]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/x86/mm/fault.c
Merge remote-tracking branches 'asoc/topic/atmel', 'asoc/topic/bcm2835' and 'asoc...
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473
IM
6#include <linux/sched.h> /* test_thread_flag(), ... */
7#include <linux/kdebug.h> /* oops_begin/end, ... */
8#include <linux/module.h> /* search_exception_table */
9#include <linux/bootmem.h> /* max_low_pfn */
9326638c 10#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
a2bcd473 11#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 12#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 13#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 14#include <linux/prefetch.h> /* prefetchw */
56dd9470 15#include <linux/context_tracking.h> /* exception_enter(), ... */
70ffdb93 16#include <linux/uaccess.h> /* faulthandler_disabled() */
2d4a7167 17
a2bcd473
IM
18#include <asm/traps.h> /* dotraplinkage, ... */
19#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 20#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
f40c3300
AL
21#include <asm/fixmap.h> /* VSYSCALL_ADDR */
22#include <asm/vsyscall.h> /* emulate_vsyscall */
ba3e127e 23#include <asm/vm86.h> /* struct vm86 */
1da177e4 24
d34603b0
SA
25#define CREATE_TRACE_POINTS
26#include <asm/trace/exceptions.h>
27
33cb5243 28/*
2d4a7167
IM
29 * Page fault error code bits:
30 *
31 * bit 0 == 0: no page found 1: protection fault
32 * bit 1 == 0: read access 1: write access
33 * bit 2 == 0: kernel-mode access 1: user-mode access
34 * bit 3 == 1: use of reserved bit detected
35 * bit 4 == 1: fault was an instruction fetch
33cb5243 36 */
2d4a7167
IM
37enum x86_pf_error_code {
38
39 PF_PROT = 1 << 0,
40 PF_WRITE = 1 << 1,
41 PF_USER = 1 << 2,
42 PF_RSVD = 1 << 3,
43 PF_INSTR = 1 << 4,
44};
66c58156 45
b814d41f 46/*
b319eed0
IM
47 * Returns 0 if mmiotrace is disabled, or if the fault is not
48 * handled by mmiotrace:
b814d41f 49 */
9326638c 50static nokprobe_inline int
62c9295f 51kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 52{
0fd0e3da
PP
53 if (unlikely(is_kmmio_active()))
54 if (kmmio_handler(regs, addr) == 1)
55 return -1;
0fd0e3da 56 return 0;
86069782
PP
57}
58
9326638c 59static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
1bd858a5 60{
74a0b576
CH
61 int ret = 0;
62
63 /* kprobe_running() needs smp_processor_id() */
f39b6f0e 64 if (kprobes_built_in() && !user_mode(regs)) {
74a0b576
CH
65 preempt_disable();
66 if (kprobe_running() && kprobe_fault_handler(regs, 14))
67 ret = 1;
68 preempt_enable();
69 }
1bd858a5 70
74a0b576 71 return ret;
33cb5243 72}
1bd858a5 73
1dc85be0 74/*
2d4a7167
IM
75 * Prefetch quirks:
76 *
77 * 32-bit mode:
78 *
79 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
80 * Check that here and ignore it.
1dc85be0 81 *
2d4a7167 82 * 64-bit mode:
1dc85be0 83 *
2d4a7167
IM
84 * Sometimes the CPU reports invalid exceptions on prefetch.
85 * Check that here and ignore it.
86 *
87 * Opcode checker based on code by Richard Brunner.
1dc85be0 88 */
107a0367
IM
89static inline int
90check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
91 unsigned char opcode, int *prefetch)
92{
93 unsigned char instr_hi = opcode & 0xf0;
94 unsigned char instr_lo = opcode & 0x0f;
95
96 switch (instr_hi) {
97 case 0x20:
98 case 0x30:
99 /*
100 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
101 * In X86_64 long mode, the CPU will signal invalid
102 * opcode if some of these prefixes are present so
103 * X86_64 will never get here anyway
104 */
105 return ((instr_lo & 7) == 0x6);
106#ifdef CONFIG_X86_64
107 case 0x40:
108 /*
109 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
110 * Need to figure out under what instruction mode the
111 * instruction was issued. Could check the LDT for lm,
112 * but for now it's good enough to assume that long
113 * mode only uses well known segments or kernel.
114 */
318f5a2a 115 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
116#endif
117 case 0x60:
118 /* 0x64 thru 0x67 are valid prefixes in all modes. */
119 return (instr_lo & 0xC) == 0x4;
120 case 0xF0:
121 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
122 return !instr_lo || (instr_lo>>1) == 1;
123 case 0x00:
124 /* Prefetch instruction is 0x0F0D or 0x0F18 */
125 if (probe_kernel_address(instr, opcode))
126 return 0;
127
128 *prefetch = (instr_lo == 0xF) &&
129 (opcode == 0x0D || opcode == 0x18);
130 return 0;
131 default:
132 return 0;
133 }
134}
135
2d4a7167
IM
136static int
137is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 138{
2d4a7167 139 unsigned char *max_instr;
ab2bf0c1 140 unsigned char *instr;
33cb5243 141 int prefetch = 0;
1da177e4 142
3085354d
IM
143 /*
144 * If it was a exec (instruction fetch) fault on NX page, then
145 * do not ignore the fault:
146 */
66c58156 147 if (error_code & PF_INSTR)
1da177e4 148 return 0;
1dc85be0 149
107a0367 150 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 151 max_instr = instr + 15;
1da177e4 152
d31bf07f 153 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
1da177e4
LT
154 return 0;
155
107a0367 156 while (instr < max_instr) {
2d4a7167 157 unsigned char opcode;
1da177e4 158
ab2bf0c1 159 if (probe_kernel_address(instr, opcode))
33cb5243 160 break;
1da177e4 161
1da177e4
LT
162 instr++;
163
107a0367 164 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 165 break;
1da177e4
LT
166 }
167 return prefetch;
168}
169
2d4a7167
IM
170static void
171force_sig_info_fault(int si_signo, int si_code, unsigned long address,
f672b49b 172 struct task_struct *tsk, int fault)
c4aba4a8 173{
f672b49b 174 unsigned lsb = 0;
c4aba4a8
HH
175 siginfo_t info;
176
2d4a7167
IM
177 info.si_signo = si_signo;
178 info.si_errno = 0;
179 info.si_code = si_code;
180 info.si_addr = (void __user *)address;
f672b49b
AK
181 if (fault & VM_FAULT_HWPOISON_LARGE)
182 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
183 if (fault & VM_FAULT_HWPOISON)
184 lsb = PAGE_SHIFT;
185 info.si_addr_lsb = lsb;
2d4a7167 186
c4aba4a8
HH
187 force_sig_info(si_signo, &info, tsk);
188}
189
f2f13a85
IM
190DEFINE_SPINLOCK(pgd_lock);
191LIST_HEAD(pgd_list);
192
193#ifdef CONFIG_X86_32
194static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 195{
f2f13a85
IM
196 unsigned index = pgd_index(address);
197 pgd_t *pgd_k;
198 pud_t *pud, *pud_k;
199 pmd_t *pmd, *pmd_k;
2d4a7167 200
f2f13a85
IM
201 pgd += index;
202 pgd_k = init_mm.pgd + index;
203
204 if (!pgd_present(*pgd_k))
205 return NULL;
206
207 /*
208 * set_pgd(pgd, *pgd_k); here would be useless on PAE
209 * and redundant with the set_pmd() on non-PAE. As would
210 * set_pud.
211 */
212 pud = pud_offset(pgd, address);
213 pud_k = pud_offset(pgd_k, address);
214 if (!pud_present(*pud_k))
215 return NULL;
216
217 pmd = pmd_offset(pud, address);
218 pmd_k = pmd_offset(pud_k, address);
219 if (!pmd_present(*pmd_k))
220 return NULL;
221
b8bcfe99 222 if (!pmd_present(*pmd))
f2f13a85 223 set_pmd(pmd, *pmd_k);
b8bcfe99 224 else
f2f13a85 225 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
226
227 return pmd_k;
228}
229
230void vmalloc_sync_all(void)
231{
232 unsigned long address;
233
234 if (SHARED_KERNEL_PMD)
235 return;
236
237 for (address = VMALLOC_START & PMD_MASK;
238 address >= TASK_SIZE && address < FIXADDR_TOP;
239 address += PMD_SIZE) {
f2f13a85
IM
240 struct page *page;
241
a79e53d8 242 spin_lock(&pgd_lock);
f2f13a85 243 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 244 spinlock_t *pgt_lock;
f01f7c56 245 pmd_t *ret;
617d34d9 246
a79e53d8 247 /* the pgt_lock only for Xen */
617d34d9
JF
248 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
249
250 spin_lock(pgt_lock);
251 ret = vmalloc_sync_one(page_address(page), address);
252 spin_unlock(pgt_lock);
253
254 if (!ret)
f2f13a85
IM
255 break;
256 }
a79e53d8 257 spin_unlock(&pgd_lock);
f2f13a85
IM
258 }
259}
260
261/*
262 * 32-bit:
263 *
264 * Handle a fault on the vmalloc or module mapping area
265 */
9326638c 266static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
267{
268 unsigned long pgd_paddr;
269 pmd_t *pmd_k;
270 pte_t *pte_k;
271
272 /* Make sure we are in vmalloc area: */
273 if (!(address >= VMALLOC_START && address < VMALLOC_END))
274 return -1;
275
ebc8827f
FW
276 WARN_ON_ONCE(in_nmi());
277
f2f13a85
IM
278 /*
279 * Synchronize this task's top level page-table
280 * with the 'reference' page table.
281 *
282 * Do _not_ use "current" here. We might be inside
283 * an interrupt in the middle of a task switch..
284 */
285 pgd_paddr = read_cr3();
286 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
287 if (!pmd_k)
288 return -1;
289
f4eafd8b
TK
290 if (pmd_huge(*pmd_k))
291 return 0;
292
f2f13a85
IM
293 pte_k = pte_offset_kernel(pmd_k, address);
294 if (!pte_present(*pte_k))
295 return -1;
296
297 return 0;
298}
9326638c 299NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85
IM
300
301/*
302 * Did it hit the DOS screen memory VA from vm86 mode?
303 */
304static inline void
305check_v8086_mode(struct pt_regs *regs, unsigned long address,
306 struct task_struct *tsk)
307{
9fda6a06 308#ifdef CONFIG_VM86
f2f13a85
IM
309 unsigned long bit;
310
9fda6a06 311 if (!v8086_mode(regs) || !tsk->thread.vm86)
f2f13a85
IM
312 return;
313
314 bit = (address - 0xA0000) >> PAGE_SHIFT;
315 if (bit < 32)
9fda6a06
BG
316 tsk->thread.vm86->screen_bitmap |= 1 << bit;
317#endif
33cb5243 318}
1da177e4 319
087975b0 320static bool low_pfn(unsigned long pfn)
1da177e4 321{
087975b0
AM
322 return pfn < max_low_pfn;
323}
1156e098 324
087975b0
AM
325static void dump_pagetable(unsigned long address)
326{
327 pgd_t *base = __va(read_cr3());
328 pgd_t *pgd = &base[pgd_index(address)];
329 pmd_t *pmd;
330 pte_t *pte;
2d4a7167 331
1156e098 332#ifdef CONFIG_X86_PAE
087975b0
AM
333 printk("*pdpt = %016Lx ", pgd_val(*pgd));
334 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
335 goto out;
1156e098 336#endif
087975b0
AM
337 pmd = pmd_offset(pud_offset(pgd, address), address);
338 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
1156e098
HH
339
340 /*
341 * We must not directly access the pte in the highpte
342 * case if the page table is located in highmem.
343 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 344 * it's allocated already:
1156e098 345 */
087975b0
AM
346 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
347 goto out;
1156e098 348
087975b0
AM
349 pte = pte_offset_kernel(pmd, address);
350 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
351out:
1156e098 352 printk("\n");
f2f13a85
IM
353}
354
355#else /* CONFIG_X86_64: */
356
357void vmalloc_sync_all(void)
358{
9661d5bc 359 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
f2f13a85
IM
360}
361
362/*
363 * 64-bit:
364 *
365 * Handle a fault on the vmalloc area
f2f13a85 366 */
9326638c 367static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
368{
369 pgd_t *pgd, *pgd_ref;
370 pud_t *pud, *pud_ref;
371 pmd_t *pmd, *pmd_ref;
372 pte_t *pte, *pte_ref;
373
374 /* Make sure we are in vmalloc area: */
375 if (!(address >= VMALLOC_START && address < VMALLOC_END))
376 return -1;
377
ebc8827f
FW
378 WARN_ON_ONCE(in_nmi());
379
f2f13a85
IM
380 /*
381 * Copy kernel mappings over when needed. This can also
382 * happen within a race in page table update. In the later
383 * case just flush:
384 */
385 pgd = pgd_offset(current->active_mm, address);
386 pgd_ref = pgd_offset_k(address);
387 if (pgd_none(*pgd_ref))
388 return -1;
389
1160c277 390 if (pgd_none(*pgd)) {
f2f13a85 391 set_pgd(pgd, *pgd_ref);
1160c277
SK
392 arch_flush_lazy_mmu_mode();
393 } else {
f2f13a85 394 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1160c277 395 }
f2f13a85
IM
396
397 /*
398 * Below here mismatches are bugs because these lower tables
399 * are shared:
400 */
401
402 pud = pud_offset(pgd, address);
403 pud_ref = pud_offset(pgd_ref, address);
404 if (pud_none(*pud_ref))
405 return -1;
406
f4eafd8b 407 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
f2f13a85
IM
408 BUG();
409
f4eafd8b
TK
410 if (pud_huge(*pud))
411 return 0;
412
f2f13a85
IM
413 pmd = pmd_offset(pud, address);
414 pmd_ref = pmd_offset(pud_ref, address);
415 if (pmd_none(*pmd_ref))
416 return -1;
417
f4eafd8b 418 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
f2f13a85
IM
419 BUG();
420
f4eafd8b
TK
421 if (pmd_huge(*pmd))
422 return 0;
423
f2f13a85
IM
424 pte_ref = pte_offset_kernel(pmd_ref, address);
425 if (!pte_present(*pte_ref))
426 return -1;
427
428 pte = pte_offset_kernel(pmd, address);
429
430 /*
431 * Don't use pte_page here, because the mappings can point
432 * outside mem_map, and the NUMA hash lookup cannot handle
433 * that:
434 */
435 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
436 BUG();
437
438 return 0;
439}
9326638c 440NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85 441
e05139f2 442#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 443static const char errata93_warning[] =
ad361c98
JP
444KERN_ERR
445"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
446"******* Working around it, but it may cause SEGVs or burn power.\n"
447"******* Please consider a BIOS update.\n"
448"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 449#endif
f2f13a85
IM
450
451/*
452 * No vm86 mode in 64-bit mode:
453 */
454static inline void
455check_v8086_mode(struct pt_regs *regs, unsigned long address,
456 struct task_struct *tsk)
457{
458}
459
460static int bad_address(void *p)
461{
462 unsigned long dummy;
463
464 return probe_kernel_address((unsigned long *)p, dummy);
465}
466
467static void dump_pagetable(unsigned long address)
468{
087975b0
AM
469 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
470 pgd_t *pgd = base + pgd_index(address);
1da177e4
LT
471 pud_t *pud;
472 pmd_t *pmd;
473 pte_t *pte;
474
2d4a7167
IM
475 if (bad_address(pgd))
476 goto bad;
477
d646bce4 478 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
479
480 if (!pgd_present(*pgd))
481 goto out;
1da177e4 482
d2ae5b5f 483 pud = pud_offset(pgd, address);
2d4a7167
IM
484 if (bad_address(pud))
485 goto bad;
486
1da177e4 487 printk("PUD %lx ", pud_val(*pud));
b5360222 488 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 489 goto out;
1da177e4
LT
490
491 pmd = pmd_offset(pud, address);
2d4a7167
IM
492 if (bad_address(pmd))
493 goto bad;
494
1da177e4 495 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
496 if (!pmd_present(*pmd) || pmd_large(*pmd))
497 goto out;
1da177e4
LT
498
499 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
500 if (bad_address(pte))
501 goto bad;
502
33cb5243 503 printk("PTE %lx", pte_val(*pte));
2d4a7167 504out:
1da177e4
LT
505 printk("\n");
506 return;
507bad:
508 printk("BAD\n");
8c938f9f
IM
509}
510
f2f13a85 511#endif /* CONFIG_X86_64 */
1da177e4 512
2d4a7167
IM
513/*
514 * Workaround for K8 erratum #93 & buggy BIOS.
515 *
516 * BIOS SMM functions are required to use a specific workaround
517 * to avoid corruption of the 64bit RIP register on C stepping K8.
518 *
519 * A lot of BIOS that didn't get tested properly miss this.
520 *
521 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
522 * Try to work around it here.
523 *
524 * Note we only handle faults in kernel here.
525 * Does nothing on 32-bit.
fdfe8aa8 526 */
33cb5243 527static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 528{
e05139f2
JB
529#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
530 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
531 || boot_cpu_data.x86 != 0xf)
532 return 0;
533
65ea5b03 534 if (address != regs->ip)
1da177e4 535 return 0;
2d4a7167 536
33cb5243 537 if ((address >> 32) != 0)
1da177e4 538 return 0;
2d4a7167 539
1da177e4 540 address |= 0xffffffffUL << 32;
33cb5243
HH
541 if ((address >= (u64)_stext && address <= (u64)_etext) ||
542 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 543 printk_once(errata93_warning);
65ea5b03 544 regs->ip = address;
1da177e4
LT
545 return 1;
546 }
fdfe8aa8 547#endif
1da177e4 548 return 0;
33cb5243 549}
1da177e4 550
35f3266f 551/*
2d4a7167
IM
552 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
553 * to illegal addresses >4GB.
554 *
555 * We catch this in the page fault handler because these addresses
556 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
557 * segment in LDT is compatibility mode.
558 */
559static int is_errata100(struct pt_regs *regs, unsigned long address)
560{
561#ifdef CONFIG_X86_64
2d4a7167 562 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
563 return 1;
564#endif
565 return 0;
566}
567
29caf2f9
HH
568static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
569{
570#ifdef CONFIG_X86_F00F_BUG
571 unsigned long nr;
2d4a7167 572
29caf2f9 573 /*
2d4a7167 574 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9 575 */
e2604b49 576 if (boot_cpu_has_bug(X86_BUG_F00F)) {
29caf2f9
HH
577 nr = (address - idt_descr.address) >> 3;
578
579 if (nr == 6) {
580 do_invalid_op(regs, 0);
581 return 1;
582 }
583 }
584#endif
585 return 0;
586}
587
8f766149
IM
588static const char nx_warning[] = KERN_CRIT
589"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
eff50c34
JK
590static const char smep_warning[] = KERN_CRIT
591"unable to execute userspace code (SMEP?) (uid: %d)\n";
8f766149 592
2d4a7167
IM
593static void
594show_fault_oops(struct pt_regs *regs, unsigned long error_code,
595 unsigned long address)
b3279c7f 596{
1156e098
HH
597 if (!oops_may_print())
598 return;
599
1156e098 600 if (error_code & PF_INSTR) {
93809be8 601 unsigned int level;
426e34cc
MF
602 pgd_t *pgd;
603 pte_t *pte;
2d4a7167 604
426e34cc
MF
605 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
606 pgd += pgd_index(address);
607
608 pte = lookup_address_in_pgd(pgd, address, &level);
1156e098 609
8f766149 610 if (pte && pte_present(*pte) && !pte_exec(*pte))
078de5f7 611 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
eff50c34
JK
612 if (pte && pte_present(*pte) && pte_exec(*pte) &&
613 (pgd_flags(*pgd) & _PAGE_USER) &&
1e02ce4c 614 (__read_cr4() & X86_CR4_SMEP))
eff50c34 615 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
1156e098 616 }
1156e098 617
19f0dda9 618 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 619 if (address < PAGE_SIZE)
19f0dda9 620 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 621 else
19f0dda9 622 printk(KERN_CONT "paging request");
2d4a7167 623
f294a8ce 624 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 625 printk(KERN_ALERT "IP:");
5f01c988 626 printk_address(regs->ip);
2d4a7167 627
b3279c7f
HH
628 dump_pagetable(address);
629}
630
2d4a7167
IM
631static noinline void
632pgtable_bad(struct pt_regs *regs, unsigned long error_code,
633 unsigned long address)
1da177e4 634{
2d4a7167
IM
635 struct task_struct *tsk;
636 unsigned long flags;
637 int sig;
638
639 flags = oops_begin();
640 tsk = current;
641 sig = SIGKILL;
1209140c 642
1da177e4 643 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 644 tsk->comm, address);
1da177e4 645 dump_pagetable(address);
2d4a7167
IM
646
647 tsk->thread.cr2 = address;
51e7dc70 648 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167
IM
649 tsk->thread.error_code = error_code;
650
22f5991c 651 if (__die("Bad pagetable", regs, error_code))
874d93d1 652 sig = 0;
2d4a7167 653
874d93d1 654 oops_end(flags, regs, sig);
1da177e4
LT
655}
656
2d4a7167
IM
657static noinline void
658no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 659 unsigned long address, int signal, int si_code)
92181f19
NP
660{
661 struct task_struct *tsk = current;
92181f19
NP
662 unsigned long flags;
663 int sig;
92181f19 664
2d4a7167 665 /* Are we prepared to handle this kernel fault? */
4fc34901 666 if (fixup_exception(regs)) {
c026b359
PZ
667 /*
668 * Any interrupt that takes a fault gets the fixup. This makes
669 * the below recursive fault logic only apply to a faults from
670 * task context.
671 */
672 if (in_interrupt())
673 return;
674
675 /*
676 * Per the above we're !in_interrupt(), aka. task context.
677 *
678 * In this case we need to make sure we're not recursively
679 * faulting through the emulate_vsyscall() logic.
680 */
4fc34901 681 if (current_thread_info()->sig_on_uaccess_error && signal) {
51e7dc70 682 tsk->thread.trap_nr = X86_TRAP_PF;
4fc34901
AL
683 tsk->thread.error_code = error_code | PF_USER;
684 tsk->thread.cr2 = address;
685
686 /* XXX: hwpoison faults will set the wrong code. */
687 force_sig_info_fault(signal, si_code, address, tsk, 0);
688 }
c026b359
PZ
689
690 /*
691 * Barring that, we can do the fixup and be happy.
692 */
92181f19 693 return;
4fc34901 694 }
92181f19
NP
695
696 /*
2d4a7167
IM
697 * 32-bit:
698 *
699 * Valid to do another page fault here, because if this fault
700 * had been triggered by is_prefetch fixup_exception would have
701 * handled it.
702 *
703 * 64-bit:
92181f19 704 *
2d4a7167 705 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
706 */
707 if (is_prefetch(regs, error_code, address))
708 return;
709
710 if (is_errata93(regs, address))
711 return;
712
713 /*
714 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 715 * terminate things with extreme prejudice:
92181f19 716 */
92181f19 717 flags = oops_begin();
92181f19
NP
718
719 show_fault_oops(regs, error_code, address);
720
a70857e4 721 if (task_stack_end_corrupted(tsk))
b0f4c4b3 722 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 723
1cc99544 724 tsk->thread.cr2 = address;
51e7dc70 725 tsk->thread.trap_nr = X86_TRAP_PF;
1cc99544 726 tsk->thread.error_code = error_code;
92181f19 727
92181f19
NP
728 sig = SIGKILL;
729 if (__die("Oops", regs, error_code))
730 sig = 0;
2d4a7167 731
92181f19 732 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 733 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 734
92181f19 735 oops_end(flags, regs, sig);
92181f19
NP
736}
737
2d4a7167
IM
738/*
739 * Print out info about fatal segfaults, if the show_unhandled_signals
740 * sysctl is set:
741 */
742static inline void
743show_signal_msg(struct pt_regs *regs, unsigned long error_code,
744 unsigned long address, struct task_struct *tsk)
745{
746 if (!unhandled_signal(tsk, SIGSEGV))
747 return;
748
749 if (!printk_ratelimit())
750 return;
751
a1a08d1c 752 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
753 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
754 tsk->comm, task_pid_nr(tsk), address,
755 (void *)regs->ip, (void *)regs->sp, error_code);
756
757 print_vma_addr(KERN_CONT " in ", regs->ip);
758
759 printk(KERN_CONT "\n");
760}
761
762static void
763__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
764 unsigned long address, int si_code)
92181f19
NP
765{
766 struct task_struct *tsk = current;
767
768 /* User mode accesses just cause a SIGSEGV */
769 if (error_code & PF_USER) {
770 /*
2d4a7167 771 * It's possible to have interrupts off here:
92181f19
NP
772 */
773 local_irq_enable();
774
775 /*
776 * Valid to do another page fault here because this one came
2d4a7167 777 * from user space:
92181f19
NP
778 */
779 if (is_prefetch(regs, error_code, address))
780 return;
781
782 if (is_errata100(regs, address))
783 return;
784
3ae36655
AL
785#ifdef CONFIG_X86_64
786 /*
787 * Instruction fetch faults in the vsyscall page might need
788 * emulation.
789 */
790 if (unlikely((error_code & PF_INSTR) &&
f40c3300 791 ((address & ~0xfff) == VSYSCALL_ADDR))) {
3ae36655
AL
792 if (emulate_vsyscall(regs, address))
793 return;
794 }
795#endif
e575a86f
KC
796 /* Kernel addresses are always protection faults: */
797 if (address >= TASK_SIZE)
798 error_code |= PF_PROT;
3ae36655 799
e575a86f 800 if (likely(show_unhandled_signals))
2d4a7167
IM
801 show_signal_msg(regs, error_code, address, tsk);
802
2d4a7167 803 tsk->thread.cr2 = address;
e575a86f 804 tsk->thread.error_code = error_code;
51e7dc70 805 tsk->thread.trap_nr = X86_TRAP_PF;
92181f19 806
f672b49b 807 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
2d4a7167 808
92181f19
NP
809 return;
810 }
811
812 if (is_f00f_bug(regs, address))
813 return;
814
4fc34901 815 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
816}
817
2d4a7167
IM
818static noinline void
819bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
820 unsigned long address)
92181f19
NP
821{
822 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
823}
824
2d4a7167
IM
825static void
826__bad_area(struct pt_regs *regs, unsigned long error_code,
827 unsigned long address, int si_code)
92181f19
NP
828{
829 struct mm_struct *mm = current->mm;
830
831 /*
832 * Something tried to access memory that isn't in our memory map..
833 * Fix it, but check if it's kernel or user first..
834 */
835 up_read(&mm->mmap_sem);
836
837 __bad_area_nosemaphore(regs, error_code, address, si_code);
838}
839
2d4a7167
IM
840static noinline void
841bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
842{
843 __bad_area(regs, error_code, address, SEGV_MAPERR);
844}
845
2d4a7167
IM
846static noinline void
847bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
848 unsigned long address)
92181f19
NP
849{
850 __bad_area(regs, error_code, address, SEGV_ACCERR);
851}
852
2d4a7167 853static void
a6e04aa9
AK
854do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
855 unsigned int fault)
92181f19
NP
856{
857 struct task_struct *tsk = current;
a6e04aa9 858 int code = BUS_ADRERR;
92181f19 859
2d4a7167 860 /* Kernel mode? Handle exceptions or die: */
96054569 861 if (!(error_code & PF_USER)) {
4fc34901 862 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
863 return;
864 }
2d4a7167 865
cd1b68f0 866 /* User-space => ok to do another page fault: */
92181f19
NP
867 if (is_prefetch(regs, error_code, address))
868 return;
2d4a7167
IM
869
870 tsk->thread.cr2 = address;
871 tsk->thread.error_code = error_code;
51e7dc70 872 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167 873
a6e04aa9 874#ifdef CONFIG_MEMORY_FAILURE
f672b49b 875 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
876 printk(KERN_ERR
877 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
878 tsk->comm, tsk->pid, address);
879 code = BUS_MCEERR_AR;
880 }
881#endif
f672b49b 882 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
92181f19
NP
883}
884
3a13c4d7 885static noinline void
2d4a7167
IM
886mm_fault_error(struct pt_regs *regs, unsigned long error_code,
887 unsigned long address, unsigned int fault)
92181f19 888{
3a13c4d7 889 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
3a13c4d7
JW
890 no_context(regs, error_code, address, 0, 0);
891 return;
b80ef10e 892 }
b80ef10e 893
2d4a7167 894 if (fault & VM_FAULT_OOM) {
f8626854
AV
895 /* Kernel mode? Handle exceptions or die: */
896 if (!(error_code & PF_USER)) {
4fc34901
AL
897 no_context(regs, error_code, address,
898 SIGSEGV, SEGV_MAPERR);
3a13c4d7 899 return;
f8626854
AV
900 }
901
c2d23f91
DR
902 /*
903 * We ran out of memory, call the OOM killer, and return the
904 * userspace (which will retry the fault, or kill us if we got
905 * oom-killed):
906 */
907 pagefault_out_of_memory();
2d4a7167 908 } else {
f672b49b
AK
909 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
910 VM_FAULT_HWPOISON_LARGE))
a6e04aa9 911 do_sigbus(regs, error_code, address, fault);
33692f27
LT
912 else if (fault & VM_FAULT_SIGSEGV)
913 bad_area_nosemaphore(regs, error_code, address);
2d4a7167
IM
914 else
915 BUG();
916 }
92181f19
NP
917}
918
d8b57bb7
TG
919static int spurious_fault_check(unsigned long error_code, pte_t *pte)
920{
921 if ((error_code & PF_WRITE) && !pte_write(*pte))
922 return 0;
2d4a7167 923
d8b57bb7
TG
924 if ((error_code & PF_INSTR) && !pte_exec(*pte))
925 return 0;
926
927 return 1;
928}
929
5b727a3b 930/*
2d4a7167
IM
931 * Handle a spurious fault caused by a stale TLB entry.
932 *
933 * This allows us to lazily refresh the TLB when increasing the
934 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
935 * eagerly is very expensive since that implies doing a full
936 * cross-processor TLB flush, even if no stale TLB entries exist
937 * on other processors.
938 *
31668511
DV
939 * Spurious faults may only occur if the TLB contains an entry with
940 * fewer permission than the page table entry. Non-present (P = 0)
941 * and reserved bit (R = 1) faults are never spurious.
942 *
5b727a3b
JF
943 * There are no security implications to leaving a stale TLB when
944 * increasing the permissions on a page.
31668511
DV
945 *
946 * Returns non-zero if a spurious fault was handled, zero otherwise.
947 *
948 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
949 * (Optional Invalidation).
5b727a3b 950 */
9326638c 951static noinline int
2d4a7167 952spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
953{
954 pgd_t *pgd;
955 pud_t *pud;
956 pmd_t *pmd;
957 pte_t *pte;
3c3e5694 958 int ret;
5b727a3b 959
31668511
DV
960 /*
961 * Only writes to RO or instruction fetches from NX may cause
962 * spurious faults.
963 *
964 * These could be from user or supervisor accesses but the TLB
965 * is only lazily flushed after a kernel mapping protection
966 * change, so user accesses are not expected to cause spurious
967 * faults.
968 */
969 if (error_code != (PF_WRITE | PF_PROT)
970 && error_code != (PF_INSTR | PF_PROT))
5b727a3b
JF
971 return 0;
972
973 pgd = init_mm.pgd + pgd_index(address);
974 if (!pgd_present(*pgd))
975 return 0;
976
977 pud = pud_offset(pgd, address);
978 if (!pud_present(*pud))
979 return 0;
980
d8b57bb7
TG
981 if (pud_large(*pud))
982 return spurious_fault_check(error_code, (pte_t *) pud);
983
5b727a3b
JF
984 pmd = pmd_offset(pud, address);
985 if (!pmd_present(*pmd))
986 return 0;
987
d8b57bb7
TG
988 if (pmd_large(*pmd))
989 return spurious_fault_check(error_code, (pte_t *) pmd);
990
5b727a3b 991 pte = pte_offset_kernel(pmd, address);
954f8571 992 if (!pte_present(*pte))
5b727a3b
JF
993 return 0;
994
3c3e5694
SR
995 ret = spurious_fault_check(error_code, pte);
996 if (!ret)
997 return 0;
998
999 /*
2d4a7167
IM
1000 * Make sure we have permissions in PMD.
1001 * If not, then there's a bug in the page tables:
3c3e5694
SR
1002 */
1003 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1004 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 1005
3c3e5694 1006 return ret;
5b727a3b 1007}
9326638c 1008NOKPROBE_SYMBOL(spurious_fault);
5b727a3b 1009
abd4f750 1010int show_unhandled_signals = 1;
1da177e4 1011
2d4a7167 1012static inline int
68da336a 1013access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 1014{
68da336a 1015 if (error_code & PF_WRITE) {
2d4a7167 1016 /* write, present and write, not present: */
92181f19
NP
1017 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1018 return 1;
2d4a7167 1019 return 0;
92181f19
NP
1020 }
1021
2d4a7167
IM
1022 /* read, present: */
1023 if (unlikely(error_code & PF_PROT))
1024 return 1;
1025
1026 /* read, not present: */
1027 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1028 return 1;
1029
92181f19
NP
1030 return 0;
1031}
1032
0973a06c
HS
1033static int fault_in_kernel_space(unsigned long address)
1034{
d9517346 1035 return address >= TASK_SIZE_MAX;
0973a06c
HS
1036}
1037
40d3cd66
PA
1038static inline bool smap_violation(int error_code, struct pt_regs *regs)
1039{
4640c7ee
PA
1040 if (!IS_ENABLED(CONFIG_X86_SMAP))
1041 return false;
1042
1043 if (!static_cpu_has(X86_FEATURE_SMAP))
1044 return false;
1045
40d3cd66
PA
1046 if (error_code & PF_USER)
1047 return false;
1048
f39b6f0e 1049 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
40d3cd66
PA
1050 return false;
1051
1052 return true;
1053}
1054
1da177e4
LT
1055/*
1056 * This routine handles page faults. It determines the address,
1057 * and the problem, and then passes it off to one of the appropriate
1058 * routines.
d4078e23
PZ
1059 *
1060 * This function must have noinline because both callers
1061 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1062 * guarantees there's a function trace entry.
1da177e4 1063 */
9326638c 1064static noinline void
0ac09f9f
JO
1065__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1066 unsigned long address)
1da177e4 1067{
2d4a7167 1068 struct vm_area_struct *vma;
1da177e4
LT
1069 struct task_struct *tsk;
1070 struct mm_struct *mm;
26178ec1 1071 int fault, major = 0;
759496ba 1072 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1da177e4 1073
a9ba9a3b
AV
1074 tsk = current;
1075 mm = tsk->mm;
2d4a7167 1076
f8561296
VN
1077 /*
1078 * Detect and handle instructions that would cause a page fault for
1079 * both a tracked kernel page and a userspace page.
1080 */
1081 if (kmemcheck_active(regs))
1082 kmemcheck_hide(regs);
5dfaf90f 1083 prefetchw(&mm->mmap_sem);
f8561296 1084
0fd0e3da 1085 if (unlikely(kmmio_fault(regs, address)))
86069782 1086 return;
1da177e4
LT
1087
1088 /*
1089 * We fault-in kernel-space virtual memory on-demand. The
1090 * 'reference' page table is init_mm.pgd.
1091 *
1092 * NOTE! We MUST NOT take any locks for this case. We may
1093 * be in an interrupt or a critical region, and should
1094 * only copy the information from the master page table,
1095 * nothing more.
1096 *
1097 * This verifies that the fault happens in kernel space
1098 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1099 * protection error (error_code & 9) == 0.
1da177e4 1100 */
0973a06c 1101 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
1102 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1103 if (vmalloc_fault(address) >= 0)
1104 return;
1105
1106 if (kmemcheck_fault(regs, address, error_code))
1107 return;
1108 }
5b727a3b 1109
2d4a7167 1110 /* Can handle a stale RO->RW TLB: */
92181f19 1111 if (spurious_fault(error_code, address))
5b727a3b
JF
1112 return;
1113
2d4a7167 1114 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1115 if (kprobes_fault(regs))
9be260a6 1116 return;
f8c2ee22
HH
1117 /*
1118 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1119 * fault we could otherwise deadlock:
f8c2ee22 1120 */
92181f19 1121 bad_area_nosemaphore(regs, error_code, address);
2d4a7167 1122
92181f19 1123 return;
f8c2ee22
HH
1124 }
1125
2d4a7167 1126 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1127 if (unlikely(kprobes_fault(regs)))
9be260a6 1128 return;
8c914cb7 1129
66c58156 1130 if (unlikely(error_code & PF_RSVD))
92181f19 1131 pgtable_bad(regs, error_code, address);
1da177e4 1132
4640c7ee
PA
1133 if (unlikely(smap_violation(error_code, regs))) {
1134 bad_area_nosemaphore(regs, error_code, address);
1135 return;
40d3cd66
PA
1136 }
1137
1da177e4 1138 /*
2d4a7167 1139 * If we're in an interrupt, have no user context or are running
70ffdb93 1140 * in a region with pagefaults disabled then we must not take the fault
1da177e4 1141 */
70ffdb93 1142 if (unlikely(faulthandler_disabled() || !mm)) {
92181f19
NP
1143 bad_area_nosemaphore(regs, error_code, address);
1144 return;
1145 }
1da177e4 1146
e00b12e6
PZ
1147 /*
1148 * It's safe to allow irq's after cr2 has been saved and the
1149 * vmalloc fault has been handled.
1150 *
1151 * User-mode registers count as a user access even for any
1152 * potential system fault or CPU buglet:
1153 */
f39b6f0e 1154 if (user_mode(regs)) {
e00b12e6
PZ
1155 local_irq_enable();
1156 error_code |= PF_USER;
1157 flags |= FAULT_FLAG_USER;
1158 } else {
1159 if (regs->flags & X86_EFLAGS_IF)
1160 local_irq_enable();
1161 }
1162
1163 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1164
759496ba
JW
1165 if (error_code & PF_WRITE)
1166 flags |= FAULT_FLAG_WRITE;
1167
3a1dfe6e
IM
1168 /*
1169 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1170 * addresses in user space. All other faults represent errors in
1171 * the kernel and should generate an OOPS. Unfortunately, in the
1172 * case of an erroneous fault occurring in a code path which already
1173 * holds mmap_sem we will deadlock attempting to validate the fault
1174 * against the address space. Luckily the kernel only validly
1175 * references user space from well defined areas of code, which are
1176 * listed in the exceptions table.
1da177e4
LT
1177 *
1178 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1179 * the source reference check when there is a possibility of a
1180 * deadlock. Attempt to lock the address space, if we cannot we then
1181 * validate the source. If this is invalid we can skip the address
1182 * space check, thus avoiding the deadlock:
1da177e4 1183 */
92181f19 1184 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1185 if ((error_code & PF_USER) == 0 &&
92181f19
NP
1186 !search_exception_tables(regs->ip)) {
1187 bad_area_nosemaphore(regs, error_code, address);
1188 return;
1189 }
d065bd81 1190retry:
1da177e4 1191 down_read(&mm->mmap_sem);
01006074
PZ
1192 } else {
1193 /*
2d4a7167
IM
1194 * The above down_read_trylock() might have succeeded in
1195 * which case we'll have missed the might_sleep() from
1196 * down_read():
01006074
PZ
1197 */
1198 might_sleep();
1da177e4
LT
1199 }
1200
1201 vma = find_vma(mm, address);
92181f19
NP
1202 if (unlikely(!vma)) {
1203 bad_area(regs, error_code, address);
1204 return;
1205 }
1206 if (likely(vma->vm_start <= address))
1da177e4 1207 goto good_area;
92181f19
NP
1208 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1209 bad_area(regs, error_code, address);
1210 return;
1211 }
33cb5243 1212 if (error_code & PF_USER) {
6f4d368e
HH
1213 /*
1214 * Accessing the stack below %sp is always a bug.
1215 * The large cushion allows instructions like enter
2d4a7167 1216 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1217 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1218 */
92181f19
NP
1219 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1220 bad_area(regs, error_code, address);
1221 return;
1222 }
1da177e4 1223 }
92181f19
NP
1224 if (unlikely(expand_stack(vma, address))) {
1225 bad_area(regs, error_code, address);
1226 return;
1227 }
1228
1229 /*
1230 * Ok, we have a good vm_area for this memory access, so
1231 * we can handle it..
1232 */
1da177e4 1233good_area:
68da336a 1234 if (unlikely(access_error(error_code, vma))) {
92181f19
NP
1235 bad_area_access_error(regs, error_code, address);
1236 return;
1da177e4
LT
1237 }
1238
1239 /*
1240 * If for any reason at all we couldn't handle the fault,
1241 * make sure we exit gracefully rather than endlessly redo
9a95f3cf
PC
1242 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1243 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1da177e4 1244 */
d065bd81 1245 fault = handle_mm_fault(mm, vma, address, flags);
26178ec1 1246 major |= fault & VM_FAULT_MAJOR;
2d4a7167 1247
3a13c4d7 1248 /*
26178ec1
LT
1249 * If we need to retry the mmap_sem has already been released,
1250 * and if there is a fatal signal pending there is no guarantee
1251 * that we made any progress. Handle this case first.
3a13c4d7 1252 */
26178ec1
LT
1253 if (unlikely(fault & VM_FAULT_RETRY)) {
1254 /* Retry at most once */
1255 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1256 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1257 flags |= FAULT_FLAG_TRIED;
1258 if (!fatal_signal_pending(tsk))
1259 goto retry;
1260 }
1261
1262 /* User mode? Just return to handle the fatal exception */
cf3c0a15 1263 if (flags & FAULT_FLAG_USER)
26178ec1
LT
1264 return;
1265
1266 /* Not returning to user mode? Handle exceptions or die: */
1267 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
3a13c4d7 1268 return;
26178ec1 1269 }
3a13c4d7 1270
26178ec1 1271 up_read(&mm->mmap_sem);
3a13c4d7
JW
1272 if (unlikely(fault & VM_FAULT_ERROR)) {
1273 mm_fault_error(regs, error_code, address, fault);
1274 return;
37b23e05
KM
1275 }
1276
d065bd81 1277 /*
26178ec1
LT
1278 * Major/minor page fault accounting. If any of the events
1279 * returned VM_FAULT_MAJOR, we account it as a major fault.
d065bd81 1280 */
26178ec1
LT
1281 if (major) {
1282 tsk->maj_flt++;
1283 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1284 } else {
1285 tsk->min_flt++;
1286 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
ac17dc8e 1287 }
d729ab35 1288
8c938f9f 1289 check_v8086_mode(regs, address, tsk);
1da177e4 1290}
9326638c 1291NOKPROBE_SYMBOL(__do_page_fault);
6ba3c97a 1292
9326638c 1293dotraplinkage void notrace
6ba3c97a
FW
1294do_page_fault(struct pt_regs *regs, unsigned long error_code)
1295{
d4078e23 1296 unsigned long address = read_cr2(); /* Get the faulting address */
6c1e0256 1297 enum ctx_state prev_state;
d4078e23
PZ
1298
1299 /*
1300 * We must have this function tagged with __kprobes, notrace and call
1301 * read_cr2() before calling anything else. To avoid calling any kind
1302 * of tracing machinery before we've observed the CR2 value.
1303 *
1304 * exception_{enter,exit}() contain all sorts of tracepoints.
1305 */
6c1e0256
FW
1306
1307 prev_state = exception_enter();
0ac09f9f 1308 __do_page_fault(regs, error_code, address);
6c1e0256 1309 exception_exit(prev_state);
6ba3c97a 1310}
9326638c 1311NOKPROBE_SYMBOL(do_page_fault);
25c74b10 1312
d4078e23 1313#ifdef CONFIG_TRACING
9326638c
MH
1314static nokprobe_inline void
1315trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1316 unsigned long error_code)
d34603b0
SA
1317{
1318 if (user_mode(regs))
d4078e23 1319 trace_page_fault_user(address, regs, error_code);
d34603b0 1320 else
d4078e23 1321 trace_page_fault_kernel(address, regs, error_code);
d34603b0
SA
1322}
1323
9326638c 1324dotraplinkage void notrace
25c74b10
SA
1325trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1326{
0ac09f9f
JO
1327 /*
1328 * The exception_enter and tracepoint processing could
1329 * trigger another page faults (user space callchain
1330 * reading) and destroy the original cr2 value, so read
1331 * the faulting address now.
1332 */
1333 unsigned long address = read_cr2();
d4078e23 1334 enum ctx_state prev_state;
25c74b10
SA
1335
1336 prev_state = exception_enter();
d4078e23 1337 trace_page_fault_entries(address, regs, error_code);
0ac09f9f 1338 __do_page_fault(regs, error_code, address);
25c74b10
SA
1339 exception_exit(prev_state);
1340}
9326638c 1341NOKPROBE_SYMBOL(trace_do_page_fault);
d4078e23 1342#endif /* CONFIG_TRACING */