]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/mm/init.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / mm / init.c
CommitLineData
5a0e3ad6 1#include <linux/gfp.h>
2c1b284e 2#include <linux/initrd.h>
540aca06 3#include <linux/ioport.h>
e5b2bb55 4#include <linux/swap.h>
a9ce6bc1 5#include <linux/memblock.h>
17623915 6#include <linux/bootmem.h> /* for max_low_pfn */
377eeaa8
AK
7#include <linux/swapfile.h>
8#include <linux/swapops.h>
540aca06 9
d1163651 10#include <asm/set_memory.h>
66441bd3 11#include <asm/e820/api.h>
4fcb2083 12#include <asm/init.h>
e5b2bb55 13#include <asm/page.h>
540aca06 14#include <asm/page_types.h>
e5b2bb55 15#include <asm/sections.h>
49834396 16#include <asm/setup.h>
f765090a 17#include <asm/tlbflush.h>
9518e0e4 18#include <asm/tlb.h>
76c06927 19#include <asm/proto.h>
17623915 20#include <asm/dma.h> /* for MAX_DMA_PFN */
cd745be8 21#include <asm/microcode.h>
0483e1fa 22#include <asm/kaslr.h>
c138d811 23#include <asm/hypervisor.h>
c7ad5ad2 24#include <asm/cpufeature.h>
aa8c6248 25#include <asm/pti.h>
9518e0e4 26
d17d8f9d
DH
27/*
28 * We need to define the tracepoints somewhere, and tlb.c
29 * is only compied when SMP=y.
30 */
31#define CREATE_TRACE_POINTS
32#include <trace/events/tlb.h>
33
5c51bdbe
YL
34#include "mm_internal.h"
35
281d4078
JG
36/*
37 * Tables translating between page_cache_type_t and pte encoding.
c709feda 38 *
d5dc861b
TK
39 * The default values are defined statically as minimal supported mode;
40 * WC and WT fall back to UC-. pat_init() updates these values to support
41 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
42 * for the details. Note, __early_ioremap() used during early boot-time
43 * takes pgprot_t (pte encoding) and does not use these tables.
c709feda
IM
44 *
45 * Index into __cachemode2pte_tbl[] is the cachemode.
46 *
47 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
48 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
281d4078
JG
49 */
50uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
c709feda 51 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
9cd25aac 52 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
c709feda
IM
53 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
54 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
55 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
56 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
281d4078 57};
31bb7723 58EXPORT_SYMBOL(__cachemode2pte_tbl);
c709feda 59
281d4078 60uint8_t __pte2cachemode_tbl[8] = {
c709feda 61 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
9cd25aac 62 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
c709feda
IM
63 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
64 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
65 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
9cd25aac 66 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
c709feda 67 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
281d4078
JG
68 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
69};
31bb7723 70EXPORT_SYMBOL(__pte2cachemode_tbl);
281d4078 71
cf470659
YL
72static unsigned long __initdata pgt_buf_start;
73static unsigned long __initdata pgt_buf_end;
74static unsigned long __initdata pgt_buf_top;
f765090a 75
9985b4c6
YL
76static unsigned long min_pfn_mapped;
77
c9b3234a
YL
78static bool __initdata can_use_brk_pgt = true;
79
ddd3509d
SS
80/*
81 * Pages returned are already directly mapped.
82 *
83 * Changing that is likely to break Xen, see commit:
84 *
85 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
86 *
87 * for detailed information.
88 */
22c8ca2a 89__ref void *alloc_low_pages(unsigned int num)
5c51bdbe
YL
90{
91 unsigned long pfn;
22c8ca2a 92 int i;
5c51bdbe 93
5c51bdbe 94 if (after_bootmem) {
22c8ca2a 95 unsigned int order;
5c51bdbe 96
22c8ca2a 97 order = get_order((unsigned long)num << PAGE_SHIFT);
75f296d9 98 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
5c51bdbe 99 }
5c51bdbe 100
c9b3234a 101 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
75f2d3a0
JG
102 unsigned long ret = 0;
103
104 if (min_pfn_mapped < max_pfn_mapped) {
105 ret = memblock_find_in_range(
106 min_pfn_mapped << PAGE_SHIFT,
5c51bdbe 107 max_pfn_mapped << PAGE_SHIFT,
22c8ca2a 108 PAGE_SIZE * num , PAGE_SIZE);
75f2d3a0
JG
109 }
110 if (ret)
111 memblock_reserve(ret, PAGE_SIZE * num);
112 else if (can_use_brk_pgt)
113 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
114
5c51bdbe 115 if (!ret)
d4dd100f 116 panic("alloc_low_pages: can not alloc memory");
75f2d3a0 117
5c51bdbe 118 pfn = ret >> PAGE_SHIFT;
22c8ca2a
YL
119 } else {
120 pfn = pgt_buf_end;
121 pgt_buf_end += num;
c9b3234a
YL
122 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
123 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
22c8ca2a
YL
124 }
125
126 for (i = 0; i < num; i++) {
127 void *adr;
128
129 adr = __va((pfn + i) << PAGE_SHIFT);
130 clear_page(adr);
131 }
5c51bdbe 132
22c8ca2a 133 return __va(pfn << PAGE_SHIFT);
5c51bdbe
YL
134}
135
fb754f95
TG
136/*
137 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
138 * With KASLR memory randomization, depending on the machine e820 memory
139 * and the PUD alignment. We may need twice more pages when KASLR memory
140 * randomization is enabled.
141 */
142#ifndef CONFIG_RANDOMIZE_MEMORY
143#define INIT_PGD_PAGE_COUNT 6
144#else
145#define INIT_PGD_PAGE_COUNT 12
146#endif
147#define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
8d57470d
YL
148RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
149void __init early_alloc_pgt_buf(void)
150{
151 unsigned long tables = INIT_PGT_BUF_SIZE;
152 phys_addr_t base;
153
154 base = __pa(extend_brk(tables, PAGE_SIZE));
155
156 pgt_buf_start = base >> PAGE_SHIFT;
157 pgt_buf_end = pgt_buf_start;
158 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
159}
160
f765090a
PE
161int after_bootmem;
162
10971ab2 163early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
148b2098 164
844ab6f9
JS
165struct map_range {
166 unsigned long start;
167 unsigned long end;
168 unsigned page_size_mask;
169};
170
fa62aafe 171static int page_size_mask;
f765090a 172
22ddfcaa 173static void __init probe_page_size_mask(void)
fa62aafe 174{
fa62aafe 175 /*
4675ff05 176 * For pagealloc debugging, identity mapping will use small pages.
fa62aafe
YL
177 * This will simplify cpa(), which otherwise needs to support splitting
178 * large pages into small in interrupt context, etc.
179 */
4675ff05 180 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
fa62aafe 181 page_size_mask |= 1 << PG_LEVEL_2M;
d9ee35ac
VB
182 else
183 direct_gbpages = 0;
fa62aafe
YL
184
185 /* Enable PSE if available */
16bf9226 186 if (boot_cpu_has(X86_FEATURE_PSE))
375074cc 187 cr4_set_bits_and_update_boot(X86_CR4_PSE);
fa62aafe
YL
188
189 /* Enable PGE if available */
c313ec66 190 __supported_pte_mask &= ~_PAGE_GLOBAL;
c109bf95 191 if (boot_cpu_has(X86_FEATURE_PGE)) {
375074cc 192 cr4_set_bits_and_update_boot(X86_CR4_PGE);
39114b7a 193 __supported_pte_mask |= _PAGE_GLOBAL;
c313ec66 194 }
e61980a7 195
8a57f484
DH
196 /* By the default is everything supported: */
197 __default_kernel_pte_mask = __supported_pte_mask;
198 /* Except when with PTI where the kernel is mostly non-Global: */
199 if (cpu_feature_enabled(X86_FEATURE_PTI))
200 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
201
e61980a7 202 /* Enable 1 GB linear kernel mappings if available: */
b8291adc 203 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
e61980a7
IM
204 printk(KERN_INFO "Using GB pages for direct mapping\n");
205 page_size_mask |= 1 << PG_LEVEL_1G;
206 } else {
207 direct_gbpages = 0;
208 }
fa62aafe 209}
279b706b 210
c7ad5ad2
AL
211static void setup_pcid(void)
212{
6cff64b8
DH
213 if (!IS_ENABLED(CONFIG_X86_64))
214 return;
215
216 if (!boot_cpu_has(X86_FEATURE_PCID))
217 return;
218
219 if (boot_cpu_has(X86_FEATURE_PGE)) {
220 /*
221 * This can't be cr4_set_bits_and_update_boot() -- the
222 * trampoline code can't handle CR4.PCIDE and it wouldn't
223 * do any good anyway. Despite the name,
224 * cr4_set_bits_and_update_boot() doesn't actually cause
225 * the bits in question to remain set all the way through
226 * the secondary boot asm.
227 *
228 * Instead, we brute-force it and set CR4.PCIDE manually in
229 * start_secondary().
230 */
231 cr4_set_bits(X86_CR4_PCIDE);
232
233 /*
234 * INVPCID's single-context modes (2/3) only work if we set
235 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
236 * on systems that have X86_CR4_PCIDE clear, or that have
237 * no INVPCID support at all.
238 */
239 if (boot_cpu_has(X86_FEATURE_INVPCID))
240 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
241 } else {
242 /*
243 * flush_tlb_all(), as currently implemented, won't work if
244 * PCID is on but PGE is not. Since that combination
245 * doesn't exist on real hardware, there's no reason to try
246 * to fully support it, but it's polite to avoid corrupting
247 * data if we're on an improperly configured VM.
248 */
249 setup_clear_cpu_cap(X86_FEATURE_PCID);
c7ad5ad2 250 }
c7ad5ad2
AL
251}
252
f765090a
PE
253#ifdef CONFIG_X86_32
254#define NR_RANGE_MR 3
255#else /* CONFIG_X86_64 */
256#define NR_RANGE_MR 5
257#endif
258
dc9dd5cc
JB
259static int __meminit save_mr(struct map_range *mr, int nr_range,
260 unsigned long start_pfn, unsigned long end_pfn,
261 unsigned long page_size_mask)
f765090a
PE
262{
263 if (start_pfn < end_pfn) {
264 if (nr_range >= NR_RANGE_MR)
265 panic("run out of range for init_memory_mapping\n");
266 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
267 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
268 mr[nr_range].page_size_mask = page_size_mask;
269 nr_range++;
270 }
271
272 return nr_range;
273}
274
aeebe84c
YL
275/*
276 * adjust the page_size_mask for small range to go with
277 * big page size instead small one if nearby are ram too.
278 */
bd721ea7 279static void __ref adjust_range_page_size_mask(struct map_range *mr,
aeebe84c
YL
280 int nr_range)
281{
282 int i;
283
284 for (i = 0; i < nr_range; i++) {
285 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
286 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
287 unsigned long start = round_down(mr[i].start, PMD_SIZE);
288 unsigned long end = round_up(mr[i].end, PMD_SIZE);
289
290#ifdef CONFIG_X86_32
291 if ((end >> PAGE_SHIFT) > max_low_pfn)
292 continue;
293#endif
294
295 if (memblock_is_region_memory(start, end - start))
296 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
297 }
298 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
299 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
300 unsigned long start = round_down(mr[i].start, PUD_SIZE);
301 unsigned long end = round_up(mr[i].end, PUD_SIZE);
302
303 if (memblock_is_region_memory(start, end - start))
304 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
305 }
306 }
307}
308
f15e0518
DH
309static const char *page_size_string(struct map_range *mr)
310{
311 static const char str_1g[] = "1G";
312 static const char str_2m[] = "2M";
313 static const char str_4m[] = "4M";
314 static const char str_4k[] = "4k";
315
316 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
317 return str_1g;
318 /*
319 * 32-bit without PAE has a 4M large page size.
320 * PG_LEVEL_2M is misnamed, but we can at least
321 * print out the right size in the string.
322 */
323 if (IS_ENABLED(CONFIG_X86_32) &&
324 !IS_ENABLED(CONFIG_X86_PAE) &&
325 mr->page_size_mask & (1<<PG_LEVEL_2M))
326 return str_4m;
327
328 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
329 return str_2m;
330
331 return str_4k;
332}
333
4e33e065
YL
334static int __meminit split_mem_range(struct map_range *mr, int nr_range,
335 unsigned long start,
336 unsigned long end)
f765090a 337{
2e8059ed 338 unsigned long start_pfn, end_pfn, limit_pfn;
1829ae9a 339 unsigned long pfn;
4e33e065 340 int i;
f765090a 341
2e8059ed
YL
342 limit_pfn = PFN_DOWN(end);
343
f765090a 344 /* head if not big page alignment ? */
1829ae9a 345 pfn = start_pfn = PFN_DOWN(start);
f765090a
PE
346#ifdef CONFIG_X86_32
347 /*
348 * Don't use a large page for the first 2/4MB of memory
349 * because there are often fixed size MTRRs in there
350 * and overlapping MTRRs into large pages can cause
351 * slowdowns.
352 */
1829ae9a 353 if (pfn == 0)
84d77001 354 end_pfn = PFN_DOWN(PMD_SIZE);
f765090a 355 else
1829ae9a 356 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
f765090a 357#else /* CONFIG_X86_64 */
1829ae9a 358 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
f765090a 359#endif
2e8059ed
YL
360 if (end_pfn > limit_pfn)
361 end_pfn = limit_pfn;
f765090a
PE
362 if (start_pfn < end_pfn) {
363 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
1829ae9a 364 pfn = end_pfn;
f765090a
PE
365 }
366
367 /* big page (2M) range */
1829ae9a 368 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
f765090a 369#ifdef CONFIG_X86_32
2e8059ed 370 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
f765090a 371#else /* CONFIG_X86_64 */
1829ae9a 372 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
2e8059ed
YL
373 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
374 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
f765090a
PE
375#endif
376
377 if (start_pfn < end_pfn) {
378 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
379 page_size_mask & (1<<PG_LEVEL_2M));
1829ae9a 380 pfn = end_pfn;
f765090a
PE
381 }
382
383#ifdef CONFIG_X86_64
384 /* big page (1G) range */
1829ae9a 385 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
2e8059ed 386 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
f765090a
PE
387 if (start_pfn < end_pfn) {
388 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
389 page_size_mask &
390 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
1829ae9a 391 pfn = end_pfn;
f765090a
PE
392 }
393
394 /* tail is not big page (1G) alignment */
1829ae9a 395 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
2e8059ed 396 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
f765090a
PE
397 if (start_pfn < end_pfn) {
398 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
399 page_size_mask & (1<<PG_LEVEL_2M));
1829ae9a 400 pfn = end_pfn;
f765090a
PE
401 }
402#endif
403
404 /* tail is not big page (2M) alignment */
1829ae9a 405 start_pfn = pfn;
2e8059ed 406 end_pfn = limit_pfn;
f765090a
PE
407 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
408
7de3d66b
YL
409 if (!after_bootmem)
410 adjust_range_page_size_mask(mr, nr_range);
411
f765090a
PE
412 /* try to merge same page size and continuous */
413 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
414 unsigned long old_start;
415 if (mr[i].end != mr[i+1].start ||
416 mr[i].page_size_mask != mr[i+1].page_size_mask)
417 continue;
418 /* move it */
419 old_start = mr[i].start;
420 memmove(&mr[i], &mr[i+1],
421 (nr_range - 1 - i) * sizeof(struct map_range));
422 mr[i--].start = old_start;
423 nr_range--;
424 }
425
426 for (i = 0; i < nr_range; i++)
c9cdaeb2 427 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
365811d6 428 mr[i].start, mr[i].end - 1,
f15e0518 429 page_size_string(&mr[i]));
f765090a 430
4e33e065
YL
431 return nr_range;
432}
433
08b46d5d 434struct range pfn_mapped[E820_MAX_ENTRIES];
0e691cf8 435int nr_pfn_mapped;
66520ebc
JS
436
437static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
438{
08b46d5d 439 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
66520ebc 440 nr_pfn_mapped, start_pfn, end_pfn);
08b46d5d 441 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
66520ebc
JS
442
443 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
444
445 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
446 max_low_pfn_mapped = max(max_low_pfn_mapped,
447 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
448}
449
450bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
451{
452 int i;
453
454 for (i = 0; i < nr_pfn_mapped; i++)
455 if ((start_pfn >= pfn_mapped[i].start) &&
456 (end_pfn <= pfn_mapped[i].end))
457 return true;
458
459 return false;
460}
461
4e33e065
YL
462/*
463 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
464 * This runs before bootmem is initialized and gets pages directly from
465 * the physical memory. To access them they are temporarily mapped.
466 */
bd721ea7 467unsigned long __ref init_memory_mapping(unsigned long start,
4e33e065
YL
468 unsigned long end)
469{
470 struct map_range mr[NR_RANGE_MR];
471 unsigned long ret = 0;
472 int nr_range, i;
473
c9cdaeb2 474 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
4e33e065
YL
475 start, end - 1);
476
477 memset(mr, 0, sizeof(mr));
478 nr_range = split_mem_range(mr, 0, start, end);
479
f765090a
PE
480 for (i = 0; i < nr_range; i++)
481 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
482 mr[i].page_size_mask);
f765090a 483
66520ebc
JS
484 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
485
c14fa0b6
YL
486 return ret >> PAGE_SHIFT;
487}
488
66520ebc 489/*
cf8b166d 490 * We need to iterate through the E820 memory map and create direct mappings
09821ff1 491 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
cf8b166d
ZY
492 * create direct mappings for all pfns from [0 to max_low_pfn) and
493 * [4GB to max_pfn) because of possible memory holes in high addresses
494 * that cannot be marked as UC by fixed/variable range MTRRs.
495 * Depending on the alignment of E820 ranges, this may possibly result
496 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
497 *
498 * init_mem_mapping() calls init_range_memory_mapping() with big range.
499 * That range would have hole in the middle or ends, and only ram parts
500 * will be mapped in init_range_memory_mapping().
66520ebc 501 */
8d57470d 502static unsigned long __init init_range_memory_mapping(
b8fd39c0
YL
503 unsigned long r_start,
504 unsigned long r_end)
66520ebc
JS
505{
506 unsigned long start_pfn, end_pfn;
8d57470d 507 unsigned long mapped_ram_size = 0;
66520ebc
JS
508 int i;
509
66520ebc 510 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
b8fd39c0
YL
511 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
512 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
513 if (start >= end)
66520ebc
JS
514 continue;
515
c9b3234a
YL
516 /*
517 * if it is overlapping with brk pgt, we need to
518 * alloc pgt buf from memblock instead.
519 */
520 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
521 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
f763ad1d 522 init_memory_mapping(start, end);
8d57470d 523 mapped_ram_size += end - start;
c9b3234a 524 can_use_brk_pgt = true;
66520ebc 525 }
8d57470d
YL
526
527 return mapped_ram_size;
66520ebc
JS
528}
529
6979287a
YL
530static unsigned long __init get_new_step_size(unsigned long step_size)
531{
532 /*
132978b9 533 * Initial mapped size is PMD_SIZE (2M).
6979287a
YL
534 * We can not set step_size to be PUD_SIZE (1G) yet.
535 * In worse case, when we cross the 1G boundary, and
536 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
132978b9
JB
537 * to map 1G range with PTE. Hence we use one less than the
538 * difference of page table level shifts.
6979287a 539 *
132978b9
JB
540 * Don't need to worry about overflow in the top-down case, on 32bit,
541 * when step_size is 0, round_down() returns 0 for start, and that
542 * turns it into 0x100000000ULL.
543 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
544 * needs to be taken into consideration by the code below.
6979287a 545 */
132978b9 546 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
6979287a
YL
547}
548
0167d7d8
TC
549/**
550 * memory_map_top_down - Map [map_start, map_end) top down
551 * @map_start: start address of the target memory range
552 * @map_end: end address of the target memory range
553 *
554 * This function will setup direct mapping for memory range
555 * [map_start, map_end) in top-down. That said, the page tables
556 * will be allocated at the end of the memory, and we map the
557 * memory in top-down.
558 */
559static void __init memory_map_top_down(unsigned long map_start,
560 unsigned long map_end)
c14fa0b6 561{
0167d7d8 562 unsigned long real_end, start, last_start;
8d57470d
YL
563 unsigned long step_size;
564 unsigned long addr;
565 unsigned long mapped_ram_size = 0;
ab951937 566
98e7a989 567 /* xen has big range in reserved near end of ram, skip it at first.*/
0167d7d8 568 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
8d57470d
YL
569 real_end = addr + PMD_SIZE;
570
571 /* step_size need to be small so pgt_buf from BRK could cover it */
572 step_size = PMD_SIZE;
573 max_pfn_mapped = 0; /* will get exact value next */
574 min_pfn_mapped = real_end >> PAGE_SHIFT;
575 last_start = start = real_end;
cf8b166d
ZY
576
577 /*
578 * We start from the top (end of memory) and go to the bottom.
579 * The memblock_find_in_range() gets us a block of RAM from the
580 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
581 * for page table.
582 */
0167d7d8 583 while (last_start > map_start) {
8d57470d
YL
584 if (last_start > step_size) {
585 start = round_down(last_start - 1, step_size);
0167d7d8
TC
586 if (start < map_start)
587 start = map_start;
8d57470d 588 } else
0167d7d8 589 start = map_start;
132978b9 590 mapped_ram_size += init_range_memory_mapping(start,
8d57470d
YL
591 last_start);
592 last_start = start;
593 min_pfn_mapped = last_start >> PAGE_SHIFT;
132978b9 594 if (mapped_ram_size >= step_size)
6979287a 595 step_size = get_new_step_size(step_size);
8d57470d
YL
596 }
597
0167d7d8
TC
598 if (real_end < map_end)
599 init_range_memory_mapping(real_end, map_end);
600}
601
b959ed6c
TC
602/**
603 * memory_map_bottom_up - Map [map_start, map_end) bottom up
604 * @map_start: start address of the target memory range
605 * @map_end: end address of the target memory range
606 *
607 * This function will setup direct mapping for memory range
608 * [map_start, map_end) in bottom-up. Since we have limited the
609 * bottom-up allocation above the kernel, the page tables will
610 * be allocated just above the kernel and we map the memory
611 * in [map_start, map_end) in bottom-up.
612 */
613static void __init memory_map_bottom_up(unsigned long map_start,
614 unsigned long map_end)
615{
132978b9 616 unsigned long next, start;
b959ed6c
TC
617 unsigned long mapped_ram_size = 0;
618 /* step_size need to be small so pgt_buf from BRK could cover it */
619 unsigned long step_size = PMD_SIZE;
620
621 start = map_start;
622 min_pfn_mapped = start >> PAGE_SHIFT;
623
624 /*
625 * We start from the bottom (@map_start) and go to the top (@map_end).
626 * The memblock_find_in_range() gets us a block of RAM from the
627 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
628 * for page table.
629 */
630 while (start < map_end) {
132978b9 631 if (step_size && map_end - start > step_size) {
b959ed6c
TC
632 next = round_up(start + 1, step_size);
633 if (next > map_end)
634 next = map_end;
132978b9 635 } else {
b959ed6c 636 next = map_end;
132978b9 637 }
b959ed6c 638
132978b9 639 mapped_ram_size += init_range_memory_mapping(start, next);
b959ed6c
TC
640 start = next;
641
132978b9 642 if (mapped_ram_size >= step_size)
b959ed6c 643 step_size = get_new_step_size(step_size);
b959ed6c
TC
644 }
645}
646
0167d7d8
TC
647void __init init_mem_mapping(void)
648{
649 unsigned long end;
650
aa8c6248 651 pti_check_boottime_disable();
0167d7d8 652 probe_page_size_mask();
c7ad5ad2 653 setup_pcid();
0167d7d8
TC
654
655#ifdef CONFIG_X86_64
656 end = max_pfn << PAGE_SHIFT;
657#else
658 end = max_low_pfn << PAGE_SHIFT;
659#endif
660
661 /* the ISA range is always mapped regardless of memory holes */
662 init_memory_mapping(0, ISA_END_ADDRESS);
663
b234e8a0
TG
664 /* Init the trampoline, possibly with KASLR memory offset */
665 init_trampoline();
666
b959ed6c
TC
667 /*
668 * If the allocation is in bottom-up direction, we setup direct mapping
669 * in bottom-up, otherwise we setup direct mapping in top-down.
670 */
671 if (memblock_bottom_up()) {
672 unsigned long kernel_end = __pa_symbol(_end);
673
674 /*
675 * we need two separate calls here. This is because we want to
676 * allocate page tables above the kernel. So we first map
677 * [kernel_end, end) to make memory above the kernel be mapped
678 * as soon as possible. And then use page tables allocated above
679 * the kernel to map [ISA_END_ADDRESS, kernel_end).
680 */
681 memory_map_bottom_up(kernel_end, end);
682 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
683 } else {
684 memory_map_top_down(ISA_END_ADDRESS, end);
685 }
8d57470d 686
f763ad1d
YL
687#ifdef CONFIG_X86_64
688 if (max_pfn > max_low_pfn) {
689 /* can we preseve max_low_pfn ?*/
690 max_low_pfn = max_pfn;
691 }
719272c4
YL
692#else
693 early_ioremap_page_table_range_init();
8170e6be
PA
694#endif
695
719272c4
YL
696 load_cr3(swapper_pg_dir);
697 __flush_tlb_all();
719272c4 698
f72e38e8 699 x86_init.hyper.init_mem_mapping();
c138d811 700
c14fa0b6 701 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
22ddfcaa 702}
e5b2bb55 703
540aca06
PE
704/*
705 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
706 * is valid. The argument is a physical page number.
707 *
a4866aa8
KC
708 * On x86, access has to be given to the first megabyte of RAM because that
709 * area traditionally contains BIOS code and data regions used by X, dosemu,
710 * and similar apps. Since they map the entire memory range, the whole range
711 * must be allowed (for mapping), but any areas that would otherwise be
712 * disallowed are flagged as being "zero filled" instead of rejected.
713 * Access has to be given to non-kernel-ram areas as well, these contain the
714 * PCI mmio resources as well as potential bios/acpi data regions.
540aca06
PE
715 */
716int devmem_is_allowed(unsigned long pagenr)
717{
2bdce744
DW
718 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
719 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
720 != REGION_DISJOINT) {
a4866aa8
KC
721 /*
722 * For disallowed memory regions in the low 1MB range,
723 * request that the page be shown as all zeros.
724 */
725 if (pagenr < 256)
726 return 2;
727
728 return 0;
729 }
730
731 /*
732 * This must follow RAM test, since System RAM is considered a
733 * restricted resource under CONFIG_STRICT_IOMEM.
734 */
735 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
736 /* Low 1MB bypasses iomem restrictions. */
737 if (pagenr < 256)
738 return 1;
739
540aca06 740 return 0;
a4866aa8
KC
741 }
742
743 return 1;
540aca06
PE
744}
745
e5b2bb55
PE
746void free_init_pages(char *what, unsigned long begin, unsigned long end)
747{
c967da6a 748 unsigned long begin_aligned, end_aligned;
e5b2bb55 749
c967da6a
YL
750 /* Make sure boundaries are page aligned */
751 begin_aligned = PAGE_ALIGN(begin);
752 end_aligned = end & PAGE_MASK;
753
754 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
755 begin = begin_aligned;
756 end = end_aligned;
757 }
758
759 if (begin >= end)
e5b2bb55
PE
760 return;
761
762 /*
763 * If debugging page accesses then do not free this memory but
764 * mark them not present - any buggy init-section access will
765 * create a kernel page fault:
766 */
a75e1f63
CB
767 if (debug_pagealloc_enabled()) {
768 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
769 begin, end - 1);
770 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
771 } else {
772 /*
773 * We just marked the kernel text read only above, now that
774 * we are going to free part of that, we need to make that
775 * writeable and non-executable first.
776 */
777 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
778 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
e5b2bb55 779
a75e1f63
CB
780 free_reserved_area((void *)begin, (void *)end,
781 POISON_FREE_INITMEM, what);
782 }
e5b2bb55
PE
783}
784
6ea2738e
DH
785/*
786 * begin/end can be in the direct map or the "high kernel mapping"
787 * used for the kernel image only. free_init_pages() will do the
788 * right thing for either kind of address.
789 */
790void free_kernel_image_pages(void *begin, void *end)
791{
c40a56a7
DH
792 unsigned long begin_ul = (unsigned long)begin;
793 unsigned long end_ul = (unsigned long)end;
794 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
795
796
797 free_init_pages("unused kernel image", begin_ul, end_ul);
798
799 /*
800 * PTI maps some of the kernel into userspace. For performance,
801 * this includes some kernel areas that do not contain secrets.
802 * Those areas might be adjacent to the parts of the kernel image
803 * being freed, which may contain secrets. Remove the "high kernel
804 * image mapping" for these freed areas, ensuring they are not even
805 * potentially vulnerable to Meltdown regardless of the specific
806 * optimizations PTI is currently using.
807 *
808 * The "noalias" prevents unmapping the direct map alias which is
809 * needed to access the freed pages.
810 *
811 * This is only valid for 64bit kernels. 32bit has only one mapping
812 * which can't be treated in this way for obvious reasons.
813 */
814 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
815 set_memory_np_noalias(begin_ul, len_pages);
6ea2738e
DH
816}
817
18278229 818void __ref free_initmem(void)
e5b2bb55 819{
0c6fc11a 820 e820__reallocate_tables();
47533968 821
6ea2738e 822 free_kernel_image_pages(&__init_begin, &__init_end);
e5b2bb55 823}
731ddea6
PE
824
825#ifdef CONFIG_BLK_DEV_INITRD
0d26d1d8 826void __init free_initrd_mem(unsigned long start, unsigned long end)
731ddea6 827{
c967da6a
YL
828 /*
829 * end could be not aligned, and We can not align that,
830 * decompresser could be confused by aligned initrd_end
831 * We already reserve the end partial page before in
832 * - i386_start_kernel()
833 * - x86_64_start_kernel()
834 * - relocate_initrd()
835 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
836 */
c88442ec 837 free_init_pages("initrd", start, PAGE_ALIGN(end));
731ddea6
PE
838}
839#endif
17623915 840
4270fd8b
IM
841/*
842 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
843 * and pass it to the MM layer - to help it set zone watermarks more
844 * accurately.
845 *
846 * Done on 64-bit systems only for the time being, although 32-bit systems
847 * might benefit from this as well.
848 */
849void __init memblock_find_dma_reserve(void)
850{
851#ifdef CONFIG_X86_64
852 u64 nr_pages = 0, nr_free_pages = 0;
853 unsigned long start_pfn, end_pfn;
854 phys_addr_t start_addr, end_addr;
855 int i;
856 u64 u;
857
858 /*
859 * Iterate over all memory ranges (free and reserved ones alike),
860 * to calculate the total number of pages in the first 16 MB of RAM:
861 */
862 nr_pages = 0;
863 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
864 start_pfn = min(start_pfn, MAX_DMA_PFN);
865 end_pfn = min(end_pfn, MAX_DMA_PFN);
866
867 nr_pages += end_pfn - start_pfn;
868 }
869
870 /*
871 * Iterate over free memory ranges to calculate the number of free
872 * pages in the DMA zone, while not counting potential partial
873 * pages at the beginning or the end of the range:
874 */
875 nr_free_pages = 0;
876 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
877 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
878 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
879
880 if (start_pfn < end_pfn)
881 nr_free_pages += end_pfn - start_pfn;
882 }
883
884 set_dma_reserve(nr_pages - nr_free_pages);
885#endif
886}
887
17623915
PE
888void __init zone_sizes_init(void)
889{
890 unsigned long max_zone_pfns[MAX_NR_ZONES];
891
892 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
893
894#ifdef CONFIG_ZONE_DMA
c072b90c 895 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
17623915
PE
896#endif
897#ifdef CONFIG_ZONE_DMA32
c072b90c 898 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
17623915
PE
899#endif
900 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
901#ifdef CONFIG_HIGHMEM
902 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
903#endif
904
905 free_area_init_nodes(max_zone_pfns);
906}
907
6fd166aa 908__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
3d28ebce 909 .loaded_mm = &init_mm,
10af6235 910 .next_asid = 1,
1e02ce4c
AL
911 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
912};
1e547681 913EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
1e02ce4c 914
bd809af1
JG
915void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
916{
917 /* entry 0 MUST be WB (hardwired to speed up translations) */
918 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
919
920 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
921 __pte2cachemode_tbl[entry] = cache;
922}
377eeaa8 923
792adb90 924#ifdef CONFIG_SWAP
377eeaa8
AK
925unsigned long max_swapfile_size(void)
926{
927 unsigned long pages;
928
929 pages = generic_max_swapfile_size();
930
931 if (boot_cpu_has_bug(X86_BUG_L1TF)) {
932 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
b0a182f8 933 unsigned long long l1tf_limit = l1tf_pfn_limit();
1a7ed1ba
VB
934 /*
935 * We encode swap offsets also with 3 bits below those for pfn
936 * which makes the usable limit higher.
937 */
0d0f6249 938#if CONFIG_PGTABLE_LEVELS > 2
1a7ed1ba
VB
939 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
940#endif
9df95169 941 pages = min_t(unsigned long long, l1tf_limit, pages);
377eeaa8
AK
942 }
943 return pages;
944}
792adb90 945#endif