]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/x86/mm/fault.c
x86/mm/pkeys: Add new 'PF_PK' page fault error code bit
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473
IM
6#include <linux/sched.h> /* test_thread_flag(), ... */
7#include <linux/kdebug.h> /* oops_begin/end, ... */
8#include <linux/module.h> /* search_exception_table */
9#include <linux/bootmem.h> /* max_low_pfn */
9326638c 10#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
a2bcd473 11#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 12#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 13#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 14#include <linux/prefetch.h> /* prefetchw */
56dd9470 15#include <linux/context_tracking.h> /* exception_enter(), ... */
70ffdb93 16#include <linux/uaccess.h> /* faulthandler_disabled() */
2d4a7167 17
a2bcd473
IM
18#include <asm/traps.h> /* dotraplinkage, ... */
19#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 20#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
f40c3300
AL
21#include <asm/fixmap.h> /* VSYSCALL_ADDR */
22#include <asm/vsyscall.h> /* emulate_vsyscall */
ba3e127e 23#include <asm/vm86.h> /* struct vm86 */
1da177e4 24
d34603b0
SA
25#define CREATE_TRACE_POINTS
26#include <asm/trace/exceptions.h>
27
33cb5243 28/*
2d4a7167
IM
29 * Page fault error code bits:
30 *
31 * bit 0 == 0: no page found 1: protection fault
32 * bit 1 == 0: read access 1: write access
33 * bit 2 == 0: kernel-mode access 1: user-mode access
34 * bit 3 == 1: use of reserved bit detected
35 * bit 4 == 1: fault was an instruction fetch
b3ecd515 36 * bit 5 == 1: protection keys block access
33cb5243 37 */
2d4a7167
IM
38enum x86_pf_error_code {
39
40 PF_PROT = 1 << 0,
41 PF_WRITE = 1 << 1,
42 PF_USER = 1 << 2,
43 PF_RSVD = 1 << 3,
44 PF_INSTR = 1 << 4,
b3ecd515 45 PF_PK = 1 << 5,
2d4a7167 46};
66c58156 47
b814d41f 48/*
b319eed0
IM
49 * Returns 0 if mmiotrace is disabled, or if the fault is not
50 * handled by mmiotrace:
b814d41f 51 */
9326638c 52static nokprobe_inline int
62c9295f 53kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 54{
0fd0e3da
PP
55 if (unlikely(is_kmmio_active()))
56 if (kmmio_handler(regs, addr) == 1)
57 return -1;
0fd0e3da 58 return 0;
86069782
PP
59}
60
9326638c 61static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
1bd858a5 62{
74a0b576
CH
63 int ret = 0;
64
65 /* kprobe_running() needs smp_processor_id() */
f39b6f0e 66 if (kprobes_built_in() && !user_mode(regs)) {
74a0b576
CH
67 preempt_disable();
68 if (kprobe_running() && kprobe_fault_handler(regs, 14))
69 ret = 1;
70 preempt_enable();
71 }
1bd858a5 72
74a0b576 73 return ret;
33cb5243 74}
1bd858a5 75
1dc85be0 76/*
2d4a7167
IM
77 * Prefetch quirks:
78 *
79 * 32-bit mode:
80 *
81 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
82 * Check that here and ignore it.
1dc85be0 83 *
2d4a7167 84 * 64-bit mode:
1dc85be0 85 *
2d4a7167
IM
86 * Sometimes the CPU reports invalid exceptions on prefetch.
87 * Check that here and ignore it.
88 *
89 * Opcode checker based on code by Richard Brunner.
1dc85be0 90 */
107a0367
IM
91static inline int
92check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
93 unsigned char opcode, int *prefetch)
94{
95 unsigned char instr_hi = opcode & 0xf0;
96 unsigned char instr_lo = opcode & 0x0f;
97
98 switch (instr_hi) {
99 case 0x20:
100 case 0x30:
101 /*
102 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
103 * In X86_64 long mode, the CPU will signal invalid
104 * opcode if some of these prefixes are present so
105 * X86_64 will never get here anyway
106 */
107 return ((instr_lo & 7) == 0x6);
108#ifdef CONFIG_X86_64
109 case 0x40:
110 /*
111 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
112 * Need to figure out under what instruction mode the
113 * instruction was issued. Could check the LDT for lm,
114 * but for now it's good enough to assume that long
115 * mode only uses well known segments or kernel.
116 */
318f5a2a 117 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
118#endif
119 case 0x60:
120 /* 0x64 thru 0x67 are valid prefixes in all modes. */
121 return (instr_lo & 0xC) == 0x4;
122 case 0xF0:
123 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
124 return !instr_lo || (instr_lo>>1) == 1;
125 case 0x00:
126 /* Prefetch instruction is 0x0F0D or 0x0F18 */
127 if (probe_kernel_address(instr, opcode))
128 return 0;
129
130 *prefetch = (instr_lo == 0xF) &&
131 (opcode == 0x0D || opcode == 0x18);
132 return 0;
133 default:
134 return 0;
135 }
136}
137
2d4a7167
IM
138static int
139is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 140{
2d4a7167 141 unsigned char *max_instr;
ab2bf0c1 142 unsigned char *instr;
33cb5243 143 int prefetch = 0;
1da177e4 144
3085354d
IM
145 /*
146 * If it was a exec (instruction fetch) fault on NX page, then
147 * do not ignore the fault:
148 */
66c58156 149 if (error_code & PF_INSTR)
1da177e4 150 return 0;
1dc85be0 151
107a0367 152 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 153 max_instr = instr + 15;
1da177e4 154
d31bf07f 155 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
1da177e4
LT
156 return 0;
157
107a0367 158 while (instr < max_instr) {
2d4a7167 159 unsigned char opcode;
1da177e4 160
ab2bf0c1 161 if (probe_kernel_address(instr, opcode))
33cb5243 162 break;
1da177e4 163
1da177e4
LT
164 instr++;
165
107a0367 166 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 167 break;
1da177e4
LT
168 }
169 return prefetch;
170}
171
2d4a7167
IM
172static void
173force_sig_info_fault(int si_signo, int si_code, unsigned long address,
f672b49b 174 struct task_struct *tsk, int fault)
c4aba4a8 175{
f672b49b 176 unsigned lsb = 0;
c4aba4a8
HH
177 siginfo_t info;
178
2d4a7167
IM
179 info.si_signo = si_signo;
180 info.si_errno = 0;
181 info.si_code = si_code;
182 info.si_addr = (void __user *)address;
f672b49b
AK
183 if (fault & VM_FAULT_HWPOISON_LARGE)
184 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
185 if (fault & VM_FAULT_HWPOISON)
186 lsb = PAGE_SHIFT;
187 info.si_addr_lsb = lsb;
2d4a7167 188
c4aba4a8
HH
189 force_sig_info(si_signo, &info, tsk);
190}
191
f2f13a85
IM
192DEFINE_SPINLOCK(pgd_lock);
193LIST_HEAD(pgd_list);
194
195#ifdef CONFIG_X86_32
196static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 197{
f2f13a85
IM
198 unsigned index = pgd_index(address);
199 pgd_t *pgd_k;
200 pud_t *pud, *pud_k;
201 pmd_t *pmd, *pmd_k;
2d4a7167 202
f2f13a85
IM
203 pgd += index;
204 pgd_k = init_mm.pgd + index;
205
206 if (!pgd_present(*pgd_k))
207 return NULL;
208
209 /*
210 * set_pgd(pgd, *pgd_k); here would be useless on PAE
211 * and redundant with the set_pmd() on non-PAE. As would
212 * set_pud.
213 */
214 pud = pud_offset(pgd, address);
215 pud_k = pud_offset(pgd_k, address);
216 if (!pud_present(*pud_k))
217 return NULL;
218
219 pmd = pmd_offset(pud, address);
220 pmd_k = pmd_offset(pud_k, address);
221 if (!pmd_present(*pmd_k))
222 return NULL;
223
b8bcfe99 224 if (!pmd_present(*pmd))
f2f13a85 225 set_pmd(pmd, *pmd_k);
b8bcfe99 226 else
f2f13a85 227 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
228
229 return pmd_k;
230}
231
232void vmalloc_sync_all(void)
233{
234 unsigned long address;
235
236 if (SHARED_KERNEL_PMD)
237 return;
238
239 for (address = VMALLOC_START & PMD_MASK;
240 address >= TASK_SIZE && address < FIXADDR_TOP;
241 address += PMD_SIZE) {
f2f13a85
IM
242 struct page *page;
243
a79e53d8 244 spin_lock(&pgd_lock);
f2f13a85 245 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 246 spinlock_t *pgt_lock;
f01f7c56 247 pmd_t *ret;
617d34d9 248
a79e53d8 249 /* the pgt_lock only for Xen */
617d34d9
JF
250 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
251
252 spin_lock(pgt_lock);
253 ret = vmalloc_sync_one(page_address(page), address);
254 spin_unlock(pgt_lock);
255
256 if (!ret)
f2f13a85
IM
257 break;
258 }
a79e53d8 259 spin_unlock(&pgd_lock);
f2f13a85
IM
260 }
261}
262
263/*
264 * 32-bit:
265 *
266 * Handle a fault on the vmalloc or module mapping area
267 */
9326638c 268static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
269{
270 unsigned long pgd_paddr;
271 pmd_t *pmd_k;
272 pte_t *pte_k;
273
274 /* Make sure we are in vmalloc area: */
275 if (!(address >= VMALLOC_START && address < VMALLOC_END))
276 return -1;
277
ebc8827f
FW
278 WARN_ON_ONCE(in_nmi());
279
f2f13a85
IM
280 /*
281 * Synchronize this task's top level page-table
282 * with the 'reference' page table.
283 *
284 * Do _not_ use "current" here. We might be inside
285 * an interrupt in the middle of a task switch..
286 */
287 pgd_paddr = read_cr3();
288 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
289 if (!pmd_k)
290 return -1;
291
292 pte_k = pte_offset_kernel(pmd_k, address);
293 if (!pte_present(*pte_k))
294 return -1;
295
296 return 0;
297}
9326638c 298NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85
IM
299
300/*
301 * Did it hit the DOS screen memory VA from vm86 mode?
302 */
303static inline void
304check_v8086_mode(struct pt_regs *regs, unsigned long address,
305 struct task_struct *tsk)
306{
9fda6a06 307#ifdef CONFIG_VM86
f2f13a85
IM
308 unsigned long bit;
309
9fda6a06 310 if (!v8086_mode(regs) || !tsk->thread.vm86)
f2f13a85
IM
311 return;
312
313 bit = (address - 0xA0000) >> PAGE_SHIFT;
314 if (bit < 32)
9fda6a06
BG
315 tsk->thread.vm86->screen_bitmap |= 1 << bit;
316#endif
33cb5243 317}
1da177e4 318
087975b0 319static bool low_pfn(unsigned long pfn)
1da177e4 320{
087975b0
AM
321 return pfn < max_low_pfn;
322}
1156e098 323
087975b0
AM
324static void dump_pagetable(unsigned long address)
325{
326 pgd_t *base = __va(read_cr3());
327 pgd_t *pgd = &base[pgd_index(address)];
328 pmd_t *pmd;
329 pte_t *pte;
2d4a7167 330
1156e098 331#ifdef CONFIG_X86_PAE
087975b0
AM
332 printk("*pdpt = %016Lx ", pgd_val(*pgd));
333 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
334 goto out;
1156e098 335#endif
087975b0
AM
336 pmd = pmd_offset(pud_offset(pgd, address), address);
337 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
1156e098
HH
338
339 /*
340 * We must not directly access the pte in the highpte
341 * case if the page table is located in highmem.
342 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 343 * it's allocated already:
1156e098 344 */
087975b0
AM
345 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
346 goto out;
1156e098 347
087975b0
AM
348 pte = pte_offset_kernel(pmd, address);
349 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
350out:
1156e098 351 printk("\n");
f2f13a85
IM
352}
353
354#else /* CONFIG_X86_64: */
355
356void vmalloc_sync_all(void)
357{
9661d5bc 358 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
f2f13a85
IM
359}
360
361/*
362 * 64-bit:
363 *
364 * Handle a fault on the vmalloc area
365 *
366 * This assumes no large pages in there.
367 */
9326638c 368static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
369{
370 pgd_t *pgd, *pgd_ref;
371 pud_t *pud, *pud_ref;
372 pmd_t *pmd, *pmd_ref;
373 pte_t *pte, *pte_ref;
374
375 /* Make sure we are in vmalloc area: */
376 if (!(address >= VMALLOC_START && address < VMALLOC_END))
377 return -1;
378
ebc8827f
FW
379 WARN_ON_ONCE(in_nmi());
380
f2f13a85
IM
381 /*
382 * Copy kernel mappings over when needed. This can also
383 * happen within a race in page table update. In the later
384 * case just flush:
385 */
386 pgd = pgd_offset(current->active_mm, address);
387 pgd_ref = pgd_offset_k(address);
388 if (pgd_none(*pgd_ref))
389 return -1;
390
1160c277 391 if (pgd_none(*pgd)) {
f2f13a85 392 set_pgd(pgd, *pgd_ref);
1160c277
SK
393 arch_flush_lazy_mmu_mode();
394 } else {
f2f13a85 395 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1160c277 396 }
f2f13a85
IM
397
398 /*
399 * Below here mismatches are bugs because these lower tables
400 * are shared:
401 */
402
403 pud = pud_offset(pgd, address);
404 pud_ref = pud_offset(pgd_ref, address);
405 if (pud_none(*pud_ref))
406 return -1;
407
408 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
409 BUG();
410
411 pmd = pmd_offset(pud, address);
412 pmd_ref = pmd_offset(pud_ref, address);
413 if (pmd_none(*pmd_ref))
414 return -1;
415
416 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
417 BUG();
418
419 pte_ref = pte_offset_kernel(pmd_ref, address);
420 if (!pte_present(*pte_ref))
421 return -1;
422
423 pte = pte_offset_kernel(pmd, address);
424
425 /*
426 * Don't use pte_page here, because the mappings can point
427 * outside mem_map, and the NUMA hash lookup cannot handle
428 * that:
429 */
430 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
431 BUG();
432
433 return 0;
434}
9326638c 435NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85 436
e05139f2 437#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 438static const char errata93_warning[] =
ad361c98
JP
439KERN_ERR
440"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
441"******* Working around it, but it may cause SEGVs or burn power.\n"
442"******* Please consider a BIOS update.\n"
443"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 444#endif
f2f13a85
IM
445
446/*
447 * No vm86 mode in 64-bit mode:
448 */
449static inline void
450check_v8086_mode(struct pt_regs *regs, unsigned long address,
451 struct task_struct *tsk)
452{
453}
454
455static int bad_address(void *p)
456{
457 unsigned long dummy;
458
459 return probe_kernel_address((unsigned long *)p, dummy);
460}
461
462static void dump_pagetable(unsigned long address)
463{
087975b0
AM
464 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
465 pgd_t *pgd = base + pgd_index(address);
1da177e4
LT
466 pud_t *pud;
467 pmd_t *pmd;
468 pte_t *pte;
469
2d4a7167
IM
470 if (bad_address(pgd))
471 goto bad;
472
d646bce4 473 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
474
475 if (!pgd_present(*pgd))
476 goto out;
1da177e4 477
d2ae5b5f 478 pud = pud_offset(pgd, address);
2d4a7167
IM
479 if (bad_address(pud))
480 goto bad;
481
1da177e4 482 printk("PUD %lx ", pud_val(*pud));
b5360222 483 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 484 goto out;
1da177e4
LT
485
486 pmd = pmd_offset(pud, address);
2d4a7167
IM
487 if (bad_address(pmd))
488 goto bad;
489
1da177e4 490 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
491 if (!pmd_present(*pmd) || pmd_large(*pmd))
492 goto out;
1da177e4
LT
493
494 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
495 if (bad_address(pte))
496 goto bad;
497
33cb5243 498 printk("PTE %lx", pte_val(*pte));
2d4a7167 499out:
1da177e4
LT
500 printk("\n");
501 return;
502bad:
503 printk("BAD\n");
8c938f9f
IM
504}
505
f2f13a85 506#endif /* CONFIG_X86_64 */
1da177e4 507
2d4a7167
IM
508/*
509 * Workaround for K8 erratum #93 & buggy BIOS.
510 *
511 * BIOS SMM functions are required to use a specific workaround
512 * to avoid corruption of the 64bit RIP register on C stepping K8.
513 *
514 * A lot of BIOS that didn't get tested properly miss this.
515 *
516 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
517 * Try to work around it here.
518 *
519 * Note we only handle faults in kernel here.
520 * Does nothing on 32-bit.
fdfe8aa8 521 */
33cb5243 522static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 523{
e05139f2
JB
524#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
525 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
526 || boot_cpu_data.x86 != 0xf)
527 return 0;
528
65ea5b03 529 if (address != regs->ip)
1da177e4 530 return 0;
2d4a7167 531
33cb5243 532 if ((address >> 32) != 0)
1da177e4 533 return 0;
2d4a7167 534
1da177e4 535 address |= 0xffffffffUL << 32;
33cb5243
HH
536 if ((address >= (u64)_stext && address <= (u64)_etext) ||
537 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 538 printk_once(errata93_warning);
65ea5b03 539 regs->ip = address;
1da177e4
LT
540 return 1;
541 }
fdfe8aa8 542#endif
1da177e4 543 return 0;
33cb5243 544}
1da177e4 545
35f3266f 546/*
2d4a7167
IM
547 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
548 * to illegal addresses >4GB.
549 *
550 * We catch this in the page fault handler because these addresses
551 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
552 * segment in LDT is compatibility mode.
553 */
554static int is_errata100(struct pt_regs *regs, unsigned long address)
555{
556#ifdef CONFIG_X86_64
2d4a7167 557 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
558 return 1;
559#endif
560 return 0;
561}
562
29caf2f9
HH
563static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
564{
565#ifdef CONFIG_X86_F00F_BUG
566 unsigned long nr;
2d4a7167 567
29caf2f9 568 /*
2d4a7167 569 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9 570 */
e2604b49 571 if (boot_cpu_has_bug(X86_BUG_F00F)) {
29caf2f9
HH
572 nr = (address - idt_descr.address) >> 3;
573
574 if (nr == 6) {
575 do_invalid_op(regs, 0);
576 return 1;
577 }
578 }
579#endif
580 return 0;
581}
582
8f766149
IM
583static const char nx_warning[] = KERN_CRIT
584"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
eff50c34
JK
585static const char smep_warning[] = KERN_CRIT
586"unable to execute userspace code (SMEP?) (uid: %d)\n";
8f766149 587
2d4a7167
IM
588static void
589show_fault_oops(struct pt_regs *regs, unsigned long error_code,
590 unsigned long address)
b3279c7f 591{
1156e098
HH
592 if (!oops_may_print())
593 return;
594
1156e098 595 if (error_code & PF_INSTR) {
93809be8 596 unsigned int level;
426e34cc
MF
597 pgd_t *pgd;
598 pte_t *pte;
2d4a7167 599
426e34cc
MF
600 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
601 pgd += pgd_index(address);
602
603 pte = lookup_address_in_pgd(pgd, address, &level);
1156e098 604
8f766149 605 if (pte && pte_present(*pte) && !pte_exec(*pte))
078de5f7 606 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
eff50c34
JK
607 if (pte && pte_present(*pte) && pte_exec(*pte) &&
608 (pgd_flags(*pgd) & _PAGE_USER) &&
1e02ce4c 609 (__read_cr4() & X86_CR4_SMEP))
eff50c34 610 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
1156e098 611 }
1156e098 612
19f0dda9 613 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 614 if (address < PAGE_SIZE)
19f0dda9 615 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 616 else
19f0dda9 617 printk(KERN_CONT "paging request");
2d4a7167 618
f294a8ce 619 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 620 printk(KERN_ALERT "IP:");
5f01c988 621 printk_address(regs->ip);
2d4a7167 622
b3279c7f
HH
623 dump_pagetable(address);
624}
625
2d4a7167
IM
626static noinline void
627pgtable_bad(struct pt_regs *regs, unsigned long error_code,
628 unsigned long address)
1da177e4 629{
2d4a7167
IM
630 struct task_struct *tsk;
631 unsigned long flags;
632 int sig;
633
634 flags = oops_begin();
635 tsk = current;
636 sig = SIGKILL;
1209140c 637
1da177e4 638 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 639 tsk->comm, address);
1da177e4 640 dump_pagetable(address);
2d4a7167
IM
641
642 tsk->thread.cr2 = address;
51e7dc70 643 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167
IM
644 tsk->thread.error_code = error_code;
645
22f5991c 646 if (__die("Bad pagetable", regs, error_code))
874d93d1 647 sig = 0;
2d4a7167 648
874d93d1 649 oops_end(flags, regs, sig);
1da177e4
LT
650}
651
2d4a7167
IM
652static noinline void
653no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 654 unsigned long address, int signal, int si_code)
92181f19
NP
655{
656 struct task_struct *tsk = current;
92181f19
NP
657 unsigned long flags;
658 int sig;
92181f19 659
2d4a7167 660 /* Are we prepared to handle this kernel fault? */
4fc34901 661 if (fixup_exception(regs)) {
c026b359
PZ
662 /*
663 * Any interrupt that takes a fault gets the fixup. This makes
664 * the below recursive fault logic only apply to a faults from
665 * task context.
666 */
667 if (in_interrupt())
668 return;
669
670 /*
671 * Per the above we're !in_interrupt(), aka. task context.
672 *
673 * In this case we need to make sure we're not recursively
674 * faulting through the emulate_vsyscall() logic.
675 */
4fc34901 676 if (current_thread_info()->sig_on_uaccess_error && signal) {
51e7dc70 677 tsk->thread.trap_nr = X86_TRAP_PF;
4fc34901
AL
678 tsk->thread.error_code = error_code | PF_USER;
679 tsk->thread.cr2 = address;
680
681 /* XXX: hwpoison faults will set the wrong code. */
682 force_sig_info_fault(signal, si_code, address, tsk, 0);
683 }
c026b359
PZ
684
685 /*
686 * Barring that, we can do the fixup and be happy.
687 */
92181f19 688 return;
4fc34901 689 }
92181f19
NP
690
691 /*
2d4a7167
IM
692 * 32-bit:
693 *
694 * Valid to do another page fault here, because if this fault
695 * had been triggered by is_prefetch fixup_exception would have
696 * handled it.
697 *
698 * 64-bit:
92181f19 699 *
2d4a7167 700 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
701 */
702 if (is_prefetch(regs, error_code, address))
703 return;
704
705 if (is_errata93(regs, address))
706 return;
707
708 /*
709 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 710 * terminate things with extreme prejudice:
92181f19 711 */
92181f19 712 flags = oops_begin();
92181f19
NP
713
714 show_fault_oops(regs, error_code, address);
715
a70857e4 716 if (task_stack_end_corrupted(tsk))
b0f4c4b3 717 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 718
1cc99544 719 tsk->thread.cr2 = address;
51e7dc70 720 tsk->thread.trap_nr = X86_TRAP_PF;
1cc99544 721 tsk->thread.error_code = error_code;
92181f19 722
92181f19
NP
723 sig = SIGKILL;
724 if (__die("Oops", regs, error_code))
725 sig = 0;
2d4a7167 726
92181f19 727 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 728 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 729
92181f19 730 oops_end(flags, regs, sig);
92181f19
NP
731}
732
2d4a7167
IM
733/*
734 * Print out info about fatal segfaults, if the show_unhandled_signals
735 * sysctl is set:
736 */
737static inline void
738show_signal_msg(struct pt_regs *regs, unsigned long error_code,
739 unsigned long address, struct task_struct *tsk)
740{
741 if (!unhandled_signal(tsk, SIGSEGV))
742 return;
743
744 if (!printk_ratelimit())
745 return;
746
a1a08d1c 747 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
748 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
749 tsk->comm, task_pid_nr(tsk), address,
750 (void *)regs->ip, (void *)regs->sp, error_code);
751
752 print_vma_addr(KERN_CONT " in ", regs->ip);
753
754 printk(KERN_CONT "\n");
755}
756
757static void
758__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
759 unsigned long address, int si_code)
92181f19
NP
760{
761 struct task_struct *tsk = current;
762
763 /* User mode accesses just cause a SIGSEGV */
764 if (error_code & PF_USER) {
765 /*
2d4a7167 766 * It's possible to have interrupts off here:
92181f19
NP
767 */
768 local_irq_enable();
769
770 /*
771 * Valid to do another page fault here because this one came
2d4a7167 772 * from user space:
92181f19
NP
773 */
774 if (is_prefetch(regs, error_code, address))
775 return;
776
777 if (is_errata100(regs, address))
778 return;
779
3ae36655
AL
780#ifdef CONFIG_X86_64
781 /*
782 * Instruction fetch faults in the vsyscall page might need
783 * emulation.
784 */
785 if (unlikely((error_code & PF_INSTR) &&
f40c3300 786 ((address & ~0xfff) == VSYSCALL_ADDR))) {
3ae36655
AL
787 if (emulate_vsyscall(regs, address))
788 return;
789 }
790#endif
e575a86f
KC
791 /* Kernel addresses are always protection faults: */
792 if (address >= TASK_SIZE)
793 error_code |= PF_PROT;
3ae36655 794
e575a86f 795 if (likely(show_unhandled_signals))
2d4a7167
IM
796 show_signal_msg(regs, error_code, address, tsk);
797
2d4a7167 798 tsk->thread.cr2 = address;
e575a86f 799 tsk->thread.error_code = error_code;
51e7dc70 800 tsk->thread.trap_nr = X86_TRAP_PF;
92181f19 801
f672b49b 802 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
2d4a7167 803
92181f19
NP
804 return;
805 }
806
807 if (is_f00f_bug(regs, address))
808 return;
809
4fc34901 810 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
811}
812
2d4a7167
IM
813static noinline void
814bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
815 unsigned long address)
92181f19
NP
816{
817 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
818}
819
2d4a7167
IM
820static void
821__bad_area(struct pt_regs *regs, unsigned long error_code,
822 unsigned long address, int si_code)
92181f19
NP
823{
824 struct mm_struct *mm = current->mm;
825
826 /*
827 * Something tried to access memory that isn't in our memory map..
828 * Fix it, but check if it's kernel or user first..
829 */
830 up_read(&mm->mmap_sem);
831
832 __bad_area_nosemaphore(regs, error_code, address, si_code);
833}
834
2d4a7167
IM
835static noinline void
836bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
837{
838 __bad_area(regs, error_code, address, SEGV_MAPERR);
839}
840
2d4a7167
IM
841static noinline void
842bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
843 unsigned long address)
92181f19
NP
844{
845 __bad_area(regs, error_code, address, SEGV_ACCERR);
846}
847
2d4a7167 848static void
a6e04aa9
AK
849do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
850 unsigned int fault)
92181f19
NP
851{
852 struct task_struct *tsk = current;
a6e04aa9 853 int code = BUS_ADRERR;
92181f19 854
2d4a7167 855 /* Kernel mode? Handle exceptions or die: */
96054569 856 if (!(error_code & PF_USER)) {
4fc34901 857 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
858 return;
859 }
2d4a7167 860
cd1b68f0 861 /* User-space => ok to do another page fault: */
92181f19
NP
862 if (is_prefetch(regs, error_code, address))
863 return;
2d4a7167
IM
864
865 tsk->thread.cr2 = address;
866 tsk->thread.error_code = error_code;
51e7dc70 867 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167 868
a6e04aa9 869#ifdef CONFIG_MEMORY_FAILURE
f672b49b 870 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
871 printk(KERN_ERR
872 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
873 tsk->comm, tsk->pid, address);
874 code = BUS_MCEERR_AR;
875 }
876#endif
f672b49b 877 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
92181f19
NP
878}
879
3a13c4d7 880static noinline void
2d4a7167
IM
881mm_fault_error(struct pt_regs *regs, unsigned long error_code,
882 unsigned long address, unsigned int fault)
92181f19 883{
3a13c4d7 884 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
3a13c4d7
JW
885 no_context(regs, error_code, address, 0, 0);
886 return;
b80ef10e 887 }
b80ef10e 888
2d4a7167 889 if (fault & VM_FAULT_OOM) {
f8626854
AV
890 /* Kernel mode? Handle exceptions or die: */
891 if (!(error_code & PF_USER)) {
4fc34901
AL
892 no_context(regs, error_code, address,
893 SIGSEGV, SEGV_MAPERR);
3a13c4d7 894 return;
f8626854
AV
895 }
896
c2d23f91
DR
897 /*
898 * We ran out of memory, call the OOM killer, and return the
899 * userspace (which will retry the fault, or kill us if we got
900 * oom-killed):
901 */
902 pagefault_out_of_memory();
2d4a7167 903 } else {
f672b49b
AK
904 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
905 VM_FAULT_HWPOISON_LARGE))
a6e04aa9 906 do_sigbus(regs, error_code, address, fault);
33692f27
LT
907 else if (fault & VM_FAULT_SIGSEGV)
908 bad_area_nosemaphore(regs, error_code, address);
2d4a7167
IM
909 else
910 BUG();
911 }
92181f19
NP
912}
913
d8b57bb7
TG
914static int spurious_fault_check(unsigned long error_code, pte_t *pte)
915{
916 if ((error_code & PF_WRITE) && !pte_write(*pte))
917 return 0;
2d4a7167 918
d8b57bb7
TG
919 if ((error_code & PF_INSTR) && !pte_exec(*pte))
920 return 0;
b3ecd515
DH
921 /*
922 * Note: We do not do lazy flushing on protection key
923 * changes, so no spurious fault will ever set PF_PK.
924 */
925 if ((error_code & PF_PK))
926 return 1;
d8b57bb7
TG
927
928 return 1;
929}
930
5b727a3b 931/*
2d4a7167
IM
932 * Handle a spurious fault caused by a stale TLB entry.
933 *
934 * This allows us to lazily refresh the TLB when increasing the
935 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
936 * eagerly is very expensive since that implies doing a full
937 * cross-processor TLB flush, even if no stale TLB entries exist
938 * on other processors.
939 *
31668511
DV
940 * Spurious faults may only occur if the TLB contains an entry with
941 * fewer permission than the page table entry. Non-present (P = 0)
942 * and reserved bit (R = 1) faults are never spurious.
943 *
5b727a3b
JF
944 * There are no security implications to leaving a stale TLB when
945 * increasing the permissions on a page.
31668511
DV
946 *
947 * Returns non-zero if a spurious fault was handled, zero otherwise.
948 *
949 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
950 * (Optional Invalidation).
5b727a3b 951 */
9326638c 952static noinline int
2d4a7167 953spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
954{
955 pgd_t *pgd;
956 pud_t *pud;
957 pmd_t *pmd;
958 pte_t *pte;
3c3e5694 959 int ret;
5b727a3b 960
31668511
DV
961 /*
962 * Only writes to RO or instruction fetches from NX may cause
963 * spurious faults.
964 *
965 * These could be from user or supervisor accesses but the TLB
966 * is only lazily flushed after a kernel mapping protection
967 * change, so user accesses are not expected to cause spurious
968 * faults.
969 */
970 if (error_code != (PF_WRITE | PF_PROT)
971 && error_code != (PF_INSTR | PF_PROT))
5b727a3b
JF
972 return 0;
973
974 pgd = init_mm.pgd + pgd_index(address);
975 if (!pgd_present(*pgd))
976 return 0;
977
978 pud = pud_offset(pgd, address);
979 if (!pud_present(*pud))
980 return 0;
981
d8b57bb7
TG
982 if (pud_large(*pud))
983 return spurious_fault_check(error_code, (pte_t *) pud);
984
5b727a3b
JF
985 pmd = pmd_offset(pud, address);
986 if (!pmd_present(*pmd))
987 return 0;
988
d8b57bb7
TG
989 if (pmd_large(*pmd))
990 return spurious_fault_check(error_code, (pte_t *) pmd);
991
5b727a3b 992 pte = pte_offset_kernel(pmd, address);
954f8571 993 if (!pte_present(*pte))
5b727a3b
JF
994 return 0;
995
3c3e5694
SR
996 ret = spurious_fault_check(error_code, pte);
997 if (!ret)
998 return 0;
999
1000 /*
2d4a7167
IM
1001 * Make sure we have permissions in PMD.
1002 * If not, then there's a bug in the page tables:
3c3e5694
SR
1003 */
1004 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1005 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 1006
3c3e5694 1007 return ret;
5b727a3b 1008}
9326638c 1009NOKPROBE_SYMBOL(spurious_fault);
5b727a3b 1010
abd4f750 1011int show_unhandled_signals = 1;
1da177e4 1012
2d4a7167 1013static inline int
68da336a 1014access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 1015{
68da336a 1016 if (error_code & PF_WRITE) {
2d4a7167 1017 /* write, present and write, not present: */
92181f19
NP
1018 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1019 return 1;
2d4a7167 1020 return 0;
92181f19
NP
1021 }
1022
2d4a7167
IM
1023 /* read, present: */
1024 if (unlikely(error_code & PF_PROT))
1025 return 1;
1026
1027 /* read, not present: */
1028 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1029 return 1;
1030
92181f19
NP
1031 return 0;
1032}
1033
0973a06c
HS
1034static int fault_in_kernel_space(unsigned long address)
1035{
d9517346 1036 return address >= TASK_SIZE_MAX;
0973a06c
HS
1037}
1038
40d3cd66
PA
1039static inline bool smap_violation(int error_code, struct pt_regs *regs)
1040{
4640c7ee
PA
1041 if (!IS_ENABLED(CONFIG_X86_SMAP))
1042 return false;
1043
1044 if (!static_cpu_has(X86_FEATURE_SMAP))
1045 return false;
1046
40d3cd66
PA
1047 if (error_code & PF_USER)
1048 return false;
1049
f39b6f0e 1050 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
40d3cd66
PA
1051 return false;
1052
1053 return true;
1054}
1055
1da177e4
LT
1056/*
1057 * This routine handles page faults. It determines the address,
1058 * and the problem, and then passes it off to one of the appropriate
1059 * routines.
d4078e23
PZ
1060 *
1061 * This function must have noinline because both callers
1062 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1063 * guarantees there's a function trace entry.
1da177e4 1064 */
9326638c 1065static noinline void
0ac09f9f
JO
1066__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1067 unsigned long address)
1da177e4 1068{
2d4a7167 1069 struct vm_area_struct *vma;
1da177e4
LT
1070 struct task_struct *tsk;
1071 struct mm_struct *mm;
26178ec1 1072 int fault, major = 0;
759496ba 1073 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1da177e4 1074
a9ba9a3b
AV
1075 tsk = current;
1076 mm = tsk->mm;
2d4a7167 1077
f8561296
VN
1078 /*
1079 * Detect and handle instructions that would cause a page fault for
1080 * both a tracked kernel page and a userspace page.
1081 */
1082 if (kmemcheck_active(regs))
1083 kmemcheck_hide(regs);
5dfaf90f 1084 prefetchw(&mm->mmap_sem);
f8561296 1085
0fd0e3da 1086 if (unlikely(kmmio_fault(regs, address)))
86069782 1087 return;
1da177e4
LT
1088
1089 /*
1090 * We fault-in kernel-space virtual memory on-demand. The
1091 * 'reference' page table is init_mm.pgd.
1092 *
1093 * NOTE! We MUST NOT take any locks for this case. We may
1094 * be in an interrupt or a critical region, and should
1095 * only copy the information from the master page table,
1096 * nothing more.
1097 *
1098 * This verifies that the fault happens in kernel space
1099 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1100 * protection error (error_code & 9) == 0.
1da177e4 1101 */
0973a06c 1102 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
1103 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1104 if (vmalloc_fault(address) >= 0)
1105 return;
1106
1107 if (kmemcheck_fault(regs, address, error_code))
1108 return;
1109 }
5b727a3b 1110
2d4a7167 1111 /* Can handle a stale RO->RW TLB: */
92181f19 1112 if (spurious_fault(error_code, address))
5b727a3b
JF
1113 return;
1114
2d4a7167 1115 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1116 if (kprobes_fault(regs))
9be260a6 1117 return;
f8c2ee22
HH
1118 /*
1119 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1120 * fault we could otherwise deadlock:
f8c2ee22 1121 */
92181f19 1122 bad_area_nosemaphore(regs, error_code, address);
2d4a7167 1123
92181f19 1124 return;
f8c2ee22
HH
1125 }
1126
2d4a7167 1127 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1128 if (unlikely(kprobes_fault(regs)))
9be260a6 1129 return;
8c914cb7 1130
66c58156 1131 if (unlikely(error_code & PF_RSVD))
92181f19 1132 pgtable_bad(regs, error_code, address);
1da177e4 1133
4640c7ee
PA
1134 if (unlikely(smap_violation(error_code, regs))) {
1135 bad_area_nosemaphore(regs, error_code, address);
1136 return;
40d3cd66
PA
1137 }
1138
1da177e4 1139 /*
2d4a7167 1140 * If we're in an interrupt, have no user context or are running
70ffdb93 1141 * in a region with pagefaults disabled then we must not take the fault
1da177e4 1142 */
70ffdb93 1143 if (unlikely(faulthandler_disabled() || !mm)) {
92181f19
NP
1144 bad_area_nosemaphore(regs, error_code, address);
1145 return;
1146 }
1da177e4 1147
e00b12e6
PZ
1148 /*
1149 * It's safe to allow irq's after cr2 has been saved and the
1150 * vmalloc fault has been handled.
1151 *
1152 * User-mode registers count as a user access even for any
1153 * potential system fault or CPU buglet:
1154 */
f39b6f0e 1155 if (user_mode(regs)) {
e00b12e6
PZ
1156 local_irq_enable();
1157 error_code |= PF_USER;
1158 flags |= FAULT_FLAG_USER;
1159 } else {
1160 if (regs->flags & X86_EFLAGS_IF)
1161 local_irq_enable();
1162 }
1163
1164 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1165
759496ba
JW
1166 if (error_code & PF_WRITE)
1167 flags |= FAULT_FLAG_WRITE;
1168
3a1dfe6e
IM
1169 /*
1170 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1171 * addresses in user space. All other faults represent errors in
1172 * the kernel and should generate an OOPS. Unfortunately, in the
1173 * case of an erroneous fault occurring in a code path which already
1174 * holds mmap_sem we will deadlock attempting to validate the fault
1175 * against the address space. Luckily the kernel only validly
1176 * references user space from well defined areas of code, which are
1177 * listed in the exceptions table.
1da177e4
LT
1178 *
1179 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1180 * the source reference check when there is a possibility of a
1181 * deadlock. Attempt to lock the address space, if we cannot we then
1182 * validate the source. If this is invalid we can skip the address
1183 * space check, thus avoiding the deadlock:
1da177e4 1184 */
92181f19 1185 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1186 if ((error_code & PF_USER) == 0 &&
92181f19
NP
1187 !search_exception_tables(regs->ip)) {
1188 bad_area_nosemaphore(regs, error_code, address);
1189 return;
1190 }
d065bd81 1191retry:
1da177e4 1192 down_read(&mm->mmap_sem);
01006074
PZ
1193 } else {
1194 /*
2d4a7167
IM
1195 * The above down_read_trylock() might have succeeded in
1196 * which case we'll have missed the might_sleep() from
1197 * down_read():
01006074
PZ
1198 */
1199 might_sleep();
1da177e4
LT
1200 }
1201
1202 vma = find_vma(mm, address);
92181f19
NP
1203 if (unlikely(!vma)) {
1204 bad_area(regs, error_code, address);
1205 return;
1206 }
1207 if (likely(vma->vm_start <= address))
1da177e4 1208 goto good_area;
92181f19
NP
1209 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1210 bad_area(regs, error_code, address);
1211 return;
1212 }
33cb5243 1213 if (error_code & PF_USER) {
6f4d368e
HH
1214 /*
1215 * Accessing the stack below %sp is always a bug.
1216 * The large cushion allows instructions like enter
2d4a7167 1217 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1218 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1219 */
92181f19
NP
1220 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1221 bad_area(regs, error_code, address);
1222 return;
1223 }
1da177e4 1224 }
92181f19
NP
1225 if (unlikely(expand_stack(vma, address))) {
1226 bad_area(regs, error_code, address);
1227 return;
1228 }
1229
1230 /*
1231 * Ok, we have a good vm_area for this memory access, so
1232 * we can handle it..
1233 */
1da177e4 1234good_area:
68da336a 1235 if (unlikely(access_error(error_code, vma))) {
92181f19
NP
1236 bad_area_access_error(regs, error_code, address);
1237 return;
1da177e4
LT
1238 }
1239
1240 /*
1241 * If for any reason at all we couldn't handle the fault,
1242 * make sure we exit gracefully rather than endlessly redo
9a95f3cf
PC
1243 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1244 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1da177e4 1245 */
d065bd81 1246 fault = handle_mm_fault(mm, vma, address, flags);
26178ec1 1247 major |= fault & VM_FAULT_MAJOR;
2d4a7167 1248
3a13c4d7 1249 /*
26178ec1
LT
1250 * If we need to retry the mmap_sem has already been released,
1251 * and if there is a fatal signal pending there is no guarantee
1252 * that we made any progress. Handle this case first.
3a13c4d7 1253 */
26178ec1
LT
1254 if (unlikely(fault & VM_FAULT_RETRY)) {
1255 /* Retry at most once */
1256 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1257 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1258 flags |= FAULT_FLAG_TRIED;
1259 if (!fatal_signal_pending(tsk))
1260 goto retry;
1261 }
1262
1263 /* User mode? Just return to handle the fatal exception */
cf3c0a15 1264 if (flags & FAULT_FLAG_USER)
26178ec1
LT
1265 return;
1266
1267 /* Not returning to user mode? Handle exceptions or die: */
1268 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
3a13c4d7 1269 return;
26178ec1 1270 }
3a13c4d7 1271
26178ec1 1272 up_read(&mm->mmap_sem);
3a13c4d7
JW
1273 if (unlikely(fault & VM_FAULT_ERROR)) {
1274 mm_fault_error(regs, error_code, address, fault);
1275 return;
37b23e05
KM
1276 }
1277
d065bd81 1278 /*
26178ec1
LT
1279 * Major/minor page fault accounting. If any of the events
1280 * returned VM_FAULT_MAJOR, we account it as a major fault.
d065bd81 1281 */
26178ec1
LT
1282 if (major) {
1283 tsk->maj_flt++;
1284 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1285 } else {
1286 tsk->min_flt++;
1287 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
ac17dc8e 1288 }
d729ab35 1289
8c938f9f 1290 check_v8086_mode(regs, address, tsk);
1da177e4 1291}
9326638c 1292NOKPROBE_SYMBOL(__do_page_fault);
6ba3c97a 1293
9326638c 1294dotraplinkage void notrace
6ba3c97a
FW
1295do_page_fault(struct pt_regs *regs, unsigned long error_code)
1296{
d4078e23 1297 unsigned long address = read_cr2(); /* Get the faulting address */
6c1e0256 1298 enum ctx_state prev_state;
d4078e23
PZ
1299
1300 /*
1301 * We must have this function tagged with __kprobes, notrace and call
1302 * read_cr2() before calling anything else. To avoid calling any kind
1303 * of tracing machinery before we've observed the CR2 value.
1304 *
1305 * exception_{enter,exit}() contain all sorts of tracepoints.
1306 */
6c1e0256
FW
1307
1308 prev_state = exception_enter();
0ac09f9f 1309 __do_page_fault(regs, error_code, address);
6c1e0256 1310 exception_exit(prev_state);
6ba3c97a 1311}
9326638c 1312NOKPROBE_SYMBOL(do_page_fault);
25c74b10 1313
d4078e23 1314#ifdef CONFIG_TRACING
9326638c
MH
1315static nokprobe_inline void
1316trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1317 unsigned long error_code)
d34603b0
SA
1318{
1319 if (user_mode(regs))
d4078e23 1320 trace_page_fault_user(address, regs, error_code);
d34603b0 1321 else
d4078e23 1322 trace_page_fault_kernel(address, regs, error_code);
d34603b0
SA
1323}
1324
9326638c 1325dotraplinkage void notrace
25c74b10
SA
1326trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1327{
0ac09f9f
JO
1328 /*
1329 * The exception_enter and tracepoint processing could
1330 * trigger another page faults (user space callchain
1331 * reading) and destroy the original cr2 value, so read
1332 * the faulting address now.
1333 */
1334 unsigned long address = read_cr2();
d4078e23 1335 enum ctx_state prev_state;
25c74b10
SA
1336
1337 prev_state = exception_enter();
d4078e23 1338 trace_page_fault_entries(address, regs, error_code);
0ac09f9f 1339 __do_page_fault(regs, error_code, address);
25c74b10
SA
1340 exception_exit(prev_state);
1341}
9326638c 1342NOKPROBE_SYMBOL(trace_do_page_fault);
d4078e23 1343#endif /* CONFIG_TRACING */