]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/mm/init.c
x86/mm: Further simplify 1 GB kernel linear mappings handling
[mirror_ubuntu-artful-kernel.git] / arch / x86 / mm / init.c
CommitLineData
5a0e3ad6 1#include <linux/gfp.h>
2c1b284e 2#include <linux/initrd.h>
540aca06 3#include <linux/ioport.h>
e5b2bb55 4#include <linux/swap.h>
a9ce6bc1 5#include <linux/memblock.h>
17623915 6#include <linux/bootmem.h> /* for max_low_pfn */
540aca06 7
e5b2bb55 8#include <asm/cacheflush.h>
f765090a 9#include <asm/e820.h>
4fcb2083 10#include <asm/init.h>
e5b2bb55 11#include <asm/page.h>
540aca06 12#include <asm/page_types.h>
e5b2bb55 13#include <asm/sections.h>
49834396 14#include <asm/setup.h>
f765090a 15#include <asm/tlbflush.h>
9518e0e4 16#include <asm/tlb.h>
76c06927 17#include <asm/proto.h>
17623915 18#include <asm/dma.h> /* for MAX_DMA_PFN */
cd745be8 19#include <asm/microcode.h>
9518e0e4 20
d17d8f9d
DH
21/*
22 * We need to define the tracepoints somewhere, and tlb.c
23 * is only compied when SMP=y.
24 */
25#define CREATE_TRACE_POINTS
26#include <trace/events/tlb.h>
27
5c51bdbe
YL
28#include "mm_internal.h"
29
281d4078
JG
30/*
31 * Tables translating between page_cache_type_t and pte encoding.
32 * Minimal supported modes are defined statically, modified if more supported
33 * cache modes are available.
34 * Index into __cachemode2pte_tbl is the cachemode.
35 * Index into __pte2cachemode_tbl are the caching attribute bits of the pte
36 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
37 */
38uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
39 [_PAGE_CACHE_MODE_WB] = 0,
40 [_PAGE_CACHE_MODE_WC] = _PAGE_PWT,
41 [_PAGE_CACHE_MODE_UC_MINUS] = _PAGE_PCD,
42 [_PAGE_CACHE_MODE_UC] = _PAGE_PCD | _PAGE_PWT,
43 [_PAGE_CACHE_MODE_WT] = _PAGE_PCD,
44 [_PAGE_CACHE_MODE_WP] = _PAGE_PCD,
45};
31bb7723 46EXPORT_SYMBOL(__cachemode2pte_tbl);
281d4078
JG
47uint8_t __pte2cachemode_tbl[8] = {
48 [__pte2cm_idx(0)] = _PAGE_CACHE_MODE_WB,
49 [__pte2cm_idx(_PAGE_PWT)] = _PAGE_CACHE_MODE_WC,
50 [__pte2cm_idx(_PAGE_PCD)] = _PAGE_CACHE_MODE_UC_MINUS,
51 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD)] = _PAGE_CACHE_MODE_UC,
52 [__pte2cm_idx(_PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
53 [__pte2cm_idx(_PAGE_PWT | _PAGE_PAT)] = _PAGE_CACHE_MODE_WC,
54 [__pte2cm_idx(_PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
55 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
56};
31bb7723 57EXPORT_SYMBOL(__pte2cachemode_tbl);
281d4078 58
cf470659
YL
59static unsigned long __initdata pgt_buf_start;
60static unsigned long __initdata pgt_buf_end;
61static unsigned long __initdata pgt_buf_top;
f765090a 62
9985b4c6
YL
63static unsigned long min_pfn_mapped;
64
c9b3234a
YL
65static bool __initdata can_use_brk_pgt = true;
66
ddd3509d
SS
67/*
68 * Pages returned are already directly mapped.
69 *
70 * Changing that is likely to break Xen, see commit:
71 *
72 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
73 *
74 * for detailed information.
75 */
22c8ca2a 76__ref void *alloc_low_pages(unsigned int num)
5c51bdbe
YL
77{
78 unsigned long pfn;
22c8ca2a 79 int i;
5c51bdbe 80
5c51bdbe 81 if (after_bootmem) {
22c8ca2a 82 unsigned int order;
5c51bdbe 83
22c8ca2a
YL
84 order = get_order((unsigned long)num << PAGE_SHIFT);
85 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
86 __GFP_ZERO, order);
5c51bdbe 87 }
5c51bdbe 88
c9b3234a 89 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
5c51bdbe
YL
90 unsigned long ret;
91 if (min_pfn_mapped >= max_pfn_mapped)
d4dd100f 92 panic("alloc_low_pages: ran out of memory");
5c51bdbe
YL
93 ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
94 max_pfn_mapped << PAGE_SHIFT,
22c8ca2a 95 PAGE_SIZE * num , PAGE_SIZE);
5c51bdbe 96 if (!ret)
d4dd100f 97 panic("alloc_low_pages: can not alloc memory");
22c8ca2a 98 memblock_reserve(ret, PAGE_SIZE * num);
5c51bdbe 99 pfn = ret >> PAGE_SHIFT;
22c8ca2a
YL
100 } else {
101 pfn = pgt_buf_end;
102 pgt_buf_end += num;
c9b3234a
YL
103 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
104 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
22c8ca2a
YL
105 }
106
107 for (i = 0; i < num; i++) {
108 void *adr;
109
110 adr = __va((pfn + i) << PAGE_SHIFT);
111 clear_page(adr);
112 }
5c51bdbe 113
22c8ca2a 114 return __va(pfn << PAGE_SHIFT);
5c51bdbe
YL
115}
116
527bf129
YL
117/* need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS */
118#define INIT_PGT_BUF_SIZE (6 * PAGE_SIZE)
8d57470d
YL
119RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
120void __init early_alloc_pgt_buf(void)
121{
122 unsigned long tables = INIT_PGT_BUF_SIZE;
123 phys_addr_t base;
124
125 base = __pa(extend_brk(tables, PAGE_SIZE));
126
127 pgt_buf_start = base >> PAGE_SHIFT;
128 pgt_buf_end = pgt_buf_start;
129 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
130}
131
f765090a
PE
132int after_bootmem;
133
e5008abe
LR
134static int page_size_mask;
135
10971ab2 136early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
f765090a 137
148b2098
YL
138static void __init init_gbpages(void)
139{
e5008abe 140 if (direct_gbpages && cpu_has_gbpages) {
148b2098 141 printk(KERN_INFO "Using GB pages for direct mapping\n");
e5008abe
LR
142 page_size_mask |= 1 << PG_LEVEL_1G;
143 } else
148b2098 144 direct_gbpages = 0;
148b2098
YL
145}
146
844ab6f9
JS
147struct map_range {
148 unsigned long start;
149 unsigned long end;
150 unsigned page_size_mask;
151};
152
22ddfcaa 153static void __init probe_page_size_mask(void)
fa62aafe 154{
148b2098
YL
155 init_gbpages();
156
fa62aafe
YL
157#if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
158 /*
159 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
160 * This will simplify cpa(), which otherwise needs to support splitting
161 * large pages into small in interrupt context, etc.
162 */
fa62aafe
YL
163 if (cpu_has_pse)
164 page_size_mask |= 1 << PG_LEVEL_2M;
165#endif
166
167 /* Enable PSE if available */
168 if (cpu_has_pse)
375074cc 169 cr4_set_bits_and_update_boot(X86_CR4_PSE);
fa62aafe
YL
170
171 /* Enable PGE if available */
172 if (cpu_has_pge) {
375074cc 173 cr4_set_bits_and_update_boot(X86_CR4_PGE);
fa62aafe
YL
174 __supported_pte_mask |= _PAGE_GLOBAL;
175 }
176}
279b706b 177
f765090a
PE
178#ifdef CONFIG_X86_32
179#define NR_RANGE_MR 3
180#else /* CONFIG_X86_64 */
181#define NR_RANGE_MR 5
182#endif
183
dc9dd5cc
JB
184static int __meminit save_mr(struct map_range *mr, int nr_range,
185 unsigned long start_pfn, unsigned long end_pfn,
186 unsigned long page_size_mask)
f765090a
PE
187{
188 if (start_pfn < end_pfn) {
189 if (nr_range >= NR_RANGE_MR)
190 panic("run out of range for init_memory_mapping\n");
191 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
192 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
193 mr[nr_range].page_size_mask = page_size_mask;
194 nr_range++;
195 }
196
197 return nr_range;
198}
199
aeebe84c
YL
200/*
201 * adjust the page_size_mask for small range to go with
202 * big page size instead small one if nearby are ram too.
203 */
204static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
205 int nr_range)
206{
207 int i;
208
209 for (i = 0; i < nr_range; i++) {
210 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
211 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
212 unsigned long start = round_down(mr[i].start, PMD_SIZE);
213 unsigned long end = round_up(mr[i].end, PMD_SIZE);
214
215#ifdef CONFIG_X86_32
216 if ((end >> PAGE_SHIFT) > max_low_pfn)
217 continue;
218#endif
219
220 if (memblock_is_region_memory(start, end - start))
221 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
222 }
223 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
224 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
225 unsigned long start = round_down(mr[i].start, PUD_SIZE);
226 unsigned long end = round_up(mr[i].end, PUD_SIZE);
227
228 if (memblock_is_region_memory(start, end - start))
229 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
230 }
231 }
232}
233
f15e0518
DH
234static const char *page_size_string(struct map_range *mr)
235{
236 static const char str_1g[] = "1G";
237 static const char str_2m[] = "2M";
238 static const char str_4m[] = "4M";
239 static const char str_4k[] = "4k";
240
241 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
242 return str_1g;
243 /*
244 * 32-bit without PAE has a 4M large page size.
245 * PG_LEVEL_2M is misnamed, but we can at least
246 * print out the right size in the string.
247 */
248 if (IS_ENABLED(CONFIG_X86_32) &&
249 !IS_ENABLED(CONFIG_X86_PAE) &&
250 mr->page_size_mask & (1<<PG_LEVEL_2M))
251 return str_4m;
252
253 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
254 return str_2m;
255
256 return str_4k;
257}
258
4e33e065
YL
259static int __meminit split_mem_range(struct map_range *mr, int nr_range,
260 unsigned long start,
261 unsigned long end)
f765090a 262{
2e8059ed 263 unsigned long start_pfn, end_pfn, limit_pfn;
1829ae9a 264 unsigned long pfn;
4e33e065 265 int i;
f765090a 266
2e8059ed
YL
267 limit_pfn = PFN_DOWN(end);
268
f765090a 269 /* head if not big page alignment ? */
1829ae9a 270 pfn = start_pfn = PFN_DOWN(start);
f765090a
PE
271#ifdef CONFIG_X86_32
272 /*
273 * Don't use a large page for the first 2/4MB of memory
274 * because there are often fixed size MTRRs in there
275 * and overlapping MTRRs into large pages can cause
276 * slowdowns.
277 */
1829ae9a 278 if (pfn == 0)
84d77001 279 end_pfn = PFN_DOWN(PMD_SIZE);
f765090a 280 else
1829ae9a 281 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
f765090a 282#else /* CONFIG_X86_64 */
1829ae9a 283 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
f765090a 284#endif
2e8059ed
YL
285 if (end_pfn > limit_pfn)
286 end_pfn = limit_pfn;
f765090a
PE
287 if (start_pfn < end_pfn) {
288 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
1829ae9a 289 pfn = end_pfn;
f765090a
PE
290 }
291
292 /* big page (2M) range */
1829ae9a 293 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
f765090a 294#ifdef CONFIG_X86_32
2e8059ed 295 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
f765090a 296#else /* CONFIG_X86_64 */
1829ae9a 297 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
2e8059ed
YL
298 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
299 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
f765090a
PE
300#endif
301
302 if (start_pfn < end_pfn) {
303 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
304 page_size_mask & (1<<PG_LEVEL_2M));
1829ae9a 305 pfn = end_pfn;
f765090a
PE
306 }
307
308#ifdef CONFIG_X86_64
309 /* big page (1G) range */
1829ae9a 310 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
2e8059ed 311 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
f765090a
PE
312 if (start_pfn < end_pfn) {
313 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
314 page_size_mask &
315 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
1829ae9a 316 pfn = end_pfn;
f765090a
PE
317 }
318
319 /* tail is not big page (1G) alignment */
1829ae9a 320 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
2e8059ed 321 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
f765090a
PE
322 if (start_pfn < end_pfn) {
323 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
324 page_size_mask & (1<<PG_LEVEL_2M));
1829ae9a 325 pfn = end_pfn;
f765090a
PE
326 }
327#endif
328
329 /* tail is not big page (2M) alignment */
1829ae9a 330 start_pfn = pfn;
2e8059ed 331 end_pfn = limit_pfn;
f765090a
PE
332 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
333
7de3d66b
YL
334 if (!after_bootmem)
335 adjust_range_page_size_mask(mr, nr_range);
336
f765090a
PE
337 /* try to merge same page size and continuous */
338 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
339 unsigned long old_start;
340 if (mr[i].end != mr[i+1].start ||
341 mr[i].page_size_mask != mr[i+1].page_size_mask)
342 continue;
343 /* move it */
344 old_start = mr[i].start;
345 memmove(&mr[i], &mr[i+1],
346 (nr_range - 1 - i) * sizeof(struct map_range));
347 mr[i--].start = old_start;
348 nr_range--;
349 }
350
351 for (i = 0; i < nr_range; i++)
365811d6
BH
352 printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
353 mr[i].start, mr[i].end - 1,
f15e0518 354 page_size_string(&mr[i]));
f765090a 355
4e33e065
YL
356 return nr_range;
357}
358
0e691cf8
YL
359struct range pfn_mapped[E820_X_MAX];
360int nr_pfn_mapped;
66520ebc
JS
361
362static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
363{
364 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
365 nr_pfn_mapped, start_pfn, end_pfn);
366 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
367
368 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
369
370 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
371 max_low_pfn_mapped = max(max_low_pfn_mapped,
372 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
373}
374
375bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
376{
377 int i;
378
379 for (i = 0; i < nr_pfn_mapped; i++)
380 if ((start_pfn >= pfn_mapped[i].start) &&
381 (end_pfn <= pfn_mapped[i].end))
382 return true;
383
384 return false;
385}
386
4e33e065
YL
387/*
388 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
389 * This runs before bootmem is initialized and gets pages directly from
390 * the physical memory. To access them they are temporarily mapped.
391 */
392unsigned long __init_refok init_memory_mapping(unsigned long start,
393 unsigned long end)
394{
395 struct map_range mr[NR_RANGE_MR];
396 unsigned long ret = 0;
397 int nr_range, i;
398
399 pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
400 start, end - 1);
401
402 memset(mr, 0, sizeof(mr));
403 nr_range = split_mem_range(mr, 0, start, end);
404
f765090a
PE
405 for (i = 0; i < nr_range; i++)
406 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
407 mr[i].page_size_mask);
f765090a 408
66520ebc
JS
409 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
410
c14fa0b6
YL
411 return ret >> PAGE_SHIFT;
412}
413
66520ebc 414/*
cf8b166d
ZY
415 * We need to iterate through the E820 memory map and create direct mappings
416 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
417 * create direct mappings for all pfns from [0 to max_low_pfn) and
418 * [4GB to max_pfn) because of possible memory holes in high addresses
419 * that cannot be marked as UC by fixed/variable range MTRRs.
420 * Depending on the alignment of E820 ranges, this may possibly result
421 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
422 *
423 * init_mem_mapping() calls init_range_memory_mapping() with big range.
424 * That range would have hole in the middle or ends, and only ram parts
425 * will be mapped in init_range_memory_mapping().
66520ebc 426 */
8d57470d 427static unsigned long __init init_range_memory_mapping(
b8fd39c0
YL
428 unsigned long r_start,
429 unsigned long r_end)
66520ebc
JS
430{
431 unsigned long start_pfn, end_pfn;
8d57470d 432 unsigned long mapped_ram_size = 0;
66520ebc
JS
433 int i;
434
66520ebc 435 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
b8fd39c0
YL
436 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
437 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
438 if (start >= end)
66520ebc
JS
439 continue;
440
c9b3234a
YL
441 /*
442 * if it is overlapping with brk pgt, we need to
443 * alloc pgt buf from memblock instead.
444 */
445 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
446 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
f763ad1d 447 init_memory_mapping(start, end);
8d57470d 448 mapped_ram_size += end - start;
c9b3234a 449 can_use_brk_pgt = true;
66520ebc 450 }
8d57470d
YL
451
452 return mapped_ram_size;
66520ebc
JS
453}
454
6979287a
YL
455static unsigned long __init get_new_step_size(unsigned long step_size)
456{
457 /*
132978b9 458 * Initial mapped size is PMD_SIZE (2M).
6979287a
YL
459 * We can not set step_size to be PUD_SIZE (1G) yet.
460 * In worse case, when we cross the 1G boundary, and
461 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
132978b9
JB
462 * to map 1G range with PTE. Hence we use one less than the
463 * difference of page table level shifts.
6979287a 464 *
132978b9
JB
465 * Don't need to worry about overflow in the top-down case, on 32bit,
466 * when step_size is 0, round_down() returns 0 for start, and that
467 * turns it into 0x100000000ULL.
468 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
469 * needs to be taken into consideration by the code below.
6979287a 470 */
132978b9 471 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
6979287a
YL
472}
473
0167d7d8
TC
474/**
475 * memory_map_top_down - Map [map_start, map_end) top down
476 * @map_start: start address of the target memory range
477 * @map_end: end address of the target memory range
478 *
479 * This function will setup direct mapping for memory range
480 * [map_start, map_end) in top-down. That said, the page tables
481 * will be allocated at the end of the memory, and we map the
482 * memory in top-down.
483 */
484static void __init memory_map_top_down(unsigned long map_start,
485 unsigned long map_end)
c14fa0b6 486{
0167d7d8 487 unsigned long real_end, start, last_start;
8d57470d
YL
488 unsigned long step_size;
489 unsigned long addr;
490 unsigned long mapped_ram_size = 0;
ab951937 491
98e7a989 492 /* xen has big range in reserved near end of ram, skip it at first.*/
0167d7d8 493 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
8d57470d
YL
494 real_end = addr + PMD_SIZE;
495
496 /* step_size need to be small so pgt_buf from BRK could cover it */
497 step_size = PMD_SIZE;
498 max_pfn_mapped = 0; /* will get exact value next */
499 min_pfn_mapped = real_end >> PAGE_SHIFT;
500 last_start = start = real_end;
cf8b166d
ZY
501
502 /*
503 * We start from the top (end of memory) and go to the bottom.
504 * The memblock_find_in_range() gets us a block of RAM from the
505 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
506 * for page table.
507 */
0167d7d8 508 while (last_start > map_start) {
8d57470d
YL
509 if (last_start > step_size) {
510 start = round_down(last_start - 1, step_size);
0167d7d8
TC
511 if (start < map_start)
512 start = map_start;
8d57470d 513 } else
0167d7d8 514 start = map_start;
132978b9 515 mapped_ram_size += init_range_memory_mapping(start,
8d57470d
YL
516 last_start);
517 last_start = start;
518 min_pfn_mapped = last_start >> PAGE_SHIFT;
132978b9 519 if (mapped_ram_size >= step_size)
6979287a 520 step_size = get_new_step_size(step_size);
8d57470d
YL
521 }
522
0167d7d8
TC
523 if (real_end < map_end)
524 init_range_memory_mapping(real_end, map_end);
525}
526
b959ed6c
TC
527/**
528 * memory_map_bottom_up - Map [map_start, map_end) bottom up
529 * @map_start: start address of the target memory range
530 * @map_end: end address of the target memory range
531 *
532 * This function will setup direct mapping for memory range
533 * [map_start, map_end) in bottom-up. Since we have limited the
534 * bottom-up allocation above the kernel, the page tables will
535 * be allocated just above the kernel and we map the memory
536 * in [map_start, map_end) in bottom-up.
537 */
538static void __init memory_map_bottom_up(unsigned long map_start,
539 unsigned long map_end)
540{
132978b9 541 unsigned long next, start;
b959ed6c
TC
542 unsigned long mapped_ram_size = 0;
543 /* step_size need to be small so pgt_buf from BRK could cover it */
544 unsigned long step_size = PMD_SIZE;
545
546 start = map_start;
547 min_pfn_mapped = start >> PAGE_SHIFT;
548
549 /*
550 * We start from the bottom (@map_start) and go to the top (@map_end).
551 * The memblock_find_in_range() gets us a block of RAM from the
552 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
553 * for page table.
554 */
555 while (start < map_end) {
132978b9 556 if (step_size && map_end - start > step_size) {
b959ed6c
TC
557 next = round_up(start + 1, step_size);
558 if (next > map_end)
559 next = map_end;
132978b9 560 } else {
b959ed6c 561 next = map_end;
132978b9 562 }
b959ed6c 563
132978b9 564 mapped_ram_size += init_range_memory_mapping(start, next);
b959ed6c
TC
565 start = next;
566
132978b9 567 if (mapped_ram_size >= step_size)
b959ed6c 568 step_size = get_new_step_size(step_size);
b959ed6c
TC
569 }
570}
571
0167d7d8
TC
572void __init init_mem_mapping(void)
573{
574 unsigned long end;
575
576 probe_page_size_mask();
577
578#ifdef CONFIG_X86_64
579 end = max_pfn << PAGE_SHIFT;
580#else
581 end = max_low_pfn << PAGE_SHIFT;
582#endif
583
584 /* the ISA range is always mapped regardless of memory holes */
585 init_memory_mapping(0, ISA_END_ADDRESS);
586
b959ed6c
TC
587 /*
588 * If the allocation is in bottom-up direction, we setup direct mapping
589 * in bottom-up, otherwise we setup direct mapping in top-down.
590 */
591 if (memblock_bottom_up()) {
592 unsigned long kernel_end = __pa_symbol(_end);
593
594 /*
595 * we need two separate calls here. This is because we want to
596 * allocate page tables above the kernel. So we first map
597 * [kernel_end, end) to make memory above the kernel be mapped
598 * as soon as possible. And then use page tables allocated above
599 * the kernel to map [ISA_END_ADDRESS, kernel_end).
600 */
601 memory_map_bottom_up(kernel_end, end);
602 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
603 } else {
604 memory_map_top_down(ISA_END_ADDRESS, end);
605 }
8d57470d 606
f763ad1d
YL
607#ifdef CONFIG_X86_64
608 if (max_pfn > max_low_pfn) {
609 /* can we preseve max_low_pfn ?*/
610 max_low_pfn = max_pfn;
611 }
719272c4
YL
612#else
613 early_ioremap_page_table_range_init();
8170e6be
PA
614#endif
615
719272c4
YL
616 load_cr3(swapper_pg_dir);
617 __flush_tlb_all();
719272c4 618
c14fa0b6 619 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
22ddfcaa 620}
e5b2bb55 621
540aca06
PE
622/*
623 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
624 * is valid. The argument is a physical page number.
625 *
626 *
627 * On x86, access has to be given to the first megabyte of ram because that area
801a5591 628 * contains BIOS code and data regions used by X and dosemu and similar apps.
540aca06
PE
629 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
630 * mmio resources as well as potential bios/acpi data regions.
631 */
632int devmem_is_allowed(unsigned long pagenr)
633{
73e8f3d7 634 if (pagenr < 256)
540aca06
PE
635 return 1;
636 if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
637 return 0;
638 if (!page_is_ram(pagenr))
639 return 1;
640 return 0;
641}
642
e5b2bb55
PE
643void free_init_pages(char *what, unsigned long begin, unsigned long end)
644{
c967da6a 645 unsigned long begin_aligned, end_aligned;
e5b2bb55 646
c967da6a
YL
647 /* Make sure boundaries are page aligned */
648 begin_aligned = PAGE_ALIGN(begin);
649 end_aligned = end & PAGE_MASK;
650
651 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
652 begin = begin_aligned;
653 end = end_aligned;
654 }
655
656 if (begin >= end)
e5b2bb55
PE
657 return;
658
659 /*
660 * If debugging page accesses then do not free this memory but
661 * mark them not present - any buggy init-section access will
662 * create a kernel page fault:
663 */
664#ifdef CONFIG_DEBUG_PAGEALLOC
365811d6
BH
665 printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
666 begin, end - 1);
e5b2bb55
PE
667 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
668#else
669 /*
670 * We just marked the kernel text read only above, now that
671 * we are going to free part of that, we need to make that
5bd5a452 672 * writeable and non-executable first.
e5b2bb55 673 */
5bd5a452 674 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
e5b2bb55
PE
675 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
676
c88442ec 677 free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
e5b2bb55
PE
678#endif
679}
680
681void free_initmem(void)
682{
c88442ec 683 free_init_pages("unused kernel",
e5b2bb55
PE
684 (unsigned long)(&__init_begin),
685 (unsigned long)(&__init_end));
686}
731ddea6
PE
687
688#ifdef CONFIG_BLK_DEV_INITRD
0d26d1d8 689void __init free_initrd_mem(unsigned long start, unsigned long end)
731ddea6 690{
cd745be8
FY
691#ifdef CONFIG_MICROCODE_EARLY
692 /*
693 * Remember, initrd memory may contain microcode or other useful things.
694 * Before we lose initrd mem, we need to find a place to hold them
695 * now that normal virtual memory is enabled.
696 */
697 save_microcode_in_initrd();
698#endif
699
c967da6a
YL
700 /*
701 * end could be not aligned, and We can not align that,
702 * decompresser could be confused by aligned initrd_end
703 * We already reserve the end partial page before in
704 * - i386_start_kernel()
705 * - x86_64_start_kernel()
706 * - relocate_initrd()
707 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
708 */
c88442ec 709 free_init_pages("initrd", start, PAGE_ALIGN(end));
731ddea6
PE
710}
711#endif
17623915
PE
712
713void __init zone_sizes_init(void)
714{
715 unsigned long max_zone_pfns[MAX_NR_ZONES];
716
717 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
718
719#ifdef CONFIG_ZONE_DMA
c072b90c 720 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
17623915
PE
721#endif
722#ifdef CONFIG_ZONE_DMA32
c072b90c 723 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
17623915
PE
724#endif
725 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
726#ifdef CONFIG_HIGHMEM
727 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
728#endif
729
730 free_area_init_nodes(max_zone_pfns);
731}
732
1e02ce4c
AL
733DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
734#ifdef CONFIG_SMP
735 .active_mm = &init_mm,
736 .state = 0,
737#endif
738 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
739};
740EXPORT_SYMBOL_GPL(cpu_tlbstate);
741
bd809af1
JG
742void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
743{
744 /* entry 0 MUST be WB (hardwired to speed up translations) */
745 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
746
747 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
748 __pte2cachemode_tbl[entry] = cache;
749}