]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/mm/fault.c
x86-64, mem: Update all PGDs for direct mapping and vmemmap mapping changes
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473
IM
6#include <linux/magic.h> /* STACK_END_MAGIC */
7#include <linux/sched.h> /* test_thread_flag(), ... */
8#include <linux/kdebug.h> /* oops_begin/end, ... */
9#include <linux/module.h> /* search_exception_table */
10#include <linux/bootmem.h> /* max_low_pfn */
11#include <linux/kprobes.h> /* __kprobes, ... */
12#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 13#include <linux/perf_event.h> /* perf_sw_event */
2d4a7167 14
a2bcd473
IM
15#include <asm/traps.h> /* dotraplinkage, ... */
16#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 17#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
1da177e4 18
33cb5243 19/*
2d4a7167
IM
20 * Page fault error code bits:
21 *
22 * bit 0 == 0: no page found 1: protection fault
23 * bit 1 == 0: read access 1: write access
24 * bit 2 == 0: kernel-mode access 1: user-mode access
25 * bit 3 == 1: use of reserved bit detected
26 * bit 4 == 1: fault was an instruction fetch
33cb5243 27 */
2d4a7167
IM
28enum x86_pf_error_code {
29
30 PF_PROT = 1 << 0,
31 PF_WRITE = 1 << 1,
32 PF_USER = 1 << 2,
33 PF_RSVD = 1 << 3,
34 PF_INSTR = 1 << 4,
35};
66c58156 36
b814d41f 37/*
b319eed0
IM
38 * Returns 0 if mmiotrace is disabled, or if the fault is not
39 * handled by mmiotrace:
b814d41f 40 */
62c9295f
MH
41static inline int __kprobes
42kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 43{
0fd0e3da
PP
44 if (unlikely(is_kmmio_active()))
45 if (kmmio_handler(regs, addr) == 1)
46 return -1;
0fd0e3da 47 return 0;
86069782
PP
48}
49
62c9295f 50static inline int __kprobes notify_page_fault(struct pt_regs *regs)
1bd858a5 51{
74a0b576
CH
52 int ret = 0;
53
54 /* kprobe_running() needs smp_processor_id() */
b1801812 55 if (kprobes_built_in() && !user_mode_vm(regs)) {
74a0b576
CH
56 preempt_disable();
57 if (kprobe_running() && kprobe_fault_handler(regs, 14))
58 ret = 1;
59 preempt_enable();
60 }
1bd858a5 61
74a0b576 62 return ret;
33cb5243 63}
1bd858a5 64
1dc85be0 65/*
2d4a7167
IM
66 * Prefetch quirks:
67 *
68 * 32-bit mode:
69 *
70 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
71 * Check that here and ignore it.
1dc85be0 72 *
2d4a7167 73 * 64-bit mode:
1dc85be0 74 *
2d4a7167
IM
75 * Sometimes the CPU reports invalid exceptions on prefetch.
76 * Check that here and ignore it.
77 *
78 * Opcode checker based on code by Richard Brunner.
1dc85be0 79 */
107a0367
IM
80static inline int
81check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
82 unsigned char opcode, int *prefetch)
83{
84 unsigned char instr_hi = opcode & 0xf0;
85 unsigned char instr_lo = opcode & 0x0f;
86
87 switch (instr_hi) {
88 case 0x20:
89 case 0x30:
90 /*
91 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
92 * In X86_64 long mode, the CPU will signal invalid
93 * opcode if some of these prefixes are present so
94 * X86_64 will never get here anyway
95 */
96 return ((instr_lo & 7) == 0x6);
97#ifdef CONFIG_X86_64
98 case 0x40:
99 /*
100 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
101 * Need to figure out under what instruction mode the
102 * instruction was issued. Could check the LDT for lm,
103 * but for now it's good enough to assume that long
104 * mode only uses well known segments or kernel.
105 */
106 return (!user_mode(regs)) || (regs->cs == __USER_CS);
107#endif
108 case 0x60:
109 /* 0x64 thru 0x67 are valid prefixes in all modes. */
110 return (instr_lo & 0xC) == 0x4;
111 case 0xF0:
112 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
113 return !instr_lo || (instr_lo>>1) == 1;
114 case 0x00:
115 /* Prefetch instruction is 0x0F0D or 0x0F18 */
116 if (probe_kernel_address(instr, opcode))
117 return 0;
118
119 *prefetch = (instr_lo == 0xF) &&
120 (opcode == 0x0D || opcode == 0x18);
121 return 0;
122 default:
123 return 0;
124 }
125}
126
2d4a7167
IM
127static int
128is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 129{
2d4a7167 130 unsigned char *max_instr;
ab2bf0c1 131 unsigned char *instr;
33cb5243 132 int prefetch = 0;
1da177e4 133
3085354d
IM
134 /*
135 * If it was a exec (instruction fetch) fault on NX page, then
136 * do not ignore the fault:
137 */
66c58156 138 if (error_code & PF_INSTR)
1da177e4 139 return 0;
1dc85be0 140
107a0367 141 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 142 max_instr = instr + 15;
1da177e4 143
76381fee 144 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
1da177e4
LT
145 return 0;
146
107a0367 147 while (instr < max_instr) {
2d4a7167 148 unsigned char opcode;
1da177e4 149
ab2bf0c1 150 if (probe_kernel_address(instr, opcode))
33cb5243 151 break;
1da177e4 152
1da177e4
LT
153 instr++;
154
107a0367 155 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 156 break;
1da177e4
LT
157 }
158 return prefetch;
159}
160
2d4a7167
IM
161static void
162force_sig_info_fault(int si_signo, int si_code, unsigned long address,
163 struct task_struct *tsk)
c4aba4a8
HH
164{
165 siginfo_t info;
166
2d4a7167
IM
167 info.si_signo = si_signo;
168 info.si_errno = 0;
169 info.si_code = si_code;
170 info.si_addr = (void __user *)address;
a6e04aa9 171 info.si_addr_lsb = si_code == BUS_MCEERR_AR ? PAGE_SHIFT : 0;
2d4a7167 172
c4aba4a8
HH
173 force_sig_info(si_signo, &info, tsk);
174}
175
f2f13a85
IM
176DEFINE_SPINLOCK(pgd_lock);
177LIST_HEAD(pgd_list);
178
179#ifdef CONFIG_X86_32
180static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 181{
f2f13a85
IM
182 unsigned index = pgd_index(address);
183 pgd_t *pgd_k;
184 pud_t *pud, *pud_k;
185 pmd_t *pmd, *pmd_k;
2d4a7167 186
f2f13a85
IM
187 pgd += index;
188 pgd_k = init_mm.pgd + index;
189
190 if (!pgd_present(*pgd_k))
191 return NULL;
192
193 /*
194 * set_pgd(pgd, *pgd_k); here would be useless on PAE
195 * and redundant with the set_pmd() on non-PAE. As would
196 * set_pud.
197 */
198 pud = pud_offset(pgd, address);
199 pud_k = pud_offset(pgd_k, address);
200 if (!pud_present(*pud_k))
201 return NULL;
202
203 pmd = pmd_offset(pud, address);
204 pmd_k = pmd_offset(pud_k, address);
205 if (!pmd_present(*pmd_k))
206 return NULL;
207
b8bcfe99 208 if (!pmd_present(*pmd))
f2f13a85 209 set_pmd(pmd, *pmd_k);
b8bcfe99 210 else
f2f13a85 211 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
212
213 return pmd_k;
214}
215
216void vmalloc_sync_all(void)
217{
218 unsigned long address;
219
220 if (SHARED_KERNEL_PMD)
221 return;
222
223 for (address = VMALLOC_START & PMD_MASK;
224 address >= TASK_SIZE && address < FIXADDR_TOP;
225 address += PMD_SIZE) {
226
227 unsigned long flags;
228 struct page *page;
229
230 spin_lock_irqsave(&pgd_lock, flags);
231 list_for_each_entry(page, &pgd_list, lru) {
232 if (!vmalloc_sync_one(page_address(page), address))
233 break;
234 }
235 spin_unlock_irqrestore(&pgd_lock, flags);
236 }
237}
238
239/*
240 * 32-bit:
241 *
242 * Handle a fault on the vmalloc or module mapping area
243 */
62c9295f 244static noinline __kprobes int vmalloc_fault(unsigned long address)
f2f13a85
IM
245{
246 unsigned long pgd_paddr;
247 pmd_t *pmd_k;
248 pte_t *pte_k;
249
250 /* Make sure we are in vmalloc area: */
251 if (!(address >= VMALLOC_START && address < VMALLOC_END))
252 return -1;
253
254 /*
255 * Synchronize this task's top level page-table
256 * with the 'reference' page table.
257 *
258 * Do _not_ use "current" here. We might be inside
259 * an interrupt in the middle of a task switch..
260 */
261 pgd_paddr = read_cr3();
262 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
263 if (!pmd_k)
264 return -1;
265
266 pte_k = pte_offset_kernel(pmd_k, address);
267 if (!pte_present(*pte_k))
268 return -1;
269
270 return 0;
271}
272
273/*
274 * Did it hit the DOS screen memory VA from vm86 mode?
275 */
276static inline void
277check_v8086_mode(struct pt_regs *regs, unsigned long address,
278 struct task_struct *tsk)
279{
280 unsigned long bit;
281
282 if (!v8086_mode(regs))
283 return;
284
285 bit = (address - 0xA0000) >> PAGE_SHIFT;
286 if (bit < 32)
287 tsk->thread.screen_bitmap |= 1 << bit;
33cb5243 288}
1da177e4 289
087975b0 290static bool low_pfn(unsigned long pfn)
1da177e4 291{
087975b0
AM
292 return pfn < max_low_pfn;
293}
1156e098 294
087975b0
AM
295static void dump_pagetable(unsigned long address)
296{
297 pgd_t *base = __va(read_cr3());
298 pgd_t *pgd = &base[pgd_index(address)];
299 pmd_t *pmd;
300 pte_t *pte;
2d4a7167 301
1156e098 302#ifdef CONFIG_X86_PAE
087975b0
AM
303 printk("*pdpt = %016Lx ", pgd_val(*pgd));
304 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
305 goto out;
1156e098 306#endif
087975b0
AM
307 pmd = pmd_offset(pud_offset(pgd, address), address);
308 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
1156e098
HH
309
310 /*
311 * We must not directly access the pte in the highpte
312 * case if the page table is located in highmem.
313 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 314 * it's allocated already:
1156e098 315 */
087975b0
AM
316 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
317 goto out;
1156e098 318
087975b0
AM
319 pte = pte_offset_kernel(pmd, address);
320 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
321out:
1156e098 322 printk("\n");
f2f13a85
IM
323}
324
325#else /* CONFIG_X86_64: */
326
327void vmalloc_sync_all(void)
328{
6afb5157 329 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
f2f13a85
IM
330}
331
332/*
333 * 64-bit:
334 *
335 * Handle a fault on the vmalloc area
336 *
337 * This assumes no large pages in there.
338 */
62c9295f 339static noinline __kprobes int vmalloc_fault(unsigned long address)
f2f13a85
IM
340{
341 pgd_t *pgd, *pgd_ref;
342 pud_t *pud, *pud_ref;
343 pmd_t *pmd, *pmd_ref;
344 pte_t *pte, *pte_ref;
345
346 /* Make sure we are in vmalloc area: */
347 if (!(address >= VMALLOC_START && address < VMALLOC_END))
348 return -1;
349
350 /*
351 * Copy kernel mappings over when needed. This can also
352 * happen within a race in page table update. In the later
353 * case just flush:
354 */
355 pgd = pgd_offset(current->active_mm, address);
356 pgd_ref = pgd_offset_k(address);
357 if (pgd_none(*pgd_ref))
358 return -1;
359
360 if (pgd_none(*pgd))
361 set_pgd(pgd, *pgd_ref);
362 else
363 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
364
365 /*
366 * Below here mismatches are bugs because these lower tables
367 * are shared:
368 */
369
370 pud = pud_offset(pgd, address);
371 pud_ref = pud_offset(pgd_ref, address);
372 if (pud_none(*pud_ref))
373 return -1;
374
375 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
376 BUG();
377
378 pmd = pmd_offset(pud, address);
379 pmd_ref = pmd_offset(pud_ref, address);
380 if (pmd_none(*pmd_ref))
381 return -1;
382
383 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
384 BUG();
385
386 pte_ref = pte_offset_kernel(pmd_ref, address);
387 if (!pte_present(*pte_ref))
388 return -1;
389
390 pte = pte_offset_kernel(pmd, address);
391
392 /*
393 * Don't use pte_page here, because the mappings can point
394 * outside mem_map, and the NUMA hash lookup cannot handle
395 * that:
396 */
397 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
398 BUG();
399
400 return 0;
401}
402
403static const char errata93_warning[] =
ad361c98
JP
404KERN_ERR
405"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
406"******* Working around it, but it may cause SEGVs or burn power.\n"
407"******* Please consider a BIOS update.\n"
408"******* Disabling USB legacy in the BIOS may also help.\n";
f2f13a85
IM
409
410/*
411 * No vm86 mode in 64-bit mode:
412 */
413static inline void
414check_v8086_mode(struct pt_regs *regs, unsigned long address,
415 struct task_struct *tsk)
416{
417}
418
419static int bad_address(void *p)
420{
421 unsigned long dummy;
422
423 return probe_kernel_address((unsigned long *)p, dummy);
424}
425
426static void dump_pagetable(unsigned long address)
427{
087975b0
AM
428 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
429 pgd_t *pgd = base + pgd_index(address);
1da177e4
LT
430 pud_t *pud;
431 pmd_t *pmd;
432 pte_t *pte;
433
2d4a7167
IM
434 if (bad_address(pgd))
435 goto bad;
436
d646bce4 437 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
438
439 if (!pgd_present(*pgd))
440 goto out;
1da177e4 441
d2ae5b5f 442 pud = pud_offset(pgd, address);
2d4a7167
IM
443 if (bad_address(pud))
444 goto bad;
445
1da177e4 446 printk("PUD %lx ", pud_val(*pud));
b5360222 447 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 448 goto out;
1da177e4
LT
449
450 pmd = pmd_offset(pud, address);
2d4a7167
IM
451 if (bad_address(pmd))
452 goto bad;
453
1da177e4 454 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
455 if (!pmd_present(*pmd) || pmd_large(*pmd))
456 goto out;
1da177e4
LT
457
458 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
459 if (bad_address(pte))
460 goto bad;
461
33cb5243 462 printk("PTE %lx", pte_val(*pte));
2d4a7167 463out:
1da177e4
LT
464 printk("\n");
465 return;
466bad:
467 printk("BAD\n");
8c938f9f
IM
468}
469
f2f13a85 470#endif /* CONFIG_X86_64 */
1da177e4 471
2d4a7167
IM
472/*
473 * Workaround for K8 erratum #93 & buggy BIOS.
474 *
475 * BIOS SMM functions are required to use a specific workaround
476 * to avoid corruption of the 64bit RIP register on C stepping K8.
477 *
478 * A lot of BIOS that didn't get tested properly miss this.
479 *
480 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
481 * Try to work around it here.
482 *
483 * Note we only handle faults in kernel here.
484 * Does nothing on 32-bit.
fdfe8aa8 485 */
33cb5243 486static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 487{
fdfe8aa8 488#ifdef CONFIG_X86_64
65ea5b03 489 if (address != regs->ip)
1da177e4 490 return 0;
2d4a7167 491
33cb5243 492 if ((address >> 32) != 0)
1da177e4 493 return 0;
2d4a7167 494
1da177e4 495 address |= 0xffffffffUL << 32;
33cb5243
HH
496 if ((address >= (u64)_stext && address <= (u64)_etext) ||
497 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 498 printk_once(errata93_warning);
65ea5b03 499 regs->ip = address;
1da177e4
LT
500 return 1;
501 }
fdfe8aa8 502#endif
1da177e4 503 return 0;
33cb5243 504}
1da177e4 505
35f3266f 506/*
2d4a7167
IM
507 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
508 * to illegal addresses >4GB.
509 *
510 * We catch this in the page fault handler because these addresses
511 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
512 * segment in LDT is compatibility mode.
513 */
514static int is_errata100(struct pt_regs *regs, unsigned long address)
515{
516#ifdef CONFIG_X86_64
2d4a7167 517 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
518 return 1;
519#endif
520 return 0;
521}
522
29caf2f9
HH
523static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
524{
525#ifdef CONFIG_X86_F00F_BUG
526 unsigned long nr;
2d4a7167 527
29caf2f9 528 /*
2d4a7167 529 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9
HH
530 */
531 if (boot_cpu_data.f00f_bug) {
532 nr = (address - idt_descr.address) >> 3;
533
534 if (nr == 6) {
535 do_invalid_op(regs, 0);
536 return 1;
537 }
538 }
539#endif
540 return 0;
541}
542
8f766149
IM
543static const char nx_warning[] = KERN_CRIT
544"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
545
2d4a7167
IM
546static void
547show_fault_oops(struct pt_regs *regs, unsigned long error_code,
548 unsigned long address)
b3279c7f 549{
1156e098
HH
550 if (!oops_may_print())
551 return;
552
1156e098 553 if (error_code & PF_INSTR) {
93809be8 554 unsigned int level;
2d4a7167 555
1156e098
HH
556 pte_t *pte = lookup_address(address, &level);
557
8f766149
IM
558 if (pte && pte_present(*pte) && !pte_exec(*pte))
559 printk(nx_warning, current_uid());
1156e098 560 }
1156e098 561
19f0dda9 562 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 563 if (address < PAGE_SIZE)
19f0dda9 564 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 565 else
19f0dda9 566 printk(KERN_CONT "paging request");
2d4a7167 567
f294a8ce 568 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 569 printk(KERN_ALERT "IP:");
b3279c7f 570 printk_address(regs->ip, 1);
2d4a7167 571
b3279c7f
HH
572 dump_pagetable(address);
573}
574
2d4a7167
IM
575static noinline void
576pgtable_bad(struct pt_regs *regs, unsigned long error_code,
577 unsigned long address)
1da177e4 578{
2d4a7167
IM
579 struct task_struct *tsk;
580 unsigned long flags;
581 int sig;
582
583 flags = oops_begin();
584 tsk = current;
585 sig = SIGKILL;
1209140c 586
1da177e4 587 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 588 tsk->comm, address);
1da177e4 589 dump_pagetable(address);
2d4a7167
IM
590
591 tsk->thread.cr2 = address;
592 tsk->thread.trap_no = 14;
593 tsk->thread.error_code = error_code;
594
22f5991c 595 if (__die("Bad pagetable", regs, error_code))
874d93d1 596 sig = 0;
2d4a7167 597
874d93d1 598 oops_end(flags, regs, sig);
1da177e4
LT
599}
600
2d4a7167
IM
601static noinline void
602no_context(struct pt_regs *regs, unsigned long error_code,
603 unsigned long address)
92181f19
NP
604{
605 struct task_struct *tsk = current;
19803078 606 unsigned long *stackend;
92181f19
NP
607 unsigned long flags;
608 int sig;
92181f19 609
2d4a7167 610 /* Are we prepared to handle this kernel fault? */
92181f19
NP
611 if (fixup_exception(regs))
612 return;
613
614 /*
2d4a7167
IM
615 * 32-bit:
616 *
617 * Valid to do another page fault here, because if this fault
618 * had been triggered by is_prefetch fixup_exception would have
619 * handled it.
620 *
621 * 64-bit:
92181f19 622 *
2d4a7167 623 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
624 */
625 if (is_prefetch(regs, error_code, address))
626 return;
627
628 if (is_errata93(regs, address))
629 return;
630
631 /*
632 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 633 * terminate things with extreme prejudice:
92181f19 634 */
92181f19 635 flags = oops_begin();
92181f19
NP
636
637 show_fault_oops(regs, error_code, address);
638
2d4a7167 639 stackend = end_of_stack(tsk);
0e7810be 640 if (tsk != &init_task && *stackend != STACK_END_MAGIC)
19803078
IM
641 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
642
1cc99544
IM
643 tsk->thread.cr2 = address;
644 tsk->thread.trap_no = 14;
645 tsk->thread.error_code = error_code;
92181f19 646
92181f19
NP
647 sig = SIGKILL;
648 if (__die("Oops", regs, error_code))
649 sig = 0;
2d4a7167 650
92181f19
NP
651 /* Executive summary in case the body of the oops scrolled away */
652 printk(KERN_EMERG "CR2: %016lx\n", address);
2d4a7167 653
92181f19 654 oops_end(flags, regs, sig);
92181f19
NP
655}
656
2d4a7167
IM
657/*
658 * Print out info about fatal segfaults, if the show_unhandled_signals
659 * sysctl is set:
660 */
661static inline void
662show_signal_msg(struct pt_regs *regs, unsigned long error_code,
663 unsigned long address, struct task_struct *tsk)
664{
665 if (!unhandled_signal(tsk, SIGSEGV))
666 return;
667
668 if (!printk_ratelimit())
669 return;
670
a1a08d1c 671 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
672 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
673 tsk->comm, task_pid_nr(tsk), address,
674 (void *)regs->ip, (void *)regs->sp, error_code);
675
676 print_vma_addr(KERN_CONT " in ", regs->ip);
677
678 printk(KERN_CONT "\n");
679}
680
681static void
682__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
683 unsigned long address, int si_code)
92181f19
NP
684{
685 struct task_struct *tsk = current;
686
687 /* User mode accesses just cause a SIGSEGV */
688 if (error_code & PF_USER) {
689 /*
2d4a7167 690 * It's possible to have interrupts off here:
92181f19
NP
691 */
692 local_irq_enable();
693
694 /*
695 * Valid to do another page fault here because this one came
2d4a7167 696 * from user space:
92181f19
NP
697 */
698 if (is_prefetch(regs, error_code, address))
699 return;
700
701 if (is_errata100(regs, address))
702 return;
703
2d4a7167
IM
704 if (unlikely(show_unhandled_signals))
705 show_signal_msg(regs, error_code, address, tsk);
706
707 /* Kernel addresses are always protection faults: */
708 tsk->thread.cr2 = address;
709 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
710 tsk->thread.trap_no = 14;
92181f19 711
92181f19 712 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
2d4a7167 713
92181f19
NP
714 return;
715 }
716
717 if (is_f00f_bug(regs, address))
718 return;
719
720 no_context(regs, error_code, address);
721}
722
2d4a7167
IM
723static noinline void
724bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
725 unsigned long address)
92181f19
NP
726{
727 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
728}
729
2d4a7167
IM
730static void
731__bad_area(struct pt_regs *regs, unsigned long error_code,
732 unsigned long address, int si_code)
92181f19
NP
733{
734 struct mm_struct *mm = current->mm;
735
736 /*
737 * Something tried to access memory that isn't in our memory map..
738 * Fix it, but check if it's kernel or user first..
739 */
740 up_read(&mm->mmap_sem);
741
742 __bad_area_nosemaphore(regs, error_code, address, si_code);
743}
744
2d4a7167
IM
745static noinline void
746bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
747{
748 __bad_area(regs, error_code, address, SEGV_MAPERR);
749}
750
2d4a7167
IM
751static noinline void
752bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
753 unsigned long address)
92181f19
NP
754{
755 __bad_area(regs, error_code, address, SEGV_ACCERR);
756}
757
758/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
2d4a7167
IM
759static void
760out_of_memory(struct pt_regs *regs, unsigned long error_code,
761 unsigned long address)
92181f19
NP
762{
763 /*
764 * We ran out of memory, call the OOM killer, and return the userspace
2d4a7167 765 * (which will retry the fault, or kill us if we got oom-killed):
92181f19
NP
766 */
767 up_read(&current->mm->mmap_sem);
2d4a7167 768
92181f19
NP
769 pagefault_out_of_memory();
770}
771
2d4a7167 772static void
a6e04aa9
AK
773do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
774 unsigned int fault)
92181f19
NP
775{
776 struct task_struct *tsk = current;
777 struct mm_struct *mm = tsk->mm;
a6e04aa9 778 int code = BUS_ADRERR;
92181f19
NP
779
780 up_read(&mm->mmap_sem);
781
2d4a7167 782 /* Kernel mode? Handle exceptions or die: */
96054569 783 if (!(error_code & PF_USER)) {
92181f19 784 no_context(regs, error_code, address);
96054569
LT
785 return;
786 }
2d4a7167 787
cd1b68f0 788 /* User-space => ok to do another page fault: */
92181f19
NP
789 if (is_prefetch(regs, error_code, address))
790 return;
2d4a7167
IM
791
792 tsk->thread.cr2 = address;
793 tsk->thread.error_code = error_code;
794 tsk->thread.trap_no = 14;
795
a6e04aa9
AK
796#ifdef CONFIG_MEMORY_FAILURE
797 if (fault & VM_FAULT_HWPOISON) {
798 printk(KERN_ERR
799 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
800 tsk->comm, tsk->pid, address);
801 code = BUS_MCEERR_AR;
802 }
803#endif
804 force_sig_info_fault(SIGBUS, code, address, tsk);
92181f19
NP
805}
806
2d4a7167
IM
807static noinline void
808mm_fault_error(struct pt_regs *regs, unsigned long error_code,
809 unsigned long address, unsigned int fault)
92181f19 810{
2d4a7167 811 if (fault & VM_FAULT_OOM) {
92181f19 812 out_of_memory(regs, error_code, address);
2d4a7167 813 } else {
a6e04aa9
AK
814 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON))
815 do_sigbus(regs, error_code, address, fault);
2d4a7167
IM
816 else
817 BUG();
818 }
92181f19
NP
819}
820
d8b57bb7
TG
821static int spurious_fault_check(unsigned long error_code, pte_t *pte)
822{
823 if ((error_code & PF_WRITE) && !pte_write(*pte))
824 return 0;
2d4a7167 825
d8b57bb7
TG
826 if ((error_code & PF_INSTR) && !pte_exec(*pte))
827 return 0;
828
829 return 1;
830}
831
5b727a3b 832/*
2d4a7167
IM
833 * Handle a spurious fault caused by a stale TLB entry.
834 *
835 * This allows us to lazily refresh the TLB when increasing the
836 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
837 * eagerly is very expensive since that implies doing a full
838 * cross-processor TLB flush, even if no stale TLB entries exist
839 * on other processors.
840 *
5b727a3b
JF
841 * There are no security implications to leaving a stale TLB when
842 * increasing the permissions on a page.
843 */
62c9295f 844static noinline __kprobes int
2d4a7167 845spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
846{
847 pgd_t *pgd;
848 pud_t *pud;
849 pmd_t *pmd;
850 pte_t *pte;
3c3e5694 851 int ret;
5b727a3b
JF
852
853 /* Reserved-bit violation or user access to kernel space? */
854 if (error_code & (PF_USER | PF_RSVD))
855 return 0;
856
857 pgd = init_mm.pgd + pgd_index(address);
858 if (!pgd_present(*pgd))
859 return 0;
860
861 pud = pud_offset(pgd, address);
862 if (!pud_present(*pud))
863 return 0;
864
d8b57bb7
TG
865 if (pud_large(*pud))
866 return spurious_fault_check(error_code, (pte_t *) pud);
867
5b727a3b
JF
868 pmd = pmd_offset(pud, address);
869 if (!pmd_present(*pmd))
870 return 0;
871
d8b57bb7
TG
872 if (pmd_large(*pmd))
873 return spurious_fault_check(error_code, (pte_t *) pmd);
874
5b727a3b
JF
875 pte = pte_offset_kernel(pmd, address);
876 if (!pte_present(*pte))
877 return 0;
878
3c3e5694
SR
879 ret = spurious_fault_check(error_code, pte);
880 if (!ret)
881 return 0;
882
883 /*
2d4a7167
IM
884 * Make sure we have permissions in PMD.
885 * If not, then there's a bug in the page tables:
3c3e5694
SR
886 */
887 ret = spurious_fault_check(error_code, (pte_t *) pmd);
888 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 889
3c3e5694 890 return ret;
5b727a3b
JF
891}
892
abd4f750 893int show_unhandled_signals = 1;
1da177e4 894
2d4a7167
IM
895static inline int
896access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
92181f19
NP
897{
898 if (write) {
2d4a7167 899 /* write, present and write, not present: */
92181f19
NP
900 if (unlikely(!(vma->vm_flags & VM_WRITE)))
901 return 1;
2d4a7167 902 return 0;
92181f19
NP
903 }
904
2d4a7167
IM
905 /* read, present: */
906 if (unlikely(error_code & PF_PROT))
907 return 1;
908
909 /* read, not present: */
910 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
911 return 1;
912
92181f19
NP
913 return 0;
914}
915
0973a06c
HS
916static int fault_in_kernel_space(unsigned long address)
917{
d9517346 918 return address >= TASK_SIZE_MAX;
0973a06c
HS
919}
920
1da177e4
LT
921/*
922 * This routine handles page faults. It determines the address,
923 * and the problem, and then passes it off to one of the appropriate
924 * routines.
1da177e4 925 */
c3731c68
IM
926dotraplinkage void __kprobes
927do_page_fault(struct pt_regs *regs, unsigned long error_code)
1da177e4 928{
2d4a7167 929 struct vm_area_struct *vma;
1da177e4 930 struct task_struct *tsk;
2d4a7167 931 unsigned long address;
1da177e4 932 struct mm_struct *mm;
92181f19 933 int write;
f8c2ee22 934 int fault;
1da177e4 935
a9ba9a3b
AV
936 tsk = current;
937 mm = tsk->mm;
2d4a7167 938
2d4a7167 939 /* Get the faulting address: */
f51c9452 940 address = read_cr2();
1da177e4 941
f8561296
VN
942 /*
943 * Detect and handle instructions that would cause a page fault for
944 * both a tracked kernel page and a userspace page.
945 */
946 if (kmemcheck_active(regs))
947 kmemcheck_hide(regs);
5dfaf90f 948 prefetchw(&mm->mmap_sem);
f8561296 949
0fd0e3da 950 if (unlikely(kmmio_fault(regs, address)))
86069782 951 return;
1da177e4
LT
952
953 /*
954 * We fault-in kernel-space virtual memory on-demand. The
955 * 'reference' page table is init_mm.pgd.
956 *
957 * NOTE! We MUST NOT take any locks for this case. We may
958 * be in an interrupt or a critical region, and should
959 * only copy the information from the master page table,
960 * nothing more.
961 *
962 * This verifies that the fault happens in kernel space
963 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 964 * protection error (error_code & 9) == 0.
1da177e4 965 */
0973a06c 966 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
967 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
968 if (vmalloc_fault(address) >= 0)
969 return;
970
971 if (kmemcheck_fault(regs, address, error_code))
972 return;
973 }
5b727a3b 974
2d4a7167 975 /* Can handle a stale RO->RW TLB: */
92181f19 976 if (spurious_fault(error_code, address))
5b727a3b
JF
977 return;
978
2d4a7167 979 /* kprobes don't want to hook the spurious faults: */
9be260a6
MH
980 if (notify_page_fault(regs))
981 return;
f8c2ee22
HH
982 /*
983 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 984 * fault we could otherwise deadlock:
f8c2ee22 985 */
92181f19 986 bad_area_nosemaphore(regs, error_code, address);
2d4a7167 987
92181f19 988 return;
f8c2ee22
HH
989 }
990
2d4a7167 991 /* kprobes don't want to hook the spurious faults: */
f8a6b2b9 992 if (unlikely(notify_page_fault(regs)))
9be260a6 993 return;
f8c2ee22 994 /*
891cffbd
LT
995 * It's safe to allow irq's after cr2 has been saved and the
996 * vmalloc fault has been handled.
997 *
998 * User-mode registers count as a user access even for any
2d4a7167 999 * potential system fault or CPU buglet:
f8c2ee22 1000 */
891cffbd
LT
1001 if (user_mode_vm(regs)) {
1002 local_irq_enable();
1003 error_code |= PF_USER;
2d4a7167
IM
1004 } else {
1005 if (regs->flags & X86_EFLAGS_IF)
1006 local_irq_enable();
1007 }
8c914cb7 1008
66c58156 1009 if (unlikely(error_code & PF_RSVD))
92181f19 1010 pgtable_bad(regs, error_code, address);
1da177e4 1011
cdd6c482 1012 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
7dd1fcc2 1013
1da177e4 1014 /*
2d4a7167
IM
1015 * If we're in an interrupt, have no user context or are running
1016 * in an atomic region then we must not take the fault:
1da177e4 1017 */
92181f19
NP
1018 if (unlikely(in_atomic() || !mm)) {
1019 bad_area_nosemaphore(regs, error_code, address);
1020 return;
1021 }
1da177e4 1022
3a1dfe6e
IM
1023 /*
1024 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1025 * addresses in user space. All other faults represent errors in
1026 * the kernel and should generate an OOPS. Unfortunately, in the
1027 * case of an erroneous fault occurring in a code path which already
1028 * holds mmap_sem we will deadlock attempting to validate the fault
1029 * against the address space. Luckily the kernel only validly
1030 * references user space from well defined areas of code, which are
1031 * listed in the exceptions table.
1da177e4
LT
1032 *
1033 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1034 * the source reference check when there is a possibility of a
1035 * deadlock. Attempt to lock the address space, if we cannot we then
1036 * validate the source. If this is invalid we can skip the address
1037 * space check, thus avoiding the deadlock:
1da177e4 1038 */
92181f19 1039 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1040 if ((error_code & PF_USER) == 0 &&
92181f19
NP
1041 !search_exception_tables(regs->ip)) {
1042 bad_area_nosemaphore(regs, error_code, address);
1043 return;
1044 }
1da177e4 1045 down_read(&mm->mmap_sem);
01006074
PZ
1046 } else {
1047 /*
2d4a7167
IM
1048 * The above down_read_trylock() might have succeeded in
1049 * which case we'll have missed the might_sleep() from
1050 * down_read():
01006074
PZ
1051 */
1052 might_sleep();
1da177e4
LT
1053 }
1054
1055 vma = find_vma(mm, address);
92181f19
NP
1056 if (unlikely(!vma)) {
1057 bad_area(regs, error_code, address);
1058 return;
1059 }
1060 if (likely(vma->vm_start <= address))
1da177e4 1061 goto good_area;
92181f19
NP
1062 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1063 bad_area(regs, error_code, address);
1064 return;
1065 }
33cb5243 1066 if (error_code & PF_USER) {
6f4d368e
HH
1067 /*
1068 * Accessing the stack below %sp is always a bug.
1069 * The large cushion allows instructions like enter
2d4a7167 1070 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1071 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1072 */
92181f19
NP
1073 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1074 bad_area(regs, error_code, address);
1075 return;
1076 }
1da177e4 1077 }
92181f19
NP
1078 if (unlikely(expand_stack(vma, address))) {
1079 bad_area(regs, error_code, address);
1080 return;
1081 }
1082
1083 /*
1084 * Ok, we have a good vm_area for this memory access, so
1085 * we can handle it..
1086 */
1da177e4 1087good_area:
92181f19 1088 write = error_code & PF_WRITE;
2d4a7167 1089
92181f19
NP
1090 if (unlikely(access_error(error_code, write, vma))) {
1091 bad_area_access_error(regs, error_code, address);
1092 return;
1da177e4
LT
1093 }
1094
1095 /*
1096 * If for any reason at all we couldn't handle the fault,
1097 * make sure we exit gracefully rather than endlessly redo
2d4a7167 1098 * the fault:
1da177e4 1099 */
d06063cc 1100 fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0);
2d4a7167 1101
83c54070 1102 if (unlikely(fault & VM_FAULT_ERROR)) {
92181f19
NP
1103 mm_fault_error(regs, error_code, address, fault);
1104 return;
1da177e4 1105 }
2d4a7167 1106
ac17dc8e 1107 if (fault & VM_FAULT_MAJOR) {
83c54070 1108 tsk->maj_flt++;
cdd6c482 1109 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
78f13e95 1110 regs, address);
ac17dc8e 1111 } else {
83c54070 1112 tsk->min_flt++;
cdd6c482 1113 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
78f13e95 1114 regs, address);
ac17dc8e 1115 }
d729ab35 1116
8c938f9f
IM
1117 check_v8086_mode(regs, address, tsk);
1118
1da177e4 1119 up_read(&mm->mmap_sem);
1da177e4 1120}