to make sure we're not recursively
656 * faulting through the emulate_vsyscall() logic.
657 */
4fc34901 658 if (current_thread_info()->sig_on_uaccess_error && signal) {
51e7dc70 659 tsk->thread.trap_nr = X86_TRAP_PF;
4fc34901
AL
660 tsk->thread.error_code = error_code | PF_USER;
661 tsk->thread.cr2 = address;
662
663 /* XXX: hwpoison faults will set the wrong code. */
664 force_sig_info_fault(signal, si_code, address, tsk, 0);
665 }
c026b359
PZ
666
667 /*
668 * Barring that, we can do the fixup and be happy.
669 */
92181f19 670 return;
4fc34901 671 }
92181f19
NP
672
673 /*
2d4a7167
IM
674 * 32-bit:
675 *
676 * Valid to do another page fault here, because if this fault
677 * had been triggered by is_prefetch fixup_exception would have
678 * handled it.
679 *
680 * 64-bit:
92181f19 681 *
2d4a7167 682 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
683 */
684 if (is_prefetch(regs, error_code, address))
685 return;
686
687 if (is_errata93(regs, address))
688 return;
689
690 /*
691 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 692 * terminate things with extreme prejudice:
92181f19 693 */
92181f19 694 flags = oops_begin();
92181f19
NP
695
696 show_fault_oops(regs, error_code, address);
697
2d4a7167 698 stackend = end_of_stack(tsk);
0e7810be 699 if (tsk != &init_task && *stackend != STACK_END_MAGIC)
b0f4c4b3 700 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 701
1cc99544 702 tsk->thread.cr2 = address;
51e7dc70 703 tsk->thread.trap_nr = X86_TRAP_PF;
1cc99544 704 tsk->thread.error_code = error_code;
92181f19 705
92181f19
NP
706 sig = SIGKILL;
707 if (__die("Oops", regs, error_code))
708 sig = 0;
2d4a7167 709
92181f19 710 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 711 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 712
92181f19 713 oops_end(flags, regs, sig);
92181f19
NP
714}
715
2d4a7167
IM
716/*
717 * Print out info about fatal segfaults, if the show_unhandled_signals
718 * sysctl is set:
719 */
720static inline void
721show_signal_msg(struct pt_regs *regs, unsigned long error_code,
722 unsigned long address, struct task_struct *tsk)
723{
724 if (!unhandled_signal(tsk, SIGSEGV))
725 return;
726
727 if (!printk_ratelimit())
728 return;
729
a1a08d1c 730 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
731 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
732 tsk->comm, task_pid_nr(tsk), address,
733 (void *)regs->ip, (void *)regs->sp, error_code);
734
735 print_vma_addr(KERN_CONT " in ", regs->ip);
736
737 printk(KERN_CONT "\n");
738}
739
740static void
741__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
742 unsigned long address, int si_code)
92181f19
NP
743{
744 struct task_struct *tsk = current;
745
746 /* User mode accesses just cause a SIGSEGV */
747 if (error_code & PF_USER) {
748 /*
2d4a7167 749 * It's possible to have interrupts off here:
92181f19
NP
750 */
751 local_irq_enable();
752
753 /*
754 * Valid to do another page fault here because this one came
2d4a7167 755 * from user space:
92181f19
NP
756 */
757 if (is_prefetch(regs, error_code, address))
758 return;
759
760 if (is_errata100(regs, address))
761 return;
762
3ae36655
AL
763#ifdef CONFIG_X86_64
764 /*
765 * Instruction fetch faults in the vsyscall page might need
766 * emulation.
767 */
768 if (unlikely((error_code & PF_INSTR) &&
769 ((address & ~0xfff) == VSYSCALL_START))) {
770 if (emulate_vsyscall(regs, address))
771 return;
772 }
773#endif
e575a86f
KC
774 /* Kernel addresses are always protection faults: */
775 if (address >= TASK_SIZE)
776 error_code |= PF_PROT;
3ae36655 777
e575a86f 778 if (likely(show_unhandled_signals))
2d4a7167
IM
779 show_signal_msg(regs, error_code, address, tsk);
780
2d4a7167 781 tsk->thread.cr2 = address;
e575a86f 782 tsk->thread.error_code = error_code;
51e7dc70 783 tsk->thread.trap_nr = X86_TRAP_PF;
92181f19 784
f672b49b 785 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
2d4a7167 786
92181f19
NP
787 return;
788 }
789
790 if (is_f00f_bug(regs, address))
791 return;
792
4fc34901 793 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
794}
795
2d4a7167
IM
796static noinline void
797bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
798 unsigned long address)
92181f19
NP
799{
800 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
801}
802
2d4a7167
IM
803static void
804__bad_area(struct pt_regs *regs, unsigned long error_code,
805 unsigned long address, int si_code)
92181f19
NP
806{
807 struct mm_struct *mm = current->mm;
808
809 /*
810 * Something tried to access memory that isn't in our memory map..
811 * Fix it, but check if it's kernel or user first..
812 */
813 up_read(&mm->mmap_sem);
814
815 __bad_area_nosemaphore(regs, error_code, address, si_code);
816}
817
2d4a7167
IM
818static noinline void
819bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
820{
821 __bad_area(regs, error_code, address, SEGV_MAPERR);
822}
823
2d4a7167
IM
824static noinline void
825bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
826 unsigned long address)
92181f19
NP
827{
828 __bad_area(regs, error_code, address, SEGV_ACCERR);
829}
830
2d4a7167 831static void
a6e04aa9
AK
832do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
833 unsigned int fault)
92181f19
NP
834{
835 struct task_struct *tsk = current;
836 struct mm_struct *mm = tsk->mm;
a6e04aa9 837 int code = BUS_ADRERR;
92181f19
NP
838
839 up_read(&mm->mmap_sem);
840
2d4a7167 841 /* Kernel mode? Handle exceptions or die: */
96054569 842 if (!(error_code & PF_USER)) {
4fc34901 843 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
844 return;
845 }
2d4a7167 846
cd1b68f0 847 /* User-space => ok to do another page fault: */
92181f19
NP
848 if (is_prefetch(regs, error_code, address))
849 return;
2d4a7167
IM
850
851 tsk->thread.cr2 = address;
852 tsk->thread.error_code = error_code;
51e7dc70 853 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167 854
a6e04aa9 855#ifdef CONFIG_MEMORY_FAILURE
f672b49b 856 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
857 printk(KERN_ERR
858 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
859 tsk->comm, tsk->pid, address);
860 code = BUS_MCEERR_AR;
861 }
862#endif
f672b49b 863 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
92181f19
NP
864}
865
3a13c4d7 866static noinline void
2d4a7167
IM
867mm_fault_error(struct pt_regs *regs, unsigned long error_code,
868 unsigned long address, unsigned int fault)
92181f19 869{
3a13c4d7
JW
870 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
871 up_read(&current->mm->mmap_sem);
872 no_context(regs, error_code, address, 0, 0);
873 return;
b80ef10e 874 }
b80ef10e 875
2d4a7167 876 if (fault & VM_FAULT_OOM) {
f8626854
AV
877 /* Kernel mode? Handle exceptions or die: */
878 if (!(error_code & PF_USER)) {
879 up_read(&current->mm->mmap_sem);
4fc34901
AL
880 no_context(regs, error_code, address,
881 SIGSEGV, SEGV_MAPERR);
3a13c4d7 882 return;
f8626854
AV
883 }
884
c2d23f91
DR
885 up_read(&current->mm->mmap_sem);
886
887 /*
888 * We ran out of memory, call the OOM killer, and return the
889 * userspace (which will retry the fault, or kill us if we got
890 * oom-killed):
891 */
892 pagefault_out_of_memory();
2d4a7167 893 } else {
f672b49b
AK
894 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
895 VM_FAULT_HWPOISON_LARGE))
a6e04aa9 896 do_sigbus(regs, error_code, address, fault);
2d4a7167
IM
897 else
898 BUG();
899 }
92181f19
NP
900}
901
d8b57bb7
TG
902static int spurious_fault_check(unsigned long error_code, pte_t *pte)
903{
904 if ((error_code & PF_WRITE) && !pte_write(*pte))
905 return 0;
2d4a7167 906
d8b57bb7
TG
907 if ((error_code & PF_INSTR) && !pte_exec(*pte))
908 return 0;
909
910 return 1;
911}
912
5b727a3b 913/*
2d4a7167
IM
914 * Handle a spurious fault caused by a stale TLB entry.
915 *
916 * This allows us to lazily refresh the TLB when increasing the
917 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
918 * eagerly is very expensive since that implies doing a full
919 * cross-processor TLB flush, even if no stale TLB entries exist
920 * on other processors.
921 *
5b727a3b
JF
922 * There are no security implications to leaving a stale TLB when
923 * increasing the permissions on a page.
924 */
62c9295f 925static noinline __kprobes int
2d4a7167 926spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
927{
928 pgd_t *pgd;
929 pud_t *pud;
930 pmd_t *pmd;
931 pte_t *pte;
3c3e5694 932 int ret;
5b727a3b
JF
933
934 /* Reserved-bit violation or user access to kernel space? */
935 if (error_code & (PF_USER | PF_RSVD))
936 return 0;
937
938 pgd = init_mm.pgd + pgd_index(address);
939 if (!pgd_present(*pgd))
940 return 0;
941
942 pud = pud_offset(pgd, address);
943 if (!pud_present(*pud))
944 return 0;
945
d8b57bb7
TG
946 if (pud_large(*pud))
947 return spurious_fault_check(error_code, (pte_t *) pud);
948
5b727a3b
JF
949 pmd = pmd_offset(pud, address);
950 if (!pmd_present(*pmd))
951 return 0;
952
d8b57bb7
TG
953 if (pmd_large(*pmd))
954 return spurious_fault_check(error_code, (pte_t *) pmd);
955
5b727a3b 956 pte = pte_offset_kernel(pmd, address);
954f8571 957 if (!pte_present(*pte))
5b727a3b
JF
958 return 0;
959
3c3e5694
SR
960 ret = spurious_fault_check(error_code, pte);
961 if (!ret)
962 return 0;
963
964 /*
2d4a7167
IM
965 * Make sure we have permissions in PMD.
966 * If not, then there's a bug in the page tables:
3c3e5694
SR
967 */
968 ret = spurious_fault_check(error_code, (pte_t *) pmd);
969 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 970
3c3e5694 971 return ret;
5b727a3b
JF
972}
973
abd4f750 974int show_unhandled_signals = 1;
1da177e4 975
2d4a7167 976static inline int
68da336a 977access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 978{
68da336a 979 if (error_code & PF_WRITE) {
2d4a7167 980 /* write, present and write, not present: */
92181f19
NP
981 if (unlikely(!(vma->vm_flags & VM_WRITE)))
982 return 1;
2d4a7167 983 return 0;
92181f19
NP
984 }
985
2d4a7167
IM
986 /* read, present: */
987 if (unlikely(error_code & PF_PROT))
988 return 1;
989
990 /* read, not present: */
991 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
992 return 1;
993
92181f19
NP
994 return 0;
995}
996
0973a06c
HS
997static int fault_in_kernel_space(unsigned long address)
998{
d9517346 999 return address >= TASK_SIZE_MAX;
0973a06c
HS
1000}
1001
40d3cd66
PA
1002static inline bool smap_violation(int error_code, struct pt_regs *regs)
1003{
4640c7ee
PA
1004 if (!IS_ENABLED(CONFIG_X86_SMAP))
1005 return false;
1006
1007 if (!static_cpu_has(X86_FEATURE_SMAP))
1008 return false;
1009
40d3cd66
PA
1010 if (error_code & PF_USER)
1011 return false;
1012
1013 if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC))
1014 return false;
1015
1016 return true;
1017}
1018
1da177e4
LT
1019/*
1020 * This routine handles page faults. It determines the address,
1021 * and the problem, and then passes it off to one of the appropriate
1022 * routines.
1da177e4 1023 */
6ba3c97a
FW
1024static void __kprobes
1025__do_page_fault(struct pt_regs *regs, unsigned long error_code)
1da177e4 1026{
2d4a7167 1027 struct vm_area_struct *vma;
1da177e4 1028 struct task_struct *tsk;
2d4a7167 1029 unsigned long address;
1da177e4 1030 struct mm_struct *mm;
f8c2ee22 1031 int fault;
759496ba 1032 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1da177e4 1033
a9ba9a3b
AV
1034 tsk = current;
1035 mm = tsk->mm;
2d4a7167 1036
2d4a7167 1037 /* Get the faulting address: */
f51c9452 1038 address = read_cr2();
1da177e4 1039
f8561296
VN
1040 /*
1041 * Detect and handle instructions that would cause a page fault for
1042 * both a tracked kernel page and a userspace page.
1043 */
1044 if (kmemcheck_active(regs))
1045 kmemcheck_hide(regs);
5dfaf90f 1046 prefetchw(&mm->mmap_sem);
f8561296 1047
0fd0e3da 1048 if (unlikely(kmmio_fault(regs, address)))
86069782 1049 return;
1da177e4
LT
1050
1051 /*
1052 * We fault-in kernel-space virtual memory on-demand. The
1053 * 'reference' page table is init_mm.pgd.
1054 *
1055 * NOTE! We MUST NOT take any locks for this case. We may
1056 * be in an interrupt or a critical region, and should
1057 * only copy the information from the master page table,
1058 * nothing more.
1059 *
1060 * This verifies that the fault happens in kernel space
1061 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1062 * protection error (error_code & 9) == 0.
1da177e4 1063 */
0973a06c 1064 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
1065 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1066 if (vmalloc_fault(address) >= 0)
1067 return;
1068
1069 if (kmemcheck_fault(regs, address, error_code))
1070 return;
1071 }
5b727a3b 1072
2d4a7167 1073 /* Can handle a stale RO->RW TLB: */
92181f19 1074 if (spurious_fault(error_code, address))
5b727a3b
JF
1075 return;
1076
2d4a7167 1077 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1078 if (kprobes_fault(regs))
9be260a6 1079 return;
f8c2ee22
HH
1080 /*
1081 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1082 * fault we could otherwise deadlock:
f8c2ee22 1083 */
92181f19 1084 bad_area_nosemaphore(regs, error_code, address);
2d4a7167 1085
92181f19 1086 return;
f8c2ee22
HH
1087 }
1088
2d4a7167 1089 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1090 if (unlikely(kprobes_fault(regs)))
9be260a6 1091 return;
8c914cb7 1092
66c58156 1093 if (unlikely(error_code & PF_RSVD))
92181f19 1094 pgtable_bad(regs, error_code, address);
1da177e4 1095
4640c7ee
PA
1096 if (unlikely(smap_violation(error_code, regs))) {
1097 bad_area_nosemaphore(regs, error_code, address);
1098 return;
40d3cd66
PA
1099 }
1100
1da177e4 1101 /*
2d4a7167
IM
1102 * If we're in an interrupt, have no user context or are running
1103 * in an atomic region then we must not take the fault:
1da177e4 1104 */
92181f19
NP
1105 if (unlikely(in_atomic() || !mm)) {
1106 bad_area_nosemaphore(regs, error_code, address);
1107 return;
1108 }
1da177e4 1109
e00b12e6
PZ
1110 /*
1111 * It's safe to allow irq's after cr2 has been saved and the
1112 * vmalloc fault has been handled.
1113 *
1114 * User-mode registers count as a user access even for any
1115 * potential system fault or CPU buglet:
1116 */
1117 if (user_mode_vm(regs)) {
1118 local_irq_enable();
1119 error_code |= PF_USER;
1120 flags |= FAULT_FLAG_USER;
1121 } else {
1122 if (regs->flags & X86_EFLAGS_IF)
1123 local_irq_enable();
1124 }
1125
1126 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1127
759496ba
JW
1128 if (error_code & PF_WRITE)
1129 flags |= FAULT_FLAG_WRITE;
1130
3a1dfe6e
IM
1131 /*
1132 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1133 * addresses in user space. All other faults represent errors in
1134 * the kernel and should generate an OOPS. Unfortunately, in the
1135 * case of an erroneous fault occurring in a code path which already
1136 * holds mmap_sem we will deadlock attempting to validate the fault
1137 * against the address space. Luckily the kernel only validly
1138 * references user space from well defined areas of code, which are
1139 * listed in the exceptions table.
1da177e4
LT
1140 *
1141 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1142 * the source reference check when there is a possibility of a
1143 * deadlock. Attempt to lock the address space, if we cannot we then
1144 * validate the source. If this is invalid we can skip the address
1145 * space check, thus avoiding the deadlock:
1da177e4 1146 */
92181f19 1147 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1148 if ((error_code & PF_USER) == 0 &&
92181f19
NP
1149 !search_exception_tables(regs->ip)) {
1150 bad_area_nosemaphore(regs, error_code, address);
1151 return;
1152 }
d065bd81 1153retry:
1da177e4 1154 down_read(&mm->mmap_sem);
01006074
PZ
1155 } else {
1156 /*
2d4a7167
IM
1157 * The above down_read_trylock() might have succeeded in
1158 * which case we'll have missed the might_sleep() from
1159 * down_read():
01006074
PZ
1160 */
1161 might_sleep();
1da177e4
LT
1162 }
1163
1164 vma = find_vma(mm, address);
92181f19
NP
1165 if (unlikely(!vma)) {
1166 bad_area(regs, error_code, address);
1167 return;
1168 }
1169 if (likely(vma->vm_start <= address))
1da177e4 1170 goto good_area;
92181f19
NP
1171 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1172 bad_area(regs, error_code, address);
1173 return;
1174 }
33cb5243 1175 if (error_code & PF_USER) {
6f4d368e
HH
1176 /*
1177 * Accessing the stack below %sp is always a bug.
1178 * The large cushion allows instructions like enter
2d4a7167 1179 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1180 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1181 */
92181f19
NP
1182 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1183 bad_area(regs, error_code, address);
1184 return;
1185 }
1da177e4 1186 }
92181f19
NP
1187 if (unlikely(expand_stack(vma, address))) {
1188 bad_area(regs, error_code, address);
1189 return;
1190 }
1191
1192 /*
1193 * Ok, we have a good vm_area for this memory access, so
1194 * we can handle it..
1195 */
1da177e4 1196good_area:
68da336a 1197 if (unlikely(access_error(error_code, vma))) {
92181f19
NP
1198 bad_area_access_error(regs, error_code, address);
1199 return;
1da177e4
LT
1200 }
1201
1202 /*
1203 * If for any reason at all we couldn't handle the fault,
1204 * make sure we exit gracefully rather than endlessly redo
2d4a7167 1205 * the fault:
1da177e4 1206 */
d065bd81 1207 fault = handle_mm_fault(mm, vma, address, flags);
2d4a7167 1208
3a13c4d7
JW
1209 /*
1210 * If we need to retry but a fatal signal is pending, handle the
1211 * signal first. We do not need to release the mmap_sem because it
1212 * would already be released in __lock_page_or_retry in mm/filemap.c.
1213 */
1214 if (unlikely((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)))
1215 return;
1216
1217 if (unlikely(fault & VM_FAULT_ERROR)) {
1218 mm_fault_error(regs, error_code, address, fault);
1219 return;
37b23e05
KM
1220 }
1221
d065bd81
ML
1222 /*
1223 * Major/minor page fault accounting is only done on the
1224 * initial attempt. If we go through a retry, it is extremely
1225 * likely that the page will be found in page cache at that point.
1226 */
1227 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1228 if (fault & VM_FAULT_MAJOR) {
1229 tsk->maj_flt++;
a8b0ca17 1230 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
d065bd81
ML
1231 regs, address);
1232 } else {
1233 tsk->min_flt++;
a8b0ca17 1234 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
d065bd81
ML
1235 regs, address);
1236 }
1237 if (fault & VM_FAULT_RETRY) {
1238 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1239 * of starvation. */
1240 flags &= ~FAULT_FLAG_ALLOW_RETRY;
45cac65b 1241 flags |= FAULT_FLAG_TRIED;
d065bd81
ML
1242 goto retry;
1243 }
ac17dc8e 1244 }
d729ab35 1245
8c938f9f
IM
1246 check_v8086_mode(regs, address, tsk);
1247
1da177e4 1248 up_read(&mm->mmap_sem);
1da177e4 1249}
6ba3c97a
FW
1250
1251dotraplinkage void __kprobes
1252do_page_fault(struct pt_regs *regs, unsigned long error_code)
1253{
6c1e0256
FW
1254 enum ctx_state prev_state;
1255
1256 prev_state = exception_enter();
6ba3c97a 1257 __do_page_fault(regs, error_code);
6c1e0256 1258 exception_exit(prev_state);
6ba3c97a 1259}
25c74b10 1260
d34603b0
SA
1261static void trace_page_fault_entries(struct pt_regs *regs,
1262 unsigned long error_code)
1263{
1264 if (user_mode(regs))
a4f61dec 1265 trace_page_fault_user(read_cr2(), regs, error_code);
d34603b0 1266 else
a4f61dec 1267 trace_page_fault_kernel(read_cr2(), regs, error_code);
d34603b0
SA
1268}
1269
25c74b10
SA
1270dotraplinkage void __kprobes
1271trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1272{
1273 enum ctx_state prev_state;
1274
1275 prev_state = exception_enter();
d34603b0 1276 trace_page_fault_entries(regs, error_code);
25c74b10
SA
1277 __do_page_fault(regs, error_code);
1278 exception_exit(prev_state);
1279}